DISTRIBUTION AND ABUNDANCE OF DECAPOD CRUSTACEAN LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON COMMERCIAL SPECIES

g

by

David A. Armstrong Lewis S. Incze Deborah L. Wencker Janet L. Armstrong

University of Washington School of Fisheries

Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 609

TABLE OF CONTENTS

Li st	of Figures	
1.0	GENERAL INTRODUCTION	497
	<pre>1.1 Justification of the Study 1.2 The Data Base 1.3 Format of This Report</pre>	497 500 502
2.0	MATERIALS ANO METHODS	505
	 2.1 Sample Sources and Station Locations 2.2 Sample Collection 2.3 Sample Processing 2.4 Taxonomy 2.5 Data Reporting 2.6 Data Sensitivity and Accuracy 2.7 Vertical Distribution Patterns 2.8 Geographic Division of the Study Area 	505 507 508 510 512 513 516 517
3.0	DISTRIBUTION AND ABUNDANCE OF KING CRAB LARVAE, <u>PARALITHODES</u> <u>CAMTSCHATICA AND P. PLATYPUS IN THE SOUTHEASTERN BERING SEA</u> David A. Armstrong	531
	3.1 Life History and General Biology: <u>Paralithodes camtschatica</u>	531
	3.1.1 Distribution and Abundance3.1.2 Reproduction3.1.3 Larval Development	531 539 541
	3.2 Life History and General Biology: <u>Paralithodes platypus</u>	544
	3.2.1 Distribution and Abundance	544 550
	3.3 The Fishery	552
	3.4 Results	556
	 3. 4. 1 Distribution and Abundance 3. 4. 2 Interannual Variations 3. 4. 3 Hatchout and Settlement 3. 4.4 Molt Frequency and Growth 3. 4.5 Vertical Distribution 	
	3.5 Di scussi on	583

Lewis S. Incze	95
年、1、11111000000000000000000000000000000	06
4.5.1 Timing of Hatchout	507 511
4.6 Vertical Distribtuion of Larvae in the Water Column 62	21
4.6.1GeneralPatterns624.6.2VerticalMigrations62	
 4.7 Spatial and Interannual Patterns of Larval Abundance	
	100
5.0 DISTRIBUTION AND ABUNDANCE OF OTHER BRACHYURAN LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON ERIMACRUS ISENBECKIL Deborah Wencker	39
5.1 Introduction	39
5.1.1 Atelecyclidae	44 645
5.2 Purpose and Scope	648
5.2.1 Taxonomy	
5.3 Results, Discussion and Summaries	51
5.3.1 Vertical Distribution 65	51
5.3.2 Temporal and Horizontal Patterns of Larval Distribution and Density	55
5. 3. 2. 1 Erimacrus isenbeckii 6 5. 3. 2. 2 Oregoniinae (Hyas spp. , Oregonia spp.)66 5. 3. 2. 3 Pinnotheridae 6 5. 3. 2. 4 Cancer spp. 6 5. 3. 2. 5 Tel emessus cheiragonus 6 5. 3. 2. 6 Acanthonychinae and Pisinae 69	53 674 82 86

6.0	DISTRIBUTION AND ABUNDANCE OF SHRIMP LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON PANDALID SPECIES Janet Armstrong	695
	<pre>6.1 Introduction 6.2 Pandalidae</pre>	695 696
	 6.2.1 Pandalus borealis: Life History and General Biology 6.2.2 Commercial Fishery 6.2.3 Other Pandalus spp. 	696 701 703
	 6.3 Hippolytidae 6.4 Crangonidae 6.5 Penaei dae 6.6 Results and Discussion 	706 708 710 711
	 6. 6. 1 Pandalidae 6. 6. 2 Hippolytidae 6. 6. 3 Crangonidae 6. 6. 4 Penaei dae 	711 741 752 766
	6.7 General Shrimp Summary	774
7.0	DISTRIBUTION AND ABUNDANCE OF HERMIT CRABS (PAGURIDAE) IN THE S.E. BERING SEA Jan Armstrong and Brett Dumbaul d	. 777
	7.1 Introduction	777
	 7.1.1 Life History 7.1.2 Reproduction 7.1.3 Benthic Distribution 7.1.4 Food and Predators 	780 780
	7.2 Results and Discussion	. 781
	7.2.1 LarvalDuration7.2.2 Distribution and Abundance	. 784
	7.3 Summary	794
8. 0	POSSIBLE OIL IMPACTS ON DECAPOD LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON THE ST. GEORGE BASIN	. 797
	8.1 A Review of Water and Oil Transport Models	
	8.2.1 Effectson Larvae	

0il Scena	capod Biology, Sensitivity to Oil, and arios: Misconceptions of Past Mode"ls and More : Assumptions	809
8.4 Extent of 8.5 Prediction	Area Affected by Oil	. 816 818
8.5.2 King Cr 8.5.3 Ta 8.5.4 Ot 8.5.5 Sh	rection of Oil Transport ab Larvae nner Crab Larvae her Brachyuran Larvae rimp Larvae Crab Larvae	821 825 827 827
8.6 Summary o 8.7 Research Recommer	f Major Conclusions	828 . 830
LITERATURE CITED		. 833
APPENDICES		. 857
Appendi x A:	S.E. Bering Sea Shrimp Species List	859
Appendi x B:	References Used for Identification of Shrimp Larvae	861
Appendi x C:	Paguridae and Lithodidae Found in the Bering Sea	863
Appendi x D:	Distinguishing Between <u>Chionoecetes bairdi</u> and <u>C. opilio</u> Zoeae Collected in the SOUTHEASTERN BERING SEA	. 865

484

, r

LIST OF FIGURES

Figure 2.1	Station locations for zooplankton samples, NOAA 1976.
Figure 2.2	Station locations for zooplankton samples, NOAA 1977, April.
Figure 2.3	Station locations for zooplankton samples, NOAA 1977, May.
Figure 2.4	Station locations for zooplankton samples, NOAA 1978.
Figure 2.5	Station locations for zooplankton samples, NOAA 1979.
Figure 2.6	Station locations for zooplankton samples, PROBES 1978, Leg 1.
Figure 2.7	Station locations for zooplankton samples, PROBES 1978, Leg 3.
Figure 2.8	Station locations for zooplankton samples, PROBES 1978, Leg 4.
Figure 2.9	Station locations for zooplankton samples, PROBES 1980, Leg 2.
Figure 2.10	Station locations for zooplankton samples, PROBES 1980, Leg 3.
Figure 2.11	Station locations for zooplankton samples, PROBES 1980, Leg 4.
Figure 2.12	Station locations for zooplankton samples, PROBES 1980, October.
Figure 2.13	Station locations for zooplankton samples, PROBES 1981, Leg 1.
Figure 2.14	Station locations for zooplankton samples, PROBES 1981, Leg 2.
Figure 2.15	Station locations for zooplankton samples, PROBES 1981, Leg 3.
Figure 2.16	Station locations for zooplankton samples, PROBES 1981, Leg 4.
Figure 2.17	Station locations for zooplankton samples, NOAA 1981 A, May.
Figure 2.18	Station locations for zooplankton samples, NOAA 1981 B, May-July.
Figure 2.19	Station locations of June 1982 nearshore North Aleutian Shelf zooplankton samples.
Figure 2.20	Station locations of August 1982 nearshore North Aleutian Shelf zooplankton samples.
Figure 2.21	Locations and boundaries of strata used to contrast spatial distribution of decapod larvae in the southeastern Bering Sea.
Figure 3.1	Location of proposed lease sale areas for the North Aleutian Shelf and St. George Basin.
Figure 3.2	NMFS eastern Bering Sea crab survey areas in 1979 and 1980.
Figure 3.3	Distribution of female red king crab greater than 89 mm carapace length in the eastern Bering Sea, May-July 1980.

- Figure 3.4 Distribution of male red king crab greater than 134 mm carapace length in the eastern Bering Sea, May-July 1980.
- Figure 3.5 Abundance estimates of legal male red king crab based on annual NMFS groundfish surveys.
- Figure 3.6 Distribution of blue king crab in the eastern Bering Sea.
- Figure 3.7a Distribution and relative abundance of male blue king crab greater than 134 mm.
- Figure 3.7b Distribution and relative abundance of female blue king crab greater than 89 mm.
- Figure 3.8 Index map for proposed OCS Lease Sale #70, St. George Basin.
- Figure 3.9 Relative contribution of various crabs to value of U.S. crab landings.
- Figure 3.10 Major king crab catch areas relative to St. George Basin Lease area.
- Figure 3.11 Distribution and abundance of red king and blue king crab larvae in the southeastern Bering Sea, 1976-1981.
- Figure 3.12 Areas of greatest larval king crab abundance relative to strata 1 to 12.
- Figure 3.13 Distribution and relative abundance of larval red king crab in modified strata I and 11 during June 1982.
- Figure 3.14 Abundance of red king crab larvae as a function of depth.
- Figure **3.15** Distribution and relative abundance of red king crab larvae in early August 1982.
- Figure 3.16 Interannual differences in distribution and abundance of red king crablarvae in strata I and II along the NAS, 1976-1982.
- Figure 17a,b Frequency of occurrence of one megalops and four zoeal larval stages of red king crab 1976-1982.
- Figure 3.18 Differences in apparent hatch time of red king crab larvae in the western and eastern NAS area.
- Figure 3.19 Frequency of occurrence of <u>Paralithodes</u> spp. larval stages collected during 1978.
- Figure 3.20 Increase in dry weight of red king crab larvae from the mature egg through megalops stage.
- Figure 3.21 Vertical distribution of red king crab larvae from six MOCNESS stations, PROBES 1981.
- Figure 3.22 Annual distribution and abundance of sexually mature female red king crab, 1977-1981.

- Figure 4.1 Commercial landings of Tanner crabs from the southeastern Bering Sea compared to total Alaska Tanner crab catch, total U.S. catch for all crab species.
- Figure 4.2a Sub-areas defined for the NMFS/OCS-BLM benthic faunal resource survey of 1975, showing areas containing large stocks of commercial Tanner crabs.
- Figure 4.2b Centers of abundance of **benthic <u>C. baird</u>** and <u>C. opilio</u> in the southeastern Bering Sea.
- Figure 4.3 Principal areas of 1980 Tanner crab catch in the southeastern Bering Sea.
- Figure 4.4 Timing of appearance of larval <u>C</u>. <u>bairdi</u> in the southeastern Bering Sea.
- Figure 4.5 **Temporal aspects of development** in larval populations of **C**^{*} **opilio** and <u>C</u> **b b a** i r **d** i during four years of study.
- Figure 4.6 Vertical distribution of zoea larvae of <u>C. baird</u>i and <u>C.opilio</u> samples by MOCNESS 1980-1981.
- Figure 4.7 Vertical distribution of <u>C</u>. <u>bairdi</u> Stage I zoeae, May 1981.
- Figure 4.8 Vertical distribution of Stage I and II <u>Chionoecetes</u> spp. zoeae from eight stations (1981).
- Figure 4.9 Vertical distribution of <u>C. bairdi</u> and <u>C. opilio</u> megalops larvae at seven locations in 1981.
- Figure 4.10 Distribution and abundance of <u>C</u>. <u>bairdi</u> larvae May and June, 1978.
- Figure 4.11 Distribution and abundance of <u>C</u>. <u>opilio</u> larvae May and June, 1978.
- Figure 4.12 Distribution and abundance of <u>C</u>. <u>bairdi</u> larvae in 1980 and 1981.
- Figure 4.13 Distribution and abundance of <u>C</u>. <u>opilio</u> larvae in 1980 and 1981.
- Figure 5.1 Vertical distribution of **Oregoniinae brachyuran** larvae in 1980, 1981 MOCNESS samples from the southeastern Bering Sea.
- Figure 5.2 Vertical distribution of Pinnotheridae larvae in 1981 MOCNESS samples from the southeastern Bering Sea.
- Figure 5.3 Seasonal occurrence of larval stages of selected brachyuran taxa in the southeastern Bering Sea in the years 1976-1981.
- Figure 5.4 Locations and densities of Erimacrus isenbeckii larvae, 1976-1981.
- Figure 5.5 Mean density of <u>E. isenbeckii</u> larvae 1976-1981 by stratum.
- Figure 5.6 Frequency of occurrence of larval stages of **Oregoniinae** during weekly intervals May 31-July 18, **1981.**
- Figure 5.7 Distribution and abundance of **Oregoniinae** Larvae May/June 1978.

- Figure 5.8 Distribution and abundance of Oregoniinae larvae May/June 1980.
- Figure 5.9 Distribution and abundance of **Oregoniinae** Larvae May/June 1981.
- Figure 5.10 Distribution **p** and mean density of non-C<u>hionoecetes</u> Oregoniinae larvae/100m by stratum in April (a) and May/June (b) 1978.
- Figure 5.11 Distribution **n** and mean density of **non-<u>Chionoecetes</u> Oregoniinae larvae/100m** by stratum in May/June 1980.
- Figure 5.12 Distribution **n** and mean density of **non-<u>Chionoecetes</u>** Oregoniinae **larvae/100m** by stratum in May/June and July 1981.
- Figure 5.13 Locations and densities of **Pinnotheridae** Larvae 1976-1981.
- Figure 5.14 Cross and long-shelf patterns of mean density of Pinnotheridae larvae/100m² by stratum in May and June of 1978, 1980, and 1981.
- Figure 5.15 Locations and densities of <u>Cancer</u> spp. larvae 1977-1981.
- Figure 5.16 Mean density of Cancer spp. larvae 1977-1981 by stratum.
- Figure 5.17 Locations and densities of <u>Telmessus cheiragonus</u> Larvae 1976-1978 and 1981.
- Figure 5.18 Mean density of <u>I</u>. <u>cheiragonus</u> larvae 1976-1981 by depth.
- Figure 5.19 Locations and densities of Acanthonychinae and/or' **Pisinae** Larvae 1976-1981.
- Figure 5.20 Mean density of Acanthonychinae and/or **Pisinae** Larvae 1976-1981 by stratum.
- Figure 6.1 Frequency of occurrence of pandalid species larvae, PROBES 1981 by months April to July.
- Figure 6.2 Duration of larval stages of three pandalid shrimp species, PROBES 1981.
- Figure 6.3 <u>Pandalus borealis</u> stage frequency histogram by month, PROBES 1978 and 1981.
- Figure 6.4 <u>P. tridens</u> stage frequency histograms by month, PROBES 1978 and 1981.
- Figure 6.5 Distribution of <u>P</u>. <u>goniurus</u> larvae 1976-1981, April-July.
- Figure 6.6 Distribution and abundance of <u>P</u>. <u>borealis</u> larvae NOAA 1977, April/May.
- Figure 6.7 Distribution and abundance of <u>P</u>. <u>borealis</u> larvae PROBES 1981 and **NOAA 1981, April-July.**
- Figure 6.8 Distribution and abundance of <u>P</u>. borealis <u>larvae</u> PROBES 1978, April.

Figure 6.9 Distribution and abundance of **P.** borealis larvae **PROBES** 1978, May/June. **P.** borealis larval abundance in stratum 2 during April, May, and Figure 6.10 June 1977-1981. Vertical depth distribution of **P.** borealis larvae, PROBES 1980 and Figure 6.11 1981. Figure 6.12 Distribution and abundance of **P.** tridens **larvae**, PROBES **1980** and 1981. Figure 6.13 Distribution and abundance of P. tridens larvae PROBES 1978, April only. Figure 6.14 Distribution and abundance of \mathbf{P} . tridens larvae PROBES 1978, May/June. **P.** tridens larval abundance in strata 2 and 3 during May/June, Figure 6.15 PROBES 1978, 1980, and 1981. Figure 6.16 Vertical depth distribution of P. tridens larvae PROBES 1981. Figure 6.17 Distribution and abundance of **P.** stenolepis larvae April-July, 1976-1981. Figure 6.18 Distribution and abundance of hippolytidae shrimp larvae, PROBES and NOAA 1981, April-July. Figure 6.19 Distribution and abundance of hippolytidae shrimp larvae, NOAA 1976, 1977 April/May. Distribution and abundance of **hippolytidae** shrimp larvae, PROBES Figure 6.20 1978 April, May/June. Figure 6.21 Hippolytidae shrimp larval abundance in stratum 3, 1977-1981, by months, April, May, and June. Figure 6.22 Vertical depth distribution of hippolytidae shrimp larvae PROBES 1980 and 1981. Figure 6.23 Vertical depth distribution of hippolytidae shrimp larvae by month, PROBES 1981. Figure 6.24 <u>Crangon</u> spp. larval stage durations, PROBES 1981. <u>Crangon</u> spp. stage frequency of occurrence by month PROBES 1981. Figure 6.25 Figure 6.26 Argis spp. distribution from 1976-1981 April/July. Figure 6.27 Distribution and abundance of <u>Crangon</u> spp. Larvae. NOAA 1979 and 1981, PROBES 1980 and 1981, all months April-July combined. Figure 6.28 Distribution and abundance of Crangon_spp. larvae, NOAA 1976 and 1977, April/May.

- Figure 6.29 Distribution and abundance of <u>Crangon</u> spp. larvae, PROBES 1978, April .
- Figure 6.30 Distribution and abundance of <u>Crangon</u> spp. larvae, PROBES 1978, May/June.
- Figure 6.31 <u>Crangon</u> spp. larval abundance in stratum 2 1977-1981 by months April, May, and June.
- Figure 6.32 Vertical depth distribution of <u>Crangon</u> spp. larvae, PROBES 1981.
- Figure 6.33 Penaeid sp. larval stage durations, PROBES 1981.
- Figure 6.34 Penaeid sp. stage frequency by month, PROBES 1981.
- Figure 6.35 Distribution and abundance of Penaeid sp. larvae, 1976-1981 all months April-July combined.
- Figure 6.36 Vertical depth distribution of Penaeid sp. larvae, PROBES 1981.
- Figure 7.1 **Paguridae** stage frequency histogram by months, April to July, PROBES 1981.
- Figure 7.2 Distribution and abundance of **Paguridae** Larvae during April NOAA 1977 and PROBES 1978.
- Figure 7.3 Distribution and abundance of **Paguridae** Larvae May/June NOAA 1976, 1977, 1979 and PROBES 1978.
- Figure 7.4 Distribution and abundance of **Paguridae** Larvae April/June, PROBES 1980.
- Figure 7.5 Distribution and abundance of **Paguridae** larvae April/July, PROBES and NOAA 1981.
- Figure 7.6 Mean larval densities of **Paguridae** by stratum, 1978-1981.
- Figure 7.7 Vertical depth distribution of **Paguridae** larvae from **MOCNESS** samples, PROBES 1980 and 1981.
- Figure 7.8 Vertical depth distribution of **Paguridae** larvae, diel comparison by depth.
- Figure 8.1 Current directions and net speed over the southeastern Bering Sea Shelf.
- Figure 8.2 Lease sale areas in the St. George Basin between 100-200 m **isobaths** and along the North Aleutian Shelf.
- Figure 8.3 Surface oil trajectories during summer from spill points within the St. George Basin.
- Figure 8.4 Surface oil trajectories during winter from spill points within the St. George Basin.

LIST OF TABLES

- Table 2.1Dates and sources of zooplankton samples searched for decapod
larvae in this study.
- Table 2.2List of taxonomic levels of decapod crustacean larvae identified
in this study.
- Table 3.1 Number of zooplankton samples sorted between 1976-1981, and number that were positive for both blue and red larval king crabs (see Table 2.1 for full details). Although not officially a part of this study, data for 1982 are included to demonstrate the high percentage of samples positive for king crab larvae when stations were situated nearshore. Samples with less than 500 larvae/100 m² are summarized separately to show the proportion of positive stations that fell into this lowest density category (see Fig. 3.11 for density categories).
- Table 3.2 A summary of larval red king crab densities in June, 1982, along the North Aleutian Shelf. Stations were grouped into three depth intervals along six transect lines to contrast nearshore and alongshore distribution (see Fig. 3.14).
- Table 3.3 Mean abundance of larval red king **crab** along **the** North Aleutian Shelf during May and June in 1976 through 1982. The region is divided into two strata that separate distributions east and west of **162⁰W** latitude near Black Hills. Values are larvae/100 m (See 'Fig. 3.12 for strata boundaries).
- Table 3.4 Relative abundance and distribution of female crabs greater than 89 mm carapace in the three areas of the southeastern Bering Sea. Stratum I and II are along the North Aleutian Shelf (see Fig. 3.16), and Remaining Bristol Bay is delineated in Fig. 3.22 for the year 1978. Values are the mean <u>+</u> 1 SD of crabs per square mile (see the text for details on calculations).
- Table 4.1Historic U.S. Tanner crab catch in the eastern Bering Sea, 1968-1982 (from Eaton, 1980, 1981).
- Table 4.2 Timing of appearance of Stage I zoeae of <u>Chionoecetes bairdi</u> in the southeastern Bering Sea by year and date. N1: number of stations sampled during specified period; N2: number of stations used in the analysis. Density of larvae is reported as number per 100 m (range in parentheses).
- Table 4.3Timing of appearance of Stage I zoeae of <u>Chionoecetes opilio</u> in
the southeastern Bering Sea by year and date. NI: number of
stations where <u>C. opilio</u> larvae were found; N2: mean number of
zoeae per 100 m² (range in parentheses).
- Table 4.4 **Zoeal** development of <u>Chionoecetes bairdi</u> and <u>C. opilio</u> showing proportion of Stage I to total **zoeae:** Mean of sample observations \pm one standard deviation (number of stations sampled in parentheses).

- Table 4.5Proportion of Stage II to megalops larvae (total larvae) of
Chionoecetes bairdi and C. opilio in plankton samples from the
southeastern Bering Sea in 1981: Mean of sample observations ±
one standard deviation (number of samples in parentheses). Number
of larvae examined is shown beneath date. No Stage I zoeae were
present for either species during the time period shown.
- Table 4.6 Weighted average proportion of Stage I to total zoeae of <u>Chionoecetes bairdi</u> and <u>C. opilio</u>: Proportion of all zoeae examined during specified time periods (number of larvae examined is in parentheses).
- Table 5.1Size, depth distribution, geographic range and habitat of
Brachyura (excluding <u>Chionoecetes bairdi</u> and <u>C. opilio</u>) known to
inhabit the southeastern Bering Sea.
- Table 5.2Early life history information on several species of brachyuran
crabs found in the southeastern Bering Sea.
- Table 5.3 Species list of **non-<u>Chionoecetes</u> Brachyura** known to inhabit the southeastern Bering Sea, and **taxonomic** level to which they were identified.
- Table 5.4Brachyura taxa identified among larval decapods, larval stages and
references used for identifications.
- Table 5.5Frequency of occurrence of <u>Erimacrus isenbeckii</u> within each
stratum in May and June of the combined years 1976-1981.
Percentages were derived from the proportion of all stations
within each stratum at which <u>E</u>. <u>isenbeckii</u> were found (see Fig.
2.21). As noted in the text, only 9% of the total stations
analyzed in all years contained larvae of this species.
- Table 5.6 Frequency of occurrence (as percent) within each stratum of **Oregoniinae** in May and June of the combined years 1976-1981. Percentages were derived from the proportion of all stations at each stratum at which **Oregoniinae** were found.
- Table 5.7 Frequency of occurrence (percent) within a stratum of Pinnotheridae larvae in May and June of the years 1977-1981 combined.
- Table 5.8Frequency of occurrence (percent) within each stratum of Cancer
spp. larvae in May and June of the years 1976-1981. Depicted is
the percent of all stations within each stratum at which Cancer
spp. were found.
- Table 5.9 Frequency of occurrence (percent) of <u>Telmessus cheiragonus</u> larvae within each stratum in May and June of the year 1976-1981 combined.
- Table 5.10Frequency of occurrence (percent) of larvae of the sub-families
Acanthonychinae and/or Pisinae within a stratum in May and June of
the years 1976-1981.

- Table 6.1Comparison of life history and reproductive information for
pandalid species.
- Table 6.2 Life history information for **hippolytid** species.
- Table 6.3Life history information for crangonid species.
- Table 6.4Frequency of occurrence of **pandalid** shrimp larvae from PROBES
stations, 1978, 1980, and 1981.
- Table 6.5Cross-shelf comparison of mean densities of P. borealisLarvae by
stratum during May/June, PROBES 1978. Zero stations omitted from
calculations. Total number of stations (N) sampled within each
stratum shown. See Figure below for strata locations.
- Table 6.6Cross-shelf comparison of mean densities of P. tridensLarvae by
stratum during May/June, PROBES 1978. Zero stations omitted from
calculations. Total number of stations (N) sampled within strata
shown. See Figure 2.21 for strata locations.
- Table 6.7 Cross-shelf comparison of mean densities of **Hippolytidae** larvae by stratum during May/June, PROBES 1978. Zero stations omitted from calculations. See Figure 2.21 for strata locations. Total stations sampled = N.
- Table 6.8Cross-shelf comparison of mean densities of Crangon spp. larvae by
stratum during May/June, PROBES 1978. Zero stations in each
stratum omitted in these calculations. See Figure 2.21 for strata
locations. Total number of stations sampled = N.
- Table 6.9 Cross-shelf comparison of mean densities of Penaeid sp. larvae by stratum during April and May from NOAA 1977 with May and June from PROBES 1978. See Figure below for strata locations. Total number of stations sampled = N.
- Table 7.1 Frequency of adult and juvenile **pagurid** crabs in 1975 and 1976, southeastern Bering Sea, benthic trawl samples and preferred habitats (adapted from **Nyblade**, 1974; McLaughlin, 1974; **Feder** and Jewett, **1980**).
- Table 7.2Reproductive data for four species of Paguridae collected in the
San Juan Islands, Wash.Species are also common in the
Southeastern Bering Sea (adapted from Nyblade, 1974).
- Table 7.3Cross-shelf comparison of mean densities of Paguridae 1 arvae
during May and June from PROBES 1978. Zero stations omitted in
calculating these means. Total number of stations surveyed within
each stratum = N. See Figure below for strata locations.

ACKNOWLEDGMENTS

We are indebted to the Outer Continental Shelf Environmental Assessment Program (OCSEAP) for the two years of funding with which the Larval Decapod Program was supported (NOAA/OCSEAP Contract NA-81-RAC-00059). Many individuals at OCSEAP worked with us and gave **help** and advice on details from budgets to ship logistics. Their expertise was invaluable to us as novices in the system of government contracts; their patience, encouragement, and compliments are deeply appreciated. Dr. Steven Zimmerman was our constant line of communication between OCSEAP and the University (a job that no doubt aged him some), an astute scientific critic of this work, and solace on many days when the world seemed to set the project back. Dr. Jawed Hameedi helped formulate the scope of the project, and provided a very useful perspective on the application of scientific information to the assessment goals of **OCSEAP.** Jody Hilton and Steve Zimmerman helped smooth several rough financial transactions with the University, George Lapiene helped arrange ship logistics in 1982, and Dean Dale aided us with data management. A portion of the data reported here was collected in 1982 under NMFS Contract 82-ABC-00158 while onboard OCSEAP research cruises. We thank both agencies for cooperating in providing that additional research opportunity, especially Drs. Murray Hayes and Steve Zimmerman and Mr. Lyman Thorsteinson for encouragement to develop the project.

Our program was greatly aided and strengthened by many forms of assistance **given** by scientists at other agencies and institutions. Dr. Murray Hayes helped arrange sampling during National Marine Fisheries

Service (NMFS) groundfish surveys in 1981, and was instrumental in securing funds for research related to the Larval Decapod Program (NOAA/ NMFS Grant 80-ABH-00045; NOAA/NMFS 82-ABC-00158). Drs. Art Kendall (NMFS) and Ted Cooney (Univ. Alaska, Fairbanks) loaned us scores of zooplankton samples collected during past cruises. The scientists of the PROBES program (NSF Grant DPP76-23340) have been generous in offering shipboard time for our collections and access to the oceanographic data collected during **PROBES** cruises. Drs. Sharon Smith and Julio Vidal and their co-workers, in particular, are to be thanked for sharing their collecting gear and innumerable samples with us. Dr. T. Saunders English, Terry Butler, Gayle Herron, Kendra Daly, and Paul Walline have all been generous with their expertise. Brett Dumbauld, Randy Whitman and Linda Crew conscientiously performed their many tasks in the laboratory, and Katie Swanson provided critical help with computer programming. Finally, the masters and crews of the research vessels T. G. Thompson, Alaska, Chapman, Discoverer and Miller Freeman have cheerfully assisted these studies in many ways. To all, may we express our sincere gratitude.

1.0 GENERAL INTRODUCTION

1.1 Justification of the Study

The southeastern Bering Sea is characterized by rich water column productivity of both phytoplankton and zooplankton (McRoy and Goering 1974; Goering and Iverson 1978; Goeriny and McRoy 1981, Cooney 1981) which, in turn, supports an extensive and productive benthic community over much of the shelf (Feder and Jewett 1981; McDonald et al. 1981; Jewett and Feder 1981). Some of the most abundant epifaunal organisms quantified in these studies are several species of crab that constitute lucrative invertebrate fisheries for the United States (Otto 1981). Distribution of these species, particularly gravid females and sensitive larvae and Juveniles, in relation to areas of future oil and gas development of the St. George Basin and North Aleutian Shelf (NAS), make them particularly vulnerable to oil mishaps that could have ultimate repercussions on the general benthic community and commercial fishery (Curl and Manen 1982; Armstrong et al. 1983).

Minerals Management Service (MMS) has established six outer continental shelf planning units in the Bering Sea. Three of these units have been through tract selection stages and include the St. George Basin and the North Aleutian Shelf, which together encompass virtually all of the southeastern Bering Sea crab fishering grounds. Two synthesis meetings have been held to consider the impact of Outer Continental Shelf (UCS) oil and gas development on biota and habitats in both units in order to aid in development of management plans that mitigate perturbations on resources. Proceedings of the St. George Basin meeting have been

published prior to an anticipated lease sale in mid-1983 (Hameedi 1982), and reports of the NAS meeting are in review and expected by summer 1983. Data and interpretations from the present study on **decapod** larvae were included in proceedings from both meetings (Curl and Manen 1982; Armstrong et al. 1983), and served to extend knowledge on the biology and ecology of commercial crabs that was used to predict vulnerability of the species.

Crabs in the southeastern Bering Sea constitute one of the most valuable crustacean fisheries in the world. Two principle groups, king crab (Paralithodes camtschatica and P. platypus) and Tanner crab (Chionoecetes bairdi and C. opilio) comprised 35.4% and 23%, respectively, of total U.S. crab landings in 1980. Their respective dollar values were 60% and 11.7% of total ex-vessel U.S. crab revenues of \$291, 350, 000 (NOAA 1981; Pacific Packers 1981; Sections 3.0 and 4.0 of this report give extensive literature reviews of general biology and fishery information on king and Tanner crab). Since the beginning of this project in January 1981, **commercial** fishing has suffered two years of depressed landings in 1981 and 1982, particularly of red king crab. Landings declined from 131 x 10^6 lb in1980 to about 35 x 10° in 1981 (INPFC 1982), and the fishery was closed at about 3.5 x 10^6 in 1982 (M. Hayes, NMFS, Seattle, pers. communication). Such severe reductions in landings are in accord with NMFS predictions of decreased abundance (5-fold decrease from 1979 to 82: Otto et al. 1982), and reflect a substantial, but unexplained, variation in success of year-classes.

Larval stages are generally considered more sensitive to environmental stresses than **adults** or juveniles of aquatic species (Anger et al. **1981; Bakun** et al. 1982; May 1974; **Vernbery** and **Vernberg** 1972). Studies of larval **crab** and shrimp biology in the southeastern Bering Sea are timely for insights **behind** the vagaries of adult abundance that might be traced **to** relative success of pelagic larval year-classes. An important consideration for predictions of impact is **whether** oil mishaps could further diminish populations already reduced by natural stresses on their larvae.

Forthcoming development of petroleum and gas reserves in the reproductive and fishing grounds of commercially important **Crustacea** led to the study outlined in this report. While extensive literature exists on the distribution and **abundance** of juvenile and **adult** decapod **Crustacea** in the southeastern Bering Sea (Jewett and Feder 1981; Otto 1981a; provided by NMFS as part of the commercial fisheries survey; Somerton 1981), little data on the general ecology, distribution, and abundance. . of their pelagic larvae are published. Larvae are considered extremely susceptible to oil pollution because:

1. This life-history stage is pelayic, usually in the upper 20 m of the water column and, for some species and stages, largely in the neuston (e.g., Smyth 1980). Given the tendency of the various molecular fractions of petroleum to either dissolve or form colloids and particles in water and disperse as a surface film or sink slowly (Shaw 1977; McAuliffe 1977), crustacean larvae are more likely to be exposed to oil on a broader scale than are their benthic parents.

- Larval crustaceans are more sensitive to any group of pollutants (including oil) than are juvenile or adult stages (Armstrong et al. 1976; Johnson 1977).
- 3. Larvae grow rapidly in the water column and molt up to five times in three to four months, whereas adults molt only once annually. Molting is the physiological event in crustacean life cycles most sensitive to ambient perturbations such as oil pollution. During an oil mishap, larvae will be exposed for a greater portion of their abbreviated molt cycle than will adults.
- 4. Recruitment of legal crabs to a fishery may be largely dependent on the larval survival of a given year-class (McKelvey et al. 1980; Somerton 1981). Annual variations of high or low abundance indicate differential mortality caused by physical and biological factors that vary in intensity and effect year to year (Incze 1983). Extensive oil pollution in critical seasons could increase larval mortality in years when natural causes are relatively benign, or act synergistically with severe natural events to decimate larval cohorts and, in turn, curtail the fishery years later.

1.2 The Data Base

Zooplankton samples sorted for this study of larval decapod distribution and abundance have come from several collections made in different years and areas with varying degrees of temporal/spatial **thorough**ness **and** continuity (Section 2.0, Methods and Materials, gives details of the data base). **Only** in the years 1980 and **1981** (and to a limited

extent in 1982) did we have the opportunity to plan systematic **collections** related to hypotheses of species biology. Even in those years our program **was** a small, opportunistic portion of larger missions that limited that scope of work accomplished. Samples from years 1976-1979 came from several **ichthyoplankton** and zooplankton surveys that were, in cases, extremely helpful and relevant to our **decapod** study. But some collections were meager or far removed from areas of principal king and Tanner crab distribution and, consequently, only partially contributed to analyses of annual and regional differences in **larval** population dynamics.

The majority of collections were made during May and June of each year. The study suffered somewhat from lack of thorough collections in April to characterize time and area of hatch (more so for king crab), and also from few samples through July and August to better fix the period of metamorphosis to the benthos. Spatial representation was best over the middle, and outer shelf where the PROBES study was conducted for several years (see Section 2.0), and thus both species of Tanner crab and **pandalid** shrimp are the taxa where larval biology is best documented (Sections 4.0 and 6.0, respectively). Since very few samples were taken near the **Pribilof** Islands, nearshore along the North Aleutian Shelf and also in Bristol Bay from 1976 **to** 1981, a somewhat incomplete picture of both blue and red king crab larval ecology **and** biology has emerged, although collections in **1982** nearshore along the NAS have improved knowledge of the latter species (Section 3.0).

Despite these shortcomings, the sum **of** data presented in this report is the most comprehensive study of larval decapods in the south-

eastern Bering Sea to date and, for many taxa, over their entire range from the Bering Sea through the Gulf of Alaska and farther south. In reviewing the literature on shrimu and crabs, we were struck by the paucity of studies on the population dynamics and general ecology of larval decapod stages along the west coast of the United States and Investigations such as Lough's (1976) along Oregon that focus Canada. on decapod larvae are rare (see literature reviews in Section 3.0-7.0). Rather, such larval stages are studied in laboratories while field investigations tend to deal more with juvenile and adult populations. Zooplankton investigations tend to focus on holoplanktonic taxa such as copepods without much attention given meroplanktonic groups. Yet factors such as species distribution, ranges and **f**lactuations in abundance of benthic adult populations may largely be explained by responses and survival of pelagic larvae (Bakun et al. 1982; Incze 1983; Young and Hazlett 1978). A notable exception in the pattern of few, comprehensive studies of larval crab populations are those done over the last several years on the eastern U.S. coast (Grant 1977; Johnson 1982, McConaugh et al. in press; Smyth 1980), which nave greatly increased knowledge of estuarine and nearshore larval crab biology. Such information increases the accuracy of environmental impact predictions stemming from numerous projects in that region.

1.3 Format of this Report

This contract was established to provide information on larval decapods to federal agencies considering ramifications of oil and gas developand to aid them in devising management policy to mitigate possible impacts.

The sections of this report describe firstly the general methods and materials used in the program (Section 2.0). Next are several sections (3.0-7.0) that review pertinent **literature** on the biology and fishery (if applicable) of major decapod groups and then present results of this study. The commercial king and Tanner crabs are discussed in Sections 3.0 and 4.0, respectively, **followed by** other crabs (5.0), shrimp (6.0) and hermit crabs (7.0). While the latter three groups are not commercially important (an exception is the horsehair crab, <u>Erimacrus isen-beckii</u>), they may be of major ecological importance as predators and prey within **benthic communities** and must not be overlooked in predictions of oil impact.

Data on larval distribution and abundance, relationships to **benthic** adult stocks, **molt** frequency, annual variations in physiological and biological factors, etc., are considered in light of possible oil impacts *in* Section 8.0. Literature on oil toxicity to **Crustacea** is reviewed and previous models of oil impact are studied and criticized as a preface to discussion of decapod **species/taxa** vulnerability to oil in the **southeast**ern Bering Sea. Data gaps are identified and future research on **decapods** in that area is suggested in the conclusion.

2. O MATERIALS AND METHODS

2.1 Sample Sources and Station Locations

Zooplankton samples used for enumeration of decapod larvae were obtained from several sources. Four series of samples were retrieved from storage and loaned to us by the principal investigators of earlier **zoo**plankton studies conducted in the southeastern Bering Sea under OCSEAP These samples had not been examined previously for decapod larsupport. vae. In addition to these past samples, participation in the 1980 and 1981 PROBES cruises enabled purposeful sampling for this study. In addition to our own sampling, a large number of depth-stratified samples were shared by the PROBES zooplankton working group, and samples were collected by National Marine Fisheries Services (NMFS) personnel during two cruises in 1981. Table 2.1 lists cruise and station information for the **zooplankton** samples analyzed in this study. The locations of sampling stations for each year and cruise are illustrated in Figures 2.1-2.18 at the end of this Chapter. Specific information regarding the location of stations as well as the sampling gear used and all results are available through the National Oceanography Data Center, Washington, U.C. under project title "Decapod Larvae, " File Type 124 (zooplankton data).

A study of distribution and abundance of red king crab larvae along the North Aleutian Shelf was supported by NMFS and UCSEAP in 1982 and findings are briefly presented in this report for comparative purposes. Station locations are shown in Figs. 2.19 and 2.20 for collections made during June 16-29 and August 3-10, respectively, that totalled 131 samples (Table 2.1).

Year	Temporal coverage of zooplankton samples	Crui se	Crui se sponsor*	Vessel	No. of stations	No. of stations
1976	26 April-31 May	MF-76A	OCSEAP	Miller Freeman	27	30
1977	16 April-17 May	RP-4-MF-77B	OCSEAP	Miller Freeman	80	112
1978	11 Feb-16 March	MF-78-1	OCSEAP	Miller Freeman	21	29
	11 April-29 June	TT-131	PROBES	T.G. Thompson	1 86	225
1979	1-27 June	3MF-70	OCSEAP	Miller Freeman	32	36
1980	6 April-8 June	TT-149	PROBES	T. G. Thompson	68	317
1700	4-5 October	AX-9	PROBES	Alpha Helix	4	21
1981	16 April-20 July	TT- 159	PROBES	T. G. Thompson	165	610
1701	14-31 May	RP-4-DI-81A	NMFS	Di scoverer	16	16
	24 May-20 July	AL/81 1	NMFS	Al aska	23	23
TOTAL					622	1, 419
1982**	6-29 June		OCSEAP/	Miller Freeman		83
	3-10 August		NMFS	Miller Freeman		48

Table 2.1. Dates and sources of zooplankton samples searched for **decapod** larvae in this study.

*OCSEAP, within National Oceanic and Atmospheric Administration. **OCSEAP** samples 1976-1979 collected under contract by National Marine Fisheries Service.

PROBES: National Science Foundation (Processes and Resources of the Bering Sea Shelf)

**Only samples through 1981 were supported on this contract. 1982 samples were collected with NMFS support and OCSEAP logistics.

However, the data are not included in File Type 124, **"Decapod** Larvae" as of this writing.

2.2 Sample Collection

Zooplankton samples were collected with Bongo nets on a 60 cm (diameter) Bongo frame, **a MOCNESS (Multiple Opening/Closing** Nets and Environmental Sampling System, **Wiebe** et al. 1976), a NORPAC net (Motoda et al. 1957) and an MTD net (Motoda, 1969). The mesh size on the nets deployed with each piece of gear varied, but all were fine enough to retain even **the** smallest of the decapod larvae of this region.*

During OCSEAP and NMFS cruises in 1976-1979, Bongo frames were deployed with one 333 μ m and one 505 μ m mesh net attached. The samples analyzed in this study depended exclusively upon availability and included collections from both mesh sizes. Bongo nets used during the 1978 PROBES cruise were 333 μ m during Leg I and 505 μ m during Legs II-IV (the investigators resorted to the larger mesh to reduce net clogging). A 505 μ m net was used during the 1980-1982 PROBES and NMFS cruises. The NORPAC and MTD nets used both 333 and 505 μ m mesh, and the MOCNESS was equipped with 149 μ m mesh nets

Flow meters attached in front of the opening of Bongo, NORPAC, and MTD nets and near the top of the MOCNESS were used to estimate the volume of water filtered by each net. Bongo tows were made using standard

^{*}The smallest larvae were stage I zoeae (SI) of the Brachyuran family Pinnotheridae: minimum dimension of smallest individual collected with 149 μ m nets was approximately 1.5 mm. The largest mesh used was $550 \,\mu$ m.

techniques which attempt to equally sample all depths involved in the tow (Smith and Richardson, 1977). The MTD and MOCNESS nets had discrete flow data for each depth interval sampled. The only samples for which flow data were not available are those from PROBES 1978; the average flow (250 m³) computed for other processed zooplankton data from that cruise was used. Since every effort was made to keep those tows uniform, the error introduced by this estimation is probably small compared to real differences in decapod abundance.

The depth of sampling varied with the gear and cruise objectives. The depth of Bongo tows from OCSEAP and NMFS cruises generally reflected cnanges in the depth of water at various stations, whereas PROBES Bongo tows usually sampled only the upper 60 m of water, even at the deeper stations. MOCNESS was operated to sample the following depth intervals: 1200-600, 600-300, 300-120, 120-80, 80-60, 60-40, 40-20 and 20-0 m (sometimes 20-10 and 10-0 m). These depth intervals were modified slightly or deleted as station depth or equipment malfunction dictated. The MTD net used to collect samples examined in this study was deployed at fixed depths (e.g., 10 m, 30 m, etc.) rather than hauled obliquely through larger depth intervals.

Samples were preserved in 3-5% formal in: seawater.

2.3 Sample Processing

Initial **zoopl**ankton samples obtained for this study varied from 20% (our share of the MUCNESS samples) to 100% (most Bongo samples) of the **original** tow. This sample was then either examined entirely or was **sub-**sampled before removal of decapod larvae. The decision of whether or

not to **subsample** depended on the size of the sample and required some subjective judgment. The general rules governing this decision follow:

- Subsampling was done only if the settled volume of zooplankton in a clean sample exceeded approximately 0.15 1. The desired settled volume of a clean sample from which decapod larvae would be removed was approximately half the above, or 75 ml. A Folsom plankton splitter was used to split samples.
- 2. Subsampling was not done if the original sample contained a large volume of gelatinous zooplankton or aggregating phytoplankton (e.g., palmelloid form of <u>Phaeocyctis poucheti</u>) which interfered with the subsampling (splitting) process.
- Subsampling was not done if the original sample contained a large number of large organisms (euphausiids, chaetognaths, etc.) but relatively few smaller animals.
- A sample was not subdivided into a fraction containing less than 1/80 (MOCNESS) or 1/16 (Bongo) of the original tow.

The above guidelines were followed to ensure that **subsampling** yielded representative samples of the plankton. The adequacy of this approach was checked on several occasions with samples representing a variety of plankton conditions. These results are reported in the <u>Data Sensitivity</u> and Accuracy section that follows.

In all cases where at least one split was possible, one of the final pair of samples was archived for possible future needs, including

verification of results or examination of **subsampling** error. Decapod larvae were removed from the remaining **subsample** for identification. Occasionally, a **subsample** yielded hundreds of decapod larvae of a genus. When such numbers were found, these larvae were further sub-sampled using a small plankton splitter before **taxonomic** work was begun.

2.4 Taxonomy

Once removed from the raw plankton sample, decapod larvae were stored in a 95% ethanol, 2% glycerol solution until they could be iden-The principal objective of this program was enumeratified and counted. tion of the larvae of the commercially important king and Tanner crabs, as well as general categories to include all "other" crab and shrimp larvae. However, in the process of distinguishing king and Tanner crab larvae from other Anomura and Brachyura, several additional identifications are made simultaneously. The result is that, with a little extra effort, all other Anomurans and Brachyurans could be identified to some finer taxonomic level within these two sections. The enumeration of larvae of the Korean horse-hair crab, for which there is a developing fishery, was one advantage of this extra effort. Among the shrimp, identification to family can ordinarily be accomplished without much difficulty, so this was routinely done. This has the advantage of separating out the pandalid shrimp (Family Pandalidae) for which there was once, and may be again, a commercial fishery. Identification of the pandalids was done to species level.

A hierarchical list of taxonomic levels identified from our **zoo**plankton samples is provided in Table 2.2. References for the identifi-

Order Decapoda Suborder Reptantia Section Brachyura Family Majidae Subfamily Oregoniinae Chionoecetes spp. <u>C. bairdi</u> C. opilio Non-Chionoecetes Oregoniinae (Includes Hyas spp. and (Uregonia sp.) Subfamily Acanthonychinae nd/oor Pisinae Family Atelecyclidae Er<u>imacrus isenbeckii</u> Telmessus cheiragonus Family Cancridae Family Pinnotheridae Section Anomura Family Lithodidae Paralithodes camtschatica P. p1 atypus Non-Paralithodes Li thodi dae Family Paguridae Pagurus spp. Suborder Natantia Section Penaeidea Family Penaeidae P<u>enaeus</u> spp. Section Caridea Family Pandalidae Pandalus borealis P. tridens P. hypsinotus P. stenolepis Pandalopsis dispar

> Family Crangonidae <u>Crangon</u> spp. <u>Argis</u> <u>dentata</u>

> Family Hippolytidae

Family Pasiphaeidae <u>Pasiphaea</u> spp. cation of these larvae and the various larval stages are included in the text sections for each major larval group.

2.5 Data Reporting

The larvae of commercial decapod crustaceans are the focus of this report; they include the larval stages (zoeae and Megalopae) of king crab (Paralithodes camtschatica, P. platypus), Tanner crab (Chionoecetes bairdi, C. opilio), korean horse-hair crab (Erimacrus isenbeckii), and pandalid shrimp (Pandalus borealis). In most cases, larvae of all other taxonomic divisions enumerated in our laboratory work are discussed in general categories as the larvae of "other anomuran crabs," "other brachyuran crabs" and "other shrimp." The pagurid crabs (Anomura: Paguridae), though of no direct commercial value, have received special attention because of the abundance and widespread distribution of their larvae in the study area.

Larval abundance is reported throughout most of this text as estimated number of **larvae** per 100 m² sea surface area (number/100 m²). This provides a common unit of measure by which the abundance of various larvae can be compared and summed, regardless of differences in their vertical distribution in the water column. The larvae of some taxa are more concentrated in some depth intervals than others, and this may change for the various developmental stages. Vertical distribution patterns and mean densities of larvae (numbers per 1000 m³) are described for most of the major **taxonomic** groups. These data are used in the interpretation of potential oil impacts.

In our annual report (Armstrong et al. 1981), all larval abundance data were reported in units of numbers/1000 m³. This volumetric basis for representing mean abundance was abandoned because it did not" include larvae below 60 m depth (although the error introduced by this omission was small) and because it was not an accurate reflection of how larvae are distributed in the ocean. The units presently used (number/100 ${
m m}^2$ of sea surface) include all larvae sampled and provide no misconception about "uniform distribution." Estimates of abundance from the annual report can be compared with the data provided here in the following way. In virtually all cases the majority of larvae were found above 60m (Tanner crab mainly in the upper 20 m), so this was considered a lower limit for calculations of numbers/1000 m³. The surface area of a 100U m³ volume extending to 60 m depth is about 16.7 m². To convert the volumetric estimates of abundance to units of $numbers/100 m^2$, a multiplication factor of 5.99 is used (100 ÷ 16.7 = 5.988). For sampling in depths less than 60 m this multiplier changes. For example, density values for larvae caught in 40 m of water will be only four times greater in units of 100 m^2 than 1000 m^3 . However, few samples reported in the 1981 annual report were integrated over water columns of less than 60m depth.

2.6 Data Sensitivity and Accuracy

The volume (or mass) of plankton retained by the comparatively large **mesh** of the **Bongo** nets was frequently much smaller than that retained by the finer mesh nets used on **MOCNESS.** Yet the estimated volume of water sampled by nets of the two devices (according to the flow

meters) was often similar (generally 200-300 m³). It was determined above that **all decapod** larvae would be retained by any of the mesh sizes employed for the samples, so that the nets, in theory, should serve equally well for estimating the density of **decapod** larvae at various stations. However, at least three factors affect the estimates we make: (1) systematic differences in the degree of **subsampling** dictated by corresponding differences in the volume of plankton retained by each net per volume of water filtered; (2) inherent differences in net clogging related to net porosity and (3) differences in the location of the flow metering device.

When the volume of water filtered by a MOCNESS and a Bongo are approximately the same but there are large numbers of small organisms retained by MOCNESS and not by the larger mesh Bongo nets, the former will be sub-sampled to a greater extent than the latter. When the net plankton samples from MOCNESS and the Bongo are approximately the same size and, consequently, subject to the same sub-sampling, it is frequently because the former has sampled less water than the latter. lt is onlv when small plankton (in the intermediate size range 150-333 µm or 150-505 µm) are rare that the volumes of water filtered and the number of sub-sampling splits can be the same for both MOCNESS and Bongo samples. Since the latter condition does not usually prevail, the representative volume of water actually examined in MOCNESS sub-samples is almost always smaller than that examined from Bongo samples. This has the effect of decreasing the lower level of detection, or numerical sensitivity, of the MOCNESS samples relative to the Bongo.

Bongo samples were **usually split no** further **than 1/8**, and **were** never split to less than 1/16, of the original sample. Such splits place the lower level of detection in sub-samples at about 8-16 animals of each taxon per 200-300 m³ average tow, assuming perfectly uniform distribution of the larvae in the splitting process. Early in the season, the zooplankton community is not well developed, so splits were usually not necessary. Under these conditions the entire sample is examined and the probable lower **level** of detection for reporting becomes about 1 in 250 m³ (assuming an average tow), or roughly 5 per 1000 m³ or 30 per 100 m².

MOCNESS nets filtered about three times more water per meter of depth than the Bongo tows (200-300 m³ per 20 m depth interval for MOCNESS compared with 200-300 m³ per 60 m for Bongo nets). However, our share of PROBES MUCNESS samples was 20% of the original (the splits were done on board ship), so we always examined plankton from a smaller volume of water with MOCNESS samples than Bongo samples. Theoretically, MOCNESS samples should be less capable of detecting low larval abundance than Bongo samples. In addition, the finer mesh of the MOCNESS nets usually necessitated more sub-sampling, but not early in the season (April and early May) at early stages in the development of the zooplankton community.

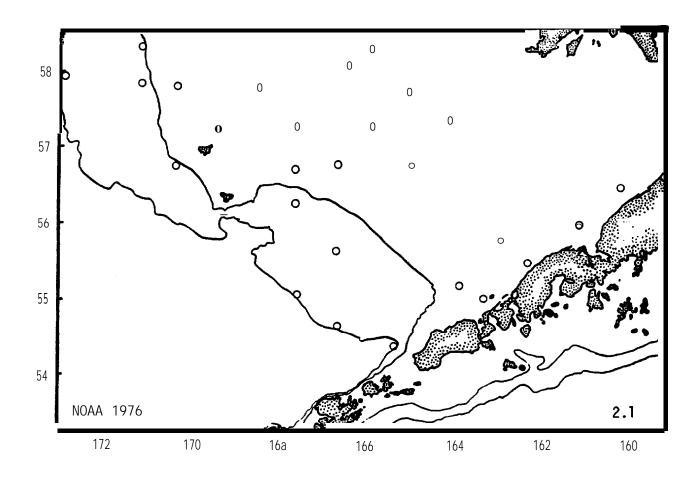
Since MOCNESS nets had a finer mesh, they were more prone to net clogging than the larger mesh Bongo nets. Clogging may be caused by phytoplankton as well as zooplankton, and reduces the actual amount of seawater filtered. The analytical problem created by this condition is compounded by the location of the flow-metering device. Unlike the

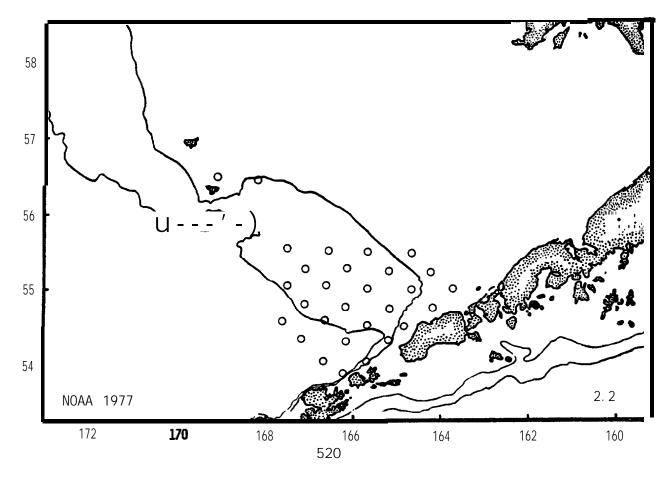
Bongo frame, the MOCNESS frame cannot accommodate a **flowmeter** positioned in front of the net opening (because of the sliding nets and the way the frame is handled on deck). Instead, the **flowmeter** sits atop the frame, where it is insensitive to actual changes in flow into the net. The MUCNESS theoretically over-estimates the volume of water filtered, **and** our calculations should routinely underestimate the density of decapod larvae present. This problem **is** not even internally consistent within a station, since **phytoplankton** and other **zooplankton** are not uniformly distributed with depth and may affect only some of the nets used. The **0-20** and **20-40** m **nets** are **usually subject** to more clogging than the deeper ones, so that calculations of abundance in the upper 40 m should be underestimated relative to calculations for deeper samples.

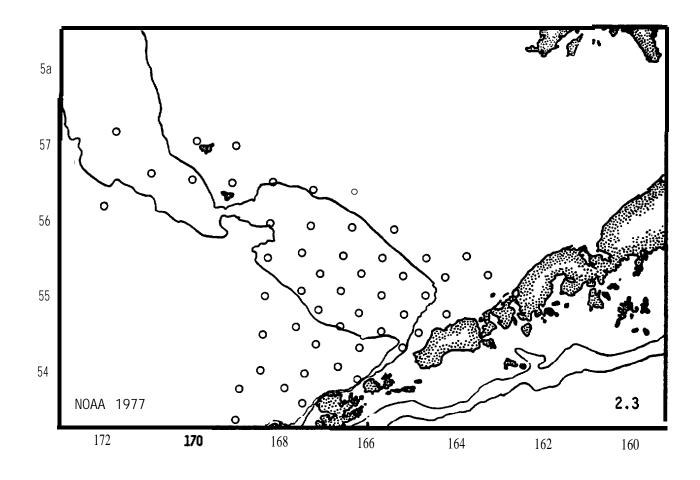
While these potential difficulties should be remembered in interpreting plankton data, they do not appear to have presented a major problem in this study. This may have been due to differences in the calibration and/or performance of the flow meters. Incze (1983) compared estimates of abundance of <u>Chionoecetes</u> larvae made with MUCNESS and Bonyo nets deployed at the same stations and found no consistent bias in the estimates. Rather, small-scale patchiness in abundance was sufficient to mask differences in the accuracy of flow estimation based on a comparison of coefficients of variation. In this study, all gear were considered to provide similar estimates of abundance.

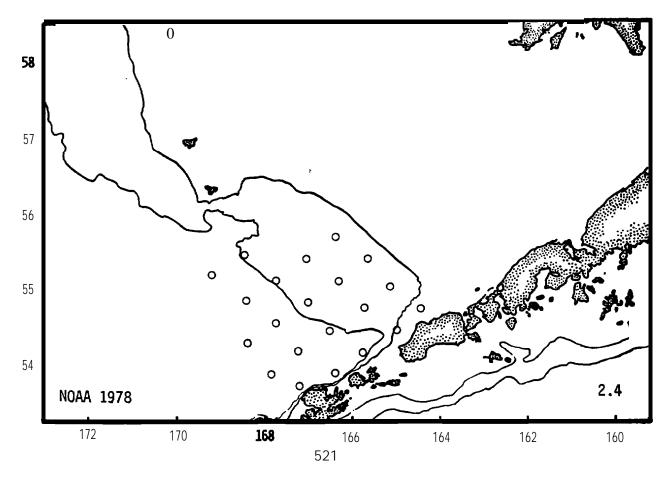
2.7 Vertical Distribution Patterns

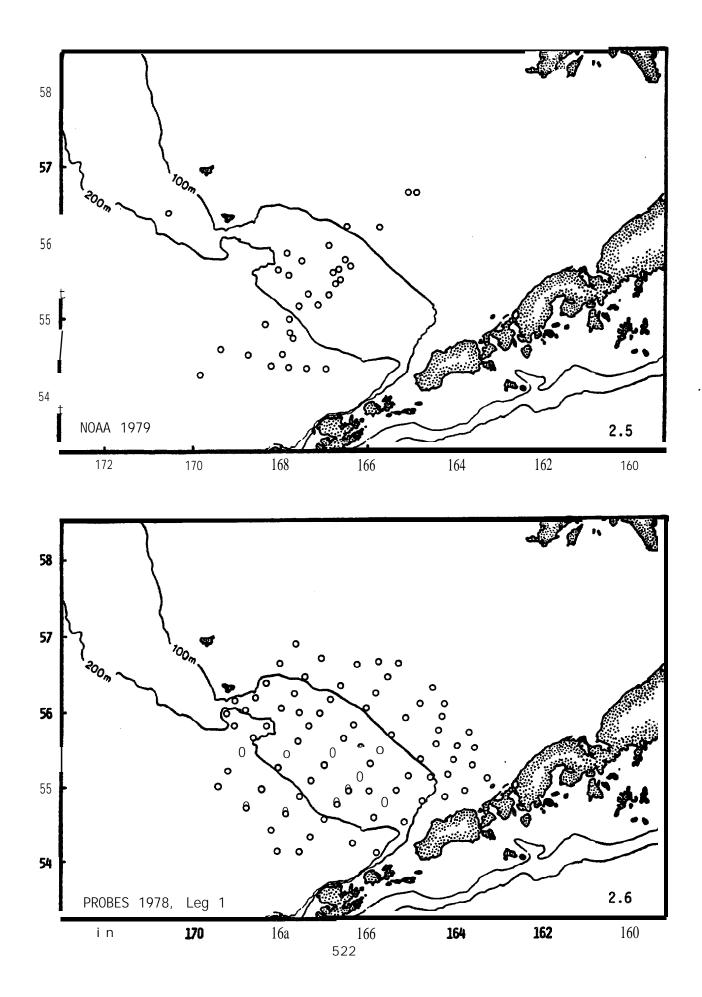
Discrete depth interval samples collected by MOCNESS were used to examine patterns of vertical (depth) distribution of abundant decapod

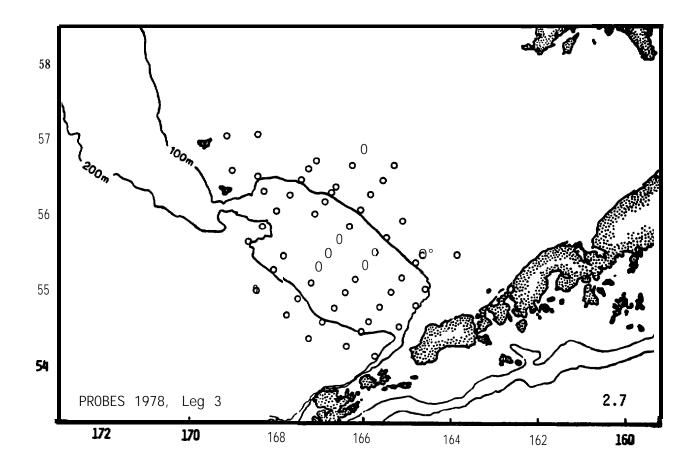

A computer program was used to generate listings of all MOCNESS larvae. stations where larvae of a particular taxon were found. For each depth interval (0-20, 20-40, 40-60, **60-80,** and >80 m) at each station, the estimated abundance of larvae (number/1000 m³), the number of larvae actually counted for the estimate, and the size of the sub-sample providing this count were listed. Stations with estimates of larval abundance based on too few specimens and/or on very small sub-samples were not considered. Although no strict criteria could be developed for making this decision, it was generally not difficult to decide by inspection whether the data were sufficient for adequately describing a vertical distribution pattern. For each station with sufficient data, the vertical distribution of larvae was determined by calculating the proportion of all larvae collected at each depth interval. This was done for each year of MOCNESS samples (1980 and 1981), and, sometimes, for individual larval stages. For some taxa, diurnal patterns were also examined.

