
PART V: STARS � II
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Section 13

Nuclear reactions in stars

13.1 Introduction

In general, nuclear processes in stars involve �ssion of a nucleus, or (more usually in `normal'

evolutionary phases), the fusion of two nuclei. Through all these processes, key physical

quantities are conserved:

• the baryon number (the number of protons, neutrons, and their antiparticles);

• the lepton number (electrons, neutrinos, related light particles, and their antiparticles);

• charge; and

• total mass�energy.

Consider two types of nuclei, A and B, number densities n(A), n(B). The rate at which a

particular (nuclear) reaction occurs between particles moving with relative velocity v is

r(v) = n(A) n(B) v σ(v) (13.1)

(per unit volume per unit time) where σ(v) is the cross-section for the reaction. Of course, we

need to integrate over velocity to get the total reaction rate:

r = n(A) n(B)
∫

v σ(v) f(v) dv

≡ n(A) n(B) 〈σ(v) v〉 [ m−3 s−1] (13.2)

where f(v) is the (Maxwellian) velocity distribution, and the angle brackets denote a weighted

average (i.e., the integral in the �rst part of eqtn. 13.2).
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Since the reaction destroys A (and B), we have

∂n(A)
∂t

= −n(A) n(B) 〈σ(v) v〉 ; (13.3)

and the number density of species A falls with time as

n(A, t) = n0(A) exp {−n(B) 〈σ(v) v〉 t} (13.4)

which de�nes a characteristic (e-folding) timescale

τ =
1

n(B) 〈σ(v) v〉
. (13.5)

Finally, the total energy generated through this reaction, per unit mass per unit time, is

ε =
Qr

ρ

=
n(A) n(B)

ρ
Q 〈σ(v) v〉 [J kg−1 s−1] (13.6)

where Q is the energy produced per reaction and ρ is the mass density.

13.2 Tunnelling

Charged nuclei experience Coulomb repulsion at intermediate separations, and nuclear

attraction at small separations. In stellar cores the high temperatures give rise to high

velocities, and increased probability of overcoming the Coulomb barrier. For nuclear charge Z

(the atomic number), the energy needed to overcome the Coulomb barrier is

EC '
Z1Z2e

2

r0
(13.7)

( ' 2× 10−13 J, ' 1 MeV, for Z1 = Z2 = 1) (13.8)

where r0 ' 10−15m is the radius at which nuclear attraction overcomes Coulomb repulsion for

proton pairs.

In the solar core, Tc ∼ 1.5× 107K; that is, E(= 3/2kT ) ' keV, or ∼ 10−3EC. This energy is

only su�cient to bring protons to within ∼ 103r0 of each other; this is much too small to be

e�ective, so reactions only occur through a process of �quantum tunneling� (barrier

penetration). In this temperature regime the rate of nuclear energy generation is well

approximated by a power-law dependence on temperature,

ε ' ε0ρTα (13.9)
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Figure 13.1: Upper section: a schematic plot of the potential between two charged nucleons as a function of

separation. At `large' separations (& 10−15 m), the repulsive Coulomb force is given by eqtn. (13.8); classically,

particles cannot come closer than the point r1 at which the relative kinetic energy corresponds to the repulsive

potential. Quantum-mechanical tunneling allows the nucleons to approach closer, to separation r2, at which point

the strong nuclear force dominates.

The lower panel expresses this tunnelling schematically. The (square of the) amplitude of the wave function is a

measure of the probability of a particle being in a particular location; the amplitude of the wave function decreases

exponentially between r1 and r2, but does not fall to zero. (See Aside 13.1 for further details.)

where α ' 4.5 for proton-proton reactions in the Sun [Section 13.4; ε0 ∝ n2(H)], and α ' 18 for

CN processing [Section 13.5; ε0 ∝ n(H)n(C,N)].

[Note that eqtn. (13.9) characterizes the rate of energy generation per unit mass (or, if you like,

per nucleon). Although density appears here as a simple linear multiplier, reference to

eqtn. 13.6 reminds us that, like nearly all `collisional' processes, the energy generation rate per

unit volume � or the probability of a given nucleus undergoing fusion � depends on density

squared.]
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Figure 13.2: The main energy-dependent factors determining two-body reaction rates are the numbers of

reagents as a function of energy (the Maxwellian velocity distribution) and the tunnelling probability of pene-

tration. The product of these two terms gives the energy distribution of particles participating in fusion. These

factors are illustrated here, on arbitrary vertical scales, for the fusion of two protons in the solar core (Gamow

energy EG = 290kT for T = 2× 107 K; E0 = 4.2kT , 1/e width ∆ = 4.8kT ). See Aside 13.1.

Aside 13.1: The Gamow Peak

As illustrated in Fig. 13.1, `tunnelling' can occur to allow fusion to occur at particle energies which classical

mechanics would indicate to be too low to overcome the Coulomb barrier. For higher temperatures (and larger

kinetic energies), particles will come closer together (r1 approaches r2), the decay of the wave function is

reduced, and so the amplitude of the wave function in the region r < r2 becomes larger � that is, the tunnelling

probability increases as the kinetic energy of the incoming nucleus increases.

Obtaining the probability of barrier penetration, pp, for given energy, is a standard problem in wave mechanics.

