Thermal Field Tests

Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999

Skylight Thermal Performance

- Electrochromic--Summer
- Conventional Skylights
 - Flat--Summer & Winter
 - Domed--Winter

EnergyPlus Validation

• Utilization of existing data

Why Skylight Performance?

- ~10% of fenestration sales
- Popular architectural feature
- Daylighting potential in comm. bldgs.
- Equal treatment in NFRC ratings
- Early market niche for electrochromic glazings

• Electrochromic Skylights

Control in Electrochromic Skylights

Conventional skylights--significant differences from standard NFRC model

Current Work-Skylights

 The skylight test configuration has a light well depth comparable to a slant-roof residential application

Current Work-Skylights

Conventional skylights--Daytime heat rejection depends on well, occurs in all seasons

Skylight & Light Well Show a "Thermal Diode" Effect

- Reduced heat transfer in heat gain mode
- Enhanced heat transfer in heat loss mode

Current Work--Skylights

Overall winter performance

- Actual U-Factor worse than calculated with standard NFRC model
- Offset by diffuse solar gain
- Direct solar makes significant difference

Daily Heat Loss

Calculated Clear Double from NFRC U Factor, No Solar Gain Clear Double Measured

EnergyPlus validation

- Utilize existing MoWiTT
 measurements
- Re-do unpublished DOE2 study for EnergyPlus
- Produce standardized data set for BSM validation

Space Load

Conclusions (Current Work)

• Electrochromic skylights reduce heat gain under extreme summer conditions

- Full exploration of control & its effect on performance requires other conditions
- Skylight/light well shows a "thermal diode" effect
- Significant potential for EnergyPlus validation

EnergyPlus Validation

- Mine MoWiTT data set for test situations
- New experiments: MoWiTT is near-ideal apparatus for testing perimeter space & equipment modeling

• A model of skylight well efficiency

- Dependence on well depth & geometry?
- Coupled radiation/convection model needed
- MoWiTT experiments to develop & validate model

- Optimal window strategies for US northern tier
 - Focused validation of current annual calculation method based on DOE2/RESFEN
 - Critical review of modeling input assumptions (esp. incident solar)
 - Economic/energy/carbon analysis

- Does the air leakage test on windows allow correct prediction of air infiltration/exfiltration rates?
 - Direct comparison of windows with different leakage rates
 - Measurement of pressure differential, infiltration rate (by tracer gas), wind
 - Separation of infiltrating & exfiltrating modes

Conclusions (General)

MoWiTT has a unique role in assuring tests/simulations represent actual fenestration performance

- More fenestration issues to be addressed
 - Skylight well, electrochromic control, air infiltration
- Public sector vs industry goals
 - Different focus: Insuring public benefit may take more research than increasing sales or market share

Conclusions (General)

MoWiTT "simulation mode" capabilities can benefit other areas besides fenestration

- EnergyPlus validation
- Methods for next-generation perimeter space modeling (e.g., CFD)
- Programmatic utilization of facility should be broadened to maximize DOE's ROI