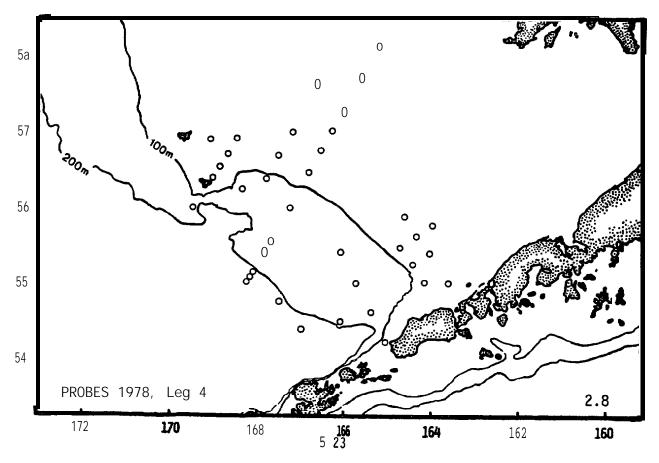

2.8 Geographic Division of the Study Area

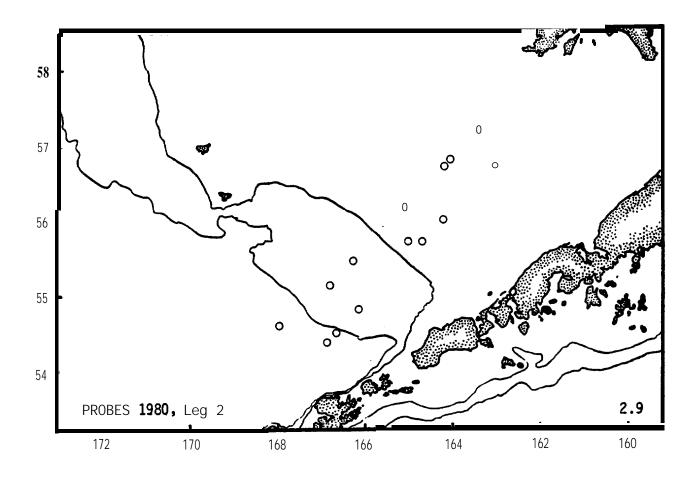

The study area was divided into twelve sub-areas, or strata (Fig. 2.21), for estimating mean larval abundance. The divisions were based on regional hydrographic structure, faunal distribution patterns and the availability of sampling data. A breakdown of the southeastern Bering Sea into strata facilitated comparisons of timing and abundance of certain taxa between areas and years. This approach worked best with Tanner crab and pandalid shrimp larvae, but also facilitated a summary of general larval distributions for taxa that were less common or were poorly sampled, such as king crab and Korean hair crab. Estimates of

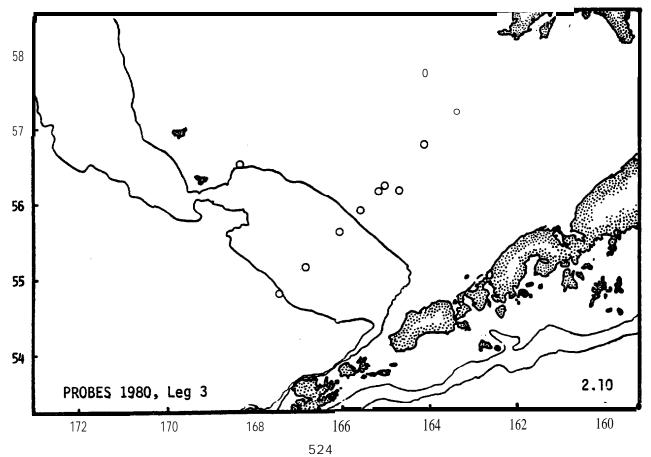

abundance within strata were made by averaging data from all stations sampled within certain time intervals (usually one month; see **Incze** 1983 for details). For illustrating patterns of larval abundance, however, individual station data were used. Further subdivisions of strata were made for descriptive and statistical purposes in the case of Tanner crab larvae (Section 4.0).

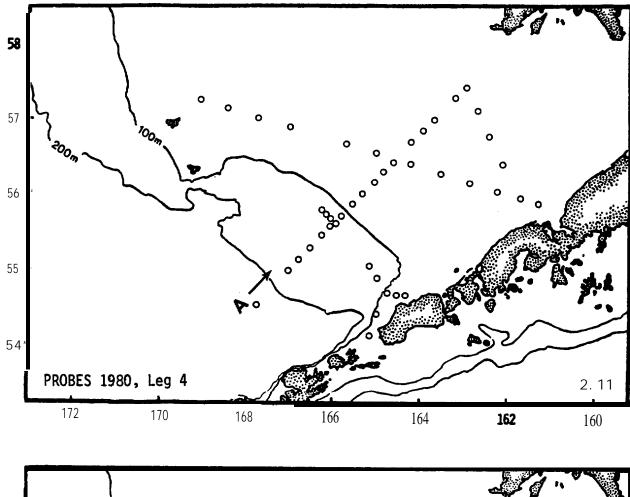

- Figs. 2.1 2.18. Station locations for **zooplankton** samples examined for **decapod** larvae and reported here. Sponsoring agency/ programs, year, cruise number, and dates as follows (NOAA 1976 through 1979 = OCSEAP program; NOAA 1981 = NMFS program):
 - 2.1. NOAA 1976. Cruise MF-76A, 26 April 31 May. Three stations west of 172*W not shown.
 - 2.2. NOAA 1977. Cruise RP-4-MF-77B, 16-30 April.
 - 2.3. NOAA 1977. Cruise **RP-4-MF-77B**, I-17 May.
 - 2.4. NOAA 1978. Cruise MF 78-1, 11 February 16 March. Six stations west of **172°W** not shown.
 - 2.5. NOAA 1979. Crui se 3 MF-79, 1-27 June.
 - 2.6. **PROBES** 1978. Cruise TT **131** (University of Washington), Leg 1 11-28 April.
 - 2.7. PROBES 1978. Cruise **TT** 131 (University of Washington), Leg 3 **27 May -** 11 June.
 - 2.8. PROBES 1978. Cruise **TT 131** (University of Washington), Leg 4 17-29 June.
 - 2.9. PROBES 1980. Cruise TT 149 (University of Washington), Leg 2 6-21 April.
 - 2.10. **PROBES** 1980. Cruise TT 149 (University of Washington), Leg 3 27 April **18 May.**
 - 2.11. PROBES 1980. Cruise TT 149 (University of Washington), Leg4 22 May 8 June. PROBES A-line shown.
 - **2.12.** PROBES 1980. Cruise AX 9 (University **of** Alaska) Samples collected 4 and 5 October.
 - 2.13. PROBES 1981. Cruise TT ?59, Leg 1, 17-26 April
 - 2.14. PROBES 1981. Cruise TT 159, Leg 2, 2-25 May
 - 2.15. PROBES 1981. Cruise TT 159, Leg 3, 31 May 20 June
 - 2.16. PROBES 1981. Crui se TT 159, Leg 4, 27 June 19 July
 - 2.17. NOAA 1981A. Cruise RP4-D1-81A, 14-31 May
 - 2.18. NOAA 1981B. Cruise AL/811, 24 May 20 July

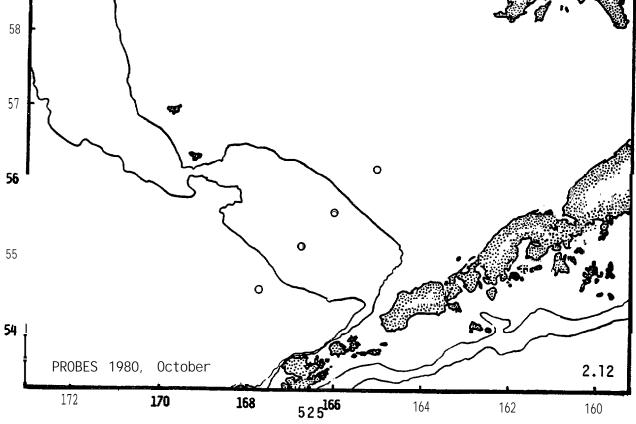


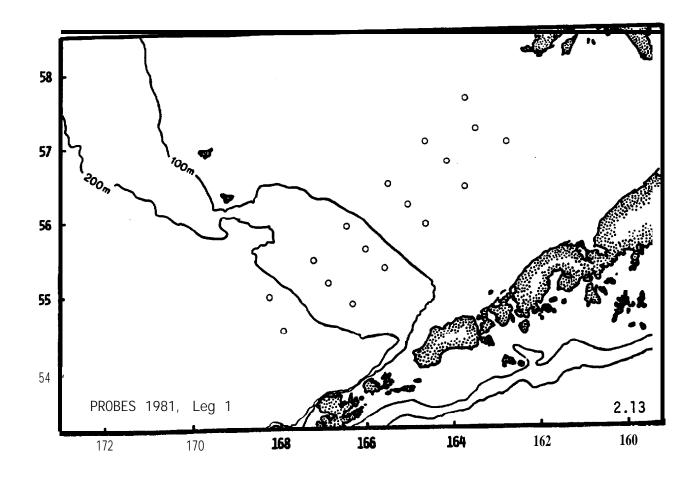


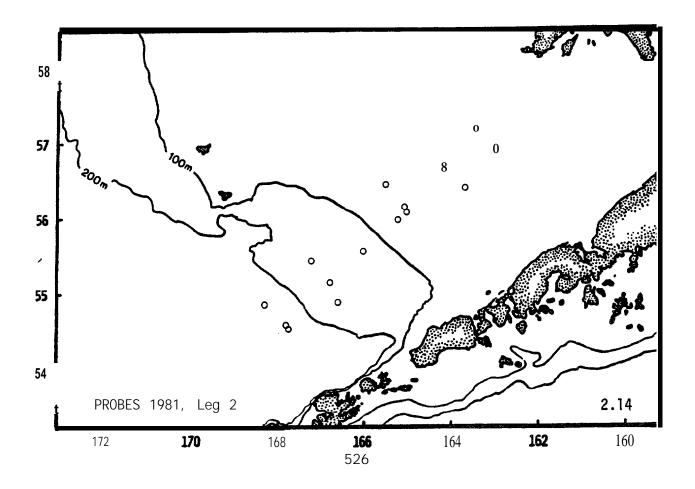


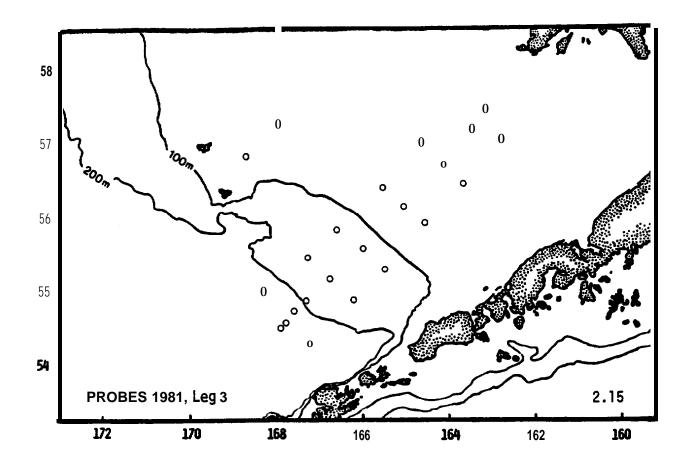


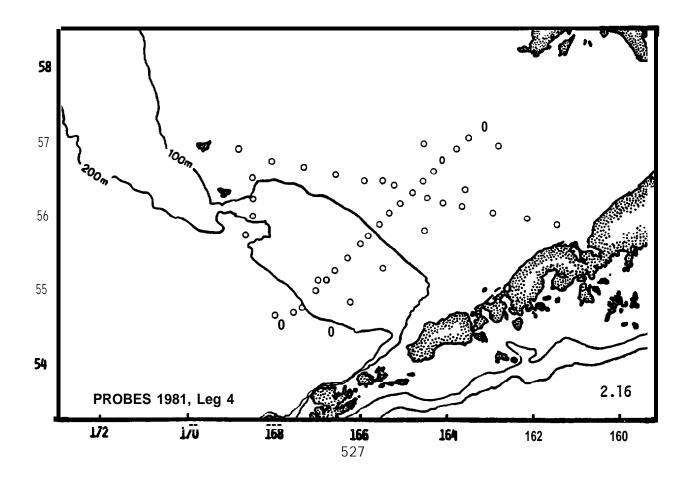


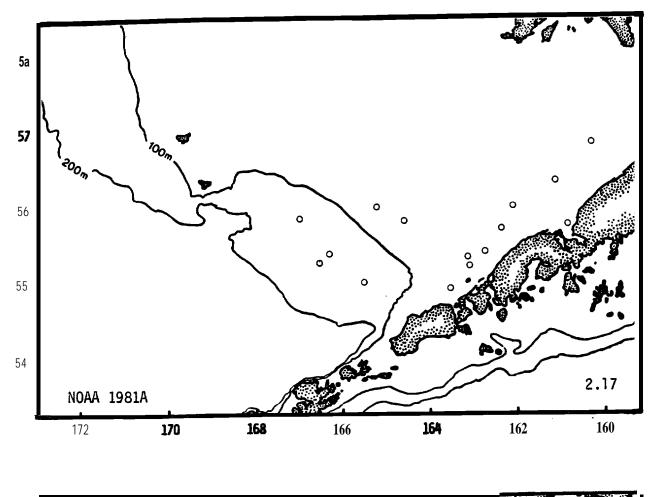


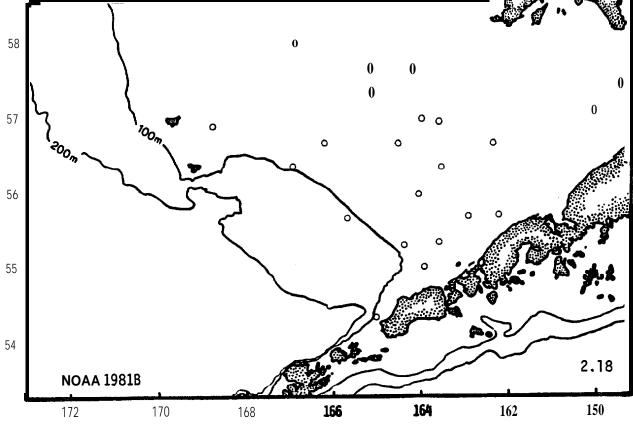












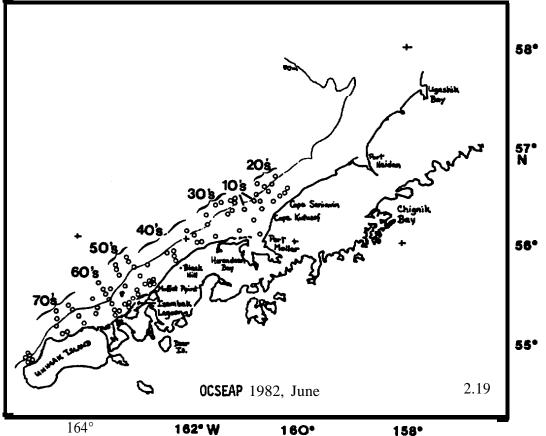


Figure 2.19

162°W 160° 158° Station locations of June 1982 nearshore North Aleutian Shelf samples; OCSEAP Mille<u>r Freeman Crui</u>se. Units of ten indicate station sequence in time and space of zooplankton samples (see Section 4.0).

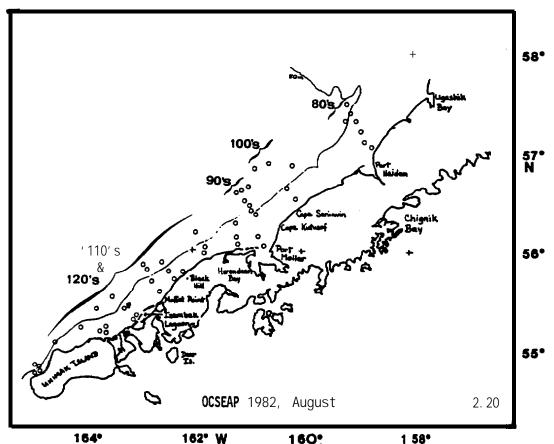


Figure 2.20 Station locations Aug. 3-10, 1982 nearshore North Aleutian Shelf samples; OCSEAP Miller Freeman. Units of ten show station sequence in time and space.

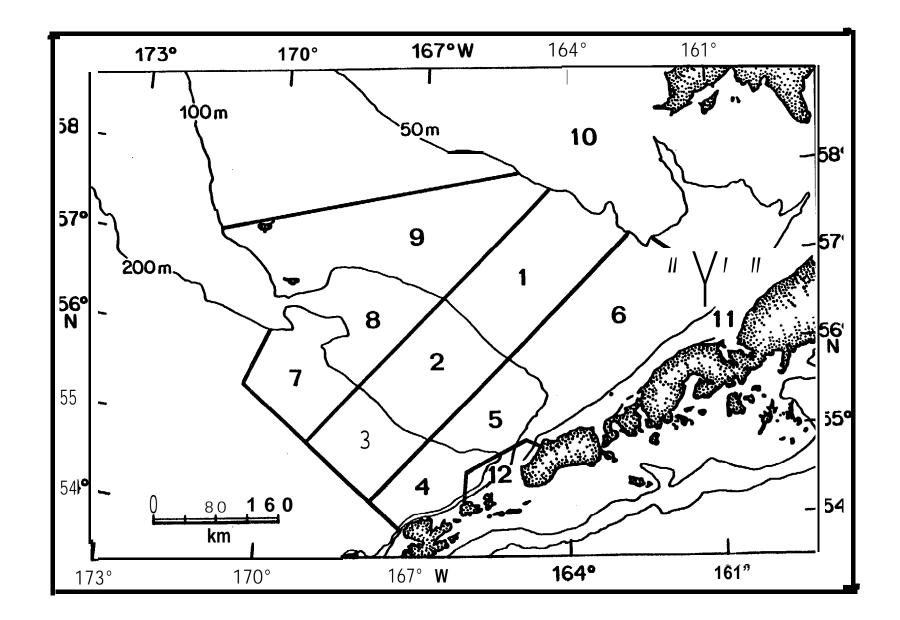


Figure 2.21 Locations and boundaries of strata used to contrast spatial distribution of decapod larvae in the S.E. Bering Sea. Strata 7, 3, and 4 encompass the shelfbreak/Oceanic domain; strata 8, 2, and 5 the Outer Shelf domain = the St. George Basin; strata 9, 1, and 6 the Middle Shelf domain; and stratum 11 the nearshore North Aleutian Shelf region,

3. O DISTRIBUTION AND ABUNDANCE OF KING CRAB LARVAE, <u>PARALITHODES</u> <u>CAMTSCHATICA</u>, AND <u>P</u>. <u>PLATYPUS</u>, IN THE SOUTHEASTERN BERING SEA David A. Armstrong

3.1 Life History and General Biology: Paralithodes camtschatica

3.1.1 Distribution and Abundance

The Bering Sea shelf including Bristol Bay has been characterized as three principal water domains, the coastal, middle shelf, and outer shelf domain that extend to about the 50 m, 100 m, and 200 m **isobaths**, respectively (Kinder and Schumacher 1981; Fig. 3.1). Information on distribution and abundance of red king crab in these shelf areas is more **comprehensive** than for any other **decapod** fished by U.S. fleets (<u>see</u> Section 4.0 for discussion of Tanner crab). For more than 12 years, the National Marine Fisheries Service has conducted **broadscaletrawi** surveys in the southeastern Bering Sea (Fig. 3.2), and Otto (1981a) **provi**des a history of information gathered by Japanese and Russian fleets during their participation in the fishery. A series of **annual** reports by the International North Pacific Fisheries **Commission (INPFC)** since the late 1950's provides a continuum of detailed data on king and Tanner crab stocks in the southeastern Bering Sea as well as in other locations fished by member nations.

Red king crab are widely distributed from the Sea of Japan in the western Pacific through the **Kuril** Islands to the Kamchatka Peninsula, across to the southeastern Bering Sea and as far south as British Columbia in the eastern Pacific (Marukawa 1933; Vinogradov 1946; Weber 1967). The species is rather uncommon north of latitude 57°N and is

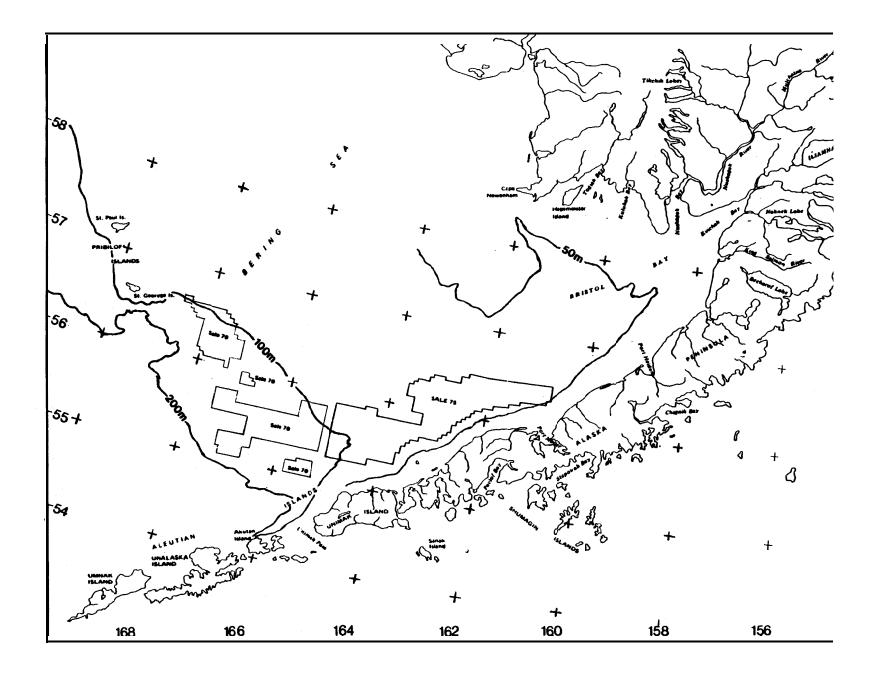


Figure 3.1. Location of proposed lease sale areas for the North Aleutian Shelf (Sale 75) and St. George Basin (Sale 70). Frontal systems marked by the 50m, 100m and 200m isobaths are also shown (after Kinder and Schumacher 1981a).

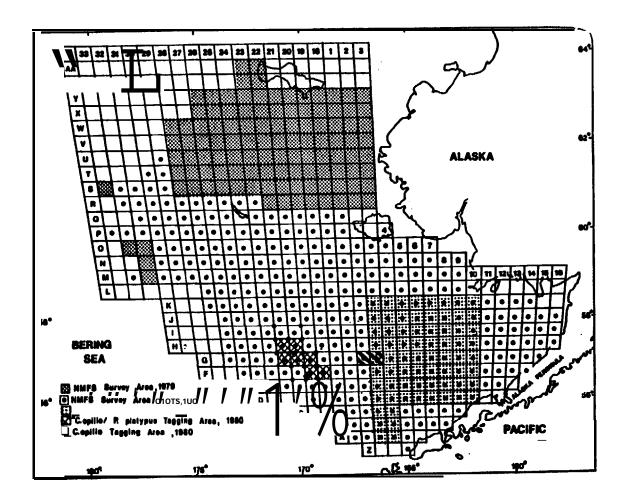


Fig. 3.2. NMFS eastern Bering Sea crab survey areas in 1979 and 1980. From Otto, Macintosh, Armetta and **Wi** 1 son (1980). These survey grids are typical of years since 1970 through 1982.

characterized as part of the subarctic-boreal faunistic system (Neyman 1963, 1969). Further, Russian scientists rarely find it in large numhers north of the Anadyr faunistic barrier (a line from the Anadyr River to st. Matthew Island), in marked contrast to the blue king crab which ranges farther north and seems to inhabit colder water (Slizkin 1973).

In the southeastern Bering Sea where a major fishery is centered, red king crab are distributed somewhat in accord with sex and **life**history stage. In general, female and small male king crabs are found closer to shore and somewhat east of large males (Otto, Macintosh, Armetta and Wilson 1980; Otto **1981b;** Figs. 3. 3 and 3. 4; small crabs are classified as males <110 mm carapace length and females <89 mm). Very young juvenile red king crabs of 0+ to 4+ age classes are rarely caught in nets throughout the survey area of Fig. 3.2, even though mesh used **will** retain animals as small as 30 mm. The implication is that juvenile crabs up to 60 mm in carapace length (about 3 years old; Weber 1967) are absent from the survey area and likely very nearshore along the North Aleutian Shelf or upper Bristol Bay.

Abundance **estimates** have ffluctuated between years in the last decade and cycles of high to low abundance may occur in this species' populations as observed for Dungeness crab, <u>Cancer magister</u> (Botsford and Wickham 1978). Landings from the Kodiak king crab fishery increased to 94×10^6 lb by 1965, fell to 10 x 106 lb by 1971, and have remained around 14×106 lb to the present (NOAA 1981); poor recruitment is cited as the cause. In the southeastern Bering Sea, crabs were in moderate abundance in 1953, increased in abundance to 1959, fell between 1964-70,

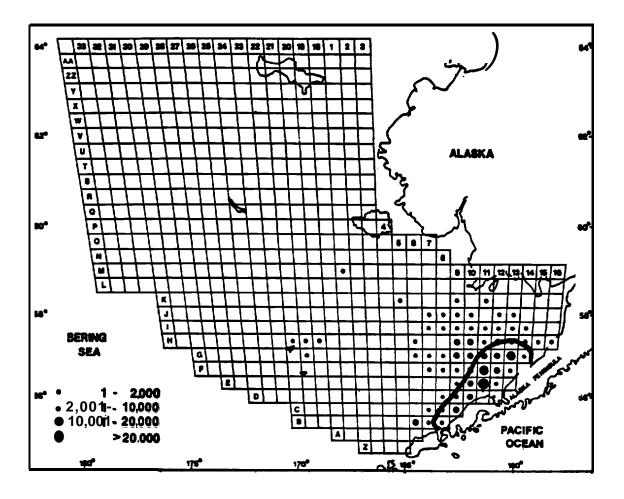


Fig. 3.3. Distribution of female red king crab (P_. <u>camtschatica</u>) greater than 89 mm carapace length, in the eastern Bering Sea during May-July, 1980. From Otto, Macintosh, Armetta and Wilson (1981).

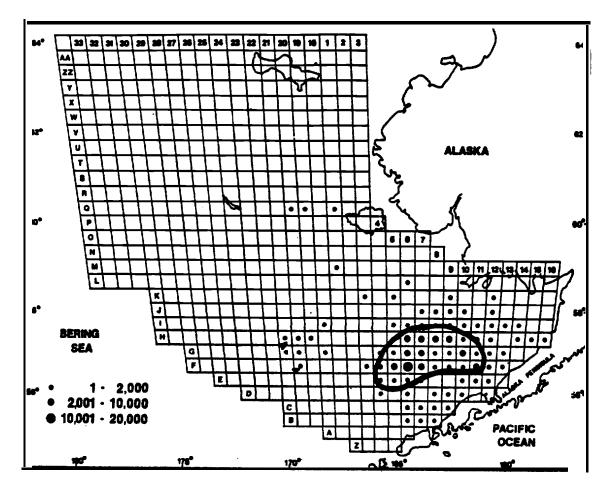


Fig. 3.4. Distribution of male red king crab (P. <u>camtschatica</u>) greater than 134 mm carapace length, in the eastern Bering Sea during May-July, 1980. From Otto, Macintosh, Armetta and Wilson (1981).

and then increased through 1979 (Utto 1981a). However, abundance estimates for total male king crab in this area have declined from 181 million animals in 1977 to 129 million in 1982 (Otto et al. 1982). Most importantly, estimates of **sublegal males** one to tw years from entering the fishery have declined nearly threefold from 64 to 17 million, leading to predictions of several consecutive years of poor fisheries. Abundance estimates of legal male **crabs** dropped from over **45** million animals in 1979 to about 5 million in late 1982 (Fig. 3.5; Otto et al. 1982; M. Hayes, NMFS, Seattle, pers. communication), which has resulted in severe reductions in commercial landings from **130** million lb to less than 4 million in the same period (see Section 1.0).

Change in abundance of king crab populations is an important biological factor to consider later in discussing oil impacts. Cycles of abundance suggest that year class failure or success may be based on survival of critical life-history stages such as larvae or young juveniles, probably in nearsnore habitats. Annual instantaneous mortality rates of Juvenile and sublegal, sexually mature crab are estimated to be low, about .10 until entering the fishery (Balsiger 1976; Reeves and Marasco 1980). Consequently the maynitude of a future fisheries cohort is largely determined by the reproductive success and survival of larvae and young-of-the-year (0+ crab) in nursery areas. Vagaries of temperature, food supply, and predator populations are factors affecting survival, now the question of potential oil perturbations could add to natural pressures on larval and juvenile populations and further suppress stocks.

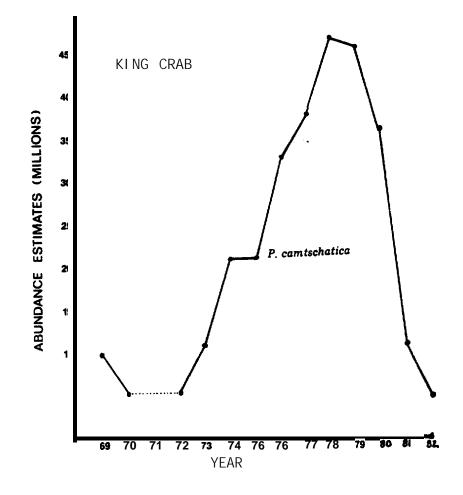


Figure 3.5. Abundance estimates of legal male red king crab based on annual NMFS groundfish surveys (from Otto 1981; Otto et al 1982).

3.1.2 Reproduction

In late winter and early spring adult males apparently migrate from deeper, offshore areas to join females in shallow water for breeding around Kodiak Island (Powell et al. 1974; Weber 1967; NOAA 1981; it is not known if such migratory behavior exists in the southeastern Bering Eggs carried from the previous year hatch about April 1-20 Sea). (Haynes 1974; Weber 1967) and females soon undergo physiological changes leading to molt. By pheromone attraction (NOAA 1981) sexually mature males locate preecdysial females, embrace them for as long as 16 days, and mate just after the female molts (Powell et al. 1974). The nearshore, shallow water habitat is apparently selected in part for warmer water temperatures (and perhaps greater food supplies). The average temperature inhabited by sexually mature males and females is 1.5° and 4"C, respective y; (NOAA 1981). Stinson (1975) correlated male and female abundance with temperature and, from NMFS survey data through 1975, located most sexually mature females inside a 4°C isotherm nearshore off **Unimak** Island and directly in front of Port Moller. Weber (1967) summarized data on temperature-related hatchout time and development, noting both regional and annual differences in larval appearance and rate of development attributable to temperature variations, Larval development time can double with a decrease of temperature from 10° to 5°C (Kurata 1960, 1961), and an average of 460 degree days (= cumulative average alai'ly temperature from hatch of egg to metamorphose is of megalops) is required for the species (Kurata 1961).

After molting a female must be located and mated within 5 days for viable eggs to be produced (possible impact of oil on **chemosensory**

pheromone cues could impair males' search for females). For 97% of all mating pairs males are larger than females (Powell et al. 1974); insemination of larger females by smaller males results in reduced clutch size (egg number). Any combination of events through natural and fishery mortality and pollution that substantially reduce numbers of large males at some point in time could threaten the breeding potential of the species. Reeves and Marasco (1980) estimated that a male-female weight ratio of 1.7 is required for 100% copulation - this estimate based, in part, on behavioral observation by Powell et al. (974). Below this value, decreasingly smaller males will have less success breeding mature This relationship portends the observations of the 1982 NMFS females. survey cruise that found an unusually large number of barren female crabs (had not extruded eyys) in a year of very low male abundance (depressed fishery). Whether there is or is not a relationship between spawners and eventual recruits for this species is unclear (Reeves and Marasco 1980).

Females carry egys for up to eleven months as embryos develop through naupliar stayes to prezoea (Marukawa 1933). This protracted developments'l time makes egys (during early cleavage) and later embryos susceptible to long-term benthic oil pollution, and will be considered in scenarios of oil mishaps and possible perturbations to larval populations (see Section 8.0). Again, gravid king crab females are aggregated nearshore in relatively shallow water along the North Aleutian Shelf but such distribution is poorly studied to date.

3.1.3 Larval Development

Larvae are hatched nearshore (Haynes 1974), molt through four zoeal stages about every three weeks (Marukawa 1933), spend two-four weeks as megalopae and then metamorphose to first instars about late July to August (Kurata 1960; Weber 1967). Eggs normally begin to hatch in early April (Sato 1958; INPFC 1960, 1963, 1965; Haynes 1974), although female king crab may vary in time of hatch between widely separated populations from Unimak Island to Port Moller. Korolev (1968) summarized data collected by Soviet scientists for June, 1959 along the North Aleutian Shelf. Over 95% of the female populations between 161°25′ to 164″10′W had spawned and carried new egg masses (purple to brown color) in June, while 90% of females east of 161°25′W (Port Moller and east) carried empty egg cases indicative of recent hatch and only 10% carried new purple egg masses.

Interannual timing of the onset of hatch and seasonal occurrence of pelagic larvae can vary by as much as a month. Japanese data (INPFC 1963, 1965) show that nearly 100% of gravid females sampled during 1960 carried "eyed" eggs (fully developed zoeae, hatch immiment) until May 10 and 50% carried empty egg cases by May 20-30. In 1963, eyed eggs were carried until April 20 and 50% had hatched by April 30. Such changes in the general timing of larval hatch are important for predictions of potential oil impact to pelagic larvae of the species.

Horizontal transport of king crab larvae by currents is thought to move them significant distances from the origin of hatch, and implies to some authors that recruitment of juveniles to a given area might depend

on larvae hatched elsewhere, including areas south of the Alaska Peninsula (Hebard 1959: Havnes 1974). Hebard (1959) calculated that larvae hatched at Amak Island could be transported over 60 miles to the northeast and metamorphose at Port Moller (net current speed of 0.04 knot moving northeasterly along the North Aleutian Shelf; Kinder and Schumacher 1981, show a current speed of 2-5 cm/sec in that region). He further discussed possible transport of larvae from south of the Peninsula through **Unimak** and False Pass. Haynes (1974) adds credence to this supposition by showing a northerly dispersion of king crab larvae off the southwest tips of **Unimak** Island, and a northeast shift in areas of larval abundance from Black Hills into Bristol Bay (May-July, 1969 and 1970; this pattern may in part be due to inadequate spatial sampling). Transport of larvae by currents is also important to consider in predicting oil impacts. Oil reaching relatively unproductive areas of the North Aleutian Shelf (low female abundance, few larvae hatched) could still be lethal if larvae are transported through such contaminated Alternatively, **oil** and larvae could be transported together in a areas. water mass resulting in relatively long-term exposure of sensitive zoeal stages to hydrocarbons.

Temperature is considered one of the most crucial physical factors affecting survival and growth of larvae, and **Kurata** (1960, 1961) calculated that 460 degree-days were required to progress from hatch to metamorphosis. Lethal temperatures are those greater than 15°C or **lower** than 0.5-1.8°C (**Kurata** 1960). He found greatest survival of **zoeae** between 5-10"C and formulated an equation that relates developmental time to temperature. Time from egg-hatch to molt of stage I(S1) to stage II

542

(S11) varies from 24 days at 2°C to 9 days at 8°C (Kurata 1960). Severe climatological changes could account for large fluctuations in survival of a year-class and later recruitment to the fishery. Niebauer (1981) shows the limit of ice in the southeastern Bering Sea (as a relative measure of water temperature) was several hundred kilometers farther south in 1976 than 1979 and actually extended to the Alaskan Peninsula near Black Hills. Both 1975 and 1976 were severely cold years and poor survival of larvae and juveniles then could account for low abundance of sublegal males 5-6 years 1 ater in 1981-1982.

Growth rates of **0+** and **older** juveniles have been studied and animals reach mean carapace lengths of about **11 mm**, 35 mm, 60 inn, and 80 mm at 1, 2, 3, and 4 years, respectively (Powell and Nickerson 1965; Weber 1967). Growth models for the species have been developed by Weber (1967), McCaughran and Powell (1977) and Reeves and Marasco (1980). Young-of-the-year molt from 8 (Powell **1967)** to 11 (Weber 1967) times in the first year; such high frequency molting could make them particularly susceptible to nearshore oil perturbations since **ecdysis** is the time of greatest sensitivity to **toxicant** stress (Armstrong et al. 1976; Karinen 1981).

Juvenile crabs in **2+** to 3+ age **classes** (entering their third through fourth year) form large aggregates called "pods" in the Gulf of **Alaska** (**Powel** 1 and **Nickerson** 1965). Podding behavior is probably based on **chemosensory** cues (subject to **oil** effects) and is thought to serve as protection from predators. It is not known if the same behavior occurs among nearshore juveniles of the North Aleutian **Shelf.** If so, such

aggregations could influence susceptibility to oil since these "patches" of crab are fortuitous in space relative to **oil** mishaps, but if juxtaposed could affect large numbers of crabs in small areas.

Red king crab are sexually mature at about 95-100 mm carapace length for males (Weber 1967, NOAA 1981), and 85-90 mm for females in the Bering Sea (Weber 1967) or 93-122 mm in the Gulf of Alaska (Powell and Nickerson 1965). Animals are 5-6 years old at sexual maturity and males are therefore capable of breeding 2-3 years prior to entering the fishery at about eight years old.

3.2 Life History and General Biology: Paralithodes platypus

3.2.1 Distribution and Abundance

This is the most insular species of crab in the southeastern Bering Sea (Fig. 3.6), with major populations (and fisheries) centered at the **Pribilof** and St. Matthew Islands (Otto et al. 1982), and other populations at Kodiak Island in the Gulf of Alaska (Somerton and Macintosh 1982). There is relative constancy in the location of **benthic** juveniles and adults around **the Pribilof** Islands in recent years (Otto et al. 1980, 1981, 1982), where greatest abundance is to the east and north of St. Paul Island, with few animals caught west near the shelf break or about St. George Island (Fig. 3.7a and b). This pattern of distribution is generally accurate for of pelagic larvae, although occurrence between and to the east of **St.** Paul and St. George Islands has been reported by Armstrong et al. (1981). The **complete** absence of blue king crab over most of the southeastern Bering Sea Shelf (where red king crab, <u>P</u>. **camtschatica** are abundant) suggests either inextricable dependence on

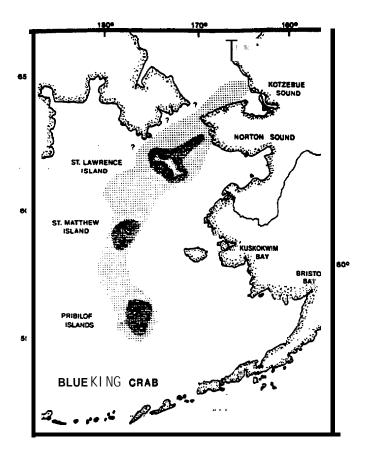


Fig. 3.6, Distribution of blue king crab (Paralithodes platypus) in the eastern Bering Sea. Darkly shaded portions indicate areas of consistent abundance (Otto, 1981).

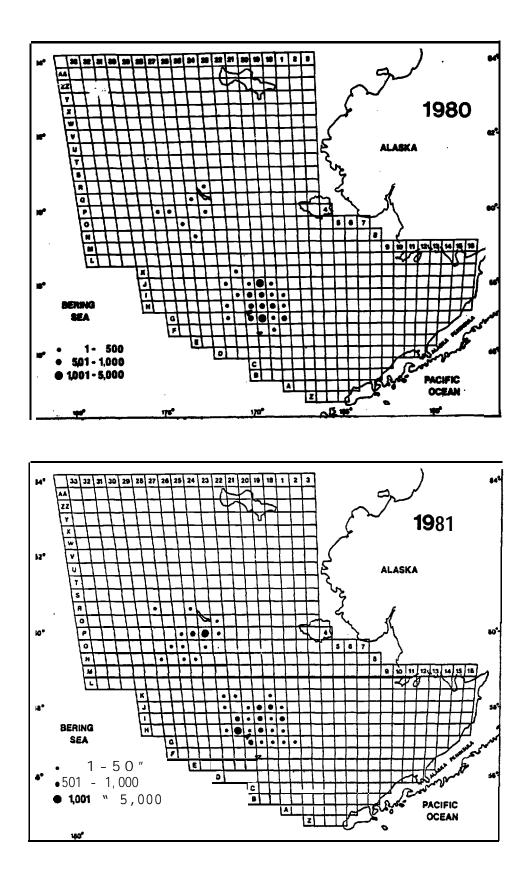


Fig. 3.7a. Distribution and relative abundance (number per square mile) of male blue king crab (<u>P. platypus</u>) greater than 134 mm carapace length in 1980 and 1981 (from Otto, Macintosh, Armetta, and Wilson 1980; Otto et **al.** 1981).

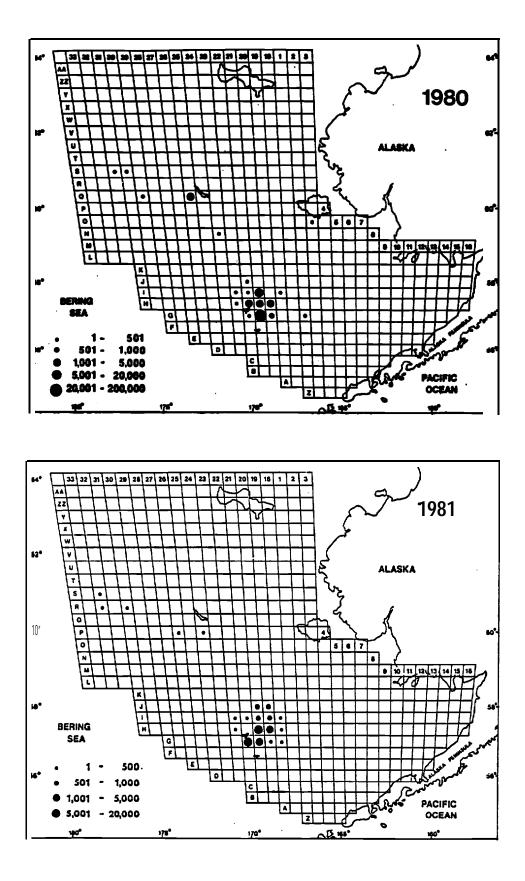


Fig. 3.7b. Distribution and relative abundance (numbers per square mile) of female blue king crab (P. platypus) greater than 89 mm carapace length, in the eastern Bering Sea in 1980 and 1981 (from Otto et al. 1980a, 1981).

the **benthic** habitat associated with the islands (e.g., predator refuge), and/or restriction by virtue of some sort of competitive, **agonistic** interaction with other species. Confinement of the species to a small area about St. Paul **Island** makes them extremely vulnerable to oil catastrophes originating in the northern St. George Basin Lease sale area (Fig. 3.8).

On a broader scale, blue king crab tend to be more northerly in distribution than red king on both sides of the Pacific. **Slizkin** (1973) found high abundance of adults off Cape **Navarin** and reported juveniles even farther north to Cape **Cukotsky** (64°N latitude). He concluded that blue king crab are **more** tolerant of colder temperatures (1-2°C) than are red king crab, and that this differential partially explains species separation.

The depth range of main aggregations of blue king crab is about 45-75 m on a mud-sand bottom, although gravel to rocky substrate is found immediately adjacent to both **Pribilof** 1s1 **ands.** Otto et al . (1982) note that estimates of female and juvenile blue king crab around both the **Pribilof** and St. Matthews islands are low because of some distribution over rocky, **untrawlable** bottom. These observations strongly suggest that spawning and successful recruitment of first instar juveniles may depend on availability of nearshore, rocky-cobble substrate for protection of both females and small juveniles. Later, as older and larger animals, populations disperse farther offshore although still in a small area on the scale of the southeastern Bering Sea. Dependence of early **benthic** juveniles on refuge substrate is substantiated by

ų,

Fig. 3.8. Index map for proposed OCS Lease Sale #70, St. George Basin.

conclusions of **Slizkin** (1973) who reported finding no small juveniles over expansive areas of sand/silt bottom. Rather, these stages are abundant in areas of cobble and dense sponge, hydroid and barnacle assemblages.

Distribution and abundance of larval stages is poorly studied and only a few observations about the **Pribilofs** are available (Armstrong et al. 1981). Larval densities of blue king crab seem to be an order of magnitude less than high values recorded for red king crab, and larvae have only been found to the east of the **Pribilofs**.

Estimates of **benthic** blue king abundance made by NMFS indicate less fluctuation than found for red king crab, but still populations have decreased in recent years (Otto et al. 1981, 1982). Legal males (>134 mm) have declined from an estimated abundance of 9.4 million in 1977 to 2.2 million in 1982, and sexually mature females were calculated to be 35.5 million animals in 1978 and 8.6 million in 1982. Otto et al. (1982) conclude that stocks will remain low for several years.

3.2.2 General Biology

There is relatively little biological information published on blue king crab although Somerton and Macintosh (1982, 1983a, **1983b**) have recently summarized work from the Bering Sea and Kodiak Island. Animals are thought to grow at a rate **comparable** to red king crab and reach sexual maturity at about 96 mm and 108 mm carapace length for females and males, respectively, when they are about 6 years old (Powell and **Nickerson** 1965; **Somerton** and Macintosh 1982; **Weber** 1967). Fecundity of females is a function of body size and ranges **from** 50,000-200,000 eggs

per female. Larvae hatch around the Pribilof Islands about mid-April based on limited data of Armstrong et al. (1981), and development rates may be similar to those of red king crab larvae. By June most larvae are third and fourth stage **zoeae**, and in July 1981 Armstrong (unpublished data) caught only **megalops** larvae off St. George Island. This implies that metamorphosis to **benthic** juvenile could occur in early to mid-August.

An intriguing question concerning reproduction of blue king crab is whether egg development may require more than one year thus putting individual reproductive effort on a biennial schedule. Sasakawa (1973, 1975) suggested that a high incidence of sexually mature, barren female blue king crab in the western Bering Sea was evidence of a 2-year cycle; 19 months to incubate eggs and 5 months barren. **Somerton** and Macintosh (1982) disputed this hypothesis based on their study of female crabs in Olga Bay, Kodiak Island. They observed males grasping **ovigerous** females (prelude to copulation) as the mature egg masses were hatching, and from histological evidence of ovarian maturation they concluded that individual females may reproduce in sequential years. However, **a** high percentage **of** mature females within the Olga Bay population were barren **through**out the year (38%-52%), dramatizing a greatly reduced reproductive potential compared to red king crab. If such impairment of population fecundity exists about the Pribilof Islands, then oil catastrophes could greatly exacerbate reproductive success in a year of low mature female abundance and a high incidence of barren animals,

A further observation germane **to** the female reproductive **cycle at** the **Pribilof** Islands **is** that egg hatching in **Ulga Bay** occurred in b0th January and March (Somerton and Macintosh 1982). Allowing for a **latitudinal** delay for reproductive events in the **Pribilofs** (e.g., **Dungeness** crab in California hatch **eggs** about **1.5** months earlier than populations in Washington), it may be that a portion of the females hatch eggs in February or **early** March, others in **April** and May. This notion may reflect tire"**ing** differences between **primiparous** and multiparous **females**.

3.3 The Fishery

Red king crab until recently have been the most important crab fishery of the United States in both dollars and pounds landed. In 1980 king crab landings were 185 x 10°lbs and even exceeded blue crab (<u>Callinectes sapidus</u>) landings of the east coast (NUAA 1981). In 1979 to 1980 the value of king crabs landed was about \$168.7 million or 58% of total U.S. ex-vessel value of crabs (Otto, Macintosh, Armetta and Wilson 1980; Eaton 1980; Otto 1981b; NOAA 1981) (Fig. 3.8). Of the total Alaska statewide king crab landings in 1978-79 and 1979-80, over 75% came from catches in the southeastern Bering *Sea* (117 x 10° and 130 x 10^6 lbs, respectively; NPFMC 1980; Pacific Packers Report 1981). Red king crab commercial catches (Fig. 3.9) come largely from the middle shelf between 50 and 100 m, and **50** to more than 200 km offshore of the **North** Aleutian Shelf (Otto 1981a, b).

King crab are the largest and oldest crab caught by U. S. fisheries. Males are 50% recruited to the pot fishery at 8 years of age and fully recruited **by 9 years (McCaughran** and Powell 1977; Reeves and

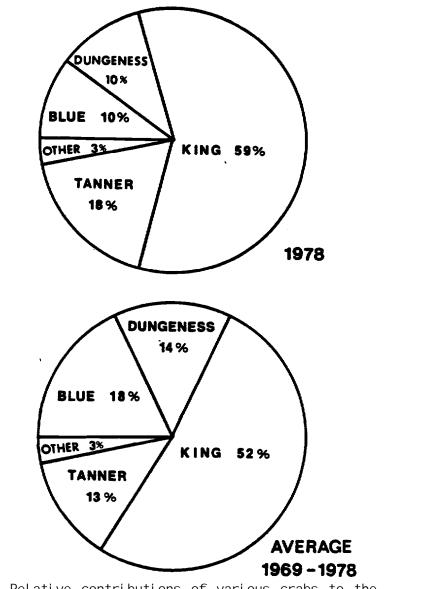


Fig. 3.9. Relative contributions of various crabs to the value of United States crab Landings. From Otto (1981a).

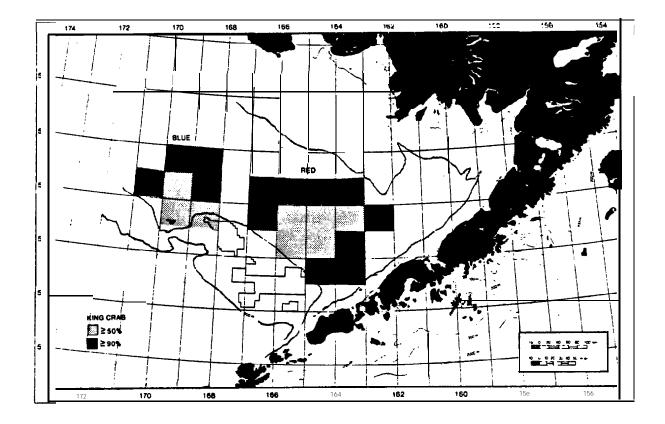


Fig. 3,10. Major king crab catch areas relative to St. George Basin lease area (Otto, 1981a).

Marasco 1980). Legal size at recruitment is about 135 mm carapace length and 165 mm (6 1/2") width and mean **annual** weight per **animal** fluctuates from 6.4 to 7.5 lbs (Eaton 1980; NOAA 1981). **Annual** fishing mortality is managed to approximate 40% (NOAA **1981**) but the percent of the fishery constituted by new recruits has varied from 67% in 1977 to 47% in 1979, indicating **that** differential natural mortality rates can significantly affect the importance of any single year-class to the fishery (Eaton 1980). Oil pollution that adversely affects a significant portion of larvae in any year-class could eventually impact the fishery despite both longevity of the species and commercial stock comprised of two to three year-classes.

Most of the U.S. Bering Sea fishery for blue king crab is centered off St. Paul (Fig .3.6) and St. Matthew Islands. Landings have increased **from** about 2.4 million lb in **1975** to 10.8 million lb in 1980 (Otto 1981; Pacific Packers Report 1981). In 1981 landings from the **Pribilof** district decreased **20%** and dropped further in 1982 **(INPFC 1982;** Otto et al. 1982), reflecting the reduction predicted by the NMFS trawl survey. It is significant that for the first time in the fisheries, landings of blue king crab surpassed those for red king in the southeastern Bering Sea during 1982 (R. Otto, NMFS Kodiak, pers. communication, 1-5-83).

5.55

3.4 Results

3.4.1 Distribution and Abundance

Analyses of over 1000 zooplankton samples collected between 1976 and 1981 clearly show that the overall distributions of both red king (P. <u>camtschatica</u>) and blue king crab (<u>P. platypus</u>) in the southeastern Bering Sea are restricted to discrete **areas** along the NAS into Bristol Bay and east of the **Pribilof** Islands, respectively" (Fig. 3.11). As stressed in the annual report (Armstrong et al. 1981), the most striking feature of this pattern is the associated absence of larvae over most of the St. George Basin and the **middle** shelf between 50 m and 100 m. Larvae are only found in the very southern portion of the St. George Basin, north of **Unimak** Pass, as part of a nearshore band that continues to the northeast along the **50** m **isobath**.

Due to such restricted distribution of king crab larvae, use of strata delineated in Figure 2.21 to contrast temporal and spatial distribution and abundance did not work well, as it did for other decapod groups (see sections 5.0, 6.0., and 7.0). Not only was the spatial coverage of interannual sampling quite variable, but only portions of certain strata ever contained larvae. Therefore, to include all stations of a stratum in calculations of mean densities would always add numerous zeros to the observations. Areas of greatest larval king crab occurrence relative to strata are shown in Figure 3.12. Blue king crab larvae occurred in the western half of stratum 9 but not in any other strata. The majority of high density red king crab stations fell in southern half of stratum 6, with a few in stratum

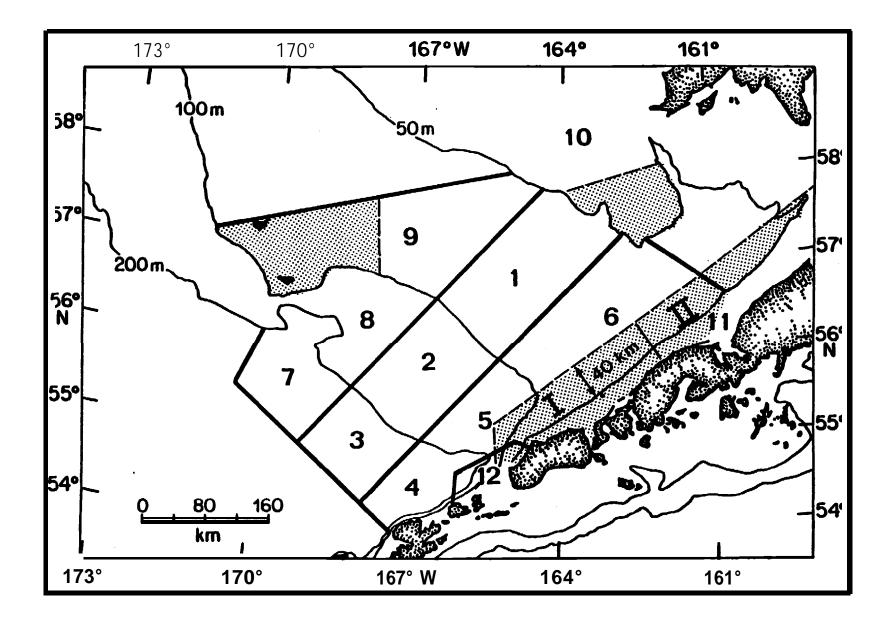


Fig. 3.12. A modification of Fig. 2.21 that **shows** areas of greatest larval king crab abundance relative to strata 1 to 12. Only areas nearshore along the North Aleutian Shelf were sampled with enough frequency to **allow** spatial and interannual comparisons. Two new strata I and II are shown that **extend** from **shore** to about **40** km seaward **of** the 50 m **isobath**.

55 ₩ 11 and 12 (Figs. 3.11, 3.12). Too few samples were taken in strata 9 and 10 on which to base any sort of interannual comparison of larval abundance. Only the area along the NAS was sampled with enough frequency to **compare** certain years and, to a lesser extent, areas. Two new strata, I and II, are shown in Figure 3.12 that divide the NAS region into an east and west sector at 162° W near Black Hills. These strata more realistically encompass major areas of king crab hatch, and thereby permit limited spatial and temporal comparisons of distribution **and** abundance.

Red King Crab: Distribution of red king crab larvae based on data of this project (1976-1981) is in accord with results of a 1970-1971 survey conducted by Haynes (1974) who also found larvae to be relatively nearshore along the NAS into Bristol Bay. Unfortunately, the survey patterns of most years between 1976 and 1981 were largely focused offshore over the outer and middle shelves and, as a consequence, relatively few samples were taken over the apparent spawning habitat of <u>P</u>. camtschatica. Figure 3.11 shows that only about 13 samples over six years were collected near the 50 m isobath from Unimak Island to Port Moller, and only three fell shoreward of this depth. In the years of best spatial coverage, 11% to 23% of samples sorted had king crab larvae (Table 3.1). However, this percentage range is even less in the case of red king crab since a number of samples were positive for blue king crab near the **Pribilof** Islands. Further, about half of all positive stations had larval densities of less than 500/100 m² (Table 3.1) which was the lowest numerical category used to quantify

density. Such low abundance reiterates the fact that many positive stations were still collected in marginal areas probably off the main spawning grounds.

The nighest densities of P. camtshatica larvae occurred from western Unimak Island to Port Moller. Densities that ranged an order of magnitude from 5,000 - 50,000 larvae/100 m2were typical of this area. The highest densities recorded were 67,000 larvae/100 m2 north of Unimak Island in May 1977, and 114,000/100 m² just northwest of the 50 m isobath off Port Moller in May 1980 (Both values shown by star symbols in Fig. 3.11). The 50 m isobath is about 22-33 km (12-18 NM) offshore of the NAS coast from Unimak Island to east of Port Moller (about Cape Seviavin; Fig. 3.11), and marks the snoreward limit of zooplankton collections in most years. Virtually all high density red king larval stations occurred along this depth contour or within a 4(1 km band to seaward (Fig. 3.11, 3.12). Occasional collections made from the PROBES A line (Fig. 2.11) toward Port Moller revealed larval densities of a few hundred to 3000/100 m2 out to the 50 m isobath at about 57°30'N, 162°30'1/. Collections made from NUAA ships in 1981 also showed fairly high densities of 2000-4000 larval/1011 m² up to Port Heiden in Bristol Bay (Fig. 3.11). However, these few stations north and east of Port Moller were the only available since 1976, so the extent and abundance of larvae east of Cape Seniavin into Bristol Bay remains unknown; a substantial informational gap in the picture of larval biology compiled to date.

