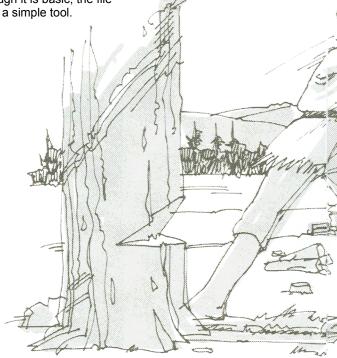
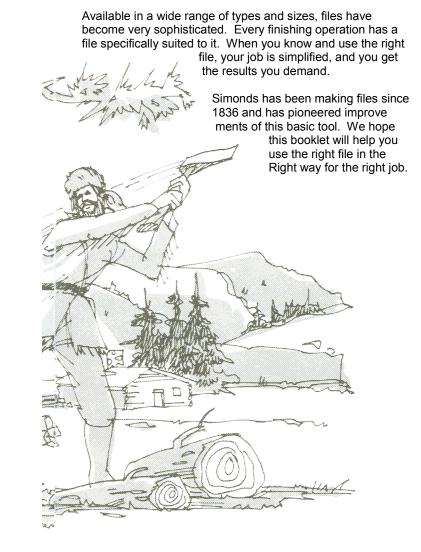


Facts On Files

Including Helpful Tips And Proper Filing Techniques

THE SURFACE THAT'S MADE ROUGH ... TO MAKE OTHER SURFACES SMOOTH!

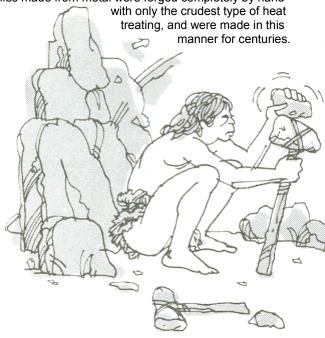

This booklet not only shows you how to get the most out of a very basic tool, but it also makes it easy for you to select from the twenty different types of Simonds files in common use today. The famous Simonds brand is unquestionably among the most respected symbols of quality and reliability in the industrial marketplace. Every Simonds Red Tang file is precision cut for uniform tooth height and sharpness, scientifically heat treated for maximum hardness and edge-holding ability and is individually checked and user-proved for cutting ability and uniformity.


Turn the page to meet the ones that best meet your needs.

THE FILE AS A BASIC NECESSITY

Imagine cutting a whole new life for you and your family out of sheer wilderness. What basic tools would you want? You'd certainly ask for an axe and a saw. But now ask yourself this question: "what good would either be when it became dull and unmanageable?" You'd need a file to keep your tools useful. Obviously, a good file must be considered another basic tool.

Although it is basic, the file is not a simple tool.



THE ANCIENT HISTORY OF THE MODERN FILE

The file is one of the oldest tools known to man. Its development probably came about when prehistoric man wanted a better cutting edge on his crude stone axe. The first file was probably a rough stone used with an abrasive effect to make the edge of an axe much thinner and sharper after long and hard labor.

With the advent of the metal age, files were made from bronze or iron. They were a great advancement, and form the basis for today's highly efficient file as a cutting tool. The first files made from metal were forged completely by hand

Improvements occurred only as iron was improved and refined into what we now know as steel. Cutting the teeth into files was accomplished by the use of a hammer and chisel. Each tooth was made by striking a chisel at the proper angle and space. Making an entire file, which might have hundreds of teeth, was a long, tiresome job.

inni

Near the end of the fifteenth century, a file cutting machine was designed. However, the first successful machine wasn't put into use until the middle of the eighteenth century. The power source for these early machines was water, which was later changed to steam, and finally to today's electric power.

Modern file manufacturing represents a unique blend of the craftsman/s skill and current technology to consistently produce a superior precision instrument.

Today, our factories contain the most modern machinery available. Our experts process the finest steel (made to our specifications) to produce the world's best metal cutting files and rasps.

