
University of São Paulo
Institute of Mathematics and Statistics

Bachelor in Computer Science

Rafael Mota Gregorut

Synthesising formal properties

from statechart test cases

São Paulo
December 2015

Synthesising formal properties
from statechart test cases

Final monograph for the course
MAC0499 – Final Graduation Project.

Supervisor: Ana Cristina Vieira de Melo

São Paulo
December 2015

Abstract

This project explores the theme of software quality through the perspectives of test-
ing and formal methods. Testing is a crucial activity in the software development cycle to
provide the reliability of systems. In order to validate the system requirements, the test
cases are created based on the requirements contained in the specification. Also concerned
with systems quality assurance, formal methods provides several techniques and tools to be
used during specification, design and verification phases. Statecharts are a particular kind
of formal specification based on finite state machines mostly used to model reactive system
behaviours. Testing and formal methods can be seen as complementary approaches to assure
software quality. Testing can show the presence of errors, while formal verification, such as
model checking, can prove their absence. These two techniques are very costly in software
development and each one requires that developers are specially trained to each activity. For
the software formal verification, one needs to define properties in a certain specification lan-
guage, which requires strong mathematical background. On the other hand, generating test
case from specifications is time consuming and very error prone if it is manually executed.
To facilitate the creation of test cases and the specification of formal properties by devel-
opers, two techniques were studied and implemented. First, we automatically generate test
cases for a given Statechart model. Second, we automatically synthesise properties based on
the test cases previously obtained. This monograph was prepared for the course MAC0499
- Final Graduation Project, at the Institute of Mathematics and Statistics of the University
of São Paulo.
Keywords: Statecharts, Software testing, Test cases, Test case mining, Formal properties

i

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 2
1.3 Organization . 2

2 Concepts 3
2.1 Statecharts and Automata . 3

2.1.1 Nondeterministic finite automata . 3
2.1.2 Statechart models . 4
2.1.3 A statechart and its corresponding automaton 6

2.2 Software testing . 8
2.2.1 Testing goals . 8
2.2.2 The process of testing . 9
2.2.3 Functional and Structural tests . 10

2.3 Test cases . 11
2.3.1 Desiging test cases . 11
2.3.2 Automatic generation of test cases 14

2.4 Model checking . 16
2.4.1 Property definition . 17
2.4.2 Specification patterns . 18

2.5 Sequential pattern mining . 19
2.5.1 An example: Web usage mining . 19
2.5.2 Sequential pattern mining algorithms 20

2.6 Working example . 21
2.6.1 Requirement 1: Change current mobile plan 21
2.6.2 Requirement 2: Process orders received in the portal 21
2.6.3 Requirement 3: Process orders received by file 21
2.6.4 Requirement 4: Update stock levels of products 22

3 Test case generation for statecharts 23
3.1 Test cases for simple statecharts . 23
3.2 Test cases for complex statecharts: hierarchy 27

iii

iv CONTENTS

3.3 Test cases for complex statecharts: orthogonality 32

4 Formal property extraction from test cases 37
4.1 Test case mining . 37

4.1.1 The SPMF framework . 38
4.1.2 Test case mining example . 38

4.2 Generation of properties from most frequent test case patterns 38
4.2.1 Response property specification . 38
4.2.2 Existence property specification . 41

4.3 Generation of properties for specific events 41

5 Tools demonstration 45
5.1 Test case generation tool . 46
5.2 Formal property specification tool . 46

6 Conclusion 53

7 Subjective chapter 55
7.1 Learning . 55
7.2 Challenges . 55
7.3 Courses . 55

A Linear Temporal Logic (LTL) 57
A.1 Syntax . 57
A.2 Semantics . 57

Bibliography 59

Chapter 1

Introduction

Testing is one of the most used techniques to assure the quality of systems in software
engineering and it typically consumes from 40% up to 50% of the software development
effort [18]. As presented in [2], the goal of testing depends on the maturity level of the
organization that is executing the tests: from debugging code, at a more inexperienced level,
to a mental discipline that helps all professionals in the software industry to increase quality,
at a higher level. In the literature, the testing techniques are categorized in structural (white-
box) and functional (black-box), tests. The first category considers the code as the source
for test cases and contributes mainly to code maintenance. Functional tests make usage of
the specified requirements in order to create the test cases and are useful to validate the
observed behaviour of the system against what was expected in the requirements.

Thus, it is notable that the requirement specification is an important source of material
not only for the development of the code, but for testing as well. Statecharts are a type of
formal software specification based on finite states machines (FSM) specially used in complex
systems modeling, such as reactive systems[15]. They contain states, transitions and input
events similar to an automaton, but offer resources to model hierarchy of states, concurrency
and communication between process.

Formal methods are a set of techniques and tools which supports not only rigorous
specification, but also design and verification of computer systems [11]. These techniques
are mostly used in critical components of safety critical systems to assure the quality of the
software. But they can also be applied to requirements and high-level designs where most
of the details are abstracted away and to the verification process as well, using as much
automation as possible[24].

Formal methods and testing can be considered complementary techniques in software
engineering, both with the target to reduce the number of errors and increase the reliability
of the system[6]. Even though testing is the activity that is most commonly used in industry
to assure the software quality, it cannot guarantee the absence of bugs in the code, as stated
by Dijkstra [7]. Formal approaches, such as formal verification, on the other hand, can
prove the correctness of the code regarding a specification. The model checking technique,
for instance, proves that certain user defined properties are true for a given model of the
system.

This project proposes a study on the set of test cases generated from specifications in
order to guide formal properties definitions. First, a technique to automatically generate
test cases from statechart specifications is presented. Then, all test cases are observed and a
technique to synthesise formal properties (written in linear temporal logic[16, 30]) from the
acquired test cases is proposed.

1

2 INTRODUCTION 1.3

1.1 Motivation
In the model driven development, test cases to validate systems can be generated from

a model that represents how the system must behave. For instance, if the services to be
provided by a system are described in Statecharts models, one can automatically generate
test cases for programs from such models. However, properties to be proved in a system
are not synthesized from such models. In general, developers take the system specification
and observe its restrictions to then define which properties should be satisfied. However,
creating such properties requires a strong mathematical background and translating system
requirements to formal properties is not a trivial process[13].

1.2 Goals
• Implement a technique to automatically generate test cases based on statechart spec-

ifications

• Analyse a set of test cases and extract the events, and sequences of events, that are
found in such whole set

• Using the previous information, implement a technique to synthesize properties that
can be used in formal verification

• Develop tools to help in these tasks

1.3 Organization
In chapter 2, we present the concepts studied to make this project possible. In chapter

3, we describe a technique implemented to automatically generate test cases from statechart
models. In chapter 4, we propose a technique to synthesise formal properties based on the
previously obtained test cases. Chapter 5 presents a demonstration of the implemented tools.
Our conclusions regarding this project can be found in chapter 6. In chapter 7, subjective
aspects of the project that were relevant to the author are presented. Finally, the syntax of
linear temporal logic, used in the generated formal properties, can be found in apedix A.

Chapter 2

Concepts

2.1 Statecharts and Automata
A software specification is a reference document which contains the requirements the

program should satisfy. It can also be understood as a model of how the system should
behave. A specification can be developed with natural language, with use cases for example,
or using formal software engineering techniques.

Statechats are a type of formal software specification based on finite states machines
(FSM) specially used in complex systems modelling, such as reactive systems, and were de-
fined in [15]. Similar to an automaton, a statechart has sets of states, transitions and input
events that cause change of state. However, a statechart has additional features: orthogonal-
ity, hierarchy, broadcasting, guard conditions and history. Due to these additional features,
statecharts have been used in industry to specify mission critical systems.

2.1.1 Nondeterministic finite automata

To understand how statecharts can be used to specify systems, we must first have the
basic automata background.

Definition[17]: A nondeterministic finite automaton is a quintupleM = (K,Σ,∆, s, F),
where:

• K is the set of states

• Σ is the input alphabet

• ∆ is the transition relation, a subset of K × (Σ ∪ e)×K, where e is the empty string

• s ∈ K is the initial state

• F ⊆ K is the set of final states

Each triple (q, a, p) ∈ ∆ is a transition of M . If M is currently in state q and the next
input is a, then M may follow any transition of the form (q, a, p) from state q to state p.
In nondeterministic finite automaton, it also possible to have transitions labelled with the
empty string e. In this case, when such transition is taken, no input is read and the transition
still occurs. For example, if from state q there is a transition (q, e, p), we can be redirected
to state p even though no input was received.

A configuration of M is an element of K∗ and the relation ` (yields one step) between
two configurations is defined as: (q, w) ` (q′, w′) ⇔ there is a u ∈ Σ ∪ e such that w = uw′

and (q, u, q′) ∈ ∆.

3

4 CONCEPTS 2.1

For further information and formalisms regarding finite automata the reader is referred
to [17].

A nondeterministic finite automaton example

Find below an example of a nondeterministic finite automaton extracted from [17].

• K = {q0, q1, q2} (the set of states)

• Σ = {a, b} (the alphabet used)

• ∆ = {(q0, a, q1), (q1, b, q2), (q2, a, q0), (q2, e, q0)} (the transitions)

• s = q0 (the initial state)

• F = {q0} (the set of final states)

The corresponding graphical representation is given in Figure 2.1.

Figure 2.1: A nondeterministic finite automaton that accpets language L = (ab ∪ aba)∗.

Consider the case in which we have the automaton represented in Figure 2.1 and the
input ab. We start at state q0, the initial state, and take as input the symbol a. Since there
is a transition (q0, a, q1) we are redirected to state q1. Next, we receive as input the symbol
b and analogously, we are redirected to state q2. At this point, there is no input left to
read, but since there is a transition (q2, e, q0) we are still able to proceed to state q0 without
receiving any input. Hence, we finished the input processing in q0 and, because q0 ∈ F , we
conclude that ab is a valid input for the described automaton.

2.1.2 Statechart models

A statechart model can be considered as an extension of finite state machines. The
syntax of statechart is defined over the set of states, transitions, events, actions, conditions,
expressions and labels [15]. In short terms:

• Transitions are the relations between states

• Events are the input that might cause a transition to happen

• Actions are generally triggered when a transition occurs

2.1 STATECHARTS AND AUTOMATA 5

• Conditions are boolean verifications added to a transition in order to restrict the
occurrence of that transition

• Expressions are composed of variables and algebraic operations over them

• A label is a pair made of an event and an action that is used to name a transition

Furthermore, it is worth to note that statechart models have additional features, de-
scribed afterwards in this chapter, that do not appear in an ordinary finite state machine.
These extra resources are useful, for instance, to model concurrency and different abstraction
levels in a more practical way.

Figure 2.2 displays a statechart model for a clock [22]. This clock contains two buttons,
one triggers the event mode and the other the event set. All configuration in the clock should
be done through these two events. Time can be displayed in hours or in minutes, as the user
wishes. The settings should allow the user to adjust the value of the hours and the value of
the minutes. Besides, the clock should provide an alarm feature with the following behaviour:
if the alarm is activated, then it will ring for five seconds every minute. The alarm activation
and deactivation should be configurable too.

Figure 2.2: Statechart that models a clock obtained from [22]

Orthogonality

More than one state can be active at the same time in a statechart, this is called orthog-
onality. It can be used to model concurrent and parallel situations. The set of active states
in a certain moment is called configuration. In Figure 2.2, we have parallel regions inside the
state Clock (r1 and r2 are defined). This means that states Display and AlarmOff can be
active simultaneously. Once we are in the Clock state, we are redirected to its subregions
r1 and r2. In r1, we proceed to state Display and, in r2, we go to state AlarmOff . At
this moment, both states Display and AlarmOff are active. If the set event occurs, we are
redirected to state Settings (in r1), but AlarmOff remains active at the same time.

6 CONCEPTS 2.1

Hierarchy

It is possible that a state contains other states, called substates, and internal transitions,
increasing the abstraction and encapsulation level of the model. In Figure 2.2, we have
that Display, Settings, AlarmOff,AlarmOn and AlarmRinging are substates of Clock.
Display also contains the substates: DisplayHour,DisplayMinutes and hist. And the
states SetHour, SetMinutes and ActivateAlarm are inside state Settings. We can have
as many nested states as required, giving distinct abstraction views of the system.

