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EXECUTIVE SUMMARY 

Juvenile steelhead (Oncorhynchus mykiss) migrating downstream in the San Joaquin River are vulnerable to 

mortality from a variety of stressors.  Two of these stressors are entrainment and predation (entrainment at State 

Water Project [SWP] and federal Central Valley Project [CVP] facilities, and exposure to predation within the 

Sacramento-San Joaquin Delta [Delta] and predation near and associated with the two facilities).  The SWP and 

CVP facilities are south of the confluence of the San Joaquin and Sacramento rivers.  Export of water can change 

the flow dynamics in the central and south Delta (e.g., Old and Middle River [OMR] reverse flows, flows passing 

into Old River, etc.).  All OMR flows referred to in this report are average daily values.  The hydrodynamic 

changes have been hypothesized to result in altered migration pathways, migration delays, and other indirect 

effects that contribute to reduced survival of juvenile salmonids passing through the lower San Joaquin River and 

Delta.  To protect fish, SWP and CVP export rates in the late winter and spring months have been regulated to 

reduce the magnitude of OMR reverse flows.   

Current management actions are calendar and trigger based during the period when Endangered Species Act 

(ESA)-listed salmonids are present in the Delta.  Triggers are based, in part, on rates of entrainment of fish at the 

SWP and CVP.  If salmonid protection measures could be implemented based on fish presence farther from the 

export facilities, it is hypothesized that:  (1) the direct and indirect risks to salmonids associated with the export 

facilities may be reduced, and measurement of take at SWP and CVP facilities can be replaced with other metrics 

for reducing impacts from the water projects; and (2) exposure of ESA-listed salmonids to predation in the south 

Delta channels can be reduced. 

On January 12, 2012, Plaintiffs, Plaintiff-Intervener, and Federal Defendants to the Consolidated Salmonid Cases 

(Case 1:  09-cv-Ol 053-LJO-DLB) signed and filed a Joint Stipulation (Document 659-2; Attachment 1 in NMFS 

2012) that specified a collaborative acoustic tag study for steelhead and CVP and SWP operations for April and 

May 2012 (NMFS 2012).  The three objectives for the 2012 Stipulation Study were to:  

(1) Evaluate potential effects of OMR flows during April and May on the survival, migration rate, and net 

migration direction of acoustically tagged juvenile steelhead in the Delta. 

(2) Estimate the route entrainment of acoustically tagged juvenile steelhead in the Delta under different tidal 

conditions and OMR flows. 

(3) Provide daily and weekly steelhead tag detection data that could be used to adaptively manage OMR 

flows within the adaptive range specified in the Joint Stipulation.  

To address the Joint Stipulation objectives, in the spring of 2012, a mark-recapture experiment was implemented 

by the California Department of Water Resources (the Department) and its contractors, with collaboration from 

the United States Bureau of Reclamation (Reclamation), United States Fish and Wildlife Service (USFWS), and 

United States Geological Survey (USGS) to examine the survival and movement patterns of acoustically tagged 

juvenile steelhead emigrating through the central and southern Delta.  This field experiment implemented 

different OMR flow levels for three, 2-week release periods when acoustically tagged steelhead were used to 

gather information about the responses of tagged fish to different hydrodynamic conditions.  During the study, the 

Head of Old River Barrier (HORB) was in place, which prevented flow from entering the interior Delta through 

Old River and directed flow along the Mainstem San Joaquin River.  Included in the study was an “exposure 

trigger” that, if reached or exceeded, shifted operations from the experimental OMR flow level to the least 

negative OMR flow level within the adaptive range.  This was intended to protect naturally produced steelhead 

migrating through the Delta by shifting hydrodynamic conditions in a direction that may be less disruptive to 

outmigration routing while simultaneously allowing investigation of the response of steelhead tags to changes in 

OMR flow levels.  This “Railroad Cut trigger” was calculated as 5% of the release group reaching the acoustic 

receiver arrays at Railroad Cut, under the assumption that 5% of fish arriving at Railroad Cut would be expected 

to result in a 2% loss of the release group at the fish collection facilities (NMFS 2012). 
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The original experimental design called for each 2-week experimental period to represent one of three OMR 

reverse flow magnitude targets (-1,250, -3,500, and -5,000 cubic feet per second [cfs]).  Average observed OMR 

flows during the first 7 days following release were -2,446, -2,933, and -5,038 cfs for Release Groups 1, 2, and 3, 

respectively.  Near-real-time monitoring (i.e., daily data collection) of detections of steelhead tags at Railroad Cut 

exceeded the trigger and caused OMR flow modifications during each experimental period.   

Every 2 weeks, acoustically tagged juvenile steelhead were released at regular intervals over 24 hours at Buckley 

Cove in the lower San Joaquin River.  In total, 166, 167, and 168 acoustic coded transmitters (VEMCO, model 

V6-4X) were functioning in live steelhead for release groups (Group 1, 2, or 3) when released on April 15-16, 

May 1-2, and May 15-16, 2012, respectively.  Tag detection data were collected from 15 acoustic receiver arrays 

deployed for this study and nine acoustic receiver arrays deployed for the Six-Year Steelhead Study (Six-Year 

Study).  The release groups acted as a surrogate for the average OMR flow conditions that occurred during the 

three study periods.  The release groups experienced an "OMR treatment" measured as the average OMR flows 

during the first 7 days of each study period.  Based on a recommendation in the 2012 Independent Review Panel 

(IRP) on the Long-term Operations Opinions (LOO) Annual Review, we also pooled the data from Release 

Groups 1 and 2 and hereafter referred to as the less negative OMR flow treatment because OMR flow levels were 

similar during these two time periods.  We then compared this less negative OMR flow treatment group to the 

more negative OMR flow treatment level experienced by Release Group 3.  The data were examined using both 

qualitative, descriptive analyses and quantitative, statistical hypothesis-testing analyses.  The analyses were 

separated into three report sections based on the spatial level ranging from system, route, and junction-level 

discussion.   

SYSTEM-WIDE LEVEL RESULTS 

System-wide results are those that focus on the large-scale movement patterns across the Delta.  The quantitative 

statistical analyses determined that a physically based model in the form of the Delta Simulation Model II 

(DSM2) Hydro Particle Tracking Model (PTM) was not able to predict the movement of steelhead tags.  The 

model greatly underestimated the steelhead tag movement rate through the study area.  Steelhead tags were 

traveling significantly greater distances than passive particles 3 days and 7 days after their release.  Steelhead 

have a complex set of behaviors and respond to both biotic and abiotic factors that can affect where and how fast 

they migrate.  Further investigation indicated that tags deployed in juvenile steelhead exhibited limited selective 

tidal-stream transport (STST) movement patterns, which could explain why steelhead tags moved far faster than 

passive particles.  This was likely the result of steelhead tags being transported by ebbing tides while holding 

position on flood tides.  This investigation revealed that overall, there seemed to be some evidence that steelhead 

tags were being transported more during the night in the Mainstem San Joaquin River, while more steelhead tags 

were being transported during the day at some interior Delta arrays.   

ROUTE-LEVEL RESULTS 

Route-level analysis refers to the specific travel pathways (routes) that fish can take from one point to another, 

and the survival rates, travel times, and other variables resulting from these different routes.  We examined if the 

route-specific survival probabilities, transition probabilities (a measure of steelhead tags that went through a route 

and survived), and travel times for steelhead tags varied between the routes taken and, where possible, between 

release groups.  Data from the release groups used in the model were pooled, but the individual release group data 

were used to estimate travel times and subsequent travel time analysis. 

A multistate model was built to evaluate route-specific transition probabilities, survival probabilities, and 

detection probabilities of steelhead tags.  This model allowed us to estimate route-specific transition probability 

for each of the six different routes (all routes started downstream of Buckley Cove and ended at Chipps Island): 

► The route-specific probability via Turner Cut was 7.0% (standard error [SE]=1.6%).  

► The route-specific probability without using Turner Cut was 24.8% (SE=2.0%).  
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► The route-specific probability via Turner Cut and the SWP was 0.5% (SE=0.5%).  

► The route-specific probability via the SWP without using Turner Cut was 0.2% (SE=0.2%).  

► The route-specific probability via Turner Cut and the CVP was 19.6% (SE=2.8%).  

► The route-specific probability via CVP without using Turner Cut was 31.7% (SE=1.9%).   

When combined, the model indicated that most steelhead tags remained in the Mainstem San Joaquin River 

(77.6%); however, approximately one quarter (22.4%) of them entered Turner Cut.  The overall survival was 

50.2% (SE=2.0%) for all routes combined.  Route-specific survival probability for steelhead tags using the Turner 

Cut route was 27.0% (SE=3.0%).  The survival probability for steelhead tags using the Mainstem route was 

56.7% (SE=2.4%). 

In an analysis outside of the model, we found that travel times for steelhead tags differed between these two 

routes.  Steelhead tags that used the Mainstem route reached Chipps Island significantly sooner than those that 

used the Turner Cut route.  This result remained valid for all three release groups and when Groups 1 and 2 were 

combined.  Travel time was not significantly affected by the OMR flow treatments examined in this study. 

JUNCTION-LEVEL RESULTS 

The junction-level analysis specifically looked at three locations in the Delta to evaluate the influence of OMR 

flows on steelhead tag movement at these locations.  There was no evidence that the routing of steelhead tags at 

the Columbia Cut, Middle River, and Turner Cut junctions along the San Joaquin River was affected by the OMR 

flow treatments examined in this study.  When the data were examined using two release groups (less negative vs. 

more negative OMR flows), we found no significant differences in routing of the steelhead tags.  While not 

significant, there was some evidence that fish movement toward each export facility could be influenced by 

relative flow entering the export facility. 

One of the goals of this study was to determine whether steelhead tags at Railroad Cut were more likely to move 

away from the SWP and CVP intakes (north) after the adaptive management option triggered less negative OMR 

flows.  This could not be completed in a statistically valid manner because of the small sample size (N=7) of 

steelhead tags passing through Railroad Cut after the effect of the management action was observed (OMR flows 

reached -1,250 cfs).  However, there was marginally significant evidence that steelhead tags at Railroad Cut were 

more likely to move north under less negative (Groups 1 and 2) OMR flows than in more negative (Group 3) 

OMR flow conditions.  We examined nine predictor variables in separate tests.  Only the test that used average 

OMR flow on the day that the steelhead tag was first detected downstream of Railroad Cut was found to be 

significant. 

CONCLUSIONS  

The overarching objectives for this study were to evaluate the effects of OMR flows on survival, migration rate, 

and migration direction; estimate route selection under different OMR flow conditions; and provide steelhead tag 

detection data that could be used to adaptively manage OMR flows.  The quantitative statistical analyses 

determined that the DSM2 Hydro PTM was not able to predict the movement of steelhead tags because the model 

greatly underestimated steelhead tag movement through the study area.  We found that diurnal and nocturnal 

movement patterns of steelhead tags might be occurring, but these patterns were location-specific and worthy of 

future study.   

Under the OMR flow treatments tested in this study, there appeared to be little influence of OMR flows tested on 

steelhead tag travel times on the route-level and steelhead tag movement at the junctions and routes examined in 

this study.  There was limited evidence of an influence of OMR flows on steelhead tag routing at Railroad Cut to 

the south and the export facilities; sample size limited our ability to be more specific.  More than 90% of 

steelhead tags passed the detection point at Railroad Cut before the less negative OMR flow conditions were 

triggered and observed to take effect.   
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Improvements to experimental design of future real-time monitoring studies could be made; however, this study 

indicated that tagged steelhead cannot effectively be used as “sentinels” to trigger export changes.  There is little 

evidence that altering OMR flows within the range that we examined in this study would alter fish behavior in a 

meaningful way.  The observed limited influence of OMR flows evaluated in this study on steelhead tag behavior 

does not support real-time monitoring as an effective tool to protect salmonids from entrainment.   

This study was limited by the amount of time for its preparation and the ranges of OMR flows tested.  Therefore, 

we recommend an additional more comprehensive study that examines a wider range of OMR flows in replicated 

treatments with larger samples sizes as one of the future studies.  
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1 STUDY DESCRIPTION 

CHAPTER SUMMARY: 

On January 12, 2012, Plaintiffs, Plaintiff-Intervener, and Federal Defendants to the Consolidated Salmonid Cases 

(Case 1: 09-cv-Ol 053-LJO-DLB) signed and filed a Joint Stipulation (Document 659-2) that specified Central 

Valley Project (CVP) and State Water Project (SWP) operations for April and May 2012, installation of the Head 

of Old River Barrier (HORB), and broadened acoustic tagging and release program in 2012 to track juvenile 

steelhead (Oncorhynchus mykiss) migrations through the south Sacramento-San Joaquin Delta (Delta) for the 

purpose of generating better information by which to manage south Delta operations and other activities to 

improve fish survival.  The three objectives for the 2012 Stipulation Study were to: 

(1) Evaluate potential effects of Old and Middle River (OMR) flows during April and May on the survival, 

migration rate, and net migration direction of acoustically tagged juvenile steelhead in the Delta. 

(2) Estimate route entrainment of acoustically tagged juvenile steelhead in the Delta under different tidal 

conditions and OMR flows. 

(3) Provide daily and weekly steelhead tag detection data that could be used to adaptively manage OMR flows 

within the adaptive range specified in the Joint Stipulation.   

The 2012 Stipulation Agreement called for the operation and maintenance of an acoustic receiver array in the 

Delta, fish tagging and releases, adaptive management of OMR reverse flow magnitude, and data analysis and 

report writing.  The Stipulation Study was a collaborative project that involved the California Department of 

Water Resources (the Department), some of its contractors (AECOM, Cramer Fish Sciences, Hanson 

Environmental, Inc., and Bole and Associates), United States Bureau of Reclamation (Reclamation), United 

States Fish and Wildlife Service (USFWS), and United States Geological Survey (USGS). 

1.1 STUDY OBJECTIVES 

Objectives for the 2012 Stipulation Study were to: 

► Evaluate potential effects of OMR flows during April and May on the survival, migration rate, and net 

migration direction of acoustically tagged juvenile steelhead in the Delta. 

► Estimate route entrainment of acoustically tagged juvenile steelhead in the Delta under different tidal 

conditions and OMR flows. 

► Provide daily and weekly steelhead tag detection data that could be used to adaptively manage OMR flows 

within the adaptive range specified in the Joint Stipulation. 

1.2 BIOLOGICAL AND REGULATORY BACKGROUND 

Juvenile steelhead and Chinook salmon (Oncorhynchus tshawytscha) migrating downstream in the San Joaquin 

River are vulnerable to entrainment at the SWP and the CVP export facilities and the associated exposure to pre-

screen predation mortality within Clifton Court Forebay and near the trash racks at the CVP fish collection 

facility.  These facilities are located south of the confluence of the San Joaquin and Sacramento rivers 

(Figure 1-1).  Thus, by the time Endangered Species Act (ESA)-listed salmonids (Central Valley steelhead and 

Central Valley winter-run and spring-run Chinook salmon) are detected at the salvage facilities, OMR flow 

changes may be enacted too late to achieve fish protection.  In addition, changes in the direction and/or magnitude 
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of flows in the central and south Delta channels (e.g., OMR reverse flows, flows passing into Old River, etc.) 

have been hypothesized to result in altered migration pathways, migration delays, and other indirect effects that 

contribute to reduced survival of juvenile salmonids passing through the lower San Joaquin River and Delta.  In 

response to these concerns, the National Marine Fisheries Service (NMFS) included several Reasonable and 

Prudent Alternative (RPA) actions in the biological opinion that focused on Delta flow management during the 

winter and spring (NMFS 2009).  SWP and CVP export rates in the late winter and spring months have been 

regulated to reduce the magnitude of OMR reverse flows.  Action IV.2.1 of the biological opinion restricts south 

Delta exports in April and May to a fraction of the flow in the lower San Joaquin River.   

 

Figure 1-1 Locations of Chipps Island, Jersey Point, Railroad Cut, Turner Cut, the SWP, and the 
state and federal export facilities in relation to the 2012 Stipulation Study’s release 
location near Buckley Cove (depicted by the green star). 

Flow management during winter and spring has become the focus of management actions for fish protection 

along the OMR corridor.  These management actions are calendar- and trigger-based during the period when 

ESA-covered salmonids are present in the Delta.  If salmonid protection measures could be implemented based on 

fish presence farther from the export facilities, it is hypothesized that:  (1) the duration of direct risks and indirect 

risks to salmonids associated with the export facilities may be reduced; and (2) exposure of ESA-covered 

salmonids to predation in south Delta channels can be reduced.  The ultimate goal is to increase through-Delta 

survival and abundance of salmonids entering the ocean. 
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Under the Study Plan for the Stipulation Study (NMFS 2012), beginning in early to mid-April, when 

supplemental steelhead releases  egan, OMR flow targets shifted to a pilot “managed-risk experimental” 

approach.  This approach implemented different OMR flow “treatment levels” for each Stipulation Study release 

of acoustically tagged steelhead to gather information about responses of tagged fish to different hydrodynamic 

conditions.  The approach also included an “exposure trigger” (NMFS 2012) that, if reached or exceeded, shifted 

operations from the experimental OMR flow level to the less negative OMR flow level within the adaptive range 

(-1,250 cubic feet per second [cfs]).  This trigger was intended to protect steelhead by shifting hydrodynamic 

conditions in a direction that may be less disruptive to outmigration routing or timing and improve survival 

through the Delta.  The ordering of OMR flow management targets through April and May was intended to 

maximize the feasibility of implementing these targets while avoiding confounding OMR flow management 

targets with temperature. 

NMFS measured the exposure trigger as the cumulative fraction of the supplemental release group that passed a 

pair of receiver arrays on Old River and Middle River near Railroad Cut and was designed to protect steelhead by 

shifting hydrodynamic conditions in a direction thought to be less disruptive to outmigration routing or timing.  

NMFS calculated the “Railroad Cut trigger” as 5% of the release group reaching the acoustic receiver arrays at 

Railroad Cut, under the assumption that 5% of fish arriving at Railroad Cut would be expected to result in a 2% 

loss of the release group at the fish collection facilities (NMFS 2012).  We assumed that juvenile steelhead 

migrate fairly rapidly through the Delta and likely do not spend more than 14 days in the Delta.  We found this to 

be true as 94% of the steelhead tags that were ever detected at Chipps Island were detected within 15 days after 

their release.  Thus, for each Stipulation Study release, NMFS based the primary trigger on fish only from that 

release and not from prior releases. 

The NMFS biological opinion included an RPA action that required the design and implementation of a Six-Year 

Acoustic Tag Study (Six-Year Study) of juvenile steelhead in the San Joaquin River.  Studies of the survival and 

movement patterns of juvenile Chinook salmon in the Delta have also been conducted in the past as part of the 

Vernalis Adaptive Management Program (VAMP) and other programs (e.g., south Delta temporary barrier 

project, etc.).  The experimental design implemented for the 2012 Stipulation Study represents an augmentation 

and expansion of the Six-Year Study.   

In addition to providing information about the effects of OMR flows on route selection and survival in the south 

Delta, we also tested an alternative approach to managing water export risks to ESA-listed salmonids.  The 

experimental approach relied on releases of “sentinel fish” and monitoring stations to detect patterns of movement 

of these fish within the south Delta.  Sentinel fish were acoustically tagged fish assumed to represent wild fish in 

the system.  Thus, rather than using modeling results to predict broad-scale, often subtle hydrodynamic changes 

hypothesized to cause indirect effects on fish survival through the Delta, the sentinel fish approach set a threshold 

based on the observed movement of tagged fish within the Delta.  Protection measures were implemented when 

this threshold was exceeded.   

In summary, we sought to evaluate the relationship between OMR flows and the migration and survival of 

juvenile salmonids, while at the same time conducting an adaptive management experiment intended to help 

refine decision-making for the protection of San Joaquin River steelhead.   

1.3 STUDY HISTORY AND TIMELINE 

The Department initiated the Stipulation Study in February 2012 and completed field operations by that summer.  

The preliminary results from this field study were reported in a status report issued October 15, 2012 (Cavallo et 

al. 2012).  The Independent Review Panel (IRP) released its review of the project in the form of its Report of the 

2012 Delta Science Program Independent Review Panel (IRP) on the Long-term Operations Opinions (LOO) 

Annual Review (hereafter referred to as the “2012 IRP LOO Annual Review”) on December 1, 2012 (Kneib et al. 

2012).  Funding for additional data analysis and final report production was finalized on February 21, 2013.  A 
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Data Analysis Plan for Phase II of the project was submitted to representatives of various federal, state, and local 

agencies on March 29, 2013 (Cramer Fish Sciences 2013).  A meeting was held on April 19, 2013 to assess the 

Data Analysis Plan and our response to the reviewers’ feed ack.  Below, we document these events, the 

challenges, and changes made to the document through the process that have resulted in the analysis that is 

presented in this report.   

The analysis for the Stipulation Study was conducted in two phases. 

► Phase I.  A preliminary analysis of the data completed in October 2012 focusing on routing of steelhead tags 

at key Delta junctions, and an initial examination of the effect of OMR flows and local hydrodynamics on 

steelhead tag movement.   

► Phase II.  A thorough analysis of data completed by February 2014, including the development of a 

multistate statistical release-recapture model built in the User Specified Estimation Routine (USER) program 

(Lady et al. 2008) to estimate survival, route entrainment, transition probabilities, and detection probabilities.  

Multiple secondary hypotheses to examine how OMR flows affected steelhead tag behavior were also tested.  

These results are reported in the results section of this report (Chapter 4). 

Additional details regarding the process of developing the 2012 experimental design and analysis are summarized 

in Table 1-1, and described below. 

Table 1-1 Major events and dates conducted for this project. 

Project initiated and data for report were collected February – June 2012 

Phase I Report  October 15, 2012 

Phase I animation and results presented at 7
th

 Biennial Bay-Delta Science Conference 2012 held in 

Sacramento, California 

October 16-18, 2012 

Delta Science Program Independent Review Panel Report December 1, 2012 

Work Team Meeting December 6, 2012 

Phase II Data Analysis Plan submitted to agencies March 29, 2013 

Work Team meeting  April 19, 2013 

Final Data Analysis Plan  June 28, 2013 

Results Work Team meeting August 28, 2013 

Draft Technical Report distributed for review November 19, 2013 

Final Department Technical Report was released February 2014 

 

PROJECT INITIATION AND DATA COLLECTION (FEBRUARY – JUNE, 2012) 

The Department initiated the project in February of 2012.  In the spring of 2012, the mark-recapture experiment 

was conducted to examine the survival and movement patterns of acoustically tagged juvenile steelhead 

emigrating through the south Delta.  Three groups of juvenile steelhead were released near Buckley Cove in the 

lower San Joaquin River downstream of Stockton and upstream of Turner Cut (Figure 1-1).  Juvenile steelhead 

for the study were provided by the Mokelumne River Hatchery.  Releases for Group 1 began on April 15 and 

finished on April 16.  Group 2 releases began on May 1 and finished on May 2.  Group 3 releases began on May 

15 and finished on May 16.  The tagging and releases for Release Group 1 were complicated by severe 

thunderstorms.  Release Groups 2 and 3 did not have any of these complications. 
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On average, 167 acoustically tagged steelhead were released for each of the three release groups.  Data collection 

was completed by the end of June 2012. 

PHASE I REPORT (OCTOBER 15, 2012) 

The Phase I Report was completed on October 15, 2012.  The following objectives were addressed in the report: 

► Objective 1:  Identify the fraction of acoustically tagged steelhead that were observed moving south at 

Middle and Old rivers near Railroad Cut and used as an exposure risk trigger to manage OMR flows.   

► Objective 2:  Evaluate how hydrodynamic factors influenced the route entrainment into the interior Delta 

from Turner Cut, Colombia Cut, and Middle River.   

► Objective 3:  Evaluate how hydrodynamic conditions and OMR flows influenced migration behavior and 

survival in the interior Delta.   

Fine-Scale Hydrodynamic Data Difficulties 

Sub-daily (15-minute) hydrodynamic influences (proportional flow movement at junctions, average flow, percent 

positive flow) on fine-scale fish movement were expected to be analyzed to examine how tidal influences affect 

juvenile steelhead migration into the interior Delta, and patterns of migration behavior and survival once fish 

enter the interior Delta.  However, as statistical analyses were being completed, we consistently observed fish 

moving opposite the direction of flow movement at the Turner Cut junction (the only junction analyzed in this 

way).  These unexpected movement patterns were observed for both steelhead and Chinook smolts, suggesting 

these findings likely were not a true observation of fish behavior, but rather a spurious artifact of fish timing not 

being in-sync with available sub-daily Delta Simulation Model II (DSM2) flow data used to inform flow 

conditions. 

To examine if the fish and flow timing were out of sync, we compared DSM2 output near Turner Cut with 

observed flow data at the gauging station.  For an example 24-hour period, we examined how the 15-minute flow 

data for the DSM2 channel 172 (Figure 1-2) immediately downstream (toward pumping facilities) of Turner Cut 

varied from actual observed flow data from the gauging station at Turner Cut (TRN) near Holt (via the California 

Data Exchange Center [CDEC]).  This gauging station is operated by the USGS. 
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Figure 1-2 The location of DSM2 channel 172 and the gauging station at Turner Cut. 
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Although the daily flow magnitude was similar between datasets, the tidal cycle appeared to be off-sync by 

approximately 2 hours (Figure 1-3).  We were unable to determine whether DSM2 Hydro or CDEC data were 

correct, and most locations of interest for this analysis do not host a CDEC-reported monitoring station.  If the 

CDEC data represent the true flow conditions, then by analyzing DSM2 Hydro data at Turner Cut and other 

locations, we may be relating fish behavior with incorrect flow conditions.  Preliminarily, we believed our 

findings of fish (both Chinook and steelhead smolts) moving against flow movement were likely a result of fish 

timing being paired with flow conditions opposite of what they may have actually experienced.  Rapid changes in 

tidal flow conditions mean that small discrepancies in timing between predicted and actual flow patterns can lead 

to results directly the opposite of expectations. 

 

 

Figure 1-3 15-minute flow data over an example 24-hour period for DSM2 channel 172 and the 
gauging station at TRN, both indexing flow immediately downstream (toward pumping 
facilities) of the Turner Cut junction.  Source: Cavallo et al. 2012. 

This problem brought to our attention the extraordinary importance of having accurate times reported for 

steelhead detections.  Minor discrepancies in clock settings for computers used to launch or download receiver 

data could lead to inaccurate time data.  It is important to note that this analysis attempted to examine sub-daily 

fish behavior and flows in an unusually detailed way.  As a consequence of these problems with how to use and 

reconcile DSM2 Hydro and CDEC data, findings in the Phase I Report were largely descriptive—examining 

broad-scale relationships between fish behavior and OMR flow conditions, or DSM2 data at a daily scale.  

Although this is only a single location, this further exemplified the difficulty of examining fine-scale flow and 

steelhead tag relationships using the existing hydrodynamic data available.  Because of the strong tidal influence 

in the Delta, flow measurements and steelhead tag observations must be paired perfectly together to know exactly 

what the flow conditions a steelhead tag was experiencing when making a routing “decision.”  Therefore, all 

Phase II analyses used average 2-hour or daily periods to estimate the hydrodynamic conditions.   

PHASE I ANIMATION AND RESULTS PRESENTED AT 7TH BIENNIAL BAY-DELTA SCIENCE CONFERENCE 

2012 HELD IN SACRAMENTO, CALIFORNIA – OCTOBER 16–18, 2012 

We presented an animation of the particle and steelhead data at the 7
th
 Biennial Bay-Delta Science Conference 

2012 held at the Sacramento Convention Center in Sacramento, California.  The animation is located online and 

can be viewed the following website address:  http://www.fishsciences.net/projects/media/Stip_Study_Animation.mp4. 
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We compared the relative movement patterns of simulated particles with steelhead tags to evaluate the efficacy of 

using simulated particles (DSM2 Particle Tracking Model [PTM]) to mimic steelhead tag behavior.  We 

generated an animation of steelhead tags and simulated particles.  The animation is based on raw data, and 

detection probabilities were not considered.  Therefore, movement patterns of steelhead tags depict actual tag 

movement and the ability of each receiver array to detect each tag.  However, it is important to note that detection 

probability was only found to vary across release groups for receiver 6.  Therefore, differences in broad 

movement patterns between release groups should generally reflect actual differences in tag movement.  Given 

the data observed, the following figures display screen shots from the animation, depicting days 3 and 7 after 

release for Release Group 1 (Figure 1-4 and Figure 1-5), Release Group 2 (Figure 1-6 and Figure 1-7), and 

Release Group 3 (Figure 1-8 and Figure 1-9). 

 

Figure 1-4 The proportion of steelhead tags (STH tags) and simulated particles (PTM) located at 
each array for Release Group 1 on the third day after the fish releases were completed 
(April 19, 2012). 
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Figure 1-5 The proportion of steelhead tags (STH tags) and simulated particles (PTM) located at 
each array for Release Group 1 on the seventh day after the fish releases were 
completed (April 23, 2012). 

 

 

Figure 1-6 The proportion of steelhead tags (STH tags) and simulated particles (PTM) located at 
each array for Release Group 2 on the third day after the fish releases were completed 
(May 5, 2012). 
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Figure 1-7 The proportion of steelhead tags (STH tags) and simulated particles (PTM) located at 
each array for Release Group 2 on the seventh day after the fish releases were 
completed (May 9, 2012). 

 

 

Figure 1-8 The proportion of steelhead tags (STH tags) and simulated particles (PTM) located at 
each array for Release Group 3 on the third day after the fish releases were completed 
(May 19, 2012). 
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Figure 1-9 The proportion of steelhead tags (STH tags) and simulated particles (PTM) located at 
each array for Release Group 3 on the seventh day after the fish releases were 
completed (May 23, 2012). 

DELTA SCIENCE PROGRAM INDEPENDENT REVIEW PANEL REPORT (DECEMBER 1, 2012) 

An IRP was assembled by the Delta Science Program to inform NMFS and the USFWS as to the efficacy of the 

water operations and regulatory actions prescribed by their respective LOO RPAs as applied from October 1, 

2011 through September, 30 2012 (Water Year 2012).  The 2012 annual review focused in part on the 

implementation of NMFS’s RPA for the Spring 2012 Delta Operations Joint Stipulation for water operations and 

fisheries that was required to be executed in water year 2012 in lieu of the NMFS RPA Action IV.2.1.  The IRP 

released the 2012 IRP LOO Annual Review on December 1, 2012, which detailed their review of preliminary 

analysis of Stipulation Study acoustic data detailed in the Phase I Report.  Their assessment of this report can be 

downloaded from:  

http://deltacouncil.ca.gov/sites/default/files/documents/files/Report_2012_DSPIRP_LOOAR_120112_final.pdf.  

The IRP presented three major criticisms of the Phase I analysis, summarized as follows: 

► Tidal Influences:  The effect of tidal hydrodynamics on the movement and survival of smolts though the Delta 

was not addressed in the Phase I analysis.  The current paradigm for characterizing movement of smolts 

through the Delta reaches relies on mean flow to characterize the movement and routing of fish.  The 

steelhead tagging studies in 2012 and earlier years clearly indicated that this characterization is inadequate.  

Therefore, the IRP suggested that the travel, routing, and survival of fish through the system needed to 

account for migrant behavior and the behaviors of the predators in response to the strong tidal influences in 

the Delta (Kneib et al. 2012).   

► Inadequate Statistical Analysis:  The IRP stated that many of the Phase I study’s initial conclusions were not 

adequately supported by the analyses because they failed to make use of statistical testing or confidence 

intervals, and they suggested that the analyses be redone with greater statistical rigor, where possible. 

http://deltacouncil.ca.gov/sites/default/files/documents/files/Report_2012_DSPIRP_LOOAR_120112_final.pdf
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► Re-coding Release Groups:  The IRP suggested re-coding the release groups to test for evidence of an OMR 

flow effect on fish behavior within the range of flow levels examined using the available data.  They 

suggested recoding Release Groups 1 and 2 as “intermediate” OMR flow, and Group 3 as “high” OMR flow.  