Because of the poor spatial coverage of zooplankton stations between 1976-1981 in regards to king crab larvae, opportunistic collections were made in June and August, 1982, nearshore along the NAS from Unimak Island to Port Heiden (Figs. 2.19, 2.20). The primary objectives were to study nearshore distribution of arvae and gather information on growth rates. Samples were collected in water as shallow as 16 m within 3 km of shore, out to about 70 m depth some 40-50 km offshore. Collections were first made betwen June 14-28, which repeats a time frame typical of most previous years analyzed in this study, and again from August 3-10 which is the latest seasonal collection from king crab spawning grounds.

Larval red king crab in June, 1982, were most abundant from Amak Island (off Izembek Lagoon) east to the limit of sampling off Cape Seniavin (Fig. 3.13). Again as in previous years, samples were not collected througnout Bristol Bay and so the extent of larval distribution could not be fully gauged over the area occupied by benthic juveniles and adults. The most striking features of the distribution are: 1) the absence of larvae from western Unimak Island to about Amak Island [in contrast to data of Haynes (1974) and data of this study from 1976-1977; Fig. 3.16]; 2) the preponderance of larvae along the 50 m isobath and; 3) a decline of larvae close to snore in many areas sampled.

Larval distribution and abundance in **1982** were further analyzed by selecting groups of stations that constitute approximate transect lines running perpendicular to shore, although the opportunistic collection

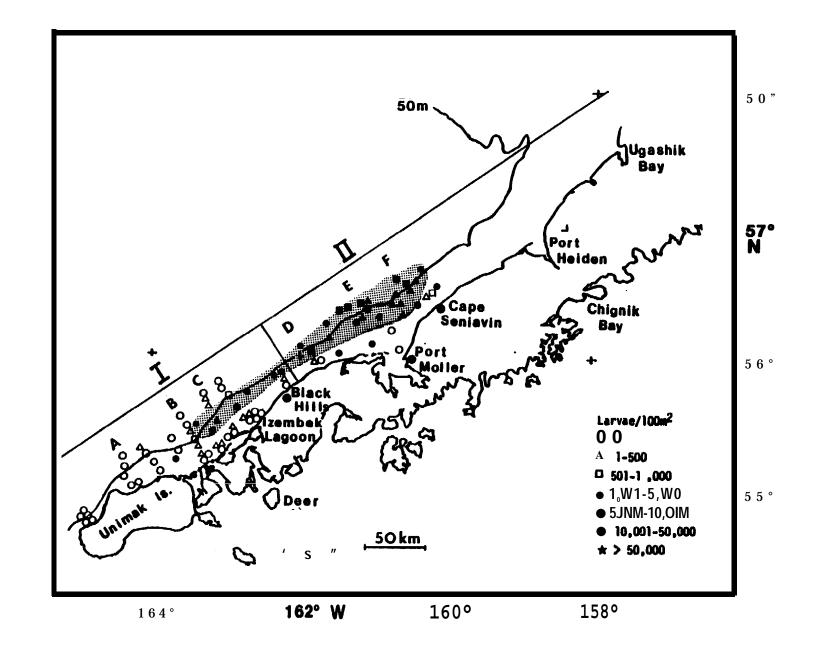


Fig. 3. 13. Distribution and relative abundance of larval and king crab in modified strata I and 11 (see Fig. 3. 12) during June, **1982.**

made them imperfect in areas (Fig. 3.13,3.14). Stations were grouped in broad depth intervals of 20-40 m, 41-60 m, and 61-80 m because narrower depth intervals were not **common** in all transect lines A to F. In **fact**, depths to 80 m were only collected on lines A to C, while D and Ewent **only to 70** m and F had a deepest station at 63 m (Fig. 3.13).

The longshore pattern of distribution is one of relatively low densities inside 40 m with peak abundance of about 2,000 larvae/100 m² on the E line off Port Moller (Fig. 3.14). Virtually no larvae were found from mid Unimak Island through Black Hills, a distance of about 180 km. In contrast, densities between 41-60 m reached 6600 larvae/100 m² by the C line off Izembek Lagoon (Fig. 3.13), and averaged 6,300 to over 12,500 m² up to Cape Seniavin within this depth interval (Table 3.2; Fig. 3.13). Larvae were not found, or only in very low densities, farther offshore between 61-80 m from Unimak Island to Black Hills (Fig. 3.14). However, abundance off Nelson Lagoon and Port Moller was very high at depths from 61-70 m, and averaged 15,300 larvae/100 m² on the E line with a range from8,800-24,700/100 m² (Fig. 3.14; Table 3.2).

Summary: 1) Larval densities in June were very low nearshore from 10-12 km off the coast throughout the entire study area. 2) Peak abundance occurred 25-30 km offshore from Amak Island to Cape **Seniavin.** 3) Abundance declined farther offshore in water of 61-80 m depth in the western portion (stratum I) of the sampling area (Fig. 3.13),

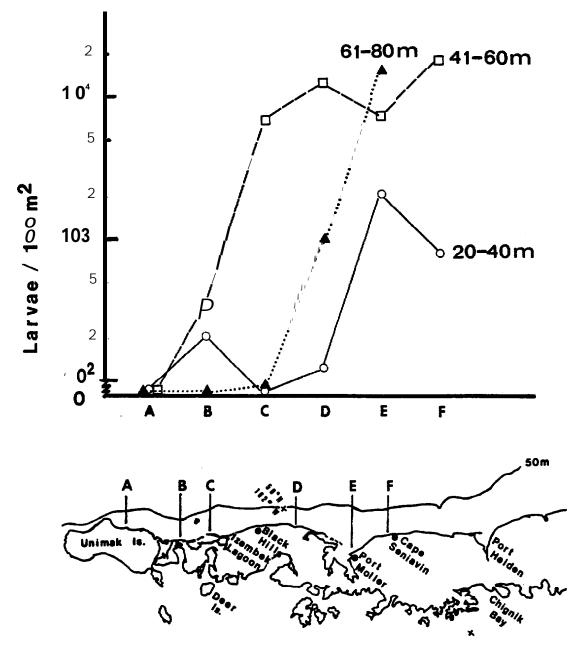


Fig. 3.14. Abundance of red king crab larvae as a function of depth (distance from shore) along the NAS. All stations used in this presentation were collected within six days of each other in June, 1982. See Fig. 2.19 for details of station locations.

Table 3.2. A **summary** of larval red king crab densities in June, 1982, along the North Aleutian Shelf. stations were grouped into **three** depth intervals along six transect lines to contrast nearshore and alongshore distribution (see Fig. 3.14).

Transect line	Depth* interval	n**	X (No. larvae/100 m2)	Range
А	1 2 3	3 3 2	0 0 0	
В	1	2	202	0-405
	2	3	350	120-590
	3	2	0	
С	1	3	26	0-78
	2	1	6, 624	
	3	3	80	0-126
D	1 2 3	2 1 1	125 12, 231 1, 120	0-250
E	1	2	2,000	0-4, 000
	2	2	6,930	4, 300-9, 550
	3	5	15,350	8, 800-24, 700
F	1	3	780	50-1, 300
	2	5	17, 300	6, 400-36, 240
	3	0		

*** 1** = 20-40 m, 2 = 41-60 m, 3 = 61-80 m

**** n =** number of stations on the transect lines within each depth interval; see Fig. 3.13 for locations.

but larvae were very abundant in **61-70 m depth** about 40-50 km off Port Moller (stratum II).

By early August, 1982, *no* red king crab larvae were found from western **Unimak** Island through stratum I and beyond to Port **Moller** (Fig. 3.15). Very low densities of 100-300/100 m^2 were sampled about the 50 m **isobath** off Port **Moller**. Higher densities were found only on a transect line off Port Heiden. Here again, shallow stations **near**shore had less than 100 larvae/100 m^2 while stations betweem 41-60 m averaged 1535/100 m^2 (Fig. 3.15). It is not known whether the disappearance of larvae up to Cape **Seniavin** represents northeasterly transport out of stratum I or earlier metamorphosis to the **benthos** in the westerly area of hatch (see Section 3.4.3 for further discussion).

<u>Blue King Crab</u>: Few samples were taken in the area of blue king crab abundance east of the **Pribilof** Islands (Figs. 3.7a and b). Most larvae were found 50-90 km east of St. Paul and St. George Islands, and none were caught at five nearshore stations about St. Paul (Fig. 3.11). Densities were low compared to areas of larval king crab abundance. The highest **zoeal** density was 1550 **larvae/100** m² (n = 9, SD = \pm 478; all years combined).

3.4.2 Interannual Variations

There were too little data in strata 9 and 10 (Figs. 3.11 and 3.12) to note differences in abundance of blue king crab year to year. Only the **nearshore** of the NAS was sampled with some regularity, although the number of annual stations were few. As previously noted, two new

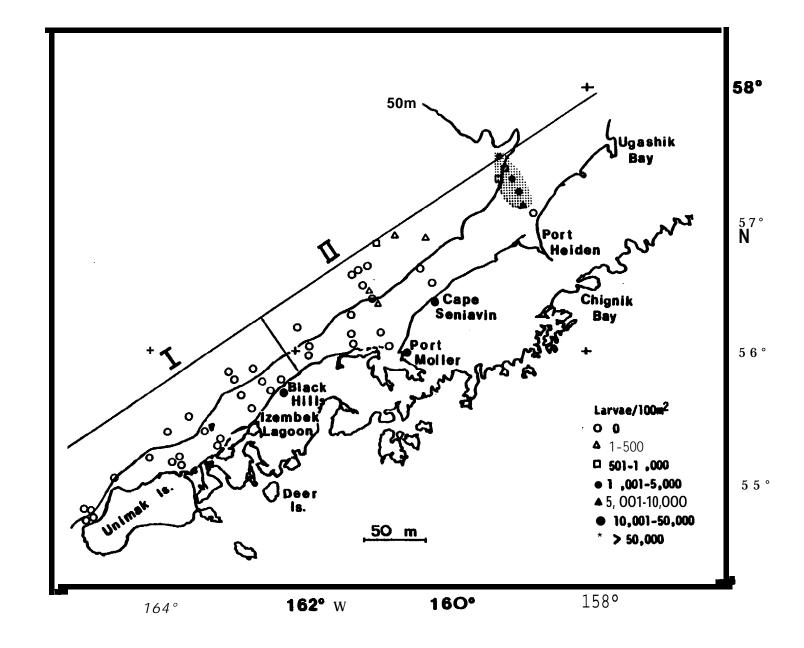


Fig. 3.15. Distribution and relative abundance of red king crab larvae in early August, 1982. Note the virtual absence of larvae from **Unimak** Island to Port **Heiden.**

strata (I and II) were created to give a qualitative sense of interannual spatial and temporal changes in abundance. No statistical contrasts were attempted since extensive sampling was done only in 1982 (Tables 3.2 and 3.3). In all other years, sample size for the two-month period of May through June never exceeded 15 per stratum for areas that exceed 12,000 km² (Fig. 3.12).

Large differences in density of larvae were noted both between years and between strata I and 11 (Fig. 3.16 and Table 3.3). Most samples were taken in the western NAS area in stratum I, which was sampled every year **from** 1976 to 1982. The years of greatest abundance were 1976-1977 when densities averaged 13,200 larvae/100 m^2 (Fig. 3.16; densities in this stratum were very similar in both 1976 and 1977 and so stations were combined to increase sample size). Average densities in the years 1978-1982 were about 20 times lower in the range of 450-710 larvae/100 m² (Fig. 3.16, Table 3.3).

Stratum 11 was sampled only in the years 1980, 1981 and 1982. Densities of larvae were highest in 1980 at 47,200 larvae/100 m² (only three stations), and substantially less in 1981 at 1,780/100 m². Comparison of strata averages (Figure 3.16 and Table 3.3) shows that larvae were always more abundant in stratum II than in I when both were sampled in the same years (only two samples in stratum II, 1976 and 1977 combined). In 1982, average densities were 7,900/100 m² and 441/100 m² in strata II and I, respectively, and the few samples collected in 1980 indicate a 100-fold increase in average densities from west to east.

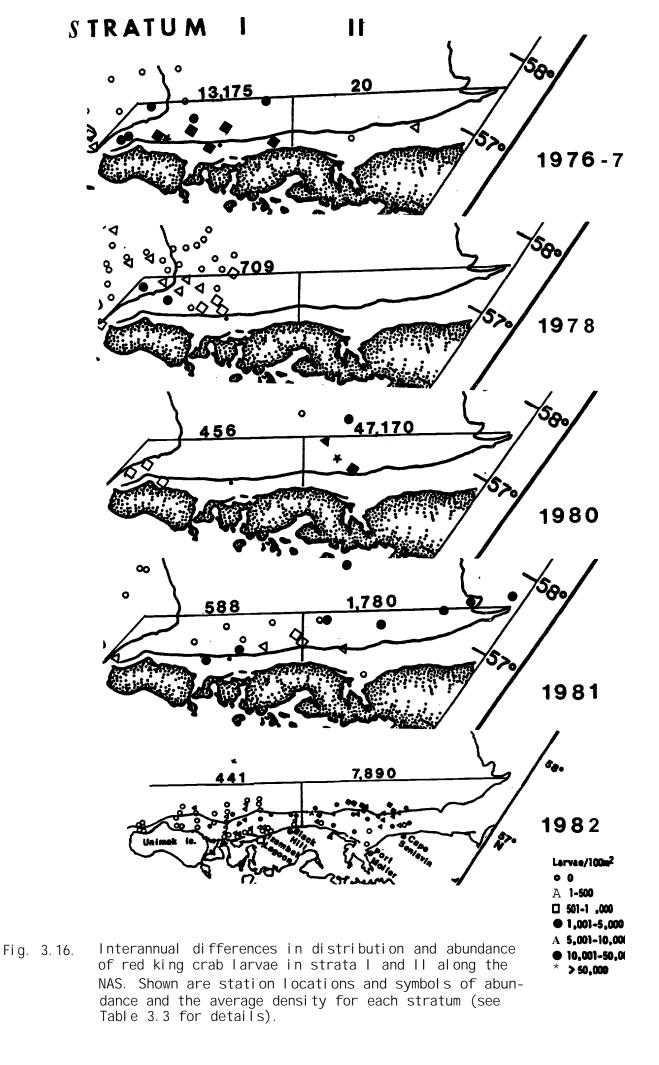


Table 3.3. Mean abundance of **larval** red king crab along the North Aleutian **Shelf during** May and June in 1976 through 1982. The region is divided into two strata that separate distributions east and west of **162°W** latitude near Black Hills. Values are larvae/100 m². (See Fig. 3.12 for strata boundaries).

	Stratum I				Stratum II			
Year*	n**	x	+ SD	Range	n	x	<u>+</u> SD	Range
1976-77	15	13,175	17, 200	650-67,000	2	20		0-39
1978	12	709	537	170-1, 760			none	
1980	5	456	421	0-850	3	47, 170	58, 300	7, 500-114, 000
1981	8	488	943	0-2, 570	9	1, 780	1,512	0-4,500
1982	48	441	1, 181	0-6, 620	30	7, 893	1, 584	0-36, 240

***Larval** densities in 1976-77 were very similar in Stratum I so they were combined for a larger sample size. No samples were collected **in** either Stratum in 1979.

****** \mathbf{n} · the total number of stations collected, including zero stations,

[An interesting note on annual abundance: collections made along the NAS in April and June, 1983, indicate a drastic reduction in larval densities from 1982 levels. Samples taken along similar transect lines and throughout Bristol Bay to Cape Newenham show larvae are at least 10 to 20 times less abundant this year than in 1982 (D. Armstrong, University of Washington and VTN, Oregon, unpublished data).]

Summary: 1) Larval densities were much lower along the western NAS from Unimak Island to Black Hills (stratum I) than in the eastern area from Port Moller into Bristol Bay (stratum II).
2) 1976-77 was a year of highest average densities in stratum I and 1980 in stratum II. 3) Lowest densities in both strata occurred in 1981. 4) Both 1980 and 1982 were probably good years of larval production along the NAS.

3. 4. 3. Hatchout and Settlement

<u>Red King Crab</u>: The time series of samples collected in any year from 1976 **through** 1982 were never long enough to span the period of complete larval development from hatch through metamorphosis. Enough data are available, however, to: 1) assign a realistic average date of hatch and discuss **interannual** differences in timing of peak hatch; 2) calculate the appropriate duration of each larval stage and the frequency of molt (next subsection 3.4.4); and 3) fol low development to the **megalops** stage and predict an approximate period of metamorphosis and settlement to the benthos.

Six time intervals were established to study larval hatch and development (Fig. 3.17a and b). They are based on average sampling dates of cruise legs in various years, and usually span three-week intervals. The earliest zooplankton samples collected that contained red king crab larvae were prior to April 18 in 1977; the latest collections were made In August, 1982. Based on data from 1977 and 1978, S1 larvae were abundant by mid-April and S11 by late April, 1978 (Fig. 3.17a). In some years, therefore, larvae hatch as early as April 1 (note that 40% of al 1 1 arvae were already S11 in 1 ate April 1978). In other years hatching can begin a month or more later. In mid-May, 1976, virtually all larvae were still S1 and in early June, 1980, 40% of larvae were S1. (During the first NAS leg from April 18 to May 7, 1983, no larvae were found along the entire NAS from **Unimak** Island. to Port Heiden on the first pass. Larvae were present on the return, however, at stations revisited between May 1-6, indicating hatch began about May The largest interannual difference in apparent time of hatch was 1). between the years 1976 and 1979 (Fig. 3.17a) when all larvae were S1 in mid-May, **1976**, but all were SIV in mid-June, 1979, indicating a very late and early hatch, respectively.

Larval hatch is apparently not a synchronous event throughout the female population along the NAS as evidenced by the presence of several larval stages at most stations (Fig. 3.17a and b). Data of 1980, 1981, and 1982 show that four larval stages were present in the water column during several time intervals, although only two stages were usually dominate (Fig. 3.17b).

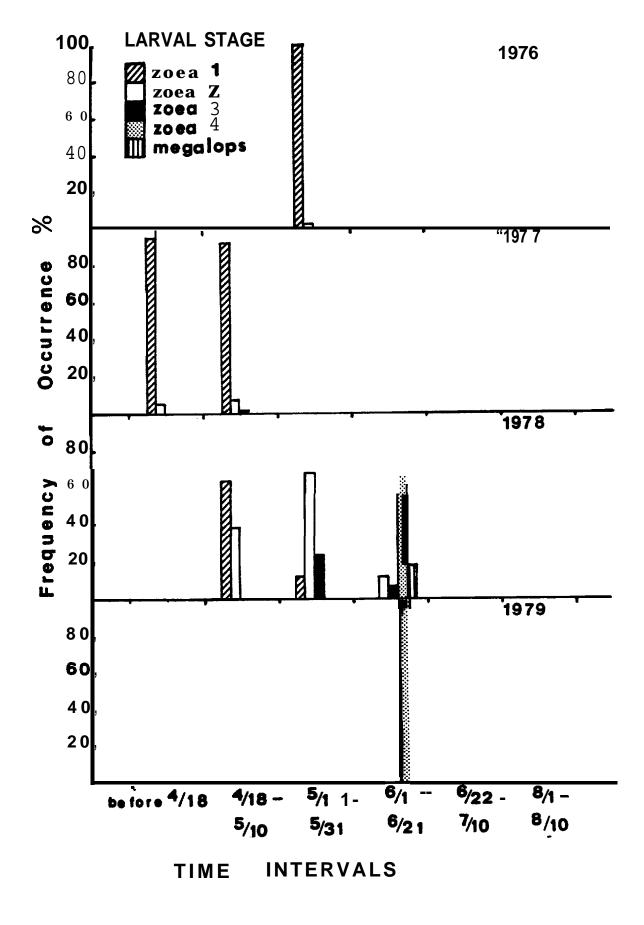


Fig. 3.17a. Frequency of occurrence of one megalops and four **zoeal** larval stages of red king crab in the years 1976-1979. There were no samples collected between July 10 and August 1 of any year.

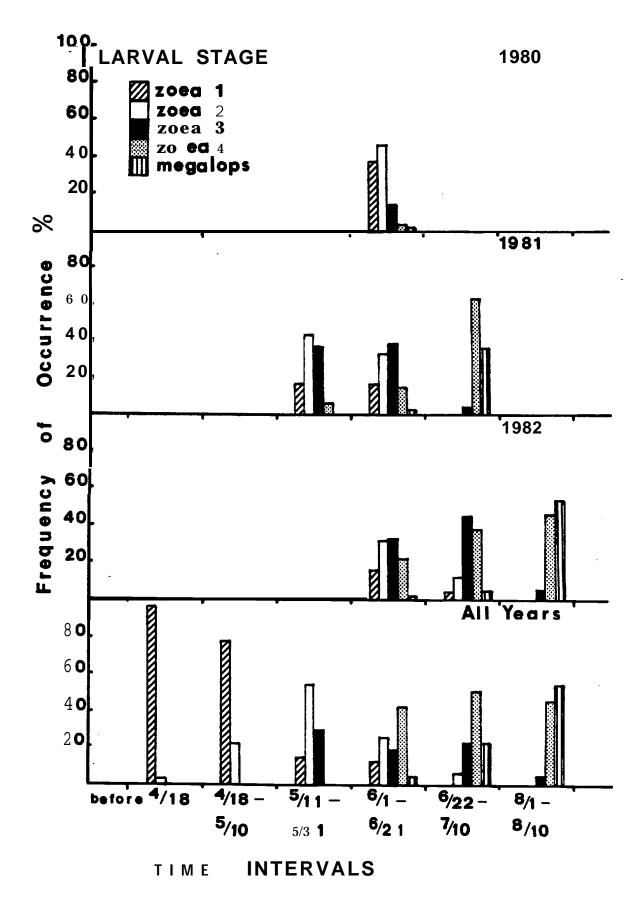


Fig. **3.17b.** Larval frequency of occurrence in the years 1980 through 1982. The data from all years 1976 through 1982 have been summarized in the last frame to show a pattern of **the** change in proportion of each larval stage over time.

The occurrence of a multi-stage larval population may, in part, simply reflect geographic differences in hatch time. Data in Figures 3.17a and b were grouped from the entire geographic area of strata I and II for the time intervals shown because samples were so few. However, in 1982, stations from **Amak** Island to Cape **Seniavin** were collected in a six-day period along this 215 km distance. By grouping **zoeal** stages **SI+SII** and **SIII+SIV**, and calculating frequency of occurrence, the resultant data suggest an earlier hatch along the western than along the eastern NAS (Fig. 3.18). Around Amak Island, **SIII+SIV** larvae comprised 80 to 100% of total populations but by Cape **Seniavin SIII+IV** were only 32% (Fig. 3.18).

The total period of larval development is estimated to take about 4.5 months from hatch of first **zoeal** in early April, to metamorphosis of **megalopae** in mid to late August (Fig. **3.17b). Megalopae** were collected as early as June 15 in 1978, but more typically in early July and August, 1981 and 1982, respectively. Since 45% and 55% of larvae were SIV and **megalopae** in early August, 1982 (Fig. **3.17b)**, metamorphosis to the benthos probably did not occur until late August to early September for much of that year class.

<u>Blue King Crab</u>: Very little data are available with which to gauge hatch and metamorphosis of <u>P. platypus</u> (the OCSEAP FY83 Pribilof Island program on blue king crab should improve this data base). The earliest samples containing blue king crab were collected in late May, 1976, and all larvae were S1 and II. In late June, 1978, a few **Pribilof** Island stations had SIV larvae, and in early July, 1982, all larvae caught were

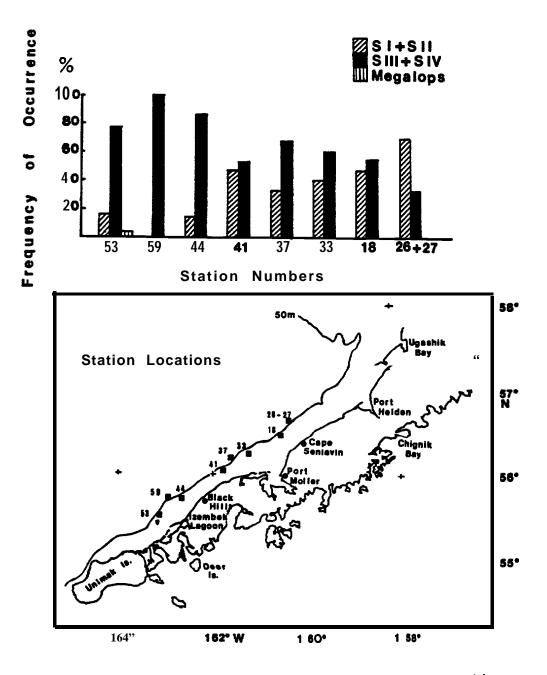


Fig. 3.18. Differences in apparent hatch time of red **king** crab larvae in **the** western and eastern NAS **area**. All samples were collected within a six day period. Note that at western stations around Amak Island there is a higher percentage of older S111 + IV larvae than **found** farther east off **Cape Seniaven**.

megalopae. These combinations of years and larval stages are similar to data for red king crab (Fig. **3.17a and b).** There is, however, an indication that **larval** hatch and, therefore, metamorphosis might **occur** somewhat earlier for blue king crab based on data of 1981. All larvae in **early July** were **megalopae** and many were approaching the molt to first **instar** juveniles. Almost 50% of **megalopae** held in rearing chambers onboard ship molted to first **instars** within a week of capture (by July 14; D. Armstrong, University of Washington, unpublished data). Metamorphosis to the **benthos** for blue king crab might, therefore, occur by mid to late July; a month earlier than predicted for red king crab.

3.4.4. Molt Frequency and Growth

<u>Red King Crab</u>: Data *on* molt frequency for red king crab larvae were previously summarized in Figures 3.17a and b. A preliminary analysis of frequency of occurrence of various larval stages was done on data of 1978 (Fig. 3.19; Armstrong et al. 1981). Based on the proportion of each larval stage (S1, II, II, IV, megalops) in samples from four cruises between April 10 to June 29 (see Section 2.0 for cruise maps), it was estimated that larvae molt every 2.5-3.0 weeks (Fig. 3.19). If so, then the elapsed time of development from hatch to metamorphosis would be about 12.5-15.0 weeks, or about 3.0-3.5 months. However, a **Summary** of larval stage data from all years 1976 to 1982 combined, indicates that development might take 4.0 to 4.5 months from hatch to metamorphosis (Fig. 3.17b). Although annual hatching time will vary (section 3.4.3), mid-April seems a reasonable annual time to expect the hatch of <u>P. camtschatica</u> larvae. Megalopae are common from early July

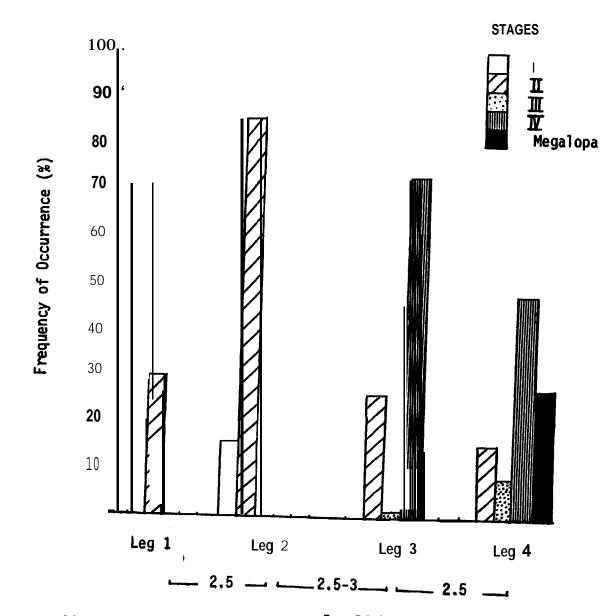


Fig. 3. 19. Frequency of occurrence of <u>Paralithodes spp.</u> larval stages collected during four legs of the 1978 <u>PROBES</u> cruises. The **number** of weeks between mid-points of legs are shown along the bottom axis and serve as an approximate gauge of molt frequency.

to early August (Fig. **3.17b),** and still have three to four weeks **devel** - opment before molt to first instar juveniles; an event predicted to **occur** from mid-August to September.

Molt frequency of larval red king crabs is estimated to be once every three weeks, based on a simple division of four months development time by five **larval** stages. Examination of frequency-of-occurrence data for al 1 years combined (Fig. **3.17b**), shows a major shift in the **propor**tion of larval stages occurs **in three-week** intervals depicted. It is not known from these data, however, if the **intermolt** duration changes with stage (e.g. shorter as S1, longer as **megalopae**) as a function of temperature and mass, or is rather constant as assumed above. Relative to oil pollution, it seems reasonable to assume that exposure of **larvae** for a week or more would encompass **ecdysis** of some portion of an asynchronous population (see Section 8.0 for further discussion of this point).

Growth of larvae is substantial during this four-month period. From a mean egg weight of 220 mg dry wt., larvae increase almost six-fold to **1300 mg** as **megalopae** (Fig. 3.20). The data of Figure 3.20 were obtained by collecting fresh red king crab larvae in the southeastern Bering Sea, staging, drying and weighing each animal on an **electrobalance.** The data not only show the weight gain from one larval stage to the next, but also the increase in dry weight within a single stage (i.e. **intermolt** growth). Stage IIIarvae had initial mean weights of 370 **mg/larva** but increased to 440 **mg/larva** prior to the molt from S11 to S111 (Fig. 3.20). Likewise, the mean weight of SIV larvae was

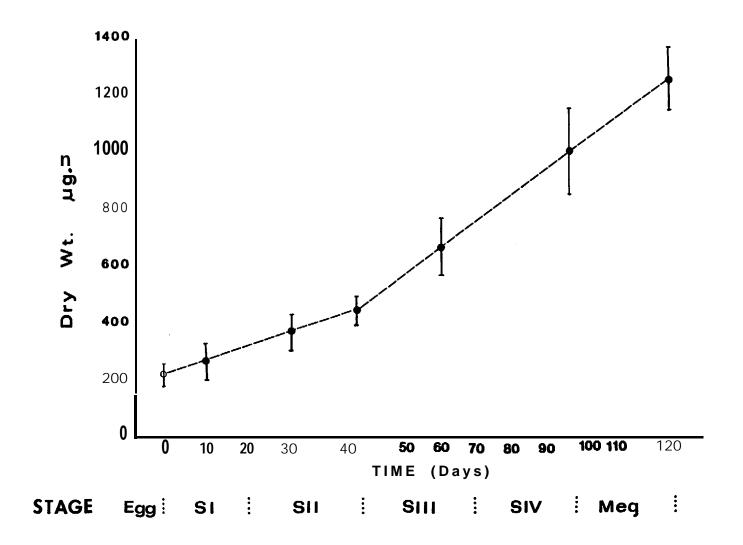


Fig. 3.20. Increase in dry weight of red king crab larvae from the mature egg through **megalops** stage. The approximate duration of each stage is shown for a total development period of about 4.0 months. Data are the **mean \pm SD**; n = 15 to 30 for each mean.

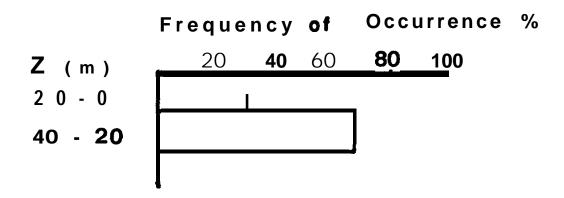


Fig. 3.21. Vertical distribution of red king crab larvae from six **MOCNESS** stations, PROBES 1981. Percent frequency of occurrence is based on a total of 600 larvae from the six stations. 1008 mg/larva, but those molting to megalopae weighed 1200 ug/larva. Such change indicates that growth is not a static event that occurs only at molt. Rather it is a process that continues throughout an **intermolt** period as larvae feed. Perturbations that disrupt feeding for portions of an **intermolt** cycle could inhibit weight gain necessary for **ecdysis** to the next stage.

<u>Blue King Crab</u>: No comparable data on larval growth of this species are available.

3.4.5. Vertical Distribution

Few MOCNESS samples were taken in areas where larval king crab occurred. Most **1** arvae were caught at **shal** low stations where **MOCNESS** intervals were 0 to 20 m and 21 to 40 m **depth.** In such samples, 68% of larvae were in the lower depth interval of 21 to 40 m (Fig. 3.21). At a few MOCNESS stations in deeper water, larvae were also least common in the upper 20 m and equally distributed at 42% occurrence in both the **21** to 40 m and 41 to 60 m intervals. However, very few larvae comprise this last observation (n=7 larvae) and, in general, more work is needed to clarify patterns of vertical distribution and possible **diel** changes.

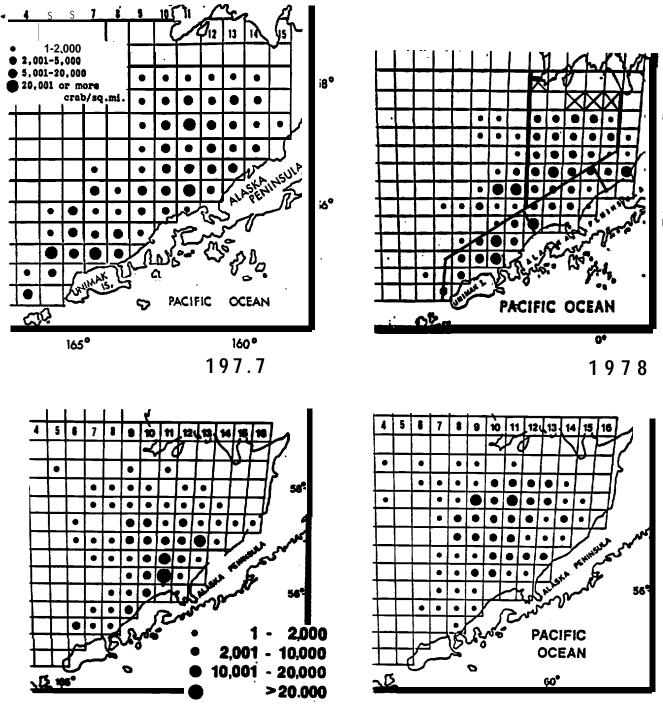
3.5 Discussion

If oil development in the southeastern Bering Sea impacts king crab, it would likely be most severe as exposure of pelagic larvae or, possibly, of egg-bearing females, since **reapidly** developing embryonic and larval life-history stages are usually more sensitive to chemical **perturbations** than are older individuals of a species. (The nature and

consequences of oil exposure scenarios are discussed in Section 8.0). In this section, data have been summarized that pertain to the general biology and ecology of larval king crab, primarily <u>P. camtschatica.</u> Information gained from data of 1976-1981 is fragmentary and a story of larval biology is far from complete. Opportunistic work in 1982 and **OCSEAP** programs along the NAS in 1983 have and will greatly contribute to a backdrop of biological information against which oil impact scenarios can be cast and analyzed. With the data gathered in this study, a sense of the spatial and temporal susceptibility of red king crab larvae to oil has been gained.

The ultimate effects of **oil** perturbations would be to reduce year-class (es) strength and, in turn, reduce the number of animals entering the fishery. Year-class strength is highly variable as evidenced by the tenfold decline in **legal males** between 1979 and 1982 (Fig. 3.5), and a decrease from 150 mill ion mature females in 1977 to 55 million in 1982 (Otto et al. 1982). Year-class strength is probably determined by some combination of: 1) reproductive success of the mature female population; 2) survivorship of larvae and; 3) survivorship of young benthic juveniles for one to two years after metamorphosis.

A suite of biotic and **abiotic** factors (e.g. temperature, currents, food, refuge habitat, predators) act in optimal or perturbational combinations on these three life-history links to produce changes in abundance. Even the fishery itself may exacerbate the effects of **suboptimal** conditions influencing reproductive effort and survivorship of environmentally sensitive life-history stages. Important points to


consider in regard to king crab biology, lease sale areas, and oil
perturbations are: 1) the distribution and abundance of mature females;
2) abundance, distribution and transport of larvae; 3) time and duration
of annual larval hatch; 4) frequency of molting; and 5) area(s) of
larval metamorphosis and settlements of juveniles.

Distribution of red king crab larvae nearshore along the NAS is in partial accord with that of the sexually mature **female** population in the southeastern Bering Sea. The annual NMFS groundfish survey in that area shows that female crab are abundant in the area of high larval density (Figs. 3.5, 3.11), but also for greater distances offshore (up to 120 km) and in northwestern Bristol Bay (e.g. high abundance around 57°30'N, **162°W** as a focal point; Fig. 3.3). While females seem to be distributed more widely than larvae along the NAS, a similar conclusion cannot be drawn for Bristol Bay (east and north of Cape **Seniavin**) because of very limited larval sampling in that area. Still, since larvae of red king are apparently found over a more restricted range than adult females, a variable percentage of the females may be superfluous to the annual reproductive effort because they spawn in areas unsuitable for larval and/or early juvenile survival. Therefore, exposure of females to oil in the area of larval hatch may be a more important consideration than exposure of females elsewhere within the species range in the southeastern Bering Sea.

Larval abundance appears to vary appreciably on an annual and geographic basis along the NAS, although data are few for some years and areas (see Fig. 3.16 and Table 3.3). The extent to which larval

abundance in time and space is correlated to that of mature females cannot be solidly analyzed from data on hand; specifically a long-term series of comprehensive larval red king crab collections does not exist. Still, there is an indication that changes in abundance and distribution of benthic females might influence larval production in the water column.

Population estimates for mature female red king crab (as well as males and other species of crab) are computed by NMFS for 400 NM* quadrats as part of an annual groundfish survey (see Otto, Macintosh, Armetta and Wilson 1980; Otto et al. 1981, 1982). Fig. 3.22 shows data for four years and depicts major shifts in numbers and location of mature females in southeastern Bering Sea. A gross analysis of this data was performed by averaging population estimates in quadrats that fell within 1) stratum I along the western NAS; 2) stratum II three general areas: to the east; and 3) the remainder of Bristol Bay (all three areas are shown for the year 1978 in Fig. 3.22; strata I and II correspond to areas used for larval analyses in Fig. 3.16). Actual catch values could not be obtained from NMFS in time for this report, so mean female abundance was calculated by taking midpoint values for the ranges shown in each quadrat. In the years 1975-1977 ranges were 1-2,000 crabs (midpoint = 1,000), 2,001-5,000 (3,500), 5,001-20,000 (12,500), andgreater than 20,001 (25,000). From 1978 through 1982 ranges were somewhat different; 1-2,000 (midpoint = 1,000), 2\$001-10,000 (6,000), 10,001-20,000 (15,000), and greater than 20,000 (25,000).

1980

1981

Fig. 3.22. Annual distribution and relative abundance of female red king crab greater than 89 mm carapace 1 ength (sexual ly mature). Note the decrease in numbers along Unimak Island to Black Hills from 1977 to 1981. The boundaries of three areas used to constrast spatial and temporal abundance are shown for 1978 (see Table 3.4). Note the difference in ranges of abundance between 1977 and all other years (all data from NMFS, e.g. Otto et al. 1980a, 1981). Female crabs were abundant in stratum **I** from 1975 through **1978** and averaged about 8,000 to **10,000/NM²**, but had declined in this area to less than **1,000/NM²** by 1981-82 (compare 1978 and 1981 in Fig. 3.22; Table 3.4). Corresponding larval abundance was high in stratum I in 1976-77 and low in 1980-82 (Fig. 3.16), but **this** trend was not always consistent since in 1978 **larval** abundance was low and that of females high (Figs. 3.16, 3.22).

Female abundance was more constant within stratum II off Port Moller, and ranged from yearly averages of 3,000 to 9,000 NM². In the only years of concomitant data (1980 to 1982), larvae seemed abundant in 1980 but less so in 1981-82 when female abundance declined from 7,500 to 3,800/NM² (Tables 3.3, 3.4). However, because larval data are so few between 1967 through 1981, any relationship between female abundance and larval production is highly speculative at this time. There has unquestionably been a shift of females away from the area of stratum I in recent years, and larval densities there are also very low. There is only a suggestion that the decrease in female abundance *in* stratum II *since* 1980 has resulted in fewer larvae, but the subject deserves further study as the population continues to decline in 1983.

Female abundance in the remainder of Bristol Bay generally ranged from **2,000 to 8,000/NM²**, and the contribution of this population to larval production remains unknown to date because very few **zooplankton** samples have been collected in that area.

Table 3.4. Relative annual abundance of female crabs greater than 89 mm carapace in the three areas of the southeastern Bering Sea. Stratum I and II are along the North Aleutian Shelf (see Fig. **3.16)**, and Remaining Bristol Bay is delineated in Fig. 3.22 for the year 1978. Values are the mean **+ 1 SD of crabs** per square **mile** (see the text for details on calculations).

Year*	Stratum I (n = 11)	Stratum II {n = 10)	Remai ni ng Bristol Bay (n = 19)
1975	7, 700311, 150	3,055 <u>+</u> 3,690	550 ± 446
1976	8,400 <u>+</u> 7,360	4,000 ± 4,681	2,200 + 3,005
1977	9,400 <u>+</u> 8,840	9,300 <u>+</u> 7,080	6,400 <u>+</u> 6,800
1978	10,100 <u>+</u> 9,800	7,100 <u>+</u> 7,200	8,300 <u>+</u> 6,800
1980	1,600 <u>+</u> 2,200	7,500 <u>+</u> 7,700	2,000 <u>+</u> 2,300
1981	635 <u>+</u> 500	3,600 <u>+</u> 2,700	5,900 <u>+</u> 2,950
1982	820 <u>+</u> 920	3,80034,800	3,380 <u>+</u> 3,870

*Data for 1979 were not available.

'Numbers of NMFS stations used for calculating the mean of each area.

If a positive relationship exists between mature female abundance and larval production, it is not clear how this relates, in turn, to eventual year-class strength as measured by abundance of five-year-old juveniles (youngest prerecruits routinely sampled by NMFS; Reeves and Marasco 1980) or older age-classes. Reeves and Marasco (1980) attempted to model spawner-recruit relationships with ambiguous results from both Beverton-Holt and Ricker models. The only reasonable conclusion to be drawn was that very high levels of mature females are not always correlated to high recruitment. This reasoning could be expanded by observing that: 1) the mature female population could fall below a level needed for strong recruitment (Fig. 4.A in Reeves and Marasco, 1980); and 2) populations of adequate spawning strength could be poorly situated geographically in terms of hatching larvae in areas for optimal growth and metamorphosis of juveniles to protective **benthic** habitat.

As noted in Section 3.4.2, surveys in 1983 have revealed a greatly reduced larval hatch compared to 1980-1982, and mature female abundance has also declined precipitously (D. Armstrong, U. Washington; VTN Inc., Portland; **R.** Otto, **NMFS**, Kodiak; unpublished data). **Oil** mishaps in years of low larval production could impact eventual juvenile settlement more severely than during years of high production (obviously **the** extent of any oil impact is inextricably linked to the timing, duration, and coverage of the spill).

As to the influence of geographic distribution of females on survival of larvae and eventual settlement of juveniles to appropriate refuge habitats, only speculative comments can be made. The greatest data gap in this regard is definition of areas where 0+ juvenile crab settle and survive. Rarely does the NMFS survey catch very small crab (gear and survey area 1 imitations). Based on data of Smith and **Bakkala** (1982) and of 1983 surveys throughout the NAS and Bristol Bay (D. Armstrong, U. Washington; VTN Inc., Portland; unpublished data), much of the southeastern Bering Sea would not be suitable for survival of newly settled king crab. Very large populations of flatfish (e.g. **yellowfin** and rock sole) and other predators, coupled with a uniform bottom of mud/sand that affords little refuge, would probably result in tremendous

predator pressure and low (to no) survival of **0+** crabs metamorphosing in such areas. Preferred habitat of young king crab around Dutch Harbor and Kodiak Island (Weber 1967; Jewett and Powell 1981), indicate the species relies on cobble, shell, and aggregates of invertebrates (polychaetes, barnacles, ascidians, etc.) and algae for refuge. To date, an OSCEAP survey of nearshore juvenile crab distribution confirms this juvenile-refuge association in the southeastern Bering Sea.

Consequently, while the sheer magnitude of initial larval hatch and numbers surviving to metamorphosis may be important determinants of year-class strength, the geographic location of survivors at metamorphosis could be more important if refuge habitat is scarce and/or patchy. As suggested by Hebard (1959) and Haynes (1974), larval populations are probably transported varying distances from the origin of hatch. From data on development time of this study and current speeds (Kinder and Schumacher 1981c), 1 arvae could be transported over 200 km from **natch to** metamorphosis. Larvae hatched off western **Unimak** Island could reach Cape Seniavin; those hatched off Port Moller could reach Kvichak Bay. Whether the bottom of one area is better suited for survival of 0+ crabs than the other is presently unknown. If optimal bottom type does not occur uniformly along the NAS into Bristol Bay, then location of spawning female populations and the interplay of oceanographic factors and influences (e.g., currents and direction, wind speed and direction, storm events) during development time could be the major determinants of placement of larvae over optimal benthos at metamorphoses.

Much research on king crab **biology** and ecology **should** yet be done. some topics of importance include:

1) Examination of NMFS survey data to detect **interannual** differences in female abundance relative to areas of larval hatch and development in the southeastern Bering Sea.

2) Reexamine spawner-recruit relationships developed by Reeves and **Marasco** (1980) **in** light of Item 1 and results of juvenile surveys. This effort would enable a better gauge of minimum numbers of spawners required for high recruitment based on abundance in "optimal spawning habitat," and estimates of progeny younger than the five-year lag currently required of NMFS data.

3) Study **interannual** variation in peak egg hatch based on **NMFS** "clutch" data. Annual shifts of 1 - 1.5 months might reflect **winter**spring temperatures and influence larval development time, settlement, and first-year summer growth of 0+ juvenile crab.

4) Investigate timing **of** the **oogenic** cycle to partially determine if adverse temperature would sometimes **delay** reproductive events (e.g., molting and copulation, egg extrusion note late hatch of 1976 larvae, Fig. 3.17a) with detrimental effects on larval growth and survival.

5) Examine NMFS data to determine major annual **shifts in** the percentage of the mature female population that are **primiparous** (newly recruited mature year-class) or multiparous in regions suggested under item 1. Incorporate data on clutch size and relate both factors to

fecundity **to** derive potential **larval** hatch. Correlate annual reproductive effort lagged to population abundance of juveniles.

6) Conduct several consecutive years of **larval** surveys to compare initial abundance at hatch and **survivorship at** metamorphosis to later abundance of specific juvenile year-classes.

7) Incorporate physical oceanographic events (notably current patterns and rates, and storm events) to examine the annual direction and extent of larval transport. Use information to gauge the extent of settlement onto optimal "refuge" habitat as a prediction of **0+** survivorship.

8) Determine lower lethal thermal limits of **zoeae** and their energetic-growth responses to very low temperatures as an indication of potential survival in years of below-average cold (e.g., 1976).

9) Study food preferences of larvae and **also** feeding rates as a function of temperature and prey density to address requirements for adequate growth and the possibility of starvation.

10) Determine areas along the **NAS** and in Bristol Bay where major populations of young juveniles occur (**0+** through 4+ age-classes).

11) Characterize the substrate and plant-animal assemblages" associated with juveniles to define "refuge" habitat. Estimate the extent of such habitat in different regions of the southeastern Bering Sea.

12) Determine interannual differences in location of year-class settlement and relate to annual distribution of female stocks, areas of 1 arva1 hatch, and predictions of larval transport as previously noted.

13) Synthesize such data into a qualitative prediction of annual O+ survivorship based on the extent of settlement into appropriate refuge habitat. Incorporate information on the magnitude of potential prey populations (e.g., **yellowfin** and rock sole, Pacific cod) as an indication of the importance of such habitat.

4.0 DISTRIBUTION AND ABUNDANCE OF THE LARVAE OF TANNER CRABS IN THE SOUTHEASTERN BERING SEA

Lewis S. Incze

4.1 Introduction

Tanner crabs are **brachyuran** crabs of the genus **Chionoecetes** (Family Majidae). In the southeastern Bering Sea (SEBS) Chionoecetes bairdi, C. opilio (both numerous) and unknown numbers of C. angulatus and C. tanneri occur (Garth 1958; Somerton 1981). The latter two species are deepwater organisms inhabiting **slope** water generally more than 300-400 m These crabs are small, are of no commercial interest, and probably deep. have an exceedingly small role in the benthic and pelagic shelf sea envi-On the other hand, adult C. bairdi and C. opilio are compararonments. tively large organisms which occur over a large portion of the southeastern Bering Sea shelf from depths of 50 to 200m; they are the target of a large commercial fishery of growing economic importance (Otto 1981) and they are dominant organisms in the **benthic** ecosystem (Feder and Jewett 1981). This section examines the larval life history of these two species of Tanner crab. **Uf** particular concern is the definition of spatial and temporal patterns of larval abundance.

4.2 Description of the Fishery and Stocks

Prior to 1964 the catch of Tanner crab was only incidental to the king crab catch of Japanese and Russian **fisnermen**. After 1964, however, U.S. restrictions on foreign harvest of declining king crab stocks encouraged exploitation of Tanner crabs as a substitute. The initial fishery was based exclusively on <u>C. bairdi</u> because of its larger size, its better quality of meat for processing, and its occurrence in and

around **the** traditional king **crab** fishing areas. By 1969 the directed harvest of this species had increased to the **level** where fishing quotas became necessary, As a result of restrictions imposed by the United States, foreign vessels began harvest of *C*. <u>opilio</u>, a smaller animal which occurs in greater numbers and over a wider geographic area than its **congener**.

'As total landings of Tanner crab from the eastern Bering Sea (EBS) increased (from 12 to 24 million crabs from 1967 to 1970), so did American interest in the fishery. Through a series of unilateral (U.S.) harvest quotas and bilateral agreements, foreign participation in the EBS Tanner crab fishery was gradually reduced and forced north and west. Today, all Tanner crab fishing in the southeastern Bering Sea (except for by-catch) is conducted aboard American vessels (154 vessels in 1979-80) and is directed at both C. bairdi and C. opilio. Landings from this region steadily increased from 1975 to 1980 and totaled more than 74 million pounds (40.4 million crabs) during the 1979-80 fishing season (November-September, Fig. 4.1). The contribution of <u>C</u>. opilio to the Tanner crab fishery has increased dramatically in -recent years (Table 4.1). In 1981 and 1982, total Tanner crab landings, mostly from the SEBS, exceeded those of king crab by 65% and 140%, respectively. However, total landings of Tanner crabs also have declined over the past two fishing seasons (unpublished data, National Marine Fisheries Services, R. Otto, pers. communication).

Eastern Bering Sea stocks of Tanner crabs have been assessed by annual trawl surveys conducted by the National Marine Fisheries Service

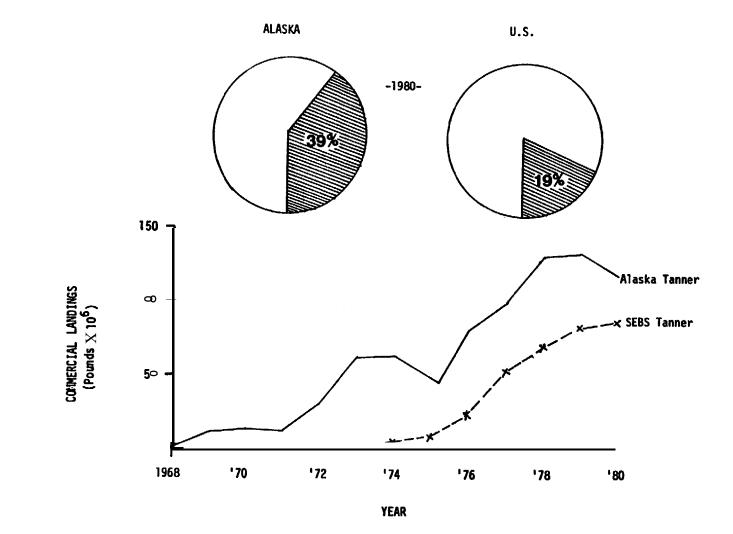


Fig. 4.1. Commercial landings of Tanner crabs from the southeastern Bering Sea (SEBS) compared to total commercial catch for Alaska, 1968-1980 (lower). Pie diagrams show Alaska tanner crab landings as a percentage of total Alaska and total U.S. commercial crab landings for all species combined for 1980. [Compiled from data of Eaton (1980), Fisheries of the United States, 1980 (1981) and Pacific Packers Report, Spring 1981 (1981)].

Year	Number of Vessels*	Number of Landings	Number of <u>Crab</u>	Number of Pounds	Number of Pot Lifts	Average Weight	Average Crab Per Pot	Price Per Pound
1%8		7	6,408	17,858	1,426	2.8	5	
1969		131	353,273	1,008,898	29,851	2.9	12	
1970		66	482,307	1,410,721	16,372	2.9	29	
1971		22	61,347	166,058	7,343	2.7	' 8	
1972		30	42,561	119,170	6,728	2.8	6	
1973		45	132,941	301,868	16,530	2.3	8	
1974	18	69	2,531,825	5,044,197	22,014	2.0	115	
1975	27	80	2,773,770	7,028,378	38,462	2.5	72	•13
1976	66	305	8,949,886	22,341,475	141,179	2.5	63	•19
1977	83	580	'20,412,566	51,876,235	305,052	2.5	67	. 30
1978 <u>C.bair</u> <u>C.opil</u>		823 38	26, 188, 543 <u>1, 267, 196</u>	66, 228, 040 1,716,249	508,776 13,177	2*5 1.3	51 <u>96</u>	. 38 .30
TOTAL	-	861	27, 455, 739	67, 944, 289	521,953	2.5	53	
1979 <u>C.bair</u> <u>C.opil</u>		801 490	16,711,455 22,118,498	42,518,233 32,187,039	393,788 190,746	2.5 1.5	42 116	,52 •30
TOTAL	-	1,291	38,829,953	74,705,272	584,534	1.9	66	N/A
C.opil	irdi 154 10 141 *	804 603	14,739,611 <u>25,706,26</u> 2	36,614,315 3 <u>9,538,896</u>	488,434 272,065	2.5 <u>105</u>	30 94	. 52 . 21
TOTAI	L	1,407	40,445,873	76,153,211	760,499	1.9	53	N/A

 Table 4.1. Historic U.S. Tanner crab catch in the eastern Bering Sea, 1968-1982 (From Eaton, 1980, 1981)

(CONTINUED)

Table 4.1 (Cont.)

Year	Number of Vessels*	Number of <u>Landings</u>	Number of Crab	Number of Pounds	Number of Pot Lifts	Average Weight	Average Crab Per Pot	Price Per Pound
1981								
<u>C. baird</u>	<u>i</u> 169	759	11,873,513	29,702,071	588, 621	2.5	21	. 58
<u>C. opili</u>	o 1 55*	867	34,416,334	52,753,034	435, 762	1.5	79	. 26
1982								
<u>C.</u> bai rdi	136	785	4,937,736	10,977,390	487, 463	2.2	10	1.35
<u>C</u> . <u>opili</u>	<u>o</u> 126*	797	24,032,434	29,229,193	467, 895	1. 2	51	. 60

*Vessels Landing <u>C</u>. <u>opilio</u> also have <u>C</u>. <u>bairdi</u> so the total number of vessels participating in the EBS Tanner crab **fishery** is equal to the **numberlanding** <u>C</u>.b<u>airdi</u> for 1978-1982.

(NMFS) since the early 1970's. In addition, an extensive, joint NMFS-OCSEAP survey was conducted in the EBS in summer 1975 and reported by Pereyra et al. (1976). Two of the sub-areas defined in the NMFS-OCSEAP survey (Fig. 4.2a) are of particular interest in this report. Sub-area 2 contains nearly all of the St. George Basin and Sub-area 1 contains the proposed oil lease areas of the North Aleutian Shelf. Both areas contain "large stocks of Tanner crab (Fig. 4.2b and Pereyra et al. 1976:326, 331) and are the principal focus of recent commercial fishing efforts (Fig. 4.3). The *prognosis* is for a continued high yield from the fishery when both species are considered together, although the stocks have continued to show a **decli**ne since 1975 (Otto 1981).

The fishery for Tanner crabs is managed for the harvest of males only. For C. bairdi, the lower legs" is zelimit is 139 mm (5.5 i riches) across the widest portion of the carapace (carapace spines not included). No size limit was in effect for male <u>C. opilio</u> through the 1982 fishing season. The average landed Tanner crab of the two species was 2.2 and 1.2 pounds, respectively, in 1982, with mean carapace widths (CW) of 148.7 and 109 mm (Eaton 1982). The catch per unit effort (CPUE) for <u>C</u>. <u>bairdi</u> and <u>C. opilio</u> have shown a steady decline since 1979 (Table 4.1). The number of vessels involved in the American Tanner crab fishery increased from 1974 to 1981, but decreased in 1982 to 136 (Table 4.1). Primary landing ports for Tanner crab caught in the SEBS are Dutch Harbor and Akutan. Otto (1981) provides a detailed history of the Tanner crab fishery of **this** region.

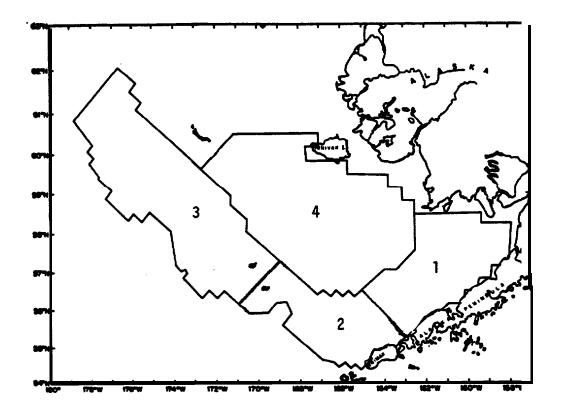


Fig. 4.2a. Sub-areas definedforthe NMFS/OCS-BLM benthic faunal resource survey of 1975 (from Pereyra et al., 1976). Areas 1 and 2 contain large stocks of commercial Tanner crabs.

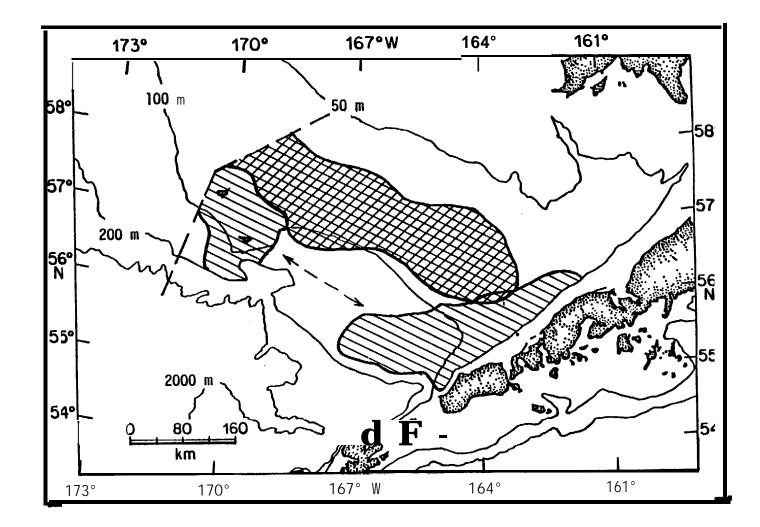
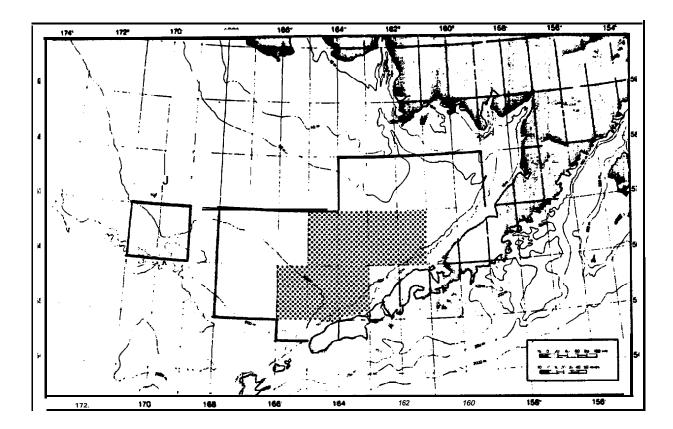



Fig. 4.2b Centers of abundance of benthic <u>C</u>. <u>bairdi</u> (diagonal) and <u>C</u>. <u>opilio</u> (crossed diagonal) in the southeastern Bering Sea. Areas are smoothed from illustrations of Pereyra et al. (1976: Figs. IX-93, IX-101) and show areas ≥ 10 kg live weight/km of bottom-trawl. Greatest biomass densities for both species exceed 50 kg/km. Arrows in outer shelf denote the continuity of the c.bairdi population, but at slightly lower biomass levels.