Guard conditions

In a transition, a guard condition is always verified before the change of states take place.
If the condition is satisfied (if its expression returns true), the transition will be engaged.
Otherwise, that transition is not allowed to happen. An expression in a guard condition
involve variables and operations. In Figure 2.2, the transition from AlarmOff to AlarmOn
is guarded by the condition [alarm], meaning that the transition will only happen if the
value of the variable alarm is true.

Broadcasting

A transition might have an action that is triggered once the transition is performed.
An action may cause another transitions to happen, which is called broadcasting. This
feature allows that chain reactions to occur in a statechart model. Considering Figure 2.2,
if we are currently in states ActivateAlarm and AlarmOff and the mode event occurs,
we will have the following situation: the transition will be execute and we will stay at state
ActivateAlarm, the value of variable alarm will be changed to its opposite (let’s supposed it
was false, so now it will be true) and we will also go to state AlarmOn since the condition
[alarm] guarding the transition between these last two state is satisfied. Therefore, not
only the transition starting at ActivateAlarm happened when mode occurred, but also the
transition between AlarmOff and AlarmOn. The change of the value of variable alarm
was broadcasted to the whole statechart and a chain reaction happened.

History

A statechart is capable of remembering previously visited states by accessing the history
state. Consider Figure 2.2, suppose we are in state DisplayMinutes and event set happened
three times in a row. So, we went to SetHour, and then SetMinutes and now we are at
ActivateAlarm. If there is another occurrence of set event, we will be directed to the history
state hist. Since the last active substate in Display was DisplayMinutes, we will actually
be directed to DisplayMinutes.

2.1.3 A statechart and its corresponding automaton

It is possible to obtain an automaton from a statechart by flattening the statechart. The
hierarchy and concurrency need to be eliminated. In addition, statechart elements such as
guard conditions and actions are not present in an automaton.

The following examples were extracted from [15]. In Figure 2.3 we have a statechart and
in Figure 2.4 its flat version that would correspond to an automaton.

2.1 STATECHARTS AND AUTOMATA 7

Figure 2.3: A statechart model with hierarchy and concurrent regions

Hierarchy removal

To eliminate hierarchy, we must handle transitions that leave and enter composed states.
Consider a transition t = (s1, l, s2) that is labelled with event l, redirects to state s2 and
leaves from state s1, which is composed by substates q1, ..., qn. We need to create n new
transitions such that ti = (qi, l, s2), 1 ≤ i ≤ n. In other words, we are transferring transitions
that leaves the composed state s1 to its subtates q1, ..., qn.

We should treat transitions that enter composed states too. Consider a transition t =
(s1, l, s2) that leaves from state s1, is labelled with event l and arrives in a composed state
s2, which contains substates q1, ..., qn such that q1 is the initial substate. We must create a
new transition t′ = (s1, l, q1). This means that the transition t′ skips the composed state s2
and redirects directly to the initial substate q1.

Finally, to eliminate hierarchy, we should remove composed states and keep the states
located in the lowest level of hierarchy of the statechart.

Orthogonality removal

To remove orthogonality, we need to do the Cartesian product of the states in each con-
current region. Such operation causes a reasonable number of state and transition explosions
in the automaton, if the original statechart model has concurrent states.

Consider two concurrent regions r1, with states s1, ..., sn, and r2, with states q1, ..., qm.
For each 1 ≤ i ≤ n, and for each 1 ≤ j ≤ m, we should create a state uij in the automaton.
Transitions t = (si, l, sk) should be converted into t′ = (uij, l, ukj) and transitions v =
(qj, l, qk) should be converted into v′ = (uij, l, uik).

Note that, in the automaton, the initial state is the product of the initial states from each
parallel region in the statechart. Finally, the states and transitions in the original statechart
can be removed.

8 CONCEPTS 2.2

Figure 2.4: The statechart from 2.3 after flattening to the corresponding automaton

It is important to notice that, in the statechart, we can use guard transitions, broadcast-
ing and history, enriching the model with more information. However, none of these features
are available in the automaton model.

2.2 Software testing

2.2.1 Testing goals

Testing is one of the most important means of assessing the software quality and it
typically consumes from 40% up to 50% of the software development effort [18]. In an
organization, the goals of testing depends on the level of maturity of the team [2]. At a
more naive approach, testing could be viewed as debugging code. A further step would be
to consider testing as a process to make sure that a software does what it is required to do.
But, in this case, if a team runs a test suite and every test case passes it, should the team
consider that the software is correct? Are the test cases not enough? Do they guarantee the
software quality? How does the team decide when to stop testing?

At a different perspective, testing can be understood as a process of finding errors.
Therefore a successful test case would be the one that indicated an error in the system [25].
Altough discovering unexpected results and behaviours is a valid goal, it might put tester
and developers in an adversarial relationship, which certainly damages the team interaction.

Testing shows the presence, but not the absence of errors. Hence, realizing that when ex-
ecuting a software we are under some risk that may have unimportant or great consequences
leads to another way to see the intention of the test process: to reduce the risk of using the
program, an effort that should be performed by both testers and developers.

Thus, testing can be seen as a mental discipline that helps all professionals in the software
industry to increase quality [2]. It can be considered a process not only to detect bugs, but
also to prevent them [4]. The whole software development process could benefit from that
thinking: design and specification would be more clear and precise and the implementation
would have fewer errors and would be more easily validated, for example.

2.2 SOFTWARE TESTING 9

2.2.2 The process of testing

Since testing is a time consuming activity, the creation of test cases can be done during
each stage of the development process, even though their execution will only be possible
after some part of the code is implemented.

V-Model

Figure 2.5: The V-model

The V-model shown in Figure 2.5 associates each level of testing to a different phase
in the development process. This model is typically viewed as an extension of the waterfall
methodology, but it does not imply the waterfall approach, since the synthesis and analysis
activities can be applied to any development process [2].

• Requirement analysis phase: Customer’s needs are registered.User acceptance tests
(UAT) are constructed to check whether the delivered system meets the customer’s
requirements.

• System design phase: Technical team analyses the captured requirements, studies the
possible implementations and documents a technical specification. System tests are
designed at this stage assuming that each component works accordingly and checks
for the system to work as a whole.

• Architectural design phase: Specify interface relationships, dependencies, structure and
behaviour of subsystems. Integration tests are developed, with the assumption that

10 CONCEPTS 2.2

each module works correctly, in order to verify all interfaces and communication among
subsystems.

• Detailed design phase: A low-level design is done to divide the system in smaller pieces,
each of them with the corresponding behaviour specified so that the programmer can
code. Module testing is designed to check each module individually.

• Implementation phase: Code is actually produced. Unit tests are designed to test if
every smallest unit of code, such as a method, can work correctly when isolated.

2.2.3 Functional and Structural tests

Testing techniques can be divided into functional and structural categories.

Functional technique (black box)

The software behaviour described in the specification is considered to create the test
cases. It is necessary to study the behaviour, develop the corresponding test cases, submit
the system to the test cases and analyse the results observed comparing them to what was
expected according to the description in the specification[20]:

• Equivalence classes partitioning

Input data are partitioned into valid and invalid classes according to the conditions
specified. The test cases are created based on each class by selecting an element in
each class as a representative of the whole class. Using this criterion, the test cases can
be executed systematically according to the requirements.

• Analysis of the boundary value

Similar to the previous criterion, but the selection of the representative is done based
on the classes’ boundary. For that reason, the conditions associated with the limit
values are exercised more strictly.

Since many specifications are written in a descriptive fashion, the test cases developed
using the functional technique can be very informal and not rigorous enough, which makes it
difficult to automate their execution and human intervention becomes necessary. However,
this technique only requires that requirements, input and corresponding output are identified.
Thus, it can be applied during several testing phases, such as integration and system testing.

Structural technique (white box)

The structure of the code implementation is considered to create the test cases in this
category. In this technique, the program is represented by an oriented flow control graph, in
which each node corresponds to a block of code (a statement in the code for instance) and
each edge corresponds to a transition between blocks. The criteria related to this technique
are concerned with the coverage of the program graph, such as [2]:

• Node coverage

Every reachable node in the graph must be exercised by the test set. Node coverage is
implemented by many testing tools, most often in the form of statement coverage

2.3 TEST CASES 11

• Edge coverage

Every edge in the graph must be tested in the test set.

• Complete path coverage

All paths in the graph must be tested by the test set. This criterion is infeasible if
there are cycles in the graph due to the infinity number of paths.

• Prime path coverage

A path is a prime path if it is a simple path and it does not appear as a proper sub-path
of any other simple path. In this criterion, all prime paths should be tested.

• Specified Path Coverage

A specific set S of paths is given and the test set must exercise all paths in S. This
situation might occur if the use case scenarios provided by the customer are converted
to paths in the graph and the team wishes to test them.

Tests obtained via the structural technique contribute specially to code maintenance and
increase the reliability of the implementation. But, they do not represent a way to validate
the system against the customer’s requirements, since the specified requirements are not
considered in their design.

2.3 Test cases
In this section, we will be concerned with test case creation from the functional per-

spective. The structure of the code will not be analysed. Instead, the specifications with the
requirements are going to be the source to derive the test cases.

2.3.1 Desiging test cases

For simple programs, a test case is a pair comprising the software input and the expected
output. But, for more complex software, such as web applications or reactive systems, a test
case can be a series os consecutive steps or events and their expected consequence.

Given a specification, a test engineer can systematically design test cases: for each re-
quirement defined, use the equivalence class partitioning technique described in 2.2.3 to
select the input representatives; enumerate the steps necessary to activate the requirement;
and add the expected outputs. Note that preconditions to each step can be added as well,
specially to guarantee that steps are not performed out of order and that the whole flow will
be completely executed and tested.

A good design of test cases is essential to the entire testing activity since it will guide
testers through the scenarios they should execute and check. The created test cases will
determine which requirements will be tested and how they will be tested. Besides, the whole
test plan tends to be planned around the test cases, considering the amount of cases and
their complexity to estimate deadlines and necessary resources. Moreover, managers usually
use test cases and their execution rate to give the client feedback about testing progress.

Furthermore, when defects are identified, they can be associated to the test case that
caused their detection. Since each test case is associated with a requirement, the team
can easily keep track of how many defects each requirement has, which scenarios are more
problematic and which critical bugs are associated with them.

12 CONCEPTS 2.3

Writing test cases manually is not a trivial task. The engineer must read through all the
specification, identify requirements and the many scenarios in which that can be executed.
It requires experience and time to build test cases that can better discover defects.

Use cases vs Test cases

More detailed use cases provide sequences of steps to perform flows related to a particular
requirement. Each step might contain the description of system behaviour and user actions,
including preconditions and actors that take part in the use case. Besides that, one use case
might describe more than one scenario for the requirement by extending the basic flow.

Let us consider the problem of a web application defined as follows: A web application
requires that users sign in to access their personal homepage. To do so, the user should first
access the regular homepage and click on the link sign in. Then, the user will be redirected
to the sign in page, which contains a form with fields email and password. Once the form
is filled in and the button sign in is clicked, the system should validate the user’s email
and password. If the credentials are valid, them the user will be redirected to their personal
homepage. Otherwise, an error message will be displayed and the user will remain in the
form page.

For the given problem, we can have an use case of signing in a website:
Use case: Website sign in
Actor: Registered user
Preconditions: User has a register in the website and is able to access the home page.
Basic flow:

1 System loads the home page of the website, which contains a link to sign in

2 The user clicks on the sign in link and is redirected to the sign in form

3 The user fills in the sign in form and clicks on button ’sign in’

4 The user is able to sign in and their personal home page is displayed

Alternative flows:

a Sign in fails

1 System loads the home page of the website, which contains a link to sign in

2 The user clicks on the sign in link and is redirected to the sign in form

3 The user fills in the sign in form with invalid information and clicks on button
’sign in’

4 The user is not able to sign in and system displays an error message

To provide the corresponding test cases, however, each step in the test case must specify
a single action and its corresponding consequences to the system. We can add preconditions
to give a more precise definition of each step in a test case, even if the precondition only says
that the previous step was executed successfully. In addition, it is not possible to have more
than one flow in one test case, otherwise the tester would have no clear direction during the
test run. Therefore, we need to create test cases for each flow separately.

