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Abstract. Given a function f : {0, 1}n → R, its Fourier Entropy is de-

fined to be −
∑

S f̂
2(S) log f̂2(S), where f̂ denotes the Fourier transform

of f . This quantity arises in a number of applications, especially in the
study of Boolean functions. An outstanding open question is a conjecture
of Friedgut and Kalai (1996), called the Fourier Entropy Influence (FEI)
Conjecture, asserting that the Fourier Entropy of any Boolean function
f is bounded above, up to a constant factor, by the total influence (=
average sensitivity) of f .
In this paper we give several upper bounds on the Fourier Entropy of
Boolean as well as real valued functions. We first give upper bounds on
the Fourier Entropy of Boolean functions in terms of several complexity
measures that are known to be bigger than the influence. These com-
plexity measures include, among others, the logarithm of the number of
leaves and the average depth of a parity decision tree. We then show that
for the class of Linear Threshold Functions (LTF), the Fourier Entropy
is at most O(

√
n). It is known that the average sensitivity for the class

of LTF is bounded by Θ(
√
n). We also establish a bound of Od(n1− 1

4d+6 )
for general degree-d polynomial threshold functions. Our proof is based
on a new upper bound on the derivative of noise sensitivity. Next we
proceed to show that the FEI Conjecture holds for read-once formulas
that use AND, OR, XOR, and NOT gates. The last result is independent
of a recent result due to O’Donnell and Tan [15] for read-once formulas
with arbitrary gates of bounded fan-in, but our proof is completely ele-
mentary and very different from theirs. Finally, we give a general bound
involving the first and second moments of sensitivities of a function (av-
erage sensitivity being the first moment), which holds for real valued
functions as well.

1 Introduction

Fourier transforms are extensively used in a number of fields such as engineer-
ing, mathematics, and computer science. Within theoretical computer science,



Fourier analysis of Boolean functions evolved into one of the most useful and
versatile tools; see the book [14] for a comprehensive survey of this area and
pointers to numerous other sources of literature on this subject. In particular,
it plays an important role in several results in complexity theory, learning the-
ory, social choice, inapproximability, metric spaces, etc. If f̂ denotes the Fourier
transform of a Boolean function f , then

∑
S⊆[n] f̂

2(S) = 1 and hence we can

define an entropy of the distribution given by f̂2(S):

H(f) :=
∑
S⊆[n]

f̂2(S) log
1

f̂2(S)
. (1)

The Fourier Entropy-Influence (FEI) Conjecture, made by Friedgut and Kalai [6]
in 1996, states that for every Boolean function, its Fourier entropy is bounded
above by its total influence :

Fourier Entropy-Influence Conjecture There exists a universal constant C such
that for all f : {0, 1}n → {+1,−1},

H(f) ≤ C · Inf(f) , (2)

where Inf(f) is the total influence of f which is the same as the average sensitivity
as(f) of f . The latter quantity may be intuitively viewed as the expected number
of coordinates of an input which, when flipped, will cause the value of f to be
changed, where the expectation is w.r.t. the uniform distribution on the input
assignments of f .

1.1 Motivation

Resolving the FEI conjecture is one of the most important open problems in
the Fourier analysis of Boolean functions. The conjecture intuitively asserts that
if the Fourier coefficients of a Boolean function are “smeared out,” then its
influence must be large, i.e., at a typical input, the value of f changes in several
different directions. The original motivation for the conjecture in [6] stems from
a study of threshold phenomena in random graphs.

The FEI conjecture has numerous applications. It implies a variant of Man-
sour’s Conjecture [12] stating that for a Boolean function computable by a DNF
formula with m terms, most of its Fourier mass is concentrated on poly(m)-
many coefficients. A proof of Mansour’s conjecture would imply a polynomial
time agnostic learning algorithm for DNF’s [7] answering a major open question
in computational learning theory.

The FEI conjecture also implies that for any n-vertex graph property, the
influence is at least c(log n)2. The best known lower bound, by Bourgain and
Kalai [1], is Ω((log n)2−ε), for any ε > 0. See [10], [16] and [11] for a detailed
explanation on these and other consequences of the conjecture.



