
9

Normalize, Transpose, and Distribute: An
Automatic Approach for Handling Nonscalars

DANIEL E. COOKE, J. NELSON RUSHTON, BRAD NEMANICH,

ROBERT G. WATSON, and PER ANDERSEN

Texas Tech University

SequenceL is a concise, high-level language with a simple semantics that provides for the automatic
derivation of many iterative and parallel control structures. The semantics repeatedly applies a
“Normalize-Transpose-Distribute” operation to functions and operators until base cases are dis-
covered. Base cases include the grounding of variables and the application of built-in operators to
operands of appropriate types. This article introduces the results of a 24-month effort to reduce
the language to a very small set of primitives. Included are comparisons with other languages, the
formal syntax and semantics, and the traces of several example problems run with a prototype
interpreter developed in 2006.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Program-
ming; D.1.3 [Programming Techniques]: Concurrent Programming; D.3.2 [Programming Lan-

guage]: Language Classification—Applicative (functional) language; D.3.3 [Programming Lan-

guage]: Language Constructs and Features

General Terms: Languages

Additional Key Words and Phrases: Automatic parallelisms, automatic loop generation

ACM Reference Format:

Cooke, D. E., Rushton, J. N., Nemanich, B., Watson, R. G., and Andersen, P. 2008. Normalize,
transpose, and distribute: An automatic approach for handling nonscalars. ACM Trans. Pro-
gram. Lang. Syst. 30, 2, Article 9 (March 2008), 49 pages. DOI = 10.1145/1330017.1330020
http://doi.acm.org/10.1145/1330017.1330020

1. INTRODUCTION

High-level functional languages, such as LISP and Haskell, are designed to
bridge the gap between a programmer’s concept of a problem solution and the

This research was supported by NASA-NNG06GJ14G, NASA-CAN NNJ06HE94A, and Abilene
Community/Sheldon Fund grant 146144C571.
Authors’ address: Department of Computer Science 8th and Boston, Texas Tech Univer-
sity, Lubbock, TX 79409; email: {daniel.cooke, nelson.rushton, brad.nemanich, robert.g.watson,
per.andersen}@ttu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0164-0925/2008/03-ART9 $5.00 DOI 10.1145/1330017.1330020 http://doi.acm.org/
10.1145/1330017.1330020

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:2 • D. E. Cooke et al.

realization of that concept in code. In these languages, a program consists of
a collection of function definitions, roughly isomorphic to their counterparts in
nonexecutable mathematical notation. The language semantics then generate
the data and control structures necessary to implement a solution. A great deal
of the complexity of execution remains hidden from the programmer, making it
easier and faster to develop correct code.

The ease and reliability afforded by high-level languages often comes at a
cost in terms of performance. Common wisdom says that if a software product
must perform better in terms of speed and memory, it must be written in a lower
level language—with arcane looking optimized assembly code at the extreme
end.

Over time, however, the trend is for more software to be developed in higher
level languages. There are two reasons for this. The first is obvious: machine
performance tends to improve over time, bringing more applications within the
realm where high-level implementations, though perhaps slower than their
low-level counterparts, are fast enough to get the job done. In other words the
human costs in creating problem solutions are increasingly greater than the
cost of the machines that carry them out.

The second reason is slightly less obvious: while the intelligence of human
programmers in writing low level algorithms remains roughly constant over
time, the intelligence of automatic code generators and optimizers moves for-
ward monotonically. Today, we are beginning to see examples where a few lines
of high-level code evaluated by a sophisticated general-purpose interpreter per-
form comparably with hand written, optimized code (e.g., see Lin and Zhao
[2004]). This happens because optimization is accomplished at the level of the
compiler, rather than on individual programs—focusing the optimization ef-
forts of the programming community in one place, where they are leveraged
together on a reusable basis.

Improvements in the performance of high-level codes may follow a course
similar to what we have recently seen in the performance of chess programs.
Not that long ago, these programs only occasionally defeated competent am-
ateur human players. Swift progress in this domain has led to the current
situation in which chess programs are outperforming the chess masters. Look-
ing forward by this analogy, we expect the performance of high-level languages
to continue to gain ground against their low-level counterparts. However, for
reasons explained below, we claim that most languages in existence today are
not in a position to participate fully in this trend.

The impressive optimization results in code generators cited in Lin
and Zhao [2004] were obtained using the logic programming language A-
Prolog [Gelfond and Lifschitz 1988, 1991], which has two distinguishing
features:

(1) Its semantics are purely declarative, containing no commitments whatso-
ever regarding the data structures or algorithms underlying the execution
of its programs, and

(2) The performance of the language has substantially exceeded the expecta-
tions of its designers and early users.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:3

In light of the preceding discussion, we claim it is no coincidence that these
two unusual traits are found together in the same language. Ironically, Item
#1 effectively blocks programmers from optimizing their code. Though the A-
prolog programmer knows what the output of his program will be, he cannot
control, or even know on a platform-independent basis, how the results will be
obtained. On the other hand, it is precisely this feature which frees the hands
of the compiler-designer to effect optimizations. Without constraints on the
representations or algorithms deployed, the creativity of those who implement
a new language is unleashed. And it is precisely this feature, which allows
them to write compilers in which concise, readable “executable specifications”
can perform comparably with, or better than, handwritten algorithms.

Few other languages have taken the same path. Though their code is written
at a high level of abstraction, the semantics of languages such as Haskell and
Prolog make guarantees about their mechanisms of representation, computa-
tion, and inference. This approach has the advantage of allowing programmers
to understand, control, and optimize the representation and execution of their
programs. But it ties the hands of the designers of interpreters and compil-
ers, bounding their capability to deploy and combine optimizations at a more
general level.

This situation is one of mindset resulting in a tacit agreement among the
language designers who provide low level semantics and the programmers who
employ the languages. Even with a high-level language such as Haskell, pro-
grammers tend to perceive, for example, the list structure, as shorthand for a
particular low-level representation. They make substantial efforts to optimize
their code with respect to this representation, and compiler-designers deploy op-
timizations in anticipation of this mindset. Thus the programming community
has an implicit (and in many places explicit) commitment to viewing program-
ming constructs as a notation for objects related to algorithms and machine
architecture—even in supposedly high-level languages.

Our position is that in many problem domains it is time, or will soon be time,
for programmers to stop thinking about performance-related issues. This does
not mean we discount the role of optimization and program performance. On
the contrary, program performance is crucial for many problem domains, and
always will be; and this makes it important to attack the problem by focusing
efforts in places where they can be most effectively combined and reused—
which is at the level of the compiler or interpreter. Then in ‘ordinary’ programs,
the burden of optimization can be passed off to the compiler/interpreter, possibly
with ‘hints’ from the programmer.

For more than a decade, we have been developing SequenceL, a Turing-
complete, general-purpose language with a single data structure, the Sequence.
[Cooke 1996, 1998] The goal of this research has been to develop a language,
which allows a programmer to declare a solution in terms of the relationship
between inputs and desired outputs of a program, and have the language’s
semantics “discover” the missing procedural aspects of the solution. The key
feature of the language is an underlying, simple semantics termed Consume-
Simplify-Produce and the Normalize-Transpose-Distribute. It is still an open
question how well such a high-level language can perform. We conjecture that

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:4 • D. E. Cooke et al.

the performance of SequenceL can eventually equal or exceed performance of
lower level languages such as C and C++ on average. This articles describes Se-
quenceL and its semantics, and gives performance data on a commercial-scale
application, which serves as a step toward substantiating this conjecture. We
focus on SequenceL’s NTD (normalize-transpose-distribute) semantic, which
we envision as a substantial component of reaching this goal. We informally
explain the NTD semantics, and compare it to similar constructs defined in re-
lated work. We also give a formal syntax and semantics of the current version
of SequenceL, including NTD, show Turing Completeness of SequenceL, and
illustrate its use with examples. Throughout this article, code and other infor-
mation entered by a programmer are shown in Courier and traces of execution
are shown in Times font.

2. MOTIVATING EXAMPLES AND INTIUTION ON SEMANTICS

Iterative and recursive control structures are difficult and costly to write [Mills
and Linger 1986; Bishop 1990]. In some cases, these control constructs are
required because the algorithm being implemented is intuitively iterative or
recursive—say implementing Quicksort. However, most uses of iteration and
recursion are not of this type. Our experience is that in the majority of cases,
control structures are used to traverse data structures in order to read from or
write to their components. That is, the control structures are typically necessi-
tated not by intuitively iterative or recursive algorithms, but by the nonscalar
nature of the data structures being operated on by those algorithms.

For example, consider an algorithm for instantiating variables in an arith-
metic expression. The parse tree of an expression, for example,

x + (7 ∗ x)/9

can be represented by a nested list (here we use the SequenceL convention of
writing list members separated by commas, enclosed in square brackets):

[x, +, [7, ∗, x], /, 9]

To instantiate a variable, we replace all instances of the variable with its value,
however deeply nested they occur in the parse tree. Instantiating the variable
x with the value 3 in this example would produce

[3, +, [7, ∗, 3], /, 9]

Here’s LISP code to do the job:

(defun instantiate (var val exp)
(cond
((and

(listp exp)
(not (equal exp nil)))

(cons
(instantiate var val (car exp))
(instantiate var val (cdr exp))))

((equal exp var) val)
(t exp)))

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:5

Prolog gives a somewhat tighter solution:

instantiate(Var, Val, [H|T], [NewH|NewT]):-
instantiate(Var, Val, H, NewH),
instantiate(Var, Val, T, NewT).

instantiate(Var, Val, Var, Val).
instantiate(Var, Val, Atom, Atom).

Next We Have a Solution in Haskell:

inst v val (Seq s) = Seq (map (inst v val) s)
inst (Var v) val (Var s)

| v==s = val
| otherwise = (Var s)

inst var val s = s

We note three things about this algorithm and its implementation. First,
our intuitive conception of the algorithm—“replace the variable with its
value wherever it appears”—is trivial in the sense that it could be carried
out by any schoolchild by hand. Second, explicit recursion does not enter
into our basic mental picture of the process (until we have been trained
to think of it this way). Third, the use of recursion to traverse the data
structure obscures the problem statement in the LISP, Prolog, and Haskell
codes.

Often, as in this example, the programmer envisions data structures as ob-
jects, which are possibly complex, but nevertheless static. At the same time,
he or she must deploy recursion or iteration to traverse these data structures
one step at a time, in order to operate on their components. This creates a
disconnect between the programmer’s mental picture of an algorithm and the
code he or she must write, making programming more difficult. SequenceL
attempts to ease this part of the programmer’s already-taxing mental load.
Our desideratum is this: if the programmer envisions a computation as a sin-
gle mental step, or a collection of independent steps of the same kind, then that
computation should not require recursion, iteration, or other control structures.
In the remainder of this section, we will give code for two functions illus-
trating how this point can be achieved in SequenceL, and then, in the fol-
lowing sections, describe the semantics that allow the functions to work as
advertised.

Variable instantiation, discussed above, is written in SequenceL as follows.

instantiate(scalar var,val,char) ::=
val when (char == var) else char

The SequenceL variable instantiation solution maps intuitively to just
the last two lines of the Prolog and LISP codes, and last three lines of
Haskell, which express the base cases. This is the real meat of variable
instantiation—the “schoolchild’s picture” of the algorithm. The remainder of
the LISP, Haskell, and Prolog code is dedicated to traversing the breadth
and depth of the tree. This is the majority of the code, line for line, and the
tricky part to write. When called on a nested data structure, SequenceL, in

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:6 • D. E. Cooke et al.

Fig. 1. Prior version of SequenceL.

contrast, will traverse the structure automatically, applying the function to
sub-structures of appropriate type. Furthermore, SequenceL will execute this
problem solution using one simple rule, the normalize-transpose-distribute.
NTD is repeatedly applied to any SequenceL construct and the data upon
which it operates, until the data matches the type of argument expected by the
function.

For another example, consider matrix multiplication. Here is a Haskell
version:

matMul:: [[Integer]] -> [[Integer]] -> [[Integer]]
matMul a b = [[dotProd row col | col <-transpose b] | row<-a]

dotProd:: [Integer] -> [Integer] -> Integer
dotProd x y = sum [s * t | (s,t) <- zip x y]

and the corresponding SequenceL:

mmrow(vector a, matrix b) ::= dotProd(a,transpose(b))

dotProd(vector x,y) ::= sum(x∗ y)

Note once again the following observation: to a first approximation, the
SequenceL code can be obtained from the Haskell code by erasure of the Haskell
syntax related to the traversal and composition of data structures. In particular,
here SequenceL eliminates the need for “dummy variables” (i.e., row, col, s, and
t, which play the role of looping variables in procedural code), as well as the
comprehension and “zip” constructs.