To test the scenario in which the user is able to sign in successfully, one can consider the
following test case:

2.3 TEST CASES 13

Step Precondition Description Expected result
1 Credentials are

valid and user
is able to access
home page

Access home page Home page is loaded

2 Step 1 was suc-
cessful

Click on Sing in link Sign in page is displayed
with the sign in form

3 Step 2 was suc-
cessful

Check the sign in form It should contain fields
email, password and a but-
ton sign in

4 Step 3 was suc-
cessful

Type the user’s email in
field email

Login field will hold the
data

5 Step 4 was suc-
cessful

Type the user’s password in
password field

Password field will hold the
data

6 Step 5 was suc-
cessful

Click on button sign in of
the form

Credentials should be suc-
cessfully validated by the
system

7 Step 6 was suc-
cessful

Check the page that was
loaded

It should the user’s personal
home page

It is also interesting to project test cases for negative scenarios, in which the program
should handle an incorrect action done by the user. A test engineer could consider using the
following test case to test the negative scenario for the sign in requirement:

Step Precondition Description Expected result
1 Credentials are

invalid and user
is able to access
home page

Access home page Home page is loaded

2 Step 1 was suc-
cessful

Click on Sing in link Sign in page is displayed
with the sign in form

3 Step 2 was suc-
cessful

Check the sign in form It should contain fields
email, password and a but-
ton sign in

4 Step 3 was suc-
cessful

Type the user’s email in
field email

Login field will hold the
data

5 Step 4 was suc-
cessful

Type the user’s password in
password field

Password field will hold the
data

6 Step 5 was suc-
cessful

Click on button sign in of
the form

Credentials should not be
validated and error message
should be displayed

7 Step 6 was suc-
cessful

Check the error message
displayed

It should be "Wrong email
or password."

Thus, an use case serves also as a guide for the implementation process used by developers.
It is a way to understand how the requirement that is being coded is going to be used. An
use case will not be executed directly. Test cases are used to direct tester regarding the
precise actions that should be performed in each flow and are a way to detect errors. They
are directly executed during the test phase.

14 CONCEPTS 2.3

Use cases are a great source for the creation of test cases because they detail main flows
and contain action steps. However, they are different in structure and purpose; therefore,
one cannot replace the other.

2.3.2 Automatic generation of test cases

A model, a statechart for instance, can also be used to specify certain scenarios and
requirements relevant to the software. Considering that such model is correct and its inter-
pretation is well defined, one can use it to automatically generate functional test cases [21].
This technique, in which test cases are automatically derived from a model, is called Model
Based Test[31].

Since models are commonly based on finite state machines, the test cases in Model
Based Test are often paths in the model. A path corresponds to a sequence of consecutive
transitions. There are several ways to explore the model to obtain the paths. Depending
on the complexity of the model and the exploration mode chosen, the number of test cases
found will be huge. In fact, if one searches for all possible paths, the number of test cases
will be infinite if the model contains cycles.

Hence, there are several criteria intended to guide the model exploration and generate the
paths as test cases, the so called Requirement Based Test. Some of the them are described
below and with further details in [31]:

• All transitions

A criterion that can be used to obtain test cases from statechart specifications. It
requires that every transition should be exercised at least once during testing.

• All simple paths

Another criterion that can be used with statecharts. Since all paths is an impossible
achievement given the possibility that an infinite number of paths may exist, it is
possible to restrict it such that every simple path in the model is exercised at least
once during testing.

It is important to note that even though this and the previous criterion seem similar
to the ones described in 2.2.3, they are distinct. The ones described in this section
are based on functional requirements and therefore constitute a kind of black-box test.
The ones described in 2.2.3 are based on the code implementation and are a type of
white-box test.

• Distinguishing Sequence

This criterion should be used for finite state machine models. Besides that, the finite
state machine must have the restrictions of being deterministic, complete, strongly
connected and minimal.

First, a distinguishing sequence, SD, is searched. SD is an input sequence such that
when applied to each state in the machine, the output produced is different, making
it possible to identify the initial state to which SD was applied. The distinguishing
sequence may not exist, in this case the criterion cannot be applied.

Second, for each transition t, an input sequence from the initial state up to and in-
cluding t is generated. That sequence is called a β − sequence.

2.3 TEST CASES 15

β − sequence Transition β − sequence + SD
A (0, 3) A B B
B (0, 0) B B B
A A A A A (1, 4) A A A A A B B
A A A A B (1, 2) A A A A B B B
A A A A (2, 1) A A A A B B
A A A B (2, 3) A A A B B B
A A (3, 4) A A B B
A B (3, 3) A B B B
A A A (4, 2) A A A B B
A A B (4, 0) A A B B B

Table 2.1: Distinguishing Sequence cases for automaton 2.6. SD = "B B".[31]

We can then concatenate SD to the end of each β− sequence to obtain the test cases.
When one of these test cases is executed, it will be specifically testing a transition and
checking if this transition reached the expected state.

For the automaton in figure 2.6, we have one possible SD = B B. In Table 2.1 we
have the complete set of β − sequences to demonstrate the Distinguishing Sequence
criterion.

Figure 2.6: Automaton extracted from [31]

Let us take transition (1, 4) in Figure 2.6 as an example. Suppose we already performed
the first phase of the criterion and discovered that SD = ”BB” for the given automa-
ton. To test (1, 4) we still need to create the corresponding β−sequence. We explore the
automaton from the initial state up to state 1 and store the labels of the covered tran-
sitions. For transition (1, 4), this exploration results in the path 0 → 3 → 4 → 2 → 1
with labels AAAA. Once we get to state 1, we proceed to state 4 with input A. We
concatenate this last input label to the end of the labels discovered during exploration,
resulting in the β − sequence AAAAA. Finally, to conclude the test case creation, we
concate the value of SD to the end of the β − sequence: AAAAABB. The analogous
is applied to every other transition in the automaton.

• Unique Input-Output

As mentioned in the previous criterion, the machine might not have a distinguishing
sequence. Even in this case, it is still possible to identify each state based not only on
the input, but on the output as well.

16 CONCEPTS 2.4

State UES
0 B/λ
1 A/1 A/1
2 B/0
3 B/1 B/1
4 A/1 A/0

Table 2.2: UES sequences for automaton 2.6.[31]

β − sequence Transition β − sequence + UES
A (0, 3) A B B
B (0, 0) B B
A A A A A (1, 4) A A A A A A A
A A A A B (1, 2) A A A A B B
A A A A (2, 1) A A A A A A
A A A B (2, 3) A A A B B B
A A (3, 4) A A A A
A B (3, 3) A B B B
A A A (4, 2) A A A B
A A B (4, 0) A A B B

Table 2.3: Unique Input-Output cases for automaton 2.6.[31]

This criterion can also be used for finite state machine models that are deterministic,
complete, strongly connected and minimal.

First, for each state, a unique input-output sequence, UES, is searched. In each state,
a breadth search is done and at every step, it is checked if the input and output is
unique in comparison to the other states.

Second, a process to find β−sequences is performed in the same way as in the previous
criterion.

Then, we can check to which state each final transition of the β − sequences leads to
by applying the UES sequences and observing their output.

For the automaton in Figure 2.6, Table 2.2 shows the possible UES for each state. In
Table 2.3 the whole set of β − sequences and their concatenation with the respective
UES are shown. Both tables together illustrate the Unique Input-Output criterion.

We present in Chapter 3 a method to automatically generate test cases for well defined
statechart specifications. In Section 2.6, we describe the requirements used as examples to
construct the statecharts presented in Chapter 3.

2.4 Model checking
Formal methods refers to the use of precise logical and mathematical methods to reason

about properties of the system [10]. They contribute to the software and hardware engineer-
ing fields with formal specification and formal verification techniques, for example, aiming
to assure the reliability of the system or hardware. Formal verification techniques, such as

2.4 MODEL CHECKING 17

model checking, have the goal to verify the correctness, or absence of faults, of some given
program code or design against its formal specifications[29].

Model checking is an automated technique that, given a finite-state model of a system
and a formal property, systematically checks whether this property holds for that model[3].
Typically, there is a hardware or software system specification containing the requirements,
and we wish to verify that certain properties, such as nonexistence of deadlocks, are valid
for the model of the system. The specification is the basis for what the system should and
should not do, therefore it is the source for the process of creating properties.

Testing and model checking have the common target of finding bugs. But as stated by
Dijkstra[7], program testing can at best show the presence of errors but never their absence.
On the other hand, a model checker will find a counter example if there is a violation of a
given specification. It is a rigorous method that exhaustively explores all possible behaviours
of the system under consideration [26]. This is the main feature that distinguishes testing
and model checking: the last one can prove the absence of bugs[14].

According to [3], the model checking process can be divided into three phases:

1 Modelling phase

Model the system under consideration using the model description language of the
model checker and specify the properties to be verified using the property specification
language.

2 Running

Run the model checker to check the validity of the properties in the system model.

3 Analysis

In case a property was violated, then one should analyse the counter example generated
by the model checker. It might be the case that the property does not truly reflect
the requirement and it needs to be specified correctly. One other possible conclusion,
if the property was defined appropriately, is that the model actually contains an error
and it needs improvement. Then, verification has to be restarted with the improved
model. But, in case the model contains no errors and it represents the system design,
the violation of a property indicates that the design is incorrect and needs to be fixed.
The verification, then, will be redone with a new model based on an improved design.

Otherwise, if no violation was detected, the model is concluded to posses all desired
properties.

We will focus on the definition of properties in the modelling phase, since property
specification is one of the goals of this project.

2.4.1 Property definition

The formal properties to be validated are mostly obtained from the system’s specification[3].
Hence, a property specifies a certain behaviour of the system that is being considered. One
has to manually read through the specification and manually define relevant properties to
the system. Identifying which scenarios and behaviours should be considered when specify-
ing properties tends to be a difficult creative process, in which human intervention becomes
necessary.

The person responsible for writing the formal property specification must have a mathe-
matical background and knowledge of the specification language [13]. Many model checkers

18 CONCEPTS 2.4

such as SPIN and NuSMV accept as input properties written in Linear Temporal Logic
(LTL), which is difficult to write, read and validate. Therefore, translating system require-
ments to formal properties is not an easy task.

One classic example for property definition is the absence of deadlocks, but properties can
also specify safety protocols[23], occurrence and order of events. Let’s consider, for example,
that one of the requirements of a system is that always after a call to the method open, to
open a file, there should be a call to the method close, to close the file. One could specify
this LTL property to verify the requirement as:

�(open→ ♦close)

The LTL syntax can be found in Appendix A. Using LTL, one can specify many other
properties that express predicates over time.

2.4.2 Specification patterns

The effectiveness of the assurance offered by model checking depends on the quality
of the formal properties that were defined [13]. To assist this process, a set of property
specification patterns were proposed in [8]. A property specification pattern is a high-level
property template that can be adapted based on the requirements to be verified. The patterns
were obtained from a survey of 555 specifications collected from 35 different sources, including
literature and several industrial projects [9].

A hierarchy was established to facilitate browsing through the patterns and picking
the most appropriate one to one’s need. The higher level of the hierarchy is split into the
occurrence and order categories described in more details in the next subsections.

For each pattern, a scope is required to define an interval of the specification in which
the property should hold. The available scopes are: global, before Q, after Q, between Q and
R, after Q until R, where Q and R are states or events in the specification.

Occurrence patterns

Occurrence patterns establish the occurrence or absence of a determined event or state
in a certain scope of the specification. They can be further classified into:

• Absence: a given state or event does not occur within the scope.

• Existence: a given state or event must occur within the scope

• Bounded existence: a given state or event must occur k times within the scope

• Universality: a given state or event occurs throughout the scope

Order patterns

Order patterns provide descriptions for the order in which events or states occur. They
are divided in categories:

• Precedence: a state or event P should always be preceded by a state or event Q within
the scope

• Response: a state or event P should always be followed by a state or event Q within
the scope

2.5 SEQUENTIAL PATTERN MINING 19

• Chain precedence: a sequence of states or events P1, ..., Pn should always be preceded
by a sequence of states or events Q1, ..., Qn

• Chain response: a sequence of states or events P1, ..., Pn should always be followed by
a sequence of states or events Q1, ..., Qn

2.5 Sequential pattern mining
Sequential pattern mining is a topic in data mining that discovers frequent subsequences

as patterns in a sequence database [19]. Each sequence in a sequence database is called data-
sequence and contains typically an ID and transactions ordered generally by time, where
each transaction is a set of items.