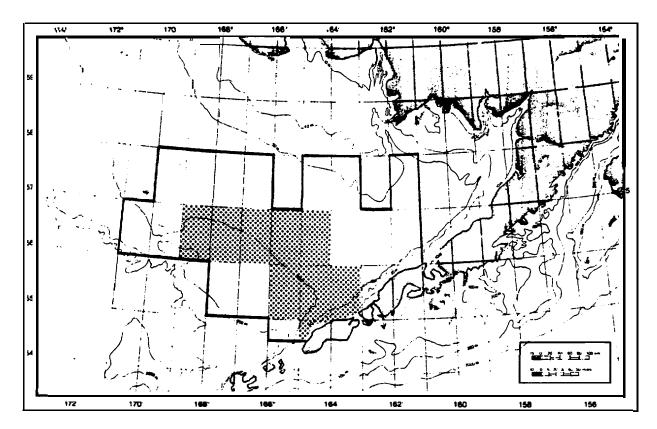


Fig. 4.3. Principal areas of 1980 Tanner crab catch in the southeastern Bering Sea, <u>Chionoecetes bairdi (upper)</u> and <u>C. opilio</u> (lower). Shaded areas yielded **1 x 10⁶ pounds** or more. (After Eaton, 1980).

4.3 Reproduction and Description of Spawning Stocks

Populations of juvenile and adult Chionoecetes bairdi and C. opilio in the southeastern Bering Sea are surveyed each year by the National Marine Fisheries Service for purposes of fishery forecasting. Distribution and abundance of the spawning stocks are consequently well known. While both species are found over a wide region of the shelf from depths of 50-200 m, the majority of the populations of each (see Fig. 4.2b) are associated with areas which are distinguishable on the basis of average summer hydrographic conditions. The bulk of the population of C. opilio is found in the middle shelf environment betwween 70 and 100 m depths, where relatively cold bottom water temperatures prevail throughout summer. [The cold bottom water mass is formed in situ during winter and is isolated by stratification of the water column in spring.] Most of the population boof C is found in the outer shelf environment at depths of 100-200 m and in the middle shelf environment near the Alaska Peninsula. Sexually mature female crabs appear to be patchily distributed within these regions, but generally are found over wide areas similar to the rest of the population of each species.

The age at sexual maturity is about five years for females of both <u>**C. bairdi**</u> (Donaldson et al. 1980) and <u>**C. opilio**</u> (from Adams 1979: Tables 10 and 11; and Watson 1970). Females undergo a terminal puberty molt at sexual maturity, but the size (carapace width) at which this occurs can vary substantially (Ito 1970; Haynes et al. 1976; MacIntosh et al. 1979; Jewett 1982). The size at which 50% of <u>**C. bairdi**</u> females reach sexual maturity is about 84 mm (post-molt) carapace width (Hilsinger

et al. 1975; Donaldson et al. 1980); **50%** maturity **in <u>C. opilio</u>** females occurs at about 50 **mm** carapace width in the Gulf of St. Lawrence (Watson 1970) and the southeastern **Chukchi** Sea (Jewett 1982), and slightly more than this in the Sea of Japan (Ito 1970). These data and size frequency plots of female crab of the two species found in the southeastern Bering Sea (e.g., Pereyra et al. 1976) provide an approximation of the size of sexually mature crabs in the study area.

Fecundity varies with size and reproductive year of these crabs. Haynes et al. (1976) estimated the number of eggs from 42 female C. bairdi of mixed spawning history (primiparous and multiparous spawners) from the southeastern Bering Sea in the autumn (September-October). Using a regression equation relating number of eggs to carapace width gives an estimate of about 175,000 eggs per 95 mm female, which roughly corresponds to the average mature female C. bairdi from the 1975 survey of the southeastern Bering Sea (Pereyra et al. 1976:325). The regression estimate of number of eggs produced by an average size, 60-65 mm carapace width, female C. opilio is about 40,000 eggs for primaparous spawners from the southeastern Bering Sea (23 specimens) and multiparous spawners from the Gulf of St. Lawrence (99 specimens). [The numbers are not strictly comparable because the St. Lawrence crabs were caught in spring and presumably had lost part of the egg mass during winter (Hilsinger 1976)]. Most of the difference in female egg production between the two species appears to be due to differences in average size of the crab. Haynes et al. (1976) found similar egg numbers for

both species for 80 mm specimens, but this size represents opposite extremes of mature female size for the two species.

Eggs hatch in the spring, generally April for <u>C</u>. opilio and late April-early May for <u>C</u>. bairdi in the southeastern Bering Sea (Incze et al. 1982; Incze 1983). Within a few weeks after the old eggs have hatched, a new egg mass is extruded and attached to pleopods on the female's abdomen. These eggs remain attached until they are fully developed and hatch, about one year after spawning. The larvae emerge as prezoeae, about 2.5 mm long, which are covered with an embryonic cuticle and molt to first stage zoeae generally within an hour (Ken 1967, 1970; Kuwatani et al. 1971; Haynes 1973). The two zoeal stages (Haynes 1973, 1981) and the megalops stage (Jewett and Haight 1977) last about one month each (Incze et al. 1982; Incze 1983; see also Adams 1979, Table 9), and remain primarily in the upper 20m of the water column during this period (Incze 1983). The megalops is the final planktonic stage in the life history of these crabs; all subsequent stages are benthic.

4.4 Taxonomy

<u>Chionecetes bairdi</u> and <u>C. opilio</u> zoeae were identified by D. Wencker using criteria outlined by Wencker et al. (1982; manuscript is appended to this report). These criteria make use of descriptions of the species by other authors (Kurata 1963, 1969; Motoh 1973, 1976; Haynes 1973, 1981), but also include some new diagnostic characteristics which were necessary for distinguishing between the two species in the southeastern Bering Sea. The morphological descriptions by Wencker et al. (1982) were corroborated by field studies on larval dynamics which

are reported in detail by **Incze** (1983). **The** description by **Jewett** and **Haight** (1977) was used to distinguish **megalops** larvae of the two species.

4.5 Results and Discussion

4.5.1 Timing of Hatchout

The timing of initial **hatchout** of larvae of the two species was examined by plotting against time the mean larval densities (number/ 1000m³) estimated from samples collected during April and May of 1977, 1978, 1980, and 1981. Because crab larvae were relatively rare during these months, plankton samples were searched completely, not sub-sampled. The following criteria were used to select stations with data adequate for this analysis: 1) if a sample from a station contained larvae, the estimated abundance at that station was recorded for the corresponding date; 2) if a sample did not contain larvae but subsequent occupation of the sampling area (within **a** radius of approximately 27.8 km, 15 NM) showed that there were eventually larvae there, the "zero" abundance was recorded for the earlier date; 3) if a sampling location did not contain larvae and was not occupied **again** later, or was occupied and continued to show no larvae, the "zero" datum was not entered into the analysis. In this way, the period before any detectable **hatchout** occurred could be identified without risk of biasing the analysis with data from sample locations not yielding zoeae of that species in that year. Sample coverage in the study area was not sufficient during any one year to enable a statistical comparison of initial **hatchout** times for different sub-areas (eg. middle shelf vs. outer shelf). Consequently, the data

from all stations were pooled for various dates. **The** data presented here describe initial **hatchout** periods of larvae primarily for areas where water depth exceeds 90 m.

The results of the analysis of **hatchout for C.** bairdi are listed in Table 4.2, which shows the number of stations involved in the analysis and the mean value and range of larval densities encountered. The analysis is not shown beyond the time of maximum mean larval densities. Sampling continued well beyond these dates in 197\$ and 1981, and no further significant increases in abundance were observed. Thus, the "peak" of hatchout as determined by larval density estimates had occurred. Figure . 4.4 presents the data from Table 4.2 as plots of relative density of larvae over a 40-day period in each of three years. A value of 1.0 represents the maximum mean density observed in a particular year. Data for 1980 were infrequent during the period of predicted peak hatchout (early May) but also show extremely low larval densities (< 6/100m². n=7) for the period 18-20 April.

For the three years shown in Figure 4.4, the greatest increase in mean larval abundance occurred between late April and early May and was quite abrupt, implying a relatively synchronous hatch of larvae throughout the adult populations underlying these stations. In **1978** and 1979, these stations covered a large part of the outer shelf, so **hatchout** from a considerable portion of the outer shelf adult population of these species was sampled. The fact that a discernible time-averaged contribution to the larval population did not occur after the peak densities of early May had been attained suggests an appreciable decline in hatching activity. This is corroborated by the fact that nearly all egg-bearing

Table	4.2.	Timing of appearance of Stage I zoeae of <u>Chionoecetes</u> bairdi
		in the southeastern Bering Sea by year and date. N1: number
		of stations sampled during specified period; N2: number of
		stations used in the analysis. Density of larvae is repor-
		ted as number per 100 m^2 (range in parentheses).

Year	Dates	Nl	N2	Density of Larvae
1977	18-19 Apr	13	8	150 (0-1140)
	24-25 Apr	19	7	138 (0-600)
	16 May	9	8	8,058 (.0-28,446}
	18 Apr	*	1	348
	24 Apr	*	1	7,476
	9 May	*	1	11,634
1978	16-21 Apr	31	16	6 (0-114)
	26-28 Apr	26	23	966 (.0-4,224)
	11-14 May	6	6	65,052 (1,644-148,000)
1981	17 A pr	4	4	36 (.0-150)
	1 May	1	1	888
	U-14 May	6	3	3,288 (768-7,572)

*observations from a single station outside the area of other stations; data are provided here for comparison.

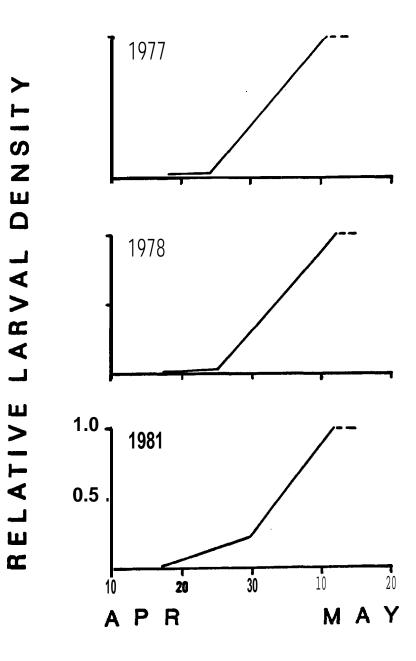


Fig. 4.4. Timing of appearance of larval <u>C. bairdi</u> in plankton of the southeastern Bering Sea. Data on mean larval density (Table 4.2) are represented as cumulative proportion of the maximum mean density observed at peak hatchout.

female crabs sampled in **late** May and early June by National Marine Fisheries Service surveys have immature (recent" y extruded) egg masses (Somerton 1981).

The initial hatchout period of C. opilio_larvae was not documented as well as that for C. bairdi. There aDDeared to be a considerably earlier hatchout for this species, as shown in Table 4.3 with data from 1977 and 1978. Although there is a considerable range in larval densities shown over time (**possibly** due to a wider range of sample locations than was used for C. bairdi), high densities were clearly found by 20 April in both years (sampling started 6 April 1977 and 11 April 1978). Throughout most of the area of the southeastern Bering Sea sampled in this study, 1980 and 1981 were both markedly "poor" years for C._opilio larvae (see later discussion) and collections were not adequate in **ei-**, ther year to define a **hatchout** curve. However, larval densities typical of those two years were **also** found by middle April. Data on development rates of Stage I (S1) zoeae of \underline{C} . opilio and on the time of appearance of Stage II (S11) zoeae of this species in 1981 (see Incze 1983 and following section) further support the suggestion that significant hatchout of C. opilio larvae occurred two to three weeks prior to the major hatch of <u>C</u>. bairdi larvae.

4.5.2 Rates of Larval Development

The rates of development of_C. <u>bairdiand C. opilio</u> S1 zoeae in the southeastern Bering Sea were analyzed by examining the ratio of S1 to total zoeae (SI:SI+SII) for each species at stations where at least six individuals of a species were examined in the sample or subsample. Using

Table 4.3.	Timing of appearance of Stage I zoeae of Chionoecetes
	opilio in the southeastern Bering Sea by year and
	date. N1 : number of stations where C. opilio larvae
	were found; N2: mean number of zoeae per 100 m ² .
	(range in parentheses).

Year	Dates	Nl		N2
1977	17-19 Apr	9	8, 592	(1, 710-33, 234)
	24-25 Apr	8	10,026	(1,452-19,596)
	10 May	9	21,462	(828-134,970)
1978	16-21 Apr	23		(0-626,700)
	26-28 Apr	23	154,300	(96-1,523,712)
	11-14 May	14	17,628	(,638-82,050)

ړ

this low number of larvae increased the number of observations (stations) which could be included in the analysis and produced no obvious detrimental impact on the data variance, since a large variance existed even among stations with abundant larvae. The data were grouped into time periods not exceeding 10 days and the mean ratio calculated **(un**weighed ratio method). The number of larvae examined in each 10-day period ranged from43 to over 2,000. From one to thirty stations were included in each period.

Rates of development of second stage (S11) zoeae were analyzed by examining the ratio of **SII:SII** + **megalops** larvae (no S1 **zoeae** were present during this period). The data were grouped into time periods of not more than 13 days. The number of larvae examined in each period ranged from 780 to 2032, while the number of stations ranged from 10 to 41.

For both **mol**ting analyses above, weighted ratios were also **calculated** by pooling data on all larvae of a species from each 10-day period and determining the ratio of the larval stages in question. This method gave results similar to the unweighed method, but the results of the **un**weighed ratio method were used for illustration because these data allowed variance of data to be expressed.

Observations of the stomach contents of **yellow** fin sole (<u>Limanda</u> <u>aspera</u>) collected in early September 1980 (K. **Haflinger**, Univ. of Alaska, **unpubl.** data) and plankton samples collected in October 1980 provided some information on the late summer-early autumn presence of

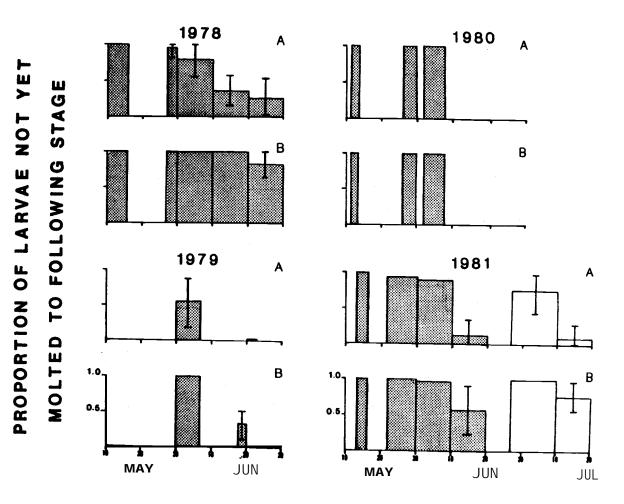
megalops larvae of both species and first post-larval (first instar)
crabs of C. opilio.

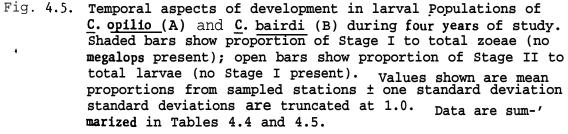
Data on rates of **larval** development show considerable variability from one station to the next *once* molting in the population was under *way.* This is reflected in a large variance about the mean over 10-day periods (Tables **4.4 and** 4.5). The weighted ratios are provided for comparison in Table 4.6, which also shows the number of larvae examined in each period. Despite the large variance, **larval** stage data are useful for pointing out several features of the larval development process in the populations: 1) the point in time where molting to S1 begins for each species can be fairly well defined; 2) the length of time required for the population of S1 zoeae to molt to S11 can be seen; and 3) differences in timing of the onset of molting in larval populations of the two species can be seen.

Observations (1) and (3) are generally consistent with earlier observations on the timing of first appearance of larvae in the plankton. In particular, data for 1978 and 1979 both show that the molt to S11 was well underway in the <u>C. opilio</u> population before <u>C. bairdi</u> larvae noticeably began this process (Figure 4.5). However, this pattern did not appear to hold true in 1980 or 1981. These interannual differences will be discussed later in this report. Observation (2") indicates that most of the **hatchout** occurred within a period of 30-40 days, although other factors (temperature regime, **planktonic** feeding conditions or survival of only part of a year-class) also may affect apparent duration of the inter-molt period.

Table 4.4. Zoeal development of <u>Chionoecetes bairdi</u> and <u>C</u>. opilio showing proportion of Stage I to total zoeae: Mean of sample observations <u>+</u> one standard deviation (number of stations sampled in parentheses).

Year	Species			Date		
1978		7-17 May	<u>27-31 May</u>	<u>1-10 June</u>	<u>11-20 June</u>	<u>21-29 June</u>
	<u>C. opilio</u> <u>C. bairdi</u>	1.0 (11) 1.0 (7)	0.92±0.17(20) 1.0 (7)	0.81±0.22(30) 0.99*0.01(17)	0.34*0.25(10) 0.99±0.01(6)	0.25±0.29(21) 0.8510.23(8)
1979				1-6 June	19 June	<u>21-22 June</u>
	<u>C</u> . <u>opilio</u> <u>C</u> . <u>bairdi</u>			0.53±0.33(8) 0.99 (7)	0 (3) 0.31±0.17(4)	0.01±0.02(6) o * (2)
1980		<u>13 May</u>	<u>26-29 May</u>	2-8 June		
	<u>C. opilio</u> <u>C. bairdi</u>	1.0 (1) 1.0 (1)	1.0 (5) 1.0 (7)	1.0 (2) 1.0 (20)		
1981		<u>15-16 May</u>	<u>23-30 May</u>	<u>1-10 June</u>	<u>11-19 June</u>	
	<u>C. opilio</u> <u>C. bairdi</u>	1.0 (4) 1.0 (19)	0.98 (2) 1.0 (15)	0.94±0.08(5) 0.9810.04(19)	0.14±0.25(3) 0.54±0.36(13)	


*Four other stations sampled during the period 21-27 June contained Stage I zoeae of <u>C</u>. bairdi but contained too few larvae (< 6) to be considered in this analysis; the zero datum is thus artificially low.


Table	4.5. Proportion of Stage II to megalops larvae (total
	larvae) of <u>Chionoecetes bairdi</u> and <u>C. opilio</u> in
	plankton samples from the southeastern Bering Sea
	in 1981: Mean of sample observations <u>+</u> one
	standard deviation (number of samples in paren-
	theses). Number of larvae examined is shown
	beneath date. No Stage I zoeae were present for
	either species during the time period shown.

	27 June - 1 N=2032) July =780
<u>C</u> . <u>opilio</u>	0.78 <u>+</u> 0.34	(23)	0.11 <u>+</u>	0.20 (10)
<u>C. bairdi</u>	1.0	(41)	0.78 <u>+</u>	0.22 (17)

Year	Species			Date		
1978		<u>7-17 May</u>	27-31 May	<u>1-10 June</u>	<u>11-20 June</u>	<u>21-29 June</u>
	<u>C. opilio</u> <u>C. bairdi</u>	1.0 (396) 1.0 (255)	0.97 (2,357) 1.0 (90)	0.82 (1,846) 0.99 (456)	0.31 (329) 0.99 (267)	0.25 (1,398) 0.83 (518)
1979				1-6 June	<u>19 June</u>	21-22 June
	<u>C. opilio</u> <u>C. bairdi</u>			0.46 (305) 0.99 (176)	0 (43) 0.39 (69)	0.02 (125) o (15)
1980		13 May	26-29 May	<u>2-8 June</u>		
	<u>C. opilio</u> <u>C. bairdi</u>	1.0 (318) 1.0 (22)	1.0 (423) 1.0 (130)	1.0 (33) 1.0 (528)		
1981		<u>15-16 May</u>	<u>23-30 May</u>	<u>1-10 June</u>	<u>11-19 June</u>	
	<u>C. opilio</u> <u>C. bairdi</u>	1.0 (45) 1.0 (1,513)	0.98 (133) 1.0 (1,411)	0.93 (142) 0.98 (1,555)	0.17 (52) 0.29 (463)	

Table 4.6. Weighted average proportion of Stage I to total zoeae of <u>Chionoecetes bairdi</u> and <u>C. opilio</u>: Proportion of all zoeae examined during specified time periods (number of larvae examined is in parentheses).

Data on the timing of molt from S11 to **megalops** larvae in 1981 show the beginning of this process in <u>C</u>. <u>bairdi</u> and the end for <u>C</u>. <u>opilio</u> (Table 4.5, Fig. 4.5). Although the data do not cover the entire period for this molt, the rate of change in the population as a whole during the time period sampled indicates that the S11: **megalops** molting is about as long as the earlier **SI:SII** transition. The data for <u>C</u>. <u>bairdi</u> in 1981 further show that the **molt** to **megalops** stage larvae began approximately one month after the first S11 **zoeae** appeared. The same situation is indicated for <u>C</u>. <u>opilio</u>, since no **megalops** stage larvae were found before 20 June.

The data presented above show an approximate 30-day period for each of the two **zoeal** stages for both species in the southeastern Bering Sea. Furthermore, the approximate 30- to 40-day period of molting in larval populations of each species is an indication that the **hatchout** period is of similar duration. The estimates of the duration of the two **zoeal** stages in the southeastern Bering Sea are in CloSe agreement with most of the observations of <u>C. opilio</u> larvae in Japanese waters (Yamahora 1965; Fukataki 1969; Fukui Pref. Mar. Exp. Sta. 1969), although some estimates for the latter environment **are** for periods as brief as 19-2(1 days for each stage (Ken 1970).

Samples collected in early October **1980** indicate that substantial numbers of <u>C</u>. <u>bairdi</u> **megalops** were still in the water column at that **time (the** estimated densities from October samples ranged from 560-1370/ 100 m², number of stations = 4, compared to May samples of S1 **zoeae** ranging from 1,800-18,000/100 m² at the same stations). This comparison

assumes a relatively homogeneous distribution of <u>C</u>. <u>bairdi</u> larvae in the outer shelf since advection over this time period is not considered. No <u>C</u>. <u>opilio</u> larvae were collected in October of 1980, but this may have been due to low larval abundance for this species in 1980 in most of the area of our plankton studies.

Examination of the stomach contents **of yellow** fin sole (Limanda aspera) collected at 57°09'N Lat., 166°39'W Long. on 9 September 1980 indicated that settlement of C. opilio larvae and metamorphosis to first instar crab had begun by that date, but that substantial numbers of megalops larvae remained, presumably somewhere in the water column. [The stomachs of small sole (20 cm length) which contained the megalops contained no organisms of **benthic** origin at the time of sampling. Stomachs of larger sole (24-69 cm length) contained first instar <u>C</u>. opilio. Unpublished data are from K. Haflinger, University of Alaska.] These data indicate the beginning of settlement of C. opilio larvae to the benthos, but provide no insight into the duration of this transition. According to observations in Japanese waters, there may be considerable variation in the duration of this stage, since megalops larvae were observed \mathbf{i} n the plankton up to six months after their initial appearance (Fukatak **i** 1969). Prolongation of the **megalops** stage in Japanese waters was also indicated by examination of the stomach contents of salmonid (Fukataki 1965, 1969) and zoarcid (Ito 1970) fish. A review of estimates of the duration of the larval stages of Chionoecetes spp. from other environments is provided by Adams (1979:78).

Kon (1970) reported on the basis of laboratory studies that the duration of the larval stages of <u>C</u>. <u>opilio</u> was inversely proportional to temperature over some physiologically acceptable range of temperatures. This response has been experimentally demonstrated with the larvae of other crabs as well (Anger and Nair 1979; Johns 1981), and the results presumably also apply to <u>Chionoecetes</u> spp. larvae in the plankton. During the course of this study, however, temperature effects on duration of the larval stages could not be isolated for certain from the effects of other environmental factors (Incze 1983). A period of about 30days for each zoeal stage and a period of at least 30 days for the megalops stage appears to be a reasonable estimate of the duration of larval stages of these species over the shelf of the St. George Basin and outer portion of the middle shelf.

4.6 Vertical Distribution of Larvae in the Water Column

Knowledge of the vertical distribution of larvae is essential to understanding the role various factors and processes may have in determining larval distribution and abundance. For example, the influence of environmental temperature on rates of growth, development and metabolism; the effects of **subtidal**- and wind-driven transport on larval distribution patterns; the impact of predators on larvae; the availability of appropriate food for larval feeding and the impact of catastrophes, such as major oil spills, cannot be properly interpreted without fairly accurate knowledge of vertical distributions. Estimates of larval abundance made from oblique plankton tows, such as with Bongo nets, can also be improved when patterns of depth distribution of larvae are **known**.

Methods for analysis of depth distribution patterns are discussed in Section 2.8. Results of that analysis and examination for potential vertical migrations are discussed here.

4.6.1 General Patterns

The vertical distribution of zoeae from 1980 and 1981 MOCNESS samples is shown in Fig. 4.6. <u>C. bairdi</u> and <u>C. opilio</u> zoeae show similar depth distributions, with more than 95% of the larvae occurring in the upper 40 m and 80% or more occurring in the upper 20 m.

For all data collected after 11 May in 1981, the depth distribution pattern for S1 and S11 zoeae combined was virtually the same as in 1980 for S1. Only prior to 12 May 1981 and only **for <u>C. bairdi</u>** zoeae was there a significant departure from this pattern (Figure 4.7). The pattern seen for this species before 12 May is primarily the result of four separate tows taken approximately six hours apart at a single station during a 24-hour period on 11 May.

A comparison of the vertical distribution of S1 and S11 zoeae made in two ways showed no significant difference in distribution between the two stages. First, data were considered only from stations where both S1 and SII zoeae occurred (8 stations sampled during 1981). The results are shown in Figure 4.8. Second, all data for S1 zoeae (15 stations) and all data for S11 zoeae (24 stations) during 1981 were tabulated separately. Again, similar patterns of distribution for the two stages were indicated; overall, 92% and 93% of S1 and S11 animals, respectively,

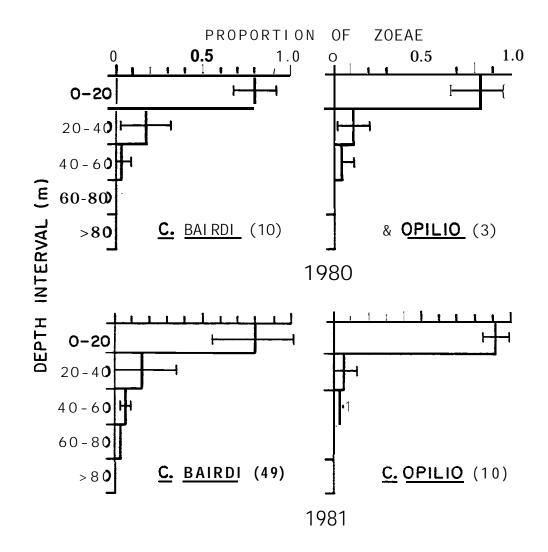


Fig. 4.6. Vertical distribution of zoea larvae of <u>C. bairdi</u> and <u>C. opilio</u> sampled by MOCNESS nets, 1980-1981. Horizontal bars show mean proportion of larvae in depth interval ± one standard deviation. Both Stage I and Stage 11 zoeae are included (cf. Fig. 15). Number of stations from which data were taken is shown in parentheses.

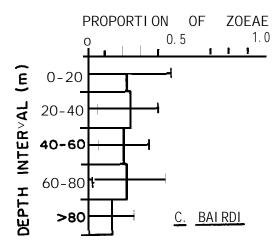


Fig. 4.7. Vertical distribution of <u>C</u>. bairdi_Stage I zoeae sampled during the hatchout period for that species, early May 1981. Horizontal bars are mean proportion of larvae in each depth interval ± one standard deviation.

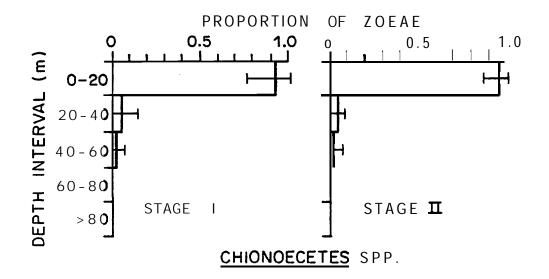


Fig. 4.8. Vertical distribution of Stage I and Stage II zoeae from eight stations (1981) where both occurred in sufficient numbers for analysis. Horizontal bars show mean proportion of larvae in each depth interval ± one standard deviation. Both species were combined for the analysis. *were* found in the upper 40 m. Eighty-six percent of S1 and **82%** of S11 zoeae were found in the upper 20 m.

The depth distribution of **megalops** larvae, analyzed with both species combined, also showed a tendency for distribution higher in the **water column.** However, greater variability was found at all depths for this stage than for the **zoeal** stages and a greater proportion of **mega**lops occurred at **40-60 m** depth compared to zoeae (Fig. 4.9). At 16 stations (18 tows) during June and July 1981, only one **megalops** larva was found below **60** m depth.

4.6.2 Vertical Migrations

Although the data indicated that only a small proportion of all Tanner crab larvae were found below 40 m, the data were further analyzed for possible diurnal patterns masked by the overall analysis. This was done by examining the proportion of larvae found below 40 m at various times of the day. Forty meters was selected because on the average few larvae were found below this depth, so any' diurnal pattern should be readily seen. The day was divided into six periods (0000-0300, 0300-0600, 0600-0900, 0900-1800, 1800-2100 and 2100-0000), roughly corresponding to various light intensities and periods of increasing or decreasing light. The data (proportion of larvae below 40 m) for each station were entered according to the time of day the sample was taken. Data from twelve diel **(24-hr)** stations were analyzed and then the data from all 79 stations were analyzed. The-data were **re-examined** using the proportion below 20 m as the migration criterion.

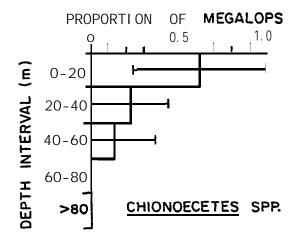


Fig. 4.9. Vertical distribution of <u>C. bairdi</u> and <u>C. opilio</u> megalops larvae at seven sampling locations in 1981. Horizontal bars are mean proportion of larvae in each depth internal ± one standard deviation.

From the diel stations, 10% or more of the zoeae occurred below 40°m six times during night-time sampling (2100-0300) and four times during day-time sampling (0600-1800). When all samples were considered together, 10% or more of the zoeae occurred below 40m nine times during daytime and five times during night. More than 10% of the megalops larvae occurred below 40m only once during night-time and twice during daytime sampling. When the proportion of larvae below 20m was listed, the results were variable and showed no diurnal pattern. The ratio of daylight (0600-1800) to night-time (2100-0300) samples in these anlyses was 1.5:1. The ratio of daylight (0600-1800) to twilight and dark (1800-0600) samples was 1.1:1.

Neither the diel stations nor all stations considered together provided any evidence of significant diurnal vertical migrations of zoeae or **megalops** larvae when 40 m or 20 m was used as the depth criterion for migration. About equal numbers of night-time and daytime samples were used, so the resulting data should accurately describe the average vertical distribution of larvae, especially the zoeae, which were well-sampled. The majority of zoea larvae of both species and stages occur in the upper 20 m of the water column (Figure 4.6 and 4.8), and this is where most **planktonic** interactions involving these larvae can be expected to take place.

The exception to this pattern was the vertical distribution of <u>C</u>. <u>bairdi</u> zoeae on 11 May (Figure 4.7). The sampling location for these data was one of **abundant <u>C</u>. <u>bairdi</u>** zoeae, and the samples were collected at the time of larval emergence from adult egg masses (see

earlier discussion). There was no diurnal **periodicity** to the depth distribution pattern within the area of sampling, suggesting that the peculiar distribution may have been the result of sampling at the time of **hatchout**. Although the results (Figure 4.7) suggest a homogeneous distribution, the large standard deviations show that, in fact, the vertical distribution was highly variable from one sample to the next. The vertical pattern could have resulted from 1) a **hatchout** which was locally (at least within the advective area of sampling) quite synchronous, and/or 2) a relatively **slow** upward movement of newly molted zoeae, so that dense patches were found at various depths within the There is insufficient information in the existing data to further area. evaluate these findings, except to point out that the distribution 1) was not common, and 2) was not the result of unusual vertical water column structure, as evidenced by other variables. Hydrographic structure and the distribution of nutrients, chlorophyll and the remainder of the zooplankton community all showed normal vertical patterns at this location (PROBES 1981 consecutive station numbers 2058, 2060, 2061, 2062, 2063).

The **megalops** larvae do not appear to have been quite as concentrated in the upper 20 m as the zoeae, but they were still found primarily in the upper 40 m during the **period** of sampling. Neuston samples collected during night-time hours in July 1981 (Armstrong and Incze, unpubl. data) sometimes contained impressive numbers of **megalops** larvae which rivaled the estimates of abundance (per area of sea surface) obtained from oblique tows taken within the area. Although there are many

difficulties in quantitatively sampling the neuston, the occasionally high abundance of **megalops** larvae found there suggests that 1) some **vertical** migrations take place, or 2) many **megalops** remain at or very near the surface most of the time. **However**, it is not currently known whether or not surface layer aggregations are common for this species, either temporally or spatially, as they may be for the **megalops** of other species (cf. Smyth 1980; Rice and Kristensen 1982). When aggregated at the surface, **megalops** larvae are particularly vulnerable to predation by seabirds (Schneider and Hunt 1982) and to impacts from oil spills.

4.7 Spatial and Interannual Patterns of Larval Abundance

Patterns of distribution and abundance are based on estimates of larval abundance which are highly variable, even on small spatial and temporal scales. Coefficients of variation for data collected in this study were usually around 100%, whether for samples taken in rapid succession or samples collected within a sampling stratum over a period of three to four weeks. This variability is typical of plankton distributions and is a problem which must be dealt with in **all** zooplankton studies (e.g., **Wiebe** et al. 1973; **Fasham** 1978). Despite this variability, however, it was possible in this study to distinguish certain "high abundance" and "low abundance" areas and years using standard statistical methods **(Incze** 1983).

In this section, spatial patterns of larval abundance are illustrated for selected years and months for each species. These periods were selected to illustrate the general patterns of distribution and abundance with the minimum number of figures requiring interpretation. In

general, <u>spatial</u> patterns of larval abundance do not change much, so a limited number of charts suffice. However, there were major <u>interannual</u> changes in abundance, primarily of <u>C</u>. <u>opilio</u> larvae. The analysis of these changes was based on statistical comparison of estimates of monthly mean abundance for the sampling strata outlined in section 2.8. The data and methods are detailed elsewhere (Incze 1983), but the conclusions are germane to this report and are discussed here. This section focuses on two objectives: (1) the definition of areas where potential impacts on larvae are greatest; and (2) an evaluation of the potential importance of individual larval year-classes to the over-all recruitment process in populations of <u>C</u>. <u>bairdi</u> and <u>C</u>. <u>opilio</u>. Intra-annual patterns of abundance (hatchout and development) were addressed earlier and are not illustrated here.

Figures 4.10 and 4.11 summarize the distribution and abundance data from May and June of 1978 for <u>C. bairdi</u> and <u>C. opilio</u>, respectively. Larvae of both species were abundant in 1978, and a large portion of the southeastern Bering Sea was sampled (cf. Figs. 4.10 and 4.11 and cruise maps in Section 2.0). Figures 4.12 and 4.13 show the data for both species collected in 1980 and 1981. These years were both years of very low larval abundance of <u>C. opilio</u> over most of the study area (the region east and northeast of the **Pribilofs** excepted). Data for 1980 and 1981 are illustrated to show the low larval abundance of this species and the distribution of <u>C. bairdi</u> larvae in 1981 along the Alaska Peninsula, a region not sampled very much in earlier cruises.

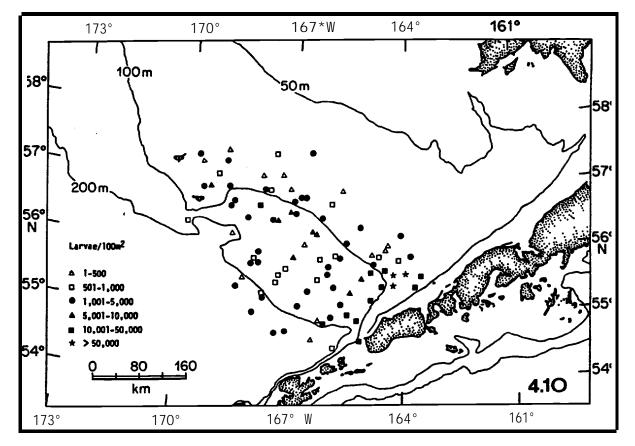


Figure 4.10 Distribution and abundance of <u>C._bairdi</u> larvae in May and June, 1978, **PROBES.** Zero stations not shown; see Section 2.0 for all sampling locations.

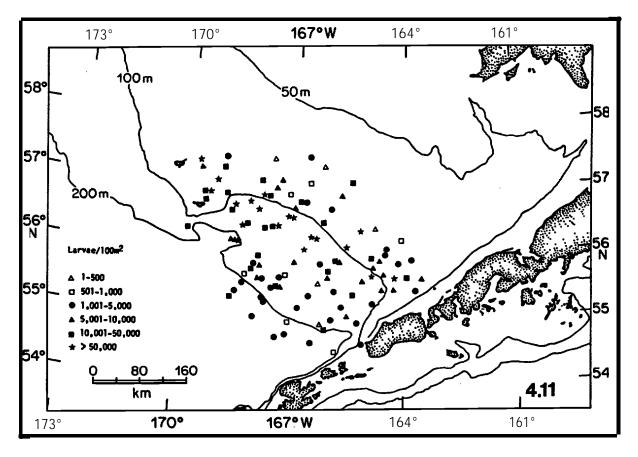


Figure 4.11 Distribution and abundance of <u>C._opilio</u> larvae in May and June, 1978, PROBES. Zero stations not shown.

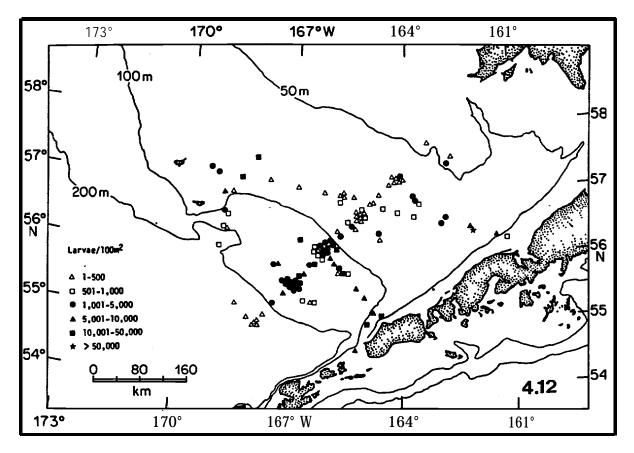


Figure 4.12 Distribution and abundance of <u>C. bairdi</u> larvae in the combined years 1980 and 1981. Zero stations not shown; see Section 2.0 for all sampling locations,

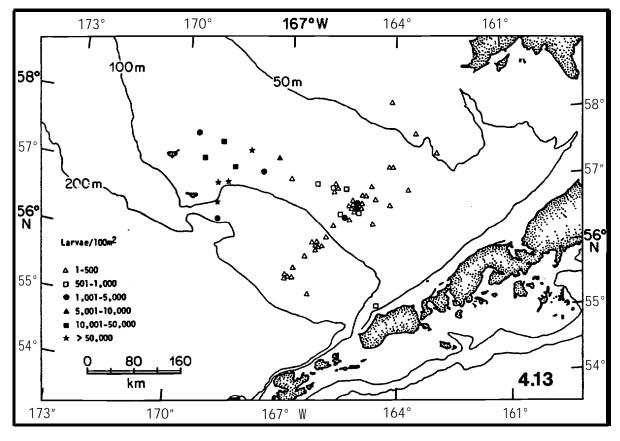


Figure 4.13 Distribution and abundance of <u>C</u>. <u>opilio</u> arvae in the combined years 1980 and 1981. Zero stations not shown.

The distribution patterns for <u>C</u>. <u>bairdi</u> larvae reflect the general pattern anticipated on the basis of the adult spawning populations. Larvae were abundant over the St. George Basin, particularly over shelf depths shallower than 150 m. Larvae were also abundant near the Alaska Peninsula, though the sampling effort in this region was comparatively low in most years. Analysis of data on estimated abundance of larvae in various sampling strata indicated that, over most of the area in this study, large interannual fluctuations in larval abundance of this species did not occur. Furthermore, in areas where adults of <u>C</u>. <u>bairdi</u> dominate, no statistically significant variations in larval year-class strength were observed.

The charted distribution patterns of <u>C</u>. opilio larvae do not correspond closely to the adult populations. The abundance of benthic <u>C</u>. opilio between 70 and 1001u depths over the middle shelf, an area with weak net flows (Kinder and Schumacher 1981), suggests that this is where most larvae of this species should be found. Yet in 1977, 1978 and 1979, an abundance of larvae was found over portions of the St. George Basin (Fig. 4.11 shows the data for 1978 only). This pattern appears to result from three factors. First, sampling effort in years of abundant <u>C</u>. opilio larvae wasmore concentrated over the outer shelf (especially 1977 and 1979). Second, the most extensive sampling of the middle shelf was conducted in two years (1980, 1981) of very low larval abundance of <u>C</u>. opilio. Finally, the most extensive sampling of an abundant yearclass of <u>C</u>. opilio was conducted in a year (1978) in which substantial wind-driven offshore transport occurred in April and early May (Incze 1983). The relative contribution of larvae of <u>C</u>. opilio_over the St. George Basin to fishable stocks of Tanner crabs is not currently known, but is an important point to consider since <u>C</u>. opilio_contribute substantially to the crab fishery.

Data from the period 1977-1981 clearly show that larval abundance of **C**. opilio_can fluctuate greatly, as much as two orders of magnitude Somerton (1981) concluded on the basis of size frequency **(Incze** 1983). analysis of **benthic** populations of **C. opilio** that recruitment occurs i rregul arl y. While other factors, such as **benthic** predation, also affect recruitment to juvenile and adult crab populations, success of the larval phase of recruitment is clearly important. The larval abundance data from this study indicate that some years may be much more important than others, and that relative success of larval year-classes may be a significant determinant of adult fisheries recruitment "in some years. Impacts on these "key" years might have a much greater effect on adult population dynamics than if year-class strength were more equal each year. Factors potentially contributing to the irregular success of larvae of C. opilio are complex and are presently not well understood (see Incze 1983 for discussion).

4.8 Summary of Principal Findings Relevant to the Assessment of Oil-Related Impacts

- Most of the larvae of <u>C</u>. opilio hatch during April; a large proportion of the larvae appear to hatch in the first half of this month.
- Most of the larvae of <u>C</u>. <u>bairdi</u> hatch in late April and the first half of May.

- 3. Most of the larval **hatchout** occurs *over* a period of about two weeks while the total **hatchout** period may cover **30** or more days.
- 4. The two zoeal stages last about one month each. The megalops stage lasts at least one month and perhaps considerably longer. Megalops larvae have been collected in considerable numbers over the St. George Basin as late as early October.
- 5. Eighty-six percent of zoea larvae were found in the upper 20 m of the water column. Megalops larvae showed a more variable depth distribution and were sometimes abundant in the neuston layer.
- 6. The Larvae of <u>C</u>. <u>bairdi</u> were always found in abundance over the St. George Basin, particularly over shelf depths of 100-150 m. Larvae of <u>C</u>. <u>opilio</u> were sometimes, but not always, very abundant in this area.
- 7. Larval year-class strength of <u>C</u>. opilio fluctuated by almost two orders of magnitude (difference in abundance) during this study. "Strong" larval year-classes may be critical to maintenance of <u>C</u>. opilio stocks at high levels.
- 8. Larval abundances in excess of 1,000 larvae/100 m² sea surface area are common for both species. The maximum mean monthly abundance observed for a single species was 172,124 larvae/100 m² (Stage I zoeae of <u>C</u>. <u>opilio</u>, stratum 1, April 1978). Since 86% of zoeae are in the upper 20 m, these values correspond to estimated densities of

over 1 larva/m³ (common abundance) and $86/m^3$ (maximum estimated abundance).

9. Hydrocarbons or other toxicants distributed in the upper, windmixed layer would cause direct exposure to most of the larval populations of Tanner crabs. Surface films may impact a substantial portion of the megalops larvae.

5. O DISTRIBUTION AND ABUNDANCE OF OTHER **BRACHYURAN** LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON **ERIMACRUS ISENBECKII**

Deborah Wencker

5.1 Introduction

There is little detailed literature on the life histories, distribution, and abundance of Brachyura in the southeastern Bering Sea belonging to the families **Atelecyclidae** (hair crab), Cancridae (Cancer crab), Majidae (spider crabs, other than Chionoecetes bairdi and C. opilio), and Pinnotheridae (pea crab) (see Tables 5.1, 5.2 for summary). Species without commercial value are either little studied and/or are not reported even though they are often caught incidentally during groundfish surveys. From our own experience onboard such cruises we know that noncommercial crabs and shrimp are often caught in high numbers, sorted to species, and logged in data banks. Processed agency reports mention only general listings of total shrimp or noncommercial crab (e.g., Pereyra et al. 1976), or present summary statements on these Crustacea as incidental taxa and therefore, part of communities in which commercial species reside. Some investigators, however, have provided more information on other Brachyura caught, such as catch incidence and biomass (Feder et al. 1981). Inclusion of noncommercial crab among taxa used for analyses of species associations have helped to indicate characteristic biological assemblages in which they are found (Smith and Bakkala 1982; Smith and Walters, 1982).

Sparse coverage in such reports may be due to several factors, including: 1) no commercial value; 2) low abundance; or 3) low

Family,species ¹	species' maximum size Depth distribution		Geographic distribution	Habi tat	
Atelecyclidae <u>Erimacrus isenbeckii</u> (Korean horsehair crab)	Male: 130 mm. Female: 80 mm .	10 - 360 m.	Bering Sea to Japan Sea	Mud, sand and gravel	
<u>Telmessus cheiragonus</u> (Helmet crab)	60 mm.	Shore - 57 m.	Chukchi Sea to California, Siberia to Japan	Mud, sand and gravel	
Cancridae <u>Cancer_magister</u> (Dungeness crab)	Male: 250 mm.² Female: 165 mm. 2	Shore - 90 m.	Aleutians to Baja California	Sand, mud	
Cancer oregonensis	40 mm.	Shore - 272 m.	Bering Sea to California	Sand, mud, and empty shell Of_Balanus nubulus	
Majiidae <u>Chionoecetes angulatus</u>	Male: 1 39 mm.	49 - 3000 m.	Pribilof Is. to Kamchatka and Oregon	Mud, sand	
<u>Oregonia bifurca</u>	35 mm.	486 m. – 1375 m.	Western Bering Sea	Sand, mud with broken shel 1	
<u>Oregonia gracilis</u> (Decorator crab)	50 mm.	Shore - 382 m.	Bering Sea to Japan and California	Among algae and eel grass	
<u>Hyas lyratus</u> (Lyre crab)	50 mm.	Shore - 650 m.	Bering Sea to Washington	Sand, mud with broken sheil	
<u>Hyas coarctatus</u> <u>alutaceus</u>	70 mm.	Shore - 400 m.	Chukchi Sea to Japan and and northern coast Siberia, 8eaufort Sea to West Green- I and to Newfoundland	Sand, mud and gravel	
<u>Pugettia gracilis</u> (Graceful kelp crab)	30 mm.	Shore - 80 m.	Unalaska to California	Eel grass and kelp	
<u>Mimulosa foliatus</u>	30 mm.	Shore - 40 m.	Unalaska to Mexico	No information	
Pinnotheridae <u>Pinnixa occidentals</u>	20 mm.^{2}	18 - 430 m.	Unalaska to So. California	Commensal in purrows	
<u>Pinnixa schmitti</u>	20 mm. ²	10- 150 m.	Unalaska to San Francisco	Commensal in burrows and tubes	
<u>Fabia subquadrata</u>	20 mm. ²	Shore to 80 m.	Akutan Pass to California	Commensal on bivalve mollusks	

Table 5.1.Size, depth distribution, geographic range and habitat of Brachyura (excluding Chionoecetes bairdi and C. opilio) known to inhabit the S.E. Bering Sea.

٩

'Table compiled from Rathbun 1918, 1925, 1930; Garth 1958; Kozloff 1973 and Otto et al. 1980.

²Measurement of width.

Speci es	Seasons female ovigerous	Period of hatch	Numi L <u>arv</u> Zoea		Period of larval d evelop- ment 2	lotal <u>length (nun)</u> Zoea Megalops	Reference ⁵
rimacrus isenbeckii	۲ _{IN}	Spri ng	5	1	∼5 months	2.7 mm 7.2 mm.	1, 2, 3
<u>Telmessus cheiragonus</u>	June-Oct.	Spri ng	5	1	~5 months	2.3 mm 5. 411111.	1, 2, 3, 4
<u>Cancer_magister</u>	Fall -winter	Early spring	5	1	$4-5 \text{ months}^3$	2.5 mm 11 mm.	5, 6, 7
Cancer <u>oregonensis</u>	NI	Jan., early	5	1	4-5 months	2.24 mm. – 7 mm.	6, 8
Dregonia gracilis	Mar Sept.	spring Mar., Apr., June and July	2	1	4 weeks	2.5 mm 4.3 mm.⁴	2,9
tyas lyratus	Year round	Apr. – July	2	1	5 weeks	2.5 mm 4 mm. ⁴	9
<u>iyas coarctatus</u> alutaceus	Late spring, early summer	May - July	2	١	NI	2.7 mm 4.2 mm. ⁴	2, 4, 10
Pugettia gracilis	Year round	May and June	NI	N1	NI	NI	11
abia subquadrata	Sumner	May - July	4	1	54 days ³	. 75 mm 2.1 mm.	12

Table 5.2. Early life history information on several species of Brachyuran crabs found in the S.E. Bering Sea.

INI = No information. Time of development from 1st zoea to megalops. Time of development from 1st zoea to first benthic instar. Body length = does not include rostral length. References: 1) Kurata 1963b, 2) Makarov 1966, 3) Takeuchi 1969, 4) Federand Jewett 1980, 5) Hoopes 1973, 6) Kendall et al. 1980, References: 1) Kurata 1963b, 2) Makarov 1966, 3) Takeuchi 1969, 4) Federand Jewett 1980, 5) Hoopes 1973, 6) Kendall et al. 1980, 7) Poole 1966, 8) Lough 1975, 9) Hart 1960, 10) Kurata 1963a, 11) Knudsen 1964, 12) Irwin and Coffin 1960.

matchability in survey gear used. Whatever the causes, too little available data on benthic distribution make spatial correlations **between larval and adults** tenuous. In this section, **larval** density and distribution will be summarized and related to benthic stocks if possible. The natural history of each species will be presented in taxonomic order. The results and discussion of the larvae of each taxon from our study will be presented with the most commercially important species (<u>Erimacrus</u> <u>isenbeckii</u>), first, followed, in descending order, by those taxa with the highest frequency of occurrence in samples.

5.1.1. Atelecylidae

Erimacrus isenbeckii (Korean horse hair crab), a recent target of an American fishery, occurs from depths of 10-360 m from the Bering Sea to the Japan Sea (Table 5.1). Males reach lengths of at least 128 mm, , and the largest recorded by NMFS in the southeastern Bering Sea weighed 1.95 kg (Otto et al. 1980). In 1981, 2.4 million pounds of Erimacrus were taken in the fishery (Otto et al. 1982). In 1982, however, less than a half a million pounds were caught, primarily due to lower market demands for the product (Otto et al. 1982). The fishery is centered around the **Pribilof** Islands where the majority of the 1980 estimate of 12.9 million sexually mature males with carapace length greater than 80 In years prior to 1980, fairly high concentrations were mm occurred. frequently reported just north of the Alaska Peninsula (Otto et al. Females, which are rarely larger than 80 mm in carapace length, 1980). (Sakurai et al. 1972, cited in Otto et al. 1980) are not part of the fishery, and accurate estimates of abundance and patterns of distribu-

tions are not available for them. During a survey of the epibenthos of the Bering Sea in 1975 and 1976, Feder and Jewett (1980) encountered <u>Erimacrus</u> in 25.6% of trawls made in water between 40 and 100m deep and 31.7% of trawls made in water between 100 and 200 m. Greatest biomass of <u>Erimacrus</u> occurred between 40-100 m depth and was 1.5% (9.073 g wet weight/m²) of total epifaunal biomass in the Middle Shelf domain (Jewett and Feder 1981).

Literature on <u>Erimacrus isenbeckii</u> is scarce, but Yoshida (1941) gives the following account of its reproduction. Copulation takes place immediately after the female's first molt to maturity while the carapace is still soft. Eggs are extruded and carried on pleopods under the abdominal flap until zoeae hatch in early spring. Reproduction is inextricably linked to molting in most crabs on an annual basis and likely accounts for large differences in body size between larger sexually mature males and smaller females. <u>Erimacrus</u> females may molt only every other year which slows growth as does the need to put large quantities of energy into egg production (Yoshida 1941).

<u>Telmessus cheiragonus</u>, closely related to <u>Erimacrus</u> but smaller in size (approximately 60 mm in length), occurs in shallow more northerly shelf areas and near river estuaries (Makarov 1966; Table 5.1). Itis distributed as far north as the Chukchi Sea. No literature on the reproduction of this species in the southeastern Bering Sea is currently available, but ovigerous females have been found in the Bering Sea from June through September (Feder and Jewett 1980; Lowry et al. 1981). Telmessus cheiragonus is exceedingly abundant in shallow coastal lagoons

of the North Aleutian Shelf, particularly **Izenbek** Lagoon where it is an **important consumer of eelgrass (<u>Zostra marina</u>) production (McRoy 1966; Barsdate et al. 1974).**

<u>Erimacrus</u> and <u>Telmessus</u> are food items of secondary importance to other animals of the Bering Sea. Lowry et al. (1981) report that <u>Telmes</u>sus is often eaten by the bearded seal and they cite Cunningham's (1969) statement that <u>Erimacrus</u> is occasionally eaten by the red king crab.

Kurata (1963b) described the 5 zoeal stages and megalops stage of both species from the Sea of Japan (Table 5.2). Unfortunatley, most of the text is in Japanese and it is not known if it contains other valuable life history information.

5.1.2 Cancridae

<u>Cancer magister</u>, currently of commercial importance in the Gulf of Alaska, has been reported to inhabit the Bering Sea (Garth 1958), but species lists prepared from more recent surveys of this area (Pereyra et al. 1976; Feder and Jewett 1980) do not include this species. Trawl work aboard the <u>Miller Freeman</u> in June 1982 netted several ovigerous **female <u>C</u>.** <u>magister</u> north of False Pass (D. Armstrong, personal observation). Dungeness crabs inhabit bays, estuaries, and the open ocean to depths greater than 50 m, from Amchitka Island on the Aleutian chain to Baja California. In British Columbia both males and females reach sexual maturity after twelve molts, two years after metamorphosis from the larval stage. Female growth then becomes slower relative to male, and females **rarely** attain widths greater than 165 mm, while males may grow

to as wide as 250mm wide by a maximum age of ten years (Butler **1960**, 1961). Mating occurs when adults migrate to shallow water in the spring and the female has molted. Females do not extrude eggs until the following fall. Egg development requires seven to ten months (Hoopes 1973).

<u>Cancer oregonensis</u> is a small crab up to 40mm carapace that lives on rocky shores and in empty shells of <u>Balanus nubulus</u> at greater depths in the Bering Sea. No information is available in the literature on its growth and reproduction.

<u>Cancer</u> spp. are eaten by the Irish Lord <u>(Hemilepidotus jordani)</u> and the rock sole (Lepidopsetta **bilineata**) (Feder and Jewett 1981).

Poole (1966) describes the five **zoeal** stages and **megalops** stage of <u>Cancer magister</u> reared in a laboratory on the coast of California. Lough (1975) discussed larval stages and development of <u>C.oregonensis</u> from the plankton off the coast of Newport, Oregon.

5.1.3 Majidae

The family Majidae includes, in addition to <u>Chionoecetes</u> spp., several small "decorator" crabs of no commercial importance that are distributed widely throughout the southeastern Bering Sea. <u>Hyas coarc-</u> <u>tatus alutaceus</u> is found from the southern Bering shelf to the Arctic, and <u>Oregonia gracilis</u> and Hyas <u>lyratus</u> occur in more southerly areas (McLaughlin 1963; Feder and Jewett 1980). During epibenthic assessment of the southeastern Bering Sea in 1975 and 1976, <u>H</u>. <u>lyratus</u> occurred in 22.1% of trawls taken between 100 and 200 m, while <u>H</u>. coarctatus

<u>alutaceus</u> was encountered in 47.8% of the trawls made between 40 and 100 m (Feder and Jewett 1980). Wet weight biomass of this last species was 0.028 g/m² and comprised only 0.6% of total **epifaunal** biomass in the Middle Shelf Domain (Jewett and Feder 1981). The kelp crabs <u>Pugettia</u> gracilis and <u>Mimulosa foliatus i</u> nhabit the area near Unalaska Island (Rathbun 1925).

Accounts of reproduction of these species are scant or nonexistent, but most mating appears to be associated with females molting (Knudsen 1964). **Ovigerous** females of the species <u>Oregonia gracilis</u>, <u>Hyas coarctatus altaceus</u> and <u>H. lyratus</u> have been reported from the southeastern Bering Sea in the late spring and early summer (Feder and Jewett 1980). Fecundity in Puget Sound was reported by Knudsen (1964) who found that female <u>Oregonia gracilis</u> 17 to 25 mm in carapace length carried 2,800 to 17,400 eggs, and female <u>Pugettia gracilis</u> 20 to 25 mm in length carried **6,200** to 13,300 eggs.

Several of these species have been reported as food items for Pacific cod (<u>Gadus macrocephalus</u>, sculpins, rock sole (<u>Lepidopsetta biline</u>ata), and the sea-stars <u>Asterius amurensis</u> and <u>Pycnopodia helianthodes</u> (Feder and Jewett 1981). <u>Hyas coarctatus alutaceus</u> is an important food item in the Bering Sea bearded seal diet (Lowry and Frost 1981) and of secondary importance for red king crab (Cunningham 1969).

All **majid** crabs molt through two **zoeal** stages and a **megalops** stage (Hart 1971). Hart (1960) described laboratory-reared larvae of <u>Oregonia</u> <u>gracilis</u> and <u>Hyas lyratus</u> from British Columbia. <u>Hyas coarctatus</u>

<u>alutaceus</u> larvae were collected from the Sea of Japan and described by Kurata (1963a). Other species of **majid** crab larvae have not been described (Table 5.2), but Hart's key (1971) allows easy separation of the sub-families.

<u>Chionoecetes angulatus may attain a carapace length of 139 mm as</u> adults and are distributed on the continental slope and deeper in the southeastern Bering Sea. Several were encountered at depths greater than 140 m during a NWAFC continental shelf groundfish assessment, but abundance estimates were not made (Otto et al. 1979).