A couple of additional points concerning the SequenceL function warrant
attention. First, compare the new version of the problem solution (seen imme-
diately above) with the old, seen in Figure 1.

Figure 1 presents the form of the SequenceL solution as it was defined in
Cooke and Andersen [2000]. The comparison between the solution today and
the older version serves as a good, representative example of the simplifications
and improvements made in the language during the last few years. The NTD
semantics shield the programmer from having to develop much of the proce-
dural aspect of a problem solution. As the reader will see, these semantics are
surprisingly simple to understand.

2.1 The Consume-Simplify-Produce Semantics

In its present form, SequenceL has no facility for variable assignment and
no input-output other than an ability to provide and inspect initial and fi-
nal tableaux, respectively. Thus, SequenceL is a simple and pure functional

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:7

language—capable of executing typical functional programs. For example, a
recursive SequenceL solution to find the greatest common divisor appears
below.

gcd(scalar m,n) ::=
gcd(m-n, n) when m > n else gcd(n,m) when m < n else n

A special sequence, called a tableau, provides a workspace for the evalua-
tion of SequenceL terms. To evaluate the function, above, one establishes an
initial tableau, which references the function and supplies arguments (e.g.,
gcd(200,100)).

Given an initial tableau an evaluation step, called a Consume-Simplify-
Produce (CSP) step is performed. A CSP step consumes the tableau,
simplifies its contents, and produces the simplified result in the next
tableau. For example, a single CSP step for the gcd function is shown
below:

INITIAL = gcd (200, 100)

CSP = gcd(200 – 100, 100) when 200 > 100 else gcd(100, 200)

when 200 < 100 else 100

In the example case, the simplification step simply grounds the variables of the
function, leaving the grounded function body in the next tableau. The CSP in
the trace so far represents one Consume-Simplify-Produce step. The subsequent
CSP steps are:

CSP = gcd(200 – 100, 100)

CSP = gcd(100, 100)

CSP = gcd(100 – 100, 100) when 100 > 100 else gcd(100, 100)

when 100 < 100 else 100

CSP = gcd(100, 100) when 100 < 100 else 100

CSP = [100]

FINAL = [100]

The complete evaluation of gcd(200,100) is the concatenation of the Initial, the
CSP, and the Final steps above. Notice that evaluation of tableaux continues
until a fixpoint in evaluation is achieved.

The tableau is viewed as any other sequence in SequenceL. Sequences can
be structured and contain any constants or SequenceL term—including con-
ditional terms (i.e., function bodies). There are no restrictions on the manner
in which terms can be combined. Consider the following function to check the
boundaries on subscripts:

sub(? x, scalar i) ::= x(i when i>=1 and i=<length(x) else
subscript error)

The parameters in the function signatures are typed according to dimension
or level of nesting. Types include scalar, vector, vector(vector), etc. The
type ? specifies an argument of any dimension. Given an initial tableau of

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:8 • D. E. Cooke et al.

sub([12, 3, 4, 5], 3), CSP steps lead to x(3) or [12, 3, 4, 5](3), which ultimately
produces 4. The complete set of evaluation steps are:

INITIAL = sub([[12, 3, 4, 5], 3])

CSP = [12, 3, 4, 5](3 when (3 >= 1) and (3 =< size ([12, 3, 4, 5])) else
subscript error)

CSP = [12, 3, 4, 5](3 when true else subscript error)

CSP = [12, 3, 4, 5](3)

CSP = 4

FINAL = [4]

Notice that sub([10, 20, 30, 40], 7) leads to [10, 20, 30, 40](subscript error).

2.2 Normalize-Transpose-Distribute Semantics and Overtyping

The Normalize-Transpose-Distribute semantics are based upon the idea
of overtyping. Overtyping occurs when an operator or function encounters
operands or arguments that are of higher level of nesting (or dimension)
than expected. For example, arithmetic operators are defined to operate
on scalars. Therefore the sequence [2 + 2] gives the expected result, 4. If
the expression [1,2,3] * 2 is to be evaluated, the following CSP steps are
followed:

INITIAL = [1, 2, 3] * 2 ntd

CSP = [[1 * 2], [2 * 2], [3 * 2]]

CSP = [2, 4, 6]

FINAL = [2, 4, 6]

Since the multiply also expects scalars, an NTD is performed as the simplifica-
tion step of the CSP. The NTD includes a normalize, which makes 3 copies
of the scalar 2, since the nonscalar argument has 3 elements. This results
in [1,2,3] * [2,2,2]. A transpose on the arguments is performed, resulting in
[[1,2],[2,2],[2,3]]. Now the operator can be distributed among the binary scalars,
resulting in [[1 * 2], [2 * 2], [3 * 2]], which supplies the multiplication operator
the scalar operands for which it is defined. The final CSP step above obtains
the desired product.

Overtyping exists anytime an operator has operands greater than the ex-
pected nesting level. In the example above the multiplication operator was
overtyped by 1 level (i.e., one of the operands was a one-dimensional sequence
of scalars, rather than a scalar as expected). Consider the situation when the
plus operator acts on a three-dimensional sequence. In cases such as this, the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:9

NTD and the CSP interact in a manner resulting in nested NTDs.

INITIAL = [[[1, 1, 1], [2, 2, 2]], [[11, 11, 11], [12, 12, 12]]]

+ [[[1, 1, 1], [2, 2, 2]], [[11, 11, 11], [12, 12, 12]]]

CSP = [[[[1, 1, 1], [2, 2, 2]] + [[1, 1, 1], [2, 2, 2]]], [[[11, 11, 11], [12, 12, 12]]

+ [[11, 11, 11], [12, 12, 12]]]]

CSP = [[[[1, 1, 1] + [1, 1, 1]], [[2, 2, 2] + [2, 2, 2]]], [[[11, 11, 11]

+ [11, 11, 11]], [[12, 12, 12] + [12, 12, 12]]]]

CSP = [[[1 + 1, 1 + 1, 1 + 1], [2 + 2, 2 + 2, 2 + 2]], [[11 + 11, 11 + 11, 11

+ 11], [12 + 12, 12 + 12, 12 + 12]]]

CSP = [[[2, 2, 2], [4, 4, 4]], [[22, 22, 22], [24, 24, 24]]]

FINAL = [[[2, 2, 2], [4, 4, 4]], [[22, 22, 22], [24, 24, 24]]]

The interaction of CSP and NTD in this trace results in adding corresponding
elements of two three-dimensional structures.

When operators and functions are defined in SequenceL, type information
is provided. The types indicate the dimension of an argument. The question
mark?, the words scalar, vector, vector(vector) or matrix, vector(matrix),
etc. in function signatures indicate the type of structure the function expects.
A question mark allows any structure, a scalar is order zero, a vector or-
der one, a vector(vector) or matrix is order two, etc. For a parameter
P, in a function’s signature and a corresponding argument A, the follow-
ing indicates the conditions under which A is overtyped, based on the order
of A:

P’s type P’s order A’s order

scalar 0 order(A) > 0

vector 1 order(A) > 1

vector(vector) 2 order(A) > 2
etc.

If P is typed with the ? then A’s order can be any N ≥ 0 (i.e., there is no situation
in which A is overtyped). A vector(vector) can be a vector containing a mixture
of scalars and at least one vector or the special case matrix. An undertyped
argument, or error, occurs whenever:

P’s type P’s order A’s order

vector 1 order(A) < 1

matrix 2 order(A) < 2

vector(matrix) 3 order(A) < 3

etc.

When provided arguments of the order declared, a function or operator is eval-
uated. When provided an overtyped argument, NTDs result. When provided an
undertyped argument, a type error occurs. The following section provides an

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:10 • D. E. Cooke et al.

informal definition of the NTD semantics and more advanced examples of its
effect.

2.3 Simple Translation Involving Normalize-Transpose-Distribute

Here we present informal definitions of the NTD semantics, which enable the
shortcuts seen above, in more detail. We first define the NTD operations on
sequences (“sequences” will be defined rigorously in Section 5.4; but for now we
can think of them as ordered multisets).

Let E be a sequence of length L, and for i ≤ L let E(i) denote the ith
member of E. Let S be a subset of {1, . . . , L}, and for all i in S suppose E(i)
are sequences of the same length L′ (though E may contain other sequences of
similar length, not in S). For any natural number n and any e, let repeat(e,n)
denote the ordered multiset consisting of n copies of e. From E, we obtain the
normalization of E with respect to S, denoted by, normalize(E,S), by replacing
E(i)with repeat(E(i), L′) for all i not in S, and leaving E(j) unchanged for i in
S. Intuitively, normalization is used to make all the arguments conformant in
terms of number of elements. For example:

normalize ([[1, 2], [2, 3, 4], 5], {1}) = [[1, 2], [[2, 3, 4], [2, 3, 4]], [5, 5]].

Notice that the second and third members of the original sequence are repeated
twice each, because the length of the first member, with respect to which we
are normalizing, is 2. For another example,

normalize([[1, 2], 3, [4, 5], [6, 7]], {1, 4}) = [[1, 2], [3, 3], [[4, 5], [4, 5]], [6, 7]].

For any sequence E whose members are sequences of the same length, the
transpose of E consists of a sequence of all the first components of members of
E, followed by a sequence of all the second components, etc. For example,

transpose([[1, 2, 3], [10, 20, 30]]) = [[1, 10], [2, 20], [3, 30]].

Finally, the distribution of an operation over a sequence is obtained by apply-
ing the operation to each member of the sequence (this is often called a map).
For example,

distribute(f , [1, 2, 3]) = [f (1), f (2), f (3)].

The Order of a SequenceL term is its level of nesting (scalars are of Order
0—denoted by 0 in the SequenceL function signatures; vectors are of Order
1—denoted by 1; matrices are of Order 2—denoted by 2; etc.). Any order can be
accepted for a parameter given order ?. Arguments of a SequenceL expression
which are of higher order than indicated in the function signature are called
overtyped arguments, and those whose order exceeds the expected order by
a maximal amount (i.e., maximal among the parameters in the expression)
are referred to as maximally overtyped. For example, both arguments of the
expression [1, 2] + [[3, 4], [5, 6]] are overtyped, and the second argument is
maximally overtyped. The key feature of SequenceL semantics, eliminating the
need for control structures in many cases, is this: whenever any argument of an
expression is of an order greater than that required by the function signature,
the argument is normalized with respect to the collection of arguments that

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:11

are maximally overtyped. The argument is then transposed, and the operation
is distributed over the resulting sequence. This process continues recursively
(through a succession of CSPs) until a base case is reached, in which the function
or operator can be applied directly to its arguments.

It turns out that this simple semantics adjustment allows operators to locate
and act on their intended arguments within a data structure, and synthesize
the results into a new data structure, in a way that is both intuitive and flexible.

For example, in the base case, the infix + and * operators act in the usual
way:

3 + 10 = 13

3 ∗ 10 = 30

Through repeated, implicit applications of NTD, we can multiply a vector by a
scalar using the ordinary * operation:

10 ∗ [1, 2, 3]

(normalize) → [[10, 10, 10], [1, 2, 3]]

(transpose) → [[10, 1], [10, 2], [10, 3]]

(distribute) → [[10 ∗ 1], [10 ∗ 2], [10 ∗ 3]]

→ [10, 20, 30].

The same process can be applied to add vectors. The programmer simply writes,
say, [1, 2, 3] + [10, 20, 30], which evaluates as follows:

(normalize) → [[1, 2, 3], [10, 20, 30]]

(transpose) → [[1, 10], [2, 20], [3, 30]]

(distribute) → [[1 + 10], [2 + 20], [3 + 30]]

→ [11, 22, 33].

This works not because vector arithmetic is built into SequenceL, but because
the usual operators scale up naturally via NTD.