Groups 1 and 2 can be pooled as “intermediate” flow treatment level and compared to Group 3 as “high” flow 

treatment level.  In this report, we refer to data from Groups 1 and 2 as less negative OMR flows and Group 3 

as more negative OMR flows.   

The IRP suggestions provided us with a direction moving forward with the Phase II analysis.  As suggested by the 

IRP, we incorporated a hypothesis that examined the movement of steelhead tags in relation to tidal 

hydrodynamics in a small reach of the interior Delta.  However, the large-scale mechanistic analysis suggested by 

the IRP was not possible with the data available, and would require fine-scale hydrodynamic data collected 

simultaneously with fish movement data, which are unavailable with the current dataset.  Second, as many 

analyses as possible in Phase II were tested statistically.  Likewise, a statistically rigorous multistate release-

recapture model was applied to examine fish routing and survival.  Lastly, release groups were re-coded as 

suggested by the IRP, with Groups 1 and 2 as less negative OMR flow, and Group 3 as more negative OMR 

flows, to better examine the effect of OMR flows on steelhead tag behavior. 

WORK TEAM MEETING (DECEMBER 6, 2012) 

A technical Work Team comprised of participants from the Department, Reclamation, USGS, NMFS, USFWS, 

and the consultant team working on the project was convened to help address issues and discuss data analysis 

topics as they arose.  The Work Team met on December 6, 2012, to discuss the initial draft of the data analysis 

plan for Phase II analyses.  The discussion primarily focused on three major topics: 

► Hydrodynamics:  As described earlier, the difficulties with trying to examine fine-scale (sub-daily) 

movements of steelhead tags in relation to flow were discussed.  The general consensus was that only daily 

hydrodynamic data would be paired with tag data. 

► Inclusion of Six-Year Study Tags:  A discussion of whether or not to include Six-Year Study tags in the Phase 

II analyses was conducted.  The general agreement was that the analysis of Stipulation Study tags was the 

primary goal of the Phase II analysis, and therefore the Six-Year Study tags would be left out of Phase II 

analyses, except if additional time and resources were available to examine them at the end. 

► Particle Tracking Comparisons:  In the Phase I analysis, comparisons between the movement of steelhead tags 

and simulated particles were conducted to examine the efficacy of using simulated particles to mimic fish 

behavior.  The Work Team discussed the need for additional analyses in Phase II and agreed that one 

additional analysis examining the end location of tags and particles would be beneficial. 

PHASE II DATA ANALYSIS PLAN SUBMITTED TO AGENCIES (MARCH 29, 2013) 

Funding for Phase II of the project was finalized on February 21, 2013.  Many of the action items from the 

December 6 meeting were completed and incorporated into a draft of the Data Analysis Plan completed on 

February 11, 2013.  A Data Analysis Plan for Phase II was submitted to representatives of various federal, state, 

and local agencies on March 29, 2013.  We received feedback and responded to the reviews by email on 

April 17, 2013. 

DATA ANALYSIS PLAN PRESENTED TO THE WORK TEAM MEETING (APRIL 19, 2013) 

A Work Team meeting was held on April 19, 2013, to discuss the Phase II Data Analysis Plan and the response to 

the reviews.  Suggested revisions and comments were sent prior to the meeting, discussed during the meeting, and 

followed-up after the meeting. 
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FINAL DATA ANALYSIS PLAN (JUNE 28, 2013) 

Following receipt of comments from the Work Team on the draft Data Analysis Plan for Phase II, a final plan was 

created and submitted to the Department for final review and approval.  This document laid the groundwork for 

the analysis contained in this report. 

PRELIMINARY RESULTS PRESENTED TO THE WORK TEAM MEETING (AUGUST 28, 2013) 

The preliminary results of the Phase II analyses were presented to the Work Team during a meeting on August 28, 

2013.  Some of the major discussion points during the meeting were the following: 

► New Qualitative Analyses:  New qualitative analyses were presented for the first time, including a web-based 

data viewer tool of Stipulation Study steelhead tag data, and new descriptive figures of the final fate of 

steelhead tags. 

► Release-specific Model Did Not Converge:  The mark-recapture models that only used data from an 

individual release group did not converge for all release groups; therefore, we ran the model on all release 

group steelhead tag data as a single model.  When the model was run using all the data, it converged.  

Therefore, the effect of release group on steelhead tag behavior and survival was examined exclusively in the 

Objective 2 hypotheses. 

► Array 6 versus 7:  The detection probabilities experienced across release groups at these dual receiver arrays 

were examined.  The results showed that detection probabilities at array 6 varied greatly across release 

groups.  Because receiver 7 showed consistently high detection probabilities across all release groups, the 

mark-recapture model was run with receiver 7 instead of receiver 6.  Likewise, array 7 was used in all 

Objective 2 hypotheses where Turner Cut was examined.  For more detail, see Section 4.2.1. 

► Study History Table:  The Work Team asked that a table be created detailing the changes in objectives and 

hypotheses since the first incarnation of the Data Analysis Plan (see Appendix A for the concordance table). 

► Reorganization of Objectives and Hypotheses:  A re-organization of study objectives was agreed upon for the 

final report that grouped all hypotheses into different spatial categories, including system, route, and junction. 

This entire study process described above along with the collaboration with the interested parties led to the 

development of the study objectives and this final report.  A detailed history of the Phase II analyses, including 

the evolution of study objectives and hypotheses, is presented in the concordance table in Appendix A.   

DRAFT OF FINAL REPORT DISTRIBUTED TO THE WORK TEAM (NOVEMBER 18, 2013) 

The preliminary results of the Phase II analyses, a draft of this report, were distributed to the Work Team by the 

Department. 

FINAL REPORT PUBLISHED (FEBRUARY 7, 2014) 

The final Technical Report was released following the review by the Work Team.   

1.4 STUDY ANALYSES 

The analysis was spatially divided into three sections:  system-wide, route, and junction-level.  The first set of 

analyses focused on large-scale movement patterns and whether a particle simulation model could predict the 

system-wide movement patterns of steelhead tags.  In the second section, we examined how steelhead tags moved 



 

Study Description  Stipulation Study 
February 2014 1-14 California Department of Water Resources 

through the system using different defined routes.  We examined if their transition, detection, survival, route 

entrainment, and travel times were affected by different OMR flow conditions.  In the last section, we examined 

how fish moved through key Delta junctions (Turner Cut, Columbia Cut, Middle River, and Railroad Cut).  The 

following describes the areas of discussion and hypothesis-testing presented in the results section (Chapter 4).  

Areas of discussion are those where the data are discussed qualitatively, compared to the hypothesis where 

statistical tests can be applied. 

4.1 System:  Examine large-scale movement patterns of steelhead tags. 

► Discussion 4.1.1:  Relative steelhead tag detection at arrays 

► Discussion 4.1.2:  Last detection at arrays 

► Discussion 4.1.3:  Residence time at arrays 

► Discussion 4.1.4:  Final fate at arrays 

► Discussion 4.1.5:  Web-based detection history 

► Hypothesis 4.1.6:  The distance traveled by steelhead tags was not significantly different than the distance 

traveled by the passive particles.  

► Hypothesis 4.1.7:  Steelhead tags did not move using selective tidal-stream transport (STST). 

► Hypothesis 4.1.8:  The movement of steelhead tags in the San Joaquin River and interior Delta was not 

related to day/night. 

4.2 Route:  Examine how steelhead tags move through the system using different defined routes. 

► Hypothesis 4.2.1:  Route-specific transition probabilities of steelhead tags were not significantly related to 

the route taken and/or release group. 

► Hypothesis 4.2.2:  The estimated route-specific survival for the Turner Cut route was not significantly 

different from the Mainstem route. 

► Hypothesis 4.2.3:  The travel times of steelhead tags were not significantly different between routes or 

release groups. 

4.3 Junction:  Examine how steelhead tags move through junctions. 

► Hypothesis 4.3.1:  The probability of steelhead tags entering the interior Delta at Turner Cut, Columbia Cut, 

and Middle River was not related to OMR flows. 

► Hypothesis 4.3.2:  Steelhead tag arrival at each facility was not related to the proportion of total export flow 

entering SWP. 

► Hypothesis 4.3.3:  The movement patterns of steelhead tags after passing through Railroad Cut were not 

affected by OMR flows. 
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2 EXPERIMENTAL DESIGN AND FIELD METHODS 

CHAPTER SUMMARY: 

In the spring of 2012, we initiated a mark-recapture experiment to examine the survival and movement patterns of 

acoustically tagged juvenile steelhead emigrating through the south Delta.  We released three groups of juvenile 

steelhead near Buckley Cove in the lower San Joaquin River downstream of Stockton, and upstream of Turner 

Cut (Figure 1-1).  We began releases for Group 1 on April 15 and finished on April 16.  We began Group 2 

releases on May 1 and finished on May 2.  We began Group 3 releases on May 15 and finished on May 16.  All 

releases began at approximately 3:00 pm and ended within 24 hours.  We released a minimum of 166 acoustically 

tagged steelhead for each of the three release groups.  We obtained the juvenile steelhead from the Mokelumne 

River Fish Hatchery, and those steelhead were used in the 2012 Stipulation Study as surrogates for wild fish.  We 

tagged the hatchery-produced steelhead with acoustic coded transmitters (VEMCO, model V6-4X) at the hatchery 

following the 2012 Stipulation Study Tagging Standard Operating Procedure (SOP).  This SOP was identical to 

the 2012 Six-Year Study SOP.  Tag burden was very low and battery life of the tags far exceeded the study 

period. 

The study plan required the measurement of the fraction of acoustically tagged steelhead that reach and are 

observed to be moving southward near Railroad Cut toward the export facilities.  Regulatory agencies used this 

fraction as an exposure risk trigger to manage OMR flows.  During the study, near-real-time detections of 

Stipulation Study fish resulted in changes to OMR flows during each experimental period.  Under the Stipulation 

Study Plan, beginning in early to mid-April (coincident with experimental steelhead releases), OMR flow targets 

shifted to a pilot “managed-risk experimental” approach.  The experimental design was intended to gather 

information about responses of tagged fish to different hydrodynamic conditions.  Different OMR flow “treatment 

levels” were implemented for each release of acoustically tagged steelhead.  This approach included an “exposure 

trigger” that, if reached or exceeded, shifted operations from the experimental OMR flow level to the least 

negative OMR flow level within the adaptive range (-1,250 cfs).  This action was intended to protect steelhead by 

shifting hydrodynamic conditions in a direction thought to be less disruptive to outmigration routing or timing.  

The exposure trigger was measured as the cumulative fraction of the supplemental release group that passed a pair 

of receiver arrays on Old River and Middle River near Railroad Cut.  The trigger was calculated as 5% of the 

release group reaching the acoustic receiver arrays at Railroad Cut, under the assumption that 5% of fish arriving 

at Railroad Cut would be expected to result in a 2% loss of the release group at the fish collection facilities 

(NMFS 2012).   

The original experimental design called for each 2-week experimental period to represent one of three OMR flow 

targets (-1,250, -3,500, and -5,000 cfs).  Real-time evaluation of tag detections at Railroad Cut for each group 

resulted in exceedance of the trigger for each release group, which in turn altered experimental OMR flow levels 

and resulted in variable OMR flows during the study.  Average observed OMR flows during the first 7 days 

following release were -2,446, -2,933, and -5,038 cfs for Release Groups 1, 2, and 3, respectively (Figure 2-1).   

One of the major goals of this report was to determine if behavioral differences exist between any of these three 

release groups in relation to OMR flow.  Also, based on a recommendation in the 2012 IRP LOO Annual Review 

(Kneib et al. 2012), the analysis pooled the data from Release Groups 1 and 2, which were considered a less 

negative OMR flow group and were compared to the data from the more negative flow treatment level data from 

the third release group. 
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Figure 2-1 Daily OMR flow conditions and release dates for acoustically tagged steelhead smolts 
from the 2012 Stipulation Study.  

2.1 HYDRODYNAMIC SETTING 

In the spring of 2012, a mark-recapture experiment was performed to examine the survival and movement 

patterns of acoustically tagged juvenile steelhead emigrating through the south Delta.  We released three groups 

of juvenile steelhead near Buckley Cove in the lower San Joaquin River downstream of Stockton, and upstream of 

Turner Cut (Figure 1-1).  Releases for Group 1 began on April 15 and finished on April 16.  Group 2 releases 

began on May 1 and finished on May 2.  Group 3 releases began on May 15 and finished on May 16.  The 

original experimental design called for each 2-week experimental period to represent one of three OMR flow 

targets (-1,250, -3,500, and -5,000 cfs).  Real-time evaluation of steelhead tag detections at Railroad Cut for each 

group resulted in exceedance of the trigger for each release group, which in turn altered experimental OMR flow 

levels and resulted in variable OMR flows during the study.  Average observed OMR flows during the first 7 days 

following release were -2,446, -2,933, and -5,038 cfs for Release Groups 1, 2, and 3, respectively (Figure 2-1).  

The triggered less negative OMR flow levels (-1,250 cfs) were observed to be achieved on April 24, May 11, and 

May 26 for Release Groups 1 through 3, respectively (Figure 2-1).  Figure 2-2 shows the daily export rates 

entering Clifton Court Forebay and CVP, these two values combined, and flows of the San Joaquin River at 

Vernalis during the three release periods of the study.  
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Figure 2-2 Mean daily export flows at the SWP and CVP, combined export flows, and flow 
discharge of San Joaquin River (SJR) at Vernalis in relation to steelhead release 
groups. 

2.2 ACOUSTIC ARRAYS, RECEIVER DEPLOYMENT, AND REPORTING 

2.2.1 ACOUSTIC RECEIVER ARRAYS 

VEMCO VR2W-180 kilohertz (kHz) receivers were used to continuously monitor for the presence of acoustically 

tagged juvenile steelhead.  A total of 33 receivers were deployed at 15 different sites within the south and central 

regions of the Delta (red squares in Figure 2-3).  We placed at least one receiver on each side of the riverbank and 

two to four receivers at each site to attempt to provide full coverage of the channel cross-section.  The VR2W-180 

kHz receivers are omni-directional passive acoustic listening stations that record and store the presence of 

multiple acoustic transmitters.  Each fixed-position hydrophone provided detailed date and time information 

regarding the presence of tagged steelhead at each specific site.  We complemented these acoustic receiver arrays 

with nine acoustic receiver arrays from the Six-Year Study (blue squares in Figure 2-3) for a total of 24 arrays 

used for analysis (Table 2-1).   
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Figure 2-3 The 24 acoustic receiver array sites in the south Sacramento-San Joaquin Delta.  The 
red squares are sites where arrays were deployed for the Stipulation Study.  The blue 
squares are sites where arrays were deployed for the 2012 Six-Year Study. 
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Table 2-1 The array number, its latitude (decimal degrees), longitude (decimal degrees), what study the 
arrays were deployed for (Stipulation Study denoted as “Stip” or for the Six-Year Study 
denoted as “6yr”), and a description of the where the array was located. 

Array Study Latitude Longitude Site Description 

1 Stip 37.9949 -121.4404 An array along the San Joaquin River upstream of Turner Cut 

2 6yr 38.0175 -121.4634 An array along the San Joaquin River downstream of Turner Cut 

3 6yr 38.0524 -121.5111 An array along the San Joaquin River at the north point of Medford Island 

4 Stip 38.0589 -121.5580 An array along the San Joaquin River at the southwest tip of Venice Island 

5 Stip 38.0721 -121.5754 
An array along the San Joaquin River at the southeastern tip of Webb Tract 

and northwest tip of Mandeville Island 

6 6yr 37.9917 -121.4554 An array in Turner Cut 

7 Stip 37.9719 -121.4846 An array in Empire Cut, downstream of Turner Cut 

8 Stip 37.9626 -121.5316 
An array in the northwest region of Jones Tract and just south of Mildred 

Island 

9 Stip 37.9407 -121.5344 An array at the east end of Railroad Cut 

10 6yr 37.8958 -121.4939 
An array in Middle River just north of its intersection with Trapper Slough 

and Highway 4 

11 Stip 38.0267 -121.5020 An array in Columbia Cut, southeast of Medford Island 

12 Stip 38.0041 -121.5132 An array at the southeast tip of Mandeville Island 

13 Stip 38.0279 -121.5227 An array in Middle River at the southwest tip of Medford Island 

14 Stip 38.0043 -121.5315 An array at the northeast tip of Bacon Island 

15 Stip 37.9828 -121.5810 An array at the southeast part of Holland Tract 

16 Stip 37.9335 -121.5598 An array at the west end of Railroad Cut and northwest of Woodward Island 

17 Stip 37.9647 -121.5984 An array northwest of Palm Tract 

18 Stip 37.9794 -121.6225 An array southeast of Hotchkiss Tract and southwest of Holland Tract 

19 6yr 37.8938 -121.5667 An array in Old River just west of Victoria Island and north of Highway 4 

20 6yr 37.8306 -121.5566 
An array with receivers located upstream and downstream of the radial gates 

of Clifton Court Forebay 

21 6yr 37.8171 -121.5583 
An array with receivers upstream and downstream of the trash racks as well 

as an array in the holding tank 

22 6yr 38.0567 -121.6869 An array along the San Joaquin River at Jersey Point 

23 Stip 38.0661 -121.6487 An array located east of Bradford Island and west of Webb Tract 

24 6yr 38.0476 -121.9330 An array located near Chipps Island 

 

2.2.2 RECEIVER SET UP AND DEPLOYMENT 

When deploying the Stipulation Study receivers, we bolted each receiver using metal U-bolts to 4.5–7.6 meter (m) 

of 0.6-centimeter (cm) diameter stainless steel cable.  We attached one end of the cable to a 13.6- to 27.2-kg 

anchor weight.  We then positioned the receiver 1.8 m above the channel bottom using a buoy that was cable-tied 

to the stainless steel cable.  This allowed the receiver to stay in an upright position within the water column at a 

fixed depth.  We attached the other end of the cable to a permanent fixture (i.e., tree, buoy, pier piling, etc.) on the 

riverbank at each site (Figure 2-4).  Because one cable end was permanently attached to the riverbank, retrieval of 

each receiver for inspection and data download was straightforward.  Coordinates for each receiver were recorded 

using a Global Positioning System (GPS) device to allow for easy relocation. 
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Figure 2-4 Schematic of typical receiver deployment. 

We deployed a  eacon tag or “sync” tag adjacent to each receiver to monitor and document the correct operation.  

The  eacon tag was attached to a separate stainless steel ca le connected to the receiver’s ca le at each site 

(Figure 2-4).  We attached the beacon tag to the anchor system with a buoy to keep the beacon tag about 0.6 m 

from the river bottom.  Each beacon tag was the same model of transmitter that was implanted into the juvenile 

steelhead.  VEMCO programmed these tags to transmit the same signal as the implanted tags but over a longer 

time interval.  Each receiver recorded the exact beacon tag identification (ID) number, date, and time it was 

recorded.  During data analysis, we used beacon tag detections to validate that each individual receiver was 

functioning properly.  Proper function of the receiver was documented when there were 102 detections and 

corresponding data records for the beacon tag within a 24-hour period.   

2.2.3 RECEIVER DATA DOWNLOAD PROCEDURE 

We generated a download schedule to create a manageable, daily workload and to prioritize sites by importance 

and proximity to the south Delta SWP/CVP export facilities.  Sites were either downloaded daily or weekly.  The 

sites most important for management discussions were the Railroad Cut sites near OMR (array sites 9 and 16 as 

seen in Figure 2-5).  Data from these sites were downloaded, analyzed, summarized, and distributed daily.  This 
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provided the near-real-time monitoring data necessary for the 2012 experimental design.  Six-Year Study arrays 

were checked less frequently.  The weekly downloading schedule was as follows (Figure 2-5):   

► Tuesdays:  arrays 4, 5, 17, 18, and 23. 

► Wednesdays:  arrays 1, 8, and 14. 

► Thursdays:  arrays 7, 11, 12, 13, and 15.  

 

 

Figure 2-5 The 24 arrays color-coded by the frequency that the data were downloaded. 

To retrieve the transmitter detection data from each receiver, a team of two staff used a boat to access each 

receiver.  Using GPS coordinates, we retrieved the desired VR2W receivers from each site for that day.  We 

inserted a Bluetooth key in the VR2W to initiate the download and a laptop aboard the boat equipped with 

VEMCO User Environment (VUE) software created a wireless interface with the receiver.  Once we synchronized 

the receiver and software, we wirelessly downloaded the data from the Bluetooth enabled receiver.  After each 

download, we erased the receiver memory of the prior days’ data and immediately reset to start new detection 

recording.  After the Bluetooth-interface with the VUE software was connected to a recorder, proper internal 
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equipment checks were also done to ensure the receiver was actively recording and ready to be placed back into 

the water column.  This procedure was followed for each receiver at each site according to the download schedule 

and helped to avoid equipment malfunctions that could occur and negatively affect the receiver performance. 

2.3 TAGGING METHODS, EVALUATION, RELEASE, TAG LIFE, AND 
BURDEN 

2.3.1 TAGGING METHODS 

We obtained juvenile steelhead from the Mokelumne River Fish Hatchery.  We tagged the hatchery-produced 

steelhead with acoustic coded transmitters (VEMCO, model V6-4X) at the hatchery following the 2012 

Stipulation Study Tagging SOP.  This SOP was identical to the 2012 Six-Year Study SOP.  The tags used in the 

Stipulation Study were compatible with the tags and receivers used with the 2012 Six-Year Study.  Each V6-4X 

acoustic coded transmitters is 6 millimeters (mm) in diameter and 16.5 mm long (Figure 2-6).   

Surgical implantation of the acoustic tags took place 

during three tagging events according to the detailed 

procedure in the tagging SOP, which is summarized 

here.  To reduce the stress associated with chasing fish 

with a net, we netted juvenile steelhead from the 

raceway and placed them into perforated garbage cans 

within the raceway.  We individually netted steelhead 

from the garbage cans and placed them into 18.9 liter 

(L) buckets containing 70 milligram (mg)/L of tricane 

methanesolfonate (MS-222).  We left the juvenile 

steelhead in the bucket for 1–5 minutes until 

anesthetized.  We removed the anesthetized fish from 

the bucket and recorded their length (mm) and weight 

(grams).  Literature suggests that fish should not be 

tagged with transmitters that weigh more than 2% of 

the fish’s  ody weight (e.g., Kneib et al. 2012).  

Because transmitters weighed 1 gram, we did not tag 

steelhead weighing less than 50 grams to maintain a 

maximum 2% tag to body weight ratio as per the 

literature recommendations.  This was done even 

though the SOP would have allowed a 5% tag to body 

weight ratio (equaling a 20 gram fish).   

We then checked each steelhead for any abnormalities.  

Abnormal fish were those that suffered from extremely 

eroded fins, abnormal body shape, or other structural 

deformities that could impair normal behavior.  We 

placed abnormal fish in a reject bucket and did not tag 

them.   

 

 
Source:  VEMCO 

Figure 2-6 Examples of VEMCO acoustic tags 
(e.g., V5), including the V6-4X tag 
used in the Stipulation Study. 
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After we checked for abnormalities, we placed the still-anesthetized steelhead into a holding cradle treated with a 

25% solution of Stress Coat®.  Handling fish causes damage to the fish’s slime coat, and Stress Coat® replaces 

the fish’s natural slime coat with a synthetic one, there y reducing stress.  We irrigated the fish’s gills with water 

containing 20 mg/L of MS-222 through a soft rubber tube to maintain anesthesia during surgery.   

We then assessed the scale condition of the steelhead on the most compromised side of the fish.  We noted scale 

condition as Normal, Partial, or Descaled.  We defined normal scale condition as the loss of less than 5% of scales 

on one side of the steelhead.  We defined partial descaling as the loss of 6–19% of scales on one side of the 

steelhead.  We classified steelhead as descaled if they had lost 20% or more of the scales on one side of the fish.  

Descaled fish likely suffer from compromised osmoregulatory ability.  We placed descaled fish in a reject bucket 

and did not tag them. 

Using a micro-scalpel equipped with a 5 mm blade, we made a 3–5 mm-long incision to one side of the mid-

ventral line immediately anterior to the pelvic girdle.  We inserted the acoustic tag into the body cavity through 

this incision.  We then closed the incision with two or three simple interrupted sutures using Vicryl Plus 4-0 

suture material to form the sutures (Figure 2-7).  During the final stages of surgery, we switched the gill irrigation 

water supply from the MS-222 maintenance solution to supersaturated oxygen rich fresh water to begin the 

recovery process.  Once the surgical procedure was completed, we moved the fish to a recovery bucket that 

provided 130% to 150% dissolved oxygen for a minimum of 10 minutes.   

While fish were recovering, we used a VEMCO mobile tracking receiver (VR100) to verify that each transmitter 

was functioning properly.  We recorded tag validation data for each fish.  After the recovery period and tag 

validation were complete, we transferred the tagged steelhead to 68-L totes (Figure 2-8).  We placed three 

steelhead in each labeled tote, and we subsequently loaded the tote into a fish transport tank that was attached to a 

flatbed truck.  During loading and prior to transport, we maintained water temperature and oxygen levels inside 

the transport tank by pumping water into the tank from the hatchery raceway.   

 

Figure 2-7 Tagging and suturing of a typical steelhead. 



 

Experimental Design and Field Methods  Stipulation Study 
February 2014 2-10 California Department of Water Resources 

 

Figure 2-8 Loading tagged juvenile steelhead into the transport tank. 

2.3.2 STEELHEAD TAGGING EVALUATION 

Survival and delayed mortality of tagged fish are important factors to consider in any tagging study.  To monitor 

the effects of surgical implantation of acoustic tags on fish mortality, we surgically implanted dummy tags into 

nine steelhead for each of the three tagging events.  We transported the dummy-tagged steelhead to the 

Department’s Collection, Handling, Transport, and Release (CHTR) facility for holding and observation.  We 

surgically implanted dummy tags into these fish using the same methods (handling, data collection, tagging, 

recovery, transport, etc.) as for fish with active acoustic tags.  We kept the three groups of dummy-tagged fish in 

three separate aerated holding tanks and fed them once daily.  On June 5, 2012, we evaluated these fish for tag 

retention and healing.  Because we evaluated all of the fish on the same day, each of the groups had been held for 

different lengths of time following tag implantation (Table 2-2).  We euthanized each control group of steelhead 

and made external and internal observations to evaluate healing and recovery.  We took photographs and recorded 

observations on a standardized data sheet.   
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Each of the three control groups began with nine steelhead (Table 2-2).  There was one mortality from Release 

Group 1 within 24 hours after transfer to the CHTR facility.  Release Groups 1 and 2 each had a single mortality 

later in the holding period when water temperature spiked upward due to an improperly functioning water chiller 

at the CHTR facility.  Except for one fish in Group 1 that had fungus on the tail and fins, the tagged steelhead 

appeared healthy when evaluated.  We observed no fungal infections on any other fish from any of the other 

control groups.   

Table 2-2 Summary of control groups, holding period, and mortality. 

Control Group 
Holding Period 

(days) 

Number of Fish 

Tagged Total Mortality Evaluated 

1 53 9 2
a
 7

b
 

2 37 9 1
a
 8 

3 23 9 0 9 

Notes: 
a
 One mortality from each of Group 1 and Group 2 was related to an improperly functioning water chiller and was not considered a tagging 

mortality.  
b
 One fish had fungus infection on fins and tail at time of evaluation. 

 

We examined suture sites and rated those sites on a scale from 0 (no irritation) to 4 (ulcerated).  The group that 

had had tags implanted most recently, Group 3 at 23 days, showed ulcerated sites for 8 of 9 fish.  After 37 days, 

Group 2 had 56% of the suture sites showing irritation ranging from slight redness (1) to ulcerated (4).  Related to 

the irritation rates was the presence or absence of the sutures.  After 53 days, Group 1 showed no irritation at any 

of the suture sites for fish without suture presence.  In Group 1, the only steelhead to show ulceration at the suture 

site was the single fish of the group that still retained the sutures.  The other six steelhead in that group did not 

have sutures remaining and did not show irritation.  About half of the total sutures in Group 2 were missing after 

37 days, and half of the fish in this group showed no irritation.  Five steelhead from Group 2 had lost one suture 

and the second suture was still present.  In this situation the site around the remaining suture showed signs of 

irritation and ulceration of the tissues.  Group 3 only had one steelhead that showed no irritation, and this was the 

only fish whose sutures were not present.  The remaining steelhead in the group had sutures in place, and these 

sites were ulcerated. 

We reviewed and rated the incision sites on a scale of 0 to 4 for incision closure, where 0 was completely closed 

with no overlap and 4 was where the incision was completely open or overlapped.  The results indicated that 

similar to irritation, the longer the time since tagging, the higher the rate of closure.  All of Group 1 showed 

complete incision closure.  Group 2 had 50% completely closed with 38% rated as partially closed (a 1 on the 

scale), and 12% were half open or overlapped (a 2 on the scale).  Two-thirds of Group 3 were completely closed 

with the other third rated as partially closed (a 1 on the scale).  Of the incisions that were less than completely 

closed, the musculature layer was fully apposed, but the dermal layer had not joined together. 

We then dissected the dummy-tagged steelhead to observe the tags and how the tags interacted with tissues and 

organs.  In 24 total tagged control group fish, 71% of the tags were located directly under the incision, 17% were 

located anterior to the incision, and 12.5% of the tags were located posterior to the incision.  When looking for tag 

encapsulation, we observed that for tags in Group 1, 28.5% were not encapsulated, 57% were encapsulated in a 

transparent membrane, and 14% (1 tag) were encapsulated in an opaque membrane.  Group 2 had 62.5% of the 

tags encapsulated in a transparent membrane and 37.5% encapsulated in a partially transparent membrane.  Group 

3 had only 33% of the tags encapsulated in a transparent membrane and the remaining 67% were not 

encapsulated.   
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A prime concern for proper internal healing is the apposition of the peritoneum.  Twenty-three (23) of the 24 

steelhead showed complete apposition of the peritoneum, and one steelhead had 75% of the incision that was 

apposed.  This one fish had moderate inflammation in the section of the peritoneum that had not apposed.  The 

rest of the steelhead, all with complete apposition, showed no internal incision irritation. 

We evaluated each dummy-tagged fish for the presence of organ and internal tissue damage caused by either the 

suturing procedure or the tag itself.  We observed no damage to internal tissues or organs in Groups 1 or 2, while 

Group 3 showed evidence of organ inclusion in the sutures, which was present in five of the nine fish.  In addition, 

four of the nine fish in this group also showed some organ damage caused by the tag resting inside the pyloric caeca. 

In conclusion, the suture material appeared to cause tissue irritation and ulceration around the incision site.  The 

longer the time post-surgery, the more likely the suture was no longer present and the less likely there was 

irritation.  While the sutures are considered absorbable, what appeared to be happening in the study fish was that 

the sutures were expelled.  They became progressively looser and closer to the surface and were eventually 

completely expelled from the body.  This process allowed the suture tag ends and knots to rub on the skin surface, 

causing the observed irritation.  Based on the steelhead we observed, sutures were starting to be expelled 

somewhere between 23 and 37 days with most shed after 57 days.   

2.3.3 TRANSPORT AND RELEASE OF ACOUSTIC TAGGED STEELHEAD  

We transported totes containing three tagged steelhead each in a large aluminum tank from the Mokelumne River 

Fish Hatchery to Buckley Cove (near Stockton) where we offloaded the totes.  We supplemented the water with 

bottled oxygen during transport. 