5.1.4. Pinnotheridae

Unlike other families discussed thus far, pinnotherids are general ly commensal crabs that reside in polychaete tubes and burrows or in mantle cavities of bivalves and gastropod. Data on the distributions of pea crabs in the southeastern Bering Sea are not available. Irwin and Coffin (1960) suggest that the growth of Fabiasubquadrata is related to the growth of its host (a bivalve mollusk) and describe the early life history of laboratory-reared larvae from the coast of Washington. The larval stages of Pinnixa occidentals and P. schmitti have not been described. There is also a conflict in the literature as to the number of zoeal stages for the Pinnotheridae. Irwin and Coffin (1960) report four zoeal stages for Fabia subquadrata, while Lough (1975) reports five for the same species and unidentified species of **Pinnixa** from the plankton of the Oregon coast.

5.2 Purpose and Scope

The purpose of this section is (1) to both extend and summarize data sets discussed in the annual report of Armstrong et al. (1981) by the inclusion of 1981 data now available, and (2) to examine the spatial patterns of larval distribution and density of the non<u>-Chionoecetes</u> **Brachyura** in the southeastern Bering Sea. This information should allow a better understanding of where and when larvae of a taxon may be most susceptible to the detrimental effects of oil and it should extend the knowledge of a taxon's early **life history and ecology.**

5.2.1 Taxonomy

Identification of **decapod** larvae in this section was made to the **taxonomic** level listed in the right-hand column of Table 5.3. Because of limited literature on larval descriptions of crab species known to inhabit this region (left-hand column, Table 5.3), only larvae of **Erimacrus isenbeckii** and **Telmessus cheirayonus** were identified to species. The literature listed in Table **5.4** was used to identify species to the lowest possible **taxonomic** level.

5.2.2 Patterns of Larval Distribution Examined

After all data from the years 1976-1981 were summarized for **brachy**uran larvae, they were analyzed to determine the following patterns of distribution and density: 1) vertical, 2) temporal, and 3) horizontal. However, certain limitations of the data in this study are evident that preclude a thorough analysis of these factors for all taxa, because the plankton samples available are from collections intended for other uses. Periods and regions from which samples were collected varied

Table 5.3. Species list of **non<u>-Chionoecetes</u> Brachyura** known to inhabit the **S.E.** Bering Sea, and **taxonomic** level to which they were identified.

Таха	Level of Identification
Atelecyclidae Erimacrus isenbeckii Telmessus cheiragonus	<u>E. isenbeckii</u> T. <u>cheiragonus</u>
Cancridae <u>Cancer magister</u> <u>C. oregonensis</u>	<u>Cancer</u> spp.
Majidae - Subfamily Oregoniinae <u>Hyas</u> <u>coarctatus alutaceus</u> <u>H. lyratus</u> Oregonia_gracilis	non- <u>Chionoecetes</u> Oregoniinae
Majidae - Subfamilies Acanthonychinae/P <u>Mimulosa foliatus</u> Pugettia gracilis	isinae Acanthonychinae, Pisinae
Pinnotheridae <u>Fabia subquadiata</u> <u>Pinnixa occidentals</u> P. <u>schmitti</u>	Pinnotheridae

Species/Taxon	Larval Stages	References
<u>Erimacrus isenbeckii</u>	Stages I-V & Meg	Hart 1971, Kurata 1963b, Jewett & Haight 1977
<u>Telmessus cheiragonus</u>	Stages I-V & Meg.	Hart, 1971, Kurata 1963b, Jewett & Haight 1977
<u>Cancer</u> spp.	Stages I-V & Meg	Hart 1971, Poole 1966, Lough 1975
<pre>non-Chionoecetes Oregoniinae_S</pre>	tages I, II & Meg	Hart 1971, Jewett & Haight 1977
Subfamily Acanthonychinae and/or Pisinae	Stages I, II & Meg	Hart 1971, Lough 1975
Pi nnotheri dae	Zoea &Meg	Hart 1971, Lough 1975

Table 5.4.Brachyura taxa identified among larval decapods, larval
stages and references used for identifications.

annually, which resulted in little consistency of spatial and temporal data from which to delineate patterns of distribution and density. These limitations required that the data be analyzed in the following ways: 1) in most cases, data from all years were combined when examining spatial distribution of taxon; 2) **intra-** and interannual comparisons could only be made for three years for the **non<u>-Chionoecetes</u>** (Malidae referred to here as **Oregoniinae;** See Section 4.0 <u>Chionoecetes</u> and for **Pinnotheridae;** and 3) these two taxa were the only ones analyzed for vertical patterns of larval distribution based on adequate representation in the **MOCNESS** samples of the years 1980 and 1981.

5.3 Results, Discussion, and Summaries

5.3.1 Vertical Distribution

Vertical distributions of **Oregoniinae** and Pinnotheridae were examined (1) to assure that bongo net samples collected routinely from 60 m to the surface, or to within 10 m of the bottom in depths less than 60 m, included representative numbers of larvae on which to base abundance estimates, and (2) to determine the vertical location of the majority of these larvae in the water column.

Criteria for the analysis of the vertical distribution of individual taxa were established and applied to 198(I and 1981 MOCNESS stations in order to determine the mean percentages of larvae located at different depth intervals. These criteria are: 1) a total of six larvae of each taxon had to be counted in the subsample examined before an individual MOCNESS station was used **as** an observation; and 2) at least five

stations had to satisfy criterion No. 1 before the taxon was analyzed for patterns of vertical distribution. After these criteria were met, a taxon was analyzed by calculating the percentage of total larvae that were caught at successive 20 m depth intervals. These percentages were **summed** by depth intervals for all stations and the mean and standard deviation calculated.

The only two taxa that satisfied the criteria outlined above were Oregoniinae and Pinnotheridae, which were collected respectively at 30 and 7 of the combined 1980 and 1981 MOCNESS stations (all 7 Pinnotherid stations came from 1981 collections). Furthermore, of the 30 stations with adequate Oregoniinae larvae, 63% were sampled from the surface to below 80 m (in 20 m intervals) and 93% were sampled to 80 m depth. All 7 Pinnotheridae stations were sampled below 80 m.

The means and one standard deviation of the percentage of larvae collected at each -20 m depth interval of the 30 **Oregoniinae** stations are shown in Figure **5.1.** The majority of larval **Oregoniinae** (87%) were caught in the upper 40 m: 58% in the upper 20 m and 29% between 20 and 40 m. Most of the **Pinnotheridae** larvae (75%) were also located in the upper 40 m of the water column at the 7 stations examined for their vertical distribution (Figure 5.2). The upper 20 m contained 42% of these larvae and 33% occurred between 20 and 40 m.

Although the data for the other taxa that include <u>Erimacrus isen</u>beckii, <u>Telemessus cheiragonus</u>, Cancer spp. and the subfamilies Acanthonychinae and Pisinae did not satisfy the criteria established for

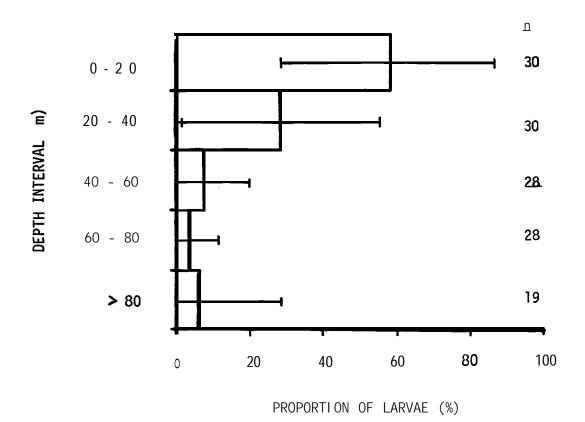
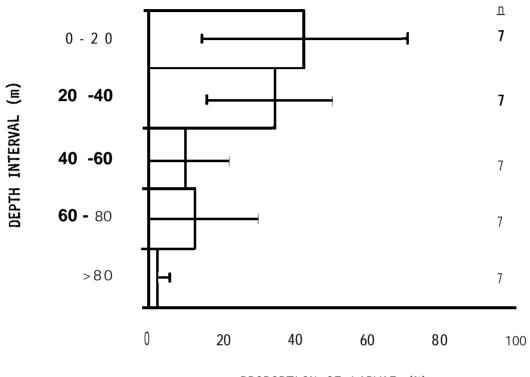



Figure 5.1 Vertical distribution of **Oregoniinae** brachyuran larvae in 1980, 1981 MOCNESS samples from the southeastern Bering Sea. The bars represent the mean percentage of larvae(±1 standard deviation) collected in 20 m intervals from 0-80 m and deeper than 80 m. N equals the number of stations sampled from which at least six larvae of the taxon were observed and from which the mean of each 20 m interval was calculated.

PROPORTION OF LARVAE (%)

Figure 5.2 Vertical distribution of Pinnotheridae larvae in 1981 MOCNESS samples from the southeastern Bering Sea. The bars represent the mean proportions of larvae (±1 standard deviation) collected in 20 m intervals from 0-80 m and deeper than 80 m. N equals the number of stations from which at least six larvae of the taxon were observed and from which the mean proportion of each 20 m interval was calculated. examining their vertical larval distribution, a brief examination of vertical distribution of these larvae in the 1980 and 1981 MOCNESS stations suggest that they too were concentrated in the upper 40 m of the water column. Thus, 40 m can be considered a reasonable lower depth limit in calculating density of these taxa in the water column.

Summary

- The majority of Oregoniinae and Pinnotheridae occurred in the upper
 40 m of the water column sampled by the MOCNESS year in 1980, 1981.
- Although analyses of the larval vertical distribution of the other Brachyura taxa was not possible, that data too (1980 and 1981 MOCNESS) suggest that the majority of these larvae appeared in the upper 40 m..

5.3.2 Temporal and Horizontal Patterns of Larval Distribution and Density

Temporal patterns of larval distribution of the non-<u>Chionoecetes</u> **Brachyura** during the years 1976-1981 were examined to determine when these larvae were present in the plankton of the southeastern Bering Sea (Fig. 5.3). Criteria were established to assure a conservative approach to examination of the duration of larval stages (molt-frequency). These criteria were: 1) $n \ge 6$, where n is the number of larvae of an individual taxon observed in a sample, and 2) at least three samples were used to **calculate** the mean percent of each larval stage during each **one**week interval. Consequently, only one taxon, **Oregoniinae**, was examined for **molt-freqency** patterns and only in the year 1981 because all other

taxa were collected too sporadically in time and space to satisfy the criteria above.

Horizontal patterns of distribution and density were determined for **Zoeae** and **megalopae** from the spring and summer months of the years 1976-1981 combined in the cases of <u>Erimacrus isenbeckii, Cancer</u> spp., <u>Telemes-</u> <u>sus cheiragonus</u> and the subfamilies Acanthonychinae and/or Pisinae. Most larvae were present in May and June; therefore this was the time period used to calculate their frequency of occurrence by stratum. These taxa were relatively uncommon and too little data were available from separate years for interannual comparisons. However, Oregoniinae and Pinnotheridae were well represented (over 20% of all annual stations produced **Zoeae** and/or **megalopae**)*in* the years 1978, 1980 and 1981, which allowed both intraannual comparisons between the three years. Samples from February and March 1978 and October 1980 were excluded from such analyses because they were collected only in a single year.

Mean densities, standard deviations, and ranges of values for <u>Eri-</u><u>macrus isenbeckii, Cancer</u> spp., <u>Telemessus cheiragonus</u> and Acanthonychinae and/or Pisinae Larvae were calculated for each stratum by using densities only from stations at which these Larvae occurred. While interannual difference in timing of hatch and density of Larvae would make such averaging quantitatively inaccurate, these relatively rare taxa were each grouped over 1976-1981 for a qualitative sense of where Larvae predominated. Mean densities of **Oregoniinae** and Pinnotheridae were calculated for April, May, and June of 1978, 1980, and 1981, and

also July of 1981. Within strata, both positive values (stations where larvae were caught) and zero stations were averaged for comparisons and contrasts of **intra-** and interannual density and distribution along or across the shelf.

5. 3. 2. 1 Erimacrus isenbeckii

<u>Seasonal Occurrence</u>: Larvae of this species were generally uncommon but were collected in the plankton from mid-April to late-June when data from all the sampling periods of the years 1976-1981 were combined (Fig. 5.3). Individual larval stages were present as follows: Stage I (S1), from late-April to mid-June; S11, from mid-April to mid-June; S111, from mid-May to mid-June; SIV in mid-April and June; SV, in June; and **megalops** larvae in June.

Because the seasonal occurrence of S1 and IV larvae did not overlap from year to year, gaps appear in the bars representing occurrence of these stages over the sampling periods of all years combined in Figure 5.3

<u>Distribution</u>: Larvae of <u>E</u>. <u>isenbeckii</u> were collected at only 9% of the stations analyzed from the years 1976-81. Of the samples with larvae, 85% were collected in May and June, which was therefore the time frame selected in which to examine frequency of occurrence. Frequency of occurrence (percent) of <u>Erimacrus</u> larvae is listed by stratum in Table 5.5 and the locations of stations at which <u>Erimacrus</u> larvae were collected are plotted on a map of the study area in Figure 5.4. These results show that larvae were collected throughout the study area, but were most

Table 5.5.	Frequency of occurrence of Erimacrus isenbeckii within
	each stratum in May and June of the combined years 1976-
	1981. Percentages were derived from the proportion of all
	stations within each stratum at which E. isenbeckii were
	found (see Fig. 2.21). As noted in the text, only 9% of
	the total stations analyzed in all years contained larvae
	of this species.

Stratum number	Frequency of occurrence (percent) of Larvae within strata
1	7
2	10
3	11
4	18
5	19
6	31
7	6
8	3
9	6
10	14
11	38

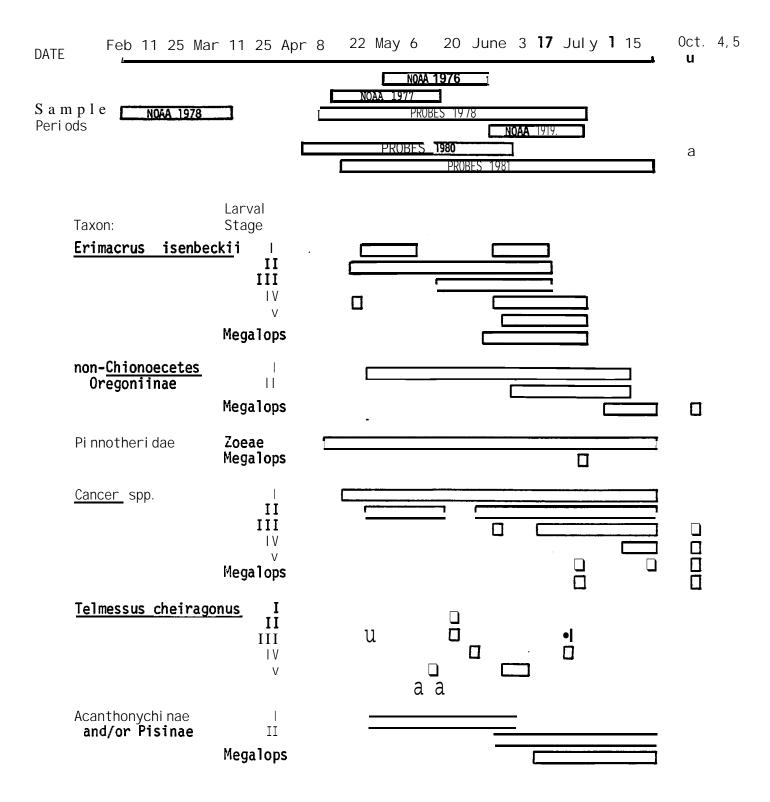


Figure 5.3 Seasonal occurrence of larval stages of selected **beachyuran** taxa in the southeastern Bering Sea in the years 1976-1981. Also depicted are the seasons and durations of cruises that collected zooplankton samples from which these data are derived (see Section 2.0 for more details). Gaps in bars showing duration of larval stages are due to relative scarcity over much of the total sampling period.

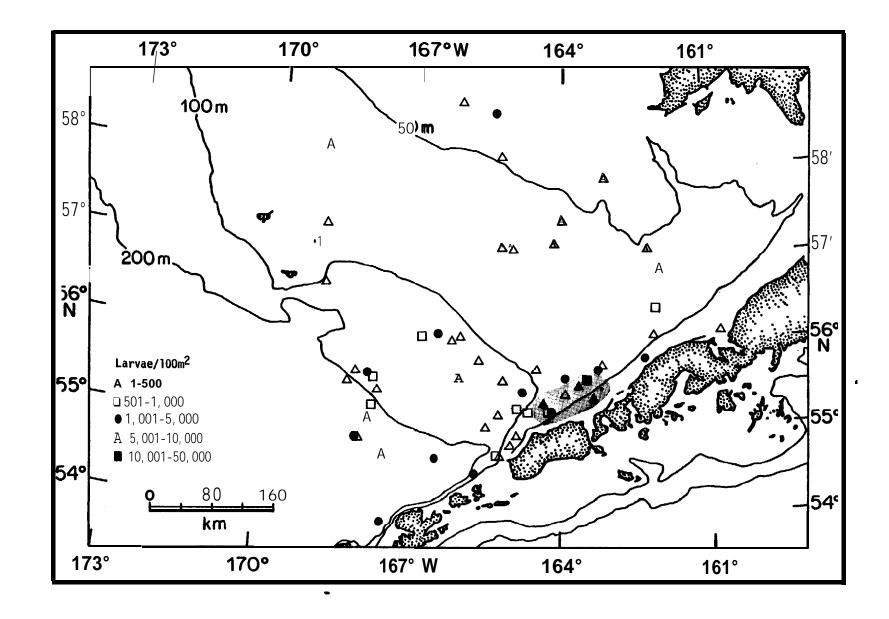


Figure 5.4 Locations and densities of **Erimacrus isenbeckii** Larvae collected in the southeastern **Bering**Sea in the years 1976-1981. Locations where no Larvae were found are omitted, but all station locations for these years are illustrated in Figures **2.1** - 2.18.

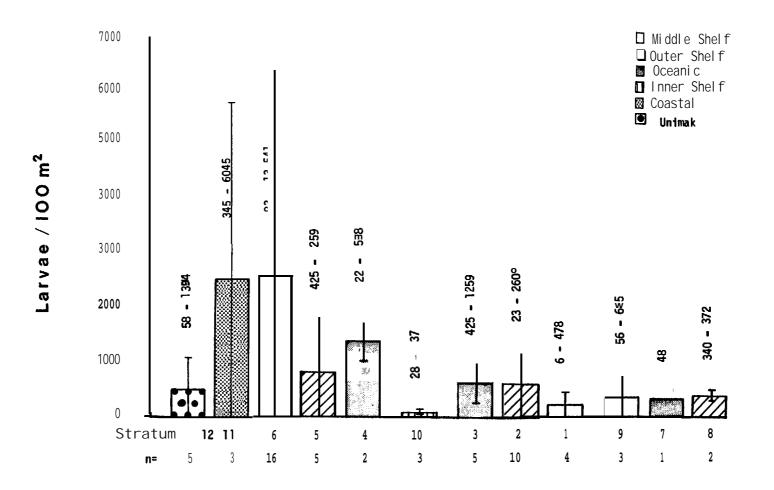


Figure 5.5 Mean density and one standard deviation of **Erimacrus isenbeckii** larvae in the southeastern Bering Sea for all years, 1976-1981, combined. The range of densi-ties from which these means were calculated are listed above each corresponding bar; while the number of samples used to calculate each mean, n, are listed on the lower axis. Stations at-which no larvae were found were not used in calculating the mean density of **Erimacrus isenbeckii** arvae within each stratum (see Fig. 2.8).

abundant in strata 6, 11, and 12 in an area near their junction at eastern **Unimak** Island and Bechevin Bay (Figure 5.4). This pattern is somewhat in accord with NMFS groundfish survey data that shows relatively low density of **female <u>E. isenbeckii</u>** throughout the southeastern Bering Sea, with somewhat greater numbers near **Unimak** Island and at the **Pribilof** Islands (Otto et al. 1982). Perhaps because few samples were collected in this latter location the density of larvae at the **Pribilofs** was very low (Fig. 5.4). However, to date there is no definitive **information** to indicate important regions of female abundance or larval hatch but nearshore areas are suspected.

Density: Mean density + 1 standard deviation, the range of densities and the number of stations at which larvae were present for each stratum are shown in Figure 5.5. Strata are labeled as to the regime (inner, middle, and outer shelf; oceanic zone; Alaska coastal and **Unimak** Island) in which they are located. Individual stations sometimes contained fairly high densities of larvae (in excess of 5,000/100m²), but commonly numbers were very low, often less than 500/100m² (Figure 5.4). Average densities were highest in strata 6 and 11 with over 2,000/100 m². But the enormous range (83-13,541 larvae/100 m² in stratum 6) and standard deviations associated with the data reflect the vagaries of interannual differences in seasonal occurrence and densities of larvae. Stations from other strata usually lacked E. isenbeckii larvae or contained them in low densities of a few hundred/100 m² (Figs. 5.4, 5.5; in comparison with values in excess of 100,000/100 m^2 for Tanner Larvae in Sec. 4.0).

Long-shelf density of <u>Erimacrus</u> larvae seemed to be greatest along the 100 m and 200 m **isobaths** of the middle shelf and oceanic regimes. Again the confluence of 50 m and 100 m isobaths just north of Unimak Island was the area of greatest occurrence and density (Fig. 5.4).

Summary

- <u>Erimacrus isenbeckii |</u> arvae were collected at 9% of all stations sampled during 1976-1981.
- 2) These larvae were generally distributed throughout the study area but their frequency of occurrence was higher near the Alaska Peninsula in the coastal, middle shelf and Unimak Is. regimes.
- 3) Mean densities of larvae were appreciably higher in the eastern region of the southeastern Bering Sea than in the central and western regions, while larval densities were very low at the Pribilofs which may reflect the fact that few samples were collected there.
- Zoeal stages were found in April through June and megalops larvae in June only.

5. 3. 2. 2 Oregoniinae (Hyas_spp., Oregonia spp.)

<u>Seasonal Occurrence</u>: Larvae of this taxon were present in the plankton from mid-April to early-October when all data were combined for years 1976-1981 (Fig. 5.3). Each larval stage appeared as follows: S1, from mid-April to mid-July; S11, from early-June to mid-July and **megalops** larvae from early to mid-July and October. This time sequence was refined somewhat based on data from 1981 that was used for molt-frequency analysis (Fig. 5.6). The samples used for this analysis, late May through about June 10, showed all **larvae** were S1 zoeae (90-99%). From June 13 to July 4 S11 were dominant, and after July 11 megalopae were the most abundant stage. Assuming that megalopae require about one month for development (similar to Tanner Larvae, Section 4.0), the majority of the population would have metamorphosed in mid- to Late-August in 1981. Add to this time about one month for S1 zoeal development, and total planktonic time for this taxon would be about 3.5 months.

<u>Distribution:</u> Larvae of this taxon were found at 42% of all stations sampled in 1976-1981. Of these stations, 77% were **collected in May** and June, which was therefore used as the time frame for analyses of **interannual** densities between strata. During May and June, larval **Oregoniinae** were most frequently (> 60% of stations) collected in strata 1, 4, 5, 9, 10 and 12, and least frequently (< 30% of stations) in strata 7, 8, and 11 (Table 5.6; See Fig. 2.8 for strata). This May/June distribution and density are shown in Figures 5.7, 5.8, and 5.9 for the years 1978, 1980 and 1981, respectively. There tend to be fewer larvae over the **middle** and inner shelf to the extent they were collected, and more along the 100m **isobath** and outer shelf. High densities are shown near western **Unimak** Island in all years (Figs. 5.7-5.9) which is likely due to the presence of <u>**Oregonia**</u> gracilis</u> spp. that were found in high abundance nearshore in 1982 (Armstrong, unpublished data).

Density: Because sampling within all strata in each year was not consistent, it is somewhat difficult to compare larval densities between

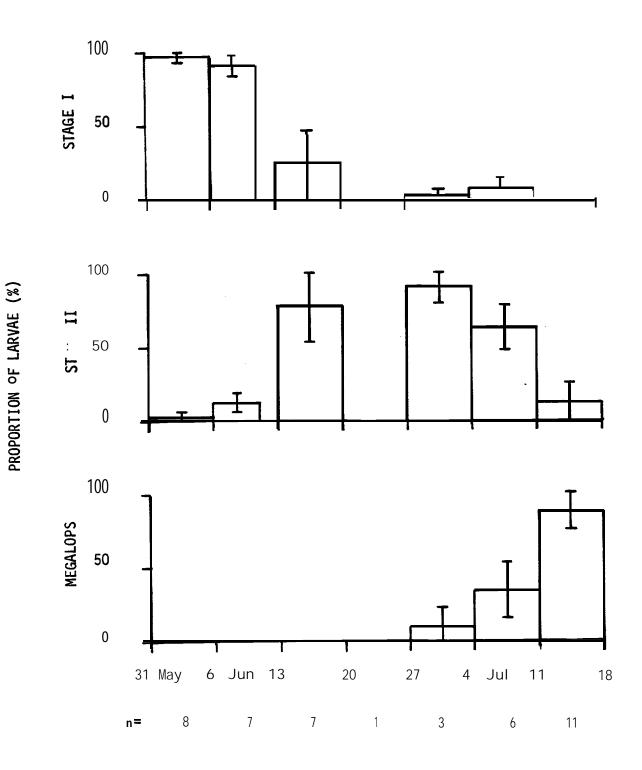


Figure 5.6 Frequency-of-occurrence of **larval** stages of Oregoniinae during weekly intervals from 31 **May** to 18 July 1981. The number of samples used to calculate the mean percent and one standard deviation of each stage for each week is equal to no **Molt** frequency from stage I to stage II to **megalopae** is about 30-35 days.

Stratum number	Frequency of larval occurrence within each stratum percent)
1	60
2	53
3	44
4	82
5	62
6	33
7	-25
8	28
9	
10	71
11	25

Table 5.6.Frequency of occurrence (as percent) within each stratum of
Oregoniinae in May and June of the combined years 1976-1981.
Percentages were derived from the proportion of all stations
each stratum at which Oregoniinae were found.

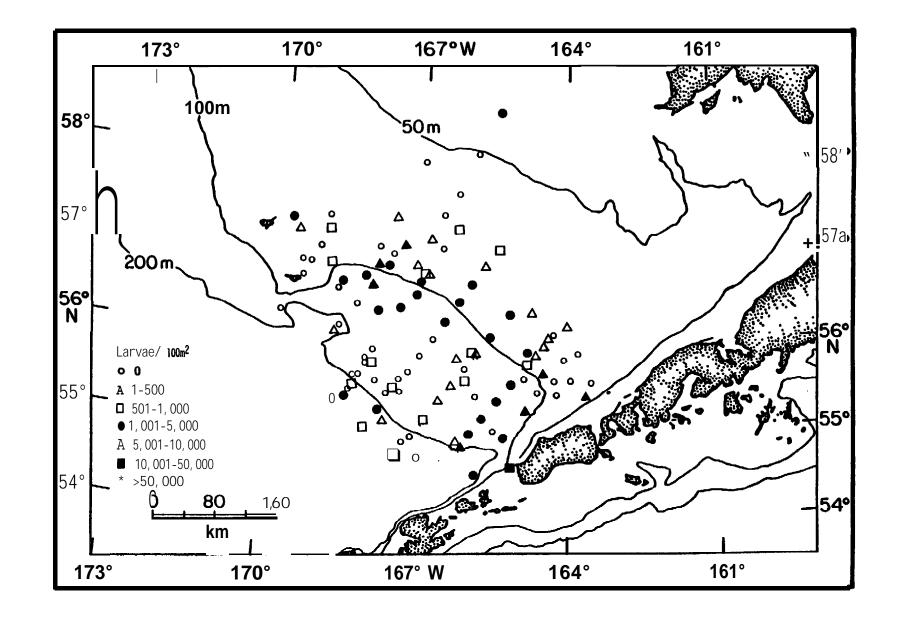


Figure 5.7 Distribution and abundance of **Oregoniinae** Larvae in May/June 1978.

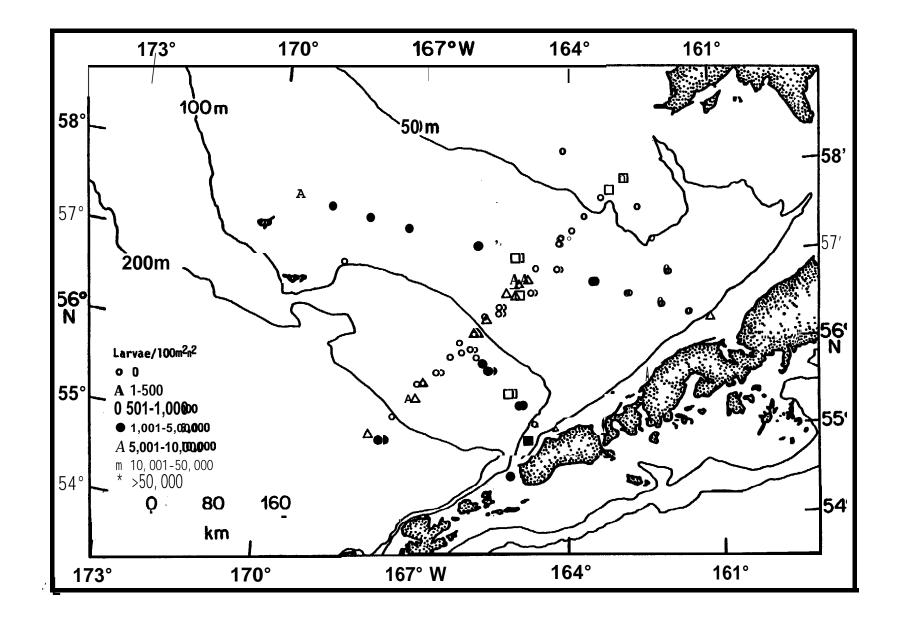


Figure 5.8 Distribution and abundance of Oregoniinae larvae in May/June 1980.

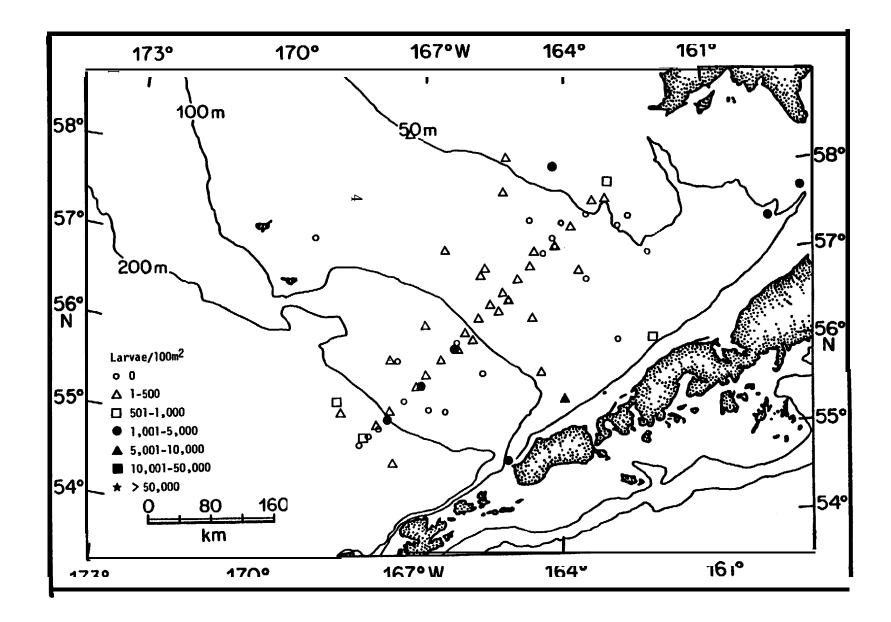


Figure 5.9 Distribution and abundance of Oregoniinae larvae in May/June 1981.

them. Contrasts can be made to highlight seasonal, regional and annual differences in densities (Figs. 5.10-5.12). These mean larval densities were only calculated when the number of stations sampled in each stratum during the time period indicated was \geq 5; consequently, densities for some strata are not given.

Some seasonal changes in regional densities were found when April was compared to May/June (Fig. 5.10 a & b) in 1978. There was apparently an earlier hatch over the middle shelf than over the outer shelf. Strata 1 and 9 had mean densities of about 1500-2500 larvae/100 m² while strata 2 and 8 had virtually none (Fig. 5.10a). In May/June larvae were widely distributed over the shelf but more abundant over the outer (1142-2222 larvae/100 m²) than the middle shelf (922 -1845 /100 m²). It is not known to what extent this shift in regional density represents differences in timing of species hatch across the shelf (Hyas spp. vs. Oregonia spp.) and/or intraspecific variability between regions (i.e. strata).

For interannual comparison of larval densities, May/June samples were available from strata 1, 2, and 6 in 1978, 1980 and 1981 (Figs. **5.10b**, 5.11, 5.12a). Although standard deviations about mean densities of each stratum are large, larval density was higher in 1978 than in either 1980 or 1981. The latter two years showed very low abundance of larvae in the plankton; densities were **2-18 times** less than those found in 1978. The nature of spawner-recruit relationships for this taxon are unknown, and so the extent to which more or less pelagic larvae indicate good or poor year-classes cannot be assessed. Still low larval abundance

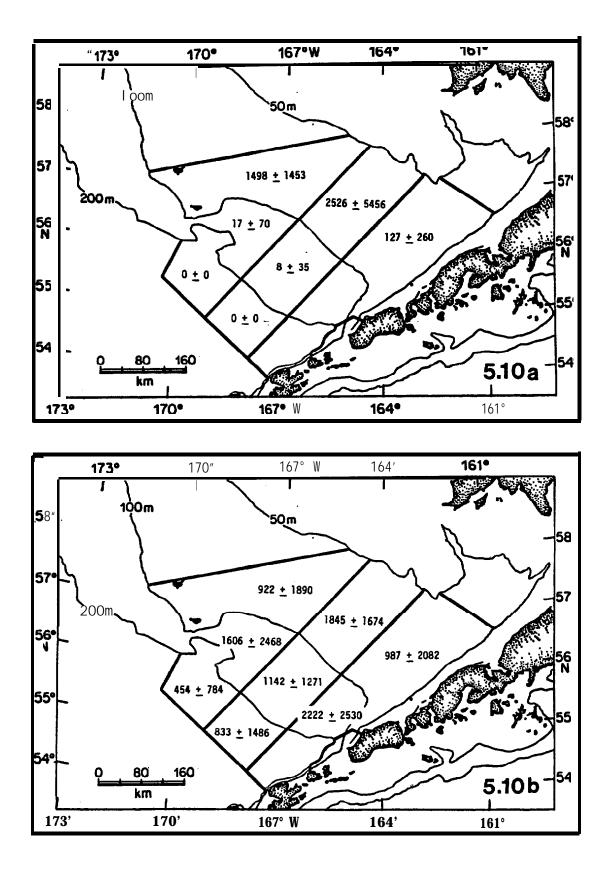


Figure 5.10 Distribution of mean density with one standard deviation of non-Chionoecetes Oregoninae larvae/100m² in the S.E. Bering Sea in April. (a) and May and June (b) of 1978. Means were calculated with zeros for stations at which no larvae were found and for only those strata in which the number of samples collected during these time periods was \geq 5.

5.11 Distribution of mean density with ore standard deviation of non-<u>Chionoecetes</u> Oregoniinae larvae/100m² in the southeastern Bering Sea in May and June of 1980. Means were calculated with zeros for stations at which no larvae were found and for only those strata in which the number of samples collected during this time period was ≥ 5.

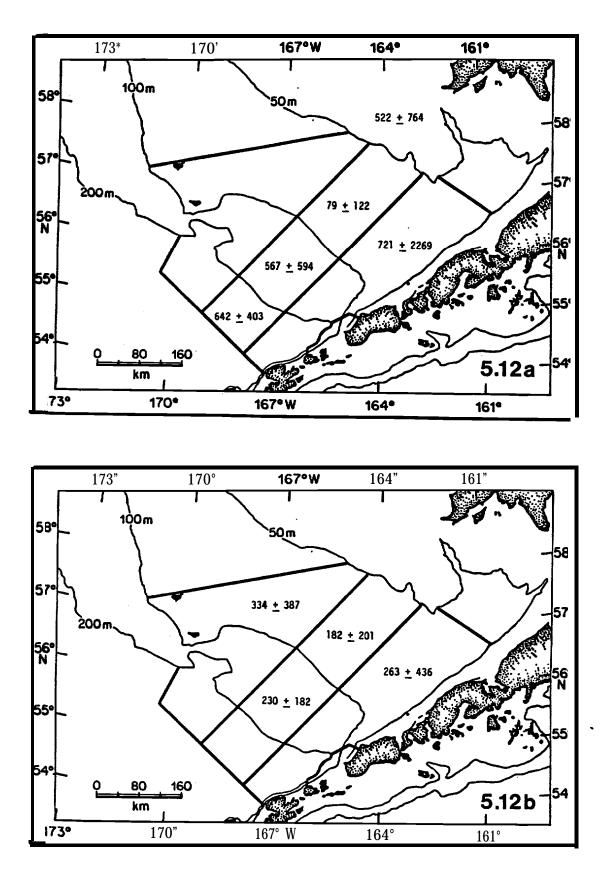


Figure 5.12 Distribution of mean density with one standard deviation of non-Chionoecetes Oregoniinaelarvae/100m² in the S.E. Bering Sea in May and June (a) and July (b) of 1981. Means were calculated with zeros for stations at which no larvae were found and for only those strata in which the number of samples collected during these time periods was \geq 5.

hints at the species' response to adverse conditions that might be exacerbated by oil pollution.

Summary

- Oregoniinae larvae were encountered at 42% of the stations sampled during this study.
- 2) The taxon is widely distributed over the southeastern Bering Sea, although densities appear to be greater seaward of the 100 m isobath over the outer shelf regime and shoreward near Unimak Island.
- Densities varied between areas within a year. Hatching may occur earlier in April over strata of the middle shelf and in May over the outer shelf.
- 4) **Interannual** comparisons showed that larval density was similar in 1980 and 1981, which were both low years compared to 1978.

5.3.2.3 Pinnotheridae

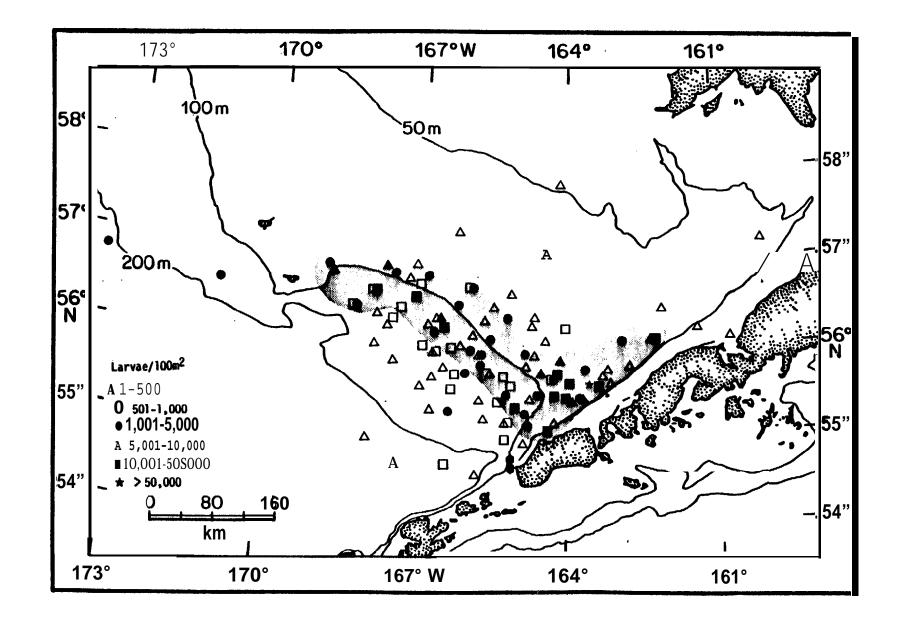
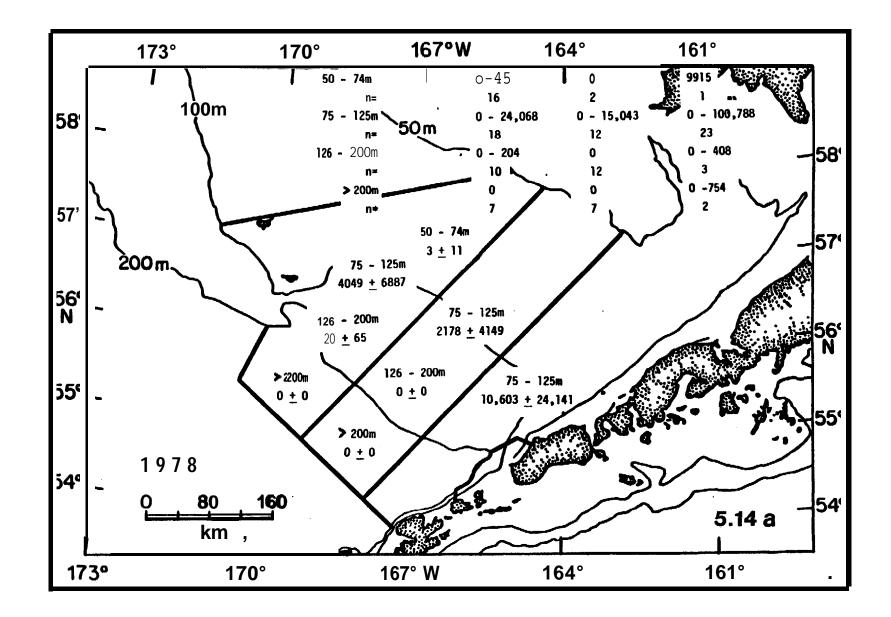
<u>Seasonal Occurrence:</u> Zoeae of this family were present for the total length of the spring-summer sampling periods of the years 1976 to 1981, which was a period of 14 weeks (Fig. 5.3). Because individual **zoeal stages** of **the Pinnotheridae** could not be identified, the seasonal occurrence of all **zoeal** stages combined is represented. **Megalops** larvae of this taxon appeared one year in late-June.

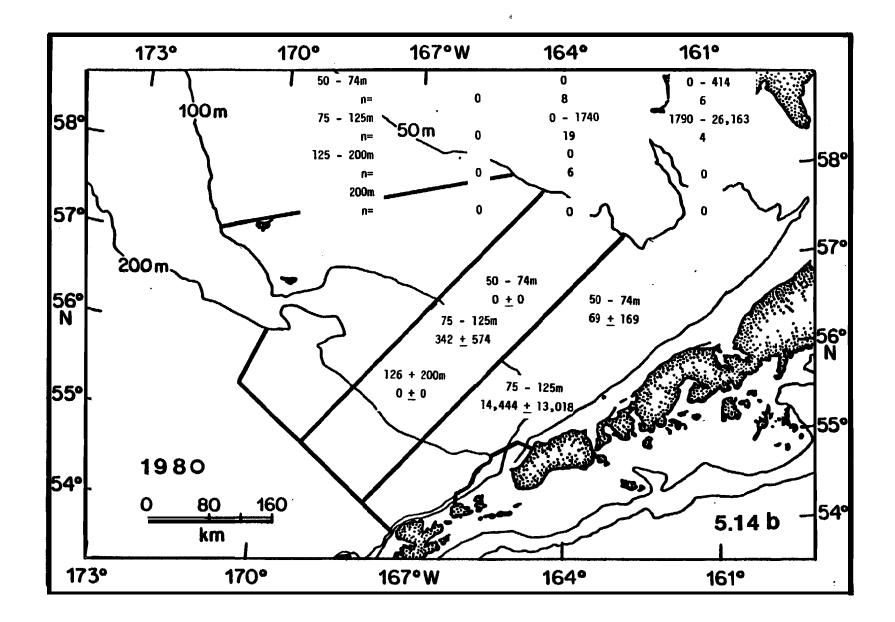
<u>Distribution and Density</u>: Considering the wide geographic range over which zooplankton samples were collected between 1976-1981, **Pinnotheri**dae are more narrowly distributed than some other taxa. They were found **at** 21% of all stations sampled and greatest densities were found on both sides of the 100 m **isobath** from St. George to **Unimak** islands (Fig. 5.13). Densities were also high near Amak Island between Bechevin Bay and **Izenbek** Lagoon. Considering the relationship between this family of crab and bivalve molluscs, larval crab distribution is somewhat in accord with **infaunal** distribution and abundance of bivalves in the south*eastern* Bering Sea (McDonald et al. 1981). The frequency-of-occurrence of pinnotherid larvae within strata is shown in Table 5.7 and reflects high abundance in strata 2, 5, and 6.

The pattern of larval distribution shown in Figure 5.13 was further analyzed by averaging **larval** densities within depth intervals of 50-74 m, 75-125 m, 126-200 m and > 200 m for the years 1978, 1980 and 1981 (Figs. 5.14a, b, c). Most larvae occurred between 75-125 m where mean densities in 1978 ranged from 2178 to 10,603 larvae/100 m² (Fig. 5.14a). There was an obvious drop in larval density both shallower and deeper than this depth interval in all years analyzed (Figs. 5.14 a, b, c), where densities were zero to a few hundred larvae/100 m². Interannual differences in density during May/June were difficult to assess but there is an indication of reduced density in the 75-125 m interval of strata 1 and 2 in 1980 and 1981 (about 200 larvae/100 m²; Figs. 5.14 b and c) compared to 1978 (2178/100 m²).

Summary

 Pinnotheridae larvae were collected at 21% of all the stations sampled during 1976-1981.


Figure 5.13 Locations and densities of **Pinnotheridae larvae** collected in the southeastern **Bering** Sea in the years 1976-1981. Locations where no larvae were found were omitted, but all station locations for **these years** are **il ustrated** in Figures of ection 2.0.

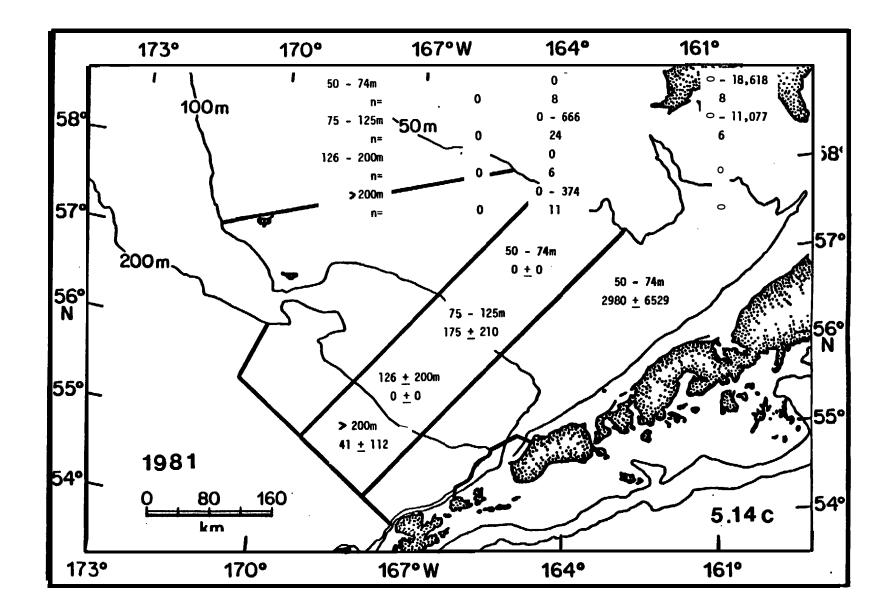

Stratum number	Frequency of occurrence within each stratum percent)
1	25
2	38
3	8
4	18
5	57
6	67
7	8
8	20
9	18
10	5
11	25
12	33

Table 5.7. Frequency of occurrence (percent) within a stratum of Pinnotheridae larvae in May and June **of** the years 1977-1981 combined.

Figure 5.14 Cross and long-shelf pattern of mean density with ± 2 one standard deviation of **Pinnotheridae** larvae/100 m⁻ in the southeastern Bering Sea in May and June of 1978(a), 1980(b) and 1981(c). The depth interval for which means were calculated are listed above each mean in the general vicinity of their occurrence; while the range of density and the number of samples, n, collected at each interval are listed above each region. Means include both zero and positive stations. **Only** those depth intervals in which **the number of** positive samples collected is ≥ 4 (n) are included.

- 2) In May and June of all years combined, the **majority** of these **larvae** were distributed between the 75 and 125 m depth interval.
- 3) A significantly higher mean density of larvae was found in water 75-100 m deep in the eastern region of the southeastern **Bering** Sea during **May and** June of the year 1978 than **in** 1980 or 1981.
- High densities ranging from 13,675 to 100,788 were found in May and June throughout the major area of distribution in the years 1978, 1980, and 1981.

5.3.2.4 <u>Cancer</u> spp.

<u>Seasonal Occurrence</u>: The six **larval** stages of <u>Cancer</u> spp. appeared in the plankton samples collected in the years 1976 to 1981 combined from mid-April to early-October, **which** is a period of 24 weeks (Fig. 5.3). Individual larval stages were collected during this time period as **fol**lows: **SI**, from mid-April to mid-July; **SII**, from late-April to **mid**-July; S111 from early June to mid-July and October; SIV in mid-July; **SV** in late-June, **mid-July** and October, and **megalops larvae in** late-June **and** October.

<u>Distribution and Density</u>: Larvae were found in 13% of all samples **sort**ed from 1976-1981. The frequency-of-occurrence was highest in strata 4, 5, and 12 (73%, **57%**, and 67%, respectively) and was low in all others **(Table** 5.8). <u>Cancer</u> larvae were most abundant near Unimak Island and over the shelf break west of Unimak Pass (**Fig.** 5.15). **High** densities along western Unimak Island was likely due to larvae of <u>Cancer oregonen</u>-<u>sis</u> where adults are common in rocky cobble substrate, and larvae in

Table 5.8. Frequency of occurrence (percent) within each stratum of Cancer spp. larvae in May and June of the years 1976-1981. Depicted is the percent of all stations within each stratum at which <u>Cancer</u> spp. were found.

Stratum number	Frequency of occurrence within each stratum percent)		
1	2		
2	25		
3	19		
4	73		
5	57		
6	18		
7	0		
8	3		
9	0		
10	5		
11	13		
12	67		

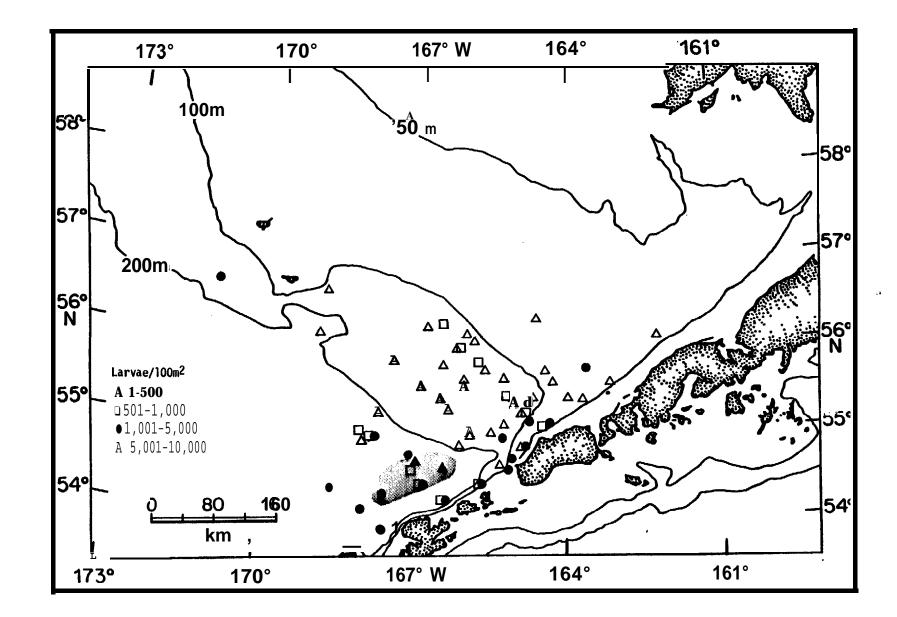


Figure 5.15 Locations and densities of <u>Cancer</u> **spp.** larvae collected in the southeastern Bering Sea in the years 1977-1981. Locations where no larvae were found were omitted, but all station locations for these years are illustrated in Figures of Section **2.0**.

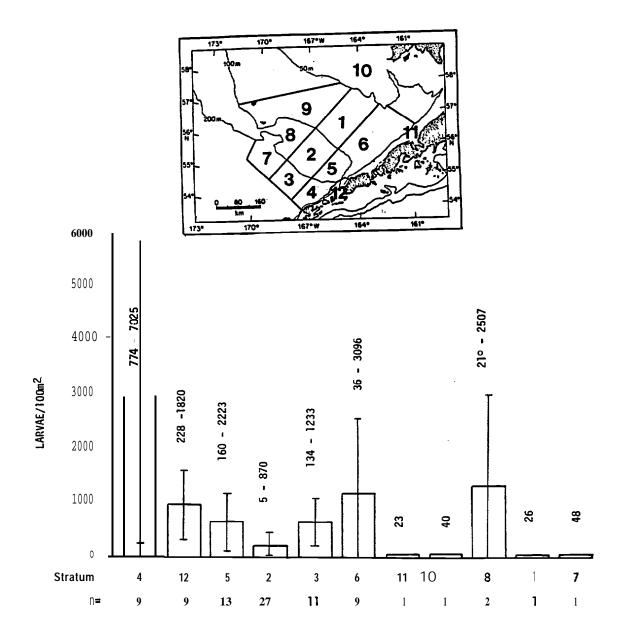


Figure **5.16** Mean density and one standard deviation of <u>Cancer</u> spp. larvae in the southeastern Bering Sea for all years, 1977-1981, combined. The range of densities from which these means were calculated are listed above each corresponding bar; while the number of samples used to calculate each mean, n, are listed on the lower axis.

excess of 100,000/100 m² were found in 1982 (Armstrong, unpublished data).

Mean densities calculated by stratum were highest in stratum 4 (about $3000/100 \text{ m}^2$) and less, but comparable, in strata **3,5,6,8**, and 12 (about **500-1100 m²**) (Fig. 5.16). The highest single density of 7025 larvae/100 m² occurred in stratum 4.

Summary

- <u>Cancer</u> spp. larvae were collected at 13% of all stations sampled during this study.
- Larvae were generally most abundant nearshore of Unimak Island and west over the shelf break.
- 3) The highest density found was over 7000/100 m² but means between 1000-3000/100 m² were more typical of high abundance areas.

5. 3. 2. 5 Telemessus cheiragonus

<u>Seasonal Occurrence</u>: These larvae were collected in the plankton from late-April to late June, a total period of 10 weeks, when data were combined from the years 1977-1981 (Fig. 5.3). Individual larval stages were present during these sampling periods as follows: S1 in mid-May; S11 in mid-April, mid-May, and late-June; S111 in late-May and late June; **SIV** in mid-May and early-June; and SV in early and mid-May. **Megalops** larvae were never observed in the plankton samples of this study.

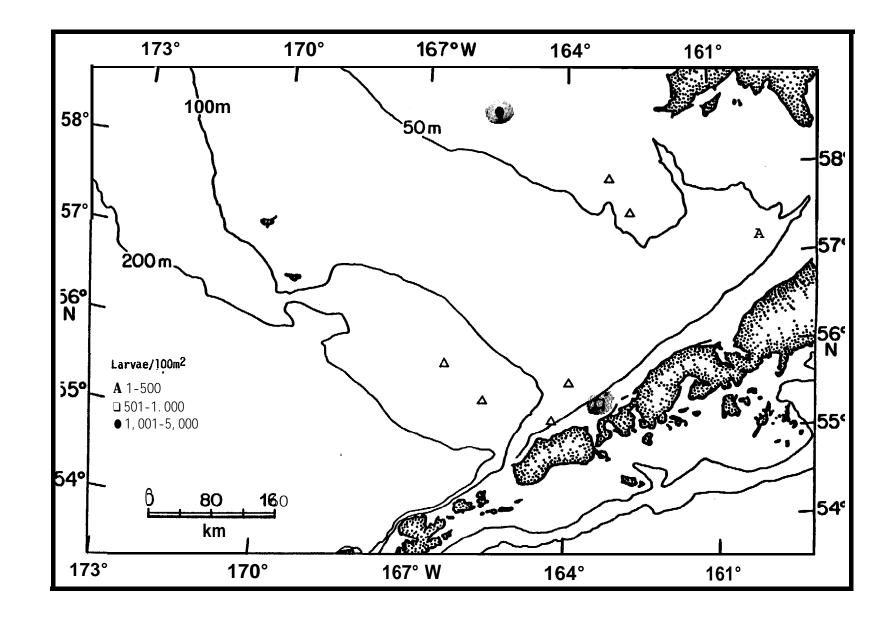
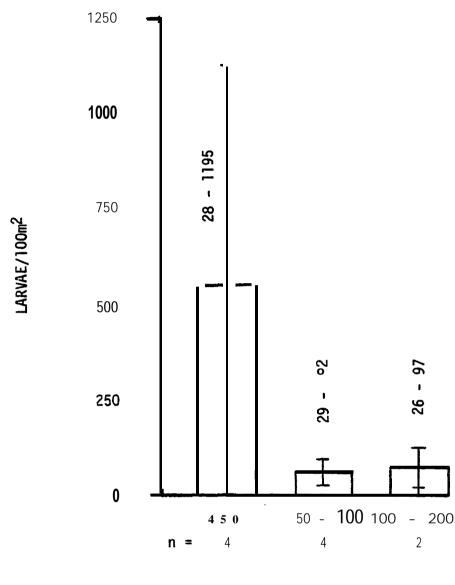



Figure 5.17 Locations and densities of <u>Telmessus cheiragonus</u> larvae collected in the southeastern Bering Sea in the years 1976-1978 and 1981. Locations where no larvae were found were omitted, but all station locations for these years are illustrated in Figures of Section 2.0.

Table 5.9.	Frequency of occurrence (percent) of <u>Telmessus_</u> cheiragonus_
	larvae within each stratum in May and June of the years 1976-1981 combined.

Stratum number	Frequency of occurrence within each stratum percent)		
1	0		
2	1		
3	0		
4	0		
5	5		
6	7		
7	0		
8	0		
9	0		
10	14		
11	13		
12	0		

.

DEPTH INTERVAL (m)

Figure 5.18 Mean density and one standard **deviation** of <u>Telmessus cheiragonus</u> | arvae collected at stations with water depths ranging from 40-200 m in the southeastern Bering Sea for all years, 1976-1981, combined. The range of densities from which these means were calculated are listed above each corresponding bar; while the number of samples used to calculate each mean, n, are listed on the lower axis. Stations at which no larvae were found were not used in calculating the mean density of <u>Telmessus</u> <u>cheiragonus</u>. <u>Distribution and Abundance</u>: Larvae of the species were found in only 2% of all stations, the lowest percentage of **all non-<u>Chionoecetes</u>** Brachyura taxa studied. This is reflected by the low frequency-of-occurrence within each stratum that never exceeded **14%** (Table 5.9). Little can be said of their distribution other than the surprising scarcity (Fig. 5.17). Since **Izembek** Lagoon is known to support large populations of adults (McRoy 1966), higher **larval** densities in that area were expected. However, the majority of all larvae found were at stations less than 50 m deep **nearshore** (Fig. 5.18), where the mean density was 552/100 m².

Summary

- Larvae were only collected at 2% of all stations sampled during 1976-1981.
- No larvae were collected in water deeper than 200 m, near the Pribilof Islands or in the central region of the middle shelf.
- 3) Distribution and density appear related to depth since the highest relative frequency-of-occurrence and the highest relative mean density of these larvae were found in water shallower than 50 m.

5. 3. 2. 6 Acanthonychinae and Pisinae

<u>Seasonal Occurrence</u>: Larval stages of these subfamilies were found in the plankton from late-April to mid-July, a total period of 12 weeks, when their appearance in all the sampling periods of the years 1976 to **1981** were combined {Fig. 5.3}. Individual **]arva]** stages were present during these sampling periods as follows: S1, from late-April to

early-June; S11 from early-June to mid-July and the **megalops** larvae from mid-June to mid-July.