1.2 Prior Work

The first progress on the FEI conjecture was made in 2010 in [11] showing
that the conjecture holds for random DNFs. O’Donnell et al. [16] proved that
the conjecture holds for symmetric functions and more generally for any d-part
symmetric functions for constant d. They also established the conjecture for
functions computable by read-once decision trees. Keller et al. [10] studied a
generalization of the conjecture to biased product measures on the Boolean cube
and proved a variant of the conjecture for function with extremely low Fourier
weight on the high levels. O’Donnell and Tan [15] verified the conjecture for
read-once formulas using a composition theorem for the FEI conjecture. Wan
et al. [17] studies the conjecture from the point of view of existence of efficient

prefix-free codes for the random variable, X ∼ f̂2, that is distributed according
to f̂2. Using this interpretation they verify the conjecture for bounded read
decision trees. It is also relatively easy to show that the FEI conjecture holds for
a random Boolean function, e.g., see [3] for a proof. By direct calculation, one
can verify the conjecture for simple functions like AND, OR, Majority, Tribes etc.

1.3 Our results

We report here various upper bounds on Fourier entropy that may be viewed as
progress toward the FEI conjecture.

Upper bounds by Complexity Measures. The Inf(f) of a Boolean function f is
used to derive lower bounds on a number of complexity parameters of f such
as the number of leaves or the average depth of a decision tree computing f .
Hence a natural weakening of the FEI conjecture is to prove upper bounds on
the Fourier entropy in terms of such complexity measures of Boolean functions.
By a relatively easy argument, we show that

H(f) = O(log L(f)), (3)

where L(f) denotes the minimum number of leaves in a decision tree that com-
putes f . If DNF(f) denotes the minimum size of a DNF for the function f , note
that DNF(f) ≤ L(f). Thus improving (3) with O(logDNF(f)) on the right hand
side would resolve Mansour’s conjecture – a long-standing open question about
sparse Fourier approximations to DNF formulas motivated by applications to
learning theory – and a special case of the FEI conjecture for DNF’s. We note
that (3) also holds when the queries made by the decision tree involve parities
of subsets of variables, conjunctions of variables, etc. It also holds when L(f) is
generalized to the number of subcubes in a subcube partition that represents f .
Note that for a Boolean function

Inf(f) ≤ log(Lc(f)) ≤ log(L(f)) ≤ D(f),

where Lc(f) is number of subcubes in a subcube partition that represents f and
D(f) is the depth of the decision tree computing f .



We also prove the following strengthening of (3):

H(f) = O(d̄(f)), (4)

where d̄(f) denotes the average depth of a decision tree computing f (observe
that d̄(f) ≤ log(L(f))). Note that the average depth of a decision tree is also
a kind of entropy: it is given by the distribution induced on the leaves of a
decision tree when an input is drawn uniformly at random. Thus (4) relates the
two kinds of entropy, but only up to a constant factor. We further strengthen
(4) by improving the right-hand side in (4) to average depth of a parity decision
tree computing f , that is, queries made by the decision tree are parities of a
subset of variables.

Upper bounds on the Fourier Entropy of Polynomial Threshold Functions. The
Fourier Entropy-Influence conjecture is known to be true for unweighted thresh-
old functions, i.e., when f(x) = sign(x1 + · · ·+xn−θ) for some integer θ ∈ [0..n].
This follows as a corollary of the result due to O’Donnell et al. [16] that the
FEI conjecture holds for all symmetric Boolean functions. It is known that the
influence for the class of linear threshold functions is bounded by Θ(

√
n) (where

the lower bound is witnessed by Majority [13]). Recently Harsha et al. [8] studied
average sensitivity of polynomial threshold function (see also [5]). They proved
that average sensitivity of degree-d polynomial threshold functions is bounded
by Od(n

1−(1/4d+6)), where Od(·) denotes that the constant depends on degree
d. This suggests a natural and important weakening of the FEI conjecture: Is
Fourier Entropy of polynomial threshold functions bounded by a similar function
of n as their average sensitivity? In this paper we answer this question in the
positive. An important ingredient in our proof is a bound on the derivative of
noise sensitivity in terms of the noise parameter.