WHAT FILE FOR WHAT JOB?

Files are graded according to the degree of fineness or coarseness and whether the teeth are single- or double-cut.

Single-cut files have rows of teeth cut parallel to each other at an angle of about 65 degrees from the centerline. Single-cut files are used for sharpening tools, finish filing and draw-filing. They are also the best tools for smoothing the edges of sheet metal.

Double-cut files have rows of teeth criss-crossed so teeth become diamond-shaped for fast cutting. Use double-cut files for quick removal of material and for rough work.

The fineness or coarseness of a file indicates tooth spacing and the number of teeth per inch. There are three basic different grades: Bastard Cut, Second Cut and Smooth Cut. Bastard Cut has the fewest number of teeth per inch. Second Cut has more teeth per inch. Smooth Cut has the greatest number of teeth per inch. Varying degrees of coarseness or fineness are comparable only when files of the same length and shape are compared because coarseness of a file increases as the length from tip to heel increases. Which means a 6-inch file, either single or double-cut, has more teeth per inch than a 12-inch file.

DIFFERENT SHAPES FOR DIFFERENT SHAPES OF WORK

Use a triangular file on acute internal angles and to clear out square corners. Triangular, or three-square, files can also be used to sharpen saw teeth.

Use a mill file in smoothing lathe work, draw-filing and other fine precision work. Mill files are always single-cut.

Use a flat file for general purpose work - bastard cut for rough work and second cut or smooth for smooth finishing.

Use a square file to enlarge rectangular-shaped holes and slots. Round files do the same thing for round openings.

Use a half-round file when you want one file for a wide range of different jobs - the flat side on flat surfaces, the rounded side for curved surfaces.

Use Swiss Pattern files when fitting parts of delicate mechanisms.

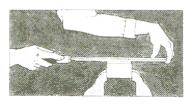
HELPFUL TIPS AND PROPER TECH-NIQUES FOR FILING

The Industrial Art: It is easier to train an apprentice to properly operate a lathe, planer or milling machine than it is to teach him good filing.

Flawless filing is an art. It is the mark of a first-rate craftsman. It recalls the old days when an apprentice had to file down given pieces of steel to the top edge of a line scribed by his maser craftsman. Then another piece was similarly treated, and the apprentice had to file both pieces so smoothly that they could be fitted together perfectly.

Filing, as an industrial art, must observe the basic principles governing the following: holding the work, kind of filing operation, worker's stance, gripping the file, stroking motion, and working pressure.

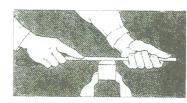
Holding the Work: Most work that is filed is held in a vise unless it is held firmly, chattering and vibration will result. This would cause the file teeth momentarily to lose contact with the surface and the depth of cut would vary with unsatisfactory results and probable damage to the file. The top of the vise should be on the same level as the elbow when the arm is bent. If the mechanic is of less than average stature, a small platform should be placed on the floor to achieve the proper working height. However, the work should be lowered if heavy filing is to be done. In die and tool making, much of the work is small and delicate. As this requires simply a movement of the arms or of one hand and arm alone, the vise and work should be higher - not only so the work can be more closely scrutinized and the movement of the file more accurately guided, but also the filer may be able to stand erect at his work.


The high finish obtained after much time consuming effort may easily be marred if the work is held in the vise carelessly. Polished work and soft metal can be protected by pieces of copper, brass, zinc, tin plate or other soft metals placed between the jaws of the vise and the work. Pieces of wood are best when working on aluminum or lead. For highly polished work on mild steel for fine screw threads, pieces of leather are recommended.

Filing Operation: The three basic filing operations are:

- Straight-forward filing. In this operation the file is pushed straight ahead across the work.
- Draw-filing. This is an operation in which the file is grasped at each end, and with an even pressure alternately pulled and pushed over the work. The file remains perpendicular to the direction of motion.
- Lathe filing. This is an operation in which the file is stroked against the work as the latter revolves in a lathe.