<u>Distribution and Density</u>: Larvae were collected in 5% of all samples, most in stratum 12 at the western **tip** of **Unimak** Island (Table 5.10 and Fig. 5.19). Larvae of the taxa were **rarely** found in the water deeper than 200 m **and** never near the **Pribilof** Islands. Mean densities were low, less than 500 larvae/100 m² in all of the eight strata where they were found (Fig. 5.20). The highest density found was 1536/100 m² in stratum 12 and the **lowest** was 13/100 m² in stratum 2.

Summary

- Larvae were only collected at 5% of all stations sampled during this study.
- 2) No larvae were collected near the Pribilof Islands.
- 3) The stratum with the highest relative frequency of occurrence of larvae and at their greatest density was stratum 12, **Unimak** Pass.

Stratum number	Frequency of occurrence within each stratum percent of total stations)		
1	0		
2	11		
3	3		
4	18		
5	19		
6	4		
7	8		
8	0		
9	0		
10	5		
11	0		
12	83		

Table 5.10. Frequency of occurrence (percent) of larvae of the subfamilies **Acanthonychinae** and/or **Pisinae** within a stratum in May and June of the years 1976-1981.

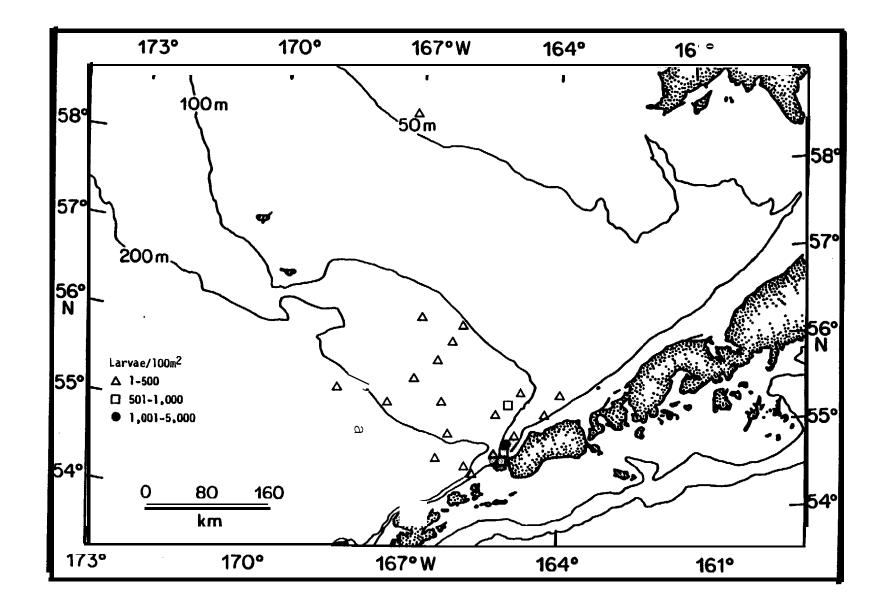


Figure 5.19 Locations and densities of Acanthonychinae and/or Pisinae larvae collected in the southeastern Bering Sea in the years 1976-1981. Locations where no larvae were found were omitted, but all station locations for these years are illustrated in Figures of Section 2.0.

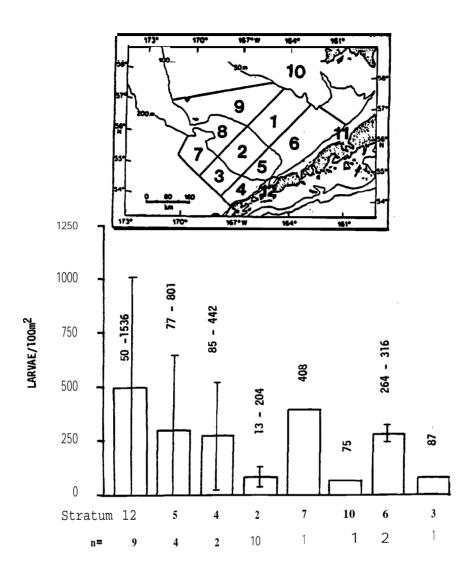


Figure 5.20. Mean density and one standard deviation of Acanthonychinae and/or Pisinae Larvae in the southeastern Bering Sea for all years, 1976-1981, combined. The. range of densities from which these means were calculated are listed above each corresponding bar; while the number of samples used to calculate each mean, n, are listed on the lower axis. Stations at which no larvae were found were not used in calculating the mean density of Acanthonychinae and/or Pisinae larvae.

6. O DISTRIBUTION AND **ABUNDANCE** OF **SHRIMP** LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON **PANDALID** SPECIES

Janet Armstrong

6.1 Introduction

Bering Sea shrimps, suborder Natantia, belong to at least six famillies of decapod crustaceans. In addition to the commercially important family Pandalidae, represented by 5 species in the southeastern Bering Sea, other families are Hippolytidae and Crangonidae (Butler 1980), and possibly a species of the family Penaeidae (K. Coyle, U. of Alaska, IMS personal communication). Feder and Jewett (1980) give an extensive list of the adult species found in this area that includes members of the families Oplophoridae and Pasiphaeidae. (From all samples sorted to date only a singleoplophorid larva was found and these families are thus of no consequence in this report.) Butler's monograph (1980) on Pacific Coast shrimp gives ranges for many adults which were added to Feder's list (see Appendix A).

Pandalidae are the only shrimp of direct commercial importance and have thus received most attention in the literature. Thorough larval descriptions for pandalid populations of different geographic locations are given by Berkeley (1930) for British Columbia, Pike and Williamson (1962) for the North Sea, Kurata (1964c) for Hokkaido, Japan, and Rothlisberg (1980) for the Pacific northwest coast (see Appendix B for complete list of references on larval shrimp). For identification of Bering Sea pandalid larvae the following comprehensive species descriptions were used:

Pandalus	borealis	- Haynes	1979	
Pandalus	goniurus	- Haynes	1978a	
Pandalus	montagui	tridens	- Haynes	1980
Pandalus	stenolep	<u>is</u> - Need	ler 1938	
Pandalops	sis dispar	- Berke	ley 1930	

6.2 Pandalidae

6.2.1 **Pandalus** borealis: Life History and General Biology

P. borealis, an amphiboreal species, ranges from Point Distribution: Barrow, Chukchi Sea southwest through the Okhotsk Sea to the Sea of Japan and Korea, and southeast throughout the **Bering** Sea and Gulf of Alaska to the mouth of the Columbia River. In addition it is found in the Barents Sea, the North Sea, and from the Gulf of Maine to western Greenland in 16-1380 m depths (Butler 1980). P. borealis is thought to be the bridge species between the Atlantic and Pacific Ocean pandalid groups Fishable populations occur between 54-400 m depths (Rasmussen 1967). (Ronholt 1963), but the species is often dominant between 70-150 m at the outer edge of the continental shelf where bottom temperatures range between **1.8°-3.8°C (Ivanov** 1969). Post-larval stages can tolerate a wide temperature range from -1.68° to 11.13°C (Allen 1959) while larvae can survive an upper limit of 14°C (Poulsen 1946 in Butler 1971). Haynes and Wigley (1969) describe P. borealis preference for soft mud, sand and silty substrates with relatively high organic content (0.5-1.5% organic carbon) in the Gulf of Maine. Survival is optimal at salinities from 25.9 to 35.7°/00 (Allen 1959; Butler 1964).

<u>Reproduction:</u> Like **all** Alaskan **pandalid** shrimp, <u>P</u>. <u>borealis</u> are **protandric** hermaphrodites (Berkeley 1930). Animals first achieve **sexual**

maturity as males at age 3.5 years in the Bering Sea and remain breeding males for two seasons. After a **transitional** period they subsequently develop **female** characteristics **by** 5.5 years (**Ivanov** 1969; Butler 1971). Females can mature early and circumvent the male phase **entirely in** populations found **in** southern parts of the range (Allen 1959; Butler 1964), but this event has not been recorded in the Bering Sea (**Ivanov** 1969). Rasmussen (1967) gives comparative reproductive data for Norwegian populations and Haynes and **Wigley** (1969) summarize this information, adding data on **ovigery** for **Maine** shrimp. Sexual development **is hormonally** controlled and has been studied by Carlisle (1959). Table 6.1 compares life history data of **P.** borealis and other pandalid species.

Colder water temperatures of the Bering Sea slow growth and development, extend the **ovigerous** period, and greatly determine the seasons of spawning and hatching (Butler 1971). The normal **life** span for <u>P. borealis</u> in the S.E.Bering Sea can be up to 6 1/2 years (Ivanov 1969) compared to 3 1/2-4 years for populations in the warmer water (North Sea, Allen 1959; British Columbia, Butler 1964).

Ovarian development occurs in mature females (age **5 years**) in the summer, followed by spawning from August to mid-September in the southeastern Bering Sea. Eggs are extruded, fertilized and carried on the **pleopods** through the winter and hatch from April through mid-May (NPFMC 1978). The average **ovigerous** period lasts from 7.5 to 9.5 months. Females from Kachemak **Bay, Alaska** carry approximately 914 eggs per **clutch** (Haynes and **Wigley** 1969), but a range of 300-3400 eggs, has been noted for different P. <u>borealis</u> populations world-wide (Allen **1959; Haynes** and

	Sexual maturity			Reproduction		
	Depth pre- ference (m)	Mafe Female (mmu) (mmu) Size Ale Size Age	Maximum age year	Fecundity Eggs/clutch	Ovigerous period	Larval hatch
<u>P. boreali</u> s 2,3	90-120	120 TL 3 1/2 150 TL 5 1/2 19.5 CL 25 CL	6 1/2	914 1631 2150	NovMar.	Apr., May
<u>P. goniurus</u> ^{4,5}	38-124	62 TL 1 78 TL 2 13 CL 16.5 CL 2	2 1/2	2000	NovApr.	
P. tridens ⁴	200-470	83 TL / 1/2 123 TL 2 1/2- 15 CL / 1/2 22 CL 3	4		NovApr.	Apr.
<u>P. stenolepis⁴</u>		76 tl 82 TL 14 CL 18 CL			NovApr.	
Pandalopsis ² ,3,6 dispar	>200	182 TL 1 1/2 208 TL 2-4	4	1129, 4150	Al 1 year	Nar. Apr.

Table 6.1. Comparison of life history and reproductive information for pandalid species.

References: Data re pesent average length and age. NPFMC: Fishery Management Plan and E. 1.S. for the shrimp fishery in the Bering Sea, November 1978. McBride 1974 - Kachemak Bay Ak. stocks (unpubl i shed). Butler, T. 1980 - Strait of Georgia, B.C. stocks. McLaughlin, P. 1963 - S.E. Bering Sea stocks. Hynes, F. 1930 - S.E. Alaska stocks.

Wigley 1969; Rasmussen 1953 from Butler 1971). No fecundity data are available for the southeastern Bering Sea. **Stickney** and Perkins (1980) are currently studying the fluctuating fecundity of Maine stocks of P* <u>borealis</u> which, after declining in the early 1970's, seem to be rebuilding. Horsted and Smidt (1956 from **Butler** 1980) report that a parasite <u>Hemiarthrus abdominalis</u> can cause as much as 50% reduction in the number of eggs carried by <u>P. borealis</u> females in the North Atlantic Ocean.

Larval Development: P. borealis has 5 planktonic zoeal stages and one **megalops** stage (often referred to as a "mysid" stage) before molting to a juvenile (Haynes 1979). Larvae grow from 6.7 mm mean total length at Stage I to 18.5 mm at the megalops stage. The average mean growth increment per molt is 2.36 ± 1.04 mm total length. Duration of planktonic life is approximately 3 months according to Berkeley (1930). In the North Sea, Allen (1959) found P. borealis molts as many as 14 times from larval metamorphosis to the male phase (from 21 to 93 mm total body At age 1.5 years, the **Pribilof** stocks are all immature males lenath). with a carpace length (CL) of 12-13 mm (Ivanov 1969). At age 2.5 years (CL = 18-19 mm) some shrimps become sexually mature males and participate in autumn breeding for **the** first time. Allen (1959) found that 5 molts are necessary before males exhibit mature sex characteristics. Most shrimp in the 3+ and 4+ age classes (CL = 22mm and 25 mm, respectively) are breeding males with a small proportion as females. By 5.5 years of age (max CL = 27-32 mm) all shrimp are females. Few shrimp survive to 6.5 years and according to Ivanov (from NPFMC 1978), all at

699

·• :.

this age are non-reproducing or sterile females. Usually females undergo 3 molts between ovigerous periods (if they produce more than one brood) but do not molt from the time the eggs are extruded until 2 weeks after the zoeae hatch. The majority of Bering Sea <u>P</u>. <u>borealis</u> have only one brood (Ivanov 1969) and it is this last age class (5.5-6.5 yr) that supports the fishery.

e

<u>Food Habits</u>: Food habits of **Zoeae** were studied by **Stickney** and Perkins (1980). Preliminary **findings indicate** that diatoms may be a major food source for newly hatched **Zoeae** in Maine and the timing of **phytoplankton** blooms may be crucial for early stage survival. **Older** larvae rely more on a zooplankton diet. Paul et al. (1978) performed prey density and feeding response experiments with Stage I (S1) <u>P</u>. <u>borealis</u>. Juvenile food **habits** received **little** attention. Adult diets consist of both **benthic** mollusks, detritus, small crustaceans, **poly**chaetes, echinoderms, and protozoans, and pelagic copepods, **euphausiids**, **mysids** and other shrimp and crab larvae (Barr 1970; Butler 1971). Pelagic organisms are caught during diel vertical migrations when shrimp leave the **bottom** at **dusk**, disperse throughout the water column, and return **to** the bottom by dawn (Barr 1970).

<u>Ontogenetic Migrations</u>: Life stage and seasonal migrations of southeastern Bering Sea stocks are also assumed to occur. Stage I-III zoeae remain generally within the area of hatch but thereafter migrate to shallower water (46-64 m) where metamorphosis occurs and they spend their first summer as juveniles (Berkeley 1930, for Canadian stocks); thereafter they move to deeper water to join the adults. **Ovigerous** females in the

` 700

Gulf of **Maine** were found to move into shallower water as eggs developed (Haynes and **Wigl** ey 1969). **Pribilof** populations affected by winter cooling migrate" 30-40 miles toward the outer shelf from **85-100** m depths to 95-120 m depths where temperature is warmer and more stable (**Ivanov** 1969).

<u>Predators:</u> Principal predators include many commercial fish species: Pacific cod, white **pollock (Feder** 1978), sand sole (Miller 1967), **silver** and white **hake, halibut** and dogfish (**Butler** 1980). Grey and humpback whales, marine birds (NPFMC 1978) and harbor seals (Lowry et al. 1978) also prey on **pandalid** shrimp.

Competitors for the same habitat Include <u>Pandalus tridens</u> and <u>Eual-</u> <u>us macilentus</u>. It was theorized in "A Review of the First Northern Hemlsphere Pandalid Shrimp Workshop" held in Kodiak, Alaska (Frady 1981), that after depletion by commercial fisheries (i.e., Japanese overfishing the Pribilof area stocks 1961-63) or by predators, <u>P. borealis</u> shrimp stocks may have been replaced by other competitor species of fish and shrimp.

6.2.2 Commercial Fishery

Historically the southeastern Bering Sea **fishery** has been dominated **by** Japan and the **USSR.** After catches of Japanese flounder trawlers indicated large populations of <u>P. borealis</u> in 1960, the Japanese targeted on shrimp stocks northwest of the **Pribilof** Islands and in 1961 took 14,000 metric tons (MT). Catches peaked in 1963 at 30,000 MT and declined thereafter until the area was abandoned in 1969 **(NPFMC** 1978). Overfishing of

Bering Sea stocks during the early 1960's caused severe depression and slow recovery of stocks and there has been no significant fishery since 1966 (Paul Anderson - NOAA Cruise Results, Cruise No. 79-02, R/V Sunset Bay). In 1975 and 1976 3,500 and 1,700 MT of shrimp were taken by the Japanese from along the 100m isobath on the continental shelf edge. Biomass estimates in 1978 stood at 30,600 MT (69 million Ib) for an area of 24,000 square nautical miles (nm²) northwest of the Pribilofs (NPFMC 1978). The maximum sustainable yield (MSY) from this population was estimated to be 11,000 MT but the current Allowable Biological Catch (ABC) has been set at 1,000 MT. This low quota reflects the current management goals of giving these stocks time to rebuild, and encouraging the maintenance of a healthy resource at historic levels which then could promote the development of a strong domestic shrimp fishery. The current ABC level will **allow** the management agency **to** assess annual catch-per-unit-effort and collect biological specimens to construct ageclass structure of the population.

Stock estimates for P. <u>borealis</u> surveyed in 1979 over an extended area of 30,400 nm² (Pribilofs to St. Matthew Island and out to the U.S.-U.S.S.R. convention line) indicate a mean biomass estimated **at** 63.56 x 10⁶ kilograms (140 million lb with an 81)% confidence interval of 120.5 -159 million lb; P. Anderson, NMFS, Kodiak AK correspondence, Oct. 1981).

The above biomass estimates are based on an area northwest of the St. George Basin. Other estimates close to the St. George Basin come from 1979 NOAA/NMFS Cruise Results (Cruise No. OR-79-03 R/V Oregon) of a

shrimp survey conducted in Unalaska, Makushin and Pavlof Bays. Biomass estimates for Unalaska Bay for 1979 were 0.95 million lbs for P. <u>borealis</u> compared to 8.1 million lbs in 1978. Population estimates for 1979 were only 10-35% of 1978 estimates indicating a substantial decline.

No biomass estimates have appeared in the literature recently for the St. George Basin shrimp populations, and no commercial shrimp fishery is presently centered in that area.

6.2.3. Other Pandalus spp.

Other pandalids in the southeastern Bering Sea include <u>P. goniurus</u>, P. <u>tridens</u>, <u>P. stenolepis</u> and <u>Pandalopsis_dispar</u>. The range of <u>P.</u> <u>goniurus</u>, the flexed pandalid, is from the Chukchi Sea and Bering Sea to Puget Sound in 5-450 m (Butler 1980). In southeastern Bering Sea this shrimp prefers depths of 38-124 m and a mud to coarse sand bottom habitat at -. 3° to 6.4°C (McLaughlin 1963). Very few <u>P. goniurus</u> zoeae have been found in our samples (see Section 6.6.1, Results and Discussion).

<u>P. tridens</u>, the yellow leg pandalid, ranges from the Bering Sea to San Nicholas Island, California, in 5-1984 m (from Butler 198(1). Adults prefer depths of 200-470 m and rocky habitats. The reproductive biology for <u>P. tridens</u>, also a protandric hemaphrodite, has been studied for Canadian populations (Butler 1964) but remains fragmentary for the Bering Sea. Haynes' (1980) study of <u>P. tridens</u> larvae show growth from 3.2 mm Total Length (TL) for S1 to 13.0 mm TL for SVII and megalops. No data are available for age and size at maturation for males and females

in the Bering Sea but Butler (1980) **gives** this information for a Canadian population (see **Table 6.1**). <u>P. tridens</u> was caught Incidentally at only one station during the 1979 **pandalid** survey cruise in the southeastern Bering Sea from the **Pribilof** to St. **Matnew** Island group and out to the U.S. - u.S.S.R. convention line (NUAA 1979, Cruise Results No. 79-02, R/V <u>Sunset Bay</u>).

The rough patch shrimp, P. <u>stenolepis</u>, is known to occur from Unalaska Island to Hecata Bank, Oregon in 49-229 m depths over muddy bottoms (Butler 1980). Reproductive biology is poorly known fOr Canadian populations (Butler 1964) and unstudied for the southeastern Bering Sea but it is assumed to follow a typical pandalid pattern. Needler (1938) gives desceiptions of 6 larval stages plus a first postlarva. Larvae grow from 5 mm TL at S1 to 14 mm TL at SVI in British Columbia. The ovigerous period lasts from November until April in Canadian waters (Butler 1980). No commercial concentrations of this species are known to occur in the North Pacific.

The side-stripe pandalid, <u>Pandalopsis dispar</u>, prefers greater depths (>200 m according to Butler 1980) than P. <u>borealis</u>, and ranges from the **Pribilof Is.** to Manhattan Beach, Oregon (Butler 1980). Growth and reproduction were studied for Canadian populations (Berkeley 1930; Butler 1964) but no information is available for Bering **Sea** stocks. Berkeley (1930) describes 5 or 6 larval stages of <u>P. dispar</u> growing from 10 mm TL at S1 to 30 mm TL at SV. In Canadian populations males matured at 18 months and were reproductively active for two seasons. Transition to females occurred by age 3 yr and deatn followed **the** hatching of a

single brood (Berkeley 1930). It is assumed that the colder waters of the southeastern Bering Sea retard growth and maturation and prolong the life span. Harris et al. (1972) studied the relationship between carapace length and egg number. Puget Sound <u>P. dispar</u> were found to have a mean egg count of 904 eggs/clutch versus 4,150 eggs/clutch found by Hynes (1930) in a southeastern Alaskan population (Table 6.1). Also, <u>P. dispar</u> females were found to be smaller at the same age in Puget Sound than in Southeastern Alaska. Commercial quantities of <u>P. dispar</u> have been taken by trawlers off the British Columbia coast but usually <u>P</u>. dispar occurs in mixed catches with <u>P</u>. borealis in Alaska.

<u>Comments on Bering Sea Pandalids</u>: The ecological and potential commercial importance of **pandalids** in the southeastern Bering Sea is difficult to ascertain and the following points should be stressed.

1. NMFS **groundfish** trawl surveys routinely underestimate sizes of shrimp stocks due to the large mesh size of their nets.

2. Little attention has been given these families in studies of benthic ecology since they are not found in commercially exploitable quantities or sizes.

3. An underestimation of the importance of these groups has **result**ed and scant attention has been given to the crucial **trophic** role they may play **in** the diet of commercial fish and marine mammals.

6.3 Hippolytidae

The Hippolytidae are the largest family of shrimp with respect to number of species in the North Pacific Ocean (Butler 1980) and are represented by 17 or more species in the southeastern Bering Sea (see Appendix A). As a group they are generally small to medium sized snrimp dominating the 40-80 m depths of the continental shelf (Ivanov 1969; Table 6.2). Larval descriptions appear in the literature for five species (Williamson 1957; Haynes 1978b; Pike and Williamson 1960; Appendix B) while mention of the others is either incomplete or totally lacking. There is a wide range in number of hippolytid zoeal stages from 2 in lebbeids to 5-9 in eualids (Table 6.3). No complete larval series is available for Heptacarpus.

Adult descriptions are given by Butler (1980) for <u>Eualus avinus</u>, E. <u>barbatus</u>, E. <u>fabricii</u>, E. <u>pusiolus</u>, E. townsendi, <u>Heptacarpus camtschati</u>-<u>ca</u>, <u>H. moseri</u>, <u>Lebbeus yrandimanus</u>, <u>L. yroenlandicus</u>, <u>Spirontocaris arcuata</u>, <u>S. lamellicornis</u>, S. <u>ochotensis</u>, <u>S. prionata</u>, and <u>S. snyderi</u>. Additional species of <u>hippolytids</u> may have been overlooked in compiling the list in the appendix. The most abundant of these species are probably <u>E</u>. <u>gaimardii belcheri</u>, E. <u>macilentus</u>, and one of the spirontocarids in our study area.

The crucial role these species play in the food web of the Bering Sea is reflected in such studies as Lowry et al. (UCS 1981 report). They showed that <u>Eualus gaimardii belcheri</u> feeds upon ostracods, euphausids, copepods and benthic phytoplankton. In turn, <u>E. belcheri</u> comprised 20-38% by volume of the total diet of ringed seal pups and was the major

	Depth (m)	Range	Total Hale (rim)	length Female (m)	Number of Larval stages
Eualus avinus <u>E. barbatus</u> <u>E. fabricii</u> <u>E. g. belcheri</u> <u>E. macilentus</u> <u>E. pusiolus</u> <u>E. stoneyi</u> <u>E. suckleyi</u> <u>E. townsendi</u>	46-642 82-507 4-255 5-55 50-100 0-1381 No data	Pribilofs - Oregon Circumboreal northern form No data Circumboreal	29 76 27	44 95 42	-V or 1-IX then megalopa '
<u>E. suckleyi</u> E. <u>townsendi</u>	No data 38-630	Pribilof < Sea of Japan Puget Sound	35	44) meguropu
<mark>leptacarpus moseri</mark> ' <u>H</u> . <u>camtschatica</u>	0-1100 0-108	Pribilof - Wash. Chukchi < Sea of Japan Str. of St. Georg	32 Je	43 45	No data
Lebbeus grandimanus	6-180	Bering Sea - Sea of Japan	36	45) "
L. gröenlandicus	11-518	SanJuan I's. Bering Sea - Sea of Japan + N. Atl., Wash.	58	107) 1, II and) megalopa)
<u>Spirontocaris arcuata</u>	5-641	Chukchi - Sea of Japan	22	46	2
<u>S. lamellicornis</u> S. murdocki S. ochotensis	3-192 No data 0-247	Wash. Commander Is Pt. Arena, C Bering Sea < Sea of Japan	A. 42	63″ •	I - V and megalopa
<u>S. prionata</u>	4-163	Vancouver'is. W Bering Sea < Sea of Japan	IA. 22 19	31 28	
<u>S</u> . <u>snyderi</u>	4-141	Monterrey. CA Bering Sea - Cedros Is., CA	18	28 24	5

. .

Table 6.2. Life history information for hippolytid species.

References: Butler. T. 1980. IAnderson, P. (personal communication) - common in St. George Basin. 2Ivanov, 8. 1969 - common in S.E. Bering Sea.

summer food for spotted seals. Feder and Jewett (1981) depict small, miscellaneous shrimp as food items for several species of **f**ish (cod, starry flounder) in the southeastern Bering **Sea**, but **quantification** of use is not given.

6.4 Crangonidae

Crangonid shrimp are represented by eight or more species in the southeastern Bering Sea (<u>see</u> Appendix A), of which four are common (<u>Crangon dalli</u>, <u>C.</u> communis, <u>Sclerocrangon boreas</u> and <u>Argis dentata</u>). As a group they are generally medium-sized shrimp dominating the **0-50 m** depths of the continental **shelf** (Ivanov 1969; Table 6.3). They are an important food source for demersal fish and invertebrates although they do not support a direct commercial fishery in Alaska. Crangonids eat benthic diatoms, detritus, polychaetes, small crustaceans, crustacean eggs and larvae, gastropod, foraminiferans and ophiuroids (Squires 1967), and mysids captured during diel vertical migrations (Sitts and Knight 1979). They are preyed 'upon by sand sole (Miller 1967), starry flounder (Feder and Jewett 1978), Pacific cod (Feder 1978), yellowfin sole (Feder and Jewett 1981), Beluga whales and phocid seals (Lowry et al. 1981), and Dungeness crabs, tomcod, and sculpin (Stevens et al. 1982).

Very little literature exists on the relative abundance of **crangon**id stocks. Their shallow, in-shore habitat has not been **extensively** sampled by suitable **methods**. These species bury in the sand during the day and thus dredging rather than trawling might yield more complete data. <u>Crangon dalli</u> and <u>A</u>. <u>dentata</u> appeared in 34 and 31% of the OCSEAP 1975 tows and <u>C. communis</u>, <u>A</u>. <u>dentata</u> and <u>A</u>. <u>ovifer</u> a_{HH}eared in 24, 29, and

	Depth (m)	Range	Max. Male	T.L. (mn) Femal e	Number of larval stages e	Fecundi ty ggs/clutch
Crangon dalli ^{2,3}	38-110	Chukchi – WA, and Sea of Japan	50	80	I - V and megalopa	4290
<u>C</u> . <u>communis</u>	16-1537	Chukchi – CA. and Sea of Japan	61	80		2200
<u>C</u> . <u>alaskensis</u>	5-50	Bering Sea – WA. and Kurile Is. Japan	52	65	I - V and megal opa	
<u>iclerocrangon² boreas</u>	0-366	Circumboreal	110	108	Direct develop- ment,	448
ingis alaskensis	18-221	Pribilof - Ore.	44	67		
<u>A</u> . <u>crassa</u>	4-125	Northern Bering Sea - WA. and Sea of Japan	40	56		448
<u>A. dentata</u> 2	0-2090	Circumboreal	46	83	I – II and megal opa	
<u>A. 1ar²</u>	10-280	Chukchi - Str. of St. George and Sea of Japan	56	79	Larval life <lmonth< b=""></lmonth<>	980
A. ovifer	102-673	Pribilof	38	67		

Table 6.3. Life history information for crangonid species.

¹Oata compiled from Butler, T. 1980. *Anderson, P. - personal communication - most common crangonid species in the St. George Basin NNFS surveys. Juanov, B. 1969. Host common crangonid specie.

21% of the 1976 tows (Feder 1978). <u>Crangon communis</u> is abundant where **Pandalus** borealis and <u>Pandalopsis dispar</u> are found (Butler 1980), and is commonly found on mixed mud and sand bottoms at depths of 62-95 m and temperatures of **0.5-3.6°C** (McLaughlin 1963). Population estimates of **crangonids** in the southeastern Bering Sea have not been made. Estimates made from trawl surveys in Grays Harbor, Washington, were as high as **38,mil**lion shrimp for the bay during summer months, and even this figure was thought to be low because of gear inefficiency (Hoeman and Armstrong 1981). **Crangonid** populations in the Bering Sea may be substantial. Their ecological and community role both as **detrital** processors (Rice 1981) and predators, and as prey **for** commercial fish and crustaceans make them an important group to consider in scenarios of **oil** impact.

Larval descriptions are complete for 3 species; <u>C. dalli</u> (Makarov 1966), <u>C. alaskensis</u> (Loveland 1968) and <u>A. dentata</u> (Squires 1965). Five larval stages and one megalops are known for <u>C. dalli</u> and <u>C. alaskensis</u>, while <u>A. dentata</u> had only 2 zoeae before the post-larval stage and <u>Sclerocrangon boreas</u> undergoes direct development in which larvae hatch as juveniles (Table 6.3). No information appears in the literature describing *the* reproductive biology of these species in the southeastern Bering Sea. Allen (1960) reported that hatching occurs from May through August in <u>Crangon dalli</u> from North Sea stocks. On the Kamchatkan shelf, Makarov (1967) noted that argids hatched from May to the end of June.

6.5 Penaeidae

Among the plankton collected in the southeastern Bering Sea and sorted in our project is a series of four larval stages from a very

distinctive group. Most notable characteristics of this group are **long** dorsal and lateral spines on the dorsal margins of each abdominal segment and five spines above each eye. **Makarov** (1967) assigned this spiny larva to the family Crangonidae, **_Paracrangon_echinata**, while **Kurata** (1964) relegated them to the family **Glyphocrangonidae**, **<u>Glyphocrangon spp</u>**. Ken **Coyle** from the University of Alaska (personal **communi**cation) disagrees with both designations and has assigned these larvae to the family Penaeidae since <u>**Glyphocrangon**</u> sp. do not range to the Bering Sea. These larvae will appear in our summaries **as** a deep-water **penaeid** until further clarification reveals otherwise.

6.6 Results and Discussion

6.6.1 Pandalidae

<u>Frequencies of Occurrence of Pandalus borealis</u>. Larvae of this species were consistently **the** most prevalent **pandalid** in samples from 1976-1981. The percent frequency of larval occurrence by month from PROBES 1981 for the 5 **pandalid** species is given in Figure 6.1. <u>P. borealis</u> **larvae** were present at **37% of** the stations in April, 30% in May, 42% in June, and 65% in July. A very dramatic rise in <u>P. tridens</u> larval occurrence was seen from a low of 5% in April to 37% in June. <u>P. stenolepis</u> larvae did not appear in samples before June but were abundant thereafter, taken at 36% and 28% of **the** stations from June and **July**. <u>P. goniurus</u> larvae and <u>Pandalopsis dispar</u> larvae were rarely taken - never at > 5% of the stations per month. As an average between April and July, <u>P. borealis</u> larvae were found at **45% of** stations analyzed (Fig. 6.1). This frequency of occurrence is comparable to values from PROBES 1978 and 1980 when

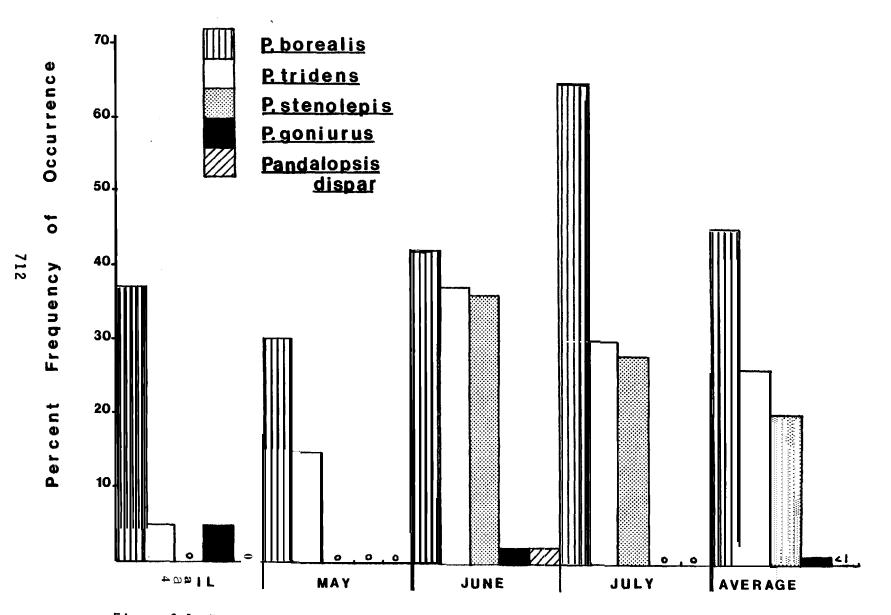


Figure 6.1 Frequency of occurrence of panda id shrimp larvae at PROBES stations collected in 1981 by months April - July.

sampling patterns within the St. George Basin covered similar areas (Table 6.4). Frequency of occurrence of **pandalids** in 1981 (PROBES) was relatively high compared to values from 1980 samples. <u>P. borealis</u> was taken at 38-45% of the stations from 1978, 1980, and 1981. <u>P. stenolep-</u><u>is</u> consistently showed the most variability in frequency of occurrence from a low of 2% in **1980 to** a high of **20% in** 1981. <u>P. goniurus</u> and <u>Pandalopsis dispar</u> larvae were taken **rarely** during 1980 and 1981 and not at all in 1978.

Zooplankton samples collected in February and March Larval Duration. 1978 contained no pandalid zoeae and thus first hatch was assumed to occur about April 1st. Stage I zoeae of P. borealis were present throughout the St. George Basin in early April during the first sampling days of the NOAA 1977, PROBES 1978, 1980 and 1981 cruises and continued to be taken as late as mid-May in 1978 and 1981. Figure 6.2 shows the duration of each stage during the PROBES 1981 cruise for P. borealis, P. tridens and P. stenolepis larvae. The intermolt period for P. borealis was calculated by taking the midpoints of each larval stage duration and figuring the difference between adjacent midpoints. Thus 12-20 days (2-3 weeks) seems to be the average **intermolt** period for P. borealis **1 arvae.** These zoeae would require approximately 3 months of planktonic life to accomplish the 5 molts to the megalops stage (VI) and to settle to the benthos. Although the sampling periods of cruises from 1978-1981 did not extend past mid-July, P. borealis larvae would apparently settle out by mid-August. Future examination of samples from the NOAA 1982 summer cruise will help substantiate the exact length of the larval period.

	1978	1980	1981	Years
P. borealis	42	38	45	
P. tridens	22	11	26	
P. <u>stenolepis</u>	5	2	20	
<u>P</u> ∗ goniurus	0	1	1	
P. dispar	0	1	<1	

Table 6.4.Frequency of occurrence (percent) of Pan-
dalid shrimp larvae from PROBES stations
collected in 1978, 1980 and 1981.

58 .

1..

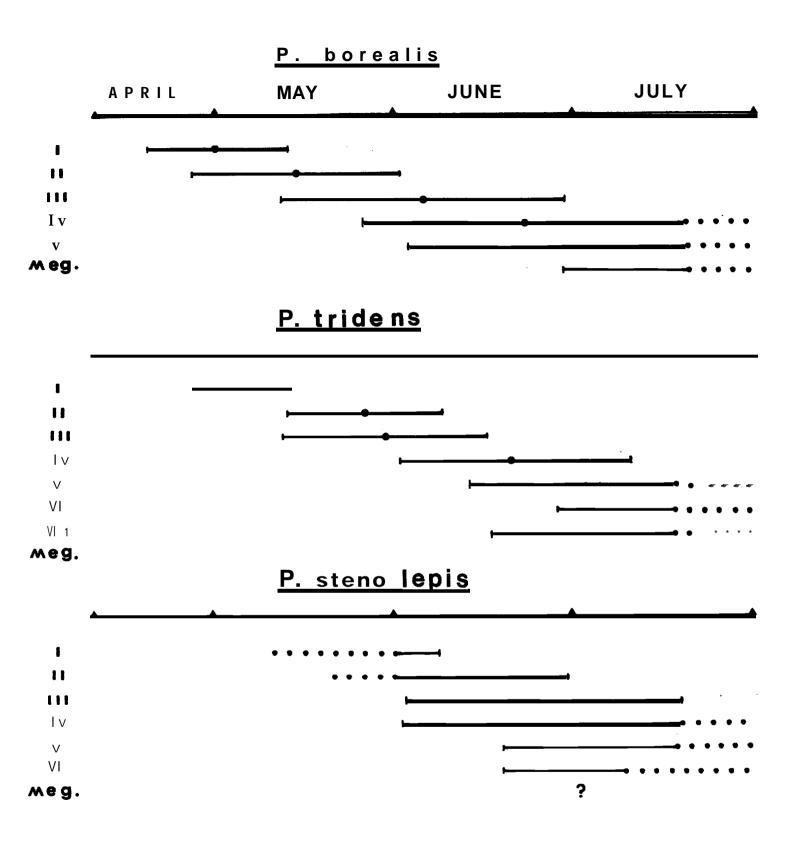


Figure 6.2 Duration of larval stages of three pandalid shrimp species collected at PROBES stations in 1981. <u>stenolepis</u> were not taken. Dots represent hypothetical time periods for which there are no data. A stage frequency **histogram for** <u>P</u>. <u>borealis</u> (Fig. 6.3) shows a slightly later or **a** more protracted **hatchout** period for larvae in 1978 as compared with 1981. In May, fifty percent of the larvae were still S1 in 1978 as compared to **1% of** the larvae in 1981. By June 1978, only 10% of the larvae had reached SIV or **megalops** compared with 31% in 1981.

<u>P. tridens</u> seemed to follow the same pattern of emergence, appearing first in mid-April in 1977 (NOAA) and by late April in 1978 (PROBES). No <u>P. tridens</u> larvae were collected until the end of April in 1980 and 1981 since sampling did not occur until late April at stations > 200m preferred by the P. tridens adults.

Duration of the larval stages of <u>P. tridens</u> and <u>P. stenolepis</u>, as given in Figure 6.2, are less clear cut than seen for <u>P. borealis</u> 1 arvae. <u>P. tridens and P. stenolepis I</u> arvae were less abundant and sampled less frequently thereby giving only an incomplete representation of larval stage durations. Two to three weeks is **still** probably the average **intermolt** period for P. <u>tridens</u> and P. <u>stenolepis</u> larvae. Since these two species have 7 and 6 larval stages before metamorphosis, respectively, and since no **megalops** of either species were ever found, larvae may be in the water column until late August or early September, a **planktonic** life of approximately four months is thus indicated.

A stage frequency histogram for <u>P</u>. <u>tridens</u> Larvae, Figure 6.4, compares data of 1978 and 1981. Only one Stage I Larva was found in 1981 April samples due to sparse sampling beyond the shelf break. The **P. tridens** Larval population seemed to Lag about one stage behind during

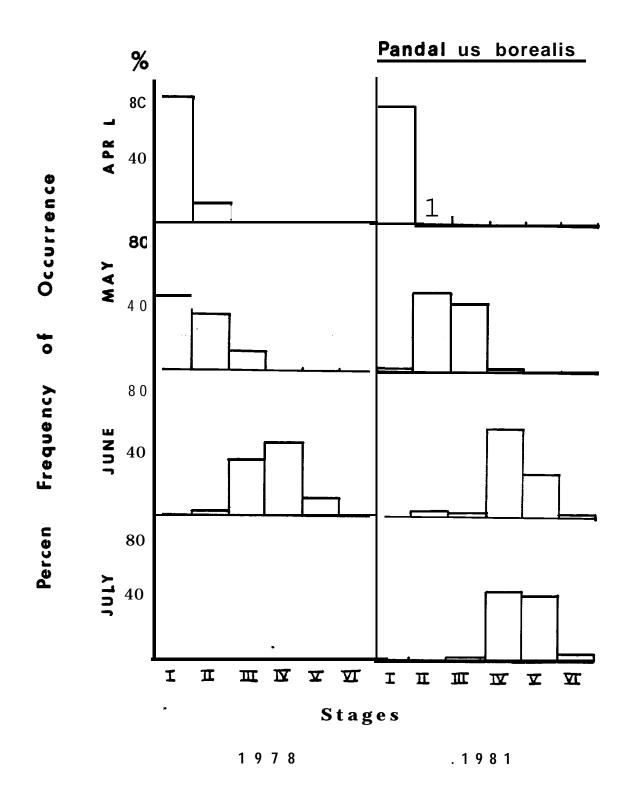


Figure 6.3 Pandalus borealis stage frequency histograms by month from PROBES 1978 and 1981. No samples were taken in July 1978. 717

Figure 6.4 Pandalus tridens stage frequency histograms by month from PROBES 1978 and 1981. No samples were taken in July of 1978.

June 1978 compared to June 1981. Contrasting <u>P. tridens</u> with <u>P.</u> <u>borealis</u> larval development (Figs. 6.3 and 6.4), <u>P. tridens</u> larvae were generally one stage or **One molt behind** <u>P. borealis</u> larvae by June of both years. For example, in June 1978, 60% of <u>P borealis</u> larvae were SIV or greater compared to 46% of <u>P. tridens</u> larvae, while in June 1981, 93% of <u>P. borealis</u> larvae were SIV or greater versus 54% of <u>P. tridens</u> 1 arvae.

The northernmost extent of the range **of P. stenolepis** is given by Butler (1980) as Unalaska Island. The NOAA 1977 cruise first took P. stenolepis S1 in mid-April just west of Unimak Pass. No other cruises sampled this area during April. All other cruises took S1 **ZOEAE** from mid-May until early June. The frequency of P. stenolepis occurrence was so low it is not possible to make definitive statements regarding this long S1 duration (except possibly asynchronous hatch-out within the population). Figure 6.2 shows duration of stages from April until July Since early sampling was not done near Unimak Pass, for PROBES 1981. first hatch-out and the duration of S1 and S11 is not well-documented. Sampling in May and June over central St. George Basin took later S of P. stenolepis (II-VI), but no megalopae were found. With respect to staging, **P. stenolepis** larvae were mostly stages I and II during late April-early May (NOAA 1977), stages III and IV during early-mid June (PROBES 1981), and stages IV and V from late June to early July. These larvae would probably not complete metamorphosis before late August.

<u>Pandalus goniurus</u> adults are commonly taken from the St. George Basin (Feder 1978) in the **38-124** m depths on a mud to coarse sand

719

A pandalid larval type that was smaller and had fewer setae on bottom. the **antenna** scale than the **P. borealis** larvae (as described by Haynes 1978) was found sporadically at scattered locations over the mid-shelf domain in samples from 1976-1981. While this larval type agreed with a description of P. borealis S1 larvae from Hokkaido, Japan (Kurata 1964), it seemed significantly smaller and with different setal counts than the majority of **P**. borealis larvae. At the same time, it had a larger body size than the S1 P. goniurus described by Haynes (1978) from Kachemak Bay, Alaska. The colder water temperatures of the Bering Sea may cause significant size differences in larvae compared to -populations from the Gulf of Alaska, and thus size alone cannot be used as a definitive characteristic for **the** species. Size of Bering Sea larvae were consistently larger and had consistently different numbers of **antennal** setae, maxillule spines, and maxilla setae counts than Haynes' Kachemak Bay. Larval specimens were sent to Dr. Evan Haynes of the NMFS Auke Bay Laboratory to confirm identifications of P. goniurus. All P. borealis S1 larvae from 40-120 m stations were re-examined and re-assigned to P. qoniurus if they proved to be < 5.0 mm from rostrum to telson, with less than 19 setae on the antenna, less than 9 spines on the **basipodite** of the maxillule, and less than 11 setae on the scaphognathite of the maxilla. Relatively few P. goniurus larvae were found following this extensive review of 1976-1980 samples. Only 2.4% of the PROBES stations sampled in 1981, and 0% and 4.5% of the NOAA 1981 stations (two cruises) contained P. goniurus larvae. Figure 6.5 illustrates station locations of P. goniurus larvae from all years combined.

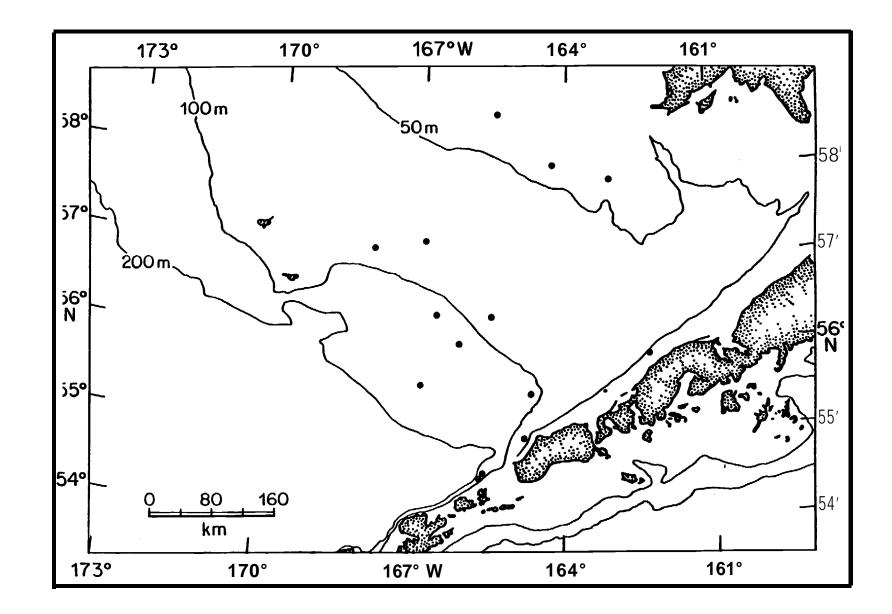


Figure 6.5 Distribution of Pandalus goniurus larvae (black dot), allyears 1976-1981, and all months April - July combined. Refer to station maps Of Section 2.0 for extent of coverage.

<u>Pandalopsis dispar</u> was taken only once during the following cruises; PROBES 1981, NOAA 1981 (R/V <u>Alaska</u>), PROBES 1980 and 1978, thus making it the least frequently caught **pandalid** species. **Stages I, II, IV,and** Vwere taken during the months of June and July. The northernmost range for this shrimp is given as the **Pribilof** Islands where the NOAA 1981 (R/V Alaska) cruise caught a single animal.

<u>Distribution and Abundance of Pandalus borealis</u>: Larvae of this species were found in the greatest abundance between the 100 and 200 m isobaths over the St. George Basin (Figs. 6.6 to 6.9). Highest <u>P. borealis</u> larval densities were found during the NOAA 1977 cruise in April and May (Figure 6.6) with concentrations ranging from 1200-6200 larvae/100 m². Comparably high larval densities, ranging from 1100-7200 larvae/100 m², were **also** found in June 1979 (NOAA cruise, not pictured). PROBES 1980 larval densities for <u>P. borealis</u> followed this same general distribution pattern but with higher abundances near the 100m isobath.

In marked contrast, very low <u>P. borealis</u> densities were founduring the 1981 PROBES and NOAA cruises compared to 1977 (Fig. 6.7 vs. 6.6). Although larvae seemed to be more widely dispersed up into the **middle** shelf domain during 1981, their abundance over the outer shelf **domai**n was rarely greater than 500 larvae/100 m^2 .

Monthly variation **in** <u>P</u>. <u>borealis</u> distribution and abundance between April and May/June 1978 is shown in Figures 6.8 and 6.9. The relatively clustered pattern of high density (1000-5000 larvae/100 m²) in **April** 1978 (Fig. 6.8) over the central outer shelf, spread throughout the St.

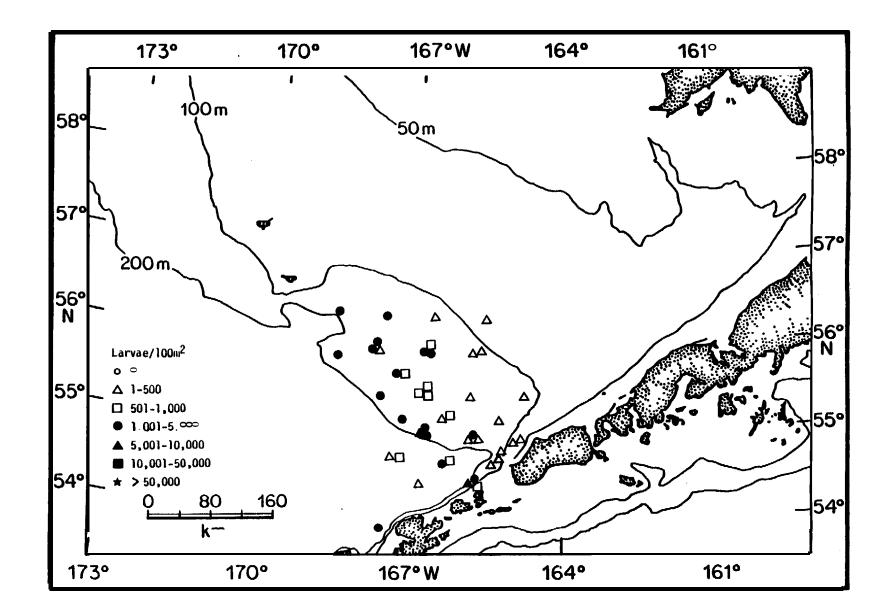
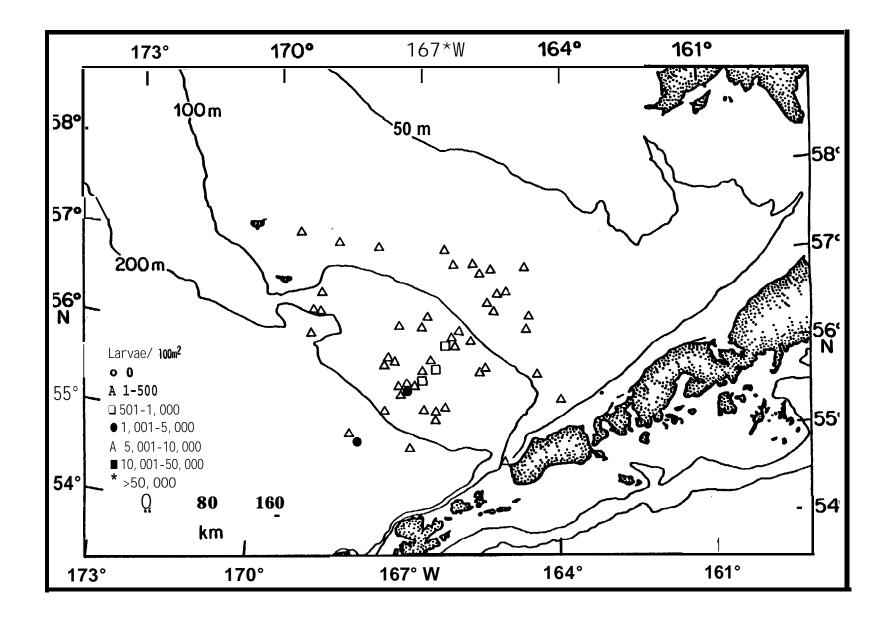



Figure 6.[≤] Distribution and abundance of <u>Pandalus</u> <u>borealis</u> larvae from NOAA 1977, April and May combined. Only positive stations are shown; see Section 2.0 for cruise tracks and all station locations.

Figure 6.7 Distribution and abundance of <u>P.</u> <u>borealis larvae from PROBES</u> 1981 and NOAA 1981, April-July combined. Only **positive** stations are shown; see Section 2.0 for cruise tracks and all stations.

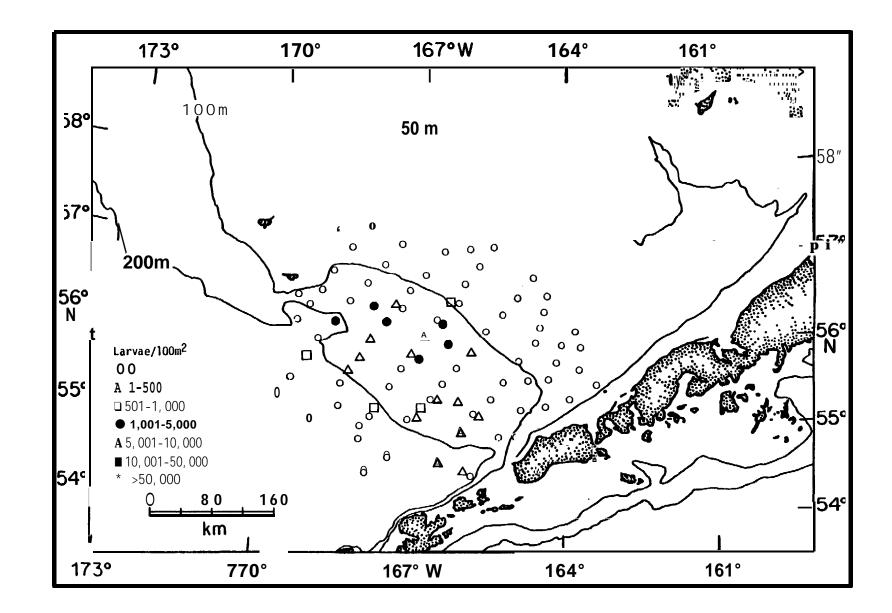


Figure 6.8 Distribution and abundance of <u>P</u>. <u>borealis</u> larvae from PROBES 1978, **April only.** Zero stations where no **larvae were** caught are included.

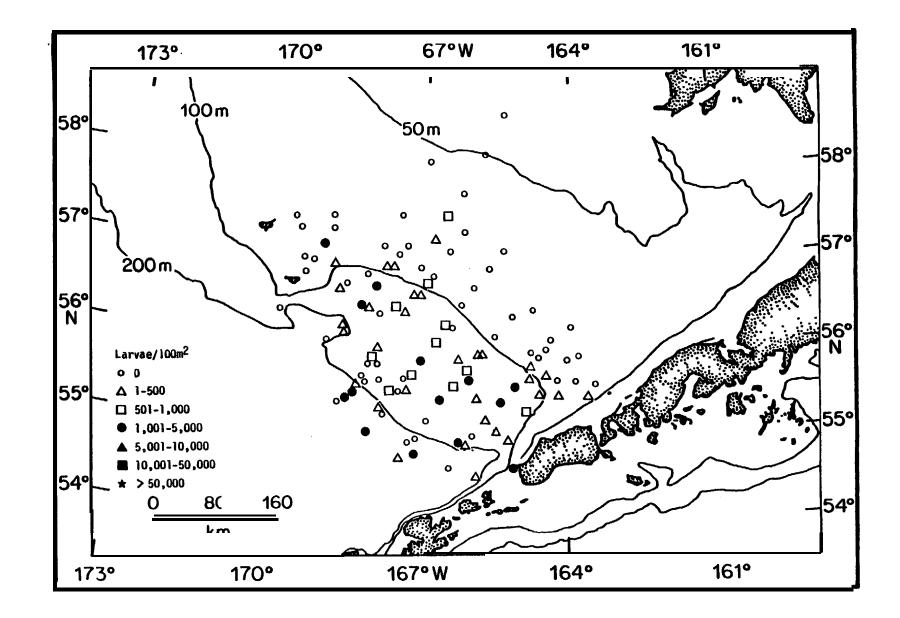


Figure 6.9 Distribution and abundance of <u>P</u>. <u>borealis</u> arvae from PROBES 1978, May and June combined. Zero stations are included where no larvae were caught.

George **Basin** and extended over the shelf break beyond the 200m **isobath** by May and June 1978 (Fig. 6.9).

The outer shelf domain, where <u>P</u>. b<u>orealis</u> larvae were primarily found, was assigned to strata 2, 5, and8 (see Fig. 2.21) for computer assisted data analysis (see Section 2.0). Figure 6.10 gives a monthly comparison of the mean densities of <u>P</u>. <u>borealis</u> larvae in stratum 2 for four years. Generally, densities increase over time from April to June from less than 500/100 m² to over 1000/100 m². The very high values of 1172 larvae/100 m² given for April 1977 may indicate that <u>P</u>. <u>borealis</u> hatched out somewhat earlier that year. Generally, stratum 2 mean densities ranged from 250 larvae/100 m² in April to 720 larvae/100 m² in May to 1340 larvae/100 m² in June. The PROBES 1981 cruise, as shown earlier in Figure 6.7, had consistently lower mean densities; 102 larvae/100 m² in April, 373 in May, 197 in June, and 227 in July. These lower densities may reflect a real decrease in abundance or a geographical sampling bias imposed by adhering mainly to the PROBES A line (see Fig. 2.13, middle transect).

A cross-shelf comparison of <u>P. borealis</u> mean densities appears in Table 6.5 for PROBES 1978 data; no other cruise sampled these 9 strata . as extensively during May and June. Comparing strata 8, 2, and 5, the outer shelf domain, gives a picture of relatively homogeneous distribution of <u>P. borealis</u> larvae over the St. George Basin between the 100-200 m isobaths. A comparison of the middle domain, strata 9, 1, and 6with the outer shelf domain shows a decrease in both mean densities (Table 6.5) and percentage of positive stations. A similar comparison of the

727′

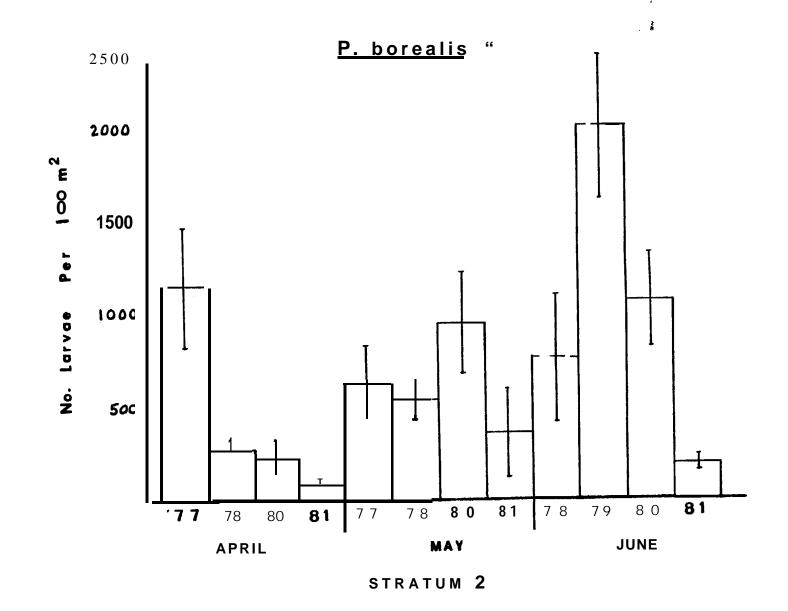
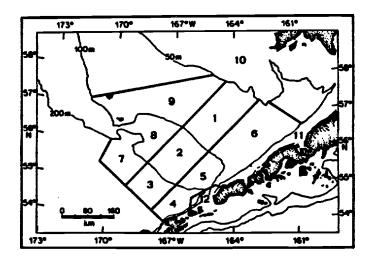



Figure 6.10 P. borealis larval abundance in stratum 2 during April, May and June from 1977-1981. Values are the mean density <u>+</u>1 standard error. Zero stations are included in calculations.