FEI inequality for Read-Once Formulas. We also prove that the FEI conjecture
holds for a special class of Boolean functions: Read-Once Formulas over {AND,
OR and XOR}, i.e., functions computable by a tree with AND, OR and XOR gates
at internal nodes and each variable (or its negation) occurring at most once at
the leaves. Our result is independent of a very recent result by O’Donnell and
Tan [15] that proves the FEI conjecture holds for read-once formulas that allow
arbitrary gates of bounded fan-in. However, our proof is completely elementary
and very different from theirs. Prior to these results, O’Donnell et al. [16] proved
that the FEI conjecture holds for read-once decision trees. Our result for read-
once formulas is a strict generalization of their result. For instance, the tribes
function is computable by read-once formulas but not by read-once decision trees.
Our proof for read-once formulas is a consequence of a kind of tensorizability
for {0, 1}-valued Boolean functions. In particular, we show that an inequality
similar to the FEI inequality is preserved when functions depending on disjoint
sets of variables are combined by AND, OR and XOR operators.

A Bound for Real valued Functions via Second Moment. Recall [9] that total

influence Inf(f) or average sensitivity as(f) is related to f̂ by the well-known



identity: as(f) = Inf(f) =
∑
S |S| f̂2(S). Hence, an equivalent way to state the

FEI conjecture is that there is an absolute constant C such that for all Boolean
f ,

H(f) ≤ C ·
∑
S

|S| f̂2(S) . (5)

Here, we prove that for all δ, 0 ≤ δ ≤ 1, and for all f with
∑
S f̂

2(S) = 1, and
hence for Boolean f in particular,

H(f) ≤
∑
S

|S|1+δ f̂2(S) + (log n)O(1/δ) . (6)

An alternative interpretation of the above theorem states

H(f) ≤ as(f)1−δ · as2(f)δ + (log n)O(1/δ) , (7)

where as2(f) :=
∑
S |S|2 f̂2(S). We also mention that as2(f) ≤ s(f)2 (see [2]),

where s(f) is the maximum sensitivity of f .

It is important to note that (6) holds for arbitrary, i.e., even non-Boolean,

f such that (without loss of generality)
∑
S f̂

2(S) = 1. On the other hand,
there are examples of non-Boolean f for which the FEI conjecture (5) is false.
Combining (7) with a “tensorizability” property [16] of H(f) and as(f), it is
possible to show that for all f , H(f) = O(as(f) log n). Hence proving the FEI
conjecture should involve removing the “extra” log factor while exploiting the
Boolean nature of f .

Remainder of the paper. We give basic definitions in Section 2. Section 3 contains
upper bounds in terms of complexity measures. In Section 4 and Section 5 we
consider special classes of Boolean functions namely, the polynomial threshold
functions and Read-Once formulas. We then provide bounds for real valued
functions in Section 6. Due to space limitations, proofs had to be omitted from
this extended abstract. For a more complete version, please see [2].

2 Preliminaries

We recall here some basic facts of Fourier analysis. For a detailed treatment
please refer to [4, 14]. Consider the space of all functions from {0, 1}n to R,
endowed with the inner product 〈f, g〉 = 2−n

∑
x∈{0,1}n f(x)g(x). The char-

acter functions χS(x) := (−1)
∑
i∈S xi for S ⊆ [n] form an orthonormal basis

for this space of functions w.r.t. the above inner product. Thus, every function
f : {0, 1}n −→ C of n boolean variables has the unique Fourier expansion:

f(x) =
∑
S⊆[n] f̂(S)χS(x). The vector f̂ = (f̂(S))S⊆[n] is called the Fourier

transform of the function f . The Fourier coefficient f̂(S) of f at S is then



given by, f̂(S) = 2−n
∑
x∈{0,1}n f(x)χS(x). The norm of a function f is de-

fined to be ‖f‖ =
√
〈f, f〉. Orthonormality of {χS} implies Parseval’s identity :

‖f‖2 =
∑
S f̂

2(S).
We only consider finite probability distributions in this paper. The entropy

of a distribution D is given by, H(D) :=
∑
i∈D pi log 1

pi
. In particular, the bi-

nary entropy function, denoted by H(p), equals −p log p− (1− p) log(1− p). All
logarithms in the paper are base 2, unless otherwise stated.