Filer's Stance: The feet should be placed well apart - the left foot being about 24 inches in front of the right foot. The operator should have the full free swing of the arms from the shoulder. Any separate movement of the wrist and elbow should be avoided if possible.


Gripping the File: The following directions are for files operated with both hands. They are intended for a right-handed person; although they will apply equally well for a left-handed person when the file positions are reversed.

The handle of the file should be held in the right hand and the tip held with the left hand. Although the position of the left hand varies with the type of work to be done, the righthanded grip remains the same. The file handle rests

Normal Filing

in the palm of the right hand, with the thumb laying along the top of the handle and the fingers curling around the handle and pointing upward, all the fingers falling into a natural grip.

When the top of the file is gripped with the left hand with the ball of the thumb pressing upon the top of the file and lying in line with the file axis, and with the fingers winding around the file, a powerful grip is secured that enables the max-

Heavy Stock Removal

imum pressure to be applied and a large quantity of material to be removed. This grip is generally used with a medium or long file.

When a lighter stroke is desired and less pressure is to be applied, the direction of the left thumb is changed more and more until it lays at right angles, or nearly so, with the length of the file. The tip of the file is then held between just the thumb and the first two fingers of the left hand. **For Flat Filing**, the thumb and fingers of the left hand are stretched as far apart as possible and pressed evenly against the file. This assures a uniform distribution of the pressure

over the whole length. As a result, the file tends to remain horizontal and any unevenness in the surface can be readily detected. This position also permits the use of the file's full length, since the left hand is not in the way of the work.

Flat Filing

For Very Accurate Work, or when curved surfaces are to be filed, the tip of the file should be held by just the thumb and

index finger of the left hand. This grip allows for maximum guidance and control.

When the file can be held with one hand, as in precision die work, the index finger of the right hand is generally placed on top of

Precision Work

the handle so it lies as nearly as possible in the direction of the file. The thumb and other fingers fall into a natural grip.

Filing a Narrow Piece: On work of this sort, it is often easier to get and hold a flat surface if the file is held diagonally to the work. As the file is pushed forward, it is moved to the right from one end of the piece to the other. After a few strokes the process is repeated to the left so that an absolutely level, smooth finish is obtained.

Stroke and Pressure: The teeth of the file cut only on the forward stroke. Accordingly, the file should be carried forward on an almost straight line, with the pressure first applied

by the left hand at the beginning of the stroke, then later with both hands equally in the middle of the stroke, and finally with the right hand alone at the end of the stroke.

If pressure is applied on the return stroke, the teeth are dulled and the file quickly ruined. Except when working on soft metals, the return stroke should be made with the file lifted clear of the work. If too much pressure is employed on the forward stroke, the teeth are liable to clog or shell off. Just enough pressure should be applied to keep the file cutting efficiently.

Remember, at the start of the stroke, the leverage favors the right hand and the file tends to round off the near side of the work. As the stroke is completed, the leverage favors the left hand, with the file is brought down harder on the far side of the work - the file tends to develop a curved surface instead of a flat one. This may be minimized by carefully following the directions above. With practice, patience and perseverance, it is possible to file a surface that is absolutely true and square.

Beginners' Faults: Most defective filing is caused when the beginner allows the file to rock or see-saw, thereby producing a convex surface instead of the level surface desired. To avoid this, the body should be kept still and the arms made to pivot about the shoulders. Also, try not to remove too much metal in one stroke. Take it easy!

Make sure the file is clean before starting. If it is dirty, it can easily be cleaned with a file card. When a new file is used, rub it with chalk to keep the teeth from clogging. Merely rubbing soft chalk over the teeth prevents the filings from getting wedged in the teeth. Chalking is also an advantage during finishing as otherwise the pins are likely to scratch the work.