We simply quote the result that the probability of penetration varies exponentially with the ratio of kinetic

energy to barrier size,

pp ∝ exp

(
−

„
EG

E

«1/2
)

(A-13.1)

with the `Gamow energy' EG (unnamed and written as b2 in some sources) given by

EG = 2mRc
2 (παZ1Z2)

2 (= 493 keV for proton-proton fusion), (A-13.2)

where α is the �ne structure constant,

α =
e2

4πε0~c
' 1

137
. (A-13.3)

and mR is the `reduced mass',

mR =
m1m2

m1 +m2
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for particles of mass m1, m2 (' A1m(H), A2m(H)) of charge Z1, Z2. (Using the reduced mass means that

velocities and kinetic energies are measured with reference to the centre of mass of the particles involved.)

The fusion cross-section σ(v) (eqtn 13.1) is evidently dependent on this penetration probability. We also expect

it to depend on the e�ective size, or `target area', of the particles; this geometrical factor is proportional to πλ2,

where λ is the de Broglie wavelength, λ2 ∝ 1/E. The intrinsic properties of the nuclei must also be involved;

these will be constant, or slowly varying functions of energy, in most circumstances (although resonances may

occur). We therefore write the total reaction cross-section in the form

σ(E) =
S(E)

E
exp

(
−

„
EG

E

«1/2
)

(A-13.4)

where S(E) encapsulates the nuclear physics of the actual fusion process.

At any given temperature, the number of particles in a Maxwellian velocity distribution falls o� exponentially

with increasing energy (eqtn. 8.15); that is, the probability of encountering a particle with energy E at kinetic

temperature T is

f(E)dE =
2√
π

E

kT
exp


− E

kT

ff
dE

(kTE)1/2
(A-13.5)

These two competing factors � the increasing probability of penetration with increasing energy (eqtn. A-13.1)

and the decreasing number of particles with increasing energy (eqtn. A-13.5) � mean that there is a limited

range of energies at which most reactions occur. This is illustrated in Fig. 13.2; the product of the two

exponential terms leads to the `Gamow peak', where the probability of fusion occuring is at a maximum.1

To explore this in greater detail, we write the reaction rate per particle pair, eqtn. 13.2, as

〈σ(v) v〉 =

Z ∞

0

σ(E)vf(E)dE

where σ(E), v are particle cross-sections and velocities at energy E; from eqtns. (A-13.4) and (A-13.5), and

using E = 1
2
mRv

2,

〈σ(v) v〉 =

Z ∞

0

S(E)

E
exp

(
−

„
EG

E

«1/2
) r

2E

mR

2√
π

E

kT
exp


− E

kT

ff
dE

(kTE)1/2
(A-13.6)

=

„
8

πmR

«1/2
1

(kT )3/2

Z ∞

0

S(E) exp

(
− E

kT
−

„
EG

E

«1/2
)

dE (A-13.7)

at some �xed temperature T . Eqtn. (A-13.7) is the integral over the Gamow peak; the larger the area, the

greater the reaction rate.

The Gamow peak is appropriately named in that it is indeed quite strongly peaked; it is therefore a reasonable

approximation to take the S(E) term as locally constant. In that case, the integrand peaks at energy E0, when

d

dE

(
E

kT
+

„
EG

E

«1/2
)

=
1

kT
− 1

2

„
EG

E3
0

«1/2

= 0;

i.e.,

E0 =

„
kT
√
EG

2

«2/3

. (A-13.8)

=
h√

2(παkc)2mR (Z1Z2T )2
i1/3

1Clearly, the area under the Gamow peak determines the total reaction rate.
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E0, the location of the Gamow peak, is the most e�ective energy for thermonuclear reactions; it greatly exceeds

kT , the typical thermal energy, but falls well below the Gamow energy of the Coulomb barrier.

There is no simple analytical solution for the width of the peak, but one common (and reasonable) approach is

to approximate the exponential term in the integral (eqtn. A-13.7) with a gaussian centred on E0.

Conventionally, in this context `the' width is not characterized by the gaussian `σ' parameter, but rather by ∆,

the full width at 1/e of the peak value (so ∆ ≡ 2
√

2σ); thus we need to solve for

exp

(
− E

kT
−

„
EG

E

«1/2
)
' C exp

(
−

„
E − E0

∆/2

«2
)
. (A-13.9)

Requiring the two sides to be equal at E = E0 we immediately �nd

C = exp


−E0

kT
−

„
EG

E0

«ff
,

= exp


−3E0

kT

ff
(from eqtn. A-13.8)

while requiring the curvatures (second derivatives) on either side of eqtn. A-13.9 to be equal gives, after some

algebra,

∆ =

r
16

3
E0kT .

The total reaction rate depends on the integrated area under the Gamow peak; again using a gaussian

approximation to the peak, and constant S(E) across the peak, then from eqtn. (A-13.7), we have

〈σ(v) v〉 =

„
8

πmR

«1/2
S(E0)

(kT )3/2
exp


−3E0

kT

ff Z ∞

0

exp

(
−

„
E − E0

∆/2

«2
)

dE, (A-13.10)

'
„

8

πmR

«1/2
S(E0)

(kT )3/2
exp


−3E0

kT

ff
∆
√
π

2

(where, in order to perform the integration analytically, the limits have been extended from 0/+∞ to

−∞/+∞; the error thus introduced is negligible provided that E0 > ∆/2). Bowers & Deeming give a

mathematical development from this point which leads to a demonstration that ε ' ε0ρT
α (eqtn. 13.9).

