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Highwalls are an artificial landform that results from mining activity. They are characterized as a 

length of steep, possibly unstable, slope that scars the landscape and can pose a hazard to people 

or property.  In Appalachia, most highwall features are artifacts of  auger mining that occurred 

along ridges where coal beds outcropped at the surface (figure 1). 

 

 

Figure 1.  Auger mining against a highwall.  Augering equipment rests on a flat 

bench cut onto the hillside at the elevation where coal outcrops at the surface.  

Photo courtesy of West Virginia Office of  Miners' Health Safety &Training. 

 

 

The Surface Mining Control and Reclamation Act (SMCRA) of 1977 provided a mechanism for 

reclaiming abandoned mine hazards, and ultimately led to the creation of inventories of 

potentially hazardous features.  In West Virginia, highwalls, along with other features, were 

delineated on mylar topographic maps, which subsequently were converted to digital format for 

use in Geographical Information Systems (GIS). 



 

 

 

Since the creation of West Virginia’s highwall inventory, high resolution digital elevation 

models (DEMs) have become much more common.  The level of detail apparent in these data 

sources, particularly data from LIDAR sensors, suggests it may be possible to extract highwall 

features in a systematic way.  Furthermore, high resolution data sources could be used to 

attribute individual highwall sections with estimates of height and slope. 

 

This project examined the feasibility of creating and attributing a mining highwall dataset from a 

3-meter LIDAR elevation grid for Wyoming county, West Virginia (figure 2).   

 

 
Figure 2. LIDAR elevation model of Wyoming County, West Virginia. 

 

The data, originally collected to facilitate a floodplain mapping project, covers an area over 575 

square miles and includes several areas of extensive auger mining activity.  Figure 3 shows a 

portion of Wyoming county where auger mining has followed coal outcrops around an entire 



 

 

mountain at two elevations.  The red line in Figure 3 defines an west-to-east elevation profile 

reproduced in Figure 4, showing highwalls cut into the mountain on each side. 

 

Method 

 

Isolating highwall features involves the creation of derivative data products that relate to salient 

characteristics of the features, the most notably slope.  The average slope calculated for the 

Wyoming county dataset was approximately 26 degrees, with a standard deviation of 10.14.  

Assuming a normal distribution, areas where the slope exceeds 45 degrees would constitute less 

than 3.1% of the study area.  Visual examination of the data suggested that 45 degrees 

represented a good compromise between isolating the desired features without truncating them, 

and not producing an overwhelming number of spurious noise artifacts. Figure 5 depicts slopes 

greater than 45 degrees occurring in the same area depicted in figure 3. 

 

 
Figure 3. Aerial photograph of auger mining in within the study area. 

 



 

 

 
Figure 4.  elevation profile for the red line depicted in figure 3, showing highwalls on both sides 

of the hill. 

 

 

 

 
Figure 5. Slopes greater than 45 degrees, shown in red. 

 

Cells in the elevation grid with a slope over 45 degrees were reclassified to a value of 1; all other 

cells were assigned a null value.  After some experimentation, the steep slope areas were 

expanded by 1 cell prior to running a thinning routine.  The thin routine is part of ESRI’s spatial 

analyst extension, designed to condition line work depicted on scanned maps prior to conversion 



 

 

to a vector data format.  This algorithm proved very effective at reducing the thickness of the 

high slope areas, greatly facilitating the conversion from a raster grid representation to vector 

lines (Figure 6). 

 

Following the conversion to vector format, the central challenge in the analysis was to 

discriminate between actual highwalls and various noise artifacts, natural cliff features, and man-

made features such as road and railroad cuts.   

 

Computers do not approach human capacity for pattern recognition.  Using a combination of 

aerial photography, topographic maps, and hillshade renderings of the elevation data, an analyst 

can correctly identify mining highwalls much more accurately than a computer algorithm.  

However, the initial vector conversion produced over 20,000 features, which presented a 

significant workload for manual interpretation.  Therefore, some combination of an initial 

algorithmic selection, followed by manual interpretation of the results, could be expected to 

maximize the quality of the final product while minimizing the total time invested in the process. 

 

 
Figure 6.  Result of the thin operation and initial conversion from raster to vector format. 



 

 

 

Automated selection of highwall features was based on a set of calculated attributes designed to 

isolate likely candidates.  First, all features longer than 250 meters were included automatically, 

since there are relatively few natural occurrences of long, linear, steep slopes in this area.  