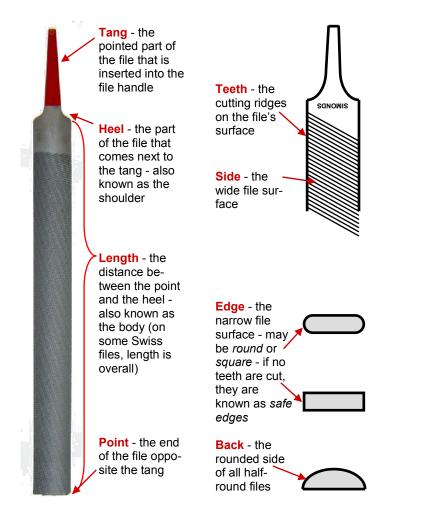
** Never use a file without a handle. Never use a loosely fitting handle. ** **Draw-filing** is defined as operating a file in such a way that its length is transverse to the direction of motion. Draw-filing is used where a smooth level surface on planes or edges of the work is desired.

The file is held with both hands, with the fingers on the edge away from the body and the thumbs on the edge toward the body of the filer. The file is alternately pulled toward the body then pushed away across the work with an even pressure. Draw-filing allows the file to be held steadily, resulting in a fine surface finish without scoring or scratching.

Ordinarily a single-cut mill bastard file or a long-angle lathe file should be used so the metal is cut with a true shearing or shaving action and scoring is avoided. If metal is to be removed rapidly or in comparatively large amounts, as for example, on the end of a metal plate or sheet, a flat or hand bastard file may be employed. This roughing down may then be followed by finishing with a mill file.

In draw-filing, the beginner has a tendency to apply most of his effort when the file is in the middle of its stroke. This can cause the surface to develop a hollow spot. This must be guarded against by careful testing after filing. Such a hollow area may be removed by applying a few more strokes at the end of the work.

To remove the sharp edge that draw-filing produces, hold the file at an angle and run it lightly down each edge.


Lathe Filing: If lathe tooling has been properly ground and set for the proper speed and feed, most work that is finishturned on the lathe is smooth enough - no additional finishing is necessary. However, the work may sometimes have a slight taper that needs correction. Since another cut on the lathe may result in the work being undersize, the correction can be made easily by a filing operation known as lathe filing. Unless lathe filing is properly performed, it will do more harm than good. First, select a long-angle lathe file to give a true shearing cut without producing ridges or scores (a single-cut mill bastard file may be used). The speed of the lathe should be increased to about 50% higher than normal. Ensuring that the work is revolved toward the operator, hold the file at a slight angle and use a long forward steady stroke, moving laterally about half the width of the file on each stroke. Don't hold the file rigid or stationary - keep stroking continually. Clean the file frequently with a file card or brush, occasionally applying chalk to prevent pinning or clogging of the teeth.

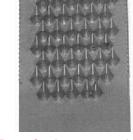
Using a File Card: As you file, the teeth may become clogged with some of the metal filings which can, in turn, scratch he work you are trying to make smooth. This condition is known as pinning and can be prevented by keeping the file teeth clean. Rubbing chalk between the teeth will also prevent pinning but the best method is to clean the file regularly with a file card or brush and brush with a pulling motion holding the card parallel to the rows of the teeth.

Care of Files: Take care to break in a new file gently by using it only on flat surfaces of soft metals such as brass, bronze, or smooth cast iron. Use only a light pressure to prevent tooth breakage. You can also protect file teeth by hanging the files in a rack when they are not in use, or by storing them in drawers with wooden partitions. Be sure to keep files away from water or moisture and avoid getting them oily. Oil makes the file slide across the work without much cutting. If you keep files in a tool box, be sure they're wrapped in paper or cloth for extra protection.

Safety: Never use a file without a tight-fitting handle. If you use a file that doesn't have a handle and the file hits something or gets jammed, the tang could easily be driven into your hand or cause some other injury.