After arriving at Buckley Cove, we tempered the water in each tote by gradually adding river water to allow 

steelhead to adjust to the warmer river water temperature.  Once water temperatures had adjusted, we transported 

the totes on a small boat (Figure 2-9) from Buckley Cove to a houseboat moored in the San Joaquin River 

(Figure 2-10).  At the houseboat, we emptied seven totes (for a total of 21 steelhead) into each of the eight net 

pens.  The eight net pens were constructed of a polyvinyl chloride (PVC) conduit frame covered with netting and 

were approximately 1.2 x 1.2 x 1.2 m in dimension (Figure 2-11).  We used pool noodles around the top of the net 

pen to float the net pen in the W-shaped dock.  Each net pen encompassed an approximate volume of 1,800 L, and 

we specially designed each net pen to allow the natural flow-through of water.  We designed the net pens for 

release of tagged fish in slow-moving water only.  We held tagged steelhead in the net pens for a minimum of 

48 hours prior to release to fully acclimate to the conditions in the river.  Prior to release, we visually checked the 

fish in each net pen for mortalities.  We removed one dead steelhead from net pen #2 on May 1, 2012 prior to 

release (Release Group 2).  We observed no other mortalities.  Following the minimum 48-hour acclimation 

period, we released one net pen of steelhead every 3 hours until all eight net pens of tagged steelhead had been 

released.  We released the tagged steelhead by opening the net pen lid and tipping the net pen over.  All releases 

occurred within 24 hours after they were started at approximately at 3:00 pm on the first day of the release period.  

A total of 501 healthy tagged steelhead were released with functional tags.  Of the 501 tags, 166 were released in 

Group 1, 167 in Group 2, and 168 in Group 3.  Average lengths (mm) and weights (grams) of the 501 steelhead 

are listed in Table 2-3. 

Table 2-3 Lengths and weights of 501 tagged steelhead that were observed to be healthy prior to release 
and had functional tags. 

Release Group Release Dates 
Number of 
Fish Tags 

Fish Length (mm) Fish Weight (g) 

Mean Standard Error Mean Standard Error 

1 April 15-16, 2012 166 223.0 1.4 106.8 2.2 

2 May 1-2, 2012 167 230.5 1.4 119.0 2.5 

3 May 15-16, 2012 168 241.5 1.5 157.3 3.1 
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Figure 2-9 Totes containing acoustically tagged steelhead on-board a boat that transported the 
totes to floating net pens on a houseboat. 

 
Figure 2-10 The houseboat with the floating net pens. 
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Figure 2-11 Floating net pens used to hold experimental release groups of steelhead prior to 
release. 

2.3.4 TAG LIFE AND BURDEN 

The V6-4X acoustic coded transmitters (tags) used in the Stipulation Study were compatible with the tags and 

receivers used with other study programs throughout the Delta, including the 2012 Six-Year Study.   

Data on the duration of battery lives of this type of tags were from the currently unpublished 2012 battery life 

studies provided by Dr. Josh Israel (pers. comm.).  For the tag-life study, more than 90 tags were activated and 

observed the length of time that tags functioned.  This study had two replicates with one starting on April 6, 2012 

(i.e., trial 1) and the other starting on May 25, 2012 (i.e., trial 2).  In total, 48 and 45 tags were used in trials 1 and 

2, respectively.  One tag in trial 2 was not functioning properly.  The tag worked correctly for >70 days at the 

pulses per minute (ppm) code (even), but not the high residence receiver (HRR)/ppm hybrid code, therefore this 

tag did work correctly for being detected on VR2Ws, but not correctly for being detected on HRR-cabled 

receivers (J. Israel, pers. comm.).  This tag was removed from the tag life vitality study and was not considered in 

the calculation of the following numbers.  For trial 1, the average tag life was 78.4 days (standard error [SE]=0.4 

days).  For trial 2, the average tag life was 76.6 days (SE=1.6 days).  The minimum tag life was 58.5 and 19.5 

days for trial 1 and 2, respectively.  In both trials, 100.0% of the tags examined in the tag life vitality study lasted 

longer than the monitoring period for the Stipulation Study (15 days).   
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Each V6-4X acoustic coded transmitter weighed approximately 1 gram.  To examine the tag burden for 

acoustically tagged steelhead in the study, tag weight (1 gram) was divided by steelhead weight and expressed as 

a percentage.  The tag burden for Release Group 1, Release Group 2, and Release Group 3 was 1.0% (SE<0.1%), 

0.9% (SE<0.1%), and 0.7% (SE<0.1%), respectively.  The average tag burden for live steelhead released for this 

study was 0.9% (SE<0.1%).   

2.4 STUDY ASSUMPTIONS 

The assumptions used in the 2012 Stipulation Study are listed below.   

1. Tagging did not affect survival.   

2. There was little or no mortality from handling.   

3. Tag expulsion was minimal.   

4. The tag burden (weight of tag:weight of smolt) was appropriate.   

5. Tags did not affect swimming performance or predator avoidance.   

6. The tag burden was similar across release groups.   

7. Tag detection probability at each location was high (>80%). 

8. Detection probability at the acoustic receiver arrays did not vary between release groups. 

9. The influence of predation on steelhead tags was minimal and did not bias results. 

10. OMR flow differences between Group 3 and Groups 1 and 2 were sufficient to test hypotheses. 

11. Treating Release Group 3 versus Groups 1 and 2 as different OMR flow treatments was appropriate 

despite OMR flow fluctuations during release groups.   

12. Hatchery steelhead and wild steelhead smolts behaved similarly. 

13. Hatchery steelhead were appropriately used as wild steelhead “sentinels.”   

14. Tag life was sufficient for the duration that data were collected.   

As noted by the 2012 IRP LOO Annual Review (Kneib et al. 2012), the credibility and reliability of the findings 

in any analysis depend substantially on whether or not assumptions are reasonable.  Therefore, we examined the 

validity of many of these assumptions. 

Tagging did not affect survival. 

Although it is unknown how steelhead tagging affected survival of fish once released, proper tagging procedures 

were followed during tagging and release, leading to very limited mortality prior to release.  Of the 505 tagged 

steelhead, only one died prior to release.  Of the 27 steelhead implanted with dummy tags and monitored in a 

controlled environment for tagging survival, only one steelhead died within 24 hours after tagging.  Two other 

steelhead died after 24 hours as a result of an improperly functioning water chiller.  Except for one control fish 

with a fungal infection, all other steelhead appeared healthy following tagging.   
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There was little or no mortality from handling. 

Only one of the 505 tagged steelhead died prior to release, indicating that handling mortality was very low.  

Although an unknown amount of handling mortality could occur shortly after release, in the model, we only used 

data for tags that were detected at array 1 to minimize the impact. 

The tag burden (weight of tag:weight of smolt) was appropriate. 

The tag burden was less than 1%, which is far under the acceptable threshold level in similar studies.  A 

maximum of 2% tag to body weight ratio is typically accepted as per the literature recommendations.  The SOP 

for this study would have allowed a 5% tag to body weight ratio (equaling a 20 gram fish).  The average weight of 

fish used in the study was 128 grams.   

Tags did not affect swimming performance or predator avoidance. 

We did not conduct an analysis to examine this and do not know if predator avoidance was affected. However, 

because the tag burden was far below the acceptable threshold level, we feel we met this assumption.  Also, the 

speed at which steelhead tags moved in the system (Section 4.2.3) provided evidence that swimming performance 

was not hindered by tag burden. 

The tag burden was similar across release groups. 

The tag burden was different between groups, as the heaviest fish were observed in Release Group 3 (mean=157 

grams), and lightest fish were observed in Release Group 1 (mean=107 grams).  This was due to steelhead feeding 

and growing during the study, as fish released for Release Group 3 had the longest time to grow prior to being 

tagged and released.  While the tag burden was different across release groups, the tag burden was far below the 

acceptable threshold for all release groups. 

Tag detection probability at each location was high (>80%). 

While the analyses conducted in the multistate mark-recapture model do not require high detection probabilities, 

it is important for analyses conducted without the model.  As estimated by the multistate model (Sections 4.2.1 

and 4.2.2), detection probability was high (>80%) for arrays 7, 20, 22, and 24.  However, detection probability 

was much lower for arrays 2 and 21, with detection probabilities of 64% and 12% at the array-level for arrays 2 

and 21, respectively (see Section 4.2.1).  Although detection probability was low for these arrays, the model 

accounts for detection probabilities and the model was able to converge.  In Sections 4.3.1 and 4.3.3, using 

Manly-Parr estimates (described in Section 4.2.1), detection probabilities for the dual arrays used in those 

analyses (arrays 3, 11, 15, and 19) were 100% at array-level for all release periods that we could estimate. 

Detection probability at acoustic receiver arrays did not vary between release groups. 

For all arrays used in the analyses and where detection probabilities could be estimated, detection probability did 

not vary between release groups.  Detection probabilities did not vary across release groups for arrays 2 and 7 

(Section 4.2.1) and arrays 3, 11, 15, and 19 (Sections 4.3.1 and 4.3.3).  We did find that detection probability 

varied across release groups at array 6 (Section 4.2.1); however, array 6 was replaced with array 7 for all study 

analyses.   

The influence of predation on steelhead tags was minimal and did not bias results. 

As found in previous Delta acoustic studies (SJRGA 2011), some steelhead tags may have been present inside 

predators rather than tagged free-swimming steelhead smolts.  When analyzing acoustic tagging data of Chinook 

salmon smolts for the 2010 VAMP study, attempts were made to distinguish between tagged salmon smolts and 

those tags that had been consumed by predators (SJRGA 2011).  A filter was applied to all tag detections based on 
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assumed behavioral differences between Chinook salmon smolts and predators.  For example, Chinook salmon 

smolts were expected to move with the flow while actively migrating downriver, while predators were not 

expected to show such unidirectional movement.  Although the best available information was used to inform the 

predator filter, no validation was performed, and therefore its accuracy is unknown. 

Utilizing the predator filter developed for Chinook salmon would likely produce biased results as juvenile 

steelhead may behave differently than Chinook salmon.  We could have attempted to create our own predator 

filter for distinguishing between steelhead and predators, however, the inability to validate such a steelhead 

predator filter would have introduced an unknown amount of uncertainty to the study results.  Given the larger 

size of juvenile steelhead, predation on steelhead tagged in this study may have been less frequent than in other 

mark-recapture studies that used smaller Chinook salmon.  However, the true influence of predation on study 

findings is unknown.   

OMR flow differences between Release Group 3 and Release Groups 1 and 2 were sufficient to 
test hypotheses. 

Because the original goal of achieving three distinctly different OMR flow treatments was not met, we analyzed 

the data as two release groups, with Release Groups 1 and 2 pooled as a less negative OMR flow treatment, and 

Release Group 3 as a more negative OMR flow treatment, as recommended by the 2012 IRP LOO Annual 

Review (Kneib et al. 2012).  Therefore, study results should reflect how the range of OMR flows during the study 

influenced fish behavior in each OMR flow treatment group.  However, because OMR flows only spanned 

approximately 70% of the proposed range of flows, and historical flows have been much more negative than 

observed during the study, it is uncertain how well study results extrapolate to OMR flow conditions outside of 

the range observed.  In addition, only two replicates of less negative OMR flows and a single replicate of more 

negative flows were examined.  Therefore, additional replications of stable OMR flows across the examined range 

and beyond are recommended to corroborate study findings and understand how OMR flows affect fish behavior 

and survival.   

Treating Release Group 3 versus Release Groups 1 and 2 as different OMR flow treatments was 
appropriate despite OMR flow fluctuations during release groups.   

The average OMR flows following release for each release group was used to assign Release Groups 1 and 2 to a 

less negative OMR flow treatment and Release Group 3 to a more negative OMR flow treatment.  However, 

OMR flows varied following each release, especially after a point in the second week when the trigger was 

activated and flows were brought to -1,250 cfs.  This occurred on April 24, May 11, and May 26, 2012 for 

Release Groups 1, 2, and 3, respectively.  We believe that the impact of these flow fluctuations was minimal 

because the majority of steelhead tags in all release groups moved through the Delta before these dates. 

Hatchery steelhead and wild steelhead smolts behave similarly. 

The assumption that tagged hatchery steelhead are a valid proxy for wild steelhead was likely violated because of 

behavioral differences between hatchery and wild fish, as observed in other Central Valley studies.  Wild 

steelhead have been shown to behave differently than hatchery steelhead (e.g., Chittenden et al. 2008; and reviews 

by Melnychuk et al. 2010 and Drenner et al. 2012).  An alternative would have been to use tagged wild steelhead 

instead of hatchery surrogates.  However, using wild steelhead would be challenging.  This species is threatened, 

and collecting large numbers of wild steelhead smolts would be difficult if not impossible.   

Hatchery steelhead were appropriately used as wild steelhead “sentinels.”  

The arrival of steelhead tags implanted in hatchery steelhead in the interior Delta (Railroad Cut) was used as a 

trigger for altering export pumping levels and thereby protecting wild steelhead from entrainment to CVP and 

SWP.  However, as described in the previous assumption, hatchery steelhead likely behave differently than their 

wild counterparts; the arrival timing of tagged steelhead was highly dependent on their release date, and likely 
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different than when wild steelhead arrived.  Although this assumption was likely violated, it is unknown to what 

extent wild steelhead arrival timing differed from tagged hatchery steelhead.  Future studies should be completed 

to understand how well tagged hatchery steelhead mimic the behavior of their wild counterparts.   

Tag life was sufficient for the duration that data were collected. 

A tag life study showed that failure occurred on average after 78.4 days (SE=0.4 days) in the first trial and 76.6 

days (SE=1.6 days) in the second tag life study.  One of the tags stopped functioning after 19.5 days but all the 

tags included in this study, which were all tags that were detected on both types of acoustic receivers from the 

beginning, were functioning for the entire 15-day period that steelhead tags were monitored during the study. 
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3 DATA MANAGEMENT 

CHAPTER SUMMARY: 

In the spring of 2012, we initiated a mark-recapture experiment to examine the survival and movement patterns of 

acoustically tagged juvenile steelhead emigrating through the Delta.  The dataset was for the 501 live fish released 

with tags that were known to be functional.  We also received detection data for Stipulation Study steelhead tags 

that were detected by receivers deployed for the Six-Year Study.  We performed quality assurance/quality control 

(QA/QC) on the data and produced a Microsoft (MS) Access 2010 database file composed of four separate table 

objects: 

1. Fish measurements, release, and transport. 

2. Release dates, timing, and corresponding group number. 

3. Filtered Stipulation Study fish detection data.  

4. Receiver codes, identification, station names, and arrays. 

We only examined steelhead tags that were detected within 15 days of release.  We processed these data by 

filtering out detection records which were:  (1) at a date/time prior to the release date, (2) beyond the 15 days of 

release date, and/or (3) detected at a receiver only once within the + 30-minute time-frame.   

3.1 DATABASE DESIGN AND IMPLEMENTATION 

This section describes the Access database, which included data on acoustically tagged steelhead from the 2012 

Stipulation Study.  The database included detection data from acoustic receiver arrays as shown in Figure 2-3.  

Where possible, data descriptions described in this report are included within the Access database under data field 

definitions and table comments.  We received a set of fish detection data from all receiver arrays shown in 

Figure 2-3 on August 24, 2012.  We corrected all fish detection data for time drift using VUE software.  We also 

received detection data for Stipulation Study tagged fish detected from the receivers deployed by the 2012 Six-

Year Study (care of Josh Israel, Reclamation).  By the end of February of 2013, we received all the data from 

receivers of the arrays.   

We checked and verified the tagging, transport, release, and detection data in the database to ensure quality 

control.  We checked for duplicated serial numbers and tag-IDs per release and bucket/tote IDs, checking for 

blank records for each field, the units used for fish measurements, and reviewing comments noted by the field 

biologist to ensure that they were properly represented in the data (e.g., failed tag, functioning tag number, 

dummy serial number, fish behavior prior to release).  We flagged data found to be questionable or unmatched to 

field notes and sent those data to Kevin Clark (field implementation lead) to verify.  Because of the limited file 

size available in the Access database, we excluded fish data for non-Stipulation Study tagged fish from this 

database. 

Data were provided in the MS Access database in four separate table objects: 

 01_TagData&FishInfo contains data on fish measurements, release, and transport (Table 3-1). 

 02_ReleaseDates_GroupNum contains specific data on release dates, timing, and corresponding group 

number (Table 3-2). 

 03_All_FishDetection_within15dayofrelease contains all the detection data for all fish for the entire study 

(Table 3-3). 
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 04_Receiver_Array contains receiver codes, ID numbers, station names, and arrays service details 

(Table 3-4). 

We structurally organized and shaped the data in several table objects into a relational database.  Table objects 

were connected via “one-to-many” relationships  etween ta les (Figure 3-1).  For example, the table 

01_FishSerialNum and 02_FishSerialNum_TagCodes had a one-to-many relationship indicating that each fish 

serial number had two fish tag ID numbers, but each fish tag ID number had only one unique fish serial number.  

This approach maintained the integrity, quality, and accessibility of the large dataset.  Our approach also 

prevented duplicates in fish tag serial numbers or tag ID numbers, and allowed efficient accessibility and 

flexibility of records necessary when creating data queries to conduct the analysis in the following chapter. 

 

Figure 3-1 Tables and relationships used in the Stipulation Study database. 

01_TAGDATA&FISHINFO 

The Access ta le “01_TagData&FishInfo” included fish measurements, tagging, transport, and release date data.  

A total of 505 fish were acoustically tagged and of these, one steelhead died.  All live acoustically tagged fish 

were released.  Four steelhead were recorded to have non-functioning tags prior to release, although we 

subsequently detected one fish that was thought to have a non-functional tag.  Therefore, the dataset consists of 

501 fish with functioning tags, as included in Table 3-1. 
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Table 3-1 List of field names, data types, and descriptions in 01_TagData&FishInfo. 

Field Name Data Type Description 

FTD_ID Text 
Tagging data row ID assigned by Cramer Fish Sciences (CFS).  FTD stands for Fish 

Tagging Data row ID. 

TaggingDate Date/Time Tagging date. 

Tagger Text Name of the field biologist who tagged fish. 

ToteBucketID Text Tote and/or Bucket ID. 

ReleaseDT Date/Time Release Date and Time. 

FishSerial_Num Number VEMCO Fish tag serial number. 

VTagCode1 Number VEMCO tag code 1. 

VTagCode2 Number VEMCO tag code 2. 

Scales Text 

Fish scales condition; N=Normal (loss of <5% scales on one side of the steelhead), 

P=Partial (loss of 6-19% of scales on one side of the steelhead), D=Descaled (lost >20% 

or more of the scales on one side of the fish, and were not being tagged due to 

compromised osmoregulatory ability). 

Species Text Species code:  STH=steelhead (in Stipulation Study, all were STH smolts). 

FishWt Number Fish weight (grams). 

FishLength Number Fish fork length (mm). 

Airtime Date/Time 

Time when the fish was out of the water during tagging.  Airtime started when the 

steelhead was removed from the bucket containing MS-222, and airtime stopped when 

the fish was placed into a recovery bucket. 

Function Text Y:  tag was verified to be functioning; N:  tag was verified to be not functioning. 

Validation_Time Date/Time Time at which the tag function was verified by a biologist. 

MortBeforeRelease Number 
Number of fish mortality observed before fish release (all live fish herein since we 

excluded one dead fish). 

Study Text Study name (all Stipulation Study).  

Comments Text Field notes. 

Notes_CFS Text Data notes by CFS. 

 

02_RELEASEDATES_GROUPNUM 

The Access ta le “02_ReleaseDates_GroupNum” included the list of release dates and times, and the associated 

group number.  Acoustically tagged fish were released in three groups at Buckley Cove:  April 15–16 (Group 1), 

May 1–2 (Group 2), and May15–16 (Group 3), 2012 (Table 3-2). 

Table 3-2 List of field names, data types, and descriptions in 02_ReleaseDates_GroupNum. 

Field Name Data Type Description 

ReleasedID Autonumber Data row ID. 

ReleasedDT Date/Time Release date and time. 

ReleaseDate Date/Time Release date. 

GroupNum Number Group number assigned to each release date. 
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03_ALL_FISHDETECTION_WITHIN15DAYOFRELEASE 

The Access ta le “03_ALL_FISHDETECTION_WITHIN15DAYOFRELEASE” included Stipulation Study fish 

detection data within the 15 days of release (Table 3-3).  These data were processed by filtering out detection 

records that were:  (1) at a date/time prior to the release date, (2) beyond the 15 days of release date, and/or 

(3) detected at a receiver only once within the + 30 minutes time-frame.   

Table 3-3 List of field-names, data type, and description for table 
03_All_FishDetection_within15dayofrelease. 

Field Name Data Type Description 

Detn_ID Text 

Data row ID from “raw detection data” (from the raw data ase, which is not 

described herein).  These IDs were used as cross-reference ID between the filtered 

Stipulation Study detection data and the original “raw” detection data.  Detn_IDs 

were assigned by CFS.  In addition, Detn_IDs with la els “DtnStip_### (e.g., 

DtnStip_86524 )” indicated detection data of tagged Stipulation Study fish 

downloaded from the Stipulation Study and “6yr_#### (e.g., 6yr_940896) and #### 

(e.g., 1003)” detection data for Six-Year Study receivers. 

FishSerial_Num Number VEMCO fish tag serial number of an individual fish. 

ReleaseDate Date/Time Release date and time. 

DetectionDT Date/Time Detection date and time. 

DetectionDate Date/Time Detection date. 

ReceiverVCode Number VEMCO receiver serial code. 

Array Number Array numbers assigned by CFS. 

Study Text Study name (in the case herein, all Stipulation Study). 

DetnWthin15dayperiod Text 
Yes:  detection data within the 15 days of release (all yes herein since these are all 

filtered detection data). 

30minBeforeDetnDT Date/Time 30-mins before the detection date/time of an individual fish at a receiver. 

30minAfterDetnDT Date/Time 30-mins after the detection date/time of an individual fish at a receiver. 

Detn_plusminus30min Number 

Count of detection hits within the + 30 minutes time-frame from the recorded 

detection date/time of an individual fish at a receiver (only records with series of 

detection hits >1 at a receiver). 

Species Text STH:  steelhead smolt (Stipulation Study tagged fish are all steelhead smolts). 
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04_RECEIVER_ARRAY 

The Access ta le “04_Receiver_Array” included the list of receiver codes (old and new), original station name, 

array, and the project that deployed the receivers.  Geographic coordinates and visualizations of telemetry stations 

and a release site were plotted on a map and saved in KMZ file format. 

Table 3-4 List of field names, data types and descriptions in 04_Receiver_Array. 

Field Name Data Type Description 

ReceiverVCode Number VEMCO receiver serial number/code. 

Site_Orig_Code Text Site/station name assigned originally by Kevin Clark. 

Array Number Arbitrary array number assigned by CFS. 

Receiver_Study Text A project name that deployed the receiver. 

 

TAG DATA USED IN EACH ANALYSIS AND FULL DETECTION HISTORIES 

Appendix B (Crosswalk Table of Tag and Dependent Analysis) shows what tags were used in what analysis.  This 

appendix presents the data used to produce the figures and results for the analyses in this report (Chapter 4).   
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4 RESULTS 

CHAPTER SUMMARY: 

We performed the analyses at three spatial levels:  system, route, and junction-level.  For the system-level 

analysis, we displayed the data in a variety of tables, figures, and a web-based data viewing tool.  We found that a 

physically based model (the DSM2 Hydro PTM) was unable to predict the movement of steelhead tags, because 

the model greatly underestimated steelhead tag movement rates through the study area.  Using a t-test, we found 

that steelhead tags were traveling significantly greater distances 3 days and 7 days after their release than particles 

in the PTM.  Steelhead tag movement patterns seemed to exhibit limited STST behaviors, which could explain 

why particles traveled less distance after both 3 and 7 days.  Using binomial tests, we also found that diurnal and 

nocturnal movement patterns might be occurring, but these patterns were location-specific.  

For the route-level analysis, we developed a multistate model to estimate route-specific transition probabilities (a 

measure of steelhead tags that went through a route and survived, so the complement of route-specific transition 

probability is not just mortality but the probability of mortality, using a different route, or not reaching Chipps 

Island in 15 days), route-specific survival probabilities (the complement of survival is the probability of mortality 

or not reaching Chipps Island in 15 days), and overall survival probability.  Data were pooled for all release 

groups as the model using data from a single release group (e.g., Release Group 3) did not converge.  This model 

with the pooled data allowed us to estimate route-specific transition probability for each of the six different routes 

(all routes started downstream of Buckley Cove and ended at Chipps Island): 

► The route-specific probability via Turner Cut was 7.0% (SE=1.6%).

► The route-specific probability without using Turner Cut was 24.8% (SE=2.0%).

► The route-specific probability via Turner Cut and the SWP was 0.5% (SE=0.5%).

► The route-specific probability via the SWP without using Turner Cut was 0.2% (SE=0.2%).

► The route-specific probability via Turner Cut and the CVP was 19.6% (SE=2.8%).

► The route-specific probability via CVP without using Turner Cut was 31.7% (SE=1.9%).

Overall survival to Chipps Island was 50.2% (SE=2.0%).  Route-specific survival probability for the Turner Cut 

route was 27.0% (SE=3.0%).  Route-specific survival probability for the Mainstem route was 56.7% (SE=2.4%).  

The model estimated that the majority of steelhead tags (77.6%, SE=1.6%), continued along the San Joaquin 

River, and 22.4% (SE=1.6%) of the steelhead tags were entrained into the interior Delta at the Turner Cut 

junction.  Using an analysis of variance (ANOVA), we found that travel times for steelhead tags differed between 

these two routes, with steelhead tags reaching Chipps Island more rapidly for the Mainstem route compared to the 

steelhead tags that successfully reached Chipps Island using the Turner Cut route (using these routes as defined in 

the model).  The faster migration of steelhead tags using the Mainstem route was consistent with higher survival 

for this route. 

We found no evidence that the routing of steelhead tags at the three junctions along the San Joaquin River 

(Columbia Cut, Middle River, and Turner Cut) was affected by the OMR flow treatment levels examined in this 

study.  When the data were examined using two release groups (less negative vs. more negative OMR flows), we 

found no significant differences for the OMR levels tested in this study.  In the analysis of steelhead tags arriving 

into Clifton Court Forebay or the CVP, we found that while not significant, on average the proportion of water 

arriving at an export facility was higher at the facility for the period of time when a steelhead tag was arriving at 

the facility that first detected it.   

We wanted to determine whether steelhead tags at Railroad Cut were more likely to move north away from the 

SWP and CVP intakes after the adaptive management option was triggered and less negative OMR flows were 

observed.  However, when we examined if adaptive management trigger was effective, we were unable to 

successfully complete the test due to the small sample size of steelhead tags passing through Railroad Cut after 
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the management option was observed to take effect (N=7).  Yet, there was marginally significant (statistical test 

values over 0.05 but less than 0.1) evidence that steelhead tags at Railroad Cut were more likely to move north in 

less negative (Groups 1 and 2) OMR flows than in more negative (Group 3) OMR flow conditions.  We examined 

nine predictor variables in separate tests.  Only the test that used average OMR flow on the day that the steelhead 

tag was first detected downstream of Railroad Cut was found to be significant. 

4.1 SYSTEM-LEVEL ANALYSES 

In this section, we present the analysis of system-level movement patterns of steelhead tags both descriptively 

through spatial display of tag data, and statistically by examining key large-scale hypotheses.  We begin with the 

descriptive results where tag data are displayed in a suite of figures, tables, and a web-based tool.  We describe 

the percentage of steelhead tags detected at each array, where last detections occurred, the residence time at each 

array, the final fate of steelhead tags at each array, and provide a web-based tool displaying tag detection 

histories.  In Sections 4.1.6, 4.1.7, and 4.1.8, we examine three statistical hypotheses to determine how well 

movement of simulated particles mimicked steelhead tag behavior, whether tags exhibited selective movement 

behavior in relation to tides, and how steelhead tag movement related to time of day.   

Although we did not account for detection probability at arrays when calculating system-level results, we assume 

that detection probability did not vary between release groups, and therefore relative differences in spatial patterns 

of tags across release groups reflect the true movement of tags.  In later results sections (Sections 4.2.1, 4.3.1, and 

4.3.3), we examined if detection probability varied across release groups for arrays with dual receivers (2, 3, 6, 7, 

11, 15, and 19) and found that detection probability only varied across release groups for array 6.  Therefore, 

except for array 6, relative differences in the spatial pattern of tags can likely be attributed to release group 

differences and not to differences in detection probabilities.  Also, most arrays had high detection probabilities 

(>80%) so system-wide biases in tag spatial patterns are very unlikely when examining system-level results.  

4.1.1 RELATIVE TAG DETECTION AT ARRAYS 

We examined the spatial pattern of steelhead tags detected by release group, by depicting the percentage of tags 

detected at each array (Figure 4-1 and Table 4-1).  The results generally showed a decreasing number of 

individual steelhead tags detected the farther away tags moved from the release location of Buckley Cove, 

indicating a declining number of tags as they traveled downstream, most likely resulting from mortality.  No 

consistent pattern between release groups was evident, indicating that the OMR flows tested likely had minimal 

effect on the general movement patterns of steelhead tags during the study.   

 



 

Stipulation Study  Results 
California Department of Water Resources 4-3 February 2014 

 

Figure 4-1 Percentage of individual steelhead tags detected in each array by release group.  
See Table 4-1 for the source data.   
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Table 4-1 Number and percentage of Stipulation Study steelhead tags detected in each array by release 
group.  The percentage was calculated as the number of tags detected at that array from that release 
group divided by the total number of tags released for the release group.  The total number of tags 
released was 166, 167, and 168 for Release Groups 1, 2, and 3, respectively. 

Array 
Number of Tags Detected Percentage of Tags Detected (%) 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

1 147 149 139 88.6 89.2 82.7 

2 95 98 96 57.2 58.7 57.1 

3 45 51 44 27.1 30.5 26.2 

4 42 60 48 25.3 35.9 28.6 

5 13 17 9 7.8 10.2 5.4 

6 24 31 61 14.5 18.6 36.3 

7 55 61 47 33.1 36.5 28.0 

8 50 58 46 30.1 34.7 27.4 

9 44 51 42 26.5 30.5 25.0 

10 6 12 11 3.6 7.2 6.5 

11 23 33 26 13.9 19.8 15.5 

12 29 20 27 17.5 12.0 16.1 

13 30 27 32 18.1 16.2 19.0 

14 18 16 10 10.8 9.6 6.0 

15 14 8 6 8.4 4.8 3.6 

16 29 18 18 17.5 10.8 10.7 

17 6 2 5 3.6 1.2 3.0 

18 0 0 0 0.0 0.0 0.0 

19 22 18 18 13.3 10.8 10.7 

20 6 9 15 3.6 5.4 8.9 

21 13 11 10 7.8 6.6 6.0 

22 33 52 45 19.9 31.1 26.8 

23 1 1 0 0.6 0.6 0.0 

24 33 47 33 19.9 28.1 19.6 
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4.1.2 LAST DETECTION AT ARRAYS 

We examined the spatial pattern of where steelhead tags were last detected by release group, by depicting the 

percentage of tags last detected at each array (Figure 4-2 and Table 4-2).  The largest number of final detections 

occurred at the Chipps Island array, providing evidence that a large proportion of steelhead tags migrated through 

the system successfully.  The next highest percentage was at the first array.  The large percentage of last 

detections at the first array may indicate high mortality, possibly due to high predation or handling mortality 

following release.  No consistent pattern between release groups appeared evident, indicating that the OMR flows 

tested likely were not driving the general patterns seen in the final detection data.   

 

 

Figure 4-2 Percentage of steelhead tags last detected at each array by release group.  The 
distribution of last detections indicates areas where fish mortality occurred or where tags left 
the area of receiver coverage.  See Table 4-2 for the source data. 
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Table 4-2 Number and percentage of steelhead tags last detected at each array by release group.  Each 
tag was only counted at the single array where the tag was last detected.  The percentage was 
calculated as the number of tags last detected at that array divided by the total number of tags from 
that release group that were detected at any array.  The total number of tags detected at any array 
was 150, 152, and 145 for Release Groups 1, 2, and 3, respectively.   