Furthermore, substituting eqtn. (A-13.8) into eqtn. (A-13.7) we obtain

〈σ v〉 ∝ exp[−(EG/kT )1/3].
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13.3 The mass defect and nuclear binding energy

The mass of any nucleus is less than the sum of the separate masses of its protons and

neutrons. The binding energy of a particular isotope is the energy corresponding to the

`missing' mass (or mass defect), and is the energy produced in forming that isotope from its

raw ingredients; equivalently, it is the amount of energy needed to break it up into protons and

neutrons.2 The binding energy peaks in the iron group, with 62Ni the most tightly-bound

nucleus, followed by 58Fe and 56Fe;3 this is the basic reason why iron and nickel are very

common metals in planetary cores, since they are produced as end products in supernovae.

For atomic masses A & 60, energy release is through �ssion (generally involving much less

energy).

For a nucleus with Z protons, N(= A− Z) neutrons, and mass m(Z,N) the binding energy is

therefore

Q(Z,N) = [Zmp + Nmn − m(Z,N)] c2 (13.10)

2The binding energy explains why the masses of the proton and neutron are both larger than the `atomic mass

unit', or amu; the amu is de�ned to be 1/12 the mass of 12C, but each nucleon in that isotope has given up almost

1% of its mass in binding energy.
3Many sources cite 56Fe as the most tightly bound nucleus; see M.P. Fewell, Am.J.Phys., 63, 653, 1995 for a

discussion which lays the blame for this misconception squarely at the door of astrophysicists!
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(where mp, mn are the proton, neutron masses), and the binding energy per baryon is

Q(Z,N)/(Z + N).

Converting `MeV per baryon' to `J kg−1', we �nd that burning protons into helium yields

H→ He: 6.3× 1014 J kg−1

but

H→ Fe: 7.6× 1014 J kg−1;

that is, burning H to He alone releases 83% of the total nuclear energy available per nucleon.

Physical processes

To do �

Nuclear models (liquid-drop, shell)

Line of stability (neutron, proton drip lines)

13.4 Hydrogen burning � I: the proton�proton (PP) chain

13.4.1 PP�I

Step Process Energy Solar

Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9× 109 yr

(2) 2D + p → 3He 5.49 MeV 1.4s
6.92 MeV ×2

(3a) 3He +3 He → 4He + p + p 12.86 MeV 2.4× 105 yr

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

Reaction (1) is very slow because it involves the weak interaction,4 which is required to operate

during the short period when protons are close together.
4i.e., involves β decay; in this case β+ decay, p+ → n0 + e+ + νe

(cp. β− decay, n0 → p+ + e− + νe).
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Reactions (2) and (3a) involve the strong interaction and in consequence are much faster.

[Note that reaction (3a) is preferred to

3He + p → 4He + e+ + νe,

even though protons vastly outnumber 3He particles, because this again involves the weak interaction (the νe is

the giveaway).]

Reaction (1) occurs twice for each 4He production, each time generating an electron neutrino

with energy 0.26 MeV. These leave the Sun without further interaction, so the energy available

for heating is 26.2 MeV (26.72− 2× 0.26 MeV).

13.4.2 PP�II, PP�III

There are two principal secondary channels in the proton-proton chain, each catalysed by a

pre-existing α particle (4He nucleus):

PP�II (follows steps 1 & 2, which yield 6.92 MeV):

Step Process Energy Solar

Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9× 109 yr

(2) 2D + p → 3He 5.49 MeV 1.4s
(3b) 3He + 4He → 7Be 1.59 MeV 9.2× 105 yr

(4b) 7Be + e− → 7Li + νe 0.86 MeV 0.39 yr

(5b) 7Li + p → 4He + 4He 17.35 MeV 570s
26.72 MeV

†Includes 1.02 MeV from e+ + e− → 2γ

In this case, neutrino losses average 0.80 MeV.

PP�III (follows steps 1, 2, and 3b):

Step Process Energy Solar

Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9× 109 yr

(2) 2D + p → 3He 5.49 MeV 1.4s
(3b) 3He +4 He → 7Be 1.59 MeV 9.2× 105 yr

(4c) 7Be + p → 8B 0.14 MeV 66 yr

(5c) 8B → 8Be∗ + e+ + νe 16.04 MeV † 1 s

(6c) 8Be∗ → 4He +4 He 3.30 MeV 10−16 s

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ
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Neutrino losses here are 7.2 MeV on average, predominantly through step (5c).5

In the Sun, ∼91% of reactions go through (3a); ∼9% end at (5b); and ∼0.1% end at (6c).

13.5 Hydrogen burning � II: the CNO cycle

Because the �rst reaction in the PP chain is so slow (7.9× 109 yr), under certain circumstances

it is possible for reactions involving (much less abundant) heavier nuclei, acting as catalysts, to

proceed faster than PP. The larger charges (and masses) of these heavier particles imply that

higher temperatures are required. Of these processes, the CNO, or CNO-I, cycle6 is the most

important:

Step Process Energy Solar

Release Timescale

(1) 12
6 C +p → 13

7 N 1.94 MeV 1.3× 107 yr

(2) 13
7 N → 13

6 C + e+ + νe 2.22 MeV † 7 m

(3) 13
6 C +p → 14

7 N 7.55 MeV 2.7× 106 yr

(4) 14
7 N +p → 15

8 O 7.29 MeV 3.2× 108 yr

(5) 15
8 O → 15

7 N + e+ + νe 2.76 MeV † 82 s

(6a) 15
7 N +p → 12

6 C +4He 4.96 MeV 1.1× 105 yr

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

As in PP, we have created one 4He from four protons, with release of some 26.7 MeV in the

process; the neutrinos carry o� 1.71 MeV for every α particle created, so 25 MeV is available to

heat the gas. Although steps (2) and (5) both involve the weak interaction, they proceed faster

than reaction (1) of the PP chain, since the nucleons involved are already bound to each other

(which allows more time for the weak interaction to occur).