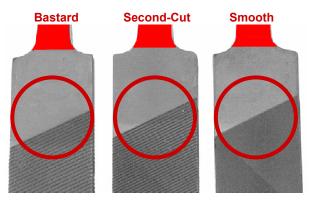
COMING TO TERMS WITH THE FILE

Cut - The character of the file teeth. The four standard file cuts are: Single-Cut, Double-Cut, Rasp-Cut and Curved-Cut. Curved-Cut.


Single-Cut files have a single set of diagonal rows of teeth, parallel to one another and extending across the working face of the file.

Double-Cut files have two sets of diagonal rows. The first set is called the overcut. The second set is cut at a different angle with the file axis, and is known as the upcut (it is finer than the overcut).

Curved-Cut is an arrangement of file teeth in curved contours across the working face of the file. The teeth are milled with a decided undercut (or positive rake).



Rasp-Cut is a pattern where each tooth is individually formed by a single-point tool or punch - the teeth are formed separately and are disconnected.

Blunt: A file with edges and width parallel from end to end.

Taper: The reduction in the dimensions of a file from the heel toward the point. A file may taper in width, in thickness, or both.

Coarseness of Teeth: The spacing of the file teeth, or the number of teeth per inch - called as Bastard (coarsest), Second-Cut (medium), and Smooth (finest).

File Brush: A combination of a fiber-bristled brush and file card - used to clean dirt and chips from a file.

File Card: A wire brush for cleaning files.

SIMONDS FILE INNOVATIONS

Spiral Cut Half Round Files

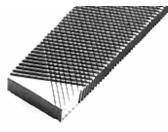
No more sore elbows or uneven concave surfaces!

A built-in "twist & roll" action on the half round side allows a more natural filing motion and leaves a <u>super smooth</u> <u>finish</u>! Flat side available with Multi-Kut[®] for a wide range of uses

Multi-Kut[®] Files

The "world's most versatile file" - combines the best filing features of a Flat file and a Mill file.

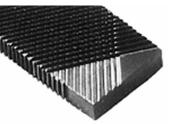
Remove material faster while creating a smooth finish! The combination of coarse teeth and a double "chip breaker" groove cut into the file allows this product to do the work of a Flat file and a Mill file - <u>2 in</u>


<u>one!</u> Feature available on Simonds Flat Files and the Flat side of Simonds Half Round Files!

SIMONDS FILE INNOVATIONS

Nucut "Wavy Tooth" Files

A file innovation inspired by the Simonds Variable Pitch band saw blade! This file cut offers a unique design of


"coarse to fine to extra fine" tooth spacing that enables material to be removed faster and smoother without "chatter". Due to reduced stress on the file teeth, <u>this file will last</u> <u>longer</u>! Hogging has never been easier!

Black MaxiSharp[®] Files

The Premium hand file range!

Select Simonds files are specially treated with a black oxide coating. Black Maxi Sharp[®] Files last longer due to the **increased resistance**

increased resistance to loading in use and increased resistance to rust that the coating imparts to the file.

THE WORK REL		
Aluminum Alloy	Flat Bastard File, Aluminum File, Multi-	
	Kut File or Vixen File	
Auger Bit	Auger Bit File	
Auto Body	Flexible Vixen File or special 14" Auto	
-	Body Files	
Babbitt	Vixen File	
Bearing, Brass	Lead Float File or Multi-Kut File	
Bearing, Bronze	Flat Bastard File or Multi-Kut File	
Beveling	Flat Bastard, Second-Cut and Smooth-	
	Cut File	
Blacksmith	Rasp and Flat Bastard File	
Bolt Threads	Taper, Mill or Knife File	
Brass	Flat Bastard File or Multi-Kut File	
Bronze	Flat Bastard File or Multi-Kut File	
Cabinet, Wood	Cabinet File or Cabinet Rasp	
Cast Iron	Flat, Half-Round, Square or Round	
	File, according to shape of material	
Casting, rough	Flat Bastard File	
Conduit	Flat Bastard File, Round File for	
	inside diameter	
Contact Points	Contact Point File	
Copper	Flat Bastard File or Multi-Kut File	
Cutter, Machine	This tool is genearally ground and	
Tool	sharpened by an emery wheel - can	
	be filed only when in an annealed	
	condition; use file to suit sahpe of	
	surface	
Cutter, Milling	See Cutter, Machine Tool	
De-Scaling	Flat Bastard File or Multi-Kut File	
Die Block	Flat Bastard File or Multi-Kut File	