Array 
Number of Tags Detected Percentage of Tags Detected (%) 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

1 21 12 25 14.0 7.9 17.2 

2 12 4 8 8.0 2.6 5.5 

3 4 1 3 2.7 0.7 2.1 

4 8 5 8 5.3 3.3 5.5 

5 4 3 3 2.7 2.0 2.1 

6 5 2 6 3.3 1.3 4.1 

7 8 5 3 5.3 3.3 2.1 

8 1 5 4 0.7 3.3 2.8 

9 3 6 4 2.0 3.9 2.8 

10 0 3 3 0.0 2.0 2.1 

11 1 0 0 0.7 0.0 0.0 

12 2 4 3 1.3 2.6 2.1 

13 0 0 0 0.0 0.0 0.0 

14 3 5 1 2.0 3.3 0.7 

15 5 2 0 3.3 1.3 0.0 

16 11 9 4 7.3 5.9 2.8 

17 1 2 2 0.7 1.3 1.4 

18 0 0 0 0.0 0.0 0.0 

19 8 7 4 5.3 4.6 2.8 

20 4 6 11 2.7 3.9 7.6 

21 6 7 5 4.0 4.6 3.4 

22 9 17 15 6.0 11.2 10.3 

23 1 0 0 0.7 0.0 0.0 

24 33 47 33 22.0 30.9 22.8 

 



 

Stipulation Study  Results 
California Department of Water Resources 4-7 February 2014 

4.1.3 RESIDENCE TIME AT ARRAYS 

We examined the spatial pattern of residence time at each array by release group, by depicting the average time 

spent by steelhead tags at each array (Figure 4-3 and Table 4-3).  The results indicated that the time between first 

and last detections at each array was generally consistent among arrays, except for the arrays located at the radial 

gates of Clifton Court Forebay (array 20) and CVP (array 21).  On average, steelhead tags spent more time at 

arrays 20 and 21 than any other array in the study system, indicating that steelhead tags may have been consumed 

by a predator and defecated at these locations, trapped, or delayed from leaving the vicinity of those arrays.  No 

consistent pattern between release groups was evident, indicating that OMR flows tested were not likely driving 

the general patterns seen in tag residence time.  See Table 4-3 for the source data.   

A potential bias influencing array residence time results was the 15-day filter applied to steelhead tag data.  By 

cutting off detection data beyond 15 days, array residence time may be underestimated, especially at more 

downstream arrays that were not reached until later in the study period (i.e., arrays 20–24).  However, since the 

majority of steelhead tags that successfully traveled through the system did so in less than 7 days (see Section 

4.2.3), the proportion of tags being detected at Chipps Island eliminated by the 15-day filter was small (6%).  

Also, very large residence times observed at arrays 20 and 21 provided evidence that underestimation of residence 

time was likely not a problem. 

 

Figure 4-3 Average residence time of steelhead tags at each array by release group.  Residence 
time is equal to the difference between the last and first detections of individual tags.  See 
Table 4-3 for the source data. 
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Table 4-3 Sample sizes, average, minimum, and maximum values of residence time (days) of steelhead tags at each array by release 
group.  Residence time of a tag is equal to the difference between the last and first detection at each array. 

  Release Group 1 Release Group 2 Release Group 3 

Array N Average Minimum Maximum N Average Minimum Maximum N Average Minimum Maximum 

1 147 1.5 <0.1 14.6 149 1.2 <0.1 14.3 139 1.4 <0.1 12.4 

2 95 1.2 <0.1 13.3 98 0.7 <0.1 14.0 96 0.8 <0.1 11.3 

3 45 0.7 <0.1 9.7 51 0.2 <0.1 2.5 44 0.2 <0.1 2.4 

4 42 0.7 <0.1 10.2 60 0.3 <0.1 1.7 48 0.4 <0.1 1.8 

5 13 0.2 <0.1 1.1 17 0.1 <0.1 0.7 9 0.1 <0.1 0.3 

6 24 0.3 <0.1 2.7 31 0.1 <0.1 1.2 61 0.7 <0.1 13.4 

7 55 0.5 <0.1 4.6 61 0.4 <0.1 4.5 47 0.5 <0.1 10.7 

8 50 0.8 <0.1 8.4 58 0.3 <0.1 4.0 46 0.3 <0.1 1.6 

9 44 0.6 <0.1 10.2 51 0.5 <0.1 10.2 42 0.4 <0.1 5.5 

10 6 0.1 <0.1 0.3 12 0.7 <0.1 3.6 11 0.9 <0.1 5.8 

11 23 0.7 <0.1 8.9 33 0.4 <0.1 7.3 26 0.2 <0.1 1.1 

12 29 0.5 <0.1 2.9 20 0.8 <0.1 9.4 27 0.2 <0.1 3.1 

13 30 0.8 <0.1 5.4 27 0.5 <0.1 7.6 32 0.3 <0.1 3.4 

14 18 0.7 <0.1 6.8 16 0.1 <0.1 0.6 10 0.1 <0.1 0.7 

15 14 0.9 <0.1 3.2 8 0.6 <0.1 1.8 6 0.2 <0.1 0.9 

16 29 0.8 <0.1 3.8 18 0.2 <0.1 0.8 18 0.7 <0.1 7.4 

17 6 0.8 <0.1 3.1 2 <0.1 <0.1 <0.1 5 0.1 <0.1 0.4 

18 0 - - - 0  - - - 0  - - - 

19 22 0.9 <0.1 5.5 18 0.9 <0.1 9.0 18 0.7 <0.1 6.2 

20 6 1.7 <0.1 7.8 9 2.7 <0.1 10.5 15 1.0 <0.1 7.0 

21 13 1.6 0.2 7.3 11 2.7 0.2 10.2 10 2.0 0.1 12.0 

22 33 0.5 <0.1 1.9 52 0.5 <0.1 3.9 45 0.4 <0.1 1.8 

23 1 <0.1 <0.1 <0.1 1 <0.1 <0.1 <0.1 0 - - - 

24 33 0.3 <0.1 0.9 47 0.3 <0.1 1.4 33 0.3 <0.1 2.0 
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4.1.4 FINAL FATE AT ARRAYS 

We examined the spatial pattern of the final fate of steelhead tags at each array by release group, by depicting the 

last location of tags at each array.  The data from each array were categorized and displayed based on final fate 

(i.e., the location of last detection of a steelhead tag) at four final destinations (CVP, SWP, Chipps Island, or in-

river) for each of the three release groups (Figure 4-4 to Figure 4-6 and Table 4-4).  Successfully salvaged 

steelhead tags were recorded at Chipps Island (array 24).  The steelhead tags recorded as having the SWP 

destination were last detected at array 20, which is the array upstream and downstream of the radial gates of 

Clifton Court Forebay.  Array 21 was located at the CVP and was the last detection location for steelhead tags that 

entered the CVP.  The steelhead tags recorded as in-river were not detected last at array 20, 21, or 24. 

 

 

Figure 4-4 For each array, the proportion of steelhead tags from Release Group 1 last detected at 
one of four destinations (CVP, SWP, Chipps Island, or in-river).  No tags were 
successfully salvaged for Release Group 1.  The sample size (N) for each array is denoted 
next to each bar.  See Table 4-4 for the source data.  The dashed black line indicates the 
“point of no return,” the southern-most locations where at least one steelhead tag 
successfully arrived at Chipps Island without assistance through salvage.   
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Figure 4-5 For each array, the proportion of steelhead tags from Release Group 2 last detected at 
one of four destinations (CVP, SWP, Chipps Island, or in-river).  Successfully salvaged 
tags were recorded at Chipps Island.  The sample size (N) for each array is denoted next to 
each bar.  See Table 4-4 for the source data.  The dashed black line indicates the “point of no 
return,” the southern-most locations where at least one steelhead tag successfully arrived at 
Chipps Island without assistance through salvage.   
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Figure 4-6 For each array, the proportion of steelhead tags from Release Group 3 last detected at 
one of four destinations (CVP, SWP, Chipps Island, or in-river).  Successfully salvaged 
tags were recorded at Chipps Island.  The sample size (N) for each array is denoted next to 
each bar.  See Table 4-4 for the source data.  The dashed black line indicates the “point of no 
return,” the southern-most locations where at least one steelhead tag successfully arrived at 
Chipps Island without assistance through salvage.   
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Table 4-4 For each array, the percent of steelhead tags last detected at one of four destinations (CVP, 
SWP, Chipps Island, or in-river).  Successfully salvaged tags were recorded at Chipps Island 
(array 24).  The tags recorded as having the destination at SWP were last detected at array 20, which 
is the array upstream and downstream of the radial gates of Clifton Court Forebay.  The tags last 
detected at CVP were last detected at array 21.  The tags recorded as in-river were not detected last 
at array 20, 21, or 24. 

Array 
Chipps Island In-River CVP SWP 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

1 22.4 30.9 22.3 70.7 60.4 66.9 4.1 4.7 2.9 2.7 4.0 7.9 

2 28.4 40.8 32.3 65.3 53.1 61.5 4.2 4.1 1.0 2.1 2.0 5.2 

3 46.7 51.0 43.2 44.4 49.0 54.5 4.4 0.0 2.3 4.4 0.0 0.0 

4 52.4 58.3 47.9 42.9 41.7 52.1 2.4 0.0 0.0 2.4 0.0 0.0 

5 46.2 41.2 22.2 53.8 58.8 77.8 0.0 0.0 0.0 0.0 0.0 0.0 

6 4.2 16.1 13.1 83.3 71.0 63.9 8.3 6.5 8.2 4.2 6.5 14.8 

7 16.4 14.8 12.8 72.7 67.2 59.6 5.5 8.2 8.5 5.5 9.8 19.1 

8 16.0 10.3 17.4 64.0 67.2 50.0 12.0 12.1 10.9 8.0 10.3 21.7 

9 11.4 9.8 14.3 68.2 64.7 47.6 13.6 13.7 11.9 6.8 11.8 26.2 

10 0.0 16.7 18.2 16.7 50.0 36.4 66.7 16.7 18.2 16.7 16.7 27.3 

11 26.1 48.5 38.5 69.6 45.5 53.8 4.3 6.1 0.0 0.0 0.0 7.7 

12 13.8 30.0 33.3 72.4 60.0 55.6 10.3 10.0 3.7 3.4 0.0 7.4 

13 23.3 48.1 53.1 66.7 44.4 43.8 6.7 7.4 3.1 3.3 0.0 0.0 

14 33.3 50.0 50.0 61.1 50.0 40.0 5.6 0.0 10.0 0.0 0.0 0.0 

15 28.6 12.5 66.7 71.4 87.5 33.3 0.0 0.0 0.0 0.0 0.0 0.0 

16 0.0 0.0 16.7 89.7 77.8 44.4 3.4 5.6 5.6 6.9 16.7 33.3 

17 0.0 0.0 40.0 100.0 100.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 

18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

19 0.0 0.0 5.6 68.2 50.0 27.8 13.6 27.8 22.2 18.2 22.2 44.4 

20 0.0 11.1 20.0 16.7 11.1 6.7 16.7 11.1 0.0 66.7 66.7 73.3 

21 0.0 18.2 20.0 30.8 9.1 0.0 46.2 63.6 50.0 23.1 9.1 30.0 

22 72.7 67.3 66.7 27.3 32.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 

23 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

24 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

As expected, the proportion of steelhead tags last detected at Chipps Island or at either export facility (arrays 20 

and 21) increased as tags approached each of these final destinations across all release groups (Figure 4-4 to 

Figure 4-6 and Table 4-4).  In other words, as steelhead tags approached their final destination, the arrays closer to 

that destination showed a higher relative proportion of tags with that final destination.  The proportion of tags at 

the export facilites that were successfully salvaged and were ultimately recorded at Chipps Island (indicated by 

green bar) was zero for Release Group 1, while successfully salvaged tags that were detected at the export 

facilities ranged from 11 to 20% for Release Groups 2 and 3.  If OMR flows tested were driving salvage success, 

we would have expected salvage success to be different for Release Group 3 versus 1 and 2.  However, the 

observed differences appeared to be driven by factors other than OMR flows. 
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Additionally, we wanted to examine the “point of no return” for steelhead tags  y identifying at what point 

steelhead tags in the interior Delta no longer arrived at Chipps Island without assistance (through salvage 

operations at export facilities).  For each release group figure (Figure 4-4 to Figure 4-6), we demarcated a line 

indicating the southern-most locations where at least one steelhead tag succesfully arrived at Chipps Island 

without assistance through salvage.  If OMR flows tested had a large influence on the “point of no return” for 

steelhead, we would expect this line to move north for Release Group 3 versus 1 and 2, indicating a larger 

influence of pumping facilities when OMR flows were more negative.   

The “point of no return” for steelhead tags was identical  etween Release Groups 1 and 2, and slightly more to the 

south for Release Group 3.  This result is the opposite of our expectation that the more negative OMR flows 

occuring during Release Group 3 would lead to a larger zone of infuence of export pumping, with the “point of no 

return” moving more north.  This finding indicated that the different levels of OMR flows examined in this study 

likely did not influence the ability of steelhead tags in the interior Delta to return to the Mainstem San Joaquin 

River and reach Chipps Island without assistance. 

A potential bias influencing the “point of no return” demarcation was the small sample sizes of steelhead tags at 

interior Delta arrays.  As indicated in Figure 4-1 and Table 4-1, the proportion of overall tags that reached arrays 

near the export facilities was very low.  Therefore, our a ility to precisely identify the “point of no return” line for 

each release group was limited. 

4.1.5 WEB-BASED DETECTION HISTORY 

A web-based dissemination tool was created to spatially display the full detection history of individual steelhead 

tags.  The application was built in Shiny (RStudio Inc. 2013), which is a statistical package from RStudio for the 

program R (R Project 2013).  The base map type used (e.g., terrain, satellite) and the size of the map can be 

controlled by the user (Kahle and Wickham 2013).  The data can be sorted in a variety of ways, such as by serial 

number, by release group, or final detection location (export facilities and/or Chipps Island).  The speed at which 

data can be displayed is also controlled by the user.  As the application runs, static information is displayed in the 

top-right panel that includes the fish serial number, release group, release date, and whether it was detected at the 

export facilities and/or at Chipps Island.  Below that panel is dynamic information that changes as the application 

shows each array where the steelhead tag was detected.  This information includes the array number, the arrival 

and departure date and time for that array, number of detections, and residence time spent at the current array.  

The bottom-right panel displays the number of days since the tag was last detected at that array after its release.  

This web-based tool can be viewed at:  http://glimmer.rstudio.com/hinkelman/stip-study/. 

4.1.6 MOVEMENT OF STEELHEAD TAGS VERSUS SIMULATED PARTICLES  

The distance that steelhead travel through the Delta in a certain amount of time not only determines their speed 

but also probably their survival (Sections 4.2.2 and 4.2.3).  Therefore, managers are very interested in being able 

to predict the distance and destination of migrating steelhead smolts, as well as for other species.  The DSM2 

PTM was used to predict this information and design this experiment (NMFS 2012).  Therefore, we developed the 

following hypothesis to examine if the DSM2 Hydro PTM model could predict the distance travelled by steelhead 

tags:  

Hypothesis 4.1.6:  The distance traveled by steelhead tags was not significantly different than the 
distance traveled by the passive particles. 

METHODS FOR TESTING HYPOTHESIS 4.1.6 

The distances traveled by simulated particles and steelhead tags observed 3 and 7 days after their release date 

were compared to evaluate the efficacy of using neutrally bouyant simulated particles to mimic steelhead tag 

behavior.  The final location of a tag or a particle was the array where the tag or particle was last known to be on 

http://glimmer.rstudio.com/hinkelman/stip-study/
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the day of interest (day 3 or 7) according to the acoustic telemetry data or the data generated from the DSM2 PTM 

for tags and particles, respectively.  We used all arrays that were located where we had particle data.  This led to 

excluding only a single tag that was detected at array 17 on the 3rd and 7th day (Table 4-5 and Table 4-6). 

Particles were released in a similar fashion as were acoustically tagged steelhead.  Simulated particles were 

injected at node 22 (Buckley Cove area) in the DSM2 PTM model at a rate of 1,250 every 3 hours for a total 

10,000 particles over 24 hours starting at 3:00 pm on April 15, May 1, and May 15, 2012.  The distance to an 

array that tags or particles were detected was estimated as the Euclidean distance from the array to the release site. 

For particles, the DSM2 PTM model run data we were provided did not include the order of arrays that a particle 

went to nor the arrival and departures time of particles to individual receiver arrays. Thus, we were unable to 

calculate individual particle distances and had to rely on the relative particle flux across receiver arrays.  The 

proportion of particles at each receiver array on the day of interest was scaled to the number of steelhead tags 

present on that day to have equal sample sizes of distances for particles and tags.  Also, we assumed that all 

particles were released on the second day of a release group because we could not track individual particle 

histories. 

A t-test was used to determine if significant differences existed between the distances traveled by the particles and 

steelhead tags.  The datasets from the two days of interest (day 3 and 7) were analyzed separately.   

Table 4-5 The Euclidean distance (km) of each array from the release site and the percentage of 
simulated particles and steelhead tags at that array on the third day after their release. 

Array  Euclidean Distance from Release (km) Particle Percentage Tag Percentage 

1 3.8 0.0 14.9 

2 5.8 50.2 14.1 

3 9.3 0.0 4.0 

4 11.4 0.0 10.9 

5 12.7 0.3 2.5 

6 4.6 26.4 3.6 

7 6.3 0.0 6.9 

8 8.5 0.0 4.7 

9 8.9 1.4 4.7 

10 8.5 4.4 1.4 

11 7.9 5.0 0.7 

12 7.7 0.1 3.3 

13 8.9 1.5 1.4 

14 8.8 0.0 4.0 

15 10.9 0.0 2.2 

16 10.5 0.0 2.2 

19 11.7 0.0 3.3 

20 14.2 7.5 0.7 

21 14.8 1.7 2.2 

22 17.9 1.1 9.4 

24 31.1 0.4 2.9 
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Table 4-6 The Euclidean distance (km) of each array from the release site and the percentage of 
simulated particles and steelhead tags at that array on the seventh day after their release. 

Array  Euclidean Distance From Release (km) Particle Percentage Tag Percentage 

1 3.8 0.0 11.8 

2 5.8 2.3 6.9 

3 9.3 0.0 0.7 

4 11.4 0.1 5.6 

5 12.7 1.0 0.0 

6 4.6 0.2 2.1 

7 6.3 0.0 4.9 

8 8.5 0.0 4.2 

9 8.9 8.4 2.8 

10 8.5 11.7 2.1 

11 7.9 6.9 2.8 

12 7.7 10.7 4.2 

13 8.9 43.1 0.7 

14 8.8 0.7 2.8 

15 10.9 0.0 5.6 

16 10.5 1.0 3.5 

19 11.7 0.0 2.8 

20 14.2 10.1 6.3 

21 14.8 2.7 4.2 

22 17.9 0.1 9.0 

24 31.1 1.0 17.4 

 

RESULTS FOR THE HYPOTHESIS 4.1.6 TEST 

As expected, steelhead tags and particles moved farther from the release site of Buckley Cove in relation to days 

from release (Figure 4-7 and Figure 4-8), as shown by the higher average distance traveled by particles and 

steelhead tags on day 7 compared to day 3.  A t-test found that steelhead tags traveled significantly farther than 

the particles 3 and 7 days following release.  After 3 days, steelhead tags traveled (9.5 km, SE=0.3 km, Table 4-5) 

significantly farther (P<0.01) compared to the particles (6.8 km, SE=0.2 km, Table 4-5).  On average, particles 

only traveled 71.6% (6.8 km / 9.5 km) of the distance traveled by tags after 3 days (Figure 4-7).  After 7 days, 

steelhead tags traveled (13.4 km, SE=0.8 km, Table 4-6) significantly farther (P<0.01) compared to the particles 

(9.5 km, SE=0.2 km, Table 4-6).  On average, particles only traveled 70.9% (9.5 km / 13.4 km) of the distance 

traveled by steelhead tags after 7 days (Figure 4-8).   
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Figure 4-7 The percentage of steelhead tags and simulated particles at the arrays on the third day 
after release.  Arrays are ordered from shortest Euclidean distance (left) to greatest (right) 
Euclidean distance (km) from the release site of Buckley Cove. 

 

 

Figure 4-8 The percentage of steelhead tags and simulated particles present at the arrays on the 
seventh day after release.  Arrays are ordered from shortest Euclidean distance (left) to 
greatest (right) Euclidean distance (km) from the release site of Buckley Cove. 

Steelhead tags moved much faster than simulated neutrally bouyant particles.  This appears to show evidence that 

steelhead tags either selectively moved with the tides or exhibited constant directed movement while moving 
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through the Delta to travel faster than the water.  The next hypothesis (Section 4.1.7) specifically examined if 

steelhead tags exhibited STST behaviors.  

Because we could not determine the exact release time of particles, we assumed that all particles were released on 

the second day of a release period.  Therefore, distances traveled by particles were likely overestimated because 

particles released on the first day of a release group traveled for longer than 3 days before the distance 

measurement was calculated.  However, because we found that steelhead tags traveled farther than particles, this 

bias did not affect the outcome of this analysis. 

In additon to differences in speed between particles and steelhead tags, the final locations of particles and 

steelhead tags were very different 7 days following release.  Nearly all particles (91%) ended up at one of six 

arrays in the interior Delta (arrays 12, 11, 10, 13, 9, 20) 7 days following release.  Conversly, the final locations of 

steelhead tags after 7 days were spread out across 20 of 21 arrays, with single-digit percentages occuring at 19 of 

the 21 arrays.  Also, a much higher percentage of steelhead tags (17.4%) were ultimately detected at Chipps 

Island versus particles (1%).  These results show evidence that the PTM inaccurately predicts the final location of 

steelhead, as well as their speed. 

4.1.7 SELECTIVE TIDAL-STREAM TRANSPORT  

Whether the migration of juvenile salmonids is passive, partly active, or active has been debated for decades 

(Martin et al. 2009 and references therein).  Because acoustically tagged steelhead tags moved significantly faster 

than passive particles (see Section 4.1.6), this could indicate that steelhead are undergoing active migration 

(i.e., swimming downstream irrespective of tidal conditions) or selectively moving with the tides.  These fish may 

exhibit behaviors that allow them to move faster than they would if they were simply passive particles drifting 

with the water and the processes that control the flow of water, such as tides.  Anadromous fish are known to use 

STST, including salmonids (Moore et al. 1995, Martin et al. 2009).  STST behaviors are those where fish actively 

move into high and low/no flow conditions to facilitate movement up- or downstream.  Clements et al. (2012) 

hypothesized that salmonid smolts move into low-velocity areas during flood tides and into the highest velocity 

areas during the ebb tides.   

The interpretation of results from DSM2 Hydro PTM for management purpose commonly assumes that 

acoustically tagged salmonids move in a similar manner to passive particles driven purely by hydrodynamics.  

While this assumption is commonly used for modeling the movement of aquatic species, even in peer-reviewed 

literature (e.g., Kimmerer and Nobriga 2008), this assumption was probably not accurate for most species 

including juvenile steelhead (see Section 4.1.6).  In particular, salmonids have a complex set of behaviors in 

response to both biotic (e.g., predators) and abiotic factors (e.g., temperature, salinity, tides).  For example, 

juvenile steelhead that want to reach the ocean as quickly as possible could achieve this by moving into fast-

flowing surface waters during ebb tides and moving to lower velocity flows on the flood tides by moving to the 

sides of the water body or moving to deeper waters (Clements et al. 2012).  Moore et al. (1995) found that 

Atlantic salmon (Salmo salar) smolts exhibited a nocturnal, selective ebb tide transport pattern of migration.  

Therefore, in this analysis, we examined if acoustically tagged juvenile steelhead used STST, and in the next 

analysis we examined if they migrate more nocturnally or diurnally.   

Hypothesis 4.1.7:  Steelhead tags did not move using STST.   

METHODS FOR TESTING HYPOTHESIS 4.1.7 

Following the suggested methods in Appendix 2.2 of the 2012 IRP LOO Annual Review (Kneib et al. 2012), we 

attempted to estimate φ, which is the contribution of STST behavior to migration (Anderson et al. 2005).  

Whether a steelhead tag is exhibiting STST behavior or active directed swimming is determined by the value of φ.  

This value is generated by subtracting the mean particle velocity from the mean velocity of tags, and this product 

is divided by the root-mean-square (RMS) tidal velocity.  If this value, φ, is greater than 0.5, then it is evidence of 
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active directed swimming in the seaward direction.  If φ is 0.5, smolts are effectively hiding in zero-velocity areas 

during the entire flood tide and drift downstream during the ebb tide.  If φ is less than 0.5, this indicates that tidal 

selective movement occurs during only part of the flood tide and/or that the smolts move into low velocity, but 

not zero-velocity, areas on the flood tide.  A φ of 0 indicates passive drift of smolts. 

We calculated the mean velocity of particles as predicted by the DSM2 PTM model and steelhead tags between 

arrays 1 and 7 (Figure 2-3) for the tags detected at both arrays in that order.  We calculated φ with the following 

equation:  (U-V) / (RMS tidal velocity).  U is the mean velocity of steelhead tags estimated between arrays 1 and 

7, and V is the mean velocity of particles that was estimated by conducting the following steps: 

► In each of the three PTM runs, 10,000 particles were released from node 25 (array 1) at 1:30 am on the second 

day of the fish release periods (April 16, May 2, and May 16,
 
2012). 

► We identified the particle flux at node 143 (array 7) at the end of each model run and identified how long 

before at least half of this value was predicted for node 143 (array 7) in each model run and then subtracted 

15 minutes from this number to get an estimate of mean travel time for particles.  Because it is unclear when 

during the time interval that half the particles passed node 143, we chose to err on the side of overestimating 

mean particle velocity by assuming that they arrived at the beginning of the last 15-minute interval (by 

subtracting 15 minutes). 

► We calculated this value from each of the three new PTM runs that corresponded to the study periods of the 

three release groups and averaged these three values to estimate the mean travel time of particles.  Then, to 

estimate the mean velocity of particles, we divided 5,660 m by the mean travel time. 

To calculate the RMS tidal velocity, we gathered data from the Turner Cut CDEC station (CDEC 2013).  The 

average RMS tidal velocity across the three release groups was calculated for the 5 days after the release of fish 

(3:00 pm on the day that releases began until 2:45 pm on the fifth day after). 

RESULTS FOR HYPOTHESIS 4.1.7 

Steelhead tags seemed to exhibit limited STST behavior (φ=0.39), as shown in Table 4-7.  This suggests that at least 

in one reach of the Delta, steelhead were exhibiting STST behavior, with selective movement only occurring 

during part of the flood tide and/or that the steelhead tags move into low velocity, but not zero-velocity areas on 

the flood tide. 

Table 4-7 The mean velocity of particles, mean velocity of steelhead tags, and root-mean-square tidal 
velocity, and φ, which is the contribution of STST behavior to migration. 

 Estimates 

Mean velocity of particles (m/sec): 0.02 

Mean velocity of tags (m/sec): 0.07 

RMS tidal velocity (m/sec): 0.13 

φ: 0.39 

 

This result further illustrates that steelhead tags should not be treated as passive particles when estimating their 

migration rate.  By not accounting for these specific fish behaviors in the movement rules of simulated particles, 

physically based models cannot predict the movement of this species.  There is growing support for no longer 

having models treat species as passive particles (Metaxas and Saunders 2009, Delaney et al. 2012).  We 

recommend that models used for predicting smolt movement incorporate important behaviors in response to 

environmental conditions and be validated using biotelemetry data.   
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This analysis was conducted to address the concern raised in the 2012 IRP LOO Annual Review to include tidal 

information to better understand the movement patterns of steelhead tags.  However, because this analysis 

required a confined reach of the Delta (to better ensure steelhead tag routing) paired with locally measured 

hydrodynamic data, we were limited to examining a single reach.  Therefore, this analysis was exploratory in 

nature, and we suggest that future studies (including deployment of tidal velocity monitoring stations necessary to 

collect site-specific data) be conducted to quantify this behavior on a larger scale in various parts of the Delta.   

4.1.8 DIURNAL MOVEMENT PATTERNS 

Another behavior that could be important in understanding the migration, routing, and survival of steelhead is 

whether steelhead are migrating more during the day or night.  Because migrating steelhead are vulnerable to 

visual ambush predators, such as striped bass (Morone saxatilis), it may be beneficial for steelhead to migrate 

during the nighttime to reduce their chance of being preyed upon.  However, the limited studies of activity 

patterns of steelhead show that they are more active during the day (Bégout Anras and Lagardère 2004, Chapman 

et al. 2013). 

Hypothesis 4.1.8:  The movement of steelhead tags in the San Joaquin River and interior Delta was 
not related to day/night. 

METHODS FOR TESTING HYPOTHESIS 4.1.8 

The timing of when steelhead tags are first detected at arrays 4 (San Joaquin River) and 9 (interior Delta) was 

examined for a day/night effect.  Two-tail binomial tests were conducted to determine if significantly more 

steelhead tags were first detected during the day (i.e., 06:00:01–18:00:00) than during the night (i.e., 18:00:01–

06:00:00).  This exploratory analysis allowed us to examine if there was any evidence that tags were moving more 

during the day or night.  We assumed that if steelhead tags were migrating more during the day, then a 

significantly greater proportion of tags would be first detected during the daytime.  Similarly, we assumed that if 

steelhead tags were migrating more during the night, then a significantly greater of proportions of tags would be 

first detected during the nighttime.   

RESULTS FOR HYPOTHESIS 4.1.8 

We found that 46.7% and 62.8% of steelhead tags were first detected during the day (06:00:01–18:00:00) at 

arrays 4 and 9, respectively.  Given the different results found between the two arrays, we analyzed all 23 arrays 

where Stipulation Study steelhead tags were detected and analyzed for this hypothesis (Table 4-8).  Array 18 did 

not detect any steelhead tags deployed for the Stipulation Study and therefore was not examined in the analysis.  

When we examined all the arrays, only 34.8% of the arrays had more tags detected during the day than during the 

night (Table 4-8).   

There seems to be a spatial pattern in significant results for steelhead tags released for the Stipulation Study 

(Figure 4-9).  At many of the arrays (arrays 2, 3, 11, 22, and 24) along the San Joaquin River, significantly 

(P<0.05) more Stipulation Study steelhead tags were first detected during the night.  Conversely, some arrays 

(arrays 8, 9, 10, and 12) in the southeast section of the study area had significantly (P<0.05) more tags first 

detected during the day.  Arrays 7 and 20, also in the southeast section of the study area, had marginally 

significantly (i.e., 0.05≥P≤0.10) more steelhead tags first detected during the day.   

There is some evidence for a spatial pattern in diurnal steelhead tag movements.  However, the mechanism for 

this pattern is unknown and should be further examined in future studies.  A potential bias in diurnal timing data 

is the possible ingestion of steelhead tags by predators.  The spatial pattern observed in diurnal movements may 

be due to spatial patterns in predation.  For example, if more predation is occurring in the interior Delta versus the 

Mainstem, the diurnal patterns in movement may be the result of differences in predator versus steelhead 



 

Results  Stipulation Study 
February 2014 4-20 California Department of Water Resources 

movement behavior.  However, this relationship is purely speculative, and future studies specifically designed to 

examine diurnal movement behavior should be conducted to understand the underlying mechanism.  

Table 4-8 For each array, the number of Stipulation Study steelhead tags that were first detected during 
the daytime and nighttime, the total number of tags detected, the proportion of tags first 
detected during the daytime and nighttime, and the two-tail P-value from the binomial test to 
see if more tags were detected during the day or night. 