5It is the high-energy neutrinos from this reaction that were famously search for by experimentalist Raymond

Davis and his partner theoretician John Bahcall; the failure to detect them in th expected numbers became known

as the `Solar Neutrino Problem'. The `problem' is now resolved through better understanding of neutrino physics

� the electron neutrinos (the only type of neutrino detectable in tyhe 1960s, '70s, and '80s) `oscillate' to other

neutrino �avours.
6Sometimes called the `carbon cycle', although this risks confusion with cycling of carbon between the Earth's

atmosphere, biosphere, hydrosphere, which also goes by that name. The CNO-I and CNO-II cycles together

constitute the `CNO bi-cycle' Where do the CNO nuclei come from? The answer is that they were created in

previous generations of stars, in processes shortly to be described.
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The cycle starts and �nishes with 12C, which acts as a catalyst.7 However, during CNO

cycling, the overall abundances nonetheless change � why is this?

Step (4), 14N + p, is more than 10× slower than the next-slowest reaction (step (1), 12C + p).

It therefore acts as a `bottleneck', with a build-up of 14N at the expense of 12C until the

reaction rates8 of steps (1) and (4) are equal (these depending on the number densities of

reagents; eqtn. (13.2)). The equilibrium condition that reaction rates are equal determines the

abundances, which can be compared to `solar' abundances:

CN cycle Solar

n(12C)/n(13C) 4 89

n(14N)/n(15N) 2800 250 [15N reduced by step (6a)]

n(14N +15 N)/n(12C +13 C) 21 0.3 [14N increased by step (3)]

at T ∼ 1.3× 107K (the solar-core temperature; the timescale required to establish equilibrium

is set by the slowest reaction, and so is ∼ 108 yr at this temperature). These anomalous

abundance patterns are a clear signature of CN processing if the products are brought to the

stellar surface.

We can similarly evaluate equilibrium abundances for PP processing; for T ' 1.3× 107 K,

n(2D)/n(1H) = 3× 10−17

n(3He)/n(1H) = 10−4

( = 10−2 at 8× 106K)

13.5.1 CNO-II

There are a number of subsidiary reactions to the main CNO cycle, particularly involving

oxygen. The CNO-II bi-cycle accounts for about 1 in 2500 4He productions in the Sun:

(6b) 15N + p → 16O 12.13 MeV

(7b) 16O + p → 17F 0.60 MeV

(8b) 17F → 17O + e+ + νe 2.76 MeV

(9b) 17O + p → 14N +4 He 1.19 MeV

26.72 MeV

which returns to step (4) in CNO-I
7Note that given ordering is arbitrary � the cycle can be considered as beginning at any point [e.g., starting

at step (4), ending at (3)].
8Recall that reaction rates depend on both timescales and reagent abundances � cf. eqtn13.1
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Figure 13.3: Energy generation rates: CNO vs. PP processing

CNO-III, IV

The `OF cycle' (which with CNO-I and CNO-II makes up the `CNO tri-cycle') occurs in massive

stars, and can be divided into CNO-III and CNO-IV; each branch starts from a 17O produced in

CNO-II:

(9c) 17O + p → 18F + γ+ 5.61 MeV

(10c) 18F → 18O + e+ + νe + γ 1.66 MeV

(11c) 18O + p → 15N +4 He

which returns to step (6b) in CNO-II; or, proceeding to CNO-IV:

(11d) 18O + p → 19F + γ 7.99 MeV

(12d) 19F + p → 16O +4 He 8.11 MeV

which returns to step (7b) in CNO-II

The only possible breakout from a closed cycle at temperatures relevant for quiescent hydrogen

burning would be an alternative to step (12d),

(12e) 19F + p → 20Ne + γ

but the rate is negligibly small, ensuring that the CNO cycles are completely closed.
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We have seen that

ε ' ε0ρTα (13.9)

where α ' 4.5 for proton-proton reactions in the Sun and α ' 18 for CN processing. Because

core temperature scales with mass (Section 10.6.3), PP dominates for lower-mass stars, while

CN cycling dominates for higher-mass stars. The Sun lies just below the crossover point

(�g. 13.5.1), and although the PP chain dominates, the CN cycle is not negligible.

13.6 Helium burning

13.6.1 3α burning

Hydrogen burning dominates the stellar lifetime (the main-sequence phase), but the core

pressure,

P =
ρkT

µm(H)
,

reduces as the mean molecular weight µ changes from 0.5 (for fully-ionized pure hydrogen) to

4/3 (for fully-ionized pure helium). As a consequence the core contracts, and heats. If the star

is more massive than about 0.5M� the resulting core temperature and pressure are high enough

to ignite helium burning (∼ 108K, 108 kg m−3; lower-mass stars don't have enough

gravitational potential energy); the reactions have a nett e�ect of

3×4 He → 12C

However, the process is hindered by the absence of stable mass-5 (4He + p) and mass-8

(4He +4 He) nuclei; in particular, the 8Be is unstable, and decays back to a pair of alpha

particles in only about 10−16s. Nonetheless, in equilibrium a small population of 8Be particles

exists (at a level of 1 for every ∼ 109 α particles) and these can interact with 4He under

stellar-core conditions. Exceptionally, because the lifetimes are so short, the production of 12C

is, essentially, a 3-body process, with an energy-generation rate:

ε3α ' ε0ρ
2T 30

(where ε0 ∝ n(4He) and the density-squared dependence is because of the three-body nature of

the reaction).