The problem is to find all sequential patterns with a user specified minimum support,
where the support of a sequential pattern is the percentage of data-sequences that contain
the pattern [28]. In other words, if a user inputs a percentage p and a sequence database D
is given, then the mining will return the set of patterns that appear in at least p% of the
data-sequences. The formal definition can be found in [19] and in [27].

There are several applications for the problem, such as analysis of customer behaviour,
purchase patterns in a store and study of DNA sequences. In section 2.5.1, a practical
example is described based on [19].

Notation
A data-sequence S that has ID T and n ≥ 1 ordered transactions t1, t2, ..., tn is denoted

by S = [T < t1, t2, ..., tn >].
Each transaction ti that is a set of m ≥ 1 items li1 , ..., lim and is denoted by ti =

(li1 , ..., lim). Thus, S = [T < (l11 , ..., l1m), ..., (ln1 , ..., lnm) >].
To simplify the notation in the case in which each transaction contains only one item,

we can avoid the parenthesis, for example: if ti = (li) for all 1 ≤ i ≤ n than it is possible to
write S = [T < l1l2...ln >].

2.5.1 An example: Web usage mining

Web usage mining, also known as web log mining, is an important application of sequen-
tial pattern mining. It is concerned with finding frequent patterns related to user navigation
from the information presented in web system’s log. Considering that a user is able to access
only one page at a time, the data-sequences would only have transitions with a single event
each.

In an e-commerce application, for instance, we can have the set of items I = a, b, c, d, e, f
representing products that can be purchased. The occurrence of one of these items in a
transaction means that a user accessed the page of such item.

Suppose the sequence database contains the following data-sequences extracted from the
log: [T1 < abdac >], [T2 < eaebcac >], [T3 < babfaec >] and [T4 < abfac >]. In this case,
the analysis of the first transaction allows us to conclude that user T1 accessed the pages
of products a, b, d, a and c in this order. By applying the web usage mining technique with
support of 90%, a manager would notice that abac is a frequent pattern, indicating that 90%
of the users who visited product a then visit b, then return to a and later visit c. Hence, an
offer could be placed in product a, which is visited many times in sequence, to increase the
sales of other products.

20 CONCEPTS 2.5

2.5.2 Sequential pattern mining algorithms

There are several algorithms to perform the sequential pattern mining, but they differ in
two aspects[19]:

• The way in which candidate sequences are generated and stored. The goal is to reduce
the amount of candidates created as well as decrease I/O costs.

• The way in which support is counted and how candidate sequences are tested for fre-
quency. The goal is to eliminate data structures used for support or counting purposes
only.

Considering these topics, algorithms for sequential pattern mining can be divided in two
categories: apriori-based and pattern-growth

Apriori-based algorithms

These algorithms mainly rely on the property that states that if a sequence s is infrequent,
then any other sequence that contains s is also infrequent. The GSP [28] algorithm is an
example in this category.

Apriori-based algorithms use the generate-and-test method to obtain the candidate pat-
terns: the pattern is grown one item at a time and tested against the minimum support. By
taking this approach, they have to maintain the support counting for each candidate and
test it at each iteration of the algorithm.

In general, algorithms in this category generate an explosive number of candidate se-
quences, consuming a lot of memory. GSP, for instance, generates a combinatorially explo-
sive number of candidates when mining long sequential patterns. This is the case of a DNA
analysis application, in which many patterns are long chains.

In addition, since they need to check at each iteration for the support count, multiple
scans of the database are performed, which requires a lot of processing time and the I/O
is very costly. In general, to find a sequential pattern of length l, the apriori-based method
must scan the database at least l times. For problems in which long patterns exist, this
feature increases the cost of the application.

Pattern-growth algorithms

Pattern-growth algorithms try to use a certain data structure to prune candidates early
in the mining process. Besides that, the search space is partitioned for efficient memory
management. PrefixSpan[27] is an example of such an algorithm and it is used in our imple-
mentation due to its adequately to our problem.

The general idea behind PrefixSpan is as follows: Instead of repeatedly scanning the
entire database, generating and testing large sets of candidate sequences, one can recursively
project a sequence database into a set of smaller databases associated with the set of patterns
mined so far and, then, mine locally frequent patterns in each projected database[27].

To reduce the projections size and the number of access, PrefixSpan, sorts the items
inside each transaction and creates the projected databases based on patterns’ prefixes. In
order to do so, the algorithm assumes that the order of items in a transaction is irrelevant,
and only the order of the whole transactions matters to the problem.

Differently from apriori-based algorithms, PrefixSpan does not generate or test candidate
sequences. Patterns are grown from the shorter ones and projected databases keep shrinking.
This is relevant in practice because, in general only a small set of sequential patterns grows

2.6 WORKING EXAMPLE 21

long in a database and, thus, the number of sequences in a projected database usually reduces
when prefix grows.

In the worst case, PrefixSpan constructs a projected database for every sequential pattern.
With the intention to reduce the number of projected databases and improve the performance
of the algorithm, [27] proposes a technique called pseudo partition that may reduce the
number and size of the projected databases.

2.6 Working example
In this section we describe the requirements of a system that are going be explored as

examples in the next chapters. The statecharts presented and used in Chapters 3, 4 and 5
model the requirements described in the next subsections. The application consists of an
e-commerce portal of a telecommunication company in which users can buy cellphones or
change their current mobile plan.

2.6.1 Requirement 1: Change current mobile plan

A user can change their current mobile plan by adding a new one to their shopping cart.
But, in order to conclude the change, the user must first log in, so the system can retrieve
their line number.

The system should check whether the user is an employee of the company or not. If the
user is an employee, the plan change will not be allowed, because employees have a special
plan with discount. Otherwise the system should proceed in the validation flow.

It is also necessary to check whether the user is committed to a loyalty contract, in which
case, he or she will not be allowed to conclude the process. If no loyalty contract was found
in the records, the user is redirected to checkout and is able to finish the plan change.

In any case in which the continuation of the process was not allowed, the user’s shopping
cart should become empty.

2.6.2 Requirement 2: Process orders received in the portal

After a purchase of cellphones was conclude in the portal, the order must be processed
and converted into a XML file. An order is made of entries and each entry contains a product
(the cellphone) and the quantity that was bought.

The information in each entry should be processed and written in the XML file, which
will be sent to an integration layer.

At the same time the order is being processed, a job to send an email, informing the user
that the order is being processed, should be triggered.

2.6.3 Requirement 3: Process orders received by file

This e-commerce offers, to selected customers, the feature of purchasing products through
a file. This is specially useful if the customer is another company that wishes to buy a great
amount of different products.

Each line of the file should contain the product code and the corresponding quantity,
both delimited by the character "|".

All the information in the file should be processed and inserted in a XML file that will
first be sent to an integration layer and then to a management software.

22 CONCEPTS 2.6

2.6.4 Requirement 4: Update stock levels of products

When a product (a cellphone) is out-of-stock, users can still demonstrated their interest
in buying it by leaving their email on the waiting list. Once the product is back in stock,
they will be informed by email.

The admin of this e-commerce portal is allowed to execute a job to clear the reservation
on products and update their respective stock levels.

The admin is also capable of executing a job to send emails to those users who are
interested in products that were out-of-stock.

These two jobs should be allowed to run in parallel.

Chapter 3

Test case generation for statecharts

In this project, we implemented the test case generation for statecharts based on the
criteria described in [5]. We test all transitions by visiting every state and triggering events
for every transition that starts on the given sate.

In the next sections of this chapter we describe the techniques and algorithms used for
automatically creating test cases for statecharts.

3.1 Test cases for simple statecharts
In this section, we consider only statecharts that do not contain hierarchy and concur-

rency. Statecharts with hierarchy and concurrency will be explained afterwards.
Each test case created will comprise:

• A transition. The transition that is being tested.

• An origin state. The state from which the transition being tested is leaving from.

• A test path. The path in the statechart used to activate the transition being tested.

• An expected state. The state to which the transition being tested should redirect.

We start by making sure every reachable state in the statechart is covered. In order to
do so, for each state s in the statechart, we construct a path p from the initial state to s.
The path p in said to be the coverage path of s. All coverage paths generated are stored in a
set called State Cover, which is denoted by C. Therefore, C is a set of sequence of transition
labels, such that we can find an element from this set to reach any desired state starting
from the initial one [5].

Since there is no hierarchy or concurrency in the statechart considered at this point, the
construction of C is similar to covering states of an automaton and it can be done through
a depth search of the states. Find below a pseudocode for the method:

//Wrap method to con t ru s c t the S ta t e Cover
// I t r e c e i v e s as argument the i n i t i a l s t a t e o f a s imple s t a t e c h a r t
Set constructSetC (State i n i t i a l S t a t e) {

Set setC = new Set () ;

Path emptyPath = "" ;

L i s t v i s i t e d = new L i s t () ;

23

24 TEST CASE GENERATION FOR STATECHARTS 3.1

return constructSetCRec (i n i t a l S t a t e , emptyPath , setC , v i s i t e d) ;
}

Listing 3.1: State Cover construction wrapper for simple statecharts

//Recurs ive func t i on t ha t w i l l do a l l the work
// re turns the S ta t e Cover se t , or s e t C
Set constructSetCRec (State s , Path p , Set setC , L i s t v i s i t e d) {

v i s i t e d . add (s) ;

setC . add (s , p) ;

for (Trans i t i on t in s . getOutgGoingTrans it ions ()) {

State nextState = t . getDest iny () ;

i f (! v i s i t e d . conta in s (nextState)) {

Path nextCoveragePath = p + t . getLabe l ()) ;

constructSetCRec (nextState , nextCoveragePath , setC , v i s i t e d) ;
}

}

return setC ;
}

Listing 3.2: Recursive State Cover construction for simple statecharts

Now that we have the coverage for every reachable state, we need to trigger each transition
on each state and create the test cases. For each transition there will be a test case, thus
every transition in the diagram will be exercised at least once during testing.

Consider transition t = (s, l, q), where s is the original state, l is the event label that
triggers t and q is the incoming state. In the aforementioned algorithm, we computed that
s has coverage path p such that p ∈ C and p is a sequence of labels. The test case TC
for transition t (t = (s, l, q)) concatenates event labelled by l to the end of p that reaches
state q. The process is repeated to all transitions in the statechart. The following algorithm
describes the test cases creation:

,

//Function t ha t p r i n t s the t e s t cases f o r a l l t r a n s i t i o n s in a s t a t e c h a r t
void generateTestCases (S ta t echar t sc , Set setC) {

for (State s in sc . g e tS ta t e s ()) {

Path coveragePath = setC . getCoveragePath (s) ;

for (Trans i t i on t in s . getOutgGoingTrans it ions ()) {

p r i n t ("Test case f o r "+t . getLabe l ()) ;

p r i n t (" Orig in s t a t e "+s . getName ()) ;

Path testPath = coveragePath + t . getLabe l () ;

p r i n t ("Test Path : "+testPath) ;

3.1 TEST CASES FOR SIMPLE STATECHARTS 25

State expectedState = t . getDest iny () ;

p r i n t ("Expected s t a t e : "+expectedState) ;
}

}
}

Consider the statechart in Figure 3.1, a model for purchase flow of a telco e-commerce.
The model describes the flow for users changing their cellphone plan. They will be able to
change plan if they are not employees from the telco company and are not committed to
a loyalty contract. Additionally, they must perform the login so that the system is able to
retrieve their information. This statechart models the requirement described in Subsection
2.6.1.

Figure 3.1: A statechart for the plan change in a telco e-commerce

Since, hierarchy and orthogonality are not used in the presented statechart (Figure 3.1),
the technique presented above can be applied straight forward.

The construction of the State Cover set, or C, is performed as follows:

1. We start at the initial state Unlogged User. Since it is the initial state, its coverage
path is the empty string, denoted by e.

26 TEST CASE GENERATION FOR STATECHARTS 3.2

2. Next, we recursively visit the states that can be reached from Unlogged User. In our
example, we get to state Logged in User. In order to get to this state, it was necessary
to go through transition doLogin. Therefore, the coverage path for Logged in User is
e doLogin. Note that we concatenated the coverage path of the previous state to the
undertaken transition.