Array 
Tags first detected 

between 
06:01-18:00 

Tags first detected 
between 18:01-06:00 

Total number 
of tags 

Percent first 
detected during the 

day 

Percent first 
detected during the 

night 
P-value 

1 215 220 435 49.4 50.6 0.85 

2 109 180 289 37.7 62.3 <0.01 

3 51 89 140 36.4 63.6 <0.01 

4 70 80 150 46.7 53.3 0.46 

5 15 24 39 38.5 61.5 0.20 

6 49 67 116 42.2 57.8 0.11 

7 94 69 163 57.7 42.3 0.06 

8 90 64 154 58.4 41.6 0.04 

9 86 51 137 62.8 37.2 <0.01 

10 25 4 29 86.2 13.8 <0.01 

11 25 57 82 30.5 69.5 <0.01 

12 49 27 76 64.5 35.5 0.02 

13 39 50 89 43.8 56.2 0.29 

14 24 20 44 54.5 45.5 0.65 

15 12 16 28 42.9 57.1 0.57 

16 32 33 65 49.2 50.8 1.00 

17 4 9 13 30.8 69.2 0.27 

19 32 26 58 55.2 44.8 0.51 

20 20 10 30 66.7 33.3 0.10 

21 13 21 34 38.2 61.8 0.23 

22 49 81 130 37.7 62.3 0.01 

23 0 2 2 0.0 100.0 0.50 

24 30 83 113 26.5 73.5 <0.01 
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Figure 4-9 The proportion of steelhead tags deployed for the 2012 Stipulation Study first detected 
during the day or night.  The size of the pie chart is scaled to the number of tags detected 
at each of the arrays.  The white portion of the pie chart is the percent of tags detected during 
the day (i.e., 06:00:01–18:00:00), and the black portion is the percent of tags detected during 
the night (i.e., 18:00:01-06:00:00).  The green star indicates the result for that array is 
significant as determined by the two-tail P-value from the binomial test.  The red triangle 
indicates the result for that array is marginally significant as determined by the two-tail 
P-values from the binomial tests. 

4.2 ROUTE-LEVEL ANALYSES 

In this section, we examine how steelhead tags moved and survived through the Delta using different defined 

routes.  We built a multistate statistical release-recapture model to estimate receiver detection probabilities, route 

entrainment probabilities, transition probabilities, and survival probabilities.  In analyses not using the model we 

estimated if travel times of steelhead tags were affected by the different OMR flow conditions examined in this 

study.   
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4.2.1 ROUTE-SPECIFIC TRANSITION PROBABILITIES 

To properly manage a species and promote its survival through the Delta, we hypothesize that we need to know if 

the survival of a species varies between different routes.  Also, we hypothesize that certain OMR flows may foster 

more favorable conditions for the survival of the species.  If the survival of steelhead varies between routes and/or 

release groups, we can try to re-create conditions or promote the use of specific routes through specific OMR 

flows that will result in increased steelhead survival. 

Hypothesis 4.2.1:  Route-specific transition probabilities of steelhead tags were not significantly 
related to the route taken and/or release group.   

METHODS FOR TESTING HYPOTHESIS 4.2.1 

To estimate detection probabilities, route entrainment, survival, and transition probabilities, we built a multistate 

statistical release-recapture model in the program USER (Lady et al. 2008), which is similar to those developed 

by Perry et al. (2010), SJRGA (2011, 2013), and Buchanan et al. (2013).  For the Stipulation Study model, we 

used all steelhead tags that were detected at array 1 (Figure 2-3).  Last detection data were used in the model, as 

was done in previous modeling efforts (e.g., Buchanan et al. 2013). 

Originally, we intended to include release group as a covariate in the model to examine how survival and routing 

differed between release groups or OMR flow levels (Groups 1 and 2 versus Group 3).  However, during the 

model fitting process, USER failed to converge on individual release group models and only converged and 

provided parameter estimates and standard errors for the pooled data from all release groups.  Therefore, the 

following methods and results reflect a model that combined all data across release groups (i.e., release group 

were not included as a covariate). 

Acoustic receiver coverage and detection data informed the delineation of fish routes from approximately 

Stockton to Chipps Island (including through the interior Delta and south Delta salvage facilities).  In the analysis, 

we examined six primary fish routes to estimate route-specific transition probabilities.  Route-specific transition 

probability is a measure of the number of steelhead tags that went through a route and survived.  Therefore, the 

complement of route-specific transition probability is not just mortality but is mortality, using a different route, or 

not reaching Chipps Island in 15 days.  However, 94% of the steelhead tags that reached Chipps Island did so in 

the 15 days after their release, therefore the complement of route-specific transition probability is mainly 

mortality and the probability of using a different route.  The following are the six defined routes (for points of 

reference listed below, refer to Figure 1-1):  

► Turner Cut to Chipps Island area (Figure 4-10). 

► Route to Chipps Island area without using Turner Cut (Figure 4-11). 

► Turner Cut to Chipps Island area via SWP (Figure 4-12). 

► Route to Chipps Island area via SWP without using Turner Cut (Figure 4-13). 

► Turner Cut to Chipps Island area via CVP (Figure 4-14). 

► Route to Chipps Island area via CVP without using Turner Cut (Figure 4-15). 



 

Stipulation Study  Results 
California Department of Water Resources 4-23 February 2014 

 

Figure 4-10 Turner Cut to Chipps Island area route. 

 

 

Figure 4-11 Route to Chipps Island area without using Turner Cut.   



 

Results  Stipulation Study 
February 2014 4-24 California Department of Water Resources 

 

Figure 4-12 Route using Turner Cut to Chipps Island area via SWP.  Dashed lines represent overland 
transport of steelhead tags in salvage trucks from an export facility to one of the release sites 
upstream of Chipps Island. 

 

Figure 4-13 Route to Chipps Island area via SWP without using Turner Cut.  Dashed lines represent 
overland transport of steelhead tags in salvage trucks from an export facility to one of the 
release sites upstream of Chipps Island. 
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Figure 4-14 Route using Turner Cut to Chipps Island area via CVP.  Dashed lines represent overland 
transport of steelhead tags in salvage trucks from an export facility to one of the release sites 
upstream of Chipps Island. 

 

Figure 4-15 Route to Chipps Island area via CVP without using Turner Cut.  Dashed lines represent 
overland transport of steelhead tags in salvage trucks from an export facility to one of the 
release sites upstream of Chipps Island. 
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These routes (Figure 4-10 to Figure 4-15) were the basis for selecting a subset of arrays from the arrays deployed 

for the Stipulation Study and Six-Year Study in the study area (Figure 2-3).  Because of the complexity of Delta 

channels and the lack of a priori consideration of the placement of receiver arrays to test specific routing and 

survival hypotheses, we eliminated receiver arrays from the analysis that did not allow a calculation of unique 

route entrainment or reach survival probabilities.  For example, incomplete receiver coverage at the San Joaquin 

River junctions downstream of Turner Cut and in the myriad of channel bifurcations in the interior Delta limited 

our ability to calculate route entrainment and survival probabilities in these areas.  Based on these considerations, 

the locations of arrays that we used in the model are shown in Figure 4-16, and the locations of each array’s 

individual receivers are described in Table 4-9.  Using these arrays, we generated the model schematic shown in 

Figure 4-17.  In the model, we only used steelhead tags that were initially detected at array 1 to remove the 

expression of handling mortality.  This schematic (Figure 4-17) incorporates the six routes, but allowed us to 

derive a model that balances complexity with clarity.   

 

Figure 4-16 The location of acoustic telemetry arrays that were included in the schematic of the 
multistate statistical model described in Figure 4-17 to estimate route entrainment, 
survival, detection, and transition probabilities.  The green star is where the acoustically 
tagged steelhead were released for the 2012 Stipulation Study. 
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Figure 4-17 Schematic of the multistate statistical model.  Estimated parameters are the probabilities 
of survival (S), route entrainment (ψ), transition (ϕ), and detection (P).  Single arrays are 
denoted with a single line where dual rays are shown as double lines.  Dashed lines 
represent overland transport of steelhead tags in salvage trucks from an export facility to one 
of the release sites upstream of Chipps Island. 
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Table 4-9 Array number, receiver location upstream or downstream, receiver code, station name, and 
latitude/longitude (decimal degrees).  *Only has one location point available as receivers were 
deployed very close to each other in a station (e.g., station name "JPE.1a/b" for receivers 300915 
and 300916).  Data from KMZ (version 19) provided to us by Dr. Josh Israel. 

Array 
Upstream (A) or 
Downstream (B) 

Receiver Code Station Name Latitude Longitude 

1 A 300995 9B 37.9950 -121.4381 

1 A 300998 9A 37.9949 -121.4404 

2 A 300899 MACU.1 38.0175 -121.4634 

2 A 300900 MACD.1 38.0234 -121.4667 

2 B 300901 MACU.2 38.0184 -121.4620 

2 B 300902 MACD.2 38.0246 -121.4651 

7 A 301004 5B 37.9719 -121.4846 

7 B 300999 5A 37.9711 -121.4862 

20 A 300888 RGU1 37.8301 -121.5566 

20 A 300889 RGU2 37.8297 -121.5569 

20 B 460009 RGD2-HRR 37.8304 -121.5572 

20 B 460010 RGD2-HRR 37.8299 -121.5576 

20 B 460011 RGD1-HRR 37.8299 -121.5576 

21 A 460012 CVPU-HRR 37.8170 -121.5583 

21 A 300895 CVPD 37.8167 -121.5589 

21 B 300896 CVPT 37.8158 -121.5591 

22 A 300915 JPE.1a* 38.0569* -121.6850* 

22 A 300916 JPE.1b* 38.0569* -121.6850* 

22 A 300917 JPE.2a* 38.0576* -121.6861* 

22 A 300918 JPE.2b* 38.0576* -121.6861* 

22 A 300919 JPE.3a* 38.0561* -121.6842* 

22 A 300920 JPE.3b* 38.0561* -121.6842* 

22 A 300921 JPE.4a* 38.0581* -121.6873* 

22 A 300922 JPE.4b* 38.0581* -121.6873* 

22 B 300923 JPW.1a* 38.0553* -121.6876* 

22 B 300924 JPW.1b* 38.0553* -121.6876* 

22 B 300925 JPW.2a* 38.0560* -121.6885* 

22 B 300926 JPW.2b* 38.0560* -121.6885* 

22 B 300927 JPW.3a* 38.0544* -121.6870* 

22 B 300928 JPW.3b* 38.0544* -121.6870* 

22 B 300929 JPW.4a* 38.0564* -121.6896* 

22 B 300930 JPW.4b* 38.0564* -121.6896* 
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Table 4-9 Array number, receiver location upstream or downstream, receiver code, station name, and 
latitude/longitude (decimal degrees).  *Only has one location point available as receivers were 
deployed very close to each other in a station (e.g., station name "JPE.1a/b" for receivers 300915 
and 300916).  Data from KMZ (version 19) provided to us by Dr. Josh Israel. 

Array 
Upstream (A) or 
Downstream (B) 

Receiver Code Station Name Latitude Longitude 

24 A 300931 MAE.1a* 38.0474* -121.9320* 

24 A 300932 MAE.1b* 38.0474* -121.9320* 

24 A 300933 MAE.2a* 38.0489* -121.9304* 

24 A 300934 MAE.2b* 38.0489* -121.9304* 

24 A 300935 MAE.3a* 38.0468* -121.9324* 

24 A 300936 MAE.3b* 38.0468* -121.9324* 

24 A 300937 MAE.4a* 38.0507* -121.9309* 

24 A 300938 MAE.4b* 38.0507* -121.9309* 

24 A 300939 MAE.5a* 38.0458* -121.9328* 

24 A 300940 MAE.5b* 38.0458* -121.9328* 

24 A 300941 MAE.6a* 38.0513* -121.9306* 

24 A 300942 MAE.6b* 38.0513* -121.9306* 

24 B 300943 MAW.1a* 38.0480* -121.9332* 

24 B 300979 MAW.1b* 38.0480* -121.9332* 

24 B 300980 MAW.2a* 38.0499* -121.9331* 

24 B 300981 MAW.2b* 38.0499* -121.9331* 

24 B 300982 MAW.3a* 38.0474* -121.9338* 

24 B 300983 MAW.3b* 38.0474* -121.9338* 

24 B 300985 MAW.4a* 38.0518* -121.9341* 

24 B 300986 MAW.4b* 38.0518* -121.9341* 

24 B 300987 MAW.5a* 38.0467* -121.9352* 

24 B 300988 MAW.5b* 38.0467* -121.9352* 

24 B 300989 MAW.6a* 38.0523* -121.9337* 

24 B 300990 MAW.6b* 38.0523* -121.9337* 

 

In addition to estimating these six route-specific transition probabilities, we also estimated two route-specific 

survival probabilities (Mainstem and Turner Cut route), route entrainment probability at Turner Cut, and overall 

Delta survival (see Section 4.2.2 for entrainment and survival results).  The equations for each of the transition 

probability, entrainment, and survival calculations are shown in Table 4-10. 

To estimate parameters, we used seed values of 0.1 in a Fletch Quasi-Newton optimizer and an alpha level of 

0.05.  We used the default settings for the Fletch Quasi-Newton optimizer, which are a maximum of 200 

iterations, with a precision of 1e-06, and a proportional step size of 1e-06.  For a steelhead tag to be included in 

the analyses for the model, it needed to be detected at array 1 (Figure 4-17).  If a steelhead tag were detected at 

more than one array on the same level of the schematic (e.g., arrays 7 and 2; Figure 4-17), the tag was considered 
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to have only been detected by the array on that level of the schematic that last detected the tag.  The only 

exception to this rule was that if a steelhead tag were detected at an export facility and array 22 (Jersey Point), it 

was considered to be detected at the export facility where it was last detected.  For example, if a tag was detected 

at array 21 then 22 then 24, in the model it would be considered to have been detected at array 21 and then next at 

array 24.  We feel this assumption is valid because otherwise tags that went through salvage and were later 

detected at array 22  efore reaching array 24 (Chipps Island) would not  e identified as a “salvaged” steelhead tag 

because these arrays are on the same level in the model.  This would be misleading.   

Table 4-10 The codes and equations for route-specific transition probabilities, Turner Cut route 
entrainment (into the interior Delta), and survival probabilities.  Turner Cut route entrainment 
was fit by model.  Terms that start with “ϕ” denote a transition probability, terms that start with “s” 
denote a route-specific transition probability, terms that start with “S” denote a route-specific survival 
probability, s0 is the initial survival, terms that start with “Ψ” denote a route entrainment probability 
and is the parameter that is estimated by the model.  The number and letter following one of these 
terms in the equation are from the array to the next array.  For example, ϕ2,22 is the transition 
probability from 2 to 22 and ϕ2,21 is the transition probability from 2 to 21. 

Description of the route Code Equation 

Turner Cut to Chipps Island area  

(route-specific transition probability) 
sA ϕ ,22 * ϕ22,24 

Route to Chipps Island area without using Turner Cut  

(route-specific transition probability) 
sB ϕ2,22 * ϕ22,24 

Turner Cut to Chipps Island area via SWP  

(route-specific transition probability) 
sC ϕ ,20 * ϕ20,24 

Route to Chipps Island area via SWP without using Turner Cut 

(route-specific transition probability) 
sD ϕ2,20 * ϕ20,24 

Turner Cut to Chipps Island area via CVP  

(route-specific transition probability) 
sE ϕ ,21 * ϕ21,24 

Route to Chipps Island area via CVP without using Turner Cut 

(route-specific transition probability) 
sF ϕ2,21 * ϕ21,24 

Route to Chipps Island without using Turner Cut  

(route-specific survival probability) 
S2C 

ϕ2,22 * ϕ22,24 + ϕ2,20 * ϕ20,24 + ϕ2,21 * 

ϕ21,24 

Route to Chipps Island using Turner Cut 

(route-specific survival probability) 
S7C 

ϕ ,22 * ϕ22,24 + ϕ ,20 * ϕ20,24 + ϕ ,21 * 

ϕ21,24 

Turner Cut route entrainment ΨB=1-ΨA Fit by model 

Overall survival STotal 
s0*(ΨA * sB + ΨA * sD + ΨA * sF + ΨB * 

sA + ΨB * sC + ΨB * sE) 

 

Many assumptions are made when fitting a multistate statistical release-recapture model for estimating survival 

and routing in a branching system.  The following are the modeling assumptions adapted from the presentation 

“Survival Analysis of Tagging Data”  y Drs. R. Buchanan and R. Perry as part of a survival analysis workshop, 

June 28–29, 2011 (Buchanan and Perry 2011):  

1. No tag failure or tag loss. 

2. Every fish has equal and independent probability of success. 

3. Every fish has equal and independent probability of detection, given it survives to the detection location. 

4. Upstream detection history has no effect on downstream survival and detection. 

5. Tagging has no effect on survival. 

6. Detection is instantaneous. 
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7. Tags are read correctly. 

8. Tagged sample is representative of the population. 

9. All detections come from live study fish. 

10. All mortality occurs first; then transition occurs. 

11. Equal survival from the junction to each of the downstream arrays. 

We assumed that these assumptions were met, but as occurs in any model, these assumptions could be violated.  

Also, given the complexity of the study system and the long list of stringent assumptions of the model, collecting 

data, and designing a model where all assumptions were met was challenging.  Further, attempting to meet one 

assumption can sometimes cause a violation of another assumption of the model.  For this reason, the effect of 

each modeling decision needed to be weighed upon all the assumptions to determine what form of the model was 

best.  In the following paragraphs, we describe key modeling decisions that were made to best meet several key 

assumptions that were vital to our goal of estimating a route entrainment probability at Turner Cut.   

In the model, we wanted to estimate route entrainment probabilities for steelhead tags that continued traveling 

along the Mainstem San Joaquin River and those entering Turner Cut.  To estimate these routes without bias, all 

assumptions of the model should be met.  We originally proposed to use arrays 2 and 6 (Figure 2-3) at the Turner 

Cut junction in the model since we wanted to use arrays immediately downstream of Turner Cut to avoid 

violating the assumption that all mortality occurs first and then transition occurs.   

However, during exploration of the model input data, we estimated release group-specific detection probabilities 

for dual receiver arrays at this junction to examine if detection probabilities were constant across release groups, 

therefore meeting the assumption of equal and independent detection probability.  The Manly and Parr (1968) 

method was applied to estimate detection probabilities at each dual array.  The Manly and Parr method requires 

dual arrays and is based on the assumption that tags passing an array are detected by one or more of the receivers 

of the arrays.  If this assumption is not met, then the detection probability for that array will be overestimated 

because tags not detected by any receiver are not counted in the estimation of the detection probability.  All arrays 

that we considered using for the Turner Cut junction (arrays 2, 6, and 7) were dual arrays.  Probability of 

detection was estimated at the array-level using these equations: 

1
ˆ

0

AB
p

AB B



, 2
ˆ

0

AB
p

A AB



, and   1 2

ˆ ˆ ˆ1 1 1P p p    ; 

 

where p 1 is the detection probability of the upstream receiver(s), AB is the number of fish detected at both 

upstream and downstream receiver(s), B0 is the number of fish detected at the downstream receiver(s) only, A0 is 

the number of fish detected at the upstream receiver(s) only, p 2 is the detection probability of the downstream 

receiver(s), and p  is the overall detection probability of the array. 

Unlike at receiver arrays 2 and 7 (Table 4-11), the probability of detection varied with release group at array 6 

(Table 4-12).  For array 6, Release Group 3 had a high detection probability (100%), while the detection 

probabilities of Release Groups 1 and 2 were much lower, with estimates of 47% and 83%, respectively.  These 

results justified the use of array 7 instead of array 6 in the multistate model, as the model that incorporated array 6 

violated the assumption that every steelhead tag has an equal and independent probability of detection.   
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Table 4-11 The estimated detection probabilities  p   for arrays 2 and 7, for the model that included array 7 
instead of 6, for Release Groups 1, 2, and 3.  p 1 is the detection probability of the upstream 
receiver(s), p 2  is the detection probability of the downstream receiver(s), and p  is the overall 
detection probability for the array.  All detection probabilities are expressed as percentages. 

Array 2 

Release Group 1 2 3 

p 1 100 99 100 

p 2 97 96 93 

p  100 100 100 

 

Array 7 

Release Group 1 2 3 

p 1 100 98 100 

p 2 98 100 100 

p  100 100 100 

 

Table 4-12 The estimated detection probabilities (p ) for arrays 2 and 6, for the model that included array 6 
instead of 7, for Release Groups 1, 2, and 3.  p 1 is the detection probability of the upstream 
receiver(s), p 2  is the detection probability of the downstream receiver(s), and p  is the overall 
detection probability for the array.  All detection probabilities are expressed as percentages. 

Array 2 

Release Group 1 2 3 

p 1 100 99 100 

p 2 93 93 93 

p  100 100 100 

 

Array 6 

Release Group 1 2 3 

p 1 20 50 100 

p 2 33 67 96 

p  47 83 100 

 

The detection probability for array 2 varies slightly (<5%) in the two different tables (Table 4-11 and Table 4-12) 

since the raw data for these tables and the model both use last detection data.  Therefore, the exact number of tags 

last detected at array 2 depends on whether the interior array is array 6 or 7.  The receivers making the upstream 

and downstream lines of the dual arrays 7 and 2 are reported in Table 4-9.  The receivers and their locations that 

are part of array 6 are shown in Table 4-13. 

Table 4-13 Receiver details for array 6 including receiver location (upstream or downstream), receiver 
code, station name, and longitude and latitude (decimal degrees).  

Array Upstream (A) or Downstream (B) Receiver Code Station Name Latitude Longitude 

6 A 300886 TCE 37.9917 -121.4554 

6 B 300887 TCW 37.9905 -121.4563 
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While including array 7 instead of array 6 avoided violation of the equal and independent detection probability 

assumption, the distances from array 1 (upstream of the junction) to arrays 2 and 7 were different, and therefore 

there was a risk of violating the assumption of equal survival from the junction to each of the downstream arrays.  

However, although absolute distance between arrays 1 and 2 might be slightly closer to the distance between 

arrays 1 and 6 versus 1 and 7, there is great inequality in the distance between array 1 and either pair of 

downstream receivers.  If arrays 2 and 6 were used, the distance between arrays 1 and 2 was more than twice the 

distance between arrays 1 and 6.  If arrays 2 and 7 were used, the distance between array 1 and 7 was almost twice 

as far as the distance between arrays 1 and 2.  Therefore, arguably using either array 6 or 7 could violate the 

assumption of equal survival.   

With array 7 being farther downstream from array 2 than array 6, we wanted to make sure that most steelhead tags 

arrived at array 7 from the Turner Cut junction and did not reach array 7 from the interior Delta side (possibly 

entering the interior Delta from Columbia Cut).  We examined this assumption and found that less than 5% of 

steelhead tags did not reach array 7 from Turner Cut, thereby, providing further support for the use of array 7 in 

the model.  

Another concern with using array 7 involves Whiskey Slough, a channel between arrays 6 and 7.  If steelhead tags 

were lost in Whiskey Slough prior to reaching array 7, then route entrainment estimates at Turner Cut would be 

biased.  However, Whiskey Slough is a dead-end and does not connect to the network of Delta channels.  And 

since it is a dead-end and flow does not pass all the way through this slough, we assumed that there is low flow 

attraction for steelhead tags at the head of Whiskey Slough, thereby limiting movement into the slough. 

In conclusion, we decided to run the model with array 7 instead of array 6 because only array 6 clearly violated a 

model assumption, with detection probability varying with release group.  Also, these findings argued for use of 

array 7 in all additional analyses, which was the way we preceded with the analysis in this report. 

RESULTS FOR HYPOTHESIS 4.2.1 

The route-specific transition probabilities for the six defined routes are summarized in Table 4-14.   

Table 4-14 Route-specific transition probabilities and standard error for the six transition probability 
routes. 

Route to Chipps Island  Route-specific Transition (%) Standard Error (%) 

Via Turner Cut  7.0 1.6 

Without using Turner Cut  24.8 2.0 

Via Turner Cut and SWP 0.5 0.5 

Via SWP without using Turner Cut 0.2 0.2 

Via Turner Cut and CVP  19.6 2.8 

Via CVP without using Turner Cut 31.7 1.9 

 

The highest transition probability was for the route that did not use Turner Cut and traveled to Chipps Island 

though salvage operations of CVP.  The second highest transition probability was the route that did not use Turner 

Cut and traveled to Chipps Island without being salvaged.  The two lowest transition probabilities were for the 

two routes to Chipps Island that traveled through Clifton Court Forebay and salvage operations at SWP. 

4.2.2 ROUTE-SPECIFIC AND OVERALL SURVIVAL PROBABILITIES 

While route-specific transition probabilities were useful, they were harder to interpret than route-specific and 

overall survival probabilities.  While the complement of route-specific transition probability was not just 
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mortality, but was mortality, using a different route or not reaching Chipps Island in 15 days, the complement of 

overall survival and route-specific survival estimates was mortality and not reaching Chipps Island in 15 days.  

However, 94% of the steelhead tags that were ever detected at Chipps Island were detected in the 15 days after 

their release, therefore the complement of survival is mainly mortality.  Therefore, we also estimated the overall 

survival probabilities and route-specific survival probabilities where the data, study design, and the assumptions 

of the model allowed.  These offered invaluable insights on what percent of the steelhead tags successfully 

migrated through the system and what routes had the greater proportion making it to the end point (i.e., at array 

24, the array near Chipps Island [Figure 2-3]). 

Hypothesis 4.2.2:  The estimated route-specific survival for the Turner Cut route was not significantly 

different from the Mainstem route. 

From the release-recapture model, we could not only estimate the six route-specific transition probabilities (see 

Section 4.2.1), but we could also estimate route entrainment at Turner Cut, overall Delta survival, and two route-

specific survival probabilities: 

► Turner Cut Route (Figure 4-18): steelhead tags that were last detected at array 7 if detected at array 2 and/or 

array 7. 

► Mainstem Route (Figure 4-19): steelhead tags that were last detected at array 2 if detected at array 2 and/or 

array 7. 

 

Figure 4-18 The Turner Cut route to Chipps Island for estimating overall and route-specific survival 
probability.  Dashed lines represent overland transport of steelhead tags in salvage trucks 
from an export facility to one of the release sites upstream of Chipps Island.  
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Figure 4-19 The Mainstem route to Chipps Island for estimating overall and route-specific survival 
probability.  Dashed lines represent overland transport of steelhead tags in salvage trucks 
from an export facility to one of the release sites upstream of Chipps Island. 

METHODS FOR TESTING HYPOTHESIS 4.2.2 

The same methods used for Hypothesis 4.2.1 (multistate model) were employed for Hypothesis 4.2.2.  As seen in 

Table 4-10, the route-specific survival probabilities are the sum of route-specific transition probabilities that 

encompass the routes.  Overall survival probability incorporated the initial survival and the proportion of 

steelhead tags using each route.  Route entrainment at Turner Cut was a parameter fit by the model (Table 4-10).   

RESULTS FOR HYPOTHESIS 4.2.2 TEST 

Overall survival to Chipps Island was 50.2% (SE=2.0%) (Table 4-15).  Route-specific survival probability for the 

Turner Cut route was 27.0% (SE=3.0%) (Table 4-15).  Route-specific survival probability for the Mainstem route 

was 56.7% (SE=2.4%) (Table 4-15).  The model estimated that the majority of steelhead tags (77.6%, SE=1.6%), 

continued along the San Joaquin River and only 22.4% (SE=1.6%) of the steelhead tags were entrained into the 

interior Delta at the Turner Cut junction (Table 4-15).  The model also generated detection probabilities, route 

entrainment probabilities, and transition probabilities (Table 4-16).  
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Table 4-15 Route-specific survival probabilities, Turner Cut route entrainment, overall survival, and 
standard errors for each estimate. 

Description Probability (%) Standard Error (%) 

Mainstem route survival 56.7 2.4 

Turner Cut route survival 27.0 3.0 

Turner Cut route entrainment 22.4 1.6 

Overall survival 50.2 2.0 

 

Table 4-16 Estimates and standard errors for parameters estimated in the model.  s0 is the initial survival.  
Terms that start with “p” are detection probabilities for the upstream (“a”) and downstream (“b”) 
receivers.  Terms that start with “Ψ” denote route entrainment probabilities.  Terms that start with “ϕ” 
denote transition probabilities.  Numbers following one of these terms in the left column are the arrays 
that the term is describing.  For example, p2a is the detection probability of upstream receivers of 
array 2 and ϕ2,22 is the transition probability from array 2 to array 22. 

  Estimate (%) Standard Error (%) 

s0 100.3 1.2 

p2a 41.0 2.2 

p2b 39.4 2.2 

P7a 99.4 0.6 

P7b 99.4 0.6 

ΨA 77.6 1.6 

ΨB 22.4 1.6 

ϕ2,22 35.9 2.0 

ϕ2,21 71.6 12.0 

ϕ2,20 4.5 0.8 

ϕ ,22 10.1 2.3 

ϕ ,21 44.2 9.3 

ϕ ,20 12.6 2.5 

p22a 97.3 1.1 

p22b 92.4 1.7 

p21a 9.4 2.0 

p21b 2.6 0.8 

p20a 90.5 4.5 

p20b 82.6 5.6 

ϕ22,24 68.9 4.2 

ϕ20,24 4.0 3.9 

ϕ21,24 44.3 7.9 

p24a 95.1 1.2 

p24b 98.6 0.7 

 

Survival estimated in the model was similar but lower than an estimate from another study using similar modeling 

approaches and data from steelhead but from another year.  Survival of San Joaquin River (SJR) steelhead smolts 

in 2011 as estimated by a mark-recapture study for the Six-Year Study was 55% (SE=2%) (Buchanan 2013).  In 

this study, we found the survival for this area in 2012 to be 50.2% (SE=2.0%).  Acoustically tagged steelhead in 
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this study were released at Buckley Cove, which is much closer to Chipps Island than Durham Ferry, where Six-

Year Study steelhead were released.   

4.2.3 TRAVEL TIME 

Next, we examined how travel times varied between routes and release groups.  Because survival was higher for 

the Mainstem versus the Turner Cut route (Table 4-15), we hypothesized that steelhead tags using the Mainstem 

route would have shorter travel times than tags using the Turner Cut route.  We assumed that shorter travel times 

would lead to less exposure time to predators, and therefore higher survival. 

Hypothesis 4.2.3:  The travel times of steelhead tags were not significantly different between routes or 
release groups. 

METHODS FOR TESTING HYPOTHESIS 4.2.3 

Travel times (i.e., time between first detection at array 24 and last detection at array 1) were calculated for each 

steelhead tag that successfully migrated through each route used in the model (six transition probability and two 

survival probability routes) and that was detected at array 1 and array 24 (Chipps Island).  We used ANOVA to 

test for a significant difference in travel times between release groups and two survival probability routes.  We 

were also able to examine how the OMR flow levels affected the amount of time it took steelhead tags to reach 

their destination by comparing travel times of Release Groups 1 and 2 combined versus Release Group 3.  For a 

steelhead tag to be included in the analyses, it needed to be detected at arrays 1, 2 or 7; 20 or 21 or 22; and 24 

(Figure 2-3).  If a steelhead tag was detected at more than one array on the same level of the schematic 

(Figure 4-17), it was considered to use the array on that level that the steelhead tag was last detected.  The only 

exception to this rule was that if a steelhead tag was detected at array 20 and/or 21 (radial gates of Clifton Court 

Forebay and/or CVP) and array 22 (Jersey Point), the steelhead tag was considered to be detected at the export 

facility where it was last detected.  Therefore, for the few steelhead tags that were detected at an export facility 

and then at Jersey Point and then at Chipps Island, the steelhead tags were identified as steelhead tags that went 

through the salvage operations of the export facility that last detected the steelhead tag before next being detected 

at Chipps Island. 

RESULTS FOR HYPOTHESIS 4.2.3 

We first calculated the travel times for each of the six transition probability routes across all release groups 

(Table 4-17).  Due to the limited sample sizes (N<4) for four of the six transition probability routes, we were 

unable to test for significant differences.  The average travel time was longest for steelhead tags using the Turner 

Cut to Chipps Island area via CVP route (7.2 days), and shortest for steelhead tags using the route to Chipps 

Island area without using Turner Cut (4.5 days) (Table 4-17). 

Table 4-17 The average travel time (days), standard error, and sample size of the six routes that the 
model estimated route-specific transition probabilities. 