We consider Boolean functions with range {−1,+1}. For an f : {0, 1}n →
{−1,+1}, ‖f‖ is clearly 1 and hence Parseval’s identity shows that for Boolean

functions
∑
S f̂

2(S) = 1. This implies that the squared Fourier coefficients can
be thought of as a probability distribution and the notion of Fourier Entropy
(1) is well-defined.

The influence of f in the i-th direction, denoted Infi(f), is the fraction of
inputs at which the value of f gets flipped if we flip the i-th bit:

Infi(f) = 2−n|{x ∈ {0, 1}n : f(x) 6= f(x⊕ ei)}| ,

where x⊕ ei is obtained from x by flipping the i-th bit of x.
The (total) influence of f , denoted by Inf(f), is

∑n
i=1 Infi(f). The influence

of i on f can be shown, e.g., [9], to be Infi(f) =
∑
S3i f̂(S)2 and hence it follows

that Inf(f) =
∑
S⊆[n] |S|f̂(S)2.

For x ∈ {0, 1}n, the sensitivity of f at x, denoted sf (x), is defined to be
sf (x) := |{i : f(x) 6= f(x⊕ ei), 1 ≤ i ≤ n}|, i.e., the number of coordinates of x,
which when flipped, will flip the value of f . The (maximum) sensitivity of the
function f , denoted s(f), is defined to be the largest sensitivity of f at x over
all x ∈ {0, 1}n: s(f) := max{sf (x) : x ∈ {0, 1}n}. The average sensitivity of f ,
denoted as(f), is defined to be as(f) := 2−n

∑
x∈{0,1}n sf (x). It is easy to see

that Inf(f) = as(f) and hence we also have as(f) =
∑
S⊆[n] |S|f̂(S)2.

The noise sensitivity of f at ε, 0 ≤ ε ≤ 1, denoted NSε(f), is given by
Prx,y∼εx [f(x) 6= f(y)] where y ∼ε x denotes that y is obtained by flipping each
bit of x independently with probability ε. It is easy to see that NSε(f) = 1

2 −
1
2

∑
S(1− 2ε)|S|f̂(S)2. Hence the derivative of NSε(f) with respect to ε, denoted

NSε
′(f), equals

∑
S 6=∅ |S|(1− 2ε)|S|−1f̂(S)2.

3 Bounding Entropy using Complexity Measures

In this section, we prove upper bounds on Fourier entropy in terms of some
complexity parameters associated to decision trees and subcube partitions.

3.1 via leaf entropy : Average Decision Tree Depth

Let T be a decision tree computing f : {0, 1}n → {+1,−1} on variable set X =
{x1, . . . , xn}. If A1, . . . , AL are the sets (with repetitions) of variables queried
along the root-to-leaf paths in the tree T , then the average depth (w.r.t. the



uniform distribution on inputs) of T is defined to be d̄ :=
∑L
i=1 |Ai|2−|Ai|. Note

that the average depth of a decision tree is also a kind of entropy: if each leaf λi
is chosen with the probability pi = 2−|Ai| that a uniformly chosen random input
reaches it, then the entropy of the distribution induced on the λi is H(λi) =
−
∑
i pi log pi =

∑
i |Ai|2−|Ai|. Here, we will show that the Fourier entropy is at

most twice the leaf entropy of a decision tree.

W.l.o.g., let x1 be the variable queried by the root node of T and let T1 and
T2 be the subtrees reached by the branches x1 = +1 and x1 = −1 respectively
and let g1 and g2 be the corresponding functions computed on variable set Y =
X \{x1}. Let d̄ be the average depth of T and d̄1 and d̄2 be the average depths of
T1 and T2 respectively. We first observe a fairly straightforward lemma relating
Fourier coefficients of f to the Fourier coefficients of restrictions of f .

Lemma 1. Let S ⊆ {2, . . . , n}.

(i) f̂(S) = (ĝ1(S) + ĝ2(S))/2.