NTDs also scale up to user-defined functions. One declares expected dimen-
sions for function parameters in the function signature. For example, an iden-
tity function,

ident2 (matrix n) ::= n

is defined with a two-dimensional sequence for its argument. When provided a
three-dimensional sequence to evaluate one NTD is performed:

Initial = ident2([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[11, 11, 11], [12, 12, 12],

[13, 13, 13]]])

CSP = [ident2([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), ident2([[11, 11, 11], [12, 12, 12],

[13, 13, 13]])]

Final = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[11, 11, 11], [12, 12, 12], [13, 13, 13]]]

Modifying the function to expect one-dimensional sequences ident1(vector
n) ::= n, and providing the same three-dimensional argument, results in

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:12 • D. E. Cooke et al.

nested NTDs in two CSP steps. The first two steps and the final result are
identical to the trace above. Only the non-italicized step below showing the
nested NTD differs from the ident2 trace.

Initial = ident1([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[11, 11, 11], [12, 12, 12],

[13, 13, 13]]])

CSP = [ident1([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), ident1([[11, 11, 11], [12, 12, 12],

[13, 13, 13]])]

CSP = [[ident1([1, 1, 1]), ident1([2, 2, 2]), ident1([3, 3, 3])],

[ident1([11, 11, 11]), ident1([12, 12, 12]), ident1([13, 13, 13])]]

Final = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[11, 11, 11], [12, 12, 12], [13, 13, 13]]]

Modifying the function to expect scalar sequences ident0(scalar n) ::= n,
and providing the same three-dimensional arguments, results in an additional
nested NTD. Only the non-italicized step indicating the additional NTD varies
from the ident1 trace above.

Initial = ident0([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[11, 11, 11], [12, 12, 12],

[13, 13, 13]]])

CSP = [ident0([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), ident0([[11, 11, 11], [12, 12, 12],

[13, 13, 13]])]

CSP = [[ident0([1, 1, 1]),ident0([2, 2, 2]),ident0([3, 3, 3])],

[ident0([11, 11, 11]),ident0([12, 12, 12]),ident0([13, 13, 13])]]

CSP = [[[ident0(1), ident0(1), ident0(1)], [ident0(2), ident0(2), ident0(2)],

[ident0(3), ident0(3), ident0(3)]], [[ident0(11), ident0(11),

ident0(11)], [ident0(12), ident0(12), ident0(12)], [ident0(13),

ident0(13), ident0(13)]]]

Final = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[11, 11, 11], [12, 12, 12], [13, 13, 13]]]

Notice that all of the identity functions, ident2, ident1, and ident0 gradually
pull the nonscalars apart in a logical fashion and furthermore, put the non-
scalars back together again. These are simple demonstrations of the power of
the NTD combined with the CSP. Operations could have been performed at any
level of dissection with an assurance that the nonscalar would reform in subse-
quent CSP steps. The NTD/CSP can be used to perform operations on dissected
structures in an orderly manner.

For a further demonstration of the semantics hard at work (in lieu of the pro-
grammer), consider the evaluation of the variable instantiation code mentioned
above. Recall the code:

instantiate(scalar var,val,char) ::=
val when (char == var) else char.

In the case of a user-defined function, like instantiate, the user has indicated
that the three arguments var, val, and char are scalars. Thus the function, as

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:13

written, expresses only the base case in which a single character is instantiated.
However, as in the above examples, this function will automatically “scale up” to
handle arbitrarily deeply nested expressions. For example, suppose the function
is called with arguments x, 3, and [x,+,[[7,*,x],/,9]]:

instantiate(x, 3, [x,+,[[7,*,x],/,9]]).

Since the third argument char expects a scalar, but has been given a list of
length 3, the other two arguments are normalized to obtain: [x, x, x], [3,3,3],
[x,+,[[7,*,x],/,9]]. The results are then transposed, and the operation dis-
tributed among the resulting sequences, resulting in 3 function references,
which may be evaluated in parallel (writing ins for instantiate):

[(ins(x, 3, x), ins(x, 3, +), ins(x, 3, [[7, ∗, x], /, 9])].

This step is hidden from the user—it is a result of the internals of the lan-
guage translator. The first two subterms are now ready for evaluation. The
third subterm, since its final argument is of greater order than expected by the
function, undergoes two more rounds of NTD, obtaining

[[ins(x, 3, 7), ins(x, 3, ∗), ins(x, 3, x)], ins(x, 3, /), ins(x, 3, 9)].

Note how the repeated use of normalize-transpose-distribute in successive CSP
steps allows the function to descend implicitly through the data structure,
“finding” its appropriate arguments without any additional effort from the
programmer. Also note that the actual computations in one part of the eval-
uation may proceed in parallel with additional applications of NTD in other
parts.

At this point, the arguments finally match what the function expects, and
can therefore be evaluated based on the user’s specification of the function body,
leading to the final, desired result:

[3, +, [[7, ∗, 3], /, 9]].

The execution of the function descends recursively into the tree, and is essen-
tially similar to the execution of the LISP, Haskell, or Prolog versions presented
earlier. But in SequenceL the recursion falls automatically out of the semantics
and is not explicit in the source code. As in this example, the internal workings
of the normalize-transpose-distribute semantics can be fairly complex. How-
ever, the effect on code and its output is generally natural and intuitive, and
often corresponds to simply omitting iterative and recursive constructs that
would otherwise be needed.

The advantage SequenceL brings here is not a matter of smaller codes—
keystrokes are cheap, all else being equal. But designing and debugging loops
and recursive functions is expensive. To do so, the programmer must learn and
master the appropriate constructs (Haskell has several: comprehension, map,
zip, zipWith, , zipWith2, . . . , zipWith7, filter, etc.), and then apply them in the
correct configuration with respect to order and nesting. These configurations
are often greatly constrained, or even determined, by the structure of the data
along with the input and output types of the operators used. Thus, the use of
control structures is not as flexible as it first appears—they are often derived

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:14 • D. E. Cooke et al.

rather than chosen. For the human programmer, this derivation is taxing and
error prone. SequenceL, by contrast, often yields the derivation automatically
through NTD.

Not all instances of recursion can be eliminated—or need to be. As noted
above, some algorithms are most naturally thought of and coded in this
manner—and SequenceL allows arbitrary recursion when needed. However,
the use of iteration or recursion merely to traverse and synthesize data struc-
tures, which includes the majority of cases, is a distracting and sometimes stren-
uous nuisance [Cooke and Gates 1991]. In many cases, SequenceL relieves this
nuisance, allowing the programmer to write code closer to his or her mental pic-
ture of the problem solution. SequenceL’s implicit normalization and transpose
evaluation steps significantly diminish the need for iteration and recursion. In
particular, recursion is typically not needed in SequenceL and is replaced by
iterative operations implicit in the SequenceL code. These iterative operations
could be performed in parallel (whether they are actually performed in parallel
or not). By analogy with Haskell, this includes all recursive patterns covered by
zip, map, and list comprehension, but not those covered by foldr and foldl. NTD
also covers some cases, which are not covered by any of the standard Haskell
constructs, as discussed in Section 7.

3. EXAMPLES RUN USING THE SEQUENCEL INTERPRETER

The goal of the SequenceL effort is to reduce the programmer’s obligation to
specify the procedural part of a problem solution. In this section, we focus on
how SequenceL applies to different kinds of problems.

In Section 5, the semantics of SequenceL are given as a theory of first order
logic. Building on the informal definitions presented in Section 2, one may
view the complete “evaluation” of a SequenceL expression T1 to be a series of
Tableaux:

T1 = T2 = · · · = Tn,

where Ti = Ti+1 is a theorem of Meta-SequenceL (see Section 5) for 1 ≤ i < n,
and Tn is a term written using only scalars, commas, and square brackets.There
is a SequenceL interpreter, which generates these theorems. This interpreter
is the source of all the traces shown in this section and was used to evaluate all
of the examples in this article. For purposes of this section, we will call each Ti

a Tableau, as we did in Section 2, which overviewed the CSP.

3.1 Matrix Multiplication

NTD is first demonstrated on matrix computations. Here we recall the Sequen-
ceL mmrow and dp functions from Section 2. The mmrow function computes
the matrix product of a vector and a matrix, while dp computes the dot product
of two vectors.

mmrow(vector a, matrix b) ::= dp(a, transpose(b))
dp(vector x,y) ::= sum(x * y)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:15

Given the matrix,

An initial tableau for matrix multiply is:

mmrow (M1, M1) (1)

We note that mmrow’s first argument is expected to be of order 1. Thus, we
identify the three constituent rows making up M1.

Normalize then makes three copies of the second matrix:

mmrow([R1, R2, R3], [M1, M1, M1]) (2)

and transpose and distribute yield the next tableau:

(mmrow(R1, M1), mmrow(R2, M1), mmrow(R3, M1)). (3)

Now the language interpreter instantiates the body of the mmrow function;

[dp(R1, transpose(M1)),

dp(R2, transpose(M1)),

dp(R3, transpose(M1))]. (4)

Next true matrix transposes are performed forming M1T,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:16 • D. E. Cooke et al.

where

After the transposes, the dp functions are eligible for evaluation:

[dp(R1, M1T),

dp(R2, M1T),

dp(R3, M1T),]. (5)

The dp function takes two order-1 sequences as input, but in (5) the second
argument of each dp reference is a two-dimensional structure. Thus, we note
the rows of the transposed M1:

Therefore, another NTD is performed on each dp resulting in 9 dp references:

[[dp(R1, R1′), dp(R1, R2′), dp(R1, R3′)],
[dp(R2, R1′), dp(R2, R2′), dp(R2, R3′)],
[dp(R3, R1′), dp(R3, R2′), dp(R3, R3′)]].

(6)

At this point, the dp functions are instantiated and operator-level NTDs dis-
tribute operators to produce the final result:

[[65, 90, 140], [650, 900, 1400], [285, 430, 720]]. (7)

The procedural aspects of Matrix Multiplication are fully discovered through
the NTD. Furthermore, examination of the SequenceL trace reveals opportu-
nities for parallel evaluations, which can lead to design decisions in developing
concurrent codes. In Cooke and Rushton [2005], we show how these traces can
be used to discover improved concurrent algorithms to be implemented in JAVA.
Two observations come to mind in reviewing this trace:

(1) Parallel computations are a result of the evaluation automatically decom-
posing the operand sequences. This is the significant distinction between

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:17

SequenceL’s evaluation strategy when compared with competitors like
dataflow machines. In a dataflow machine, the programmer must decom-
pose the data structures, resulting in more complicated functions—ones the
programmer must write. See, for example, the pH matrix multiply imme-
diately following this list of observations.

(2) The programmer did nothing to indicate where the parallel or itera-
tive/recursive elements of the computation exist—these are found auto-
matically via NTDs as the function and operations are evaluated according
to the SequenceL semantics.

Now for the pH example promised in the first item of the list just read. pH (a
dialect of parallel Haskell) functions to multiply two two-dimensional matrices
are shown here as they appear in Nikhil and Arvind [2001].

row i x = let ((li, lj), (ui, uj)) = bounds x
fill k = x!(i,k)

in mkArray (lj,uj) fill
col j x = let ((li, lj), (ui, uj)) = bounds x

fill k = x!(k,j)
in mkArray (lj,uj) fill

ip ar bc k1 k2 = let s = 0.0
in for k <- (k1..k2)

do next s = s + ar!k * bc!k
finally s

matmul a b = let ((1,1),(m,n)) = bounds a
((1,1),(_,l)) = bounds b
fill (i,j) = ip (row i a) (col j b) 1 n

in mk Array ((1,1),(m,l)) fill

Even though there are no directives to indicate parallel processing oppor-
tunities, it is indeed incumbent upon the programmer to break the matrices
apart. The parallelisms are only then discoverable.

3.2 Jacobi Iteration

For a more complex matrix computation, consider the Jacobi Iteration solution
of a Partial Differential Equation according to the discretized formula:

μ′
j ,k = 1

4
(μ j+1,k + μ j−1,k + μ j ,k+1 + μ j ,k−1) −

(
ρ j ,k

(
1
4

�2
))

.

An important difference between Jacobi and Matrix Multiplication is that, in
Jacobi, the computed value of a matrix element involves only its four neighbors:
above, below, and to each side. Therefore, one must be able to select the appro-
priate values to compute the new value in an interior position. For example, to
compute the (3, 3) element below (the lightened box), the darkened boxes must
be used as indicated in the equation above.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:18 • D. E. Cooke et al.