(1) 4He +4 He ↔ 8Be −0.095 MeV

(2) 4He +8 Be ↔ 12C∗,
12C∗ → 12C + (2γ or e+ + e−) 7.37 MeV
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The �rst stage is endothermic; 8Be is more massive than two 4He nuclei, so the relative binding

energy is negative.

Reaction (2) is favoured by the existence of a resonance at 287 keV, which results in a 12C

nucleus excited 7.65 MeV above the ground state.9 The lifetime of this excited state is very

small (about 5× 10−17 s!), and normally decays straight back to 4He +8 Be, but 1 in ∼2400
decays is to a ground-state 12C nucleus, with the emission of two photons. These decays are

irreversible, and so a population of 12C nuclei slowly builds up.

13.6.2 Further helium-burning stages

Once carbon has been created, still heavier nuclei can be built up:

12C +4 He → 16O 7.16 MeV
16O +4 He → 20Ne 4.73 MeV

These processes therefore generate C, O, and Ne. 12C and 16O are the most abundant nuclei at

the end of He burning (and the most cosmically abundant elements after H and He, with about

1 C or O for every 103 hydrogens, or every 100 heliums) The situation is more complicated for
14N, which is enhanced during CNO processing10 but which is is destroyed during He burning

by the reactions

14N +4 He → 18O + e+ + νe
18O +4 He → 22Ne 4.73 MeV

13.7 Advanced burning

13.7.1 Carbon burning

After exhaustion of 4He, the core of a high-mass star contracts further, and at T ∼ 108�109K

carbon burning can take place:

12C +12 C →


23Na + p 2.2 MeV
20Ne +4 He 4.6 MeV
23Mg + n −2.6 MeV
24Mg + γ 13.9 MeV

9Hoyle (1954) deduced that such a resonance in a previously unknown excited state of carbon must exist to

allow an α particle to combine with an 8Be with su�cient probability for the triple-alpha process to proceed.
10All the initial 12C and 16O ends up as 14N.
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with a temperature dependence of

εC ' ε0ρT 32

13.7.2 Neon burning

Neon burning takes place after carbon burning if the core temperature reaches ∼ 109K, but at

these temperatures photodisintegration also occurs:

γ +20 Ne → 16O +4 He

These `new' alpha particles can then react with undissociated neons:

20Ne +4 He → 24Mg + γ

13.7.3 Oxygen burning

After neon burning the core consists mainly of 16O and 24Mg. Oxygen burning occurs at

∼ 2× 109K:

16O +16 O →



32S + γ 16.5 MeV
31P + p 7.6 MeV
31S + n 1.4 MeV
28Si +4 He 9.6 MeV
24Mg + 2 4He −0.4 MeV

with silicon being the most important product.

13.7.4 Silicon burning

At ∼ 3× 109K, silicon burning can occur; the Si is slowly photodisintegrated, releasing protons,

neutrons, and alpha particles (a process sometimes called `silicon melting' as opposed to `silicon

burning'). Of particular interest is the reaction

γ +28 Si → 24Mg +4 He

These alpha particles then combine with undissociated nuclei to build more massive nuclei; for

example, by way of illustration,

28Si +4 He ↔ 32S + γ

32S +4 He ↔ 36Ar + γ

36Ar +4 He ↔ 40Ca + γ

· · ·
52Fe +4 He ↔ 56Ni + γ

(→ 56Fe)
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The overall timescale is set by the slowest step, which is the initial photodisintegration of Si.

Because the binding energy per nucleon peaks around mass A = 56 (the `iron-peak' elements

Cr, Mn, Fe, Co, Ni) energy is absorbed to form heavier nuclei. Elements beyond the iron peak

are therefore not formed during silicon burning.

13.8 Pre-main-sequence burning

Although not as important as energy-generating sources, some reactions involving light nuclei

can occur at ∼ 106K � i.e., lower temperatures than those discussed so far:

2D + p → 3He + γ 5.4× 105K (step 2 of PP-I)

6Li + p → 3He +4 He 2.0× 106K
7Li + p → 4He +4 He 2.4× 106K

9Be +2 D → 4He +4 He +3 He 3.2× 106K
10B +2 D → 4He +4 He +4 He 4.7× 106K

These reactions generally destroy light elements such as lithium (produced, e.g., primordially)

at relatively low temperatures.

Note that the �rst step, burning of pre-existing deuterium, de�nes brown dwarfs � objects with

cores too cool to produce deuterium by proton-proton reactions.

13.9 Synthesis of heavy elements

13.9.1 Neutron capture: r and s processes

Carbon burning, oxygen burning etc. can generate heavy elements in the cores of very massive

stars, but only as far as the iron peak. However, a quite di�erent set of reactions can occur at

lower temperatures (∼ 108 K, comparable to that need for 3α burning).