Second, coal beds in this area are relatively flat, resulting in an auger mining pattern that follows 

the contour of a mountain at a relatively constant elevation.  Therefore, the average change in 

elevation along the length of the highwall should be relatively small.  Third, auger mining 

requires a flat bench for equipment, so auger highwalls often are spatially associated with a 

relatively flat area.  Figure 7 shows areas of less than 10 percent slope in relation to the vector 

highwall candidates. 

 

 
Figure 7. Areas of slope less than 10 degrees, shown in green, and their relationship with 

potential highwall features, in yellow. 

 

Two parameters, Drop and Proximity, were calculated using grid representations of the highwall 

features.  Drop was defined as the elevation range divided by the length of the feature, where 



 

 

elevation range is the difference between the maximum and minimum elevation values sampled 

for each grid cell along the length of the feature.  Proximity was calculated as the average 

distance from each highwall grid cell to a cell with less then 10 degrees slope.  A more rigorous 

application of proximity would have used flat areas down slope of the feature only, rather than 

any flat area.  However, visual examination of the data indicated that this restriction probably 

wouldn’t have affected the results significantly, so it was not implemented.   

 

In order to determine thresholds to use with the attributes, 100 manually-verified highwalls were 

selected randomly from the candidate set.  Mean and standard deviations were calculated for the 

Drop and Proximity attributes: 

 

Sample Drop Mean (Ds) 0.0831,  standard deviation (σ DS): 0.050748 

Sample Proximity Mean  (Ps) 16.73, standard deviation (σ PS): 7.72 

 

The sample means and standard deviations were used to set upper thresholds for selection of 

potential highwall candidates.  Here, standard deviation was considered a useful measure of 

spread in the data for setting a threshold; it was not used to extrapolate statistically valid 

assertions about the population.  As stated previously, the selection equation included a 

candidate if its length was greater then 250 meters.  It also included a candidate if  1) its Drop 

was less than the mean of the sample plus three times the standard deviation, and  2) its 

Proximity was less than the mean of the sample plus two times the standard deviation: 

 

Lc > 250 OR (  Dc < Ds + 3σ DS AND Pc < Ps + 2σ PS ) 

 

Where: 

 

Lc length of a highwall candidate, in meters  

Dc  candidate Drop 

Ds  sample Drop mean 

σ DS  sample Drop standard deviation 

Pc candidate Proximity 

Ps sample Proximity mean 

σ PS  sample Proximity standard deviation 

 

This equation selected 6,102 candidates from the initial pool of 20,364, effectively reducing the 

candidate set by 70%.  However, the initial selection committed errors of commission, in which 



 

 

non-highwall features were included in the selection set, and errors of omission, in which actual 

highwall features were incorrectly left out. 

 

One significant source of commission error was highway and railway cuts.  A standard TIGER 

transportation layer was used to select features within 10 meters of railways, US highways, and 

state highways.  Despite the limited spatial accuracy and completeness of this data source, the 

operation eliminated 413 candidates from the initial set without including any instances of 

highwalls.  An additional 173 candidates were determined to be associated with active mining 

operations and also were removed from the selection set.  Finally, 2,617 candidates were 

removed through manual interpretation.  Some of these features were additional transportation 

cuts that fell outside the 10 meter buffer.  However, a post-analysis examination indicated that 

the buffer value could not have been increased without including a significant number of real 

highwall features.  The majority of the remaining commission errors were typically short features 

scattered throughout the study area representing natural cliff features or noise artifacts. 

 

Manual interpretation also identified 503 omission errors.  Many of these candidates were 

relatively short sections that formed part of a pattern, or chain of highwall features occurring 

along a ridge, and thus were relatively easy to identify.  In total, approximately 8 hours was 

devoted to manual interpretation of the candidate set following the preliminary selection process.  

Extensive use was made of hillshade renderings, aerial photography, and topographic maps, 

which often depicted past mining activity, to make determinations regarding candidate status.    

 

total candidates 20,364 

rejected, by equation 14,262  

selected, by equation 6,102 

omission errors 503  

commission errors 2,617  

active mining highwalls 173  

rejected, road/railroad cuts 413 

 

 

 



 

 

Calculating Feature Attributes 

 

After finalizing the highwall feature set, the elevation model was used to generate a series of 

height and slope estimates for features identified as highwalls.  First, every highwall feature was 

split at each vertex into sequence of line segments. Then a perpendicular profile line was 

calculated for each line segment (figure 8).  The profile lines were used to sample the top and 

bottom of the highwall, thereby allowing an estimation of height and slope for each segment.  