To select the darkened elements requires a capability to call out row and column
indices, much the way the taking clause did in the prior versions of SequenceL
(see Figure 1). Here is one SequenceL solution to compute one iteration, defining
the next matrix μ′.

jacobi(matrix a, scalar delta, matrix b)::=
neighbors([1..length(a)],a, transpose(a)) - (b*(delta2))/ 4]

neighbors(scalar i,vector a, matrix b)::=
helper(a,b,i,[1..length(b)])

helper(vector a,b scalar i,j)::=
a(j) when (i=1 or length(a)=i) or

(j=1 or length(a)=j)
else

a(i+1) + a(i-1) + b(j+1) + b(j-1)/4

In the SequenceL solution, each of μ’s rows is combined with each of its columns,
with neighbors playing the role of the mmrows function of matrix multiply and
helper playing the role of dp. Besides forming the desired Cartesian product of
the row-order and column-order versions of the input matrix, the NTD also cap-
tures the row indices in neighbors, and the column indices in helper. Ultimately,
there is a point in the resulting trace where each row/column combination is
applied to helper with its respective subscripts. Let’s consider the neighbors
and helper functions. Assume M1 and its transpose M1T as previously defined
for the matrix multiply example:

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:19

and let R1, R2, and R3 be the rows of M1, and R1′, R2′, and R3′ be the rows of
M1T. When neighbors is referenced in jacobi, it includes arguments providing
the subscripts of all the rows, via the generative [1..length(M1)], and all rows
and all columns of the matrix a:

neighbors([1, 2, 3], M1, M1T)

NTDs result in pairing each row and its respective subscript with all of the
columns:

[neighbors(1, R1, M1T),

neighbors(2, R2, M1T),

neighbors(3, R3, M1T)].

Likewise, the interaction between neighbors and helper combine each row and
its respective subscript with each column and its respective subscript, resulting
in:

[[helper(R1, R1′, 1, 1),

helper(R1, R2′, 1, 2),

helper(R1, R3′, 1, 3)],

[helper(R2, R1′, 2, 1),

helper(R2,R2′, 2, 2),

helper(R2, R3′, 2, 3)],

[helper(R3, R1′, 3, 1),

helper(R3, R2′, 3, 2),

helper(R3, R3′, 3, 3)]].

Only the second row, second column element fails to meet the condition of the
when clause. This results in the average value of its neighbors above and below,
and to the left and the right. The helpers produce each element of the matrix.
As a result of a sequence of NTDs in the evaluation of the jacobi function, all el-
ements of the matrix produced by neighbors are subtracted from corresponding
elements of the rho matrix. The rho matrix is computed as a result of a series
of NTDs in the subexpression of the jacobi function ρ j ,k(1/4�2)), culminating
in the final result:

[[0.999958, 1.99992, 3.99983],

[9.99958, 15.9992, 39.9983],

[10.9995, 11.9995, 13.9994]].

The trouble with the forgoing solution to Jacobi iteration is that one must
know about and skillfully deploy the NTD semantics to solve the problem.
Such requisite knowledge is counterproductive to our purpose of shielding the
user from technical details in a problem solution. Consequently, with virtually
no change to the SequenceL syntax, we have introduced the concept of vari-
able subscripts whose values are computed—rather than obtained as function
arguments. The concept is not unlike the polynomial time backtracking one can
set up for assertional databases in Prolog.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:20 • D. E. Cooke et al.

The prior definition of Jacobi in SequenceL produces the Cartesian prod-
uct via the nested NTDs, which also produced the needed subscripts. In other
words, nested NTDs can produce the desired combination of subscript pairs de-
fined by a Cartesian product. The NTD semantics combine respective elements
of operand sequences and side-steps the need to provide subscripts when their
only purpose is to break apart and rebuild a nonscalar. There are times, how-
ever, when subscripts are a natural part of the problem solution. For example,
recall the necessary use of subscripts in the Jacobi equation seen earlier and
repeated here:

μ′
j ,k = 1

4
(μ j+1,k + μ j−1,k + μ j ,k+1 + μ j ,k−1) −

(
ρ j ,k

(
1
4

�2
))

.

Free variable subscripts in SequenceL range over the sizes of structures they
subscript and operate in a manner similar to the evaluation of free variables
in Prolog. When more than one free variable is specified, nested NTDs produce
the Cartesian product of subscript values. With the use of free variables, the
complete Jacobi solution in SequenceL is improved and closely matches the
specifying equation:

jacobij,k(matrix a, scalar delta) ::=
a(j,k) when (j=1 or length(a)=j) or (k=1 or length(a)=k)

else
((a(j+1,k)+a(j-1,k)+a(j,k+1)+a(j,k-1))/4)-(a(j,k)∗delta ∧2)/4

Likewise, matrix multiply is improved:

matmuli,j (matrix m1,m2) ::= sum(m1(i, all) ∗ m2(all,j)).

There are times when subscripts are part of the basic concept of a problem
solution as they are in the definition of Jacobi Iteration and Matrix Multiplica-
tion. The programmer can identify and provide these natural uses of subscripts,
while leaving it to the NTD semantics to handle their processing. When sub-
scripts are not a natural feature of a specification, but instead, are required in
the iterative framework specifying how to solve a problem, the subscripts and
their management is handled by the NTD semantics. An example of a subscript,
absent in the SequenceL Matrix Multiplication, is the extra subscript (k in the
example below) which is required by procedural definitions:
For i := 0 To rows do

begin

For j := 0 To cols do

begin

val := 0;

For k := 0 To cols do

begin

val := val + (m1[i, k] * m2[k, j]);

end;

mm[i, j] := val;

end;

end;

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:21

3.3 Fast Fourier Transforms

The previous examples demonstrate how one declares intuitive solutions in Se-
quenceL and the manner in which the NTD effectively discovers the procedural
aspects of algorithms. The Discrete Fast Fourier Transform follows this trend
as well. A Discrete FFT involves two computations defined by:

a(ω j) = fft(odd elements of a) + fft(even elements of a) • ω2 j

a(ω j+N) = fft(odd elements of a) − fft(even elements of a) • ω2 j

where 0 ≤ j ≤ N − 1.

In the following SequenceL FFT definition, *c, /c, ∧ce, and ∧c are complex
multiply, divide, e raised to a complex number, and a complex number raised
to a real number, respectively.

fft(scalar pi2,e,n, matrix a) ::=
fft(pi2,n/2,a(([1..n/2]∗2-1)) +
fft(pi2,n/2,a(([1..n/2]∗2)) *c
(e,0) ∧ce ((0,pi2) /c (n,0))∧c (([0..n/2-1],0)
++
fft(pi2,n/2,a(([1..n/2]*2-1)) -
fft(pi2,n/2,a(([1..n/2]*2)) *c
(e,0) ∧ce ((0,pi2) /c (n,0))∧c (([0..n/2-1],0)

when length (a) > 1
else

a(1)

We will now comment on the subexpressions appearing in the solution and
their relationship to the FFT definition. One term of the mathematical defini-
tion of FFT is ω = e(2πi)÷N . In SequenceL this is obtained by

[2.71828,0] ∧ce ([0,pi2] /c [n,0]), (A)

where pi2 is instantiated with the argument 6.283185, which is 2π , ∧ ce is
complex exponentiation, and /c is complex division.

When a is subscripted

a([1..n/2] *2-1), where n is the size of a. (B)

NTDs on the multiplication and then the subtraction operator yields a vector
of the odd-numbered elements of a.

The even vector is obtained in a similar SequenceL operation:

a([1..n/2]*2), where n is the size of a. (C)

The Fast Fourier Transform is now definable recursively, where two sets of
values are obtained by the equations (employing the expressions A, B, and C,
above):

a(ω j) = fft(B) + fft(C) • A2j

a(ω j+N) = fft(B) − fft(C) • A2j where 0 ≤ j ≤ N − 1 ,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:22 • D. E. Cooke et al.

which leads to the SequenceL definition given previously. Procedural aspects
of these two equations are discovered and handled by the NTD.

3.4 Gaussian Elimination

The next problem we consider is Forward Processing in Gaussian Elimination.
Our first SequenceL definition of Gaussian elimination is:

gauss(matrix e, scalar i) ::= e when length(e)=1 else
e(1) ++ gauss(ztail(tail(e), e(1) i), i+1)

ztail(vector e2,e1, scalar i) ::= e2-(e1 ∗ e2(i)) / e1(i)

An example of the matrix parameter e for the Gaussian Function follows:

Parameter iselects an equation as the basis for processing. The function zTail
performs the most significant computations. It returns the matrix obtained by
subtracting an appropriate multiple of e1 from each row of e2, giving all 0’s
in the ith column. NTDs accomplish a considerable amount of the work. For
example a typical call to ztail is made with respective parameters of a matrix
M, vector v, and scalar s:

ztail(M, v, s).

An NTD is performed because the first argument is overtyped, resulting in

[ztail(M(1), v, s),

ztail(M(2), v, s),

, . . . ,

ztail(M(k), v, s)],

where k is the number of rows of M. Instantiation of the body of ztail now
gives

[M(1) − (v ∗ M(1, s))/v(s),

M(2) − (v ∗ M(2, s))/v(s),

. . . ,

M(k) − (v ∗ M(k, s))/v(s)].

Since the operations -, *, and / act on scalars and the arguments shown in bold
are vectors, another round of NTD occurs, resulting finally in the matrix

[[M(1, 1) − (v(1) ∗ M(1, s))/v(s), M(1, 2) − (v(2) ∗ M(1, s))/v(s), . . .]

[M(2, 1) − (v(1) ∗ M(2, s))/v(s), M(2, 2) − (v(2) ∗ M(2, s)/v(s), . . .]

· · · ,

[M(k, 1) − (v(1) ∗ M(k, s))/v(s), M(k, 2) − (v(2) ∗ M(k, s))/v(s), . . .]].

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:23

The complex pattern of subscripts to M and v appearing above reflects the
thought pattern behind the design of the Pascal and NESL versions of the ztail
function that follow.

function ztail(eq:matrix;r,c:integer):matrix;
/*r is the number of equations and c is the number of coefficients */

var m:integer;
begin
i:=1;
for j:=i+1 to r do

begin
m:=eq[j,i];
for k:=1 to c do

eq[j,k]:=eq[j,k]-((eq[i,k]*m) / eq[i,i])
end;

return eq
end;

Apart from the complexity of establishing the nested iterative control struc-
tures, care must be taken to manage the subscripts of the matrix contain-
ing the equations. Managing the interaction of the control structures and
the subscripts provides a mental burden for the programmer, distracting him
or her with technical details that tend to distract one from efforts to fo-
cus on the essence of the problem solution. Notice that the only subscript
in the SequenceL ztail function identifies the row of coefficients being pro-
cessed, which is a natural part of the intuitive picture of the problem so-
lution. The additional subscripts in the Pascal-like solution above and the
NESL solution below are what we claim to be the technical distractions
arising from the more algorithmic detail involved in stating the how of the
solution.

There is a slight improvement (over the Pascal version) in the NESL version,
which uses list comprehension. Note however that the NESL solution still re-
quires programmer effort to manage subscripts and the nested application of
subscripts is not unlike the nested for-loops above:

ztail(eq,i)=
{ {eq[j][k]-eq[i][k]*eq[j][i])/eq[i][i]

:k in [1:{#}eq[1]]
}
: j in [1:{#}eq]

};

The thought process behind the SequenceL codes deploying NTD downplays
the numerical subscripts required by the Pascal and NESL solutions, and cor-
responds to a more visio-spatial picture of how the final matrix is formed. Recall
the previous discussion in Section 3.2 concerning the natural and unnatural use
of subscripts. In the case of the ztail function, the unnecessary subscripts are
not even present in the SequenceL solution, not to mention the iterative or
recursive scaffolding required to process them. In the case of the free variable

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:24 • D. E. Cooke et al.

version of the jacobi function, subscripts that are a natural part of the problem
solution are visible, but once again the control structures required to manage
them are not.