Since neutrons are electrically neutral, they see no Coulomb barrier, and can be absorbed into

nuclei even at quite low energies (in fact, heavy nuclei have relatively large neutron-capture

cross-sections). Neutron absorption produces a heavier isotope (increases A but not Z); a

change in element may then result if the nucleus is unstable to β decay (n→ p + e− + νe).
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Following the pioneering work of Burbidge, Burbidge, Fowler & Hoyle (Rev. Mod. Phys., 29,

547, 1955), it is conventional to distinguish between r and s processes, depending on whether

neutron capture is rapid or slow compared to the β-decay timescale. If it is rapid, then more

and more massive isotopes accumulate; if it is slow, then decay to a higher-Z element takes

place. Suppose we start o� with a neutron capture to produce some new isotope:

(Z,A− 1) + n→ (Z,A).

Then if neutron capture happens slowly compared to decay for this new isotope, β decay

precedes any further neutron capture, and a new element is formed:

(Z,A) → (Z + 1, A) + e− + νe.

However, if neutron capture is rapid then a further isotope is produced,

(Z,A) + n→ (Z,A + 1),

which will in turn β-decay,

(Z,A + 1) → (Z + 1, A + 1) + e− + νe,

or assimilate a further neutron.

The timescales involved for the r and s processes are largely set by the relevant nuclear

timescales.11 The s process occurs during non-catastrophic evolutionary phases (principally the

AGB phase); we know this from the observation that technetium occurs in S-type stars

(moderately carbon rich M stars). Even the longest-lived technetium isotope, 99Tc, has a

11Just to have some sense of the numbers, the s process typically operates on timescales of ∼ 104 yr at neutron

densities of ∼ 1011 m−3; corresponding numbers for the r process are a few seconds at ∼ 1025 m−3.
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half-life only of order 104 yr, and so it must be produced within stars during normal

evolutionary processes.

Where do the free neutrons come from? For the s process, the CNO cycle establishes an

appreciable abundance of 13C (step 2 in the sequence set out in Section 13.5), which can react

with 4He:

13C +4 He → 16O + n (−0.91 MeV)

This is the main source of neutrons in AGB stars; at higher temperatures,

22Ne +4 He → 25Mg + n (−0.48 MeV).

is signi�cant.

Neutron-capture cross-sections are exceptionally small for certain nuclear neutron numbers.

Because it's harder for the corresponding isotopes to increase in mass through neutron capture,

they build up in abundance. We see this e�ect as peaks in the element-abundance distribution

for elements such as 88
38Sr,

138
56 Ba, and 208

82 Pb.

Elements beyond bismuth (Z = 83) cannot be produced through the s process, the terminating

cycle being

209Bi + n→210 Bi
210Bi→210 Po(+e− + νe)
210Po→206 Pb +4 He

206Pb + 3n→209 Pb
209Pb→209 Bi(+e− + νe)

(involving Z = 84 polonium and Z = 82 lead in addition to bismuth).

Many, but not all, elements at lower atomic masses can be produced by both r and s processes;

s-only products include 87
38Sr and

187
76 Os.

The r process requires very high neutron �uxes, so that neutron capture rates exceed or

compete with β-decay rates. These conditions can only occur during catastrophic,

short-timescale phases � supernova explosions. Although some isotopes can be produced by

both processes, in general there are signi�cant di�erences between their products.
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Figure 13.4: Isotopes of gold�bismuth. The top row lists the number of neutrons in the isotope, while the

atomic number (number of protons) is given by the element name. Unstable isotopes decay by conversion of a

proton to a neutron (electron capture, ε), conversion of a neutron to a proton (β decay), or emission of a helium

nucleus (α decay, Bi211 only). Numbers give natural percentage abundances of stable isotopes (blanks are for

isotopes that do not occur in nature).

The dashed line shows the s-process path from the only stable isotope of gold (Au197) to the only stable isotope

of bismuth (Bi209). Hg204 is an example of an isotope that can be made only by the r process.

13.9.2 The p process (for reference only)

In their seminal paper, Burbidge, Burbidge, Fowler & Hoyle (B2FH) identi�ed the need for a

process to create certain relatively proton-rich nuclei, heavier than iron, that cannot be

produced by either of the r or s processes (e.g., 190Pt, 168Yb).

They originally envisaged a proton-capture process, but we now believe that these proton-rich

nuclei are not produced by addition of protons, but by removal of neutrons by

photodisintegration (i.e., impact by high-energy photons).12 This occurs through neutron

photodisintegration (ejection of a neutron) or α photodisintegration (emission of an α particle).

These processes require high temperatures (i.e., high-energy photons), and is believed to occur

during core collapse of supernovae.

13.10 Summary

Hydrogen and helium were produced primordially. After these, CNO are the most abundant

elements, with CO produced through helium burning,13 with nitrogen generated in CNO

processing.

Stars more massive than ∼ 8M� go on to produce elements such as neon, sodium, and

magnesium, with stars more massive than ∼ 11M� proceding to silicon burning, thereby

generating nuclei all the way up to the iron peak.

12Luckily, `photodisintegration' �ts the description `p process' as well as `proton capture' does! There is a

proton-capture mechanism, now called the rp process, but it is generally less important than the p process.
13The balance between C and O is determined by the balance between the rate of production of C and the rate

of destruction (in O formation). If the ratio favoured O only a little more, then we wouldn't be here.
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Subsequent processing primarily involves neutron capture (although other processes, such as

spallation and proton capture, have a small role).