The length of each profile was determined by the 45 degree slope criteria originally used to 

identify the highwall features.  In other words, the endpoints of each profile were clipped to the 

boundary representing the area of greater than 45 degrees slope. 

 

The decision to clip the profiles at the 45 degree slope line was based on an investigation of 

curvature.  The curvature function in ESRI’s spatial analyst extension can be used to calculate 

the rate of change in slope for an elevation surface.  One of the products of this function 

measures change in the direction of maximum slope, producing negative values for convex, and 

positive changes for concave, surface trends.  These trends relate to the structure of a highwall.  

Viewed in profile, the extent of a highwall is determined by  a convex break at the top, and a 

concave break at the bottom (figure 9).  The curvature function was useful for delineating these 

breaks visually, though it was not considered consistent enough for modeling the top and bottom 

of the highwall algorithmically.   

 

 



 

 

 
Figure 8. perpendicular profile lines, in blue, used to estimate highwall height and slope 

for each line segment.  The semi-transparent yellow areas represent slopes greater than 

45 degrees. 

 

 

 
Figure 9. highwall profile. 

 

 



 

 

 
Figure 10.  comparison of curvature and areas greater then 45 degrees slope.  Convex breaks on 

slope are depicted in red, convex breaks in green. 

 

Figure 10 illustrates the correlation between the output of the curvature function and the slopes 

greater than 45.  The Red pixels in figure 10 represent pronounced convex breaks in slope, which 

occur at the top of a highwall, and at the outer edge of the bench cut into the side of the hill.  

Green pixels represent concave breaks in slope at the bottom of the highwall.  The blue vector 

lines represent areas over 45 degree slope, which typically correspond with the top and bottom 

highwall breaks within one grid cell (3-meters).  The high degree of correlation observed 

between slope breaks and the 45-degree slope cutoff suggests that the 45-degree slope cutoff 

value produces a reasonable delineation of highwall width, and consequently, is a reasonable 

basis for sampling the elevations at the top and bottom of a highwall segment to estimate overall 

height and slope. 

 

While the process of estimating highwall height and slope works reasonably well, it should be 

noted that quirks in the highwall line segments can result in profiles that do not cross the 

highwall feature at a appropriate angle.  Figure 11 shows profile segments generated for a small 

highwall segment.  Profiles at A and B cross the highwall at an angle, due to the way the GIS 



 

 

software converted the line segment from a raster to a vector representation.  In many cases the 

error may be negligible, though not in all cases.  These profiles usually are associated with short 

segments and could be filtered out based on segment length when calculating average statistics 

for a longer feature. 

 

 
Figure 11.  example of spurious profile segments that could create error in highwall 

height and slope estimates. 

 

Conclusions 

 

This paper demonstrates a semi-automated process for identifying mining highwall features that 

improves on an existing manually-delineated inventory in several ways.  First, the project 

identified over 493km (306.5 miles) of highwalls within the study area, in contrast to 244.6km 

(152 miles) in the existing inventory.  Figure 12 illustrates one of several areas of highwall 

mining identified by the study that were completely absent from the existing inventory.  Second, 

the process created a more precise depiction of the location and extent of highwall features.  This 



 

 

fact is apparent in Figure 13, which depicts highwall features delineated by this study along with 

manually delineated features from the existing inventory.   

 
Figure 12. highwalls found by the study not currently in the highwall inventory. 

 

 
Figure 13. comparison of highwalls created by this analysis (red) with manually 

delineated highwalls in the current highwall inventory (green). 



 

 

 

The newly delineated highwall segments are more complete, detailed, and accurately located.  

The third advantage of this process is the ability to estimate height and slope of individual 

highwall segments, which can be visualized with GIS systems.  The estimation of these 

parameters allows highwall segments to be classified and visually evaluated in ways that were 

not previously possible.  

 

Finally, the results of the study arguably are more consistent than results obtained from manually 

digitizing highwall features from aerial photography.  This is because an objective criterion was 

applied based on the morphology of the feature, rather than relying on the visual presentation of 

the feature from above.  However, the process does have limitations.  No completely reliable 

method was found to isolate highwall features from noise fragments without some error that 

required manual correction.  Additionally, the study was conducted using LIDAR elevation data, 

which is the most detailed and accurate source for elevation data currently available.  Therefore 

the results represent a best case example. Employing a similar process with less precise data 

sources would produce less detailed results. 