A common optimization in Gaussian Elimination is pivoting, in which the
matrix of coefficients is rearranged to prevent the potential for division by zero.
Using the built-in operator for set difference (i.e., the \), SequenceL pivoting
can be accomplished by two helper functions:

pivot(matrix coef, scalar j) ::=
[max(coef,j)] ++ \coef max(coef,j)

when length (coef)>1 else coef
maxI(matrix coef, scalar j)::= coef(I) when and (abs(coef(I,j)) >

=abs(coef(all,j)))

There is no change to ztail, and a minor one to Gaussian to take care of the
pivoting:

gauss(matrix e, scalar i) ::= e when length(e)=1 else
e(1) ++ gauss(ztail(pivot(tail(e),i), e(1) i), i+1)

3.5 Quicksort

Recall that Quicksort is pivot-based. A pivot is selected from a list to be sorted;
all items less than the pivot are placed in front of it; and all items greater than
the pivot are placed after (++ denotes an append operation).

quick(vector a) ::=
a when length(a) <= 1 else
quick(less(a,a(length(a) div 2)))++
equal(a,a(length(a) div 2)) ++
quick(great(a,a(length(a) div 2)))

The SequenceL functions for identifying elements less than, equal, and those
that are greater than the pivot are quite intuitive and rely on NTDs to break
apart data structures for the desired comparisons:

less(scalar a,b) ::= a when a < b
equal(scalar a,b) ::= a when a = b
great(scalar a,b) ::= a when a > b

For Example, Given the Initial Tableau, Less([5, 7, 2, 9], 7), NTDs Result in:

[Less (5, 7), Less (7, 7), Less , (2, 7), Less , (9, 7)]

Since Only the Tuples Containing Arguments 2 and 5 Satisfy the Comparison,
They are the Only References to Less Returning Values. The Final Result is:

[5, 2]

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:25

Here is the NESL solution:

function Quicksort(A)=
if({#}A <= 1) then A
else

let b = S[rand({#}S)];
S1 = {e in A|e<b}
S2 = {e in A|e>b}
R = {Quicksort(v); v in [S1,S2]};

in R[0] ++ [e] ++ R[1];

NESL’s comprehension construct ({<var> in <sequence> | <condition>})
distributes the elements of a referenced set among an operator. We claim that
the NTD generalizes this concept, and is the only semantics required of Se-
quenceL beyond the grounding of function parameters and the evaluation of
built-in operators.

Note that the quicksort in SequenceL, though written in a functional syntax,
truly is an algorithm in the sense that it is devised to execute quickly—as
opposed to simply being declared to deliver a specified result. A more declarative
sort might be written as follows:

Sort(vector List) := S where
bag equal(List,S) &
S(1) <=· · · <= S(|S|)

In this code, bag equal is a Boolean function that returns “true” if its ar-
guments are lists which are equal as bags (i.e., multisets), and the ellipsis
operator “· · · ” , acts with infix operators in an “intelligent” fashion. The where
construct automatically results in a search for values of all uninstantiated vari-
ables (in this case, S), which make its right-hand-side true. We are currently
implementing these extensions to the language, but the implementation is be-
yond the scope of this paper and should be considered future work as of this
publication.

4. SCALABILITY: LARGE-SCALE APPLICATIONS OF SEQUENCEL

Traditionally, when new languages are introduced in the literature a wide va-
riety of relatively small problem solutions are used to indicate the comparative
strengths and weaknesses of the language abstraction. The problem solutions
presented so far are also relatively small. In this section, we present evidence
of the scalability of SequenceL.

Throughout the foregoing we have pointed out that the NTD accomplishes
heavy lifting from a semantics point of view. We have recently developed a Se-
quenceL interpreter in Haskell that centers all translation around the NTD.
In fact, except for the declaration of the data structure used to implement the
sequence and the definition of basic operations (e.g., arithmetic with scalars)
all other language constructs are implemented in terms of the interaction be-
tween the NTD and the CSP. What this truly means is that all of the translation
functions are treated like other user-defined SequenceL functions. Thus, the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:26 • D. E. Cooke et al.

grounding of arguments and the evaluation of subscripts, free variables, condi-
tionals, function bodies, and function references are governed by the CSP-NTD
semantics. As a case in point, recall the SequenceL instantiate function and the
manner in which the NTD was used to ground the variables of an arithmetic
expression. The bulk of this NTD-centric version of SequenceL is shown in the
Appendix. Consequently, once basic core capabilities (primarily the NTD-CSP)
are available, building a translator is a simple matter.

4.1 NASA Applications of SequenceL

In the introduction, we observed that the human costs for developing codes
are increasing to the point that high-level, language solutions are becoming
competitive to lower level codes, especially given the decreasing cost of compu-
tational power. For many critical applications, the balance is beginning to tip
in favor of declarative languages. At NASA, there is a growing need to solve
problems more rapidly in the future. In many situations taking several days
to fine tune a program that runs in 10 microseconds is unacceptable when an
equivalent program in a high-level language takes 20 microseconds to run, but
can be written and executed in fewer days. The overall delay recommends the
higher-level language.

NASA’s future exploration missions will not be as scripted as they have been
in the past. On the long-distance and long-duration missions of the future,
an ability to rapidly and dependably modify software capabilities is needed.
Current approaches to software development and modification are unlikely to
meet the NASA’s future needs, [Cooke et al. 2006]. One possible step toward ad-
dressing NASA needs is to test declarative language approaches for prototyping
requirements.

Recently, SequenceL was used to prototype the requirements of an onboard
system for NASA’s Space Shuttle [Cooke et al. 2005]. The system is called
the Shuttle Abort Flight Manager (SAFM). An example SAFM requirement
as specified by NASA Guidance, Navigation, and Control (GN&C) engineers is
presented in Figure 2. Clearly, the requirement looks a lot like SequenceL. In
the past, NASA developed prototypes apart from the requirements exemplified
in Figure 2. With minor changes to the requirements—depicted in Figure 3—
the requirement itself is a prototype since it is executable by the SequenceL
interpreter.

The major change in the SequenceL version of the requirement is adding
the matrix multiply definition and adding nested [] ’s to denote the rows of
the matrix. Since matrix computations (including matrix multiply) are the gist
of the requirement, the NTD performs all the work in terms of the procedural
aspects of the problem solution. In short, the NASA requirement, with only
minor modifications, is executable in SequenceL.

We used SequenceL to develop the requirements for the Shuttle Abort Flight
Management System. This is a large system—the requirements are 200 pages
in length. Due to the success of the SAFM effort, we have recently developed
a SequenceL prototype of the “flight rules checker” for NASA’s Orion Crew
Exploration Vehicle Onboard Abort Executive (CEV-OAE-FRC). This prototype

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:27

Fig. 2. Example SAFM requirement.

Fig. 3. Executable SAFM requirement in SequenceL.

software automates certain mission support decisions for the Orion vehicle,
using a small set of “flight rules”, identical to those written and used by human
mission controllers. The SequenceL prototype was developed in parallel with
a handcoded CEV-FRC written by NASA Guidance, Navigation, and Control
Engineers in C. The SequenceL requirements are compiled into C++.

It is worth noting that the SequenceL version and the GN&C version were de-
veloped by different individuals, to some extent in competition with each other.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:28 • D. E. Cooke et al.

Furthermore, the NASA CEV Guidance, Navigation, and Control Functional
Area Manager chose the portion of the CEV OAE that we would collaborate on
because he viewed the FRC as the most challenging part of the OAE. Thus, we
were not in a position to find a part of the system that would favor SequenceL.
We completed the effort in June 2006.

The strengths of the SequenceL FRC include the ease of development and
how well the SequenceL specifications match the engineers’ intuitive under-
standing of the requirements. Notably, one error and one ambiguity in the
specification were discovered in implementing the specification in Sequen-
ceL. These were not discovered in the process of implementing the specifi-
cation in C. Both of these involved assigning values to variables that were
later reassigned. The lack of assignment of variables in SequenceL was shown
to be an important strength of the language allowing our effort to avoid er-
rors not seen in the procedural approach. Subsequent work involving aerody-
namic calculations has pointed out the strengths obtained by the NTD and free
variables.

A weakness in the SequenceL approach in this context has to do with the
way in which GN&C engineers have traditionally approached requirements.
They typically view requirements from a procedural, event-driven point of view,
whereas SequenceL provides a declarative, functional paradigm. We are now
working on ways in which to ease the transition from their traditional approach
to the approach we have taken as a result of the SequenceL language. NASA
engineers see value in our approach since the SequenceL view pointed out
issues and additional decisions that needed to be made as they developed the
requirements and their prototype. We will soon begin developing a prototype
of a larger portion of the same control system, which is to play a role in the
acceptance testing of the flight software developed by CEV contractors. Our
SequenceL codes are automatically compiled to C++ code, which runs in the
same NASA simulation environment used to perform trade studies on GN&C
systems.

Although runtime performance of the SequenceL-generated codes were
slower than the GN&C hand-coded prototype, from an academic viewpoint, we
were pleased with our results. Our generated codes had fewer decision points,
but ran on average 1.5 to 2 times the time that the GN&C C prototype took.
Figure 4 shows the average execution time for a set of 960 unit tests that per-
formed a semi-black box test of FRC functionality.

The FRC has multiple output values. The NASA implementation computes
all of the output values at once. SequenceL has a “compute on demand” char-
acteristic. Since there is no assignment statement in SequenceL the burden
of storing intermediate values to avoid redundant computation falls on the
SequenceL compiler. Our current compiler is a prototype, which does not
implement this optimization and furthermore, does not detect other common
subexpressions or units of code. Some of the common units of code are many
lines in length and therefore, are not detected by an optimizing C or C++
compiler. Future improvements to the compiler should substantially improve
the performance of our codes and drastically reduce a lot of redundant code
execution.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:29

Fig. 4. Relative execution times.

To obtain a rough estimate of the impact of these planned optimizations we
ran some tests that reduced the redundant code execution. We estimate that
if the translator produced code that saved necessary intermediate values, the
performance of our generated codes will be between the Average SequenceL
(0.56) and the Average Simplified SequenceL (0.11), and be roughly equal to
the hand written C.

4.2 Problems with SequenceL

SequenceL has a somewhat minimalist approach when it comes to the static
checking of function arguments. This can and does lead to problems in the in-
terpreted versions of SequenceL. For example, consider the following function:

m(vector x,y scalar z) ::= x * y / z.

Suppose the intended use of the function required a scalar value for z.

SequenceL would still compute a result if z was provided a vector:

Initial = m([1, 2, 3], [2, 3, 4], [1, 2, 3])

CSP = [m(1, 2, 1), m(2, 3, 2), m(3, 4, 3)]

CSP = [1*2/1, 2*3/2, 3*4/3]

CSP = [2/1, 6/2, 12/3]

CSP = [2, 3, 4]

Final = [2, 3, 4].

This unintended and possibly incorrect use of the function produces a result of
the same form produced by a correct use of the function:

Initial = m([1, 2, 3], [2, 3, 4], 2)

CSP = [1, 2, 3]*[2, 3, 4]/2

CSP = [1*2, 2*3, 3*4]/2

CSP = [2, 6, 12]/2

CSP = [2/2, 6/2, 12/2]

Final = [1, 3, 6].

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:30 • D. E. Cooke et al.

Thus, an incorrect use of a function might go unnoticed by a user. In other lan-
guages the programmer could produce safeguards to prevent errors through
stronger approaches to type checking. We are addressing this issue in our
plans to produce an Intelligent Development Environment where program-
mers would execute their functions with “intended uses” that would then infer
stronger type checking rules for SequenceL codes. In the code for function m
above, either execution is a valid intended use that could serve as the basis for
type checking.

5. SYNTAX AND SEMANTICS

In this section, we present the syntax and semantics of SequenceL—that is, a
complete, rigorous description of the language and its meaning.

5.1 Syntax of SequenceL

Let U be a fixed set of user defined function symbols. The syntax of SequenceL
over U is as follows (in practice, U is taken to be the set of symbols appearing
as principal operators on the left-hand side of function definitions appearing in
the program, together with the built-in operators):

constants:

Scalar ::= true | false | Numeral
Const ::= nil | Scalar

terms:

Prefix ::= abs | sum | transpose| Term | length
Prefix2 ::= ~
Infix ::= + | -| * | / | // | ^ | % | < | > | <= | >= | =

|‘|’ | & | , | when | else | ++ | .. | ,
Term ::= Const | Prefix(Term)| Prefix2 Term

| Term Infix Term | [Term] | U(Term) | Identifier

function signatures:

Simpleorder ::= s | ? | [Simpleorder]
Order ::= nil | Simpleorder | Simpleorder ∗ Order
Signature(u) ::= u: Order -> Order, where u ∈ U

function definitions:

Arglist ::= ∈ | Identifier | Identifier Argtail
Argtail ::= ,Identifier | ,Identifier Argtail
Definition(u) ::= u(Arglist) ::= Term, where u ∈ U

Function ::= Signature(u) Definition(u), where u ∈ U

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:31

programs:

Program ::= Function | Program Function

precedence classes (highest to lowest):

1. ~
2. ^
3. * / %
4. + -

5. > < <= >= = =/
6. &
7. |
8. ++
9. when
10. else
11. ..
12. ,

association,
Infix operators within a precedence class associate from left to right, except

else and ‘,’ which associate right to left.

grammar
The above rules for precedence and association give a unique parse for any
program formed in accordance with the BNF rules. Function signatures like
the ones shown in the grammar are derived from type information for function
parameters by a simple pre-processing macro.