Tabl e 6.5.	Cross-shelf comparison of mean densities of P.						
	borealis larvae during May and June from PROBES 1978. Zero stations omitted from calculations.						
	Total number of stations (N) sampled within each						
	stratum shown. See Figure below for strata						
	locations.						

Stratum	Mean Density + S.C (# larvae/106 m²)	•	N	
Stratum	Oceani c/Shel f			
7 3 4	714 .+. 729 1003- <u>+</u> 680 *	71% 57%	7 7	
	Outer Shelf	[°] Domain		
8 2 5	675 <u>+</u> 615 878 + 702 626 + 494	59% 68% 92%	17 19 12	
	Middle Shel	f Domain		
9 1 6	377 + 318 0 175 + 81	35% 0% 27%	26 7 15	

*Insufficient data.

outer shelf with the oceanic area beyond the shelf break shows high values for mean larval density and percentage of positive stations (note that fewer stations were sampled beyond the shelf break). Unfortunately, stratum 4 was not sampled sufficiently to complete the matrix.

Vertical Distribution of P. borealis: PROBES 1980 and 1981 MOCNESS data were used for analyses of vertical depth distribution. Both unweighed and weighted average abundance values were calculated for each depth in-Even though there were few stations with extremely high larval terval densities at any one depth interval, unweighed (zero stations included) values were determined to give a clearer picture of larval depth distribution. Figure 6.11 illustrates the proportion of the total population of P. borealis larvae at each depth interval for 1980 and 1981 PROBES The total cumulative percentages of larvae in each of the crui ses. depth intervals for 1980 and 1981 were 17-32% in the upper 20m, 49-61% in the upper 40 m, 65-75% in the upper 60 m, and 90-95% in the upper 80 m. From the values it is evident that P. borealis larvae are relatively homogeneously distributed throughout the water column down to 80m, with about 50+% of the larvae in the upper 40 m and 40+% in the lower 40 m.

<u>**Distribution and Abundance of Pandalus tridens</u></u>: The earliest record of <u>P**. tridens</u> larvae was from samples collected near **Unimak Pass in** mid-April 1977 (no larvae were found in the February-March collections). By late April in 1978 they were found southwest of St. George Island, whereas in 1980 and 1981, they were first found along the PROBES A line at stations at depths from about 150 m to more than 200 m.</u>

P. borealis

. . .

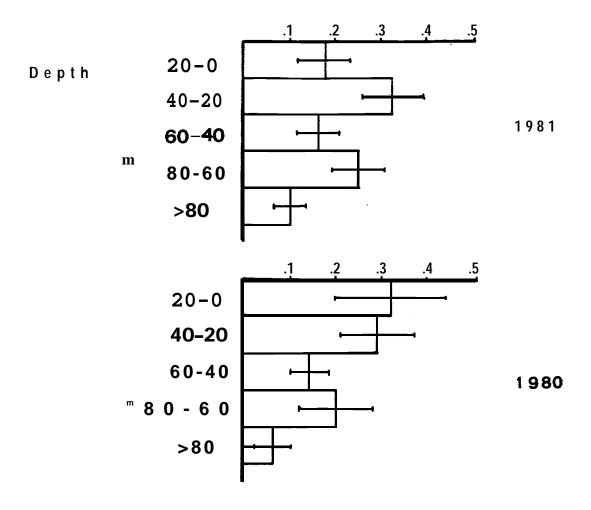


Figure 6.11 Vertical Depth Distribution of <u>P</u>. borealis larvae (all zoeal stages) from PROBES 1980 and 1981. Values expressed as an average proportion <u>+</u>1 standard error. Since <u>P. tridens</u> occurred less frequently than <u>P. borealis</u>, Figure 6.12 shows abundance and distribution for April-July for all year combined except PROBES 1978. *Highest* **larval** densities were clustered southwest of the 200m **isobath** over the shelf break (1000-4000 larvae/100 m²) and from Unimak Pass to Unalaska Island (5000-6000 **larvae/100 m²**). The highest mean larval density by stratum was **1461** larvae/100 m² for st_{ra}tum 12 **in** the **Unimak** Pass area **during** the NOAA 1977 cruise. In general, <u>P. tridens</u> larvae were found only rarely shoreward of the 100m **isobath** over the middle **shelf** domain.

Figures 6.13 and 6.14 compare P_. <u>tridens</u> larval distribution in April with May and June distribution from PROBES 1978. April hatch out occurred south of St. George at the **Pribilof** Islands late in April (Fig. 6.13). By May and June larvae were most abundant southwest of the **shelf** break (1000-4000 larvae/100 m^2 in strata 3 and 4) and over the southern part of the St. George Basin (1000-2000 **larvae/100** m^2 in stratum 5). By May and June, <u>P. tridens</u> **overlapped** <u>P. borealis</u> larval distribution over the St. George Basin and west of the shelf break (compare Figs. 6.9 and 6.13).

Figure 6.15 contrasts May and June mean larval densities in stratum 2with stratum 3 for the years 1978, 1980, and 1981. (Since this species was **less** common than P. <u>borealis</u>, and since the extent and degree of sampling varied within strata **interannually**, zero stations - no larvae found - were omitted from calculations of mean density.) There was a three- to five-fold increase in larval density of <u>P</u>. <u>tridens</u> in stratum 3 beyond the shelf break as compared to stratum 2 of the

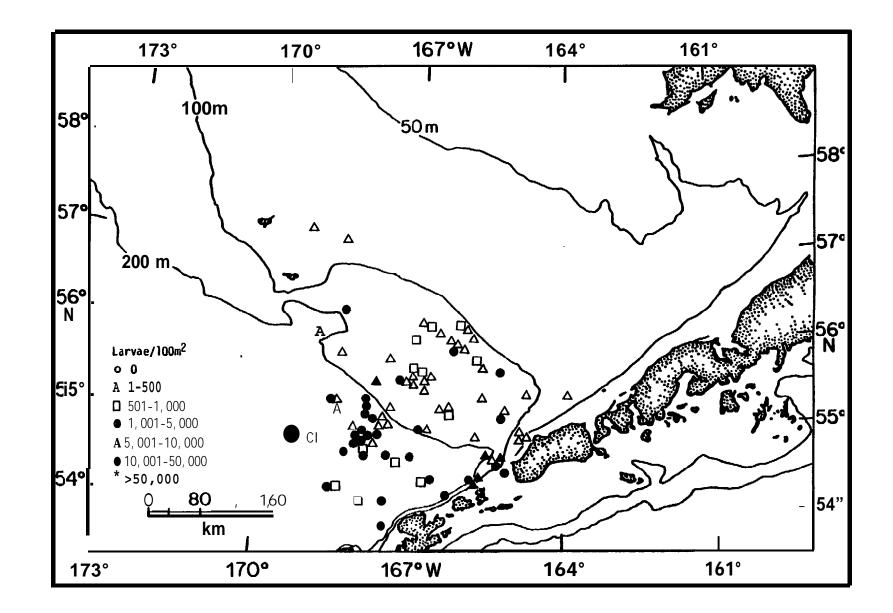


Figure 6.12 Distribution and abundance of Pandalus tridens larvae from all months April-July, all years except PROBES1978 combined. Zero stations omitted; see Section 2.0 for cruise maps and stations.

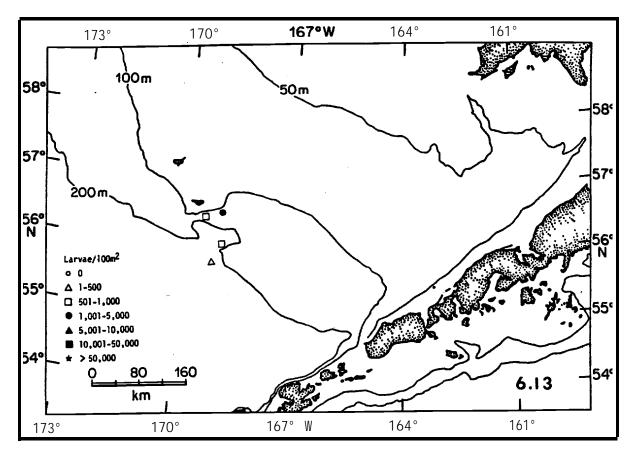


Figure 6.13 Distribution and abundance of <u>P. tridens</u> larvae from PROBES 1978, April only. Zero stations omitted; see Section 2.0 for cruise maps and stations.

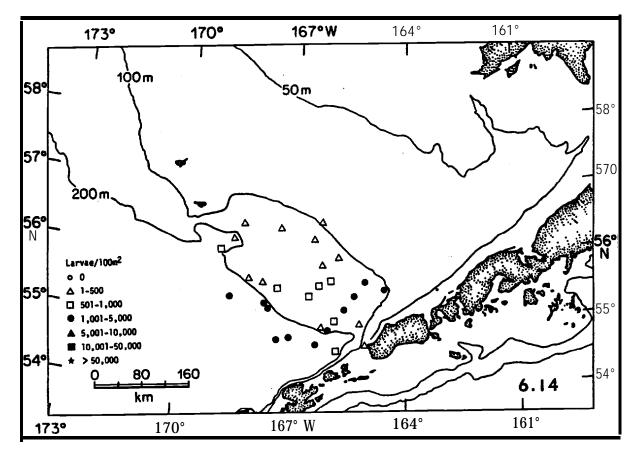


Figure 6,14

Distribution and abundance of <u>P.tridens</u> larvae from PROBES 1978, May and June. Zero stations omitted. See Section 2.0 for location of all stations sampled during this cruise.

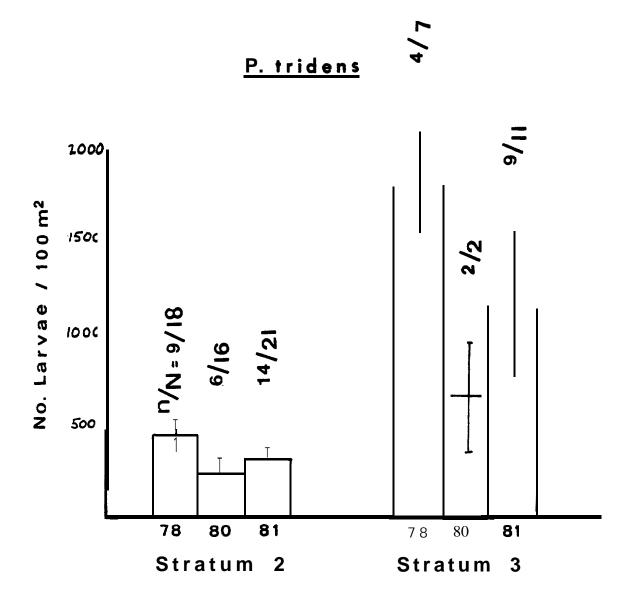


Figure 6.15 P. tridens larval abundance in strata 2 and 3 during May and June from PROBES 1978, 1980 and 1981. Values expressed as mean density +1 standard error. Zero stations are not included in these calculations. The number of positive stations (n) and the total number of stations sampled (N) for each stratum-year combination is shown above the bars.

outer shelf during those years. Samples in June 1979 (NOAA) confirmed this trend when the highest monthly mean density of 1798+926 P. tridens larvae/100 m² occurred in June 1979 in stratum 3.

A cross-shelf comparison of <u>P. tridens</u> larvae incorporating 1978 PROBES data appears in Table 6.6. Unlike the homogeneous distribution of <u>P. borealis</u> larvae throughout the St. George Basin between the 100-200 m isobaths (Table 6.5; strata 8, 2, and 5), <u>P. tridens</u> larval distribution was much more concentrated near the Aleutian Peninsula (stratum 5) in the outer shelf domain just north of Unimak Pass. Generally higher larval densities seaward of the shelf break showed that to be the area of greatest abundance with the maximum density appearing closest to the coastal area in stratum 4 (although this last density was calculated from only 2 stations). <u>P. tridens</u> larvae were less abundant in the outer shelf domain and virtually absent (except for 1 of 36 stations) from the middle shelf domain.

<u>**P**</u>. <u>tridens</u> larvae were not caught in sufficient abundance to analyze the vertical depth distribution in 1980, but MOCNESS data from PROBES 1981 (Fig. 6.16) revealed a homogeneous depth distribution of <u>P</u>. <u>tridens</u> **larvae** in the top 60m, similar to <u>P</u>. <u>borealis</u> **larval vertical** distribution (Fig. 6.11). The total cumulative percentages of larvae in each of the depth intervals were 31% in the uper 20 m, 54% in the upper 40m, 83% in the upper 60 m and 97% in the upper 80 m. A breakdown of the data gave similar results for both 100.200 m stations and 200-1800 m stations.

	stations omitted from c stations (N) sampled wi 2.21 for strata locatio	thin strata show	o = 1			
Stratum	Mean Density <u>+</u> S.D. (# l <u>arvae/100 m2)</u>	% positive stations	<u>N</u>			
Oceanic/Shelf Break Domain						
7 3 4	873 + 719 1816–+ 733 2740 <u>+</u> 3033	43% 57\$ 100%	7 7 2			
	Outer Shel f	Domai n				
8 2 5	190 <u>+</u> 132 436 <u>+</u> 301 1127 ⁻⁷ 610	18% 50% 75%	17 18 12			
	Mi ddl e Shel	f Domain				
9 1 6 _	0 187* 0	0% 14% 0%	15 7 14			

Table 6.6.Cross-shelf comparison of mean densities of P. tridens
larvae during May and June from PROBES 1978. Zero
stations omitted from calculations. Total number of
stations (N) sampled within strata shown. See Figure
2.21 for strata locations.

*Based on 1 positive station.

.

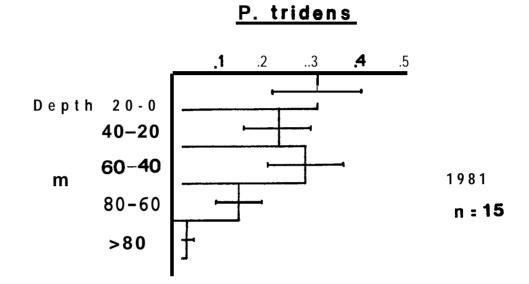


Figure 6.16 Vertical depth distribution of <u>P. tridens</u> larvae from PROBES 1981. Values expressed as the mean proportion <u>+1</u> standard error. A total of 15 <u>MOCNESS stations</u> at which <u>P. tridens</u> occurred were used for analyses. Distribution and Abundance of Pandalus stenolepis: Larvae of P. stenolepis were infrequently caught on all cruises from 1976 to 1981. Figure 6.17 shows abundance and distribution of P. stenolepis_larvae from all cruises, all months combined. Their distribution overlaps both P. borealis and P. tridens larvae with highest densities located near Mean densities in 1981 ranged from 290-480 larvae/100 m² Unimak Pass. in strata 2 and 3 during summer months. Larvae were completely absent from the northwestern section of the St. George Basin in accord with northern limits of adult ranges at **Unalaska** Island (Butler 1980). Occurrence of Larvae in the Lower St. George Basin may indicate the extent of larval drift in currents coming north through Unimak Pass, although it would not account for the isolated locations near the Pribilof Islands or on the middle shelf domain where P. stenolepis_ larvae were taken. The presence of these larvae may indicate that the range of P. stenolepis extends further north than previously thought.

The greatest density of <u>P. stenolepis</u> larvae for all years and all strata, 1284+1129 larvae/1(10 m², was found during NOAA 1977 in stratum 12 at Unimak Pass. <u>P. stenolepis</u> larvae were not caught with enough regularity to do either a comparison of density by stratum, a **cross**shelf comparison, or a vertical depth distribution analysis. No <u>P</u>. <u>stenolepis</u> larvae were taken during the NOAA '76 cruise. Their percent frequency of occurrence **among a**] stations sampled ranged from a low of 2% in 1980 to a high of 17% in **197**/.

Summary of **Pandalus** spb. Distribution and Abundance:

1) Larvae of the **pandalids** apparently hatch in early April.

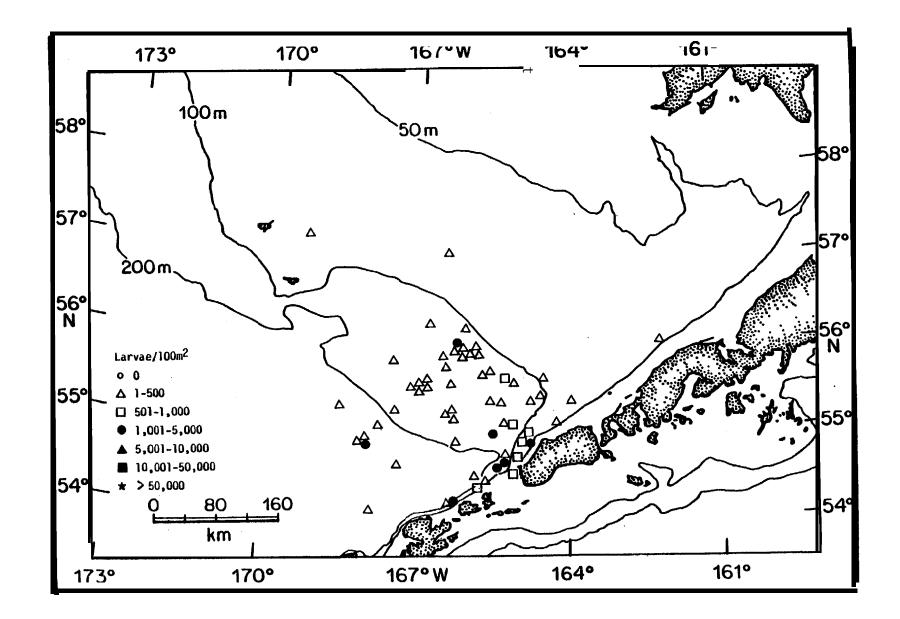


Figure 6.17 Distribution and abundance of <u>P. stenolepis</u> larvae from all years 1976-1981, all months April-July combined. Zero stations omitted. See section 2.0 for all station locations.

- 2) While hatchout of P. <u>borealis</u> larvae does not occur over a protracted period of time (no greater than a 3-week period), the hatchout time for P. <u>tridens</u> and <u>P. stenolepis</u> may be somewhat longer.
- 3) <u>P. borealis</u> larvae are generally most abundant in the outer shelf domain over the St. George Basin. <u>P. tridens</u> larvae are most abundant beyond the shelf break over deep water, but also range throughout the outer shelf domain. P. stenolepis occur over much of the St. George Basin between the 100 and 200m isobaths but with much lower frequency than <u>P. borealis</u> or <u>P. tridens</u> larvae.
- 4) Mean densities of <u>P</u>. <u>borealis</u> larvae over the St. George Basin were about 600-900 larvae/100 m² in May and June. Mean densities of <u>P</u>. <u>tridens</u> larvae beyond the shelf break were about 600-1000 larvae/ 100 m² in May and June. Mean densities for other species (P_. <u>steno-lepis</u>, <u>P</u>. goniurus_and Pandalopsis_dispar) were significantly less.
- 5) Larvae were distributed homogeneously throughout the water co" umn from 0-80 **m**; more than 80% of larvae were found in the upper 60m.
- 6) Larvae molt about every 2-3 weeks so P. <u>borealis</u> would progress through six larval stages, metamorphose to a megalops, and settle to the benthos about mid-August. <u>P. tridens</u> and <u>P. stenolepis</u> may take until late August or early September because they have more larval stages.

6.6.2 Hippolytidae

Larval Duration: **Hippolytid** larvae were the only shrimp zoeae collected in the early spring (mid-February to mid-March, NOAA cruise 1978), when

SI zoeae were first taken in March 1978 near Akutan Island. While the adults most commonly taken in this area include <u>Eualus gamardi belcheri</u>, <u>E. suckleyi</u>, and <u>E. stoneyi</u> (Paul Anderson, NMFS, Kodiak, Alaska, personal communication, October 1981), approximately five types of larval hippolytids and their larval stages were delineated from 1976-1981 samples. The sheer number of possible species (about 20, see Table 6.2) and lack of definitive larval descriptions for all species made further identification impossible at this point. Assigning definite zoeal stages is difficult because genera in this family have from 2 to 9 stages. The five different types of larval hippolytids were staged, but analysis of stage frequency and molt frequenty was not conducted. As with the pandalids, sampling did not continue late enough in the summer to document the timing of metamorphosis to the benthos.

. .

" artiners

<u>Distribution and Abundance:</u> Ivanov (1969) states that adult hippolytids generally dominate over shelf depths of 40 to 80m. This may very well be true, but the larvae apppeared to be a ubiquitous group, as prevalent as the pandalids over the outer shelf domain at stations between the **100-200 m isobaths** of the St. George Basin (Figs. 6.18, 6.19). In addition **to** their wide distribution, abundance was commonly greater than 1000 larvae/100 m² over much of the St. George Basin and 1000-8000 larvae/100 m² beyond the shelf break and on either side of Unimak Pass. Data of 1981 support this pattern of low density but wide distribution over the middle shelf, higher densities over the central St. George Basin of the outer shelf domain, and greatest aggregations beyond the shelf break (Fig. 6.18). The highest density (5600 larvae/100 m²) for 1981 was taken at the southwest tip of Unimak Island. Variation between

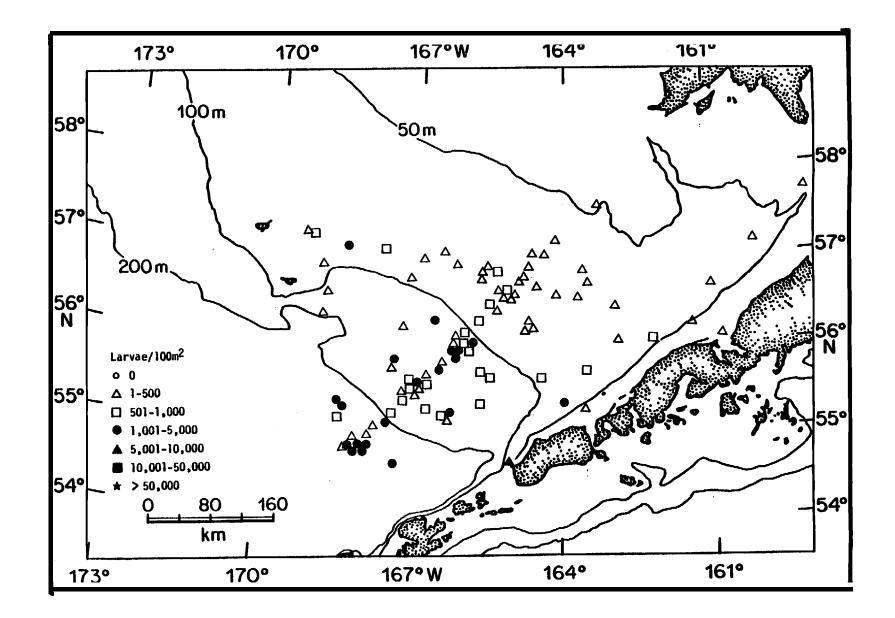


Figure 6. 8 Distribution and abundance of Hippolytidae shr mp larvae from PROBES 1981 and NOAA 1981, April-July combined. Zero stations omitted.

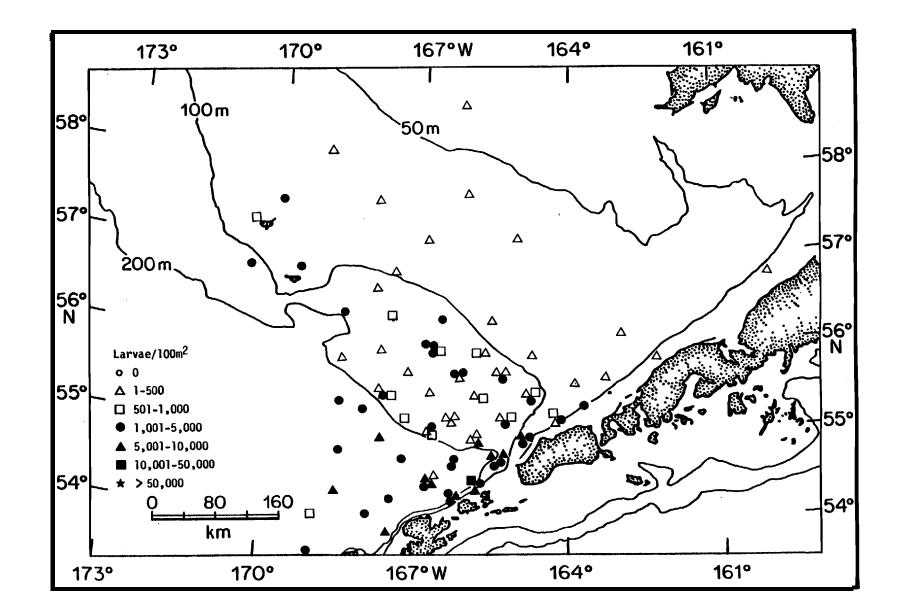


Figure 6.19 Distribution and abundance of Hippolytidae shrimp larvae from NOAA 1976 and 1977, April and May combined. All zero stations omitted.

months within a single year can be seen by comparing larval abundance for April, May and June during PROBES 1978 (Fig. 6.20 a and b). **Distri**bution in April was widely spread over the outer **shelf** domain and greatest concentrations were found beyond the shelf break (Fig. 6.20a). Distribution in May and June 1978 seemed to be concentrated **mainly** into 2 bands; one just west of the 100 m **isobath** and one just beyond the shelf break at the 200 m **isobath**. By this time of year some larvae were found up in the middle shelf domain. The highest concentration of larvae (12,000 **larvae/100 m²**) was found at the western tip of **Unimak** Island. Further work to identify the species within the **hippolytid** group would help to delineate distribution patterns of individual species.

Figure 6.21 illustrates mean larval **hippolytid** densities by month and by years in stratum 3 just west of the **200** m **isobath.** consistently high mean larval densities (1000-2400 **larvae/100** m²) were found in the months of April, May, and June in stratum 3 during the years 1977-1981. By comparison, slightly lower mean larval densities (600-1650 larvae/100 m²) were found during May and June in stratum 2 during those years.

A more complete picture of mean larval densities for **hippolytids** is given in **Table** 6.7 for PROBES May and June 1978 data. Strata beyond the shelf break again had the highest mean densities which were three-fold greater toward the Aleutian Islands (**stratum 4**) than toward St. George Island (stratum 7).

Hippolytid larvae were found from 0-80 meters in the water column. Figure 6.22 illustrates the larval depth distribution of **hippolytids**

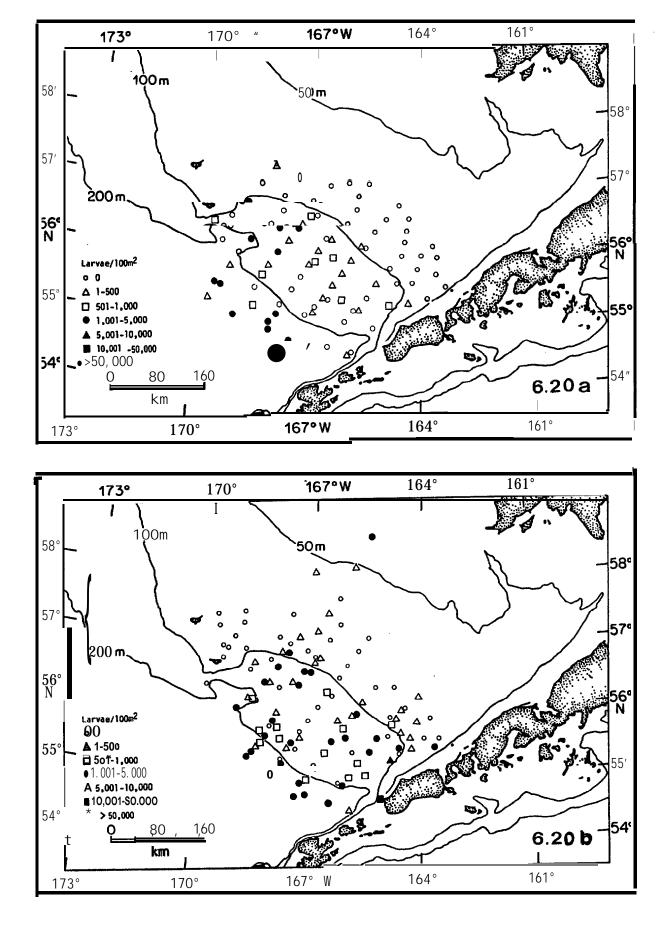


Figure 6.20 Distribution and abundance of Hippolytidae shrimp larvae from PROBES 1978; (a) April only, (b) May and June. Zero stations included.

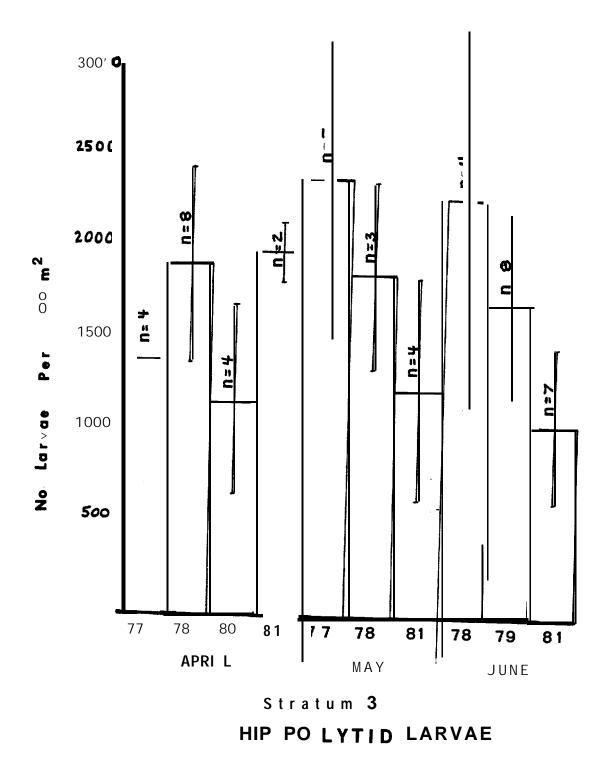
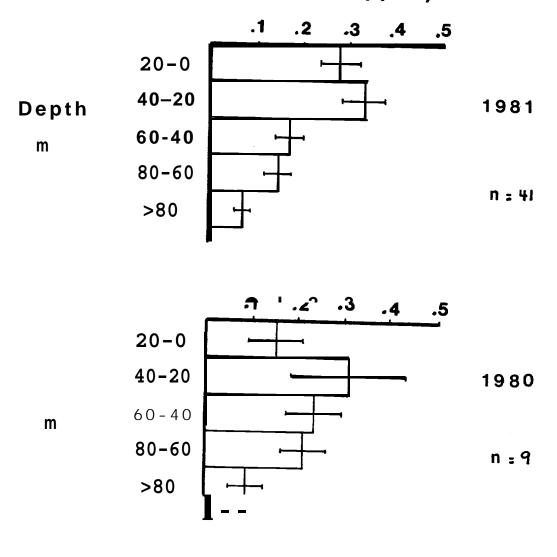



Figure 6.21 Hippolytidae shrimp larval abundance in stratum 3 from 1977–1981 by months April, May and June. Values expressed as mean density +1 standard error. Zero stations are included in these values.

Table 6.7.Cross-shelf comparison of mean densities of Hippolytidae
shrimp larvae during May and June from PROBES 1978.
Zero stations omitted from calculations. See Figure
2.21 for strata locations. Total stations sampled =
N.

Stratum	Mean Density <u>+</u> 1 S.O. larvae/100 m ²	% posi ti ve stati ons	Ν			
	Oceani c/Shel f	Break Domain				
7	836 + 597	100%				
3 .4	2445 <u>+</u> 1575 2655 <u>+</u> 3153	86% 100%				
·	<u>2000 -</u> 0100	100/0				
Outer Shelf Domain						
8	956 + 674	76%	17			
2	103 2 : 1150	67%	18			
5	2033 + 1736	75%	12			
	Middle She	elf Domain				
9	253 + 317	53%	17			
1	143*	14%	7			
6	567:800	64%	14			

*Based on 1 positive station.

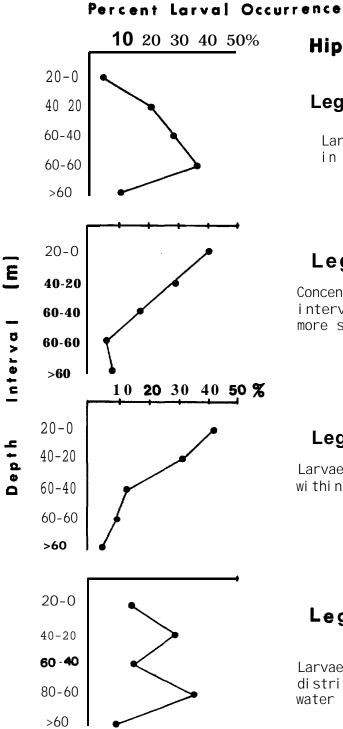

Hippolytidae Larvae

Figure 6.22 Vertical depth distribution of Hippolytidae shrimp larvae from PROBES 1980 and 1981. Values **expressed** as an average proportion <u>+</u>] standard error.

during PROBES 1980 and 1981 sampling from April to July. The total cumulative percentages of larvae in each depth interval were: 15-28% in the upper 20 m; 46-62% in the upper 40 m; 70-79% in the upper 60 m; and 94% in the upper 80 m. This homogeneous distribution from 0-80 m is similar to the pattern for P. borealis. MOCNESS data for PROBES 1981 were analyzed by month (Fig. 6.23). Larvae were concentrated in the **40-80** m depths during April, in the 0-40 m interval during May and June, and homogeneously throughout 0-80 m by late June and July. Examining the pattern of larval depth **distributi**on within each depth interval (Fig. 6.23) clearly shows the highest percentage of larvae (about 40%) in the 20-0 and 40-20 m intervals during May and June, and a high percentage of larvae (about 30%) in the 80-60 m interval both in April and then again in late June and July. This changing pattern of hippolytid larval depth distribution might be correlated to food availability or temperature, light and other factors. Correlations are difficult to perform since the **hippolytids** are a multi-species group.

Summary:

- Larvae of some hippolytids hatch out as early as March, while other species not until April or May.
- Hippolytids are distributed widely over the St. George Basin, into the mid-shelf domain and beyond the shelf break.
- 3) Greatest densities occurred beyond the shelf break and along the Aleutian Islands, especially near Unimak Pass. Mean densities beyond the shelf break ranged from 1000-2000 larvae/100 m² in May and June during years from 1977-1981.

Hippolytidae

Leg 1 April

Larvae concentrated in the 40-80 m interval.

Leg2 May

Concentrated in the 0-40 m interval. Larvae were generally more shallow than during Leg I.

Leg 3 June

Larvae *were* still shallow within the 0-40 m interval.

Leg 4 June -July

Larvae were homogeneously distributed throughout the water column.

Figure 6.23 Vertical depth distribution of **Hippolytidae** shrimp larvae by month from PROBES 1981. Values expressed as percent occurrence of larvae versus depth.

- Larvae were distributed homogeneously throughout the water column from 0-80m although the depth of preponderance sometimes shifted month to month.
- 5) Larvae probably metamorphose and settle out of the water column by late August to early September.

6.6.3 Crangonidae

Stage I Crangon spp. larvae were first collected Larval Duration: over the St. George Basin in early April to mid-April (1977, 1978, 1980 and 1981 cruises). They were still present in the water column by the end of June in 1978, indicating an extended period of hatchout in that year, whereas in 1981 S1 were not taken after mid-May. The duration of larval stayes in 1981 is shown in Figure 6.24. Since S1 and II were taken from the start of sampling, hatchout must have begun in late March An intermolt period of 12-16 days between S11-111 and III-IV is 1981. similar to the 2-3 week intermolt period found for Pandalus borealis. Since the larvae of Crangon spp. have up to 7 zoeal stages (Kurata 1964), they may be in the water column until mid- to late August. The long durations for each stage, 45-60 days, shown in Figure 6.24, are probably exaggerated since there are more than one species of crangonid larvae included in this group.

Crangonids have one of the fastest rates of development (i.e., about a 2 week **intermolt** period) of all **natantian** shrimp of the St. George Basin, as shown by the molt frequency histogram (Fig. 6.25) for data from PROBES **1981.** The protracted **hatchout** time (April - June) is

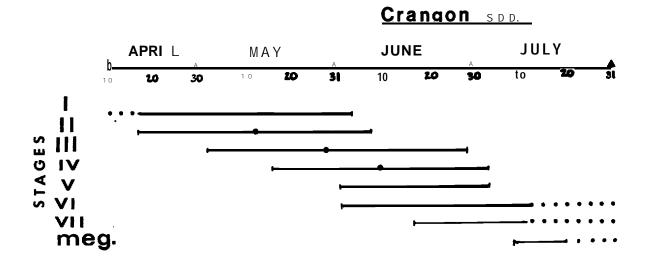


Figure 6.24 Crangon spp. larval stage durations from PROBES 1981. Dots represent hypothetical time duration for certain stages not sampled early or late enough to note complete development.

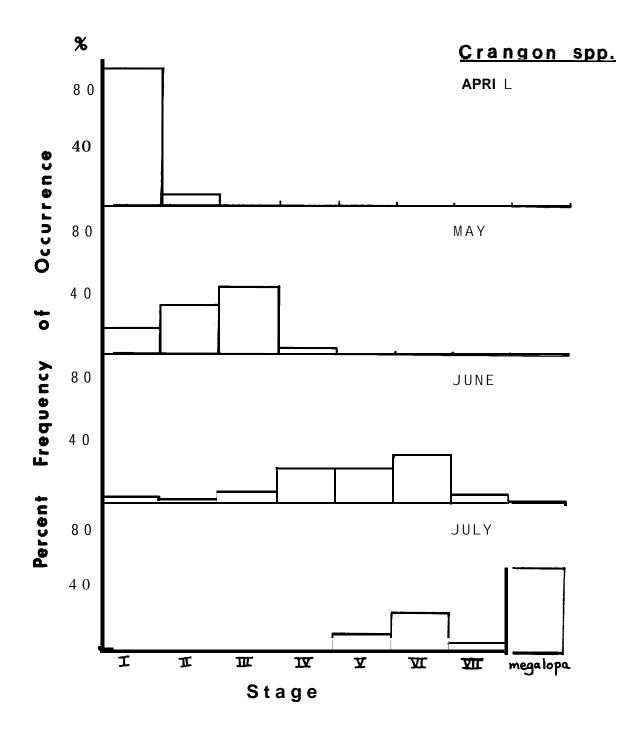


Figure **6.25** C<u>rangon</u> spp. stage frequency of occurrence by month from PROBES 1981.

most probably due to the mix of species in our samples. Even though they have 5-7 larval stages before the **megalops** is reached, the majority of **larvae** (given a 2 week **intermolt** period) would have metamorphosed and settled **out** of the water **column** by early August in 1981. In April of that year, 93% of the **larvae** were S1 in April , while 58% were **megalopae** by **July.**

Argis spp. (A. lar, A. _ and A. ovifer) were present at 2% or 13 of the 626 station locations sampled from 1976-1981 (Fig. 6.26). Except for one station (A₅ on the PROBES A line), they favored the mid-shelf domain and stations < 100 m sonic depths. All stages, I, II and megalopae, were taken during April to July. Megalopae in particular were taken as early as May 23rd (NOAA, R/V Alaska) and as late as July 4th (PROBES) in 1981.

<u>Distribution and Abundance</u>: Four species of adult crangonids, <u>Crangon</u> <u>communis</u>, <u>C. dalli</u>, <u>Argis</u> <u>dentata</u>, <u>and <u>A. lar</u></u>, are routinely taken during trawl surveys of the St. George Basin (Paul Anderson, NMFS, Kodiak, Alaska, personal <u>communication</u>). According to <u>Ivanov</u> (1969), crangonid adults dominate the 0-50 m depth zone of the inner shelf domain. This region was only sporadically sampled during the 1976-1981 cruises and thus substantiation of this fact was difficult. However, nearshore distribution of crangonids was confirmed during the 1982 OCSEAP cruises along the North Aleutian Shelf. From <u>Unimak</u> Island to Port <u>Moller</u>, the dominant shallow water shrimp taxa were <u>Crangonidae</u> (D. Armstrong, <u>pers</u>. observation, <u>June 1982</u>, R/V Mi<u>ller Freeman</u>), primarily <u>C. communis</u>, <u>C. alaskensis</u> and <u>A. dentata</u>.

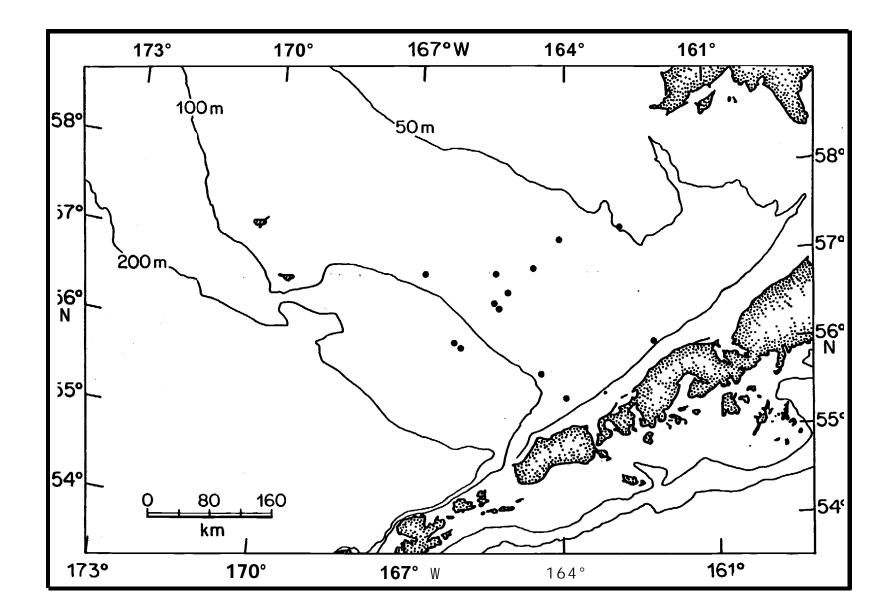


Figure 6.26 <u>Argis</u> spp. distribution from all years 1976-1981, **all** months April-July combined. Positive station locations indicated **by** a small **black** dot. See Section 2.0 for station locations and cruises.

Larval crangonids, <u>Crangon spp</u>., were consistently found in greater abundance over the St. George Basin of the outer shelf domain in a band west of the 100 m isobath. Figures 6.27-6.30 depict the larval distribution and abundance of <u>Crangon spp</u>. from PROBES' and NOAA cruises from 1976 to 1981. While the crangonids were almost as wide ranging as the hippolytids, they were generally absent beyond the shelf break and most prevalent over the inner shelf domain (less than 50 m). The two high density (> 1000 larvae/100 m²) stations in the inner shelf domain (Fig. 6.27) were due to a different species than found at the high density stations over the St. George Basin. Figure 6.28 gives the distribution of <u>Crangon spp</u>. larvae during April and May of **1976** and 1977 (NOAA). Greatest larval densities were found in the outer shelf domain of the St. George Basin midway between the 100 and 200 m **isobaths** and also off Akutan and **Unalaska** Islands.

Monthly variation in density is illustrated by comparing Figs. 6.29 for April and 6.30 for May and June PROBES 1978. By April in 1978, <u>Crangon Spp</u>. were distributed at fairly low densities throughout the St. George Basin and infrequently over the southern half of the mid-shelf domain. By May and June, larvae were concentrated in a band along the 100 m isobath at slightly higher densities than found in April (Fig. 6.30). This is somewhat different from the pattern seen in 1981 when sampling effort concentrated on the PROBES A line and distribution by May and June was extensive over the middle shelf domain (Fig. 6.27). Monthly variation is also illustrated by Figure 6.31 that depicts <u>Cran-</u> gon spp. larval mean densities in stratum 2 by month and by year. Mean

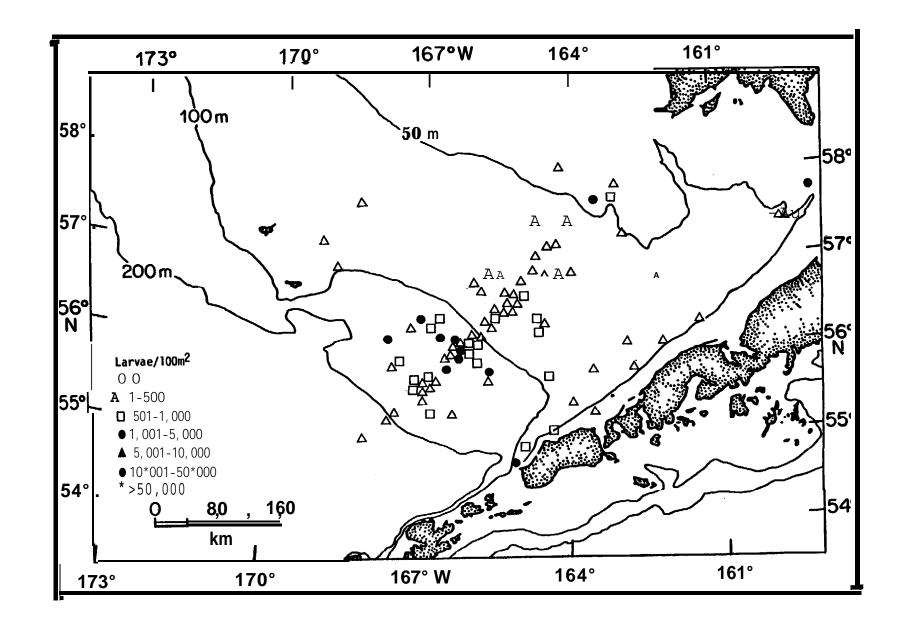


Figure 6.27 Distribution and abundance of <u>Crangon</u> spp. larvae. NOAA 1979 and 1981, PROBES 1980 and 1981, all **months** April-July combined.

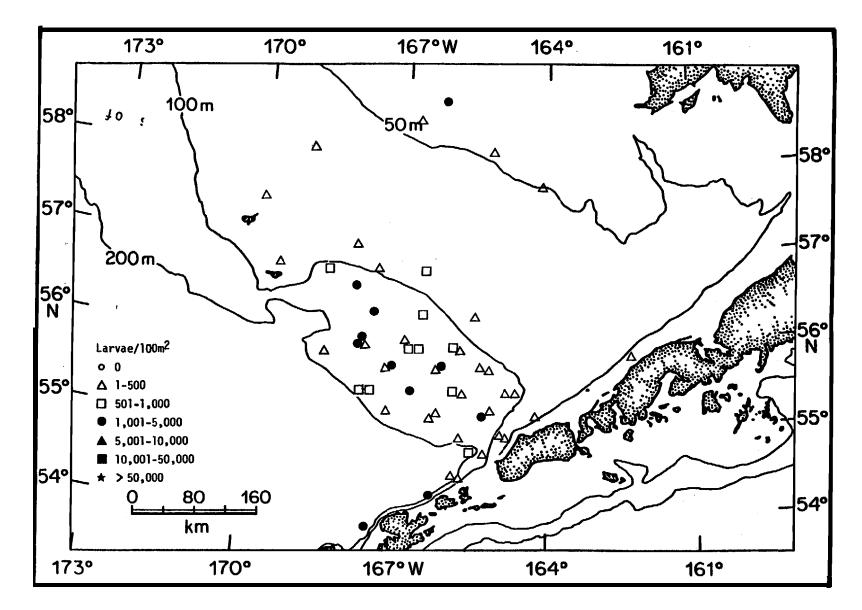


Figure ≤.28 Distribution and abundance of <u>Crangon</u> spp. larvae from NOAA 1976 and 1977, April and May combined. Zero stations omitted. See Section 2.0 for a 1 station locations for these cruises.

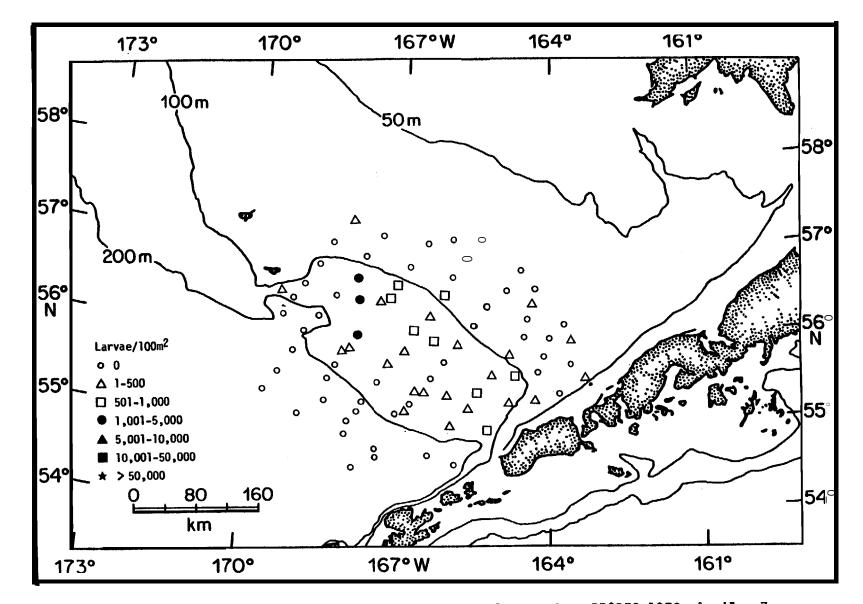


Figure 6.29 Distribution and abundance of <u>Crangon</u> spp. larvae from PROBES 1978, April. Zerstations inc⁻uded.

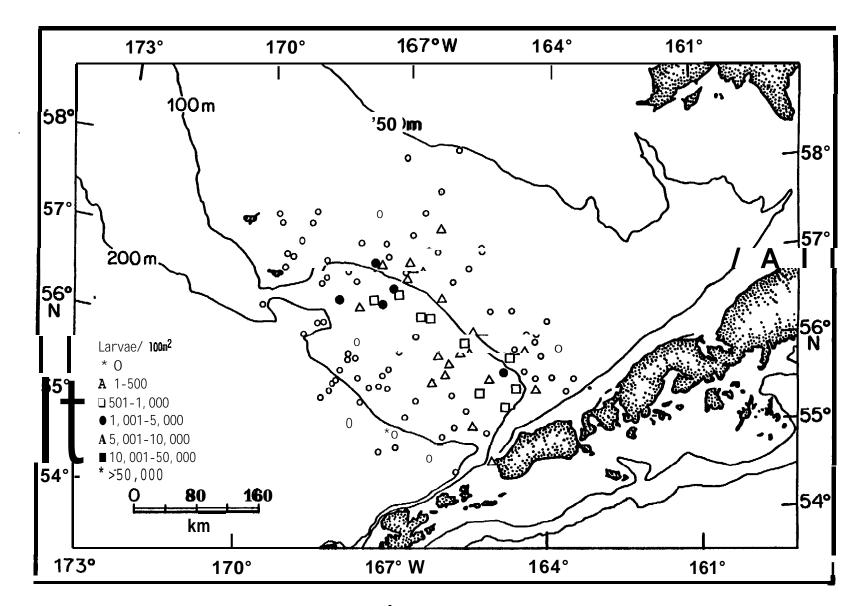
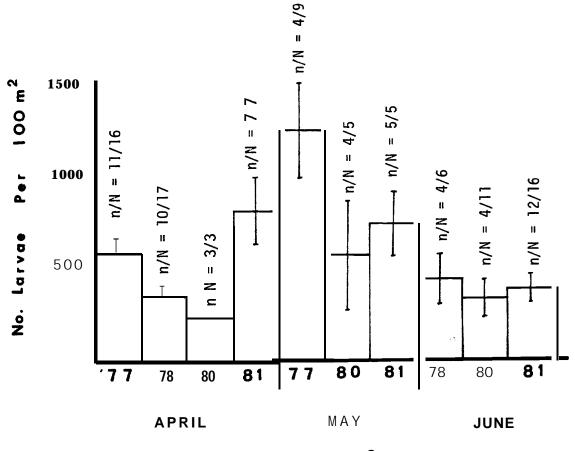



Figure 6.30 Distribution and abundance of <u>Crangon</u> spp. larvae from PROBES 1978, May and June. Zero stations included.

STRATUM 2

Figure 6.31 <u>Crangon</u> spp. larval abundance in stratum 2 from 1977-1981 during April, May and June. Values expressed as mean density <u>+</u>1 standard error. Zero stations were excluded from these calculations. The number of positive stations (n) and the total number of stations sampled (N) for each year is shown above the bars. larval densities were generally low (< 500/100 m²), but greatest abundance always occurred in May (1000 larvae/100 m²) over stratum 2. The frequency of occurrence of **larval crangonids** in the 1981 samples was high (present in 75-100% of the samples), whereas in other years **crangon**ids were taken less frequently (in 33-80% of the samples). The lowest mean densities were consistently taken in 1980. Table 6.8, the **cross**shelf comparison of mean densities of <u>Crangon spp.</u> larvae during May and June PROBES 1978, demonstrates three trends. First, the absence of any <u>Crangon spp. larvae beyond the shelf break; second, in the outer shelf</u> domain, highest densities were found in the north and south of the St. *George* Basin; third, **crangonids** were less abundant over the middle shelf with mean density between 260-375 larvae/100 m². **Crangonids** were consistently less abundant than either the **pandalids** or **hippolytids**.

MOCNESS data from PROBES 1980 and 1981 cruises were analyzed but there were insufficient stations during 1980 for a complete workup of vertical depth distribution. Only 5 stations out of a possible 26 had more than 6 larvae per station and a sample size of 5 stations was regarded as unacceptable. For the 1981 data, a homogeneous distribution of <u>Crangon spp.</u> larvae throughout the water column is shown in Fig. 6.32. <u>Crangon spp</u>. larvae were distributed between 0-80 m with 16% in the upper 20 m, 47% in the upper 40 m, 76% in the upper 60 m, and 93% in the upper 80 m.

Summary:

 Hatchout of <u>Crangon spp</u>. begins in late March and the larvae remain in the water column until early August.

Tabl e 6.8.	Cross-shelf comparison of mean densities of _Crangon spp. larvae during May and June from PROBES 1978.
	Zero stations in each stratum omitted in these calculations. See Figure 2.21 for strata locations. Total number of stations sampled = N.

مد. سم

Stratum	Mean Density + S.D. (larvae/100-m2)_	% positive stations	Ν
	0ceani c/Shel f	[°] Break Domain	
7 3 4	0 0 0	0% 0%	7 7 2
	Outer She	elf Domain	
8 2 5	1119 +694 310 <u>+</u> 260 818 <u>+</u> 547	35% 44% 50%	17 18 12
	Middle Sh	nelf Domain	
9 1 6	375 + 481 330 + 202 264 + 278	35% 29% 21%	17 7 14

Crangon spp.

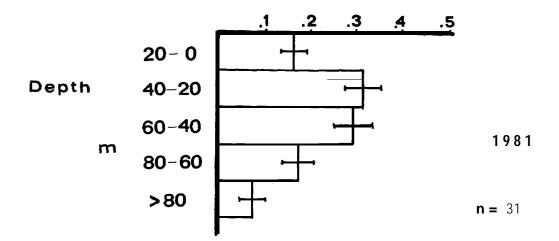


Figure 6.32 Vertical depth distribution of <u>Crangon</u> spp. larvae from PROBES 1981. Values expressed as an average proportion <u>+</u>] standard error. Total number of MOCNESS stations used in these calculations is given by n.

- The intermolt period of about 2 weeks seems to be the shortest of all the shrimp taxa.
- Crangonids are widely distributed over the St. George Basin and extend into the middle and inner shelf domains.
- Crangonids were caught less frequently than either the pandalids or hippolytids.
- 5) Greatest densities occurred over the outer shelf domain where average mean densities were 300-1000 larvae/100 m². Middle shelf domain densities were generally about 300 larvae/100 m². Outer shelf domain densities tended to be greater near the **Pribilofs** and the Aleutian Island chain rather than over the central St. George Basin.
- Larvae were distributed homogeneously throughout the water column from 0-80 m.

6. 6. 4 Penaei dae

The spiny larval form of disputed origin(s), currently assigned to the family **Penaeidae**, is assumed to come from deep dwelling parental stocks since larvae were most abundant at stations of depths > 200 m.

Larval Duration: Stage I spiny larvae were first taken in mid-April in 1977, 1978, 1980 and 1981. Larval stage duration is shown in Figure 6.33 for PROBES 1981 data. Note the very long durations for S11 and III; 75 days for **S11**, and 56 days for S111. Although not shown by

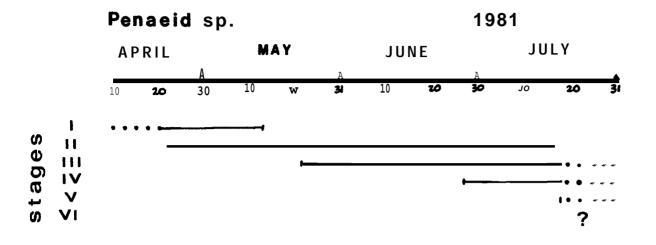
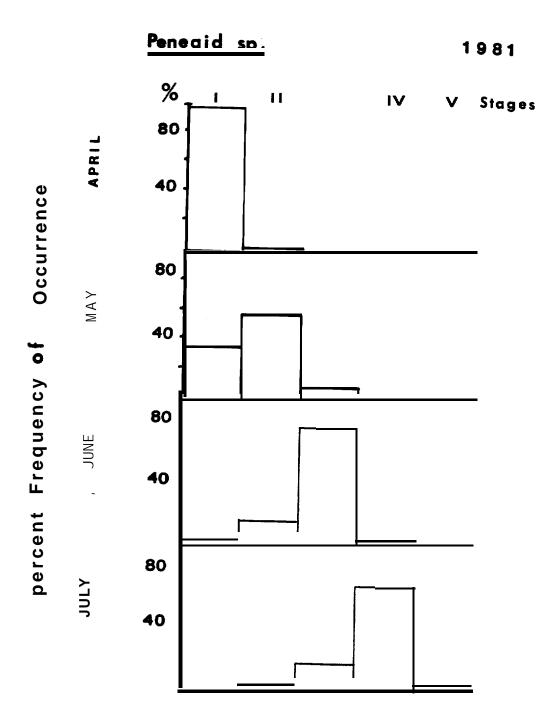



Figure 6.33 **Penaeid sp.** Larval stage durations from PROBES 1981. Dots represent hypothetical portions of stage duration for which no samples were available.

Figure 6.33, these deepwater shrimp must have a protracted hatchout period. [Late summer sampling ,as taken in August 1982, will be examined for later stages (IV-VI) of this species.] Kurata (1964) described SVI and VII of a similar spiny larva, which he assigned to <u>Glyphocrangon</u> <u>Spp</u>. One sample collected in October 1980 by the R/V <u>Alpha Helix</u> from east of the 200 m isobath contained one of these later SVI larvae. Additional late summer examples of this spiny larva may have been collected among the 1982 samples. Neither the total number of larval stages nor the total duration of planktonic larval life is known for this species.

A molt frequency histogram, based on the PROBES 1981 cruises, is given in Figure 6.34 for these spiny larvae. The **intermolt** period seems to be about 20 days and thus (given at least 7 larval stages) these zoeae would be in -the water column until the end of September or early October **(as** supported by the <u>Alpha</u> Helix collection in October 1980).

<u>Distribution and Abundance:</u> Positive station values for all years, 1976-1981, were combined for Figure 6.35. The deep water origin (> 200 m) of these spiny **penaeid** larvae is evident, and maximum densities of 1000-9000 larvae/100 m² occurred in strata 7, 3, and 4 beyond the shelf break. Abundance of these larvae over the outer shelf domain of the St. George Basin was generally very low, with densities ranging from 20-200 larvae/100 m² in strata 8, 2 and 5 except during May 1977 (NOAA) when higher densities of 200-3000 larvae/100 m² were taken in strata 8 and 5. Spiny larvae were rarely caught during the 1976, 1979, and 1980 cruises and were caught **in** very low numbers (< 500 larvae/100 m²) **in** stratum 3

F gure 6.34 Penaeid sp. stage frequency by month from PROBES 1981.