(ii) f̂(S ∪ {1}) = (ĝ1(S)− ĝ2(S))/2.

(iii) d̄ = (d̄1 + d̄2)/2 + 1.

Using Lemma 1 and concavity of entropy we establish the following technical
lemma, which relates the entropy of f to entropies of restrictions of f .

Lemma 2. Let g1 and g2 be defined as before in Lemma 1. Then,

H(f) ≤ 1

2
H(g1) +

1

2
H(g2) + 2 . (8)

Let d̄(f) denote the minimum average depth of a decision tree computing f .
As a consequence of Lemma 2 we obtain the following bound.

Theorem 1. For every Boolean function f , H(f) ≤ 2 · d̄(f).

Remark 1. The constant 2 in the bound of Theorem 1 cannot be replaced by 1.
Indeed, let f(x, y) = x1y1 + · · · + xn/2yn/2 mod 2 be the inner product mod 2

function. Then because f̂2(S) = 2−n for all S ⊆ [n], H(f) = n. On the other
hand, it can be shown that d̄(f) = 3

4n − o(n). Hence, the constant must be at
least 4/3.

Average Parity Decision Tree Depth Let L be a linear transformation.
Applying the linear transformation on a Boolean function f we obtain another
Boolean function Lf which is defined as Lf(x) := f(Lx), for all x ∈ {0, 1}n.
Before proceeding further, we note down a useful observation.

Proposition 2 Let f : {0, 1}n → {+1,−1} be a Boolean function. For an in-
vertible linear transformation L ∈ GLn(F2), H(f) = H(Lf).



Let T be a parity decision tree computing f : {0, 1}n → {+1,−1} on variable
setX = {x1, . . . , xn}. Note that a parity decision tree computing f also computes
Lf and vice versa. This implies that we can always ensure that a variable is
queried at the root node of T via a linear transformation. Let us denote the
new variable set, after applying the linear transformation, by Y = {y1, . . . , yn}.
W.l.o.g, let y1 be the variable queried at the root. Let T1 and T2 be the subtrees
reached by the branches y1 = 0 and y1 = 1 respectively and let g1 and g2 be the
corresponding functions computed on variable set Y \ {y1}. Using Proposition 2
we see that the proof of Lemma 1 and Lemma 2 goes through in the setting of
parity decision trees too. Hence, we get the following strengthening of Theorem 1.

Theorem 3. For every Boolean function f , H(f) ≤ 2 · ⊕-d̄(f), where ⊕-d̄(f)
denotes the minimum average depth of a parity decision tree computing f .

3.2 via L1-norm (or Concentration) : Decision Trees and Subcube
Partitions

Note that a decision tree computing a Boolean function f induces a partition
of the cube {0, 1}n into monochromatic subcubes, i.e., f has the same value
on all points in a given subcube, with one subcube corresponding to each leaf.
But there exist monochromatic subcube partitions that are not induced by any
decision tree. Consider any subcube partition C computing f (see [2]).There is
a natural way to associate a probability distribution with C: Ci has probability

mass 2−(number of co-ordinates fixed by Ci). Let us call the entropy associated
with this probability distribution partition entropy. Based on the results of the
previous subsection, a natural direction would be to prove that the Fourier en-
tropy is bounded by the partition entropy. Unfortunately we were not quite able
to show that but, interestingly, there is a very simple proof to see that the Fourier
entropy is bounded by the logarithm of the number of partitions in C. In fact, the
proof gives a slightly better upper bound of the logarithm of the spectral-norm
of f . For completeness sake, we note this observation [2] but we remark that it
should be considered folklore. Our goal in presenting the generalization to sub-
cube partitions is also to illustrate a different approach. The approach uses the
concentration property of the Fourier transform and uses a general, potentially
powerful, technique. One way to do this is to use a result due to Bourgain and
Kalai (Theorem 3.2 in [10]). However, we give a more direct proof (see [2]) for
the special case of subcube partitions.