THE WORK RELATED FILE FINDER

Die Casting	Flat Bastard File, Half-Round Bastard		
	File, Round Bastard File, Multi-Kut		
	File, Square Bastard File, or Mill		
	Bastard File, according to shpae of		
	the die casting and finish desired		
Die Forging	Flat Bastard File or Half-Round		
	Bastard File, according to shape of		
	the die forging		
Die Shop	Swiss Pattern Files of appropirate		
-	shape		
Electric	If surface is alrge, use Mill bastard		
Connections	File, otherwise use Contact Point File		
(Cleaning)			
Fender, Auto	Flexible Vixen File or 14" Flat Special		
	Body File		
Fiber	Flat Bastard File or Rasp		
Fin Work	Swiss Pattern Files		
Finishing	Mill Bastard File - for lathe filing, use		
	Mill Bastard File or Long Angle Lath		
	File		
Foundry, Casting	Flat Bastard File		
Furniture Making	Cabinet File, Cabinet Rasp or Mill		
	Bastard File		
Garden Tool	Rotary Mower and Garden Tool File or		
	Mill Bastard File		
Grooving	Square Bastard, Round Bastard, Half-		
	Round Bastard, or Slim Taper,		
	according to shape of groove.		
Hand Edge Tools	Rotary Mower and Garden Tool File or		
	Mill Bastard File		
Hard Rubber	Flat Bastard File		
Hole	Round Bastard File or Square Bastard		
	File		

Horn, Cattle	Shoe Rasp	
Horseshoeing	Horse Rasp	
Hot Metal, Filing	Flat Bastard File	
Iron	Coarse or Bastard-Cut File, according	
	to shape of material	
Joint, Mortise and	Cabinet File or Cabinet Rasp	
Tenon		
Joint, Solder	Vixen File	
Keyway	Square Bastard or Pillar Bastard File	
Keys, Filing	Warding Bastard File	
Knife	Mill Files	
Lathe-Turned	Mill Bastard File or Long Angle Lathe	
Section	File	
Lawn Mower	Mill Bastard File or Rotary Mower	
	Garden Tool File	
Lead	Vixen Babbitt File	
Lead Pipe, Fitting	g Vixen Half-Round File	
Lock, Mending Warding Bastard File		
Machinists' Work	Machinists' File such as Flat, Half-	
	Round, Square or Round - also Mill or	
	Tapers, in cuts according to work	
Millwrights' Work	Flat, Half-Round, Round, Square, Mill	
Ū	or Taper in cuts according to work	
Model, Metal	Swiss Pattern Files	
Molded Part	Flat Bastard File or Mill Bastard File	
Notch	Taper or Knife File	
Ornaments, Wood	Cabinet File, Cabinet Rasp, Round,	
Making	Bastard, Mill Bastard and Slim Taper	
U U	File	
Pattern Making,	Cabinet File, Cabinet Rasp, Round	
Wood	Bastard, Square Bastard, Mill Bastard	
	and Slim Taper Files	
Pipe Fitting	Half-Round Bastard File	