Once the construction of C is concluded, we have the following coverage paths:

State Coverage path
Unlogged user e
Logged in User e doLogin
Number Selected e doLogin searchLineNumber
Employee Authentication e doLogin searchLineNumber searchEmployee
Employee User e doLogin searchLineNumber searchEmployee setEm-

ployeeUser
Empty Cart e doLogin searchLineNumber searchEmployee setEm-

ployeeUser emptyCart
Regular User doLogin searchLineNumber searchEmployee setRegu-

larUser
Contract Authentication doLogin searchLineNumber searchEmployee setRegu-

larUser searchContract
Committed User doLogin searchLineNumber searchEmployee setRegu-

larUser searchContract setCommittedUser
Not Committed User doLogin searchLineNumber searchEmployee setRegu-

larUser searchContract setNotCommittedUser
Checkout doLogin searchLineNumber searchEmployee setRegu-

larUser searchContract setNotCommittedUser proceed-
Checkout

Note that the empty string e appears in the paths due to the unlabelled default transition
entering the initial state Unlogged User.

Then, we have to create a test case for every transition leaving each state. Let’s take state
Employee Authentication, for example. It has two leaving transitions: setEmployeeUser and
setRegularUser. To guarantee they are exercised at least once during testing and that they
go to their appropriate states, the following test cases are needed:

• Test case for setEmployeeUser

Origin state: Employee Authentication

Test Path: e doLogin searchLineNumber searchEmployee setEmployeeUser

Expected state: Employee User

• Test case for setRegularUser

Origin state: Employee Authentication

Test Path: e doLogin searchLineNumber searchEmployee setRegularUser

Expected state: Regular User

Note that the test path is the coverage path concatenated with the label of the tested
transition. This procedure is similarly applied to all other transitions in the model.

3.2 TEST CASES FOR COMPLEX STATECHARTS: HIERARCHY 27

3.2 Test cases for complex statecharts: hierarchy
In this section, the generation of test cases for statecharts that comprise the hierarchy

feature is described (a state may contain many substates and so on). We do not limit the
level of nested hierarchy for the automatic generation. Consider states a and b, such that a
contains b. We will say that a is the superstate of b and b is the substate of a.

One way to deal with hierarchy is eliminating it from the model by flattening the stat-
echart, as shown in 2.1.3. If so, the statechart becomes an automaton and the techniques
for simple statecharts explained in the previous section can be used. Instead, the approach
taken in the present project is keeping the structure of the statechart and creating the test
cases incrementally, following the technique described in [5].

Similarly to the previous case, we need to cover all states by constructing the set C and
then test all transitions in the model. The construction of C, however, needs to take into
account states and all their corresponding substates in order to provide the whole coverage.
It is important to note that we considered only statecharts that do not have transitions
between different hierarchy levels.

Given a state, we first check if it contains substates. If it does, we can compute substates’
coverage paths going deeper in the hierarchy level. Later, we concatenate the coverage path
of the superstate to each coverage path of the substates. Then, the coverage path of the
superstate should be removed from C and the paths of the substates will be kept in C
instead. If the coverage path p of a certain state s passes through a superstate q, we need to
mark in p that it passed by q and that the coverage paths of q’s substates should be used
when creating test cases for transitions leaving s. To mark that, we will use the notation ∆q

The algorithm to construct C is changed accordingly to comprise these new features:

//Recurs ive func t i on t ha t w i l l do a l l the work
// re turns the S ta t e Cover se t , or s e t C
Set constructSetCRec (State s , Path p , Set setC , L i s t v i s i t e d) {

v i s i t e d . add (s) ;

setC . add (s , p) ;

i f (s . con ta in sSubs ta t e s ()) {

Set subSetC = constructSetC (s . g e t I n i t i a l S u b s t a t e ()) ;

s . addSubpaths (subSetC) ;

setC . remove (s , p) ;

for (State subs ta t e in s . ge tSubs ta te s ()) {

Path par t i a lPath = subSetC . getPath (subs ta t e) ;

Path substateCoveragePath = p + par t i a lPath ;

setC . add (substate , substateCoveragePath)
}

}

for (Trans i t i on t in s . getOutgGoingTrans it ions ()) {

State nextState = t . getDest iny () ;

28 TEST CASE GENERATION FOR STATECHARTS 3.2

i f (! v i s i t e d . conta in s (nextState)) {

i f (s . c on ta in sSubs ta t e s ()) {

Path nextCoveragePath = p + ∆s + t . getLabe l ()) ;

} else {

Path nextCoveragePath = p + t . getLabe l ()) ;

}

constructSetCRec (nextState , nextCoveragePath , setC , v i s i t e d) ;
}

}

return setC ;
}

Listing 3.3: Recursive State Cover construction for statecharts with hierarchy

Once the set C is complete, we can create the test cases based on every transition that
leaves each state. In states with no substates and whose coverage did not pass by any
superstate, the previous process (presented in 3.1) is applied.

On the other hand, if the state’s coverage path p went through a superstate s, we need to
expand the path with the coverage paths of the substates. In other words, for each substate
with coverage path u, there will be a p′ with u replacing the notation ∆s, where s is the
superstate. The algorithm for the expansion is:

//Pseudocode f o r an expansion func t i on
//Receives the o r i g i n a l , not expanded , path and the super s t a t e i t passes

through
//Returns the s e t o f paths r e s u l t i n g from the expansion
Set pathExpansion (Path or ig ina lPath , State superState) {

Set subPaths = superState . getSubpaths () ;

Set expans ionResu l t s = new Set () ;

for (State subs ta t e in superState . ge tSubs ta te s ()) {

Path subPath = subPaths . getPath (subs ta t e) ;

Path expanded = or i g i na lPa th . r ep l a c e (∆superState , subPath) ;

expans ionResu l t s . add (expanded) ;
}

return expans ionResu l t s ;
}

Listing 3.4: Expansion psseudocode for a path that passes through a superstate

If a state contains substates, however, we must transfer the origin of every transition
that leaves it to each one of its substates. Consider the case that a state s has a transition
t = (s, l, q) and contains substates s1, s2 and s3. When creating the test case for t, we must
actually consider three new transitions: t1 = (s1, l, q), t2 = (s2, l, q) and t3 = (s3, l, q). The
pseudocode to transfer transitions from the superstate to the substates is presented below:

3.2 TEST CASES FOR COMPLEX STATECHARTS: HIERARCHY 29

//Add a l l t r a n s i t i o n s o f a s up e r s t a t e in i t s s u b s t a t e s
//Receives the s up e r s t a t e as argument
void transferFromSuperToSub (State super) {

for (Trans i t i on t in super . getOutgGoingTrans it ions ()) {

for (State sub in super . g e tSubs ta te s ()) {

sub . addOutGoingTransition (t) ;
}

}
}

Listing 3.5: Pseudocode to transfer transitions from a superstate to its substates

The pseudocode to create the final test cases is the same as the one presented in 3.1.
Let’s take the statechart in Figure 3.2 to illustrate the technique. It models an application

that receives order files in an specific format and converts them into a well formatted xml.
Each order file contains several lines, and each line contains a product and its corresponding
amount. The application also has an integration layer: it receives the xml file and then send it
to the management system. This statechart models the requirement described in Subsection
2.6.3.

Figure 3.2: Statechart for order file processing and transference

Now, to construct the coverage path to Idle we do not need to worry about hierarchy, so
approach described in the prior Section 3.1 is enough.

State Coverage path
Idle e

Notice that once again the empty string e is present due to the default unlabelled tran-
sition entering the Idle state. When creating the coverage path for state File processing,

30 TEST CASE GENERATION FOR STATECHARTS 3.2

however, we realise that it is a superstate. So, we go deeper in the hierarchy level to obtain
the coverage paths of substates File received, Line retrieved, Product processed, Quantity
processed and XML creation. Then, the following paths are added to set C:

State Coverage path
File received e convertFileToXML e
Line retrieved e convertFileToXML e nextLine
Product processed e convertFileToXML e nextLine getProduct
Quantity processed e convertFileToXML e nextLine getProduct getQuantity
XML creation e convertFileToXML e nextLine getProduct getQuantity EOF

Note that the coverage path for the superstate File processing is removed from C because
we are considering its substates. Therefore, the test cases that would be created based on the
superstate will be created based on the substates, instead. Also, the empty string e is added
twice in each of these paths. This is necessary because these paths pass through two default
unlabelled transitions: the first one entering the Idle state, and the second one entering File
processing.

Now, states Integration layer and Management system must also be covered. Observe
that to cover these states, we need to pass by File processing, a superstate. Therefore, in
their coverage path, we need to use an specific notation to guide the later expansion with
the substates coverage paths. Notation ∆File processing is used for this particular purpose.
When creating the test cases, we need to expand the path considering the coverage of File
processing ’s substates. Thus, the coverage paths for the Integration layer and Management
system states are:

State Coverage path
Integration layer e convertFileToXML ∆File processing sendXMLToIntegra-

tion
Management system e convertFileToXML ∆File processing sendXMLToIntegra-

tion sendXMLToMgmSys

At this point, when the set C is complete, we can actually create the test cases. To il-
lustrate this, we will examine transitions getProduct, sendXMLToIntegration and sendXML-
ToMgmSys more closely.

For getProduct, a transition leaving a substate, the process will be the same as the one
presented in the pseudocode 3.1. Hence, we have the following test case:

• Test case for getProduct

Origin state: Line Retrieved
Test Path: e convertFileToXML e nextLine getProduct
Expected state: Product processed

In the case of sendXMLToIntegration, a transition that leaves a superstate, we need
to use the information regarding the substates to create the test cases. For each sub-
state’s coverage path p, there will be a test case for sendXMLToIntegration using p. Then,
sendXMLToIntegration is appended to each p in order to obtain the test paths:

• Test case #1 for sendXMLToIntegration

Origin state: File Received
Test Path: e convertFileToXML e sendXMLToIntegration
Expected state: Integration layer

3.2 TEST CASES FOR COMPLEX STATECHARTS: HIERARCHY 31

• Test case #2 for sendXMLToIntegration

Origin state: Line Retrieved

Test Path: e convertFileToXML e nextLine sendXMLToIntegration

Expected state: Integration layer

• Test case #3 for sendXMLToIntegration

Origin state: Product Processed

Test Path: e convertFileToXML e nextLine getProduct sendXMLToIntegration

Expected state: Integration layer

• Test case #4 for sendXMLToIntegration

Origin state: Quantity Processed

Test Path: e convertFileToXML e nextLine getProduct getQuantity sendXMLToInte-
gration

Expected state: Integration layer

• Test case #5 for sendXMLToIntegration

Origin state: XML Creation

Test Path: e convertFileToXML e nextLine getProduct getQuantity EOF sendXML-
ToIntegration

Expected state: Integration layer

As for transition sendXMLToMgmSys, the expansion of Integration layer ’s coverage path
is pending. Similarly to what we did for the transition sendXMLToIntegration, we also need
to consider the paths of File processing ’s substates. Therefore, the test cases for sendXML-
ToMgmSys are:

• Test case #1 for sendXMLToMgmSys

Origin state: Integration Layer

Test Path: e convertFileToXML e sendXMLToIntegration sendXMLToMgmSys

Expected state: Integration layer

• Test case #2 for sendXMLToMgmSys

Origin state: Integration Layer

Test Path: e convertFileToXML e nextLine sendXMLToIntegration sendXMLToMgm-
Sys sendXMLToMgmSys

Expected state: Integration layer

• Test case #3 for sendXMLToMgmSys

Origin state: Integration Layer

Test Path: e convertFileToXML e nextLine getProduct sendXMLToIntegration sendXML-
ToMgmSys

Expected state: Integration layer

32 TEST CASE GENERATION FOR STATECHARTS 3.3

• Test case #4 for sendXMLToMgmSys

Origin state: Integration Layer
Test Path: e convertFileToXML e nextLine getProduct getQuantity sendXMLToInte-
gration sendXMLToMgmSys
Expected state: Integration layer

• Test case #5 for sendXMLToMgmSys

Origin state: Integration Layer
Test Path: e convertFileToXML e nextLine getProduct getQuantity EOF sendXML-
ToIntegration sendXMLToMgmSys
Expected state: Integration layer

Notice that, in each case, ∆File processing in the Integration layer ’s coverage was replaced
by a substate’s coverage path.