4 Upper bound on Fourier Entropy of Threshold
Functions

In this section, we establish a better upper bound on the Fourier entropy of
polynomial threshold functions. We show that the Fourier entropy of a linear
threshold function is bounded by O(

√
n), and for a degree-d threshold function

it is bounded by Od(n
1− 1

4d+6 ). We remark that the bound is significant because



the average sensitivity of a linear threshold function on n variables is bounded
by O(

√
n), and this is tight. Also the bound on the Fourier entropy of degree-d

threshold functions is the best known bound on their average sensitivity [8, 5].

For f : {0, 1}n → {+1,−1}, let W k[f ] :=
∑
|S|=k f̂(S)2 and W≥k[f ] :=∑

|S|≥k f̂(S)2. We now state our main technical lemma which translates a bound
on noise sensitivity to a bound on the derivative of noise sensitivity.

Lemma 3. Let f : {0, 1}n → {+1,−1} be such that NSε(f) ≤ α · εβ, where α is
independent of ε and β < 1. Then, NSε

′(f) ≤ 3
1−e−2 · α

1−β · (1/ε)
1−β .

From [16] we have the following bound on entropy.

Lemma 4. [16] Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,
H(f) ≤ 1

ln 2 Inf[f ] + 1
ln 2

∑n
k=1W

k[f ]k ln n
k + 3 · Inf[f ].

Using Lemma 3 we prove a technical lemma that provides a bound on∑n
k=1W

k[f ]k ln n
k .

Lemma 5. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,∑n
k=1W

k[f ]k ln n
k ≤ exp(1/2) · 3

1−e−2 · 41−β

(1−β)2 · α · n
1−β .

Using Lemma 5 and Lemma 4 we obtain the following theorem which bounds
the Fourier entropy of a Boolean function.

Theorem 4. Let f : {0, 1}n → {+1,−1} be a Boolean function such that
NSε(f) ≤ α · εβ. Then

H(f) ≤ C ·
(
Inf[f ] +

41−β

(1− β)2
· α · n1−β

)
,

where C is a universal constant.

In particular, for polynomial threshold functions there exist non-trivial bounds
on their noise sensitivity.

Theorem 5 (Peres’s Theorem). [13] Let f : {0, 1}n → {+1,−1} be a linear
threshold function. Then NSε(f) ≤ O(

√
ε).

Theorem 6. [8] For any degree-d polynomial threshold function f : {0, 1}n →
{+1,−1} and 0 < ε < 1, NSε(f) ≤ 2O(d) · ε1/(4d+6).

As corollaries of Theorem 4, using Theorem 5 and Theorem 6, we obtain the
following bounds on the Fourier entropy of polynomial threshold functions.

Corollary 1. Let f : {0, 1}n → {+1,−1} be a linear threshold function. Then,
H(f) ≤ C ·

√
n, where C is a universal constant.

Corollary 2. Let f : {0, 1}n → {+1,−1} be a degree-d polynomial threshold

function. Then, H(f) ≤ C · 2O(d) · n1−
1

4d+6 , where C is a universal constant.



5 Entropy-Influence Inequality for Read-Once Formulas

In this section, we will prove the Fourier Entropy-Influence conjecture for read-
once formulas using AND, OR, XOR, and NOT gates. We note that a recent
(and independent) result of O’Donnell and Tan [15] proves the conjecture for
read-once formulas with arbitrary gates of bounded fan-in. But since our proof
is completely elementary and very different from theirs, we choose to present it
here.

It is well-known that both Fourier entropy and average sensitivity add up
when two functions on disjoint sets of variables are added modulo 2. Our main
result here is to show that somewhat analogous “tensorizability” properties hold
when composing functions on disjoint sets of variables using AND and OR op-
erations.

For f : {0, 1}n → {+1,−1}, let fB denote its 0-1 counterpart: fB ≡ 1−f
2 .