Planer Knife,	Mill Bastard File	
Carbon Steel		
Plastics	Flat Bastard File, also Mill Bastard	
Plastics		
B	File, sharpened for plastics	
Plumbers' Work	Half-Round Bastard File	
Rotary Mower	Rotary Mower and Garden Tool File	
Blade		
Rough Filing	Coarse or Bastard-Cut File, according	
	to shape of material	
Slot	Knife File or Slim Taper	
Snagging	Flat Bastard File	
Soft Metal	Flat Bastard File or Vixen File	
Solder	Vixen File	
Stainless Steel	Flat, Multi-Kut or Mill File, sharpened	
	for stainless	
Steel	Flat Bastard File	
Steel Alloy	Use file applicable to the shape of the	
•	material - file steel alloy only when it	
	is annealed	
Switch Contacts	Contact Point File or Mill Bastard File,	
	according to surface area of switch	
	contacts	
Switch, Electric	Mill Bastard File or Contact Point File,	
	according to size of switch	
Template	Files, including Flat Bastard File, Half-	
remplate	Round Bastard File, Mill Bastard File,	
	or Round Bastard File	
V. Groovo	Knife File	
V-Groove		
	Voltage Regulator File	
Woodworking	Cabinet File or Cabinet Rasp	
Zinc	Vixen File	

THE SAW FILE	FINDER		
Band Saw	Band Saw Taper Single-Cut File		
Cant Saw	Cant Saw File or Mill Bastard File		
Chain Saw	Round File, Special Square File or		
	Lozenge File (Special Mill File for		
	depth gauge)		
Circular Saw	Mill Bastard File, Cant Saw File and		
	Slim Taper Files		
Cross-Cut Saw	Cross-Cut Saw File, Mill File, Round		
	File or Round Edge Mill File		
Hand Saw	Slim Taper, Extra Slim Taper or		
	Double Extra Slim Taper File,		
	according to points of saw - file		
	recommended for saw points per inch		
	5 - 7" Regular Taper		
	5-1/2 - 7" Regular Taper		
	6 - 7" or 8" Slim Taper		
	7 - 7" or 8" Slim Taper		
	8 - 6" Slim Taper, 7" Extra Slim Taper		
	or 8" Double Extra Slim Taper		
	9 - 6" Extra Slim Taper, 7" Double		
	Extra Slim Taper		
	10 - 5" or 6" Extra Slim Taper		
Wood or Buck	Mill Bastard File or Slim Taper File		
Saw			

	ILLUSTRA	TED FILE FINDE	R
Cross-Section	Name	Shape	
	Flat	Rectangular	
	Hand	Rectangular	
	Pillar	Almost Square	
	Filidi	Almost Square	
	Warding	Thin	
	Square	Square	
	Square	Oquale	
	Three-Square	Triangular	
	Round	Circular	
	Half-Round	Third-Circular	
	Knife	Knife-Shaped	
	ILLUSTRAT	ED FILE FINDER	
Cross-Section	Name	Shape	
	Aluminum	Flat Rectangular	
	Aluminum	Half-Round	