The timescales for various burning stages are progressively shorter, as energy production rates

increase to compensate increasing energy losses (e.g., by increasing neutrino losses). Only

massive stars have enough gravitational potential energy to power the most advanced burning

stages, so we review the timescales for a 25-M� star:

Burning stage Timescale Tc/109K ρc (kg m−3) Products

H 7× 106 yr 0.06 5× 104 He; N (CNO process)

He 5× 105 yr 0.1 7× 105 C, O

C 6× 102 yr 0.6 2× 108 Ne, Na, Mg, etc.

Ne 1× 100 yr 1 4× 109 O, Na, Mg, etc.

O 5× 10−1 yr 2 1× 1010 Si, S, P, etc.

Si 1 d 3 3× 1010 Mn, Cr, Fe, Co, Ni etc.
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Section 14

Supernovae

14.1 Observational characteristics

Supernovae (SNe) are classi�ed principally on the basis of their spectral morphology at

maximum light:

Hydrogen present? No: Type I

Silicon? Yes: Ia

No: Helium? Yes: Ib

No: Ic

Yes: Type II (II-L, II-P, IIn, Peculiar)

[Our discussion of nucleosynthesis should now inform this empirical classi�cation: e.g.,

abundant silicon can only result from exposure of material that has undergone advanced

burning stages.]

Type II is subclassi�ed according to light-curve morphology; II-L shows a Linear decrease in

magnitude with time, while II-P supernovae show a P lateau. While type II SNe generally show

broad lines (corresponding to ejection velocities of thousands of km s−1), some show relatively

narrow lines (few hundred km s−1); these are classi�ed IIn.

Note that the classi�cation originated in low-resolution photographic spectra, and in the light

of modern data is seen to be fairly rough; some spectra are intermediate between these types,

and some supernovae may appear as di�erent types at di�erent times. As we shall see, the

most important physical di�erence is between Type Ia SNe and `the rest' (that is, between

`thermonuclear' & `core-collapse supernovae') � and we will begin with `the rest'.
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14.2 Types Ib, Ic, II

These subtypes collectively constitute the `core collapse supernovae'. They occur almost

exclusively in the arms of spiral galaxies � strong circumstantial evidence that they are the end

points of evolution of short-lived massive stars.

14.2.1 The death of a massive star

Although the composition of the outer layers of a star may in�uence the spectral appearance of

its supernova explosion, the key physical processes take place in the stellar core.

As sequential burning processes exhaust their respective fuels in the core, it contracts,

generating internal energy. In `normal' evolutionary stages, this leads to the activation of the

next fusion process; thermal energy increases and further contraction is opposed.

However, in the �nal evolutionary stages, the opposite happens; energy is extracted, pressure

support is further removed, and gravitational contraction becomes gravitational collapse. There

are two signi�cant energy-extraction processes relevant to late-stage stellar evolution:

photodisintegration, and inverse beta decay.

(i) The contracting core eventually reaches temperatures su�cient to photodisintegrate iron

nuclei (the helium-iron phase transition; T ∼ 109K):

γ +56 Fe ↔ 134He + 4n
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The disintegration requires the same energy as released in building the iron from helium

in the �rst place,

Q = [13m(4He) + 4m(n)−m(56Fe)]c2 = 124.4 MeV

or 2× 1014 J kg−1. About 3/4 of the iron is dissociated in this way if the core reaches

ρ ' 1012 kg m−3, T ' 1010K.

Endothermic photodissociation of 4He can also occur at somewhat higher temperatures:

γ +4 He ↔ 2n + 2p

(5× 1014 J kg−1).

(ii) Electron capture by inverse β decay may also occur; schematically,

p + e− → n + νe

although in practice the protons are bound in nuclei:

N(A,Z) + e− → N(A,Z − 1) + n + νe

e.g.,

56Fe + e− →56 Mn + neut + νe

This neutronization occurs at high densities (ρ ' 1012�1013 kg m−3), and produces a

copious neutrino �ux (as well as a coious neutron �ux, which feeds r-processing).

Neutrinos are also generated by pair production,

γ + γ ↔ e− + e+ ↔ νe + νe

Remarkably, it is the neutrinos that carry o� ∼90% of the energy released � the radiant and

kinetic energies are minor perturbations.

The timescale associated with these processes is the dynamical free-fall timescale,

tdyn =

√
2r3

Gm(r)
'
√

(Gρ−1) (12.2)

which is very short for such high densities � of order 1 ms. The velocities are correspondingly

large (up to a quarter the speed of light!). The collapse is therefore indeed catastrophic, and is

almost unimpeded until halted by neutron degeneracy; the core brie�y achieves a density 2�3×
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that of nuclear matter before rebounding to leave a neutron star. The rebound sends a shock

wave through the overlying layers of the star, which is infalling on a much longer timescale; the

shock reverses the infall resulting in an outwards explosion, which we see as the supernova.

The remnant is normally a neutron star, but just as there is a limit to mass of white dwarfs

(supported by electron degeneracy pressure), ∼1.4M�, so there is a limit to the mass of

neutron stars (supported by neutron degeneracy pressure), ∼3M�. If the remnant mass exceeds

this limit, a black hole results.1

14.2.2 Light-curves

Type II SN are thought to arise from red supergiants (as has now been directly observed in

several instances). The spectra of these SNe near maximum show roughly normal abundances

(in particular, hydrogen is present), with velocities of ∼ ±5000 km s−1, because we're seeing

matewial from the near-normal outer layers of the progenitor.