3.3 Test cases for complex statecharts: orthogonality
Now, we shall consider statecharts that comprise orthogonality (states in concurrent

regions).
A method to generate test cases dealing with orthogonality is to eliminate it by flattening

the statechart, as explained in 2.1.3. The elimination of orthogonality would be done with
the Cartesian product of all states and transitions, causing an explosion in the number of
result states and transitions [5].

To avoid states and transitions explosion and still be able to cover all states and test
all transitions, [5] offers an alternative approach to refine the concurrency requisites. In the
present project, we chose to use the strong concurrency refinement:

• Strong concurrency

This refinement allows us to test concurrent components separately. Transitions from
each concurrent region are triggered one-by-one in different steps. In this case, we
consider that the concurrent regions are placed in units which either run in parallel
or in different processors. So no concurrent region may cause missing transitions in
another one or misdirected transitions.

The communication resources, as broadcasting, should be disabled during testing since
it could cause series of transitions to occur. A chain reaction would be an example of such
series and would not be expected by the test cases listed using this implementation.

In order to create the test cases for statecharts that comprise concurrent regions, we
first compute the coverage paths for each concurrent region separately. Then, similarly to
the case with hierarchy, we combine these paths with the coverage path of the state that
contains the concurrent regions. After obtaining the coverage path for all states, set C is
complete.

In the pseudocode below, we consider that substates are in a region inside the superstate.
To apply it to statecharts with hierarchy, discussed in section 3.2, we must consider that the
superstate have only one internal region, which will contain the substates. In statecharts with
concurrency, the concurrent elements must be in different regions inside a superstate (Figure
3.3 serves as an example to illustrate all this). The solution presented in the pseudocode
can be applied to states with orthogonality as well as to ones with hierarchy only. It first
calculates the State Cover set, set C:

3.3 TEST CASES FOR COMPLEX STATECHARTS: ORTHOGONALITY 33

//Recurs ive func t i on t ha t w i l l do a l l the work
// re turns the S ta t e Cover se t , or s e t C
Set constructSetCRec (State s , Path p , Set setC , L i s t v i s i t e d) {

v i s i t e d . add (s) ;

setC . add (s , p) ;

i f (s . containsSubRegions ()) {

for (Region r in s . ge tSubreg ions ()) {

Set subSetC = constructSetC (r . g e t I n i t i a l S u b s t a t e ()) ;

r . addSubpaths (subSetC) ;

setC . remove (s , p) ;

for (State subs ta t e in s . ge tSubs ta te s ()) {

Path par t i a lPath = subSetC . getPath (subs ta t e) ;

Path substateCoveragePath = p + par t i a lPath ;

setC . add (substate , substateCoveragePath)
}

}

}

for (Trans i t i on t in s . getOutgGoingTrans it ions ()) {

State nextState = t . getDest iny () ;

i f (! v i s i t e d . conta in s (nextState)) {

i f (s . c on ta in sSubs ta t e s ()) {

Path nextCoveragePath = p + ∆s + t . getLabe l ()) ;

} else {

Path nextCoveragePath = p + t . getLabe l ()) ;

}

constructSetCRec (nextState , nextCoveragePath , setC , v i s i t e d) ;
}

}

return setC ;
}

Listing 3.6: Recursive State Cover construction for a statechart with orthogonality

Once the C set is built, the test cases for each transition of the model can be gener-
ated. This process is the same as the one described in the case with hierarchy in 3.2, since
concurrent states are inside a superstate.

34 TEST CASE GENERATION FOR STATECHARTS 3.3

Figure 3.3: Statechart model for concurrent jobs: clear reservations job and send email job

To illustrate this case, we can look at the example provided in Figure 3.3. It models
an e-commerce application in which the administrator is allowed to execute two jobs: one
is to clear all the reservations of products (region Clear reservations job in the figure) and
the other one is to send emails to customers letting them know certain products are back
in stock (region Email job in the figure). Both jobs can run in parallel if the administrator
wishes, thus their regions are modelled in a concurrent way in the statechart. This statechart
models the requirement described in Subsection 2.6.4.

According to our refinement, the coverage paths will be created for substates in Clear
reservations job and Email job separately. First, the substates in Clear reservations job
concurrent region are inside state Stock update email, hence we need to apply the algorithm
presented above. Note that since the coverage path of Stock update email is just the empty
string e, it will not have a great impact on the substates paths. Let’s consider Product
retrieved and Stock level updated to exemplify the results:

State Coverage path
Product retrieved e e startClearJob retrieveReservedProducts nextProd-

uct
Stock level updated e e startClearJob retrieveReservedProducts nextProd-

uct updateStockLevel

The coverage paths for substates in region Email job can be built using a similar process.
For instance, the coverage path for Email sent is:

State Coverage path
Email sent e e startEmailJob filterStockUpdates retrieveUsersE-

mails sendEmails

3.3 TEST CASES FOR COMPLEX STATECHARTS: ORTHOGONALITY 35

The generation of the test cases, then, is similar to the one presented in Section 3.2. But,
when there is orthogonality, we need to consider the coverage paths of substates from all
concurrent regions in a state during the expansion phase. For the example in Figure 3.3,
since there is no state after Stock updated email, no expansion of coverage paths will be
needed.

For example, let’s consider the test cases for transitions nextProduct, from state Stock
level updated, and sleep, from state Email sent. We need to append these transition labels
to the coverage path of their origin state. Therefore, nextProduct will be appended to the
coverage path of Stock level updated, and sleep to the coverage path of Email sent :

• Test case for nextProduct

Origin state: Stock level updated

Test Path: e e startClearJob retrieveReservedProducts nextProduct updateStockLevel
nextProduct

Expected state: Product retrieved

• Test case for sleep

Origin state: Emails sent

Test Path: e e startEmailJob filterStockUpdates retrieveUsersEmails sendEmails sleep

Expected state: Idle

Chapter 4

Formal property extraction from test
cases

In this chapter we propose a technique to automatically specify formal properties from
the test cases generated in the previous chapter. Since a great number of test cases might be
generated, we should be able to identify the more relevant patterns among them. In order
to do so, we will apply the mining concepts and PrefixSpan algorithm presented in Section
2.5 to extract patterns, which will later be used to derive the properties.

In the next sections of this chapter we describe the techniques and algorithms used to
automatically specify formal properties in LTL, linear temporal logic.

4.1 Test case mining
In Chapter 3, we presented a technique to automatically generate test cases from state-

charts specifications. Each test case presented consisted of a transition t we wished to test,
a test path p to activate the transition and a state s which was the expected state t would
redirect to.

The test path p is basically a sequence of consecutive events. Therefore, it is possible to
analyse it with the concepts and notation shown in Section 2.5. Let’s say that p is a sequence
of events e1, e2, ..., en (in this order). We can associate a sequence sp to the test path p such
that sp = [Tp < e1e2...en >], where Tp is an arbitrary unique ID.

The set of test cases automatically generated from the statechart, can then be seen as a
sequence database. Hence, we are able to apply sequential pattern mining algorithms, such
as PrefixSpan (Section 2.5), to acquire the most frequent patterns in the set of test cases.
The user defines the minimum support for the mining algorithm and then obtains the most
frequent subsequences in the set of test paths.

The most frequent subsequences returned by the mining play an important role during
testing, due to the fact that they are the ones mostly stressed in the testing criterion. If
a subsequence < abc > is considered a frequent pattern with minimum support of 60%, it
means that events a, b and c will be executed in this order at least 60% of the time during
the test activity.

Furthermore, mining these sequences also points out which event subsequences most test
cases rely on. This means that a defect in any of them would block a considerable amount
of test cases execution. Considering the previous example with pattern < abc > and 60% of
minimum support. If there is bug in the system that damages the execution of events a, b
and c in this order, then it implies that at least 60% of the test case execution would be
harmed as well, impacting on the system delivery to the client.

37

38 FORMAL PROPERTY EXTRACTION FROM TEST CASES 4.2

In conclusion, the advantage of using a mining technique is that, besides reducing the
amount of sequences to be analysed, it provides subsequences that are more relevant to the
testing process. Since these subsequence patterns are important to testing, they should also
be important to the system execution as a whole.

4.1.1 The SPMF framework

In our implementation, we used the Sequential Pattern Mining Framework (SPMF)[12]
to perform the test case mining. SPMF is an open-source data mining library written in
Java, specialised in sequential mining. It was easily integrated with our Java code, even
though it can be used as a standalone application.

It offers several mining algorithms implementations, not only for sequential mining, but
also for association rule and clustering classification. For the purpose of this project, we
chose the provided PrefixSpan algorithm due to the empirical analysis presented in [27]
demonstrating that it would be more efficient than other classic sequential pattern mining
algorithms, such as the GSP algorithm.

The algorithm receives as input the sequence database and the minimum support value
provided by the user. It then computes the most frequent subsequence patterns, which
are internally stored and used during the creation of the formal properties. Note that our
implementation does not output the discovered patterns, since this is not the final goal of the
project. We use the subsequence patterns returned by SPMF for the property generation.

4.1.2 Test case mining example

To illustrate the mining technique, let’s consider the test paths generated for the state-
chart in 3.1 presented in Table 4.1. The PrefixSpan implementation of SPMF requires an
input file such that there must be one sequence per line, each event must be delimited by
−1 and each line must end with −2.

Inputting sequences in Table 4.1 to PrefixSpan with minimum support of 70%, we get
as output the patterns presented in Table 4.2. We can then notice, for instance, that events
doLogin, searchLineNumber and searchEmployee occur in this order in at least 70% of the
generated test cases.

4.2 Generation of properties from most frequent test case
patterns

Based on the patterns obtained through the usage of PrefixSpan shown previously,
we can automatically define formal properties to be verified. For this project we chose two
property specification patterns, explained in Section 2.4.2, from [8]: the response and exis-
tence patterns. First, we go through the most frequent patterns based on a user minimum
support and compute the formal response properties. Second, we try to find patterns that
are common to all of the test cases to be able to apply the existence specification.

4.2.1 Response property specification

The creation of response properties is done using as input the patterns mined by PrefixSpan
in the previous step. In each sequence pattern, we obtain pairs of consecutive events and

4.2 GENERATION OF PROPERTIES FROM MOST FREQUENT TEST CASE PATTERNS 39

Test paths for 3.1
doLogin -1 -2
doLogin -1 searchLineNumber -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setEmployeeUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setEmployeeUser -1 emptyCart
-1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setCommittedUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setCommittedUser -1 emptyCart -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setNotCommittedUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setNotCommittedUser -1 proceedCheckout -1 -2

Table 4.1: Test paths obtained from the test cases generated for statechart in Figure 3.1

doLogin -1
doLogin -1 searchEmployee -1
doLogin -1 searchLineNumber -1
doLogin -1 searchLineNumber -1 searchEmployee -1
searchLineNumber -1
searchLineNumber -1 searchEmployee -1
searchEmployee -1

Table 4.2: Patterns extracted from sequences in Table 4.1 with minimum support of 70%.

establish a property that the second event must respond to the first event of the pair. The
global scope was used. The pseudocode can be found below:

//Method to wr i t e the s p e c i f i c a t i o n o f formal response p r o p e r t i e s
// I t r e c e i v e s as argument a sequence pa t t e rn

Set propertySet = new Set () ;

Set ex t rac tResponsePrope r t i e s (Sequence pattern) {

for (i = 0 ; i < pattern . l ength − 1 ; i++) {
Event P = pattern . getEvent (i) ;
Event S = pattern . getEvent (i +1) ;

Property responseProperty = �(P. getName () → ♦ S . getName ()) ;

i f (! propertySet . conta in s (responseProperty))
propertySet . add (responseProperty) ;

}

40 FORMAL PROPERTY EXTRACTION FROM TEST CASES 4.2

return propertySet ;
}

Listing 4.1: Pseudocode to extract response properties from the mining results

To illustrate this phase, take as example the test cases automatically generated for stat-
echart in Figure 3.1, presented in Table 4.1. With a minimum support of 70%, the most
frequent patterns returned are displayed in Table 4.2. Applying each one of these patterns
as input to the method extractResponseProperties, we obtain the following response proper-
ties:

Informal description Formal specification
searchLineNumber responds to doLo-
gin

�(doLogin→ ♦searchLineNumber)

searchEmployee responds to doLogin �(doLogin→ ♦searchEmployee)
searchEmployee responds to searchLi-
neNumber

�(searchLineNumber → ♦searchEmployee)

Table 4.3: Properties automatically extracted from patterns in 4.2.