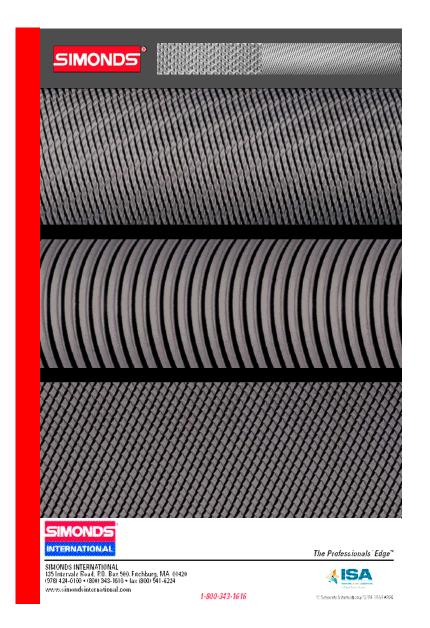
Long Angle Lathe Flat Rectangular N

С

С

R	FOR MACHINISTS' F	ILES	
	Character of Teeth	Taper	General Uses
	Usually bastard, also second- cut and smooth	Tapered in width	A general-purpose file
	One-edge safe - bastard, second-cut and smooth	Uniform in width	Finishing flat surfaces
	One-edge safe - bastard, second-cut and smooth	Uniform in width	Keyways, slots, narrow work
	Usually bastard, also second- cut and smooth	With sharply tapered, thickness uniform	Filing ward notches in keys, narrow work
	Bastard, second-cut and smooth	Tapered	Enlarging holes or recesses, mortises, keyways and splines
	Sharp edges - bastard, second-cut and smooth	Tapered	Filing acute angles, corners, grooves, notches
	Usually bastard, also second- cut and smooth	Either tapered ("rat tail") or blunt	Enlarging holes, shaping curved surfaces
	Usually bastard, also second- cut and smooth	Usually tapered	Concave corners, crevices, round holes
	Usually bastard, also second- cut and smooth	Tapered, curving to a narrow point	Cleaning out acute angles, corners, slots
	FOR SPECIAL-PURPO	SE FILES	
	Character of Teeth	Taper	General Uses
	Made in one cut only - fast- cutting teeth	Tapered	Filing aluminum alloys and other soft metals
	Made in one cut only - fast- cutting teeth	Slightly tapered	Filing aluminum alloys and other soft metals
	Made in one cut only - fast- cutting teeth	Slightly tapered	Lathe work where smooth finish is desired, also soft metals

		ED FILE FINDER	
Cross-Section	Name	Shape	
	Hand	Rectangular	
	Pillar	Width narrower	
		than Hand file	
	Warding	Thin rectangular	
	Square	Square	
	Three-Square	Triangular	
		(equilateral)	
	Round	Circular	
	Half-Round	Third circular	
	Knife	Knife-shaped	
	Crossing	Oval, with unequal radii	
	Equaling	Rectangular	
		-	
	Barrett	Trapezoidal	
	Crochet	Flat, with round	
		edges	
	Cant	Triangular	
		(Isosceles)	
	Slitting	Flat diamond	
	Pippin	Apple seed	


FC	OR SWISS PATTERN	I FILES	
Cha	aracter of Teeth	Taper	General Uses
	uble-cut on two flat faces	Uniform in	Flat surfaces
	l one edge - other edge	width	
	e or uncut		
	uble-cut on two flat faces -	Uniform in	Flat surfaces, slots
	h edges safe	width	
	uble-cut on two flat faces,	Tapered in	Slots, locks and keys
sing	gle-cut on two edges	width, uniform	
		in thickness	
	uble-cut	Tapered	Corners, holes
	uble-cut on three faces,	Tapered	Corners, holes
,	gle-cut on edges		
Doi	uble-cut	Either tapered	Corners, holes
		or uniform	
		(straight)	
	uble-cut	Tapered	Corners, holes
	uble-cut on flat faces,	Tapered	Slots
	gle-cut on edges		
Dou	uble-cut	Tapered	Corners, holes
Dou	uble-cut on flat faces,	Uniform in	Slots, corners
sing	gle-cut on edges	width	
Cut	only on wide flat face -	Tapered	Corners, flat surface
othe	er faces safe		burring gear teeth
Doι	uble-cut	Tapered	Slots, flat surfaces,
			rounded corners
Doι	uble-cut on three faces,	Tapered	Corners
sing	gle-cut on two sharp		
edg	es		
Dou	uble-cut on four faces,	Blunt	Slots, corners
	gle-cut on two sharp		
edg	es		
Dou	uble-cut	Tapered	Rounded corners, holes

SAFETY

.

- Never use a file without a properly installed handle. If you use a file that doesn't have a handle and the file hits something or gets jammed, the tang could easily be driven into your hand or cause some other injury
- Always secure the work in a proper clamping device never file material held in your hand.
- Wear safety glasses don't take the chance of getting filings in your eyes.
- When lathe filing, respect the machinery use all safety guards and utilize safe operating procedures. Make sure the work is rotating towards you.

NOTES