Route to Chipps Island Avg. travel time (days) Standard Error (%) N 

Via Turner Cut  6.0 0.9 13 

Without using Turner Cut  4.5 0.2 71 

Via Turner Cut and SWP 4.8 N/A 1 

Via SWP without using Turner Cut - - 0 

Via Turner Cut and CVP  7.2 2.7 3 

Via CVP without using Turner Cut 6.8 N/A 1 
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We found that the average travel time was always longer for steelhead tags in the Turner Cut route versus the 

Mainstem route for each release group and combined Release Groups 1 and 2 (Table 4-18).  As we expected, 

Mainstem route steelhead tags, which had double the survivorship, had shorter travel times than the Turner Cut 

route steelhead tags that did not go through salvage.  Likely lower exposure times to predators in the Mainstem 

route lead to higher survival.   

Table 4-18 The mean travel time for steelhead tags using each of the two survival probability routes, 
standard errors (in parentheses), and sample sizes for Release Groups 1, 2, and 3, and 
Release Groups 1 and 2 combined. 

Route 
Travel Time of RG #1 Travel Time of RG #2 Travel Time of RG #3 Travel Time of RG #1&2 

Days N Days N Days N Days N 

Mainstem 5.5 (0.5) 18 4.1 (0.3) 30 4.2 (0.3) 24 4.6 (0.3) 48 

Turner Cut 7.1 (1.5) 6 4.8 (1.1) 6 6.5 (1.6) 5 6.0 (1.0) 12 

 

When not combining release groups, we found that travel times for release groups (P=0.02) and route taken were 

both significant (P=0.02).  When the data were analyzed using two release groups (1 and 2 versus 3), we found 

that route taken was again significant (P=0.01), where release group was no longer significant (P=0.69).  These 

results suggest that the OMR flows tested did not affect the travel times of steelhead tags, as we would have 

expected travel times to be significantly different for Release Group 3 versus 1 and 2 combined.  Instead, we 

found that significant differences only occurred in travel times when Release Groups 1 and 2 were treated 

separately in the statistical analysis.  Travel times were longer for Release Group 1 versus 2 or 3 for both routes 

(Table 4-18).  Because OMR flows were similar between Release Groups 1 and 2, it is unlikely that OMR flows 

were driving these differences.   

4.3 JUNCTION-LEVEL ANALYSES  

In this section, we examine how steelhead tags moved through key Delta junctions.  We examine if different 

OMR flow conditions affected the routing of steelhead tags at three junctions along the San Joaquin River (Turner 

Cut, Columbia Cut, and Middle River), at the state and federal export facilities, and in the interior Delta at 

Railroad Cut. 

4.3.1 ROUTING AT DELTA JUNCTIONS 

The routing of steelhead into the interior Delta along the San Joaquin River may be affected by the activities of 

the export facilities, given that they can create negative river flows (toward the facilities).  Previously, we found 

that travel times were longer for steelhead tags taking the interior Delta route compared to those that remained in 

the San Joaquin River (Section 4.2.3), likely leading to the observed lower survival rates for steelhead tags in the 

interior Delta (Section 4.2.2) due to increased time for mortality to occur.  Therefore, it is important to understand 

if more negative OMR flows increased the proportion of steelhead tags entering the interior Delta.  In this section, 

we examine if the probability of migrating into the interior Delta at three junctions along the San Joaquin River 

(Turner Cut, Columbia Cut, and Middle River) was related to the OMR flow levels tested in this study. 

Hypothesis 4.3.1:  The probability of steelhead tags entering the interior Delta at Turner Cut, Columbia 
Cut, and Middle River was not related to OMR flows. 

METHODS FOR TESTING HYPOTHESIS 4.3.1 

As steelhead tags travel along the Mainstem route, they reach a junction and have two options:  remain in the San 

Joaquin River, or turn into the interior Delta.  We analyzed whether the proportion of steelhead tags entering the 
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interior Delta was related to release groups.  Release group acted as a surrogate for OMR flow, with Release 

Group 3 representing more negative OMR flow, and Release Groups 1 and 2 representing less negative OMR 

flow.  Junction analyses were conducted where Turner Cut, Columbia Cut, and the Middle River meet the San 

Joaquin River.  Separate statistical tests were performed to test for differences in routing of steelhead tags at each 

of these three junctions.  For each junction, we examined how routings differed across all three release groups, 

and across OMR flow levels (Release Groups 1 and 2 combined versus 3).  If OMR flow affected the routing of 

steelhead tags, we would expect the highest proportion of tags entering into the interior Delta for Release Group 3 

and more remaining on the Mainstem for Release Groups 1 and 2.   

For a particular junction, a steelhead tag was included for analysis if the tag moved through the junction from 

upstream to downstream.  The route that a tag took was defined as the last downstream array within the junction 

that it was detected at before leaving the junction area (i.e., the green circle in Figure 4-20 to Figure 4-22).  A 

steelhead tag was deemed as “leaving” the junction area if it no longer was detected after  eing detected at a 

downstream junction array, or it was later detected at an array farther downstream outside of the junction area.  

For Turner Cut, we used data from steelhead tags that were detected at array 1 and then at arrays 2 or 7 

(Figure 4-20).  Array 6 was not used for this analysis because of unequal detection probabilities, as earlier 

described (see Section 4.2.1).  For the junction at Columbia Cut, we considered steelhead tags that were detected 

at array 2 and then detected at array 11 or array 3 (Figure 4-21).  For the junction at Middle River, we considered 

steelhead tags that were detected at array 3 and then at either array 4 or 13 (Figure 4-22).   

 

 

Figure 4-20 The junction of Turner Cut as used in the junction analysis is shown in the green 
circle. The red squares are sites where arrays were deployed for the Stipulation Study.  The 
blue squares are sites where arrays were deployed for the 2012 Six-Year Study. 
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Figure 4-21 The junction of Columbia Cut as used in the junction analysis is shown in the green 
circle.  The red squares are sites where arrays were deployed for the Stipulation Study.  The 
blue squares are sites where arrays were deployed for the 2012 Six-Year Study. 

 

Figure 4-22 The junction of Middle River as used in the junction analysis is shown in the green 
circle.  The red squares are sites where arrays were deployed for the Stipulation Study.  The 
blue squares are sites where arrays were deployed for the 2012 Six-Year Study. 
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We examined if a significant difference in the proportion of steelhead tags migrating into the interior Delta 

existed between the different release groups by fitting a generalized linear model (GLM) with a binomial response 

variable using the R commander package (Fox 2005) of the software program R (R Project 2013).  We fit the 

GLM with a binomial distribution of errors and a logit link function.  We tested for overdispersion by comparing 

the residual deviance to the residual degrees of freedom using a Chi-square test.  If the data were overdispersed, 

we re-fitted the GLM with a quasibinomial distribution of errors and a logit link function.  To determine the 

overall effect of release group, we ran an analysis of deviance on the GLM based on either a Chi-square test or 

F-test depending on whether the model used a binomial or quasibinomial distribution, respectively.  If we found 

significant differences between release groups, we then looked at how the proportion of the steelhead tags varied 

between release groups to identify if it occurred in a way that supported the alternative hypothesis that OMR flow 

affects the proportion of steelhead tags entering the interior Delta.  For this to be supported, we expected a lower 

proportion of steelhead tags entering the interior Delta during less negative OMR flows experienced during 

Release Groups 1 and 2 than during the more negative OMR flows that occurred during Release Group 3.  

RESULTS FOR HYPOTHESIS 4.3.1 

At all three junctions, we did not find significant patterns of steelhead tag movement between release groups that 

would support the alternative hypothesis that release groups, a proxy for OMR flow levels tested, affected the 

routing of steelhead tags (Table 4-19 to Table 4-24).  At Turner Cut, we found non-significant results for both the 

three (P=0.60) and two release (P=0.32) group analyses.  At Columbia Cut, we found non-significant results for 

both the three (P=0.62) and two release (P=0.70) group analyses.  At the Middle River, we found a significant 

result for the three (P<0.01) group analysis but a non-significant result for the two release group analyses 

(P=0.88).   

For Middle River, the significant result found across three release groups was due to a lower proportion of 

steelhead tags migrating into the interior Delta for Release Group 2 (2.2%) versus Release Groups 1 and 3.  We 

found that steelhead tags from Release Group 1, which experienced the less negative OMR flows, had the highest 

probability of migration into the Middle River (25.0%).  Release Group 3, which was the most negative average 

OMR flow treatment, had an intermediate number of steelhead tags migrating at the Middle River (13.2%).  If 

OMR flows were affecting movement at the Middle River, we would have expected tags from Release Groups 1 

and 2 (less negative OMR flows) to have similar proportion, with tags from Release Group 3 (more negative 

OMR flows) having the highest proportion.  However, when the data were analyzed using only two release 

groups, we found a similar proportion of steelhead tags entering the interior Delta between the less negative OMR 

flow treatment (12.2%) and the more negative OMR flow treatment (13.2%).  Therefore, the differences in 

movement observed at the Middle River were unrelated to OMR flows observed during this study. 

Table 4-19 Number of steelhead tags detected for each release group at the downstream SJR array 
(array 2) and the interior Delta array (array 7) after being detected at the upstream array 
(array 1) at Turner Cut. 

Release Group SJR Array 2 Interior Array 7 

1 75 54 

2 82 60 

3 76 44 

Total 233 158 
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Table 4-20 Number of steelhead tags detected for each release group at the downstream SJR array 
(array 3) and the interior Delta array (array 11) after being detected at the upstream array 
(array 2) at the Columbia Cut junction. 

Release Group SJR Array 3 Interior Array 11 

1 40 17 

2 47 28 

3 41 24 

Total 128 69 

 

Table 4-21 Number of steelhead tags detected for each release group at the downstream SJR array 
(array 4) and the interior Delta array (array 13) after being detected at the upstream array 
(array 3) at the Middle River junction. 

Release Group SJR Array 4 Interior Array 13 

1 27 9 

2 45 1 

3 33 5 

Total 105 15 

 

Table 4-22 Number of steelhead tags detected for each release group at the downstream SJR array 
(array 2) and the interior Delta array (array 7) after being detected at the upstream array 
(array 1) at Turner Cut.  Less negative OMR flow treatments are Release Groups 1 and 2, and more 
negative OMR flow treatment is Release Group 3. 

Release Group SJR Array 2 Interior Array 7 

Less negative OMR flows (Groups 1 and 2) 157 114 

More negative OMR flows (Group 3) 76 44 

Total 233 158 

 

Table 4-23 Number of steelhead tags detected for each release group at the downstream SJR array 
(array 3) and the interior Delta array (array 11) after being detected at the upstream array 
(array 2) at the Columbia Cut junction.  Less negative OMR flow treatments are Release Groups 1 
and 2, and more negative OMR flow treatment is Release Group 3. 

Release Group SJR Array 3 Interior Array 11 

Less negative OMR flows (Groups 1 and 2) 87 45 

More negative OMR flows (Group 3) 41 24 

Total 128 69 

 

Table 4-24 Number of steelhead tags detected for each release group at the downstream SJR array 
(array 4) and the interior Delta array (array 13) after being detected at the upstream array 
(array 3) at the Middle River junction.  Less negative OMR flow treatments are Release Groups 1 
and 2, and more negative OMR flow treatment is Release Group 3. 

Release Group SJR Array 4 Interior Array 13 

Less negative OMR flows (Groups 1 and 2) 72 10 

More negative OMR flows (Group 3) 33 5 

Total 105 15 
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The reliability of these results rests on the assumption that detection probabilities did not vary between release 

groups.  Variability in detection probabilities at a junction across release groups would confound results because 

differences in steelhead tag routing could be due to differences in detection probability instead of true differences 

in steelhead tag movement.  Previously (Section 4.2.1), we examined how detection probability varied across 

release groups for arrays 6 and 7 downstream of the Turner Cut junction.  We found that detection probability 

varied across release groups for array 6, but not array 7.  Therefore, we decided to use array 7 in all future 

analyses (including this one).  This test was possible because arrays 2, 6, and 7 are dual arrays that allowed an 

independent probability of detection to be estimated.  While this is not the case for the Middle River junction 

since arrays 4 and 13 were not set up as a dual array (Figure 4-23), Columbia Cut junction arrays are all dual 

arrays (Figure 4-24), so we could estimate release-group detection probabilities using Manly-Parr estimates (see 

Section 4.2.1 for detailed methods).  The number and the location of receivers at the Columbia Cut junction are 

described in Table 4-25 and the detection probabilities for the three release groups are shown in Table 4-26. 

 

 

Figure 4-23 A satellite image of the Middle River junction with the placement of receiver arrays 
shown.  Array 3 was deployed for the Six-Year Study, and arrays 4 and 13 were deployed for 
the Stipulation Study.  Base map produced using Google Earth. 
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Figure 4-24 A satellite image of Columbia Cut with the placement of receiver arrays shown.  
Arrays 2 and 3 were deployed for the Six-Year Study, and array 11 was deployed for the 
Stipulation Study.  Base map produced using Google Earth. 

Table 4-25 Array number, receiver location (upstream or downstream), receiver code, station name, and 
latitude and longitude (decimal degrees).   

Array 
Upstream (A) or 
Downstream (B) 

Receiver Code Station Name Latitude Longitude 

3 A 300903 MFE.1 38.0524 -121.5111 

3 A 300904 MFE.2 38.0539 -121.5104 

3 B 300905 MFW.1 38.0533 -121.5136 

3 B 300906 MFW.2 38.0544 -121.5130 

11 A 301009 8A 38.0267 -121.5020 

11 B 301001 8B 38.0270 -121.5046 
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Table 4-26 Manly-Parr estimates of detection probabilities  p   for Release Groups 1, 2, and 3 for array 3 at 
the Columbia Cut junction.  p 1 is the detection probability of the upstream receiver(s), p 2  is the 
detection probability of the downstream receiver(s), and p  is the overall detection probability for the 
array.  All detection probabilities are expressed as percentages. 

Array 3 

Release Group 1 2 3 

p 1 100 96 100 

p 2 95 100 100 

p  100 100 100 

 

Array 11 

Release Group 1 2 3 

p 1 81 86 75 

p 2 97 100 100 

p  100 100 100 

 

We found that detection probabilities at the array-level were 100% across all arrays and release groups at the 

Columbia Cut junction (Table 4-26).  Therefore, the assumption of consistent detection probabilities appears to be 

met for arrays 3, and 11.  For this reason, we feel the findings of the analysis that the OMR flow treatments tested 

likely did not affect the movement of steelhead tags at Columbia Cut are valid given consistent detection 

probabilities.   

4.3.2 MOVEMENT AT EXPORT FACILITIES 

Because water is exported out of both the SWP and CVP facilities in the Delta, and mortality varies for fish 

entering each facility (Gingras 1997, Clark et al. 2009), understanding how pumping at each facility influences 

fish movement could help managers protect sensitive fish species.  The relative amount of flow entering each 

facility may influence the relative movement of steelhead toward each facility.  Therefore, we examined how the 

arrival of steelhead tags at each facility may have been influenced by the proportion of flow entering each facility. 

Hypothesis 4.3.2:  Steelhead tag arrival at each facility was not related to the proportion of total export flow 

entering SWP. 

METHODS FOR TESTING HYPOTHESIS 4.3.2 

We examined if the arrival of steelhead tags at an export facility was related to the proportion of water entering 

that export facility.  The arrays used for analysis were arrays 20 and 21.  We summed flow across all Clifton 

Court Forebay gates for the SWP, and measured export flow for the CVP.  The proportion of total water entering 

each facility was quantified for 2-hour periods, which was the highest resolution flow data available for the CVP 

facility.  Next, the steelhead tag arrival times at each facility were paired with the appropriate 2-hour flow 

proportion.  Steelhead tags were only counted at the facility where they were first detected.  Data were pooled 

across release groups.  A steelhead tag was included only if flows were greater than zero at either or both facilities 

during their 2-hour arrival period.  A t-test was applied to examine if the proportion of total flow entering SWP 

(i.e., the radial gates of Clifton Court Forebay) differed for steelhead tags arriving at the SWP versus CVP.  We 

expected that a higher proportion of flow would be entering the SWP when steelhead tags arrived at the SWP than 

when steelhead tags arrived at the CVP. 
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RESULTS FOR HYPOTHESIS 4.3.2 

While the t-test did not find a significant result, the average 2-hour proportion of flow entering the SWP was 

greater when a steelhead tag was first detected at array 20 (mean=0.6, SE=0.1) than when a steelhead tag was first 

detected at array 21 (mean=0.4, SE=0.1).  Therefore, while there was great variability in the proportion of flow 

when a steelhead tag arrived at an export facility, on average there was a greater proportion of water arriving at an 

export facility when a steelhead tag was arriving at that export facility (Figure 4-25). 

These results indicate that the arrival of steelhead smolts toward each export facility was not significantly related 

to proportional flow to a facility on a 2-hour period.  Qualitatively, however, it appeared that the movement of 

steelhead tags might be influenced by the relative flow amount entering each facility.  By coordinating the relative 

export levels at each facility, sensitive fish species could potentially be routed toward the facility perceived to 

have lower risks of fish mortality for the given time of year. 

 

 

Figure 4-25 The proportion of water entering the SWP (i.e., entering the radial gates of Clifton 
Court Forebay) when steelhead tags arrived at the radial gates of Clifton Court 
Forebay (SWP) and at the CVP.  The gray rectangle indicates the middle 50% (interquartile 
range) of the data, the horizontal line indicates the median, the “+” indicates the mean, and 
vertical lines extend to the highest data value within the upper limit (= Q3 + 1.5 [Q3 - Q1]) and 
to the lowest value within the lower limit (= Q1- 1.5 [Q3 - Q1]). 
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4.3.3 MOVEMENT AT RAILROAD CUT 

During the Stipulation Study, steelhead tags were used as “sentinels” to identify when wild salmonids were likely 

approaching the export facilities to determine when more protective actions were needed for wild fish.  When 

steelhead tag detections at Railroad Cut (array 9, Figure 4-26) exceeded a threshold (5% of fish reaching Railroad 

Cut), managers triggered a management option to reduce south Delta export flows in an effort to provide 

additional protection for ESA-listed salmonids.  The trigger was meant to reduce Delta exports, leading to less 

negative OMR flows and less risk of smolts moving toward the export facilities and potentially becoming 

entrained.  Therefore, we tested the effectiveness of the trigger by examining how the routing of steelhead tags 

toward the export facilities at Railroad Cut varied before and after the trigger and across release groups.  We also 

examined the effect of the OMR flows tested, by examining how the proportion of tags moving toward or away 

from the export facilities varied with OMR flow conditions during steelhead tag routing. 

Hypothesis 4.3.3:  The movement patterns of steelhead tags after passing through Railroad Cut were 
not affected by OMR flows.   

 

 

Figure 4-26 Steelhead tags arriving at Railroad Cut (array 9) were either routed away from the 
export facilities (array 15) or toward the facilities (array 19). 

METHODS FOR TESTING HYPOTHESIS 4.3.3 

We examined if a greater proportion of steelhead tags travelled away from the export facilities (array 15) than 

toward the facilities (array 19) before and after the trigger was implemented to reduce OMR flows and across 
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release groups.  Therefore, we only used steelhead tags that were detected at array 9 and then detected at either or 

both downstream arrays (i.e., array 15 or 19).  For steelhead tags detected at both downstream arrays, we used the 

array that detected the steelhead tag last to delineate the final route of that tag.  When the day that the 

management option had been triggered and the less negative flows were observed to occur was identified by 

examining the OMR flow data (Figure 2-1) and identified as the day that the daily average OMR level was at or 

below -1,250 cfs.  This date was determined to be April 24, May 11, and May 26 for Release Groups 1, 2, and 3, 

respectively.  Applying similar statistical methods as Hypothesis 4.3.1, using GLMs, we examined if routing of 

steelhead tags differed between pre- and post-triggering of the management conditions and/or between release 

groups.  We analyzed the data as three release groups as well as two groups, where Release Groups 1 and 2 were 

pooled and considered the less negative OMR flow treatment, and Release Group 3 as the more negative OMR 

flow treatment.   

We also directly examined the effect of OMR flow on routing at Railroad Cut.  We examined how routing at 

Railroad Cut was affected by a measurement of OMR flow while a steelhead tag was moving across Railroad Cut 

toward the downstream arrays of interest.  Therefore, in separate GLMs, we examined if the proportion of 

steelhead tags moving south or north from the export facilities (i.e., last detected at array 15 or 19) was related to 

one or more of the following OMR flow variables:  

1. Average OMR flow that the steelhead tag experienced from the day that the steelhead tag was first 

detected at array 9 to the day when it was first detected at the downstream array (array 15 or 19) that last 

detected the steelhead tag.  

2. Average OMR flow that the steelhead tag experienced from the day that the steelhead tag was last 

detected at array 9 to the day when it was first detected at the downstream array that last detected the 

steelhead tag.  

3. Average OMR flow that the steelhead tag experienced for the day that the steelhead tag was last detected 

at array 9. 

4. Average minimum OMR flow that the steelhead tag experienced from the day the steelhead tag was last 

detected at array 9 to the day it was first detected at the downstream array that last detected the steelhead 

tag. 

5. Average maximum OMR flow from the day that the steelhead tag was last detected at array 9 to the day it 

was first detected at the downstream array that last detected the steelhead tag. 

6. Average OMR flow on the day that steelhead tag was last detected at the downstream array that last 

detected the steelhead tag.  

7. Average OMR flow on the day that steelhead tag was first detected at the downstream array that last 

detected the steelhead tag. 

8. Average OMR flow on the day that steelhead tag was last detected at the downstream array that first 

detected the steelhead tag.  

9. Average OMR flow on the day that steelhead tag was first detected at the downstream array that first 

detected the steelhead tag.   

RESULTS FOR HYPOTHESIS 4.3.3 

We examined the detections by the upstream and downstream receivers of array 15 and 19 (Table 4-27) and found 

detection probabilities to be consistent between release groups at the arrays (Table 4-28).  Therefore, differences 

in routing between release groups can be attributed to actual movement differences and not to variation in 

detection probability. 
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Table 4-27 Array number, receiver location (upstream or downstream), its receiver code, station name, 
and latitude and longitude (decimal degrees). 

Array 
Upstream (A) or 
Downstream (B) 

Receiver Code Station Name Latitude Longitude 

15 A 301015 15A 37.9828 -121.5810 

15 B 301053 15B 37.9844 -121.5818 

19 A 300885 OR4D.2 37.8953 -121.5667 

19 A 300884 OR4D.1 37.8950 -121.5661 

19 B 300883 OR4U.2 37.8939 -121.5675 

19 B 300882 OR4U.1 37.8938 -121.5667 

 

Table 4-28 Manly-Parr estimates of detection probabilities  p   for Release Groups 1, 2, and 3 for arrays 15 
and 19.  p 1 is the detection probability of the upstream receiver(s), p 2  is the detection probability of 
the downstream receiver(s), and p  is the overall detection probability for the array.  Given the 
detection data for Release Group 1 at array 15, only the detection probabilities at the downstream 
receiver could be estimated.  All detection probabilities are expressed as percentages. 

Array 15 

Release Group 1 2 3 

p 1 N/A
a
 71 67 

p 2 0 100 100 

p  N/A
a
 100 100 

Note: 
a
 Detection probability not calculated because no fish were detected at both upstream and 

downstream receivers and the downstream receiver(s) only resulting in a division by zero error.  

 

Array 19 

Release Group 1 2 3 

p 1 100 100 100 

p 2 100 100 100 

p  100 100 100 

 

Other than in Release Group 1 for array 15 where we could not estimate the detection probability at the array-

level, for all other periods and arrays, detection probabilities were all 100% (Table 4-28).  No steelhead tags were 

detected at the downstream receiver at array 15 during Release Group 1, making the calculation of detection 

probability at the upstream receiver impossible.  Given that the only estimate of detection probabilities at array 15 

during Release Group 1 was 0% for the downstream receiver, and all other detection probabilities for Release 

Groups 2 and 3 were higher, the detection probabilities for array 15 might be confounded with release groups.  To 

investigate detection probability at array 15 further, we calculated the array-level detection probability for Release 

Groups 1 and 2 combined to ensure that detection probabilities remained high between both less negative (Groups 

1 and 2) and more negative (Group 3) OMR flow treatments.  We estimated an array-level detection probability of 

80.4% for Release Groups 1 and 2 combined, indicating that detection probability at array 15 was high (>80%) 

for both OMR flow treatment groups.   
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The observed effect caused by the triggering of reduced exports occurred after more than 90% of the steelhead 

tags (68/75) had already passed the east end of Railroad Cut (array 9), which provided a limited sample size 

(Table 4-29) to examine the effect of the management option.  The majority of steelhead tags (6/7) that passed 

Railroad Cut after the triggering of less negative OMR flows had occurred went south (Table 4-29).  Due to the 

limited sample sizes, we did not statistically analyze the effect of the management option, but we did examine if 

the release group had a significant effect.  In the three release group analysis, the overall logistic regression was 

not significant (P=0.17).  In the two release group analysis, the overall logistic regression was marginally 

significant (P=0.08).  

Table 4-29 The number of steelhead tags detected pre- and post-triggering of the management option for 
the three release groups. 

 
Pre-Trigger 

Release Group 1 
Post-Trigger 

Release Group 1 
Pre-Trigger 

Release Group 2 
Post-Trigger 

Release Group 2 
Pre-Trigger 

Release Group 3 
Post-Trigger 

Release Group 3 

Northern receiver 

array (15) 
10 1 7 0 3 0 

Southern receiver 

array (19) 
12 6 18 0 18 0 

 

When examining the effect of OMR flows observed directly in GLMs, all of the nine independent variables were 

found not to be significant except for the test that examined the average OMR flow on the day that a steelhead tag 

was first detected at either of the downstream arrays (P=0.05, Table 4-30).  The relationship showed an increasing 

probability of steelhead tags moving toward the export facilities as OMR flow values become more negative 

(Table 4-31, Figure 4-27).  

Table 4-30 P-values for the logistic regression examining whether the following independent variables 
were significantly related to the whether a steelhead tag was last detected at array 15 or 19 
after passing through Railroad Cut. 

Independent Variable P 

Average OMR flow that the steelhead tag experienced from the day that the steelhead tag was first detected at 

array 9 to the day when it was first detected at the downstream array (array 15 or 19) that last detected the 

steelhead tag. 

0.146 

Average OMR flow that the steelhead tag experienced from the day that the steelhead tag was last detected at 

array 9 to the day when it was first detected at the downstream array that last detected the steelhead tag. 
0.124 

Average OMR flow that the steelhead tag experienced for the day that the steelhead tag was last detected at 

array 9. 
0.157 

Average minimum OMR flow that the steelhead tag experienced from the day the steelhead tag was last 

detected at 9 to the day it was first detected at the downstream array that last detected the steelhead tag. 
0.129 

Average maximum OMR flow from the day that the steelhead tag was last detected at array 9 to the day it was 

first detected at the downstream array that last detected the steelhead tag. 
0.128 

Average OMR flow on the day that steelhead tag was last detected at the downstream array that last detected the 

steelhead tag. 
0.070 

Average OMR flow on the day that steelhead tag was first detected at the downstream array that last detected 

the steelhead tag. 
0.054 

Average OMR flow on the day that steelhead tag was last detected at the downstream array that first detected 

the steelhead tag. 
0.131 

Average OMR flow on the day that steelhead tag was first detected at the downstream array that first detected 

the steelhead tag. 
0.050 
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Table 4-31 Coefficient estimates, standard errors, and Z and P-values for the constant and factor of 
average OMR flow on the day that the steelhead tag was first detected at the downstream 
array that first detected it.  The overall P-value for this logistic regression was 0.05. 

Predictor Coefficient Standard Error Z P 

Constant 0.228 0.653 0.349 0.727 

OMR flow <0.001 <0.001 1.872 0.061 

 

 

Figure 4-27 The probability of steelhead tags moving south (toward the export facilities) for the 
observed range of OMR flow values from a GLM with the line of best fit and the shaded 
area represents the 95% confidence interval.  Data points for the observed OMR values 
were either moving south (1) or north (0).  Given the overlap of data points, they were jittered 
so more of them can be seen in the figure. 

The small sample size limited our ability to examine the effectiveness of the trigger on the movement of steelhead 

tags.  If a trigger is implemented in the future, we recommend ensuring that a larger number of tagged fish are 

approaching the area before and after the management option has been observed to come into effect.  We 

recommend that future tagging studies be conducted under a wider range of OMR flows to better understand how 

the range of possible OMR flows influence fish routing near the export facilities.  As tidal conditions may 

contribute to changes in fish behavior, any future studies should also be conducted under shorter time periods 

with greater replication. 



 

Results  Stipulation Study 
February 2014 4-52 California Department of Water Resources 

 

This page intentionally left blank. 

 



Stipulation Study Discussion 
California Department of Water Resources 5-1 February 2014 

5 DISCUSSION 

CHAPTER SUMMARY: 

We address the following four questions in this chapter: 

1. Did OMR flows affect steelhead tag movement and survival?

2. How effective was real-time monitoring and management?

3. What were the limitations of the experimental design and how could they be improved?

4. What future experiments and methods are recommended?

Overall, under the OMR flows tested, there was little influence of OMR flows on steelhead tag movement during 

this study.  There was limited evidence of OMR flows tested influencing steelhead tag routing at Railroad Cut in 

the interior Delta and arrival timing at the SWP Clifton Court Forebay radial gates.  The influence of the OMR 

flows tested on steelhead tag behavior appears to be limited to a short distance from the SWP and CVP projects. 

Future studies should focus on how smolt movement and survival at Railroad Cut and south (toward the export 

facilities) may be influenced by a wider range of OMR flow conditions than those examined in this study.  More 

than 90% of steelhead tags passed the real-time monitoring detection point before the effects of triggered changes 

to OMR flow conditions were observed (i.e., OMR flows reached -1,250 cfs).  While improvements to the 

experimental design of any future real-time monitoring study could be completed, this study points to the inability 

to effectively use tagged steelhead smolts as sentinels to trigger export changes.  This study also provides 

evidence of the challenges of managing Delta flow conditions in real-time.  Because there was little evidence that 

altering OMR flow conditions within the range of values examined in this study would alter the movement of fish 

in a meaningful way, these results do not provide evidence that real-time monitoring could be used to protect 

salmonids. 

5.1 DID OMR FLOWS AFFECT STEELHEAD TAG MOVEMENT AND 
SURVIVAL? 

We found no evidence that the OMR flows tested affected the routing of steelhead tags along the San Joaquin 

River corridor.  The routing of steelhead tags at Turner Cut, Columbia Cut, or where the Middle River meets the 

San Joaquin River was not related to release groups (and therefore the experimental OMR flow treatments 

evaluated in this study).  The limited influence of OMR flows on steelhead tag routing along the San Joaquin 

River was expected due to the limited differences in modeled flow routing observed under different OMR flow 

treatments tested (Cavallo et al. 2012).  The range of OMR flows that occurred during the study did not capture 

the historical operating range of flows and was conducted when the HORB was in place.  Yet, the steelhead 

tagging results, paired with hydrodynamic modeling, indicated that OMR flows may have very limited ability to 

influence the migration of salmonid smolts into the interior Delta within the range of the values and conditions 

observed in the study. 

While no evidence of an influence of OMR flow conditions on routing was found at the San Joaquin River 

junctions, there was some marginally significant evidence of differences in the routing of steelhead tags at 

Railroad Cut.  This junction is closer to the export facilities and occurs along the OMR corridor.  Therefore, a 

stronger influence of OMR flows on steelhead tag movement at Railroad Cut compared to river junctions along 

the San Joaquin River was not surprising.  These results may be evidence of a more localized area of influence of 

the export facilities on salmonid smolt movement, extending as far north as Railroad Cut.  However, due to sub-

optimal receiver placement in the interior Delta, we were unable to precisely examine the spatial extent of 

influence of OMR flows on smolt movement.  While this study had an elaborate deployment of telemetry 

equipment, we believe that more receivers, tagged fish, and release sites are needed along with different operation 

scenarios at CVP and SWP to better examine if OMR flows affect steelhead movement and survival.   
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When examining system-level steelhead tag behavior, we found no consistent pattern between release groups, 

suggesting that OMR flows as tested may have had minimal effect on the general movement patterns of steelhead 

tags during the study.  In particular, we found that the “point of no return,” defined as the point where steelhead 

tags in the interior Delta no longer arrived at Chipps Island without assistance (through salvage operations at 

export facilities), changed only slightly among OMR flow treatments evaluated during this study.  While it was 

farther north for Groups 1 and 2 compared to Group 3, the difference was only two arrays (Figure 4-4 to 

Figure 4-6).  In addition, this line being farther south for Group 3 is contradictory to what should have been 

expected under more negative OMR flows for Group 3, where the point of no return was expected to have been 

farther north if OMR flows were controlling the point of no return.   