5.2 Syntax of Meta-SequenceL (MS)

The semantics of SequenceL are given as a formal theory of first order logic,
which we will call MS (for meta-SequenceL). The language of MS contains the
logical symbols ∀ ∃ ¬ → ∨∧ () with their usual syntax, along with countably
infinitely many variables a, b, c, d a1, a2, a3, MS contains the following
binary infix predicate symbols

∈ ≤
= �
< >

MS contains the following infix function symbols

+ /

− %
∗ ∧

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:32 • D. E. Cooke et al.

and the following prefix function symbols and constants (numbers following
slashes denote arities)

−/1 (unary minus)
R/0 (The real numbers)
Seq/0 (The set of all sequences)
floor/1 (greatest integer function)
true/0
false/0
undef/0
max/1 (maximum element of a list of numbers)
domain/1 (domain of a mapping)
g/5 (helper function for list processing, see below)
h/3 (helper function for list processing, see below)

range/1 (range of a mapping)
openlist/0 (atomic constant for list processing)
tmap/3 (helper for normalize-transpose, see below)
s/2 (denotation of a term with respect to a program)
s/1 (denotation of a term using only built-in operators)
∅/0 (the empty set)
order/1 (level of nesting of a data structure)
dist/2 (distribute, aka map, an operator to a list of values)
trans/1 (transpose a list of lists)

norm/3 (normalization, see below)
numeral/1 (maps numbers to their numeral representation not

terminating in 9’s)

In addition, any SequenceL term enclosed in chevrons (〈〈.〉〉), with 0 or more
subterms replaced by MS variables, is a term of MS, and any base-10 numeral
not terminating in 9’s is a constant symbol of MS. For example, 0.5 is a constant
symbol but the numeral 0.499999 . . ., which has the same value as 0.5, is not.
This is to give real numbers unique representations.

5.3 Signatures of Built-In Functions

The signatures discussed in this section are considered to be implicitly part of
every program. The signatures of the built-in functions are as follows:

Every built-in prefix operator p has the signature

p : s− > s

++ is the infix append operator; it operates on sequences and returns a se-
quence. “,” operates on arbitrary terms and returns a sequence. “=” operates
on arbitrary arguments and returns a scalar. Hence:

++ : [?]*[?] -> [?]
, : ?*? -> [?]
= : ?*?->s.
when : ?*s -> ?

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:33

Every other infix operator ioperates on a pair of scalars and returns a scalar,
and so has the signature

i : s∗s− > s.

Every sequence c is considered an operator that maps i to its ith member,
and so carries the signature

c : s− >?.

5.4 Interpretation of the Predicate and Function Symbols of MS

The symbols of MS are interpreted in a semantic domain U, which is taken to
be the smallest set containing the real numbers, the atoms true, false, undef,
and openlist, and closed under the operations of Zermelo–Frankle set theory
iterated through finite ordinals. Tuples are realized as sets in the usual way,
as in Cohen [1966]. Functions are allowed to be partial, though some are made
total by extending them to map to the atom undef where they are intuitively
undefined.

The symbols ∈ and = are given their usual interpretations on sets and atoms,
and the other infix predicates and functions are given their usual interpreta-
tions in the real numbers.

The prefix function symbols are interpreted as follows:
R denotes the real numbers

− denotes unary negation

floor(x) denotes the greatest integer not exceeding the real number x, or
denotes undef if x is not a real number.

true, false, undef, and openlist denote their corresponding atoms.

max(x) denotes the maximum element of the set x of numbers if it exists, and
undef otherwise

domain(f) and range(f) denote the domain and range, respectively of the
mapping f

∅ denotes the empty set

order(x) = 0 if x is an atom or number, or n if x is a mapping from a finite set
of integers to a set of items whose maximum order is n − 1.

numeral(x) is the base-10 decimal representation of the real number x not
terminating in 9’s. If x is not a real number, numeral(x) is undef.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:34 • D. E. Cooke et al.

The function g(u,v,n,m,i) gives the ith element of the concatenation of two lists
u and v, of length n and m respectively. Formally,

g (u, v, n, m, i) = λi.u(i), 1 ≤ i ≤ n

v(i − n), n < i ≤ n + m

The function h is used as a helper function to translate indices of lists:

h(m, n, i) = i − m + 1, m < i < n

undef, otherwise

denotation(�s�) = {0}
denotation(�?�) = {0, 1, 2 · · · }
denotation(�[x]�) = {t + 1 : t ∈ denotation(x)}, where x is any simple type.

denotation(�a1 ∗ · · · ∗ an�) is the vector < t1, . . . , tn >, where ti is the

denotation of ai.

denotation(�nil�) = ∅

tmap(i, f, P) is the set of argument types admissible in the ith argument of
function f in program P :

tmap(i, f , P) = {k : � f : x∗
1 · · ·∗ xn− > y� ∈ P ∧ k ∈ denotation(xi)}.

extend(t, k) returns k copies of t in a sequence. That is, extend(t, k) denotes the
function mapping i to t for i = 1 . . k.
Suppose t maps i to ai for i = 1 . . n, k is a positive integer, and S is a subset of
{1, . . , n}. Then norm(t, k, S) maps i to a′

i for i=1 . . n, where

a′
i = ai, i ∈ S,

extend(ai, k) otherwise

trans(t) = λi. λj. t(j)(i) where order(t) >1,

dist(p, T) = λi.p(t(i))

If t(x1, . . . xn) is a SequenceL term with 0 or more subterms replaced by the MS
variables x1, . . . xn, then �t(x1, . . . xn)� denotes the function which maps the n-
tuple (t1. . tn) of SequenceL terms to the SequenceL term obtained by replacing
xi with (ti) respectively.

The symbol s is the denotation function from SequenceL terms to their de-
notations in the semantics domain. In cases involving only built-in operators,
the semantics are independent of any program and s is a function of a single
parameter consisting of a SequenceL expression. In general, the denotation
of an expression depends on a program containing definitions of user-defined
functions, and so s is binary. Intuitively, if e is a SequenceL expression and Pa
SequenceL program, then s(P,�e�) denotes the value of the expression e with
respect to the program P—that is, the evaluation of e obtained using built-in
operators along with function definitions appearing in P . This interpretation
is described formally by the axioms in Section 5.6.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:35

5.5 Axioms of MS for Symbols other than s

If c1, . . cn+1 are constant terms of MS, f is an n-ary prefix function symbol
of MS other than s, and f (c1, . . cn) = cn+1 is true in the interpretation of
Section 5.4, then f (c1, . ., cn) = cn+1 is an axiom of MS. If c1, c2, c3 are con-
stant terms of MS and Op is an infix function symbol of MS where c1Op c2 = c3

is true in the interpretation then c1Op c2 = c3 is an axiom of MS. If c1, c2 are
constant terms of MS and Op is an infix predicate symbol of MS where c1 Op
c2 is true in the in the interpretation, then c1 Op c2 is an axiom of MS. This
covers trivial axioms like 1 + 2 = 3, 7 < 8, etc. The usual symmetry, transitivity,
and substitution axioms for equality are also axioms of MS.

5.6 Axioms for s

This section is the heart of the matter—we give the axioms for the interpretation
function s from SequenceL terms to the semantic domain. The axioms for built-
in operators, Axioms 1–14, are written using the unary semantic function s/1.
These are extended to cover semantics with respect to a given program by Axiom
15. Finally, the axiom for user-defined programs appears as Axiom 16.

1. arithmetic operators
(∀a∀b)(s�a� ∈ R ∧ s�b� ∈ R → s�a + b� = s�a� + s�b�)

Similarly for −, *, /, %, floor

2. equality
(∀a∀b) (s�a� = s�b� → s�a = b� = true)

(∀a∀b) (s�a� �= s�b� → s(s�a = b�) = false)

3. arithmetic comparison
(∀a∀b)(s�a� ∈ R ∧ s�b� ∈ R ∧ s�a� < s�b� → s�a < b� = true)

(∀a∀b)(s�a�∈ R ∧ s�b�∈ R ∧ ¬(s�a�< s�b�) → s�a < b� = false)

Similarly for >, <=, >=, <>

4. boolean operations
(∀a∀b)(s�a� = true ∧ s�b� = true → s�a and b� = true)

(∀a∀b)(s�a� = false ∨ s�b� = false → s�a and b� = false)

Similarly for or and not

5. when
(∀a∀b)(s�b� = true → s�a when b� = s�a�)

(∀a∀b)(s�b� = false → s�a when b� = undef)

6. else
(∀a∀b)(s�a� = undef → s�a else b� = s�b�)

(∀a∀b)(s�a� �= undef → s�a else b� = s�a�)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:36 • D. E. Cooke et al.

7. append

(∀a∀b)(s�a� ∈ Seq ∧ s�b� ∈ Seq ∧ max(domain(s�a�)) = n ∧
max(domain(s�b�)) = m →

s�a + +b� = λi.g (s�a�, s�b�, n, m, i))

where, recall,

g (u, v, n, m, i) = λi u(i), 1 ≤ i ≤ n

v(i − n), n < i ≤ n + m

(∀a∀b) (s�a� /∈ Seq ∨ s�b� /∈ Seq → s�a + +b� = undef)

8. transpose

(∀a)(s�a� ∈ Seq ∧ (∀x∀y)p(a, x, y) → s�transpose(a)� = λi. λj. s�a�(j)(i))

where p(a, x, y) denote the formula:
x ∈ range(s�a�) ∧ y ∈ range(s�a�) → x ∈ Seq ∧ y ∈ Seq ∧

max(domain(x)) = max(domain(y))

9. ‘. .’

(∀a) (∀b)(s�a� ∈ Num ∧ s�b� ∈ Num → s�a. .b� = λi. h(s�a�, s�b�, i)

Where, recall,
h(m, n, i) = i − m+1 , m < i < n

undef, otherwise

10. sequences
s�nil�= ∅
(∀a) (s�[a�= (openlist, s�a�))

(∀a) (∀b)(s�a, b� = (openlist, s�a++[b]�))

(∀a) (∀x)(s�a� = (openlist, x) → s�a]� = x)

11. function calls

� f (x1, . . , xn) := T� ∈ P →
(∀a1) · · · (∀an)((∀i)(i ≤ n → order(ci) ∈ tmapi(f , P)) →

sP� f (a1, . . , an)� = sP�T [x1\(a1), . . , xn\(an)]�)

12. sequence subscripting

(∀a) (∀b) (s�a� ∈ Seq ∧ s�b� ∈ domain(s�a�) → s�a(b)� = s�a�(s�b�))

(∀a) (∀b) (s�a� /∈ Seq ∨ ¬s�b� ∈ domain(s�a�) → s�a(b)� = undef))

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:37

13. For each program P and function f of arity n defined in P , we have the
normalize-transpose-distribute axiom:

(∀a1) · · · (∀an) (∀S) (∀k) (∀m) (
S ⊆ {1, . . . , n} ∧
(∀i)(i ∈ S → ex(s�ai�, i, f, P) = m) ∧
(∀i)(0 < i ≤ n ∧ i /∈ S → ex(s�ai�, i, f , P) < m) ∧
(∀i)(∀ j)(i ∈ S → max(domain(s�ai�) = k

→
sP� f (a1, . . , an)� = sP(dist(� f �, trans(norm((a1, . . , an), k, S))))

where ex(x ,i ,f ,P) is an abbreviation for order(x) - max(tmap(i, f , P)).

Note ex(x) is allowed to range over extended integers, that is, integers in-
cluding positive and negative infinity. In particular, max(tmap(i, f , P)) will
be infinite in case the signature of f in P has a ‘?’ in the ith argument.
The antecedent of the main implication essentially says that S is the set of
indices for which the expression (� f (a1, . . , an)� is maximally overtyped, and
that the maximally overtyped sequences are all of the same length k. The con-
sequent says that we perform normalize-transpose-distribute, as explained
informally in Section 2.