Let’s define: H(fB) :=
∑
S

f̂B
2
(S) log

1

f̂B
2
(S)

. (9)

An easy relation enables translation between H(f) and H(fB):

Lemma 6. Let p = Pr[fB = 1] = f̂B(∅) =
∑
S f̂B

2
(S) and q := 1− p. Then,

H(f) = 4 ·H(fB) + ϕ(p), where (10)

ϕ(p) := H(4pq)− 4p(H(p)− log p). (11)

For 0 ≤ p ≤ 1, let’s also define: ψ(p) := p2 log
1

p2
− 2 H(p). (12)

I Intuition: Before going on, we pause to give some intuition about the choice
of the function ψ and the function κ below (15). In the FEI conjecture (2), the
right hand side, Inf(f), does not depend on whether we take the range of f to be
{−1,+1} or {0, 1}. In contrast, the left hand side, H(f), depends on the range
being {−1,+1}. Just as the usual entropy-influence inequality composes w.r.t.
the parity operation (over disjoint variables) with {−1,+1} range, we expect a
corresponding inequality with {0, 1} range to hold for the AND operation (and
by symmetry for the OR operation). However, Lemma 6 shows the translation to
{0, 1}-valued functions results in the annoying additive “error” term ϕ(p). Such
additive terms that depend on p create technical difficulties in the inductive
proofs below and we need to choose the appropriate functions of p carefully.

For example, we know 4H(fB) + ϕ(p) = H(f) = 4H(1 − fB) + ϕ(q) from
Lemma 6. If the conjectured inequality for the {0, 1}-valued entropy-influence
inequality has an additive error term ψ(p) (see (13) below), then we must have
H(fB) − H(1 − fB) = ψ(p) − ψ(q) = (ϕ(q) − ϕ(p))/4 = p2 log 1

p2 − q2 log 1
q2 ,

using (11). Hence, we may conjecture that ψ(p) = p2 log 1
p2 + (an additive term

symmetric w.r.t. p and q). Given this and the other required properties, e.g.,



Lemma 7 below, for the composition to go through, lead us to the definition
of ψ in (12). Similar considerations w.r.t. composition by parity operation (in
addition to those by AND, OR, and NOT) leads us to the definition of κ in (15).
J

Let us define the FEI01 Inequality (the 0-1 version of FEI) as follows:

H(fB) ≤ c · as(f) + ψ(p), (13)

where p = f̂B(∅) = Prx[fB(x) = 1] and c is a constant to be fixed later.
The following technical lemma gives us the crucial property of ψ:

Lemma 7. For ψ as above and p1, p2 ∈ [0, 1], p1 · ψ(p2) + p2 · ψ(p1) ≤ ψ(p1p2).

Given this lemma, an inductive proof yields our theorem for read-once for-
mulas over the complete basis of {AND,OR,NOT}.

Theorem 7. The FEI01 inequality (13) holds for all read-once Boolean formu-
las using AND, OR, and NOT gates, with constant c = 5/2.

To switch to the usual FEI inequality (in the {−1,+1} notation), we combine
(13) and (10) to obtain

H(f) ≤ 10 · as(f) + κ(p), where (14)

κ(p) := 4ψ(p) + ϕ(p) = −8 H(p)− 8pq − (1− 4pq) log(1− 4pq). (15)

Since it uses the {−1,+1} range, we expect that (14) should be preserved
by parity composition of functions. The only technical detail is to show that the
function κ also behaves well w.r.t. parity composition. We show that this indeed
happens. This leads us to the main theorem of this section:

Theorem 8. If f is computed by a read-once formula using AND, OR, XOR,
and NOT gates, then H(f) ≤ 10 Inf(f) + κ(p).

Remark 2. The parity function on n variables shows that the bound in Theo-
rem 8 is tight; it is not tight without the additive term κ(p). It is easy to verify
that −10 ≤ κ(p) ≤ 0 for p ∈ [0, 1]. Hence the theorem implies H(f) ≤ 10 Inf(f)
for all read-once formulas f using AND, OR, XOR, and NOT gates.

6 A Bound for Real valued Functions via Second Moment

Due to space constraints we only state the theorem here, the full proof appears
in [2].

Theorem 9. If f =
∑
S⊆[n] f̂(S)χS is a real-valued function on the domain

{0, 1}n such that
∑
S |f̂(S)2| = 1 then for any δ > 0,∑

S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
=
∑
S

|S|1+δ f̂(S)2+2 log1+δ n+2(2 log n)1+δ/δ(log n)2 .

As a corollary to Theorem 9, we also obtain the bound (7) in terms of the
first and second moments of sensitivities of a function.
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