Unfortunately, we were unable to examine how OMR flows influenced survival of steelhead tags, due to the 

failure of the USER model to converge on individual release group models.  Limited sample sizes for each 

individual release group likely caused the model to not converge on a solution.  We recommend that future 

tagging studies have ample sample sizes to examine the effect of OMR flows on survival. 

As part of the route-level analysis, we found no significant evidence that travel times were related to OMR flows 

within the ranges examined in this study, as seen in Section 4.2.3.  To provide further evidence of the limited 

influence of OMR flow conditions on steelhead tag travel time, we examined the cumulative detections through 

time that occurred at many of the arrays in this study (Figure 5-1 to Figure 5-3).  At most arrays, we did not see 

major differences in arrival timing between Group 2 (less negative OMR flows) and Group 3 (more negative 

OMR flows), suggesting that OMR flows had minimal effect on the general timing patterns of when steelhead 

tags reached an array.   

 

 

Figure 5-1 The cumulative detection curves for Groups 1, 2, and 3 at arrays 7, 8, and 9.  
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Figure 5-2 The cumulative detection curves for Groups 1, 2, and 3 at arrays 3 and 4. 

 

Figure 5-3 The cumulative detection curves for Groups 1, 2, and 3 at arrays 10, 19, 20, and 21.   
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For arrays 7, 8, 9, 3, and 4, we found that nearly all steelhead tags that reached an array did so by day 7 or 8, with 

the exception of Release Group 1.  Also, there was little difference in the timing of steelhead tags arriving at these 

arrays between the Groups 2 and 3.  The first group showed the largest difference in arrival timing, with slower 

accumulation of steelhead tag detections; the reasons for this slower rate of accumulation are unknown.   

For the array at the CVP facility (array 21), a similar pattern was observed with steelhead tags from Release 

Groups 2 and 3 reaching this location faster than Group 1 (Figure 5-3).  However, for the array at the SWP Clifton 

Court Forebay radial gates (20), arrival timing was fastest during the more negative OMR flow conditions of 

Group 3.  This result may be due to radial gate operations, with radial gates possibly being opened for longer 

durations or opened wider during Group 3 when pumping rates were highest.  In either case, this appears to be a 

more localized effect of OMR flows influencing the arrival timing of steelhead tags that was not observed at 

arrays farther from the export facilities.  At Chipps Island (array 24), steelhead tags from Group 2 reached array 

24 before those of Groups 1 and 3, which were slower to exit the system and would have been exposed to 

predators for a longer time and may have reduced survival.  Further, if travel time and exposure to predators 

govern survival, we would expect the highest survival in Group 2, which reached Chipps Islands faster 

(Figure 5-4 and Section 4.2.3).  While we do not have individual survival estimates for the individual release 

groups (Section 4.2) we do provide evidence in Figure 4-4 to Figure 4-6 that the number of steelhead tags 

reaching Chipps Island was higher in Group 2 than in Groups 1 and 3.  

 

 

Figure 5-4 The cumulative detection curves for Groups 1, 2, and 3 at array 24.   

In summary, OMR flows evaluated here appeared to have had little influence on steelhead tag movement during 

the study, except for limited evidence of an influence on steelhead tag routing at Railroad Cut in the interior 

Delta, and arrival timing at the SWP radial gates.  Future studies should focus on how smolt movement and 

survival at Railroad Cut and southward (toward the export facilities) may be influenced by changing OMR flow 

conditions.  In addition, future studies should be conducted under the entire range of possible OMR flow 

conditions to capture the range of possible effects on smolt movement and survival.  As tidal conditions may also 

contribute to changes in fish behavior, any future studies should also be condcuted under shorter time periods 

with greater replication. 
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5.2 HOW EFFECTIVE WAS REAL-TIME MONITORING AND 
MANAGEMENT? 

One of the project goals was to determine if real-time monitoring of steelhead smolt movement is feasible, and 

could it be conducted in a way to adaptively manage Delta exports to alter the routing and survival of steelhead in 

a timely and beneficial way.  During the Stipulation Study, steelhead tags were used as “sentinels” to identify 

when wild salmonids were likely approaching the export facilities.  Steelhead tag data were downloaded daily 

from the arrays near Railroad Cut (arrays 9 and 16) to track movement.  When steelhead tag detections at Railroad 

Cut exceeded a threshold (5% of the release group detected at Railroad Cut; NMFS 2012), managers triggered a 

management option that reduced south Delta exports to provide additional protection for ESA-listed salmonids.   

Given how quickly steelhead tags moved through the study system, most steelhead tags had already moved 

through the system before the triggered management option took effect.  More than 90% of the steelhead tags had 

already left array 9 and passed by Railroad Cut before the effect of the management action was observed (OMR 

flows reached -1,250 cfs).  Therefore, we cannot evaluate if reducing exports had the intended effect, given the 

small sample size of steelhead tags at Railroad Cut after the management action was implemented.  While 

improvements to the experimental design of any future real-time monitoring study could be completed, this study 

points to the inability to effectively use tagged steelhead smolts as sentinels to trigger export changes.  This study 

also provides evidence of the challenges of managing Delta flow conditions in real-time.  Although the ability to 

manage flows is possible, the question of when and how to do this is not answered or supported from the data in 

this study. 

In order to rapidly detect sentinel fish, receiver arrays would need to be downloaded more often than daily and 

ideally provide detections in real-time.  True real-time detections would likely be necessary to be able to alter 

flow conditions quickly enough to influence fish movements.  Even in real-time, monitoring stations may need to 

be placed farther north to allow the needed time for the presence of the focal species to be detected and the 

management option to be implemented and take effect before the majority of fish exit the area of influence.   

The observed limited influence of OMR flows on steelhead tag behavior argues against the usefulness of real-time 

monitoring for protecting salmonids.  Even if real-time monitoring could be conducted effectively, there is little 

evidence from this study to show that altering the OMR flow conditions would alter fish behavior in a meaningful 

way.  We recommend that additional studies be conducted under a larger range of OMR flows to examine if and 

at what levels OMR flows affect the routing of steelhead.  Flow conditions will need to be established for 

minimum time periods before changes are made as changing flow conditions during the study can limit the extent 

of analysis that can be performed. 

5.3 WHAT WERE THE LIMITATIONS OF THE EXPERIMENTAL DESIGN 
AND HOW COULD THEY BE IMPROVED? 

As with all field work and data analyses, this study faced some unforeseen challenges and complications.  While 

no changes can guarantee that these do not occur in the future, these problems need to be identified so they can 

hopefully be avoided in future studies.  In this section, we list and describe some examples. 

Insufficient time to properly plan the study  

This project was developed and implemented in a short time period that did not allow for certain important 

considerations to occur.  The number of receivers, while extensive, was limited by the amount of time for acoustic 

receivers to be procured.  Power analysis, which is useful in determining the proper sample size needed for an 

experiment, was not conducted as additional study fish were not available.  Research requests for hatchery 

produced salmonids must be submitted several months in advance to allow for hatchery staff to produce the 

necessary study fish.  Also, given the short amount of time for planning, careful consideration of the optimal 
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placement of acoustic receivers to address the study hypotheses was not possible, limiting the conclusions that 

could be made from the resulting dataset.   

Limited range of OMR flow conditions  

One of the shortcomings of how the experiment was conducted was that the least negative on average OMR flow 

treatment was not met for Group 1.  Therefore, given the data from this study, we could only examine how 

changes in OMR flows from -2,446 to -5,038 cfs affected steelhead tag movement and survival.  As also 

evidenced by the results, a more negative OMR flow is needed to possibly measure any effect on fish movement. 

Incompatibility and discrepancies of hydrodynamic datasets  

Sub-daily (15-minute) hydrodynamic influences (proportional flow movement at junctions, average flow, percent 

positive flow) on fine-scale steelhead tag movement were expected to be analyzed to examine how tidal 

influences affect fish migration into the interior Delta, and patterns of migration behavior and survival once 

steelhead tags enter the interior Delta.  However, as statistical analyses were being completed, we consistently 

observed steelhead tags moving opposite the direction of flow movement at the Turner Cut junction (the only 

junction analyzed in this way).  These unexpected movement patterns were observed for steelhead smolts, 

suggesting these findings likely were not a true observation of fish behavior, but rather a spurious artifact of 

steelhead tag timing not being in-sync with available sub-daily DSM2 flow data used to inform flow conditions 

(Cavallo et al. 2012). 

To examine if the steelhead tag and flow timing were out of sync, we compared DSM2 output near Turner Cut 

with observed flow data at gauging stations.  Although the daily flow magnitude was similar between datasets, the 

tidal cycle appeared to be off-sync by approximately 2 hours.  If the CDEC data represent the true flow 

conditions, then by analyzing DSM2 Hydro data at Turner Cut and other locations we may be relating steelhead 

tag behavior with incorrect flow conditions.  Therefore, our findings of steelhead tags moving against flow 

movement were likely a result of steelhead tag timing being paired with flow conditions opposite of what they 

may have actually experienced.  Rapid changes in tidal flow conditions mean that small discrepancies in timing 

between predicted and actual flow patterns can lead to results directly the opposite of expectations. 

After completing the preliminary analyses, we also examined data from the few CDEC flow gauges with paired 

acoustic receiver arrays.  For example, we examined steelhead tag arrival timing at array 9, near Railroad Cut, 

which is next to CDEC flow gauge MDM.  We found that steelhead tags moved south toward Railroad Cut more 

often when OMR flows were positive (flows moving strongly north).  This discrepancy indicated that there was 

two-dimensional hydrodynamic complexity of the Delta channels near Railroad Cut that were not being captured 

by the one-dimensional CDEC flow gauge.  Although this is only a single location, this further exemplified the 

difficulty of examining fine-scale flow and steelhead tag relationships using the hydrodynamic data currently 

available.  Because of the strong tidal influence in the Delta, flow measurements and steelhead tag observations 

must be paired perfectly together to know exactly what the flow conditions a steelhead tag was experiencing when 

making a routing “decision.”  Therefore, we did not examine fine-scale (less than 2-hour increments as seen in 

Section 4.3.2) tag and flow relationships for the analyses.  For future studies, we recommend deploying flow 

measurement equipment specifically for these studies, and pairing them with acoustic receiver locations in order 

to reliably relate tag behavior and fine-scale flow conditions.  

Inability to distinguish between a predator or tagged smolt 

As stated in the assumptions section (Section 2.4), we were unable to identify a free-swimming tagged steelhead 

smolt from a tag that had been consumed by a predator.  Therefore, we refer to detections as detections of 

steelhead tags throughout this report, rather than detections of acoustically tagged steelhead.  The development of 

tags that can allow researchers to distinguish between smolts and predators is critical to ensure accurate filtering 

of free-swimming smolt data from steelhead tags that were consumed by predators.   
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Spatial resolution of acoustic telemetry and hydrodynamic data 

The 2012 study utilized a one-dimensional array of receivers, which limited the fine-scale fish movement 

questions that could be answered.  The one-dimensional array of receivers provided a simplification of the three-

dimensional complexity of the interior Delta junctions and channels, limiting this investigation to one-

dimensional movement patterns.  To better understand steelhead smolt movement behavior, particularly at 

junctions, future studies will need to track the fine-scale movement of tagged smolts, paired with high resolution 

hydrodynamic data. 

Low detection probabilities  

Although overall most arrays had high detection probabilities (>80%), some sites (e.g., arrays 2 and 21) had lower 

probability of detections.  Before future studies are conducted, we recommend that strategies be examined to raise 

detection probability.  Possible strategies include:  increasing the number of receivers deployed, optimizing their 

arrangement, and validating their effectiveness with empirical studies.  Further, we recommend examining other 

types and providers of equipment to determine the best equipment for future studies.  For example, we 

recommend that equipment such as Hydroacoustic Technology Inc. (HTI) and Juvenile Salmon Acoustic 

Telemetry System (JSATS) are considered for use in future studies. 

Complexity of the system  

The complexity of the south Delta limited our ability to adequately place arrays at many junctions and channels, 

making it difficult to meet the stringent assumptions needed for the USER model (Lady et al. 2008).  For 

example, Columbia Cut is such a complex junction that even with optimal placement of arrays, it may not be 

possible to estimate separate survival and route entrainment probabilities in the USER models.  If greater spatial 

resolution is required for future studies (e.g., more reach survival or more route entrainment calculations at 

junctions), additional receivers would need to be placed at strategic locations throughout the south Delta to ensure 

adequate coverage. 

Limited sample size and statistical power  

The relatively small sample sizes across release groups (166, 167, and 168 for Groups 1, 2, and 3, respectively) 

limited our ability to analyze the data.  The total number of fish released across all release groups was similar to 

the number of Chinook salmon released in a single release group during the VAMP study (SJRGA 2013).  The 

limited sample size contributed to the inability of the multistate model to converge on individual release group 

models, leading to a pooled model across release groups.  Future studies should conduct power analyses prior to 

conducting the field study to ensure adequate sample size to address study questions. 

5.4 WHAT FUTURE EXPERIMENTS AND METHODS ARE 
RECOMMENDED? 

Meta-data analyses of past studies  

Meta-analysis is an approach that gathers datasets from previous studies and analyzes them to see if there are 

important and robust relationships across the relevant studies.  The Delta is well studied and therefore is the ideal 

study system for this type of approach using the datasets collected by the various agencies and groups: the 

California Department of Fish and Wildlife (CDFW), Department, East Bay Municipal Utilities District, NMFS, 

San Joaquin River Group Authority (SJRGA), Sacramento Municipal Waste Water Treatment Plant, Reclamation, 

USGS, USFWS, University of California at Davis, and others.  Data from studies by these groups could be 

compared and evaluated immediately and with a limited budget, given that the project would not require 

additional money for field work.  These studies require no new permits, which can be challenging and time-
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intensive to obtain.  If this study is done, it would allow managers to know if results from one study or study 

period could be generalized to address other issues.   

Similar study but more comprehensive with greater preparation, receiver coverage, larger 
sample size, more replication, and more extreme range of OMR flow values 

Prior to any future experiment, careful deliberation of the experimental design and how resulting data will be 

analyzed would be crucial to providing more useful results.  Primarily due to the extreme time limitations of the 

Stipulation Study, limited attention was given to determining an experimental design that could meet all project 

objectives.  For example, only data from two of the Stipulation Study arrays were incorporated into the routing 

and survival model, causing us to rely on receivers from the Six-Year Study.  This was due to limited 

consideration of how the study design would provide data required to answer study questions. 

We recommend that future studies deploy additional receivers to provide better coverage of complex Delta 

junctions.  Although expensive, it is easy to deploy receivers in numerous locations, thereby increasing the 

number of management questions that can be answered.  However, the cost and location should be justifiable and 

add value to the study.  For example, a central goal of this study was to quantify the routing and survival of 

steelhead.  However, given the complexity of the system and assumptions of the modeling approach to conduct 

the analyses, we were only able to estimate routing at Turner Cut (arrays 1, 2, and 7).  At other junctions, we did 

not feel there was enough coverage of receiver arrays to meet the assumptions of the modeling program USER so 

that it could estimate separate route entrainment and survival probabilities for each route.  These receivers must be 

placed just upstream of the junction and closely downstream after the junction so that there is no overlap in the 

detection coverage of the receivers.  For more information on this topic, see Chapter 2 of the doctoral thesis by 

Perry (2010).   

For any future experiment, sufficient sample sizes of tagged fish should be released to provide the necessary 

statistical power to examine the hypotheses of interest.  Small sample sizes during this study limited our ability to 

examine routing and survival differences between treatment groups.  Therefore, before any future experiments are 

conducted, power analyses should be completed to determine the sample sizes needed to find significant 

differences.   

We propose that a future experiment would only be useful and better to analyze if it were done with larger 

differences in OMR flow conditions and that treatment levels are replicated.  Therefore, rather than implementing 

each OMR flow treatment only once, it would be best to replicate each of the treatments at least twice, if not 

more.  This form of replication should be done over multiple years to examine inter-annual variability and the 

applicability of the results and relationships to other situations.  Also, we recommend that the range of OMR 

flows examined be at least as extreme as initially planned for in this experiment (-1,250, -3,500, and -5,000 cfs), 

which was not met in the actual experiment.  Preferably, we recommend replicated experiments that are 

conducted over a wider range of OMR flows, possibly differing by an order of magnitude or more (e.g., -1,000 to 

-10,000 or 1,500 to -15,000 cfs).   

It is critical that the design and implementation of this experiment be given sufficient time.  The design and 

implementation of any future study should not be conducted in 2 months but should be given the proper time and 

money for this critical stage to be deliberate, methodical, and not rushed.  Sufficient time should be given to 

carefully consider the placement of acoustic receiver arrays to make sure that all study hypotheses can be properly 

examined.  Time is also needed to conduct power analyses to determine proper sample sizes in order to detect 

differences in subsequent statistical tests.  Sufficient time is also needed to identify and provide the essential field 

resources to implement increased sample sizes and additional receiver arrays. 

Examining model design and selection and the effect on estimated parameters 

We recommend that an analysis be conducted on how model design affects the parameter estimates generated by 

the multistate statistical release-recapture model.  The choices of what arrays are used, how many are used, and 
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where they are positioned could affect survival or route entrainment estimates.  For this study we allowed the 

model to fit all parameter values without making post-hoc adjustments to values to improve model fit.  We did not 

change or set anything in the model that was not a priori determined except for replacing array 6 with 7 and 

pooling release group data due to lack of model convergence.  For example, we could have adjusted the detection 

probabilities fit by the model by using our Manly-Parr detection probability estimates at dual arrays and then re-

run the model.  Because these model design decisions may have an impact on model outcomes, we recommend 

examining the consequences of these decisions in a future study.  The dataset from this study could be an ideal 

example for this type of analysis.   

Improvement of current models or creating new and more accurate models  

The DSM2 Hydro PTM model underestimated the speed with which steelhead tags were migrating and 

inaccurately predicted their final location 7 days following release.  Therefore, in its current form, the DSM2 

Hydro PTM model did not appear to be a reliable model for simulating the movement patterns of steelhead tags.  

This result is important for management of this species as the DSM2 Hydro PTM model has been used in the past 

to manage for steelhead by examining the effect of various types of barriers and entrainment into various 

structures (e.g., agricultural diversion or export facilities).  Therefore, we recommend that further study be 

conducted to better understand what causes the model to underestimate the speed of steelhead tags and 

inaccurately predict their locations and that future particle model runs incorporate specific fish movement 

behavior to better predict fish movement patterns.  Important fish behaviors have yet to be identified and 

quantified.  Until this step is taken, a coupled biological-physical model cannot be produced to accurately predict 

the speed of steelhead and other behaviors that are important for managing the species of concern or the 

operations of the SWP and CVP. 

Experimental operation of export facilities 

By conducting experimental operations of the export facilities, key questions could be answered about how 

exports influence the behavior and survival of salmonid smolts.  To isolate the effect of each export facility (SWP 

and CVP) on fish behavior and survival, all exports could be shifted to either facility for a brief period of time 

during future biotelemetry studies.  Eliminating exports completely during an experimental study (e.g., if both 

facilities have maintenance during the same period of time), along with examining the extreme high end of 

exports (as recommended above), would allow for an evaluation of the complete range of export effects.   

Fine-scale and tidal experiments 

While large-scale studies are useful, the large spatial scale and complexity of the environment being examined 

commonly result in study findings that are coarse and limited in their ability to answer fine-scale questions.  

Smaller scale experiments can provide higher resolution fish and environmental data more easily, and provide 

higher accuracy results.  Conducting fine-scale experiments using two- or three-dimensional acoustic receiver 

arrays paired with fine-scale hydrodynamic data collected simultaneous with fish releases could help answer a 

multitude of questions.  One sample experiment we recommend would examine fish routing and survival in the 

interior Delta near Railroad Cut.  While we conducted an exploratory analysis examining routing at Railroad Cut 

(described in Section 4.3.3), we could only coarsely examine how broad movement patterns were affected across 

the narrow range of OMR flows examined.  Greater receiver coverage and multi-dimensional tracking, paired 

with fine-scale hydrodynamic data and locally released smolts, would provide high resolution information on how 

fish move at this critical junction and what factors influence routing and survival in the interior Delta.  While it 

could be argued that such a fine-scale study would only provide site-specific information, a better understanding 

of the mechanisms underlying fish routing and survival could be gained, to better understand steelhead smolt 

behavior at the junctions examined.   

Although we examined if STST fish behavior occurred in a short reach in the interior Delta, a greater 

understanding of how steelhead smolts use the tides during migration is critical to understanding how best to 
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manage the Delta (Kneib et al. 2012).  Many questions remain about how steelhead smolts use the tides for 

movement, including:  

► Do steelhead use ebb tides equally for migration, or do they only “surf” tides during the daytime or 

nighttime? 

► Do other factors influence how steelhead smolts use tides, such as habitat quality or predation? 

► What level of tidal influence is needed for steelhead smolts to exhibit STST behavior? 

► How does STST behavior vary spatially across the Delta? 

We recommend conducting fine-scale smolt tagging studies across the Delta, while simultaneously collecting 

hydrodynamic data, to better understand how tides influence steelhead smolt movement, survival, and travel time.  

Releases of tagged fish could occur at various tidal stages (e.g., flood and ebb tides).  Given that the tidal stage 

changes throughout the day, and the amplitudes of tides change multiple times in a lunar month, experiments 

could be conducted frequently and in short durations.  Therefore, study replication would be easy to accomplish, 

which is key for any well-designed experiment.  

Predation tags 

A prototype acoustic tag has been developed that would distinguish between smolts and predators.  This prototype 

tag is currently being tested by the Department and Reclamation.  If the prototype is successful, all future tagging 

studies should use these new tags or similarly tested and successful tags to more accurately filter predators from 

the data set and provide more accurate data on tagged smolt movement and survival.   

Additional management trigger studies 

While the Stipulation Study attempted to use real-time monitoring of tagged hatchery steelhead to limit the 

entrainment of wild steelhead smolts at the export facilities, the experiment was largely unsuccessful.  Most of the 

tagged steelhead had already passed Railroad Cut before the effect of the flow trigger was observed (OMR flows 

reached -1,250 cfs), thereby limiting the influence of triggered flow conditions on steelhead tag movement.  It is 

unknown how well tagged hatchery steelhead provided a proxy for wild steelhead.  If additional studies are 

warranted, we recommend that an experimental approach be first conducted that uses true “real-time” remote 

monitoring of receivers and examine multiple receiver locations to determine the location of where real-timing 

monitoring arrays would be most effective.  In addition, a wider range and minimum duration of flow 

management alternatives should be examined to better understand if a real-time flow trigger can provide any 

benefit to steelhead smolt survival.  Finally, the feasibility of using wild steelhead smolts during future real-time 

flow trigger experiments should be examined to more directly attempt to understand wild steelhead smolt 

movement in the Delta.   

5.5 CONCLUSIONS 

► Overall, under the OMR flows tested and the conditions that occurred during the field study, there was little 

influence of OMR flows on steelhead tag movement during the study.   

► This study was limited by the amount of time for its preparation and the ranges of OMR flows tested.  Future 

studies should be performed with adequate preparation time and with more control over the OMR flow 

ranges, including OMR flows beyond those allowed by both health and safety standards and by water quality 

and ESA protections. 

► There was limited evidence of OMR flows influencing steelhead tag routing at Railroad Cut in the interior 

Delta and arrival timing at the SWP Clifton Court Forebay radial gates.   
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► The quantitative statistical analyses determined that the DSM2 Hydro PTM was not able to predict the 

movement of steelhead tags because it greatly underestimated steelhead tag movement through the study area. 

► There was evidence that diurnal and nocturnal movement patterns of steelhead tags might be occurring, but 

these patterns were location-specific.  Future study is needed to understand this pattern. 

► There was limited evidence that altering OMR flow conditions tested within the levels observed in the study 

would alter fish behavior in a meaningful way.  Future studies should be performed with a wider range of 

OMR flows and of minimum duration to provide evidence that real-time monitoring could be used to protect 

salmonids.  

► Future studies should focus on how steelhead smolt movement and survival at Railroad Cut and south (toward 

the export facilities) may be influenced by a wider range of OMR flow conditions and minimum duration than 

examined in this study.   

► Future studies, including a more comprehensive version of this experiment should be conducted with a wider 

range of OMR flows and of minimum duration that are replicated with more acoustic receivers and larger 

sample size of tagged fish. 
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Concordance table that covers how the objectives and hypotheses have changed, adapted, or stayed the same during the different stages of the study. 

Concordance Table 

  Objective Hypothesis 

Version Number Description Changes from Previous Number Description Changes from Previous 

December 6, 

2012 

1 

What factors influence route 

entrainment into the interior 

Delta from Turner Cut, 

Colombia Cut and Middle 

River? 

N/A 1.1 

The proportion of tagged fish entering 

the interior Delta route is not related to 

release group, study, junction, and 

time-at-large. 

N/A 

2 
 

N/A 

2.1 

The probability of fish returning to 

Mainstem SJR is not related to release 

group, study, junction and time-at-

large. 

N/A 

2.2 

Residence time of fish in Delta reaches 

(between arrays) does not vary by 

release group, study, or time-at-large. 

N/A 

2.3 

The movement of fish in the Mainstem 

and in the interior Delta will be random 

(i.e., not related to tidal periodicity). 

N/A 

3 
 

N/A 

3.1 

The survival of tagged fish in the 

interior Delta is not different from the 

survival in the San Joaquin River. 

N/A 

3.2 

Survival through the Mainstem San 

Joaquin River is not significantly 

related to study or release group. 

N/A 

3.3 

Survival through the interior Delta is 

not significantly related to study or 

release group. 

N/A 

3.4 
Routing through the interior Delta does 

not differ with group or study. 
N/A 
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Concordance Table 

  Objective Hypothesis 

Version Number Description Changes from Previous Number Description Changes from Previous 

February 11, 

2013 

1 

How do group and study 

influence survival and 

routing? 

Same as previous 

Objective 3. 

1.1 

Overall Delta survival and route 

survivals were not significantly related 

to study or release group. 

Same as previous 3.2 and 3.3 

combined. 

1.2 

The survival of tagged fish in the 

interior Delta is not different from the 

survival in the San Joaquin River. 

Same as previous 3.1. 

1.3 

Routing at each junction (Turner Cut, 

Columbia/Middle, Railroad Cut) did 

not differ with group, study, or due to 

export trigger. 

Same as previous 3.4 and 1.1 

combined.  Also, added in an 

examination of export trigger on 

routing. 

2 

What factors influenced 

fine-scale migration 

behavior in the interior 

Delta? 

Same as previous 

Objective 2. 

2.1 

The proportion of fish returning to 

Mainstem SJR was not related to 

release group, study, or junction. 

Same as previous 2.1. 

2.2 

The movement of fish in the Mainstem 

and interior Delta is random (i.e., not 

related to tidal periodicity or day/night). 

Includes previous 2.3 

examination of tidal periodicity 

and also new examination of 

diurnal effect. 

2.3 

The last location of acoustically tagged 

fish was not significantly different than 

the last location of modeled particles. 

New hypothesis. 

2.4 
Routing through the interior Delta does 

not differ with group or study. 
New hypothesis. 
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Concordance Table 

  Objective Hypothesis 

Version Number Description Changes from Previous Number Description Changes from Previous 

March 29, 

2013 

1 

To examine if survival and 

routing probabilities vary 

between different release 

groups. 

Same as previous 

Objective 1. 

1.1 

Overall Delta survival and route 

survivals were not significantly related 

to study or release group. 

Same as previous 1.1. 

1.2 

The survival of tagged fish in the 

interior Delta is not different from the 

survival in the San Joaquin River. 

Same as previous 1.2. 

1.3 

Survival to Chipps Island was not 

significantly different for tags going 

through salvage versus tags that did not 

go through salvage. 

New hypothesis. 

1.4 
Routing at Turner Cut did not differ 

with release group or study.   

Similar to previous 1.3 except 

only examining Turner Cut 

junction.  The other junctions are 

examined in the new 2.1. 

2 

What factors influenced 

within-reach migration 

behavior in the interior 

Delta? 

Same as previous 

Objective 2. 

2.1 

The proportion of tags that entered the 

interior Delta at Columbia Cut or 

Middle River was not related to release 

group. 

Similar to previous 1.3 but only 

examines Columbia and Middle 

Junctions.  Turner Cut is in new 

1.4 and Railroad Cut is new 2.6. 

2.2 

The movement of fish in the Mainstem 

and interior Delta is random (i.e., not 

related to day/night). 

Examines diurnal effect on tag 

movement as in previous 2.2, but 

tidal effects are now examined 

differently in new 2.3. 

2.3 
The acoustically tagged fish did not 

move using STST. 
New hypothesis. 

2.4 

The last location (receiver array) of tags 

was not significantly different than the 

last location of modeled particles. 

Same as previous 2.3. 

2.5 

The migration rate of tags was not 

significantly different between fish 

routes or between release groups. 

New hypothesis. 

2.6 

The movement patterns of tags after 

Railroad Cut were not different before 

and after the OMR trigger. 

Previously part of hypothesis 1.3. 
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Concordance Table 

  Objective Hypothesis 

Version Number Description Changes from Previous Number Description Changes from Previous 

Data 

Analysis 

Plan 

(June 28, 

2013) 

1 

To examine if survival and 

routing probabilities vary 

between different release 

groups. 

Same as previous 

Objective 1. 

1.1 

Overall survival and route-specific 

transitions probabilities of tags were not 

significantly related to release group. 

Same as previous 1.1. 

1.2 

The survival of tagged fish in the 

interior Delta is not different from the 

survival in the San Joaquin River. 

Same as previous 1.2. 

1.3 
Routing at Turner Cut did not differ 

with release group or study.   
Same as previous 1.4. 

2 

What factors influenced 

reach-specific survival and 

routing in the interior Delta? 

Same as previous 

Objective 2. 

2.1 

The proportion of tags that entered the 

interior Delta at Columbia Cut or 

Middle River was not related to release 

group. 

Same as previous 2.1. 

2.2 

The movement of fish in the Mainstem 

and interior Delta is random (i.e., not 

related to day/night). 

Same as previous 2.2. 

2.3 
The acoustically tagged fish did not 

move using STST. 
Same as previous 2.3. 

2.4 

The last location (receiver array) of tags 

was not significantly different than the 

last location of modeled particles. 

Same as previous 2.4. 

2.5 

The travel times of acoustically tagged 

fish were not significantly different 

between routes or between release 

groups. 

Similar to previous 2.5 except 

examining travel time instead of 

migration rate. 

2.6 

The movement patterns of tags after 

Railroad Cut were not different before 

and after the OMR trigger. 

Same as previous 2.5. 

2.7 

The daily proportion of tags at each of 

the export facilities is proportional to 

the fraction of the water entering the 

facilities. 

New hypothesis. 
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Concordance Table 

  Objective Hypothesis 

Version Number Description Changes from Previous Number Description Changes from Previous 

Final Report 

(February 3, 

2014) 

4.1 

System:  Examine large-

scale movement patterns of 

steelhead tags. 

Comprises hypotheses 

from previous objective 

2 that examine system-

wide processes 

affecting tag movement 

and includes new 

descriptive analyses. 

4.1.1 

Examined the spatial pattern of 

steelhead tags detected at each array by 

release group. 

New descriptive analysis without 

a predetermined hypothesis. 

4.1.2 

Examined the spatial pattern of where 

steelhead tags were last detected by 

release group. 

New descriptive analysis without 

a predetermined hypothesis. 