14. Constants
s(�true�) = true
s(�false�) = false

(∀a)(a ∈ R → s�a� = numeral(a))

15. For every SequenceL program P and every SequenceL expression e con-
taining only built-in operators, the following is an axiom.

s(�e�) = s(P, �e�)

16. User-defined functions
Suppose P is a SequenceL program containing a function definition

f (x1, . . . , xn) = exp(x1, . . . , xn)

where f is an identifier, x1, . . . , xn are SequenceL variables, and
exp(x1, . . . , xn) is a SequenceL expression containing no variables except
possibly x1, . . . , xn. Then

s(P, � f (x1, . . . , xn)�) = s(P, �exp(x1, . . . , xn)�)

is an axiom of MS.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:38 • D. E. Cooke et al.

5.7 Specification of Interpreters

The following definitions give the specification with respect to which SequenceL
interpreters are verified:

Definition (Soundness of an Interpreter). A SequenceL interpreter I is said to
be sound if whenever I returns value v for the term t with respect to program
P, s(P , �t�) = v is a theorem of MS.

Definition (Completeness of an Interpreter). A SequenceL interpreter I is
said to be complete if whenever s(P ,�t�) = v is a theorem of MS, I returns the
value vfor the term t with respect to program P.

Since MS is a theory of standard predicate calculus, evaluation of most con-
structs is lazy in principal. However, keeping with the philosophy described in
Section 1, SequenceL makes no commitment to how interpreters and compilers
actually perform computations, provided they are sound. Similarly, we make no
general commitments to the internal representation of sequences, for example,
as lists, arrays, dynamic arrays, etc. Different compilers may work differently;
the same compiler may work differently for different sequences appearing in
the same program, or even the same function definition.

We have implemented an interpreter, which we believe is sound and com-
plete. Verification of the interpretation is a direction for further work.

5.8 SequenceL—Is Turing Complete

We show the Turing Completeness of SequenceL through an implementation
of the Universal Register Machine (URM). A URM consists of an ordered pair
(P , R) where P is a program (defined below) and R is an ordered multiset of
positive integers known as the registers of the machine. The URM language is
known to be Turing Complete.

A URM program can be any one of the following strings enclosed in chevrons:

—�an�, where n is an integer. This program increments the nth register.
—�sn�, where n is an integer. This program decrements the nth register.
—�x; y�, where y is a URM program and x is a URM program not of the form

x1; x2. This program executes xand then y .

—�(x)n�, where x is a URM program and n is a positive integer. This program
executes x while the nth register is nonzero.

—�halt�. This program halts the machine.

We will represent URMs in SequenceL by strings generated by the following
grammar:

URM ::= ((M), Regs)

M0 ::= (‘a’, integer)|
ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:39

(‘s’, integer)|
(‘lp’, integer, (M)) |
‘halt’

M ::= M0|M0, M

Regs ::= ((integer, integer) R1)

R1 ::= , (integer, integer) R1 | ∈

Note that the memory of the machine is represented by a sequence of ordered
pairs (n, v), where n is the register number and v is the value stored in that
register.

In reviewing the URM operations, we note that a and s are the only opera-
tions that directly modify the register store, and that they both reference the
register being incremented or decremented. Our organization of the registers is
a sequence of sequences, where the nested sequences provide a register number
followed by the current value contained in that register.

In SequenceL, the a and s operations are carried out in a single function
indecr, which operates on a single register. When presented with a sequence of
registers, the NTD isolates the individual registers to which individual indecr’s
are to apply. Furthermore, the NTD reconstructs the sequence of registers once
the various indecr activations complete.

indecr(scalar i, vector r, scalar op) ::=
[i, r(2) + 1] when i = r(1) & op = ‘a’

else
[i, r(2) - 1] when i = r(1) & op = ‘s’

else r

Axioms 1, 5, 6, and 13 of Section 5.6 can be used to show that the input (i, r, ‘a’),
where r is a sequence of register-value pairs, will return a version of r with the
ith register incremented and no other change. Similarly, the input (i, r, ‘s’) will
return a version of r with the ith register decremented and no other change.

The urm function handles the control operations: sequencing, looping, and
halting. It has two arguments—a sequence of instructions of unknown (?) nest-
ing comprising a machine and a sequence of registers.

urm(? m, matrix r) ::=
[urm(m([2,..., length(m)]),indecr(m(1,2),r,m(1,1))] (1)

when m(1,1) = ‘a’ or m(1,1) = ‘s’ else
[urm(m(1,3)++m ,r) when r(m(1,2),2) > 0] (2)

when m(1,1) = ‘lp’ else
[urm(m([2,...,length(m)]), r) when r(m(1,2),2) = 0] (3)

when m(1,1) = ‘lp’ else
r when m(1) = ‘halt’. (4)

We will now sketch the proof that the above function implements the semantic
operations of a URM. To do this, it must be shown that each of the bulleted
URM operations is faithfully carried out when its SequenceL counterpart is

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:40 • D. E. Cooke et al.

supplied as an argument to the urm function. This will show that SequenceL
is Turing complete.

Let m = (p, r) be a SequenceL representation of a URM program. From the
grammar rule for M, it follows that p is a sequence whose first member m1 is
an M0. If m is a singleton, it must then be of one of the following four forms:
(a, integer) , (s, integer), (lp, integer, (M)) or ‘halt’. The first two cases are handled
by clause (1) and indecr, but the machine fails to reach a halt state. Consider
the third case, say, m = (‘lp’, n, (P)) for some integer n and URM program
P . If the nth register of r is nonzero (i.e., if r contains (n, k) where k > 0),
Case (2) of the urm function will fire by Axioms 5 and 6 of the SequenceL
semantics, executing P on r and then calling the machine again, by Axioms 3,
4, 7, 12, and 13. If r contains (n, 0), or if r does not contain (n, k) for any k,
Case (3) is satisfied and the machine fails to halt. In the final case (4) where
p = ‘halt’, the machine halts and returns r as desired, by Axioms 2, 5, 6, and
12.

In case P is not a singleton, again its first member m1 must be of one of
the four forms (a, integer), (s, integer), (lp, integer, (M)) or halt. The last case
is just as above. In the first two cases Axioms 12 and 13, together with the
analysis of the indecr function, guarantee that the result of the machine is the
result of executing its first instruction in p, followed by executing the tail of
p,as desired. In the third case, where m1 is =(‘lp’, n, (B)) for some integer n
and URM program B, either r contains (n, k) where k > 0, r contains (n, 0), or
r does not contain (n, k) for any k. If r does not contain (n, k) for any k then
the machine terminates without reaching a halt state by Axioms 2, 3, 5, and 6.
If r contains (n, 0), then the tail of the machine is executed upon the existing
registers by axioms 5, 6, 12, and 13. Finally, if r contains (n, k) where k > 0,
Axioms 3, 5, 6 and 12 imply that the machine executes the body of the loop B
on r and calls P itself again. This completes the proof.

6. AUTOMATIC PARALLELISMS

High-performance computing can often achieve gains in performance by ex-
ploiting the power of multiple processors running in parallel. However, these
gains come at a price in terms of coding. Parallel algorithms typically require
the programmer to learn and use yet another set of programming constructs
for directing parallel execution, on top of those required for specifying se-
quential iteration, which lie again on top of those required to execute basic
operations. If this sounds hard, it is: it has been estimated that the cost of
developing parallel programs averages $800 per line of code [Pancake 1999].
We have seen how SequenceL can diminish the programmer’s burden by re-
ducing the need for sequential control structures [Cooke 1996, 1998]. Our re-
cent research suggests that the language can be even more effective in reduc-
ing the burden of orchestrating parallel execution [Cooke and Andersen 2000;
Cooke and Rushton 2005]. As control structures are derived through Sequen-
ceL’s normalize-transpose-distribute process, control and data parallelisms can
be automatically detected and implemented without explicit direction by the
programmer.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:41

In Cooke and Andersen [2000], different classes of parallel problems were
presented. Three classes were considered and the implicit parallelisms inherent
in the problem solutions were discovered by SequenceL. These three classes are
represented by:

(1) Matrix multiplication (in which parallel paths are independent),
(2) Gaussian Elimination (where there are dependencies among paths), and
(3) Quicksort (where the parallel paths cannot be predicted apriori, but unfold

dynamically).

The parallelisms discovered are now based on the NTD and the nested NTDs
when implementing the free variables. These simplifications have significantly
improved our ability to generate sequential codes for the NASA applications.
We are now exploring our ability to generate C/MPI codes. This remains current
and future work.

7. RELATED WORK

Work with goals similar to ours, include efforts on NESL [Blelloch 1996], and
Lämmel and Peyton-Jones’s papers on “boilerplate elimination” [Lämmel and
Peyton-Jones 2003, 2004].

NESL’s comprehension operation is similar to NTD, except that it is triggered
by an explicit syntax, whereas NTD is triggered by overtyped arguments. For
example, addition of vectors u and v would be accomplished in NESL by

{x + y : x in u; y in v}

and in SequenceL by

u + v.

At this level the NESL and SequenceL syntax are comparably readable, given
a small amount of practice in each. However, the NESL comprehension syntax
becomes cluttered if we must traverse deeper, nested data structures. Replacing
vectors u and v with matrices a and b, in NESL we write

{{x + y : x in u; y in v} : u in a; v in b}

compared with SequenceL’s

a + b.

The SequenceL is still readable at a glance. We claim the NESL is not. We do
not claim the NESL code is hard to read; a competent NESL programmer can
grasp it, with only a miniscule probability of error, by looking at the code for
just a few seconds. But this is typically true of any single line of code in any
language. Now make it one of ten thousand lines, and give the programmer the
distraction of having to understand the abstract algorithm he is implementing
on top of the code syntax, and these miniscule probabilities and few seconds are
liable to add up to real errors and real delays. This is why we claim readability
at a glance is important.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:42 • D. E. Cooke et al.

If the depth of the data structures is not known at compile time, as with
the instantiation algorithm of Section 2, NESL must deploy recursion, and the
code becomes comparable with the solution in LISP or Prolog. This is a direct
consequence of the explicitness of NESL’s syntax for distributing an operation
over a data structure: if the depth of the structure is unknown, the number of
nested levels of comprehension syntax is unknown as well.

Haskell’s comprehension structure has the same feature of explicitness, as
well as a static typing system, which can make generalized maps (such as the in-
stantiation algorithm) clumsy to write. Lämmel and Peyton-Jones [2003] attack
this problem by supplying syntax and semantics for an everywhere construct,
which simplifies the implementation of generalized maps. Instantiation can be
implemented in their framework as follows:

instantiate1:: var -> val -> token -> token
instantiate1 x v t | x=v = v otherwise =t

instantiate x v exp = everywhere
(mkT (instantiate1 exp))

This is a marked improvement over the plain Haskell solution given in
Section 2. The comparison with SequenceL on this problem is analogous to
NESL vs. SequenceL on vector addition: SequenceL uses one small function
instead of two. The extra function in the Haskell version is necessary to deploy
the everywhere(mkT (...)) control construct. This construct marks the deploy-
ment of a generalized mapping, which is implicit under SequenceL’s NTD.

In a separate paper, Lämmel and Peyton-Jones [2004] approach the problem
of generalized zips—that is, performing operations on respective leaf nodes of
trees with identical structure. For an example of a generalized zip operation,
we might add respective leaf nodes of the trees [1, [2, [3, 4]], [5]] and [10, [20,
[30, 40]], [50]], to obtain [11, [22, [33, 44]], [55]]. Using their gzipWithQ operator,
whose semantics are defined in Lämmel and Peyton-Jones [2004], this operation
may be written as

gzipWithQ + [1,[2,[3,4]],[5]] [10,[20,[30,40]],[50]].

Giving semantics for gzipWithQ is an interesting result, because Lämmel and
Peyton-Jones [2004, p. 1] point out that generalized zips “at first appear to be
somewhat tricky in our framework.”

In SequenceL, generalized zips come free of charge, just like generalized
maps. They are obtained automatically from the same semantics—the NTD.
We write:

[1,[2,[3,4]],[5]] + [10, [20, [30,40]], [50]]

and the recursive “zipping” operation occurs automatically, including the traver-
sal of the input data structures, and assembly of the output structure.