These properties reflect some of the requirements of the specification. The login has to
be performed so that the system can access users information: the corresponding users line
number or if users are employees of the company, for example. Besides that, according to
the flow described by the statechart (Figure 3.1), the employee verification should be done
after the line number is retrieved, as stated in the third property.

It is possible to realise that some of the generated properties contain events in common.
Therefore, we can combine them in order to reduce the number of properties that should be
verified by the model checker. Let’s consider, for example, the first and second properties
described in Table 4.3:

�(doLogin→ ♦searchLineNumber)
�(doLogin→ ♦searchEmployee)

Events searchLineNumber and searchEmployee respond to the same event doLogin. Hence,
we synthesise both properties in a new more concise one:

�(doLogin→ ♦(searchLineNumber ∧ searchEmployee))

Then, we are left only with to properties to be passed to the model checker:

Informal description Formal specification
searchLineNumber and
searchEmployee responds
to doLogin

�(doLogin→ ♦(searchLineNumber ∧ searchEmployee))

searchEmployee responds to
searchLineNumber

�(searchLineNumber → ♦searchEmployee)

Table 4.4: Combined properties from 4.3.

4.3 GENERATION OF PROPERTIES FOR SPECIFIC EVENTS 41

4.2.2 Existence property specification

In order to use the existence specification pattern, we must find sequence patterns that
are present in the whole set of test cases. In other words, we should perform the test case
mining stage with a minimum support of 100%. If any such pattern is found, we use the
global scope and define an existence property, meaning that for every path taken, we will
eventually find that pattern. Considering that a list of events was found as patterns with
support of 100%, the following pseudocode can be used:

//Method to wr i t e the s p e c i f i c a t i o n o f formal e x i s t e n c e p r o p e r t i e s
// I t r e c e i v e s as argument a l i s t o f even t s t h a t were found during mining

wi th suppor t o f 100%

Set propertySet = new Set () ;

Set e x t r a c tEx i s t en c eP rope r t i e s (L i s t commonEvents) {

for (i = 0 ; i < pattern . l ength ; i++) {
Event P = pattern . getEvent (i) ;

Property ex i s t encePrope r ty = ♦(P. getName ()) ;

i f (! propertySet . conta in s (ex i s t encePrope r ty))
propertySet . add (ex i s t encePrope r ty) ;

}

return propertySet ;
}

Listing 4.2: Pseudocode to extract existence properties from the mining results

Still considering test cases in Section 4.1 to illustrate the process, the only event returned
by the mining phase with 100% of support is doLogin. Thus, we are able to specify one
existence property that indicates that the event doLogin must occur, no matter the execution
path is taken:

Informal description Formal specification
doLogin must occur ♦(doLogin)

Table 4.5: Existence property extracted from 4.1.

In the that case more than one event is present in all test cases, then we can combine
them to create a single existence property to be verified by the model checker. Suppose
events a, b and c are present in all test cases of a certain statechart model. Then, we could
combine their existence properties in the following single property:

♦(a ∧ b ∧ c)

4.3 Generation of properties for specific events
Due to the fact only the patterns returned by the sequential mining are considered to

derive the property specifications, only the events that appear more often in the test cases
are going to be selected to create properties. Rare events are discarded when the minimum
support is too high. An immediate solution would be to set the minimum support as a lower

42 FORMAL PROPERTY EXTRACTION FROM TEST CASES 4.3

doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setCommittedUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setCommittedUser -1 emptyCart -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setNotCommittedUser -1 -2
doLogin -1 searchLineNumber -1 searchEmployee -1 setRegularUser -1 searchCon-
tract -1 setNotCommittedUser -1 proceedCheckout -1 -2

Table 4.6: A database for event setRegularUser.

setRegularUser
setRegularUser, searchContract
setRegularUser, searchContract, setNotCommittedUser
setRegularUser, searchContract, setNotCommittedUser,proceedCheckout
setRegularUser, searchContract, emptyCart
doLogin, searchEmployee, setRegularUser
doLogin, searchEmployee, setRegularUser, searchContract
doLogin, searchEmployee, setRegularUser, searchContract, setNotCommittedUser
doLogin, searchEmployee, setRegularUser, searchContract, setNotCommittedUser,
proceedCheckout

Table 4.7: Some sequence combinations generated by PrefixSpan for setRegularUser.

value, but that would cause too many patterns to be selected and many irrelevant properties
might be specified, making the model checking process more costly in time and resources.

Taking these aspects into account, we propose a solution that gives to users the option
to input specific events to which they want properties to be specified. This approach allows
rare events to be handled properly and, since the user is able to check which properties
were automatically generated with mining, becomes a general solution to formally specify
event-based requirements.

For the specific event l defined by user, we initially select the test cases that contain l
to construct our sequence database. Secondly, we run the PrefixSpan provided by SPMF
with minimum support of 0, which will output all possible sequence combination present in
the database that contains the event l. Then, we are able to construct response property
specifications for l.

As an example, consider the setRegularUser event, which is not present in the properties
of Table 4.3 generated with minimum support of 70%. Suppose a user wishes to obtain
response properties with this event and inputs it in our implementation.

We, then, construct a new sequence database that has only sequences comprising the
event setRegularUser. The next step is to run PrefixSpan with minimum support of 0.
With that input value, the algorithm will generate all possible combinations that can be
derived from the specific database. To illustrate this, we provide a database in Table 4.6 and
some of the possible combinations in Table 4.7.

4.3 GENERATION OF PROPERTIES FOR SPECIFIC EVENTS 43

Finally, for each sequence combination returned, we can specify the related response
property. The pseudocode is similar to the one in Section 4.2.1:

//Method to wr i t e the s p e c i f i c a t i o n o f formal response p r o p e r t i e s
// I t r e c e i v e s as argument a sequence combination and the s p e c i f i c event

Set propertySet = new Set () ;

Set ex t rac tResponsePrope r t i e s (Sequence combination , Event s p e c i f i c) {

for (i = 0 ; i < pattern . l ength − 1 ; i++) {
Event P = pattern . getEvent (i) ;
Event S = pattern . getEvent (i +1) ;
i f (P == s p e c i f i c or S == s p e c i f i c) {

Property responseProperty = �(P. getName () → ♦ S . getName ()) ;

i f (! propertySet . conta in s (responseProperty))
propertySet . add (responseProperty) ;

}
}
return propertySet ;

}

Listing 4.3: Pseudocode to extract response properties for a specific event

Considering the whole set of combinations for setRegularUser, the response properties
below are automatically specified:

Informal description Formal specification
setRegularUser responds to
searchEmployee

�(searchEmployee→ ♦setRegularUser)

searchContract responds to setRegu-
larUser

�(setRegularUser → ♦searchContract)

setRegularUser responds to searchLi-
neNumber

�(searchLineNumber → ♦setRegularUser)

setCommittedUser responds to setReg-
ularUser

�(setRegularUser → ♦setCommittedUser)

setNotCommittedUser responds to se-
tRegularUser

�(setRegularUser → ♦setNotCommittedUser)

setRegularUser responds to doLogin �(doLogin→ ♦setRegularUser)
emptyCart responds to setRegularUser �(setRegularUser → ♦emptyCart)
proceedCheckout responds to setRegu-
larUser

�(setRegularUser → ♦proceedCheckout)

Table 4.8: Response properties for event setRegularUser.

Moreover, we can summarise the extracted properties by combining them in a similar
process as presented in Section 4.2.1. There are properties in which some event responds
to setRegularUser, while in other properties setRegularUser responds to some event. Hence,
we are left with the following two more concise properties to use in the model checking
verification:

• Informal description: emptyCart, proceedCheckout, setCommittedUser, setNotCom-
mittedUser and searchContract respond to setRegularUser

44 FORMAL PROPERTY EXTRACTION FROM TEST CASES 4.3

Formal specification: �(setRegularUser → ♦(emptyCart ∧ proceedCheckout
∧setCommittedUser ∧ setNotCommittedUser ∧ searchContract))

• Informal description: setRegularUser responds to doLogin, searchLineNumber and
searchEmployee

Formal specification: �((doLogin ∨ searchLineNumber ∨ searchEmployee)→
♦(setRegularUser))

Chapter 5

Tools demonstration

To illustrate the whole process of generating test cases, extracting formal properties and
how our implemented tools work, we will use as an example the statechart model given
in Figure 5.1, created with the Yakindu Statechart Tools [1]. It models the requirement
described in 2.6.2: The order processing of an e-commerce portal after the user concluded the
purchase. An order is made of entries, each one containing a product and its corresponding
quantity. The order information must be converted into a XML file that will be sent to an
integration layer. In parallel to the XML preparation, a job is executed to send to customers
an email informing that their order is being processed.

Figure 5.1: Statechart model for order processing

45

46 TOOLS DEMONSTRATION 5.2

5.1 Test case generation tool
The interface of test generation tool is displayed in Figure 5.2.

Figure 5.2: Test case generator interface.

We start by opening the statechart we created with Yakindu Statechart Tools. Then, we
click on button Create test cases and the created test cases will be outputted on the screen,
as shown in Figure 5.3. Note that the table is splitted in four columns:

• State, which tells from which state we are taking a transition

• Transition, which informs the transition that is being tested

• Test path, which contains the path to execute that transition

• Expected state, which is the expected state we should get when that transition is taken

If we click on export in SPMF format, we are able to save the test paths in a text file
(using a standard format for the framework SPMF). For our working example, the test
paths saved in the standard format are displayed in Figure 5.4.

We are also able to export the information from all columns to a .csv file, which can be
read by most spreadsheet softwares in the market. Just click on button Export to .csv.

5.2 Formal property specification tool
The interface of our formal property specification tool is displayed in Figure 5.5. It

contains two tabs:

5.2 FORMAL PROPERTY SPECIFICATION TOOL 47

Figure 5.3: Test cases created for statechart 5.1.

• Properties based on test case mining, where properties will be specified based on the
results returned by sequential mining

• Properties for specific events, where the user is able to specify an event and properties
related to it will be displayed.

Initially, we open the file created by our test case generator in SPMF input format, pass
a minimum support of 0.3 (30%) and click on Specify properties to generate the properties,
as displayed in Figure 5.6

Response properties are displayed in the first panel, together with the combined proper-
ties. Existence properties are shown in the second panel together with their combinations.
In both panels there are two columns:

• Informal description, that contains a description of the property in natural language

• Formal property, where the formal specification in LTL is displayed.

Notice that, in case a sequence is ignored in the mining process, its ID will be displayed
in the bottom area Not used sequences. The ID of a sequence corresponds to the line number
where the sequence is located.

If we change to tab Properties for specific events, we can obtain response properties for
a specific event. In our example, we passed as input the event sendEmail and, once Specify
properties is clicked on, the response properties are displayed as shown in Figure 5.7. Note
that combined properties are also displayed.

48 TOOLS DEMONSTRATION 5.2

Figure 5.4: Test paths from 5.1 in the SPMF input format.

5.2 FORMAL PROPERTY SPECIFICATION TOOL 49

Figure 5.5: Property generator tool interface.

50 TOOLS DEMONSTRATION 5.2

Figure 5.6: Properties automatically specified for 5.1 based on the mining of 5.4.

5.2 FORMAL PROPERTY SPECIFICATION TOOL 51

Figure 5.7: Properties specified for sendEmail event.

Chapter 6

Conclusion

The system specification document is a reference to be consulted throughout the entire
software development cycle. For the code implementation, the specification’s relevance is due
to the fact that it contains client’s requirements and project decisions to guide programming.
In the requirements based testing, the specified requirements should also be used in test cases
to validate the observed behaviour and the output of the system comparing to what was
expected. However, the main problem a specification can suffer from is the lack of precision
and completeness. This may cause gaps in understanding during the whole process and
consequently damaging the development and testing activities.

Therefore, manually created test cases based on informal specifications tend to lack accu-
racy and the imprecise information they contain may lead to incorrect conclusions regarding
the quality of the system under consideration. An implementation that passes all test cases
successfully is not guaranteed to have no errors, since the testing may not have covered all
usage scenarios and it certainly did not test all possible inputs.