The extended outer structure retains much of the heat deposited by the shock, and the initial

light-curve in this case is dominated by release of this energy over several weeks.

Evidently, though, Types Ib and Ic, with their H-poor spectra, have lost most of their outer

hydrogen envelopes, most probably as a result of strong stellar winds (or through binary

interaction).2 Type I SN (of all types) therefore originate in more compact structures, and

their light-curves require an alternative source of heating � radioactive decay. The light-curve

decay timescale in SN 1987A corresponds closely to the timescales for radioactive decay of 56Co

to 56Fe (half-life 77d).3

Maximum absolute visual magnitudes of core-collapse supernovae are typically −17 to −18,
with light-curves that are rather diverse, as a result of the di�erences in the structure of the

body surrounding the collapsed core.

1Degenerate matter has su�cient density that the dominant contribution to the pressure results from the Pauli

exclusion principle, arising because the constituent particles (fermions) are forbidden from occupying identical

quantum states. Any attempt to force them close enough together that they are not clearly separated by position

must place them in di�erent energy levels. Therefore, reducing the volume requires forcing many of the particles

into higher-energy quantum states. This requires additional compression force, and so is felt as a resisting pressure.

The relevant fermions result in electron or neutron degeneracy pressure.
2Short gamma-ray bursts are generally believed to be associated with the collapse of Wolf-Rayet stars.
3The 56Co is in turn produced from the faster (6.1-d) decay of 56Ni. The late-time fading of 1987A, more than

∼3 yr after maximum, appears to correspond to decay of 57Co.
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14.3 Type Ia SNe

14.3.1 Observational characteristics

The light-curves can reach M(V ) ' −19 (∼ 1010L�) at maximum, the most luminous of the

normal supernovae. They typically show a rather rapid initial decline (for ∼30d after

maximimum), followed by an exponential decay (i.e., linear in magnitude),

L = L0 exp {−t/τ(Ia)}

with τ(Ia) ' 77d (the 56Co decay timescale).

Velocities of up to 20,000 km s−1 are seen in the absorption- and emission-line spectra, with

lines due to elements such as magnesium, silicon, sulfur, and calcium near maximum light.

Type Ia SNe occur in both spiral and, uniquely, elliptical galaxies, Because elliptical galaxies

contain no massive stars, Ia SNe can't be core-collapse objects (see Section 14.2.1).

14.3.2 Interpretation

Type Ia SNe are believed to be the result of mass transfer onto a white dwarf (WD) in a binary

system (or possibly through WD�WD mergers). Eventually the WD is pushed over the

Chandrasekhar mass limit (1.4M�), electron degeneracy is overcome, and the object starts to
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collapse; the conversion of gravitational energy to thermal energy drives the temperature to

values where carbon burning can occur. The temperature increases, carbon burning accelerates

� and a thermonuclear runaway occurs, throughout the star (generating the silicon observed in

the spectrum).

Since these processes occur under essentially the same conditions irrespective of evolutionary

history, all type Ia SNe are expected to be closely similar � a crucial aspect of their use as

`standard candles' in cosmological applications, where they are the only objects su�ciently

luminous, and su�ciently `standard', to be useful at large distances.

This standardization is observed to be the case in practice, although there are some systematic

di�erences from object to object; e.g., some are a bit brighter than others, and the brighter

events have slightly slower fades from maximum. This evidently relates to the details of the SN

event � i.e., how the thermonuclear runaway progresses.

Two distinct routes have been identi�ed for fusion processes to propagate. One is subsonic

burning, or `de�agration'; the other is supersonic `detonation'. Current models suggest that

carbon burning starts as a subsonic de�agration and moves to supersonic detonation; slightly

di�erent timescales for this process yield slightly di�erent observational characteristics. The

energy of the explosion is enough to disrupt completely the original object.

14.4 Pair-instability supernovae (for reference only)

If extremely massive stars exist (& 130M�) core temperatures may become so great, before the

fusion cascade is complete, that high-energy photons (γ rays) in the core annihilate, creating

matter-antimatter pairs (mostly e−/e+).

Once pair production starts to become the dominant mechanism for γ-ray capture, these

photons' mean free path starts to decrease; this leads to an increase in core temperature,

further increasing the photon energy, in turn further decreasing the mean free path. This leads

to a runaway instability, removing photons; and as the pressure support provided by the

radiation is removed, outer layers fall inward, resulting in what is predicted to be an

exceptionally bright supernova explosion.

In such a pair instability supernova (PISN), the creation and annilation of positron/electron

pairs causes the core to be so unstable that it cannot gravitationally collapse further;

everything is ejected, leaving no remnant.

Stars which are rotating fast enough, or which do not have low metallicities, probably do not

collapse in pair-instability supernovae due to other e�ects (e.g., the mass of high-metallicity

stars is constrained by the Eddington limit).
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No pair-production supernova has been identi�ed with certainty, but the brightest supernova

on record, SN 2006gy (in NGC 1260), is the best candidate. Studies indicate that perhaps

∼ 40M� of 56Ni were released � almost the entire mass of the star's core regions. 56Ni decays to
56Co with a half-life of 6.1 d; in turn the cobalt decays with a half-life of 77 days.
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