The semantics of Haskell’s everywhere and gzipWithQ operators are dif-
ficult largely because of Haskell’s static type system. However, static typ-
ing brings certain advantages in performance and error checking. Current
implementations of SequenceL use dynamic typing, but it is an open

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:43

question whether NTD can be used with static typing to achieve performance
gains (while possibly sacrificing some flexibility and convenience in coding). We
consider this a question for future research.

In Cooke [1996, 1998] and Cooke and Andersen [2000], we compare Sequen-
ceL to other languages including FP [Backus 1978] and APL [Iverson 1962].
Included here is a further comparison to APL, since the earlier papers pre-date
the NTD semantic.

7.1 APL and SequenceL

In this section, we show how many of the advanced operations in APL are
covered by the SequenceL NTD. First we show APL code to find prime numbers
up to some limit R:

PRIMES : (∼ R ∈ R◦. × R)/R ← 1 ↓ ιR.

Clearly, this definition requires very little in terms of keystrokes, but does
require some documentation to decipher. APL is right associative. The ιR
generates the numbers from 1 to the limit R. If R is 6, then the list is [1, 2, 3,
4, 5, 6]. The down-arrow on the list strips off the 1 and the left arrow assigns
the resulting vector to R. From there R◦ .× R generates the outer product of
the vector, which presents a matrix of the values obtained by multiplying the
vector times itself:

× 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

Next, using set membership an APL selection vector is constructed. Each ele-
ment of the selection vector indicates whether a corresponding number in R is
in the table. The vector produced in our example in which R is 6 is [0, 0, 1, 0, 1].
The selection vector is negated and then, using the /-operator, it is used to select
the corresponding elements from the original vector: [1, 1, 0, 1, 0] / [2, 3, 4, 5,
6] yields [2, 3, 5].

The equivalent functions in SequenceL are offered below. First, the outer
product is produced by:

tableI,J (vector N) ::= N(I) * N(J).

The free variables are obtained via nested NTDs. The NTDs occur because the
SequenceL function to ground free variables is defined on scalar values for
the indices and is provided with vectors of values from 1 to the length of N .

The remainder of the selection results from the comparison of each element of
N with the elements of the table:

primes2I (scalar N) ::=
[2,...,N](I) when and(and([2,...,N](I) =\=

table([2,...,N])).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:44 • D. E. Cooke et al.

This comparison (=\= for not equals) also involves two rounds of NTDs. A pair
of and-reduces indicate whether the item is in the table.

A more efficient and intuitive definition of primes in SequenceL is:

prime(scalar N) ::= N when and (0 =/= N mod [2,..., sqrt(N)]).

To obtain the prime numbers up to some limit, one would reference primes
with prime([2, . . ., Limit]) and again NTDs would be performed at the function
reference level.

In general, the equivalent of APLs selection vector can be easily accom-
plished in SequenceL, because NTDs are also performed on function bodies.
A when-clause expects single Boolean values in its conditional part. If multiple
values exist, NTDs are performed. Consider the definition of even numbers {x|
x ∈ N & x mod 2 = 0}. In SequenceL one obtains the evens with the function:

evens(vector N) ::= N when N mod 2 = 0.

The NTD does the heavy lifting as usual:

INITIAL = evens([1, 2, 3, 4, 5, 6])

CSP = [1, 2, 3, 4, 5, 6] when [1, 2, 3, 4, 5, 6] mod 2 = 0

CSP = [1, 2, 3, 4, 5, 6] when [1 mod 2, 2 mod 2, 3 mod 2, 4 mod 2,

5 mod 2, 6 mod 2] = 0

CSP = [1, 2, 3, 4, 5, 6] when [1, 0, 1, 0, 1, 0] = 0

CSP = [1, 2, 3, 4, 5, 6] when [1 = 0, 0 = 0, 1 = 0, 0 = 0, 1 = 0, 0 = 0]

CSP = [1, 2, 3, 4, 5, 6] when [false, true, false, true, false, true]

CSP = [1 when false, 2 when true, 3 when false, 4 when
true, 5 when false, 6 when true]

CSP = [empty, 2, empty, 4, empty, 6]

CSP = [2, 4, 6]

FINAL = [2, 4, 6].

Other operators from APL, including the transpose and rotates are easily de-
fined in SequenceL, and once again nested NTDs do the bulk of the work:

transposeI,J (matrix N) ::= N(J,I)
rotate rightI,J (matrix N) ::= reverse(N)(J,I).

8. SUMMARY AND CONCLUSIONS

The fundamental questions that have driven the research resulting in Sequen-
ceL include the following:

—Can we eliminate more of the procedural aspects of a problem solution?
—Can we develop a simple, but precise language that declares an intended

problem solution and have the language’s semantics “discover” the missing
procedural aspects of the solution?

—How simple can we make this semantic?

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:45

Very quickly, we settled on the goal of eliminating the iterative control struc-
tures that process nonscalar data structures. We did not completely eliminate
the need for recursion nor should we have. The key feature of the language
is its Consume-Simplify-Produce and the Normalize-Transpose-Distribute se-
mantics.

The NTD results in the discovery of the procedural aspects of many
concurrently or iteratively solved problems, particularly those involving the de-
composition of nonscalar data. Recursion comes free of cost, in that it requires no
formal or operational semantic definitions. In particular, the Consume-
Simplify-Produce semantics permit a function to “leave work” in the subsequent
tableau. Since the remaining work could be a reference to the function itself, all
that is required for the next execution of the function is to ground the variables
assuming no NTDs are needed first. Return addresses or traditional activa-
tion records are not kept or managed in any of the SequenceL interpreters.
Another point worth making is that assignment of values to variables, either
through input-output or through traditional assignment statements, is simply
not supported in SequenceL.

The beginning point of the SequenceL effort is discussed [Cooke and Gates
1991], which introduced the fact that iterative algorithms involve producing
scalars from nonscalars, scalars from scalars, nonscalars from scalars, and
nonscalars from nonscalars. Language constructs in SequenceL were formed
based upon these classes of problem solutions. A better but similar way to clas-
sify these algorithms was also presented, first in Meijer et al. [1991]. The idea
presented there involves catamorphisms (similar to nonscalars to ?), anamor-
phisms (similar to ? to nonscalars), and two additional morphisms one of which
involves compositions of the cata- and anamorphisms. These compositions can
be achieved using the SequenceL constructs.

The early work concerning the classes of iterative problem solutions, led
to a 15 year effort leading to SequenceL [Cooke 1996, 1998]. In addition to
automatically deriving many iterative and recursive algorithms to traverse
data structures, we have also investigated the use of SequenceL to automati-
cally discover and evaluate parallelizable subtasks [Cooke and Andersen 2000].
In many ways, the independent investigation resulting in SequenceL has un-
covered many of the same opportunities for parallelisms as they are discov-
ered in other functional language approaches [Sipelstein and Blelloch 1991;
Blelloch 1996; Banatre and Le Metayer 1993; Loidl and Trinder 2006; Nikhil
and Arvind 2001]. SequenceL, however, benefits further from the fact that the
CSP-NTD semantics discovers many inherent parallelisms when functions and
operators are applied to nonscalar data structures. Our recent results and ex-
periments lead us to believe that the SequenceL approach should allow scien-
tists and engineers to express problem solutions that have greater appeal to
their intuition.

Recent efforts to apply SequenceL to NASA GN&C systems, led to the in-
troduction of free variables, and have also led us to construct SequenceL inter-
preters strictly in terms of the CSP-NTD. These recent results not only show
the scalability of SequenceL and the CSP-NTD, but are also providing clear
paths to code generation. In the near-term our goal is to automatically compile

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:46 • D. E. Cooke et al.

readable and well performing C code from SequenceL definitions. From these
iterative codes we are also planning to investigate the generation of C-MPI
codes to run in conventional parallel computing environments.

APPENDIX

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:47

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

9:48 • D. E. Cooke et al.

ACKNOWLEDGMENTS

We are extremely grateful to the reviewers and editorial staff of this journal.
Their efforts made the final paper much better than it would have been had
we been left to our own device. Many thanks for the contributions of former
students, particularly to the amazing Changming Ma. Comments and guidance

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

Normalize, Transpose, and Distribute • 9:49

from friends and colleagues Ken Ford, Michael Gelfond, and William Marcy
contributed much to our efforts. Most of all we appreciate the support and
efforts of our NASA collaborators: Howard Hu, Ryan Proud, and Jeremy Hart.

REFERENCES

BACKUS, J. 1978. Can programming be liberated from the von neumann style? Comm. ACM 21.
8 (Aug.), 613–641.

BANATRE, J. AND LE METAYER, D. 1993. Programming by multiset transformation. Comm. ACM
36. 1, (Jan.), 98–111.

BISHOP, J. 1990. The effect of data abstraction on loop programming techniques. IEEE Trans.
Soft. Eng. 16, 4 (Apr.), 389–402.

BLELLOCH, G. 1996. Programming parallel algorithms. Comm. ACM 39, 3 (Mar.) 98–111.
COHEN, P. 1966. Set Theory and the Continuum Hypothesis. WH Benjamin, New York.
COOKE, D. 1996. An introduction to SEQUENCEL: A language to experiment with nonscalar

constructs. Softw. Pract. Exper. 26, 11 (Nov.), 1205–1246.
COOKE, D. 1998. SequenceL provides a different way to view programming. Comp. Lang. 24,

1–32.
COOKE, D. AND ANDERSEN, P. 2000. Automatic parallel control structures in SequenceL. Softw.

Prac. Expe. 30, 14 (Nov.), 1541–1570.
COOKE, D., BARRY, M., LOWRY, M., AND GREEN, C. 2006. NASA’s exploration agenda and capability

engineering. Computer 39, 1 (Jan.), 63–73.
COOKE, D. AND GATES, A. 1991. On the development of a method to synthesize programs from

requirement specifications. Int. J. Softw. Eng. Knowl. Eng. 1, 1 (Mar.), 21–38.
COOKE, D., GELFOND, M., RUSHTON, N., AND HU, H. 2005. Application of model-based technology

systems for autonomous systems. In American Institute of Aeronautics and Astronautics In-
fotech@Aerospace Conference. AIAA Press, Reston, VA. 8 pages.

COOKE, D. AND RUSHTON, N. 2005. Iterative and parallel algorithm design from high level language
traces. Lecture Notes in Computer Science, vol. 3516. Springer-Verlag, New York. 891–894.

GELFOND, M. AND LIFSCHITZ, V. 1998. The stable model semantics for logic programming. In Pro-
ceedings of the 5th International Conference on Logic Programming. Seattle, WA, Aug. MIT Press,
Cambridge, MA, 1070–1080.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Comp. 9, 365–385.

IVERSON, K. 1962. A Programming Language. Wiley, New York.
LÄMMEL, R. AND PEYTON-JONES, S. 2003. Scrap your boilerplate: A practical design patterns for

generic programming. ACM SIGPLAN Notices 38, 3, 26–37.
LÄMMEL, R. AND PEYTON-JONES, S. 2004. Scrap more boilerplate: Reflection, zips, and generalised

cates. ACM SIGPLAN Notices 39, 9, 244–255.
LIN, F. AND ZHAO, Y. 2004. Assat: Computing answer sets of a logic program by sat solvers.

Artificial Intelligence 157, 1–2 (Aug.), 115–137.
LOIDL, H. AND TRINDER, P. 2006. A Gentle introduction to GPH. http://www.macs.hw.ac.uk/

∼dsg/gph/docs/Gentle-GPH/gph-gentle-intro.html.
MEIJER, E. AND FOKKINGA, M., AND PATERSON, R. 1991. Functional programming with bananas,

lenses, envelopes and barbed wire. Lecture Notes in Computer Science, vol. 523. Springer-Verlag,
New York. 124–144.

MILLS, H. AND LINGER, R. 1986. Data structured programming: Programming without arrays and
pointers. IEEE Trans. Soft. Eng. 12, 2 (Feb.), 192–197.

NIKHIL, R. AND ARVIND. 2001. Implicit Parallel Programming in pH. Morgan Kaufmann,
San Francisco.

PANCAKE, C. 1999. Those who live by the flop may die by the flop. Keynote Address, 41st Inter-
national Cray User Group Conference, Minneapolis, MN.

SIPELSTEIN, J. AND BLELLOCH, G. E. 1991. Collection-oriented languages. Proc. IEEE, 79, 4.

Received July 2005; revised November 2006; accepted June 2007

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 9, Pub. date: March 2008.