Formal methods can bring formalism and contribute to the software development process.
Already used in critical systems, they provide techniques with rigorous mechanisms to assure
the quality and safety of the product being delivered. Even though the complexity of general
systems is huge, formal approaches can be applied in different parts of the system, at different
phases of the development.

Consider statecharts for example, a type of formal specification based on finite state
machines. They provide ways to specify flows and scenarios with formalism and precision,
even for concurrent systems. Besides that, they have the visual appeal that facilitates their
comprehension. Tools, such as Yakindu, to create and even simulate their execution are
available and collaborate to their spread in the software engineering community.

Formal verification can also be used in specific components of the system, such as security
protocols. It does not depends on any specific input and, hence, can discover incorrect
behaviours that tests would not be able to find. Moreover, formal verification can prove
the absence of errors, an achievement that is not reachable by testing. Nonetheless, this
approach faces practical obstacles, such as the difficulty to convert informal requisites into
formal properties and the specification language that must be used.

With these issues in mind, we believe that formal techniques should be used along with
testing to improve the quality of systems. The technique to generate test cases from formal
statechart specifications can be used to create test cases with more precision and guide the
test execution. In addition, the automatic synthesis of formal properties provide more au-
tomation to the formal verification process and assist developers to specify relevant properties
of the system. The present work has given a particular solution to automatically generate
test cases for statecharts, considering hierarchy and orthogonality, and to synthesise prop-

53

54 CONCLUSION 6.0

erties from those test cases generated for the statecharts. These two automatic procedures
aims to make easier and cost-effective the tasks of generating test cases and providing formal
properties for systems requirements.

Chapter 7

Subjective chapter

In this chapter the author is free to express his own impressions and opinions about the
knowledge and experience acquired during this project.

7.1 Learning
During this project, I had the opportunity to learn in greater depth some topics in

computer science that were briefly discussed or even not presented in regular courses, such
as testing, formal specification and formal verification.

In relation to formal specifications, it was interesting to realise that statecharts can be
visually appealing and simultaneously provide accuracy to model scenarios. Although they
need to be more spread in the community and industry, statecharts can be applied to real
projects.

The concepts learned about testing complemented the practical experience from the
internship. In addition, I believe that, due to the contact with testing theory, the execution
of my work became more consistent and the maturity level of my professional activities
increased. On the other hand, my practical experience in the market also helped me in
writing this monograph, since I could see many concepts being applied out of the academic
environment.

Finally, it was fun to connect distinct areas (testing, formal specifications, formal verifi-
cation, sequential mining, logic) to automate processes in the software development cycle.

7.2 Challenges
One challenge was to find a free open-source tool to create statecharts. Initially, we were

using a tool that already had test criteria for statecharts, but there were many bugs so we
had to abandon it. Yakindu was a great finding and contributed a lot to the progress of the
project.

Since we could not use the initial tool any more, the test case generation for statecharts
had to be implemented. The orthogonality feature needed more attention, specially to un-
derstand the semantics behind the diagram modelling concurrency.

7.3 Courses
I believe that the Computer Science curriculum offered by the Institute of Mathematics

and Statistics at the University of São Paulo gives to students a broad knowledge of many

55

56 SUBJECTIVE CHAPTER

fields in computer science and a strong mathematical background. From my perspective,
though, some topics should be explored in greater details in the program. For instance, it is
not offered a course regarding software quality, which is an important set of concepts that
are required from students as soon as they start their professional career. The only course
that stressed the importance of testing, but not as a main topic, was Extreme Programming
Lab, which is not even a compulsory course. Moreover, I believe that more techniques and
tools related to formal methods, such as formal specifications, could be presented. Among
the many courses taken, I consider the ones below more directly relevant for the conclusion
of this project:

• MAC0332 - Software Engineering

Comprehension of the activities that take place in the process of software development
and their purposes.

• MAC0414 - Formal Languages and Automata Theory

Studied formalisms and algorithms regarding state machines.

• MAC0239 - Formal Methods in Programming

First contact with formal methods and linear time logic.

• MAC0342 - Extreme Programming Lab

The only course in which students were explicitly required to test their implementa-
tions. Not only unit tests were written, but also acceptance tests with real clients were
performed.

• MAC0242 - Programming Lab 2

More knowledge about Java and object oriented programming were acquired.

Appendix A

Linear Temporal Logic (LTL)

In the next sections we present the syntax and semantics of linear temporal logic based
on [16] and [30].

A.1 Syntax
LTL has the following syntax given in the Backus Naur form:

φ ::= > | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ♦φ | �φ | Xφ | φUφ | φWφ | φRφ

where p ∈ A, the set of propositional atoms.

A.2 Semantics
• Definition: A transition system M = (S,→, L) is a set of states S endowed with a

transition relation → (binary relation on S), such that every s ∈ S has some s′ ∈ S,
and a labeling function L : S → 2A.

• Definition: A path π in model M = (S,→, L) is an infinite sequence s1, s2, ... in S
such that, for each i ≥ 1, si → si+1. We write πi for the suffix starting at si.

Let M = (S,→, L) be a model and π = s1 → ... be a path in M Whether π satisfies an
LTL formula is defined by the satisfaction relation |= as follows:

1 π |= >

2 π 6|= ⊥

3 π |= p⇔ p ∈ L(s1)

4 π |= ¬φ⇔ π 6|= φ

5 π |= φ1 ∧ φ2 ⇔ π |= φ1 and π |= φ2

6 π |= φ1 ∨ φ2 ⇔ π |= φ1 or π |= φ2

7 π |= φ1 → φ2 ⇔ π |= φ2 whenever π |= φ1

8 π |= �φ⇔, for all i ≥ 1, πi |= φ

57

58 APPENDIX A

9 π |= ♦φ⇔ there is some i ≥ 1 such that πi |= φ

10 π |= Xφ⇔ π2 |= φ

11 π |= φUψ ⇔ there is some i ≥ 1 such that πi |= ψ and for all j = 1, ..., i− 1 we have
πj |= φ

12 π |= φWψ ⇔ either there is some i ≥ 1 such that πi |= ψ and for all j = 1, ..., i − 1
wwe have πj |= φ; or for all n ≥ 1 we have πn |= φ

13 π |= φRψ ⇔ either there is some i ≥ 1 such that πi |= φ and for all j = 1, ..., i − 1
wwe have πj |= ψ; or for all n ≥ 1 we have πn |= ψ

Bibliography

[1] Yakindu statechart tools. http://www.statecharts.org/. Last accessed in 11/09/2015.
45

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University
Press, 2008. 1, 8, 9, 10

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008. 17

[4] Boris Beizer. Software Testing Techniques. 2 edition, 1990. 8

[5] Kirill Bogdanov. Automated testing of Harel’s statecharts. PhD thesis, Department of
Computer Science, University of Sheffield, January 2000. 23, 27, 32

[6] Jonathan P. Bowen, Kirill Bogdanov, John A. Clark, Robert M. Hierons, and Paul
Krause. Fortest: Formal methods and testing. 1

[7] Edsger W. Dijkstra. The humble programmer. ACM Turing Lecture 1972. 1, 17

[8] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification
patterns for finite-state verification. In 2nd Workshop on Formal Methods in Software
Practice, May 1998. 18, 38

[9] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st International Con-
ference on Software Engineering, May 1999. 18

[10] L.-H. Eriksson and K. Johansson. Using formal methods for quality assurance of inter-
locking systems. 16

[11] Formal Methods Europe. Formal methods. http://www.fmeurope.org/?page_id=2.
Last accessed in 11/11/2015. 1

[12] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu., and V. S. Tseng.
SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning
Research (JMLR), 15:3389–3393, 2014. 38

[13] Irbis Gallegos, Omar Ochoa, Ann Gates, Steve Roach, Salamah Salamah, and Corina
Vela. A property specification tool for generating formal specifications: Prospec 2.0. 2,
17, 18

[14] Patrice Godefroid. Combining model checking and testing. 17

59

http://www.statecharts.org/
http://www.fmeurope.org/?page_id=2

60 BIBLIOGRAPHY

[15] David Harel, Amir Pnueli, Jeanette Schmidt, and Rivi Sherman. On the formal seman-
tics of statecharts. In Proceedings of Symposium on Logic in Computer Science, pages
55–64, 1987. 1, 3, 4, 6

[16] Michael Hauth and Mark Ryan. Logic in computer science. Modelling and reasoning
about systems. Cambridge University Press, 2 edition, 2004. 1, 57

[17] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, Inc, 2 edition, 1998. 3, 4

[18] Lu Luo. Software testing techniques - technology maturation and research strategy.
Technical report, Institute for Software Research International, Carnegie Mellon Uni-
versity, Pittsburgh,USA. 1, 8

[19] Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algo-
rithms. ACM Computing Surveys, 43, 2010. 19, 20

[20] José Carlos Maldonado, Ellen Franciane Barbosa, Auri M. R. Vincenzi, Márcio Eduardo
Delamaro, Simone do Roccio Senger de Souza, and Mario Jino. Introdução ao teste de
software, 2004. 10

[21] José Carlos Maldonado, Márcio Eduardo Delamaro, and Mario Jino. Introdução ao
Teste de Software. Elsevier, 2007. 14

[22] Tom Mens. Yakindu statechart tools video tutorials. http://statecharts.org/videos.
html. Last accessed in 11/18/2015. 5

[23] Stephan Merz. Model checking: A tutorial overview. 18

[24] NASA Langley Formal Methods. What is formal methods? http://shemesh.larc.nasa.
gov/fm/fm-what.html. Last accessed in 11/11/2015. 1

[25] Glenford J. Myers, Tom Badgett, and Corey Sandler. The art of software testing. John
Wiley & Sons, Inc, 3ž edition, 2012. 8

[26] NASA. Testing vs. model checking. http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/
testing_vs_model_checking#no1. Last accessed in 11/07/2015. 17

[27] Jian Pei, Behzad Mortazavi-Asl, and Umeshwar Dayal. Mining sequential patterns by
pattern-growth: The prefixspan approach. IEEE Transactions on Knowledge and Data
Engineering, 16, 2004. 19, 20, 21, 38

[28] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generaliza-
tions and performance improvements. 19, 20

[29] Jeff Tian. Software Quality Engineering. John Wiley & Sons, 2005. 17

[30] Wikipedia. Linear temporal logic. https://en.wikipedia.org/wiki/Linear_temporal_
logic. Last accessed in 11/11/2015. 1, 57

[31] Érica Ferreira de Souza. Geração de casos de teste para sistemas da área espacial usando
critérios de teste para máquinas de estados finitos. Master’s thesis, Instituto Nacional
de Pesquisas Espaciais - INPE, São José dos Campos,Brazil, February 2010. 14, 15, 16

http://statecharts.org/videos.html
http://statecharts.org/videos.html
http://shemesh.larc.nasa.gov/fm/fm-what.html
http://shemesh.larc.nasa.gov/fm/fm-what.html
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking#no1
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking#no1
https://en.wikipedia.org/wiki/Linear_temporal_logic
https://en.wikipedia.org/wiki/Linear_temporal_logic

	Introduction
	Motivation
	Goals
	Organization

	Concepts
	Statecharts and Automata
	Nondeterministic finite automata
	Statechart models
	A statechart and its corresponding automaton

	Software testing
	Testing goals
	The process of testing
	Functional and Structural tests

	Test cases
	Desiging test cases
	Automatic generation of test cases

	Model checking
	Property definition
	Specification patterns

	Sequential pattern mining
	An example: Web usage mining
	Sequential pattern mining algorithms

	Working example
	Requirement 1: Change current mobile plan
	Requirement 2: Process orders received in the portal
	Requirement 3: Process orders received by file
	Requirement 4: Update stock levels of products

	Test case generation for statecharts
	Test cases for simple statecharts
	Test cases for complex statecharts: hierarchy
	Test cases for complex statecharts: orthogonality

	Formal property extraction from test cases
	Test case mining
	The SPMF framework
	Test case mining example

	Generation of properties from most frequent test case patterns
	Response property specification
	Existence property specification

	Generation of properties for specific events

	Tools demonstration
	Test case generation tool
	Formal property specification tool

	Conclusion
	Subjective chapter
	Learning
	Challenges
	Courses

	Linear Temporal Logic (LTL)
	Syntax
	Semantics

	Bibliography