4.1.3 

Examined the spatial pattern of 

residence time at each array by release 

group. 

New descriptive analysis without 

a predetermined hypothesis. 

4.1.4 

Examined the spatial pattern of the final 

fate of tags at each array by release 

group. 

New descriptive analysis without 

a predetermined hypothesis. 

4.1.5 

Created a web-based dissemination tool 

to spatially display the full detection 

history of individual tags. 

New descriptive analysis without 

a predetermined hypothesis. 

4.1.6 

The distance traveled by steelhead tags 

was not significantly different than the 

distance traveled by the passive 

particles. 

Similar to the previous 2.4 except 

we reworded for clarity. 

4.1.7 
Steelhead tags did not move using 

STST. 

Similar to the previous 2.3 except 

we removed reference to fish. 

4.1.8 

The movement of steelhead tags in the 

San Joaquin River and interior Delta 

was not related to day/night. 

Similar to the previous 2.2 except 

we removed reference to fish. 

4.2 

Route:  Examine how 

steelhead tags move through 

the system using different 

defined routes. 

Comprises previous 

Objective 1 and route-

specific hypothesis 

from previous 

Objective 2. 

4.2.1 

Route-specific transition probabilities 

of steelhead tags were not significantly 

related to the route taken and/or release 

group.   

Similar to previous 1.1 except 

release-specific models would 

not converge to examine release-

specific survival.  Also, overall 

survival was moved to 

Hypothesis 4.2.2. 

4.2.2 

The estimated route-specific survival 

for the Turner Cut route was not 

significantly different from the 

Mainstem route. 

Similar to the previous 1.2 except 

we deleted the reference to fish. 
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Concordance Table 

  Objective Hypothesis 

Version Number Description Changes from Previous Number Description Changes from Previous 

4.2.3 

The travel times of steelhead tags were 

not significantly different between 

routes or release groups. 

Same as previous 2.5 except we 

deleted the reference to fish. 

4.3 

Junction:  Examine how 

steelhead tags move through 

junctions.  

Comprises hypotheses 

from previous 

Objective 2 that 

examine junction-

specific analyses. 

4.3.1 

The probability of steelhead tags 

entering the interior Delta at Turner 

Cut, Columbia Cut, and Middle River 

was not related to OMR flows. 

Combines previous 1.3 and 2.1 

and is the same except we deleted 

the reference to fish. 

4.3.2 

Steelhead tag arrival at each facility 

was not related to the proportion of 

total export flow entering SWP. 

Similar to previous 2.7 except we 

are working with 2-hour data and 

array level data that allows us to 

use finer temporal data. 

4.3.3 

The movement patterns of steelhead 

tags after passing through Railroad Cut 

were not affected by OMR flows.   

Same as previous 2.6 except we 

changed how we refer to tags. 

 



 

 

APPENDIX B 

Crosswalk Table of Tag and Dependent Analysis 

 
Note:  This appendix presents the data used to produce the figures and results for the analyses in this report 

(Chapter 4).  If data from a steelhead tag were used in the figure and/or analysis for that section, a “1” was placed 

in that cell.  For Section 4.1.6, we presented the data for tags that were detected on the third (“4.1.6 [3D]”) and 

seventh day (“4.1.6 [ D]”) after their release.  For Section 4.3.1, we examined three junctions:  Turner Cut (“4.3.1 

[TC]”), Colum ia Cut (“4.3.1 [CC]”), and Middle River (“4.3.1 [MR]”) 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133669 1 1 
  

1 1 
 

1 1 
 

1 1 

1133670 1 1 
  

1 1 
 

1 
   

1 

1133671 1 1 
  

1 1 
 

1 1 1 
  

1133672 1 
 

1 
 

1 1 
 

1 1 1 
  

1133673 1 
 

1 
 

1 1 
 

1 1 
   

1133674 
            

1133675 
            

1133677 1 1 1 
 

1 1 
      

1133678 1 1 
 

1 1 1 
 

1 
   

1 

1133679 1 1 
 

1 1 1 1 1 
    

1133680 1 
   

1 1 
 

1 
    

1133681 1 1 1 
 

1 1 1 1 1 1 
  

1133682 1 1 
  

1 1 
 

1 
    

1133683 1 
 

1 1 1 1 
 

1 
  

1 
 

1133684 1 1 1 
 

1 1 
 

1 1 
   

1133685 1 
   

1 1 
 

1 
    

1133686 1 1 
  

1 1 
 

1 1 1 1 1 

1133687 1 1 1 
 

1 1 
      

1133688 1 1 
  

1 1 
 

1 1 
   

1133689 1 1 
  

1 1 
      

1133691 1 1 1 1 1 1 
 

1 
    

1133692 1 1 1 1 1 1 
 

1 
   

1 

1133693 1 1 
 

1 1 1 
 

1 
   

1 

1133694 1 1 1 
 

1 1 1 1 1 
   

1133695 1 1 1 
 

1 1 
 

1 
  

1 1 

1133696 1 
 

1 1 1 1 
 

1 
    

1133697 1 1 
 

1 1 1 
 

1 
   

1 

1133698 1 1 1 1 1 1 
 

1 1 
 

1 1 

1133699 1 1 
  

1 1 
 

1 
    

1133700 1 1 1 
 

1 1 1 1 
    

1133701 1 
  

1 1 1 
 

1 
    

1133702 1 
 

1 
 

1 1 
 

1 
    



A
ppendix B

 
 

S
tipulation S

tudy 

F
ebruary 2014 

B
-2 

C
alifornia D

epartm
ent of W

ater R
esources 

 

 

Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133703 1 
   

1 1 
 

1 
    

1133704 1 
   

1 1 
 

1 1 1 
  

1133705 1 
   

1 1 
 

1 
    

1133706 1 
   

1 1 
      

1133707 1 
   

1 1 
      

1133708 1 1 1 
 

1 1 
 

1 1 
   

1133709 
            

1133710 1 1 1 
 

1 1 
      

1133711 1 1 1 
 

1 1 
 

1 
    

1133712 1 1 
 

1 1 1 1 1 
   

1 

1133713 1 1 
  

1 1 
 

1 
    

1133714 1 
 

1 
 

1 1 1 1 1 1 
  

1133715 1 1 
  

1 1 
 

1 1 
   

1133716 1 
   

1 1 
 

1 1 1 
  

1133717 1 
   

1 1 
      

1133718 1 1 
  

1 1 
 

1 1 1 
  

1133719 1 1 
  

1 1 
      

1133720 1 1 1 
 

1 1 
 

1 1 
   

1133721 1 1 1 
 

1 1 
 

1 1 1 
 

1 

1133722 
            

1133723 1 1 
  

1 1 
      

1133724 
            

1133725 1 1 1 1 1 1 1 1 
   

1 

1133726 1 1 
  

1 1 
 

1 1 
   

1133727 1 1 
  

1 1 
 

1 
    

1133728 1 1 1 
 

1 1 
 

1 1 1 1 1 

1133729 1 
   

1 1 
 

1 
    

1133730 1 
 

1 
 

1 1 1 1 1 1 
  

1133731 1 1 1 
 

1 1 1 1 1 1 
  

1133732 1 
  

1 1 1 
 

1 
    

1133733 1 1 1 1 1 1 
 

1 
   

1 

1133734 1 1 
 

1 1 1 
 

1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133735 1 
 

1 
 

1 1 
 

1 1 1 
  

1133736 
            

1133737 1 1 1 
 

1 1 
 

1 1 
   

1133738 1 
 

1 
 

1 1 
      

1133740 1 1 
  

1 1 
 

1 1 
   

1133741 
            

1133742 1 1 1 
 

1 1 
 

1 
    

1133743 
            

1133744 1 1 1 
 

1 1 1 1 1 
   

1133745 1 
  

1 1 1 
 

1 
    

1133746 1 1 1 
 

1 1 1 1 1 1 
  

1133747 1 
 

1 
 

1 1 
 

1 
    

1133748 1 1 1 
 

1 1 
 

1 1 
 

1 1 

1133749 1 
 

1 
 

1 1 
 

1 1 1 
  

1133750 1 1 1 1 1 1 
 

1 
   

1 

1133751 1 1 
 

1 1 1 
 

1 
    

1133752 1 
   

1 1 
      

1133753 1 1 1 1 1 1 
 

1 
    

1133754 1 
   

1 1 
 

1 
    

1133755 1 1 1 
 

1 1 1 1 1 1 
  

1133756 
            

1133757 
            

1133758 1 
 

1 
 

1 1 
 

1 
    

1133759 1 1 1 
 

1 1 
 

1 1 1 
  

1133760 1 1 
  

1 1 
 

1 1 
   

1133761 1 
 

1 
 

1 1 1 1 1 1 
  

1133762 1 1 1 
 

1 1 1 1 1 1 
  

1133763 
            

1133764 1 
  

1 1 1 
 

1 
    

1133765 1 1 1 
 

1 1 
 

1 1 1 
 

1 

1133766 1 
 

1 
 

1 1 
      

1133767 1 
   

1 1 
 

1 
    



A
ppendix B

 
 

S
tipulation S

tudy 

F
ebruary 2014 

B
-4 

C
alifornia D

epartm
ent of W

ater R
esources 

 

 

Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133768 1 
   

1 1 
 

1 
    

1133769 1 1 
 

1 1 1 
 

1 
    

1133770 1 1 1 1 1 1 
 

1 
    

1133771 1 
   

1 1 
      

1133772 1 
 

1 1 1 1 
 

1 
    

1133773 1 
   

1 1 1 1 1 1 
  

1133774 1 1 
 

1 1 1 
 

1 
  

1 1 

1133775 1 1 1 
 

1 1 1 1 1 1 
  

1133776 1 
   

1 1 
      

1133777 1 1 1 1 1 1 
 

1 
   

1 

1133778 1 
 

1 1 1 1 
 

1 
   

1 

1133779 1 1 1 
 

1 1 
 

1 1 1 
  

1133780 1 
  

1 1 1 
 

1 
    

1133782 1 
  

1 1 1 
 

1 
   

1 

1133783 1 1 
  

1 1 
 

1 1 
  

1 

1133784 1 1 
  

1 1 
 

1 
    

1133785 1 
   

1 1 
      

1133786 1 
  

1 1 1 
 

1 
    

1133787 1 
   

1 1 
 

1 1 
   

1133788 1 1 
  

1 1 
 

1 
    

1133790 1 
   

1 1 
 

1 
    

1133791 1 1 1 1 1 1 
 

1 
  

1 1 

1133792 1 1 1 1 1 1 
 

1 
  

1 1 

1133793 1 1 1 
 

1 1 
 

1 1 1 
  

1133794 1 
 

1 1 1 1 
 

1 
  

1 
 

1133795 1 
  

1 1 1 
 

1 
   

1 

1133796 1 1 1 1 1 1 
 

1 
    

1133797 
            

1133798 1 
 

1 
 

1 
    

1 
  

1133799 1 1 
  

1 1 
 

1 1 1 
  

1133800 1 
 

1 
 

1 1 
 

1 1 1 
  

1133801 1 1 
 

1 1 1 
 

1 
    



S
tipulation S

tudy 
 

A
ppendix B

 

C
alifornia D

epartm
ent of W

ater R
esources 

B
-5 

F
ebruary 20143 

 

 

Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133802 1 
  

1 1 1 
 

1 
   

1 

1133803 1 1 
  

1 1 
 

1 
    

1133804 1 1 1 1 1 1 1 1 
    

1133805 1 1 1 
 

1 1 1 1 
   

1 

1133806 1 1 
  

1 1 1 1 1 1 
  

1133807 1 1 
  

1 1 1 1 1 1 
  

1133808 1 1 
  

1 1 
 

1 
    

1133809 1 
 

1 
 

1 1 
 

1 1 1 
  

1133810 1 1 
  

1 1 
 

1 
    

1133811 
            

1133812 1 
  

1 1 1 
 

1 
    

1133813 1 
   

1 1 
 

1 1 
   

1133814 1 1 
  

1 1 
 

1 1 1 
  

1133815 1 1 1 
 

1 1 
 

1 
    

1133816 
            

1133817 1 1 1 
 

1 1 
 

1 1 
   

1133818 1 
   

1 1 
      

1133819 1 1 1 
 

1 1 
 

1 
   

1 

1133820 1 1 1 1 1 1 
 

1 
    

1133821 1 1 1 
 

1 1 
 

1 1 1 1 1 

1133822 1 
   

1 1 
      

1133823 1 1 
  

1 1 
 

1 1 1 
  

1133824 1 1 1 
 

1 1 1 1 1 1 
  

1133825 1 
 

1 
 

1 
   

1 1 
  

1133826 1 1 
 

1 1 1 
 

1 
    

1133827 1 
 

1 1 1 1 1 1 
    

1133828 1 1 
  

1 1 
 

1 1 
   

1133829 1 
 

1 
 

1 1 
 

1 1 
   

1133830 1 1 1 1 1 1 
 

1 
    

1133831 1 1 1 1 1 1 
 

1 
  

1 
 

1133832 1 
   

1 
       

1133833 1 
   

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133834 
            

1133835 1 
 

1 
 

1 1 
 

1 1 
   

1133836 
            

1133837 1 1 
 

1 1 1 
 

1 
    

1133838 1 1 1 
 

1 1 1 1 1 1 
  

1133839 1 
 

1 
 

1 1 1 1 
    

1133840 1 
   

1 1 
 

1 1 
   

1133841 1 
   

1 1 
 

1 1 1 
  

1133842 1 
   

1 1 
 

1 
    

1133843 1 
  

1 1 1 
 

1 
   

1 

1133844 1 
   

1 1 
 

1 1 
   

1133845 1 1 
  

1 1 1 1 1 1 
  

1133846 1 
   

1 1 
      

1133847 1 
   

1 1 
 

1 
    

1133848 1 1 
  

1 1 1 1 1 1 
  

1133849 1 1 1 1 1 1 
 

1 
   

1 

1133850 1 1 
 

1 1 1 
 

1 
    

1133852 1 1 
  

1 1 1 1 1 1 
  

1133853 1 
   

1 
    

1 
  

1133854 1 1 
 

1 1 1 
 

1 
   

1 

1133855 1 1 
  

1 1 
 

1 1 1 
  

1133856 1 1 
  

1 1 
 

1 1 
   

1133857 1 
   

1 1 
 

1 
    

1133858 1 
   

1 1 
      

1133859 1 1 1 
 

1 1 1 1 1 
   

1133860 1 
 

1 1 1 1 1 1 
    

1133861 1 1 
  

1 1 
 

1 1 
   

1133862 1 1 
  

1 1 
 

1 1 1 
  

1133863 1 
   

1 1 
 

1 1 
   

1133864 1 1 1 
 

1 1 
 

1 1 1 
  

1133865 1 
   

1 1 1 1 1 1 
  

1133866 1 1 1 
 

1 1 1 1 1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133867 1 1 
  

1 1 
 

1 1 
 

1 1 

1133868 1 1 
 

1 1 1 
 

1 
    

1133869 1 1 
  

1 1 1 1 1 1 
  

1133870 1 1 1 1 1 1 
 

1 
  

1 1 

1133871 1 1 
  

1 1 
 

1 
    

1133872 1 1 1 1 1 1 
 

1 
  

1 1 

1133873 
            

1133874 1 1 
 

1 1 1 
 

1 
    

1133875 1 
  

1 1 1 
 

1 
  

1 1 

1133876 
            

1133877 1 1 1 1 1 1 
 

1 
  

1 1 

1133878 1 1 1 
 

1 1 1 1 1 1 
  

1133879 1 
  

1 1 1 
 

1 
    

1133880 1 1 
 

1 1 1 1 1 
    

1133881 
            

1133882 1 1 
  

1 1 
      

1133883 1 1 
  

1 1 
 

1 
    

1133884 1 
  

1 1 1 
 

1 
    

1133885 1 
   

1 1 
 

1 1 1 
  

1133886 1 1 
 

1 1 1 
 

1 
    

1133887 1 1 1 
 

1 1 1 1 1 1 
  

1133888 1 
 

1 
 

1 1 
 

1 1 
   

1133889 1 1 
  

1 1 
 

1 
    

1133890 1 
   

1 1 
 

1 1 1 
  

1133891 1 1 
  

1 1 
 

1 1 1 
  

1133892 1 1 
 

1 1 1 
 

1 
    

1133893 1 1 1 1 1 1 
 

1 
    

1133894 1 
   

1 1 1 1 1 
   

1133895 1 1 1 
 

1 1 
 

1 1 1 
  

1133896 1 1 
 

1 1 1 
 

1 
   

1 

1133897 1 
   

1 1 
 

1 1 1 
  

1133898 1 
   

1 1 
 

1 1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133899 1 1 
  

1 1 
 

1 1 1 
  

1133900 1 1 1 
 

1 1 
 

1 1 
   

1133901 
            

1133902 1 1 
 

1 1 1 
 

1 
  

1 
 

1133903 1 
 

1 1 1 1 
 

1 
   

1 

1133904 1 1 
 

1 1 1 
 

1 
  

1 1 

1133905 1 
  

1 1 1 
 

1 
    

1133906 1 1 
  

1 1 
 

1 
  

1 1 

1133907 1 
 

1 
 

1 1 1 1 1 
   

1133908 1 
 

1 
 

1 1 1 1 1 1 
  

1133909 1 1 
 

1 1 1 
 

1 
  

1 1 

1133910 1 1 
 

1 1 1 
 

1 
   

1 

1133911 
            

1133912 1 
   

1 1 
 

1 1 1 
  

1133913 1 1 
  

1 1 
 

1 1 1 
  

1133914 1 1 
  

1 1 
 

1 1 1 
  

1133915 1 1 
  

1 1 1 1 1 1 
  

1133916 1 
   

1 1 
 

1 1 
   

1133917 1 
 

1 
 

1 1 
 

1 1 
 

1 1 

1133918 1 
  

1 1 1 
 

1 
    

1133919 1 1 
  

1 1 1 1 1 1 
  

1133920 1 1 
  

1 1 1 1 1 
   

1133921 
            

1133922 1 1 
  

1 1 
 

1 1 
   

1133923 1 1 
  

1 1 1 1 1 1 
  

1133924 1 1 
 

1 1 1 
 

1 
    

1133925 1 1 
  

1 1 
 

1 1 1 
  

1133926 1 1 1 
 

1 1 
 

1 
  

1 
 

1133927 1 1 
 

1 1 1 1 1 
    

1133928 1 
 

1 
 

1 1 
      

1133929 1 
 

1 
 

1 1 
 

1 1 
   

1133930 1 1 1 
 

1 1 
 

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133931 1 1 
  

1 1 
 

1 1 1 
  

1133932 1 1 
  

1 1 1 1 1 1 
  

1133933 1 
 

1 1 1 1 
 

1 
    

1133934 1 1 1 
 

1 1 
      

1133935 1 1 
  

1 
       

1133936 1 1 
 

1 1 1 
 

1 
   

1 

1133937 1 1 1 
 

1 1 1 1 1 
 

1 
 

1133938 1 
   

1 1 
 

1 1 1 
  

1133939 1 
   

1 1 
 

1 
    

1133940 1 
  

1 1 1 
 

1 
    

1133941 1 1 1 
 

1 1 1 1 1 1 
  

1133942 1 
   

1 1 
 

1 1 1 
  

1133943 1 1 1 
 

1 1 
 

1 
    

1133944 1 
   

1 1 
 

1 
    

1133945 1 1 
 

1 1 1 
 

1 
  

1 1 

1133946 1 1 1 
 

1 1 
 

1 1 1 
  

1133947 1 
  

1 1 1 
 

1 
   

1 

1133948 1 1 
  

1 1 
 

1 
  

1 1 

1133949 
            

1133950 1 1 
 

1 1 1 
 

1 
   

1 

1133951 1 1 
  

1 1 1 1 1 
   

1133952 1 
  

1 1 1 
 

1 
    

1133953 1 
  

1 1 1 
 

1 
    

1133954 1 
  

1 1 1 
 

1 
    

1133955 1 
   

1 1 
 

1 
    

1133956 1 
  

1 1 1 
 

1 
   

1 

1133957 1 1 1 
 

1 1 1 1 1 
   

1133958 1 1 1 
 

1 1 
 

1 1 1 
  

1133959 1 1 
  

1 1 
 

1 1 1 
  

1133960 1 1 
 

1 1 1 
 

1 
   

1 

1133961 1 1 
  

1 1 
 

1 1 1 
  

1133962 1 
   

1 1 
 

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133963 1 1 
  

1 1 1 1 1 1 
  

1133964 1 
   

1 1 
 

1 
   

1 

1133965 1 
  

1 1 1 
 

1 
    

1133966 1 1 
 

1 1 1 1 1 
    

1133967 1 
   

1 1 
      

1133968 1 
  

1 1 1 
 

1 
  

1 
 

1133969 1 
   

1 1 
 

1 1 1 
  

1133970 
            

1133971 1 1 
  

1 1 
 

1 1 
   

1133972 1 1 
  

1 1 
 

1 
    

1133973 1 
  

1 1 1 
 

1 
    

1133974 1 1 
 

1 1 1 
 

1 
   

1 

1133975 1 
   

1 1 1 1 1 1 
  

1133976 1 
 

1 
 

1 1 
 

1 1 
   

1133977 
            

1133978 1 1 
  

1 1 
      

1133979 1 1 1 
 

1 1 
 

1 1 
   

1133980 1 
   

1 1 1 1 1 1 
  

1133981 1 1 
  

1 1 1 1 1 
   

1133982 1 1 
  

1 1 1 1 1 1 
  

1133983 1 1 1 
 

1 1 1 1 
  

1 
 

1133984 1 1 
 

1 1 1 1 1 
    

1133985 
            

1133986 1 1 
  

1 1 1 1 1 
   

1133987 1 1 
 

1 1 1 
 

1 
   

1 

1133988 1 
  

1 1 1 
 

1 
    

1133989 1 1 
  

1 1 1 1 1 1 
  

1133990 
            

1133991 1 1 
 

1 1 1 
 

1 
    

1133992 1 1 
  

1 1 1 1 1 1 
  

1133993 
            

1133994 1 
   

1 1 
 

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1133995 1 1 
 

1 1 1 
 

1 
    

1133996 1 1 1 
 

1 1 1 1 1 1 
  

1133997 1 
   

1 
    

1 
  

1133998 
            

1133999 
            

1134000 1 1 
  

1 1 
 

1 1 
   

1134001 1 1 
 

1 1 1 
 

1 
    

1134002 1 1 
  

1 1 1 1 1 1 
  

1134003 1 1 1 
 

1 1 
 

1 1 
   

1134004 1 1 
  

1 1 
 

1 1 
   

1134005 
            

1134006 1 1 
  

1 1 
      

1134007 1 
   

1 1 
 

1 1 
   

1134009 1 
  

1 1 1 
 

1 
    

1134010 1 1 1 1 1 1 
 

1 
  

1 
 

1134011 
            

1134012 1 
 

1 
 

1 1 1 1 1 1 
  

1134013 1 1 1 
 

1 1 
 

1 
    

1134015 1 1 1 
 

1 1 1 1 1 1 
  

1134016 1 1 
  

1 1 
 

1 1 1 
  

1134017 1 
  

1 1 1 
 

1 
    

1134018 1 1 
  

1 1 1 1 1 1 
  

1134019 1 1 
 

1 1 1 1 1 
  

1 
 

1134020 1 1 
 

1 1 1 
 

1 
   

1 

1134021 1 1 1 
 

1 1 1 1 1 
  

1 

1134022 1 
   

1 1 
      

1134023 1 
  

1 1 1 
 

1 
  

1 1 

1134024 1 1 
  

1 1 1 1 1 
   

1134025 1 1 
 

1 1 1 
 

1 
    

1134026 1 
 

1 
 

1 1 1 1 
    

1134027 1 
   

1 1 1 1 1 
   

1134028 1 1 1 
 

1 1 
 

1 1 
  

1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1134029 1 1 
  

1 1 
 

1 1 1 
  

1134030 1 1 1 1 1 1 
 

1 
  

1 1 

1134031 1 
   

1 1 
 

1 
    

1134032 
            

1134033 1 1 
 

1 1 1 
 

1 
   

1 

1134034 
            

1134035 
            

1134036 1 
 

1 1 1 1 
 

1 
   

1 

1134037 1 
 

1 
 

1 1 
 

1 1 
   

1134038 1 
   

1 1 
 

1 1 1 
  

1134039 1 1 
  

1 1 1 1 1 1 
  

1134040 1 1 
  

1 1 1 1 1 1 
  

1134041 1 1 1 
 

1 1 
 

1 1 
   

1134042 1 1 
  

1 1 
 

1 1 
   

1134043 1 1 1 
 

1 1 
 

1 
    

1134044 
            

1134045 1 
   

1 1 
      

1134046 1 1 1 
 

1 1 
 

1 1 1 
  

1134047 1 1 
  

1 
   

1 1 
  

1134048 1 
   

1 1 
      

1134049 1 1 
  

1 1 
 

1 1 
   

1134050 1 
   

1 1 
 

1 
    

1134051 1 
   

1 1 
      

1134052 1 1 
 

1 1 1 
 

1 
  

1 1 

1134053 1 1 
 

1 1 1 
 

1 
  

1 
 

1134054 1 1 1 
 

1 1 
 

1 
    

1134055 
            

1134056 1 1 
  

1 1 
 

1 
  

1 1 

1134057 1 1 
  

1 
   

1 1 
  

1134058 1 1 
 

1 1 1 
 

1 
    

1134059 1 
   

1 1 
 

1 1 
   

1134060 1 
   

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1134061 1 
  

1 1 1 
 

1 
    

1134062 
            

1134063 1 1 
  

1 1 
 

1 1 
   

1134064 1 
 

1 1 1 1 
 

1 
    

1134065 
            

1134067 
            

1134068 1 1 
  

1 1 
 

1 1 
 

1 1 

1134069 1 
   

1 1 
 

1 1 1 
  

1134070 
            

1134071 1 
   

1 1 1 1 1 1 
  

1134072 1 
 

1 1 1 1 
 

1 
  

1 
 

1134073 1 1 
  

1 1 1 1 1 1 
  

1134074 1 
   

1 1 
      

1134075 1 1 
  

1 1 1 1 
  

1 1 

1134076 1 1 
  

1 1 
 

1 1 1 
  

1134077 1 
   

1 1 
      

1134078 1 
   

1 1 
      

1134079 1 1 
 

1 1 1 1 1 
  

1 
 

1134080 1 1 1 
 

1 1 
 

1 1 
 

1 
 

1134081 1 
  

1 1 1 
 

1 
   

1 

1134082 1 
   

1 1 
 

1 
    

1134083 
            

1134084 1 1 
  

1 1 
 

1 1 1 
  

1134085 1 
   

1 1 
 

1 1 1 
  

1134086 1 1 
  

1 1 1 1 1 
   

1134087 1 
   

1 1 
 

1 
    

1134088 
            

1134089 1 
   

1 1 
 

1 1 1 
  

1134090 1 1 
  

1 1 1 1 1 
   

1134091 1 
 

1 
 

1 1 1 1 1 1 
  

1134092 1 
   

1 1 
      

1134093 1 1 
  

1 1 
 

1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1134094 1 1 
  

1 1 
 

1 
    

1134095 1 1 
  

1 1 
 

1 1 1 
  

1134096 1 
   

1 1 
 

1 1 
   

1134097 1 
   

1 1 
 

1 
    

1134098 1 
   

1 1 
      

1134099 1 
   

1 1 
      

1134100 1 1 1 1 1 1 
 

1 
    

1134102 1 1 
  

1 1 
 

1 1 1 
  

1134103 1 1 
  

1 1 
 

1 
    

1134104 1 1 1 1 1 1 
 

1 
    

1134105 1 1 1 
 

1 1 1 1 1 1 
  

1134106 1 1 
  

1 1 
 

1 1 1 
  

1134107 1 1 
  

1 1 
 

1 
    

1134108 1 
   

1 1 
 

1 
    

1134109 1 1 1 
 

1 
     

1 1 

1134110 1 1 1 1 1 1 
 

1 1 
   

1134111 1 1 1 1 1 1 
 

1 
  

1 1 

1134112 
            

1134113 1 1 
  

1 1 
 

1 1 
   

1134114 1 1 1 1 1 1 
 

1 
  

1 1 

1134115 1 1 1 1 1 1 
 

1 
   

1 

1134116 1 
 

1 1 1 1 
 

1 
    

1134117 1 1 
  

1 1 1 1 
    

1134118 1 1 
  

1 1 
 

1 1 1 
  

1134119 
            

1134120 1 1 
 

1 1 1 
 

1 
    

1134121 1 
   

1 1 
      

1134122 1 1 1 
 

1 1 1 1 1 1 
  

1134123 
            

1134124 1 
   

1 1 
 

1 
    

1134127 1 
   

1 1 
      

1134128 1 1 
  

1 1 
 

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1134129 1 
   

1 1 
 

1 1 
   

1134130 1 1 
 

1 1 1 
 

1 
  

1 1 

1134131 1 1 
 

1 1 1 
 

1 
    

1134132 1 1 
  

1 1 1 1 1 1 
  

1134133 1 1 
  

1 1 
 

1 1 
   

1134134 1 
  

1 1 1 
 

1 
    

1134135 
            

1134136 1 
 

1 
 

1 1 
 

1 
    

1134137 1 
   

1 1 
 

1 1 1 
  

1134138 1 1 
 

1 1 1 
 

1 
    

1134139 1 1 
 

1 1 1 
 

1 
    

1134140 1 1 
  

1 1 1 1 1 
   

1134141 1 1 
  

1 1 
 

1 1 1 
  

1134142 
            

1134143 1 1 
  

1 1 
 

1 
    

1134144 1 1 
  

1 1 
 

1 1 1 
  

1134145 
            

1134146 1 1 
  

1 1 
      

1134147 1 1 
 

1 1 1 
 

1 
    

1134148 
            

1134149 1 1 
  

1 1 
 

1 1 1 
  

1134150 1 1 
  

1 1 
 

1 
    

1134151 1 1 
  

1 1 
 

1 1 1 1 1 

1134152 1 
   

1 1 
      

1134153 1 1 
 

1 1 1 
 

1 
    

1134154 1 1 1 
 

1 1 
      

1134155 1 1 
  

1 1 1 1 1 1 
  

1134156 1 1 
  

1 1 1 1 1 1 
  

1134157 1 1 1 
 

1 
   

1 1 
  

1134158 1 1 1 
 

1 1 
 

1 1 
   

1134159 1 
   

1 
       

1134160 1 1 
 

1 1 1 
 

1 
  

1 1 
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Crosswalk Table of Tag and Dependent Analysis 

Fish ID 4.1.1 - 4.1.5 4.1.6 [3D] 4.1.6 [7D] 4.1.7 4.1.8 4.2.1 & 4.2.2 4.2.3 4.3.1 [TC] 4.3.1 [CC] 4.3.1 [MR] 4.3.2 4.3.3 

1134161 1 1 1 
 

1 1 
 

1 
  

1 
 

1134162 1 1 
  

1 1 
 

1 1 1 
  

1134163 
            

1134164 1 1 
  

1 1 
 

1 
    

1134165 1 1 
 

1 1 1 
 

1 
    

1134166 1 1 
  

1 1 
      

1134167 1 1 
  

1 1 1 1 1 1 
  

1134168 
            

1134169 1 
   

1 1 
 

1 1 
   

1134170 1 1 
 

1 1 1 
 

1 
    

1134171 
            

1134172 
            

1134173 1 1 1 1 1 1 
 

1 
  

1 
 

1134174 1 
   

1 
   

1 
   

1134175 1 
 

1 
 

1 1 1 1 1 
  

1 

1134176 1 
   

1 1 
      

1134177 1 
   

1 1 
 

1 1 
   

1134179 1 1 
  

1 1 
 

1 
    

1134180 1 
   

1 1 1 1 1 
   

1134181 1 1 
  

1 1 1 1 1 1 
  

1134182 1 1 
 

1 1 1 
 

1 
  

1 1 

Total 447 276 144 131 447 435 89 391 197 120 50 75 
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