Figure 6.35 Distribution and abundance of penaeid species larvae all years 1976-1981 and all months April-July combined. Zero stations omitted.

in 1981 due to the sampling patterns employed during those years. **No** spiny **larvae** were ever found in the middle shelf domain (strata 9, 1, and 6) during any of the cruises.

Table 6.9 compares mean **larval** densities during April and May from NOAA 1977 with densities during May and June from PROBES **1978**. General ly higher mean **penaeid** densities occurred during 1977 for all strata except stratum 8. In addition, the pattern of increasing abundance with increasing station depth is clearly apparent; none **was** found over the middle shelf, but an average of 4390/100 m² was found in stratum 3 over ⁻ the shelf break.

<u>Vertical Distrubtion</u>: Of all the shrimp, these spiny larvae were the most homogeneously distributed in the water column from 0-80 m (see Fig. 6.36). Based on PROBES 19801 **MOCNESS** data, a cumulative **total** of 20% of **penaeid** spp. larvae appeared in the upper 20 m, 45% in the upper 40 m, 75% in the upper 60 m, and 98 % in the upper 80 m. Low abundance of these spiny larvae in PROBES 1980 samples precluded any depth distribution analysis for that year.


Summary:

- A type of spiny larva, tentatively assigned to the family Penaeidae, was taken less frequently 'than the other families of shrimp.
- It was found predominant'ly beyond the shelf break in deep water (> 200 m).

Table 6.9.Cross-shelf comparison of mean densities of Penaeid
sp. larvae during April and May from NOAA 1977 with May
and June from PROBES 1978. See Figure below for strata
locations. Total number of stations sampled = N.

	NOAA 1977	(Apri	T/May)	PROBES 197	8 (M	ay/June)
Stratum	ًً <u>x +</u> 1 S.D.	Ν	% posi ti ve stati ons	ًًx ± 1 S.D.	Ν	% positive stations
		0ceani	ic/Shelf Break	Domai n		
7 3 4	1590 4390_+ 3748 778 <u>+</u> 912	1 11 13	* 82% 69%	777 <u>+</u> 508 1196 <u>+</u> 1116 315 <u>+</u> 84	8 7 7 2	86% 71% 100%
Outer Shelf Domain						
8 2 5	$\begin{array}{r} 400 + \underline{919} \\ 336 + 1271 \\ 116 + 287 \end{array}$	8 25 18	38% 36% 33%	583 +_1106 142_+ 334 17 + 59		24% 17% 8%
Middle Shelf Domain						
9 1 6	0 0 0	2 1 10	0% 0% 0%	0 0 0	17 0 15	0% 0% 0%

*Only 1 positive station sampled.

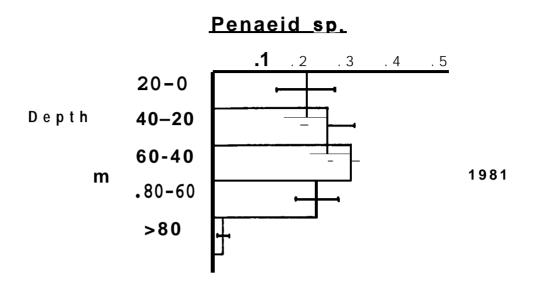


Figure 6.36 Vertical depth distribution of **penaeid** sp. larvae from PROBES 1981. Values expressed as an average proportion <u>+</u>] standard error.

- Larvae were in the water column from hatchout in mid-April until metamorphosis - at least until late September or early October.
- These larvae apparently have a protracted hatchout period and an intermolt duration of approximately three weeks.
- 5) These larvae are homogeneously distributed throughout the water column from 0-80 m.

6.7 General Shrimp Summary

- Peak hatch of shrimp larvae in the southeastern Bering Sea occurs in early April for species in the families Pandalidae, Crangonidae, Penaeidae, and Hippolytidae; some larvae of the latter family hatch in early March.
- 2. **Zoeal** stages molt about every 2-3.5 weeks and are predicted to metamorphose to benthic juveniles about mid-August to September.
- 3. Larvae of <u>Pandalus borealis</u> and most pandalids are most densely distributed over the St. George Basin between the 100 m and 200 m isobath (Outer Shelf Domain); <u>P. tridens</u> larval densities are greatest beyond the shelf-break in deep water.
- 4. Hippolytid larvae are distributed throughout the St. George Basin south to Unimak Pass and in deep water southwest of the 200 m isobath to Unalaska Island.

- Crangonid Larvae are the Least abundant of the three principal families and also are centered over the outer and middle shelf domains of the St. George Basin.
- Relatively few shrimp larvae are found in the Middle Shelf Domain northeast of the 100 m isobath. Unimak Pass is a region of high larval shrimp densities.
- 7. Data on the magnitude of benthic shrimp populations is scarce because routine sampling gear is thought to inefficiently catch these relatively small crustaceans.
- 8. Although shrimp have no present commercial importance in the southeastern Bering Sea, their role in the **benthic** food webs of this area should not be overlooked. Shrimp are a major part of the diets of marine mammals and commercially important species of fish and crab. Environmental perturbations caused by pollution that affect major fluctuations in shrimp stocks could have ramifications throughout the **benthic community**.

7. O DISTRIBUTION AND ABUNDANCE OF HERMIT CRABS (PAGURIDAE) IN THE S.E. BERING SEA

Jan Armstrong and Brett Dumbauld

7.1 Introduction

At least 21 species of hermit crab from the **family Paguridae are** reported to occur in the Bering Sea (Appendix 3). Some of these species are found strictly in intertidal areas **(e.g.** <u>Pagurus</u> <u>middendorffii</u>) while others are found in sublittoral areas, primarily on rocky substrata (e.g. <u>Pagurus</u> <u>beringanus</u>, <u>P. kennerlyi</u>, <u>P. hirsutiusculus</u>, <u>Elasso-</u> <u>chirus</u> <u>gilli</u>). Only seven of these species are regularly found in benthic trawls from the study area in the southeastern Bering Sea (Table 7.1).

7.1.1 Life History

The life history of hermit crabs in the genera <u>Pagurus</u>, <u>Elassochir</u>us, and <u>Labidochirus</u> includes four plankton'ic zoeal stages and one megalops stage (termed glaucothoe in the older "literature); the latter undergoes metamorphosis and settles as a benthic juvenile (Thompson 1903; Hart 1937; Miller and Coffin 1961; Nyblade 1974; Nyblade and McLaughlin 1975). Four of the species which are commonly found in southeastern Bering Sea trawl samples have been raised from egg to adult in the laboratory (Table 7.2; Nyblade 1974; Nyblade and McLaughlin 1975). Laboratory culture has also been completed for six of the remaining species reported to occur in the Bering Sea (Nyblade 1974) and some studies have been conducted on larvae of <u>Pagurus middendorffii</u>, <u>P.trigonocheirus, Dermaturas mandtii</u>, and other species from plankton samples (Kurata 1964a, b; Makarov 1966).

Speel or	Donth	% of tows in which <u>species occurred</u> 1975(<80m) 1976 (80-200m)	
Speci es	Depth	13/3(~0011)	
Pagurus aleuticus	15 -435 m soft bottom		34.6
2. <u>capillatus</u>	4 - 431 m mud	46.4	26.9
<u>confragosus</u>	68- 435m		44.2
2. <u>ochotensis</u>	Subtidal – 249m sand	38.7	
2. <u>trigonocheirus</u>	Subtidal - 183 m	45.9	36.5
<u>lassochirus</u> <u>cavimanus</u>	37 - 252m		31.7
<u>abidochirus</u> <u>splendescens</u>	Subtidal - 411 m soft bottom	32.9	

Table 7.1. Frequency of adult and juvenile **pagurid** crabs in 1975 and 1976,southeastern Bering Sea, **benthic** trawl samples and preferred habitats (Adapted from **Nyblade**, 1974; McLaughlin, 1974; Feder and Jewett, 1980).

Table 7.2. Reproductive data for four species of **Paguridae** collected **in** the San Juan Islands, **Washington.** Species are also common **in** the Southeastern Bering Sea (Adapted from **Nyblade** 1974).

. '

	Number o broods	f Time of egg ex-	Time of larval	Egg dry wt.	Annual egg production per	Larva	l duration (days)
Speci es	per year	trus i on	hatch	(µg)	100 mg female	Zoea	Megalops
<u>Pagurus</u> <u>aleuticus</u>	1	No data	Spring only March-May	2.32	No data	61. 2	20. 2
<u>P. capillatus</u>	1	Jan.	Spring only March-May	3.09	1.88X 10³	53.9	17.1
P <u>ochotens</u> i	s 2-3	Autumn (For spring hatch)	Spring through summer March-Sept.	3. 09	1.13X 10 ³	59.0	21.0
Labidochirus spl endescens	1	Jul y- August	Spring only March-April	3.83	7.08x 10 ²	76. 1	21.0

7.1.2 Reproduction

• •·

. 28

Reproductive season among hermit crabs differs by species and locality (Nyblade 1974). Copulation and egg extrusion usually occur from autumn through spring. Some species have a single brood and release larvae only in the spring, while multiple brooders may release larvae throughout the summer months (Table 7.2). Egg development time from extrusion to hatching has been recorded only for the second brood in multiple brooding species, and varies from 1.5 to 2.0 months in the laboratory (Nyblade Egg size and number per female also vary with species. Like the 1974). larvae of other invertebrates, those of hermit crabs appear in the water column later in more northern waters (Stephenson 1935; Pike and Williamon 1959). Therefore, with some allowance for latitude, the laboratory and field data of Nyblade (1974) for hermit crabs collected in the San Juan Archipelago (Table 7.2), may be applied tentatively to the same species found in the southeastern Bering Sea. Zoeal duration for most species falls in the range of 50-60 days. Laboratory studies have demonstrated that they are primary carnivores during this period and may feed on copepod nauplii, copepodites, barnacle nauplii, polychaete trochophores, and other small planktonic larvae (Roberts 1974). Duration of the **megalops** stage is approximately 21 days with little variation among speci es.

7.1.3 Benthic Distribution

Individual species of adult and juvenile hermit crabs were found in as many as 46% of **benthic** trawls taken in the southeastern Bering Sea in 1975 (primarily north of the **Pribilof** Islands and shallower than 80 m)

and 1976 (between the **Pribilof** Islands and **Unimak** Island between the 80 and 200m **isobaths;** Table 7.1). The greatest number of **decapod** crustacean species were recorded for the genus <u>Pagurus</u> (Feder and Jewett 1980), but due to their small size they did not constitute a significant portion of the wet weight sample biomass of **epifauna** (e.g., 12,302 individuals of <u>Pagurus trigonocheirus</u> contributed to only 1.3% of the total wet weight of the 1975 trawl samples). Biomass estimates for **pagurids** aver-. **aged** only .043 g/m² compared to .665 g/# for <u>Chionoecetes opilio</u> and .361 for <u>Chionoecetes bairdi</u>, the dominant crab species collected.

7.1.4 Food and Predators

. .

Adult hermit crabs have been shown to be predominately omnivorous detritus feeders and use their **chelipids** and **third maxillipeds** to scrape and sort food from bottom deposits. Scavenging and predation have been shown to be accessory and opportunistic behavior patterns (**Orton** 1927; Roberts 1968; Greenwood 1972). In turn, hermit crabs are preyed upon by king crab (<u>Paralithodes camtschatica</u>), Tanner crab (<u>Chionoecetes</u> spp.), Al aska plaice (<u>Pleuronectes guadrituberculatus</u>), Pacific cod (<u>Gadus</u> <u>macrocephalus</u>), and seastars (<u>Asterias amurensis</u>) (Feder and Jewett 1980, 1981).

7.2 Results and Discussion

Pagurid crab larvae were found in 65% of all the samples examined from 1976-1980 (April-June), 61% of all PROBES **1981**, and 100% of all NOAA 1981 (April-July) samples.

7.2.1 Larval Duration

Although several stage I pagurid larvae were found in early March (NOAA 1978) indicating a hatchout period of 1 ate February to early March for at least 1 pagurid species, high densities of pagurid larvae were not found until April (Fig. 7.2) indicating a mid to late March hatchout period for the majority of pagurid species. During 1981, some stage I pagurid larvae were still present as late as July (Table 7.2 and Fig. 7.1) illustrating the asynchronous hatchout periods and possibly multiple brood strategies of species in the pagurid group.

Pagurid larvae were not identified to species but were separated into individual **zoeal**(I-IV) **and megalops** stages. Densities were calculated for each individual larval stage. Average densities for each month (1981) were used to examine the relative frequency of occurrence of various larval stages. However, molt frequency is somewhat difficult to gauge from present data since numerous **pagurid** species are grouped together.

A larval stage frequency histogram for PROBES 1981 (Fig. 7.1) shows the basic developmental trend among the **pagurids** from April to July. In April and May a majority of the **pagurids** are S1, by June S111, and by July SIV with a small percentage of **pagurids** reaching the **megalops** stage. The **intermolt** period for **pagurids** must be 3-4 weeks between stages and thus total duration of **planktonic** life would approach 3.5-4.0 months from April-August for most species.

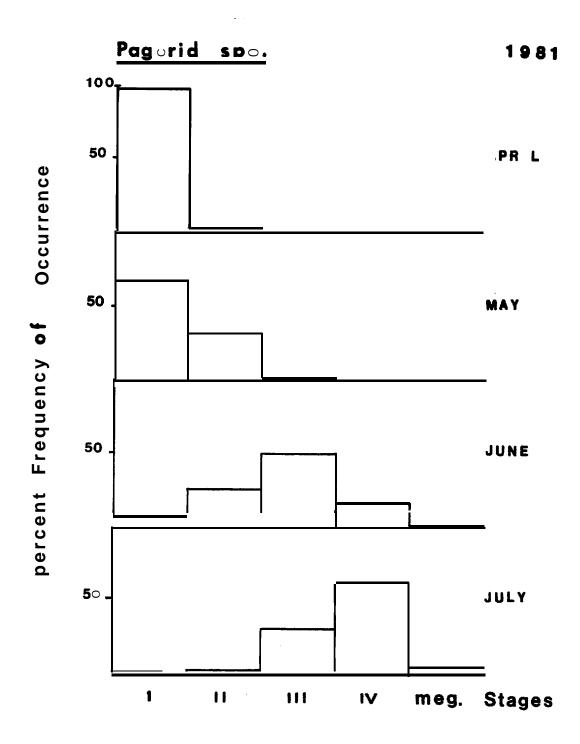


Figure = 1 Paguridae stage frequency histogram by month from PROBES 1981 (Apr 1-July).

7.2.2 Distribution and Abundance

Since the family **Paguridae** encompasses several species in the southeastern Bering Sea, this group's ubiguitous distribution is not surprising. Figure 7.2 illustrates larval densities in April from PROBES 1978 and NOAA 1978 and NOAA 1977. Greatest larval densities appear in a continuous band just west of the 100 m **isobath** from north to south of the middle shelf domain, and along the Aleutian Islands from Amak Island to Akutan Island. Densities were **typically** an order of magnitude greater east of the 100 m **isobath** than over the outer shelf domain of the St. Comparing April to May/June distribution (Fig. 7.3), high George Basin. densities and greatest abundance were found overlapping the middle and outer shelf domains along the 100 m isobath. The same general patterns were again found from data of PROBES 1980 (Fig. 7.4) and PROBES 1981 While pagurid densities were generally lower in 1980, all (Fig. 7.5). the densities >1000 larvae/100 m² were taken *in* May and June. lower densities in 1980 compared to 1981 appear along the 70 m isobath from Port Moller to the Pribilof Islands. During 1981, pagurid abundance was highest and most extensive over the middle shelf (strata 2, 5, 8) east of the 100 m isobath and along the 50 m isobath parallel to the North Aleutian Shelf from **Unimak** Island to Port **Moller** (Fig. 7.5); a continuation of the coastal band of high densities seen in Figure 7.3 from May/June 1976-79. The highest density was collected in April (57,000 larvae/100 m²) just northeast of the 100 m **isobath** indicated by the star in Figure 7.2. Across-shelf comparison of mean densities of Paguridae larvae during May and June PROBES 1978 (Table 7.3) highlights the preponderance of animals over the **middle** shelf domain and the high density overlap

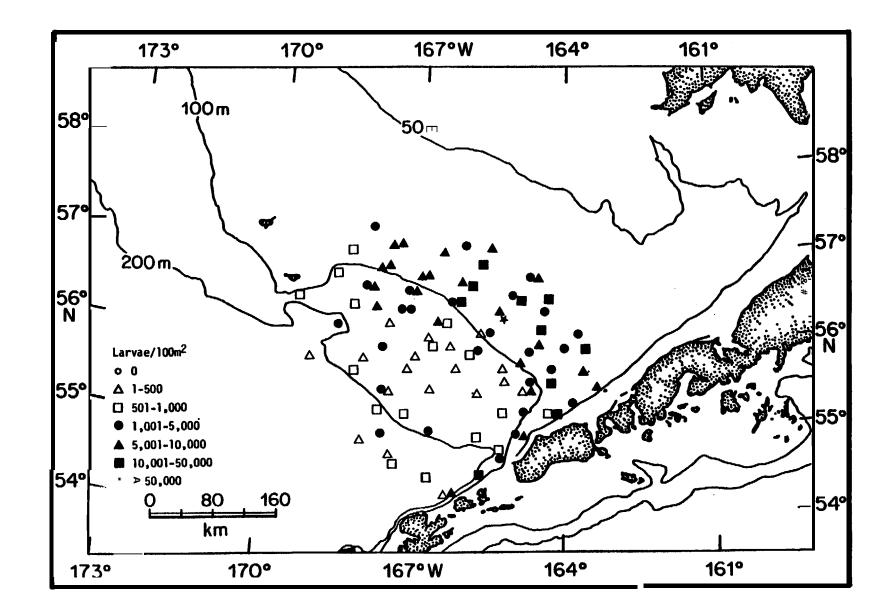


Figure 7.2 Distribution and abundance of Paguridae larvae during April from NOAA 1977 and PROBES 1978. Only positive stations were included. See Section 2.0 for all station locations.

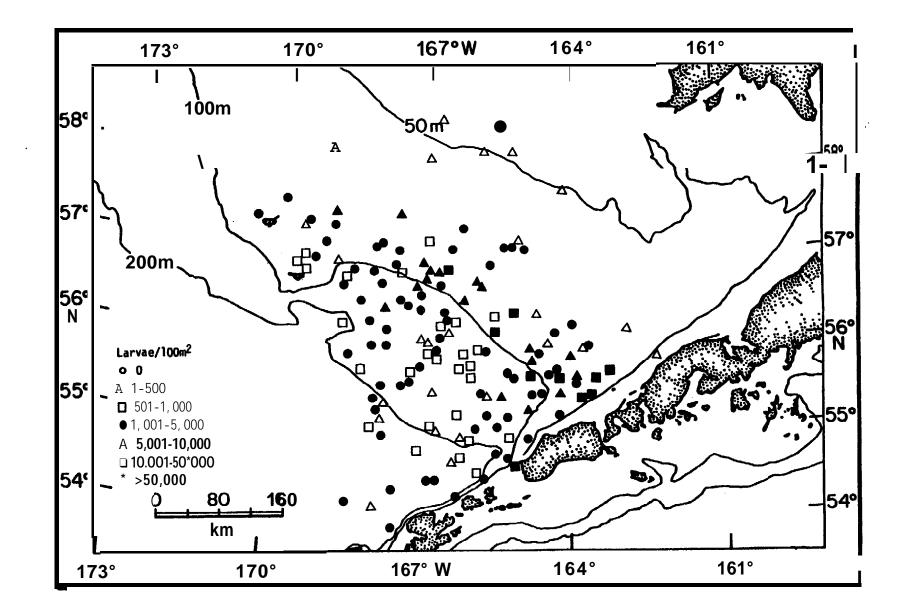
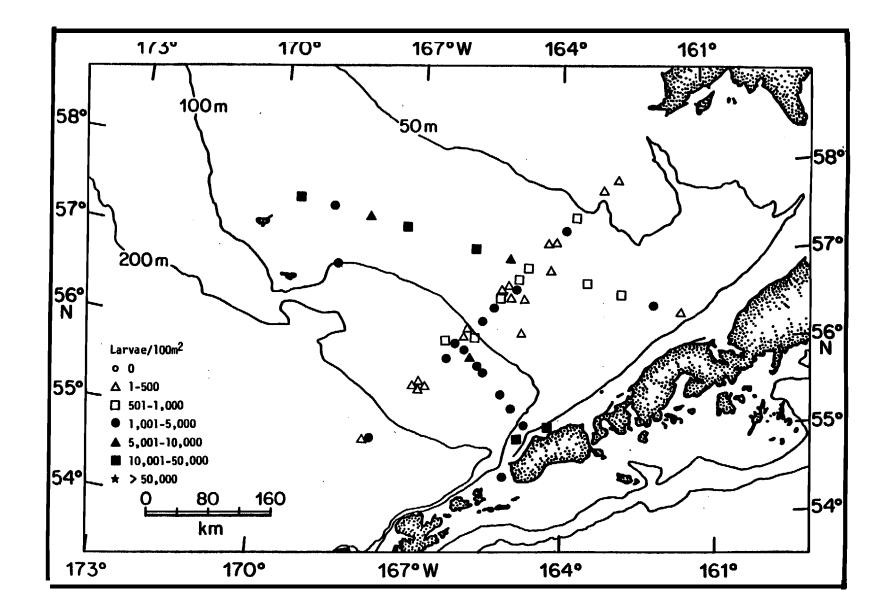



Figure 7.3 Distribution and abundance of Paguridae larvae durt ng Flay and June from NOAA 1976, 1977, 1979 and PROBES 1978. Only positive stations were included.

1

1

Figure 7.4 Distribution and abundance of Paguridae larvae during April-June from PR©BES 1980. Only positive stations were included.

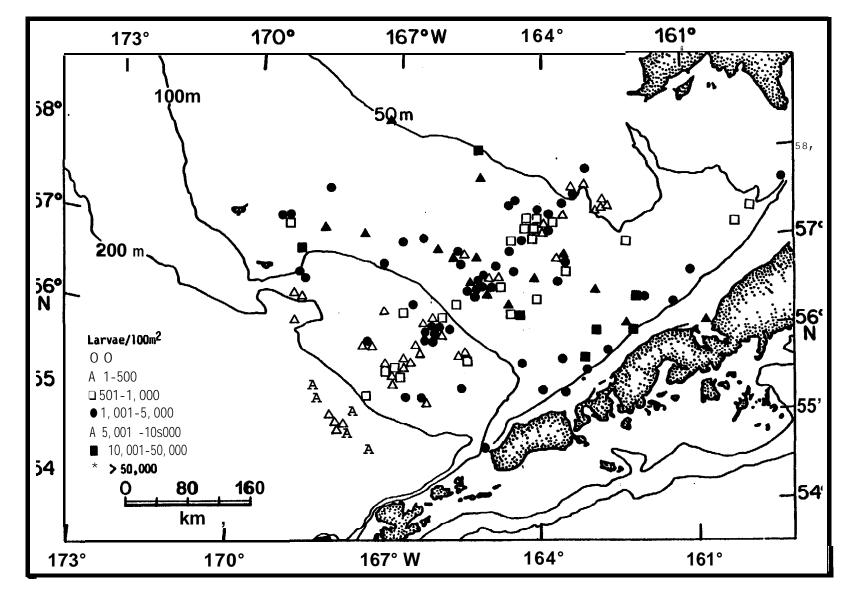
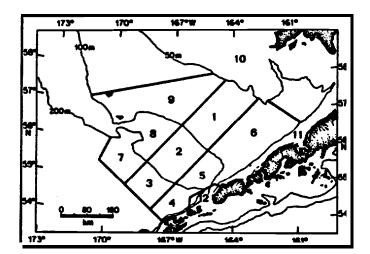



Figure 7.5 Distribution and abundance of Paguri dae 1 arvae during Apri 1 -Jul y from PROBES and NOAA 1981. Only positive stations were included.

Tabl e 7.3.	Cross-shelf comparison of mean densities of				
	Paguridae Larvae during May and June from PROBES				
	1978. Zero stations omitted in calculating				
	these means. Total number of stations surveyed				
	within each stratum = N. See Figure below for				
	strata locations.				

Stratum	x<u>+</u>1 SD (Larvae/100 m2)	% positive stations	Ν	
Oceanic/Shelf Break Domain				
7 3 4	663* 580_+ 259 . 485 _ 156	14% 43% 100%	7 7 2	
Outer Shelf Domain				
8 2 5	3804 + 3260 1406 <u>7</u> 1133 4910 <u>+</u> 6348	65% 56% 100%	17 18 12	
Middle Shelf Domain				
9 1 6	5272 + 4350 7566 + 6911 8241 + 8741	82% 100% 100%	17 7 14	

*Value based on \boldsymbol{only} one positive station.

into strata of the outer shelf domain (strata 5 and 8) during May and June. The cross-shelf increase of ten-fold in density is shown in Figure 7.6 for the years 1976-1981; only data of 1980 deviated from the trend of high middle shelf density (stratum 1) to low outer shelf and shelf break densities (strata 2 and 3). Stratum 1 mean densities ranged from **1148 to** 7566 **larvae/100 m²** (1980 low and 1978 high), compared to stratum 2 densities of 649 to 1364 (1979 low and 1980 high). General scarcity in **stratum** 3 is illustrated by mean densities of 147 to 858 **larvae/100 m²** (1981 low and 1980 high).

7.2.3 Vertical Distribution

Vertical depth distribution of **Paguridae** larvae was studied by analysis of **MOCNESS** samples from PROBES 1980 and 1981 (Fig. 7.7). **Pagurid** larvae were occasionally found down to **120-300 m** but were primarily concentrated within 0-80 m. Unlike the homogeneous distribution found among the shrimp taxa, **pagurids** preferred the upper depth intervals with 44-47% in the upper 20 m, 71-76% in the upper 40 m,84-89% in the upper 60 m, 95-96% in the upper 80 m, and 4-5% below 80m. A **diel** comparison of vertical depth distributions is given in Figure 7.8 for light (local mean time **(LMT)** = **07:00** - **19:59**) versus dark (LMT = **20:00** - **06:59**) at stations <100 m sonic depth (middle shelf domain) and stations between **100-200 m** sonic depth (outer shelf domain) from PROBES 1981. Percent occurrence of **pagurid** larvae during daylight hours was consistent between middle shelf and outer shelf stations; 30-33% for the 20-0 m interval, 40-45% for the **40-20 m** interval, 12-23% for the **60-40 m** interval, 2-7% for the **80-60 m** interval, and 0-6% below 80m. Samples taken during

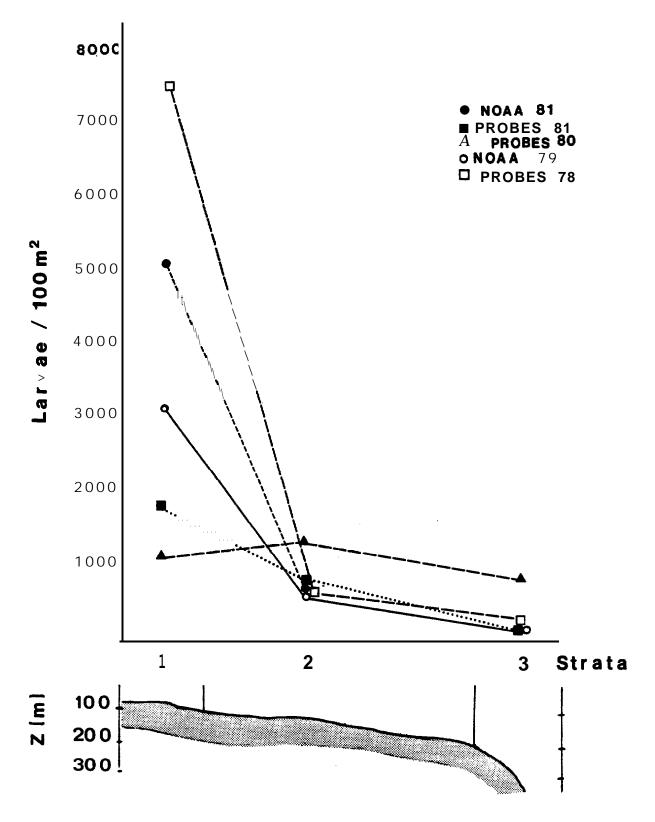


Figure 7.6 Mean Larval densities of **Paguridae** by stratum **for** cruises 1978-1981.

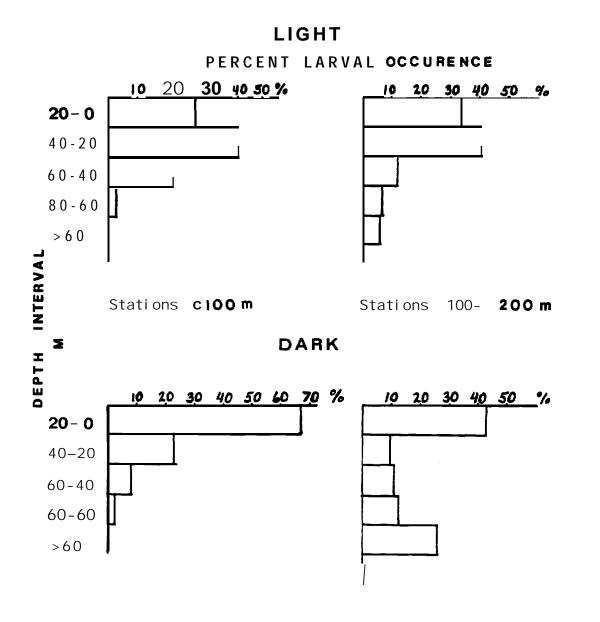



Figure 7.7 Vertical depth distribution of **Paguridae** larvae from **MOCNESS** samples PROBES 1980 and 1981. Number of stations sampled for this analysis is given by n.

dark hours showed very different distribution patterns depending on the station depth. Stations <100 m sonic depth had a majority of larvae in the upper 20 m while stations 100-200 m had many larvae in the upper 20 m but also a significant percentage in the >80 m interval. These data suggest vertical migratory behavior that could be a significant factor in exposure to surface oil.

Distribution of pelagic **pagurid** larvae cannot be compared with that of adults since good information is lacking on benthic distribution of adult hermit crabs in the southeastern Bering Sea. This group is routinely undersampled by conventional survey gear and yet their biomass **may** be substantial and their **trophic** position important to the benthic **community** that includes several commercially valuable predators of hermit crabs. Large populations of adult **pagurids** are expected to concentrate northeast of the 100 m **isobath** (as do the larvae) and along the 50-100 m **isobaths** along the Aleutian Island chain. A point of interest would be whether different species dominate either side of the 100 m **isobath** as seems to occur for <u>Chionoecetes **bairdi**</u> and <u>**C**. **opilio** over the outer and middle shelf domains, respectively (see Section 4.0).</u>

7.3 Summary

۰.

- Pagurid distribution was ubiquitous throughout the southeastern Bering Sea.
- 2) **Pagurid** crab larvae were found from early March until mid July with greatest densities during April over the middle shelf.

- 3) Larval duration in the plankton is expected to last 3.5-4.0 months for most species which have 4 zoeal plus a megalops stage and an intermolt period of approximately 3 weeks.
- 4) Greatest larval densities appeared in a continuous band along and east of the 100 m isobath and along the Aleutian Islands from Amak Island to Akutan Island between the 50-100 m isobaths; there was a substantial decline in density over the St. George Basin. Larval densities across the middle shelf domain were 10-fold higher than densities beyond the shelf break and 3-5 times higher than outer shelf densities during May and June (7566/100 m² vs. 249/100 m² vs 658/100 m² in 1978).
- 5) Pagurid larvae were generally concentrated in the upper 40 meters at both middle and outer shelf stations, and there was an indication of diel vertical migration toward the surface during dark hours.

8. O POSSIBLE OIL IMPACTS ON **DECAPOD** LARVAE IN THE SOUTHEASTERN BERING SEA WITH EMPHASIS ON THE ST. GEORGE BASIN

...

This two-year study of population dynamics of decapod larvae has drawn on six years' worth of zooplankton samples to determine spatial and temporal variation in distribution and abundance, in order to predict the possible impacts of oil development on this most sensitive **life**history stage. Other factors of general biology have been elucidated; " for example, the time and synchrony of hatch and its **interannual** variability, rate of larval development and time in the water column, molt frequency, and, in the case of commercial species targeted in surveys, the relationship between distribution of **benthic** female stocks and centers of larval abundance.

In many respects **however**, the data are incomplete, a shortcoming that has prompted over the past 1.5 years recommendations and proposals for additional research. Some of the proposed research is now ongoing (spring/summer 1983) as studies at the **Pribilof** 1s1 ands on blue king and <u>Erimacrus</u> crab biology and on red king crab along the North Aleutian Shelf. These investigations should add substantial information on critical habitat requirements of the species and allow an assessment of the relative sensitivity of such habitat to oil impact.

This last chapter is used to discuss scenarios of oil mishaps in the southeastern Bering Sea and consequences **to pelagic larvae of several taxa. This Will** be done by first reviewing several models of water

and oil transport developed for the region, discussing oil toxicity to crustacean larvae, highlighting biological misconceptions of past models and suggesting modifications based on the present study, and finally predicting oil impact on larvae over the St. George Basin and nearshore along the North Aleutian Shelf.

8.1 A Review of Water and Oil Transport Models

Attempts to predict oil impacts in the southeastern Bering Sea should be based on best possible information available regarding physical and biological processes of the system, and specific life-history and ecological information for the principal species of interest. It is often necessary to establish rather tenuous links between species biology and assumptions regarding processes that influence populations because data are sketchy or non-existent for the system in question, and must therefore come from oil studies on different species or *in* different oceans.

Two models of physical transport processes, water movements, and biological interactions and responses to oil in the Bering Sea have been constructed by Leendertse and Liu (1981) and Sonntag et al. (1980), and several models of water transport and circulation based on net current directions and velocity have been developed-by Hebard (1959) and Kinder and Schumacher (1981), and on methane profiles by Cline.et al. (1981).

Water movement and resultant larval transport are important **consid**erations in predictions of oil impact because larvae or oil **maybe** moved **toward** or away from each other depending on area and timing of a spill, or both may be entrained together for days to weeks in a water mass

circulating over the shelf. Current and transport processes in the area of major larval king and Tanner crab populations are the most important . to consider, and in this regard the North Aleutian Shelf along the 50 m isobath and the St. George Basin in the vicinity of the 100 m isobath are most important. Hebard (1959) described currents moving to the northwest through Unimak Pass, with a component then moving northeast along the North Aleutian Shelf. Although the direction of the current is highly variable and changes with tide, there is a net movement of 2.0-5.5 Cm/sec eastward and northward into Bristol Bay. Hebard was the first to suggest that larvae of red king crab could be transported long distances before metamorphosis, and thus recruitment of juveniles in one area like Port Moller might be dependent on up-current populations near Amak Island. Kinder and Schumacher (1981b) summari zed data for current patterns in the southeastern Bering Sea and showed weak currents of 2-5 cm/sec along the NAS and 1-5 cm/sec moving northwest over the St. Geoge Basin (Fig. 8.1). They stress that instantaneous flow can be substantially greater than these averages (up to 20X greater than the longterm vector) and direction quite variable. Cline et al. (1981) used methane profiles to calculate current speeds of 7 cm/sec northeast along the NAS and 5 cm/sec northwest over the St. George Basin, both values in close agreement with current meter readings.

••

The importance of such information is to gauge the movement of crab larvae in currents relative to origins and surface speeds of oil movement. Such exercises have been done by Leendertse and Liu (1981) and

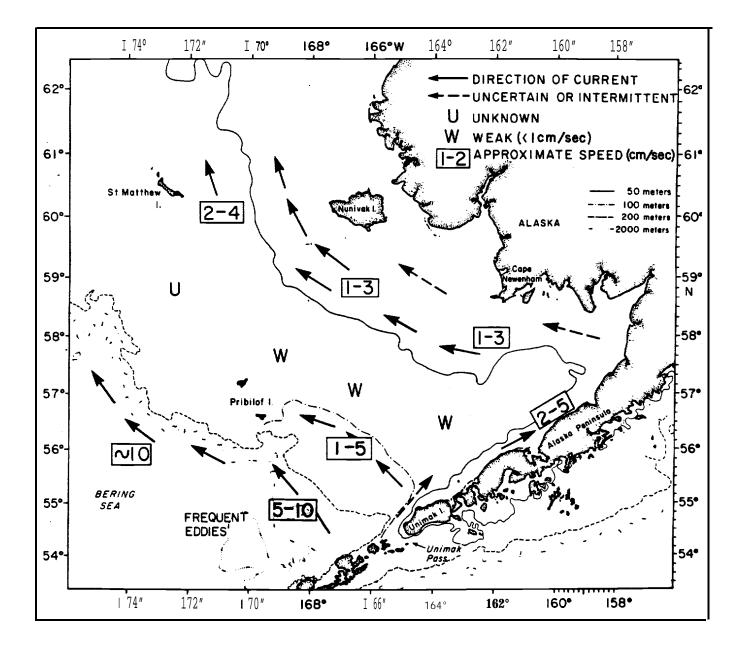


Figure 8.1 Current directions and net speed over the southeastern Bering Sea Shelf (from Kinder and Schumacher 1981a).

Sonntag et al. (1980). Following hypothetical oil spills or well blowouts in their models, oil can be moved by winds and currents, mixed by storms, transported to the benthos by several processes, and made to kill target/commercial species by direct exposure, loss of food and over-competition, **or** accumulation in tissues and gametes. Oil concentrations in the water column and **benthic** sediments are modeled as a function of the magnitude of an initial oil spill and its duration (e.g., 100,000 barrels from a tanker or 5,000 barrels/day from a well for several weeks), time of year, location of the mishap, and loss of oil fractions by processes such a volitalization. Model outputs show the trajectory and extent of oil coverage and concentration at various times after From data and assumptions on lethal levels, each hypothetical mishap. distribution and abundance of animals, sensitive life-history stages and physiological events (e.g., molting of crustaceans), predictions are made of the proportion of a year-class or population killed and the eventual ramifications such losses pose to commercial fisheries.

Concerning decapod larvae and in particular crab species, the results of several scenarios modeled at workshops in California (1980) and Alaska (1981) have predicted very slight impacts of oil spills on crab larvae over the St. *George* Basin (Sonntag et al. 1980) because such small areas, relative to the spatial distribution of larvae, are impacted (Sonntag et al. 1980; Curl and Manen 1982). However, several areas crucial to crab reproduction have been identified at these workshops (Pribilof Islands, North Aleutian Shelf), and oil scenarios have been suggested that could lead to substantial mortality of larvae in these areas (see Fig. 8.2) (Sonntag et al. 1980; Curl 1981; Curl and Manen 1982;

discussed by participants at the St. George Basin Lease Area Synthesis Meeting, April 1981, Anchorage; North Aleutian Shelf Synthesis meeting, March 1982). Predictions from these models may seriously underestimate possible larval mortality caused by an oil mishap (even in the St. George Basin) because of incorrect assumptions concerning larval sensitivity to oil and aspects of larval life history and ecology (these are discussed later in this section).

8.2 Oil Toxicity to Crustacean Larvae

Oil is a highly complex pollutant of water soluble and insoluble fractions and aromatic compounds that may stress organisms over a **spec**trum of **ef**fects from mechanical impacts to subtle biochemical impair**ments.** Its effects on aquatic resources may be manifested in several ways (Curl and Manen 1982): 1) <u>rapid mortality</u> resulting from acute exposures to high doses via external contact, inhalation and asphyxiation, or assimilation of hydrocarbon compounds that become toxic on a cellular and biochemical level; 2) <u>bioaccumulation</u> of sublethal amounts that cause a decline in general vigor evidenced in reduced growth, **susceptibility** to disease, inhibition of feeding (anorexia) (effects of this nature will likely become lethal to organisms); 3) <u>impaired reproduction</u>, reduced broods and viability of progeny; 4) <u>carcinogenic and</u> <u>mutagenic</u> causes of **tumors** and morphological abnormalities; and 5) uptakeof hydrocarbons causing tainting of commercial crab sold as food.

8.2.1 Effects on Larvae

A wealth of information has been generated on oil toxicity to marine invertebrates (Malins 1977; Wolfe 1977) and many investigators have been specifically concerned with sensitivity of larval crustaceans (Wells and Sprague 1976; Bigford 1977; Caldwell et al. 1977; Tatem 1977; Cucci and **Epifanio** 1979). **Karinen** (1981) has reviewed toxicity of oil to Pacific Northwest and Alaskan species of shrimp and crab including Dungeness crab (Cancer magister), king and Tanner crab, and pandalid shrimp. Rice et al. (1975) and Vanderhorst et al. (1976) reported that , s, r "50 values for juvenile and adult **pandalid** shrimp range from 0.8-11.0 mg/l as water soluble fractions (WSF). Pandalid Larvae, however, are a more sensitive life history stage as evidenced by 96 hr LC_{50} value from 1.0 mg/l WSF down to .3 mg/l as single aromatic compounds such as naphthalene (Mecklenburg et al. 1977; Rice et al. 1975; Rice et Sublethal effects including failure to swim and/or molt al 1979). inhibition occurred at concentrations from 0.7 to 0.3 mg/l WSF. A 96 hr exposure of pandalid larvae to 0.6 mg/l WSF caused a 70% reduction in molting from S I to S II zoeae (Mecklenburg et al. 1977). Dungeness crab zoeae were susceptible to WSF as low as 0.22 mg/l(Caldwell et al. 1977). Larval king and Tanner crab are equally sensitive to hydrocarbons. Death of Paralithodes camtschatica larvae or failure to swim is caused by WSF of 0.8 to 2.0 mg/l (Brodersen et al. 1977; Mecklenburg et al. 1977), and Chionoecetes bairdi larvae are immobilized by a 96 hr exposure to 1.7 mg/1 WSF (Brodersen et al. 1977).

Larval Feeding: Studies with other larval decapods indicate that toxic oil concentrations may be even lower than those just discussed when based on assays of single hydrocarbons, exposures longer than 96 hr, or sensitive sublethal criteria. Larval lobster (Homarus americanus) ceased feeding at 0.19 mg/l WSF and had a 30-day LC 50 value of 0.14 mg/l (Wells and Sprague 1976). Specific compounds such as **naphthalene** are very toxic and caused narcotization followed by death of pandalid shrimp and of crab larvae at concentrations of 8-12 g/1 during brief exposures of less than 24 hr (Sanborn and Malins 1977). Chemoreceptive organs of juvenile and adult Dungeness crab can detect WSF as low as 10' $^{\scriptscriptstyle 4}\,$ mg/1 $\,(0.1$ $g/l\,),\ a$ concentration well within the range of oil spill concentrations (Pearson et al. 1980). This may result in behavioral changes affecting feeding and/or mating and therefore reproduction. The extent of **chemo**receptive feeding by crab larvae is unknown but could be seriously impaired by very low oil concentrations, thereby disrupting food consumption by this rapidly growing stage.

Based on these studies the following generalizations can be made: 1) Larvae are more sensitive to hydrocarbons than are juveniles and adults (Johnson 1977; Moore and Dwyer 1974). 2) Toxic oil concentrations range as low as 0.15 mg/1 WSF and may be somewhat lower for specific compounds. Moore and Dwyer (1974) give a sublethal range of oil WSF to larvae of 0.001-0.1 mg/1. Wells and Sprague (1976) suggest a multiplier of .03 should be applied to LC_{50} concentrations to establish "safe" levels, which would predict that acceptable concentrations less than $1 \mu g/1$ WSF. 3) Molting is an extremely sensitive physiological event for

crustaceans that results in greater toxicity of oil compounds when larvae are exposed for periods of the **intermolt** cycle. Since larvae molt frequently, relatively short exposures of several days may disrupt normal **ecdysis**.

8.2.2 Effects of Oil on Reproduction

Oilin the water column or in sediments could affect reproduction in several ways: 1) Sediment and **infaunal** concentrations of hydrocarbons become so high that feeding of crabs and shrimp is curtailed by either loss of prey (clams, **polychaetes**, other crustaceans) and/or anorexia. Energetic requirements are not met and gamete production is reduced or cur-2) Hydrocarbons are absorbed and/or ingested with food and depostailed. ited in eggs and sperm. At critically high (but as yet unknown) concentrations viability of the gametes is impaired and normal development of embryos arrested, resulting in greatly reduced hatching success. 3) Norgametes are produced and eggs fertilized and extruded, but sediment mal hydrocarbons are absorbed directly by the lipid-rich developing embryo and remaining yolk mass. Again, at critically high tissue l evel s (unknown) development is arrested and a year-class weakened by virtue of poor hatch.

The first hypothesis is predicated on the possibility that extensive mortality of **epibenthic** and **infauna**) prey would severely restrict feeding by crabs. Scenarios of oil transport to the **benthos (summarized** by **Manen** and Curl 1981) predict accumulation of amounts up to 60 g/m^2

and high resultant mortality. Sonntag et al. (1980) predicted that annual benthic productivity ("benthic food growth rate") would reach zero at sediment oil concentrations of 8 to 16 g oil/m², well within the range of possible sediment concentrations predicted by participants of the 1981 Anchorage Workshop. In a realistic spill scenario (about 500,000 barrels of oil; AMOCO CADIZ lost 223,000 mt = 2.47×10^{6} barrels of oil; IXTOC 1 blowout spilled 30,000 barrels day for several months) several thousand square kilometers could be so impacted and food resources of crabs reduced on a large scale. In addition to outright loss of prey, food consumption could be reduced by a sublethal, anorexic response to increasing tissue levels of oil as shown for lobster larvae (Wells and Sprague 1976).

Reduction of food intake by either cause could trigger an energetic imbalance in which metabolic needs account for the largest expenditure of ingested energy and little remains for tissue and gamete production (Edwards 1978). Sub-optimal temperatures can exacerbate the effect of oil on growth and energy budgets of a species as theorized by Warren (1971). Sublethal oil concentrations can act synergistically with **sub**optimal temperatures to reduce energy consumption (Edwards 1978) but at the same time increase respiration even at cold temperatures (Laughlin and Neff 1977), thereby further narrowing the scope for growth (Warren 1971). Similar impairment of **bioenergetic** demands may affect pelagic larvae exposed to sublethal oil concentrations.

The second hypothesized effect of oil on reproduction is caused by translocation of hydrocarbons ingested and absorbed by adults to gam-Rapid uptake of petroleum hydrocarbons has been demonstrated in etes. several species of **Crustacea** (Anderson 1975; Cox et al. 1975; Lee 1975; While both adult and larval stages are capable of rapid Tatem 1977). elimination of hydrocarbons accumulated via the diet, metabolic products appear to be strongly resistant to deputation (Corner et al. 1976; Lee et al. 1976; Sanborn and Malins 1977). Residues amounting to 10% of the initial level were found in adult copepods which had been exposed 34 days earlier as **nauplius** I to a seawater solution of **naphthalene** for 24 h (Harris et al. 1977). Neff et al. (cited by Varanasi and Malins 1977) found rapid accumulation of **naphthalene** derivatives by penaeid shrimp that reached tissue levels of 100 times greater than those in exposure Highest and most persistent residues were found in the hepatowater. pancreas that directly supplies nutrient materials to the gonads for gametogenesis. Transfer of naphthalene to eggs was found to occur in the marine polychaete Neanthes arenaceodentata (Rossi and Anderson Blue crab (Callinectes sapidus) ingesting radiolabeled hydro-1977). carbons assimilated 2 to 10% and stored up to 50% of this amount in the . hepatopancreas, which was the only organ assayed that still contained radioactivity after 25 days of deputation (Lee et al. 1976). Again, a direct translocation to and biomagnification of hydrocarbons in lipid- " rich gametes is possible, although not well studied to our knowledge. Sufficiently high hydrocarbon levels in egg yolk and developing embryos could cause anomalous development.

The third reproductive effect involving eggs and embryos is uptake of hydrocarbons directly from bottom or interstitial water (female Chionoecetes may bury in the sediment while carrying an egg clutch) where sediment levels are high by virtue of processes such as deposition of oil-laden fecal pellets or storm mixing in shallow waters (Manen and Curl 1981). No studies of direct hydrocarbon uptake by crab or shrimp eggs and embryos could be found, but transferal of naphthalenes to brooding eggs (high in lipids) was reported to occur in the marine polychaete <u>Neanthes arenaceodentata</u> (Rossi and Anderson 1977) while adsorption from seawater occurred independent of adults in eggs of the Pacific herring (Eldridge et al. 1978). The lethal effect such exposure can have on developing embryos was shown by Tatem (1977) who exposed gravid female shrimps (Palaemonetes pugio) to 1.44 mg/lWSF for 72 hr. One week later control females released an average of 45 larvae each while those exposed to oil released only 9 each. Further studies of oil toxicity to developing eggs is warranted in light of possible oil impacts to red and blue king crabs that reproduce in relatively shallow, nearshore Since oil degrades slowly in the sediments of very cold arctic areas. waters (little change in quantity and composition after one year in tests cited by Curl and Manen 1982; Butler and Levy 1978; Mayo et al. 1978), and since female king and Tanner crabs brood eggs for eleven months (Sections 3.0 and 4.0), protracted exposure of eggs to hydrocarbons can result from oil spills that reach extensive areas of reproductive grounds.

An additional mechanism of oil-related stress on crustacean **repro**duction might involve impairment of copulation that results in a high

proportion of infertile eqg masses extruded by females. As described in Sections 3.0 and 4.0, a sexually mature male locates and embraces a female just prior to her molt and they copulate immediately thereafter. Failure to copulate within five days **post-ecdysis** results in infertile egg masses (whether or not multiparous, older female Tanner crab copulate in later years after the terminal molt is currently under investigation at the University of Alaska). Location of a female partner is based on strong pheromone cues that are detected by **chemosensory** organs. Pearson et al. (1980) demonstrated that Dungeness crab can detect hydrocarbons at a few g/1. Following an oil spill, water concentrations may exceed 100-200 g/1 (Hood and Calder 1981), and might impair chemosensory location of females or otherwise alter behavior to reduce breeding Following the AMOCO CADIZ spill in the spring of within the population. 1978, the numbers of gravid crab and lobster were drastically reduced in that year and 1979 along the affected portion of the Brittany coast (Hood and **Calder** 1981), suggesting that breeding within the population was impaired.

8.3 Larval Decapod Biology, Sensitivity to Oil, and Oil Scenarios: Misconceptions of Past Models and More Realistic Assumptions

Summaries of biological information and predictions of **oil** impacts in **the southeastern Bering** Sea arising from **OCSEAP** workshops at **Asilomar**, California (Sonntag et al. 1980) and Anchorage, Alaska (Curl and Manen 1982) were based on available data and best possible assumptions. In reviewing these efforts, several misconceptions and inaccuracies are **apparent that**, if corrected, may change the predictions of oil toxicity

to and impact on, pelagic and **benthic** crab populations. These changes include the following **points**:

÷.

- An entire larval year-class was assumed to hatch during the 3 1. months of April, May, and June as proportions of 20%, 60%, and 20%, respectively (Sonntag et al. 1980). Based on molt frequency data of our report for larval king crab (Section 3.0), Tanner crab (Section 4.0), and shrimp such as **Pandalus** borealis (Section 6.0), it appears that the majority of larvae for these species are hatched in a 3-4 week period of April and early May and not over a protracted period of 3 months. Therefore the entire year-class enters the water column during a relatively brief period of time and is not followed weeks later by other cohorts for that year. First stage king crab zoeae that are killed by oil north of Unimak Island in late April, as an example, will not be replaced by other first stage zoeae hatched in June (although they may be replaced by larvae also hatched in April and transported to the affected area). Since hatching seems to be a well-synchronized event among commercial crustaceans, a major oil spill that kills a significant proportion of a larval year-class will not be mitigated by a later hatch of larvae after oil disperses below toxic levels.
- 2. An oil concentration of 0.2 mg/l and greater that was selected as toxic to crab and shrimp larvae is too high. Virtually all bioassay literature pertaining to Bering Sea species is based on short 96-hr exposures (Wolfe 1977; Karinen 1981). Models assumed that toxic oil concentrations would persist only one to two months, and, for such short periods, must therefore be present at relatively

high concentrations to be toxic. Based on molt frequency data of this report, decapod larvae molt every 3.5 to 4 weeks (as short as 2.5 weeks for crangonid shrimp) and thus over the duration of the hypothetical **spills** could be exposed 2 to 3 times during the **physi**ologically sensitive events of ecdysis. From the perspective of relatively brief larval development time, a chronic and probably stressful exposure to oil would be one of 2 to 4 weeks duration. Given Moore and **Dwyers'** (1974) suggested sublethal hydrocarbon range of 1 to $100 \mu g/l$, and Wells and Sprague's (1976) application factor 'f "" " trem "50 values to "safe" concentrations, we feel that exposure of crab and shrimp larvae to WSF of oil at >50-100 µg/l (.05-.1 mg/l) for 2 to 4 weeks during a molt cycle would be toxic. The sublethal effects of such exposure could be manifested as reduced feeding, delay of molt (this results in longer development time and pelagic existence, and therefore greater susceptibility to natural mortality factors such as predation), behavioral anomalies (changes in patterns of geotaxis and phototaxis), that together synergistically reduce viability of the larvae. Obviously, models that were predicated on toxic oil levels of 200 g/1 (.2 mg/l) did not affect areas as large as those which might be polluted by concentrations 2 to 4 times **lower.** In this regard the models of Leendertse and Liu (1981) are probably a more accurate representation of oil transport than that of **Sonntag et al.** (1980). Figures 8.3 and 8.4 show results of the former simulation, and should be studied with respect to dispersion and area affected by **lower** toxic oil concentrations.

3.011 was mixed to a 50-m depth in previous models (Sonntag et al. 1980) which is quite feasible but not necessary to affect crustacean larvae. Curl and Manen (1982) also discussed mixture of oil to depths of 60 m by storms as a **mechanism** for transport to the In the biological sections of this report (3.0-7.0) larbenthos. vae of various decapod groups are shown to be distributed in the upper 60 m of water and often are most abundant in the upper 40-20 m (e.g., Tanner crab larvae). Later **zoea**] stages are capable of strong swimming bursts exceeding a centimeter per second. Over several days, larvae can easily move tens of meters vertically and in so doing approach or reach the surface. Megalopae of Chionoecetes spp., for example, were frequently caught after dark in neuston nets sampling the upper 20 cm, indicating that much of the population spends considerable time at the surface (Armstrong and **Incze**, unpublished data from 1981 PROBES cruise, Leg 4). Larvae of several other decapod groups studied for this report are situated high in the water column and apparently undergo diel vertical migrations (see Sections 6.0, 7.0). Thus, if spilled oil is initially mixed only to 20 m but is spread over a greater area it will still likely stress most decapod larvae of the water column as they invariably move near the surface during 10-14 days of oil residence time, but in this case the spatial effect is much greater and the population more severely impacted. To reiterate, it may not be necessary that oil is mixed much below the surface to contaminate and stress crab and shrimp larvae. Megalopae might routinely visit the surface where highest concentrations of oil would usually be Models should consider scenarios that spread a given volume found.

. •

of oil rapidly over the surface (Leendertse and Liu 1981) and only to a depth of 20 m to derive area affected.

4. The model of Sonntag et al. (1980) did not consider any direct toxic effects of oil to **benthic** crab and shrimp but only indirect effects through losses of food. Curl and Manen (1982) discuss the possibility of some adult mortality in heavily impacted areas, but neither model considers toxicity of oil-contaminated sediments to developing eggs and embryos of **benthic** crustaceans. Armstrong et al. (1983) reviewed literature on oil impact and recovery of marine benthic communities and highlighted evidence of great perturbations to crustacean populations exposed to oil spills (Le Meal and Quillien-Monot 1981; Krebs and Burns 1978). Maurin (1981) reported that a year following the AMUCO CADIZ spill there were reduced crab catches, implying mortality of benthic stages, and fewer ovigerous female lobster suggesting effects on reproduction. We could find no literature reporting systematic studies of oil toxicity to early developmental stages of crustacean eggs, yet if hydrocarbons pass egg membranes and are sequestered in the lipid-rich yolk then the risk to rapidly cleaving embryos is probably high. Armstrong and Millemann (1974) found that embryos of the mussel Mytilus edulis are most sensitive to an insecticide during early cleavage stages, and they reviewed literature on protein and spindle apparatus poisons that affect both nucleic acid synthesis and normal **blasto**mere division [it is possible that certain oil hydrocarbons act in a similar manner and Malins (1977) reviews literature on toxic derivatives of hydrocarbon metabolism that affect DNA structures and

synthesis as mutagenic/ teratogenic agents]. Eggs of fish and poly chaetes absorb hydrocarbons such as **naphthalene** (Rossi and Anderson 1977; Eldridge et al. 1978), and Tatem (1977) showed the lethal effects of a brief 72-hr exposure of gravid female shrimp to WSF when larval hatch was subsequently reduced 80%.

The longevity of oil bound to sediments in the Bering Sea could resuit in a chronic exposure of eggs during the n-month development time for king and Tanner crab as hydrocarbons continuously desorb to interstitial and bottom water in accord with volubility, and mass **Sonntag** et al. (1980) predicted that 8-16 g balance properties. oil/m² would significantly inhibit annual benthic production. Curl and Manen (1982) discussed oil transport to the benthos via storms and fecal pellet rain, and, based on OCSEAP spill scenarios in the St. George Basin, predicted that 10 g/m^2 mixed 1 cm deep would result in a crude oil concentration of 3-4 ppt. Since larval stages are invariably more sensitive to pollution than are adults, we consider the same to be true of embryos, especially during chron-Therefore sediment levels of $5-10 \text{ g/m}^2$ (perhaps lowic exposures. er) could be toxic to crab and shrimp eggs over months of exposure and kill significant proportions of a following year-class as eggs, while a current year-class is killed as zoeae in the water column.

5. Both modeling efforts concluded that oil spills so severe as to eliminate an entire larval year-class would not constitute a significant effect on benthic stocks (and in turn the fishery) because longevity and fecundity of the species would mask this loss. We

8.14

strongly disagree with this hypothesis and believe that any significant reduction or a complete loss of a year-class could adversely affect the fishery 7-8 years later. As noted in Section 3.0, greater than 60% of any year's fishery may be comprised of new recruits from a single year-class. Otto et al. (1982) summarized population estimates for red king crab over the last 10 years and noted a significant decline in **pre-recruit** males in 1980 through 1982. Both the 1981 groundfish survey and commercial fishery have verified the existence of very weak year-classes, and the fishery in this and next year will be very poor (Section 3.0). Such reduction in commercial stocks probably results from poor survival during early life-history stages of larvae and new instars that is caused by poorly understood sources of natural mortality (exceptionally cold years of 1975-76 and excessive predatory pressures on small benthic instars are **hypotheszied** to be contributory causes; Section 3.0). Large-scale mortality of larvae caused by oil pollution could eventually be just as critical to the fishery as are unusually high losses due to natural causes. This would be particularly true of **C. opilio** Tanner crab because of the apparently sporadic recruitment success of this species under natural conditions (see Section 4.0; Incze 1983; Somerton 1981). Obviously, consecutive years of oil pollution or scenarios described in Item 4 of this subsection where pelagic larvae of one year are killed and benthic eggs for the following year's hatch simultaneously poisoned, would cause even greater harm to the fishery.

One or two very weak year-classes resulting from oil pollution may have important, though unknown, ecological ramifications via impacts on epibenthic and infaunal communities. Jewett and Feder (1981) reported that commercial crabs comprise 55% and 82% of epifaunal biomass on the middle (40-100 m) and outer (>100 m) shelves, respectively. Reduction of this enormous predator/prey group by catastrophic loss of larvae could radically alter **the** community composition, perhaps by an increase of echinoderms (sea stars) that are also abundant. The effect of this may be to slow recovery of crab stocks faced with large populations of competitors that increase to replace one or two years of crabs lost to oil. Populations of the crab Uca pugnax were still adversely affected 7 years after a small oil spill at West Falmouth, Massachusetts, that reduced the overall population, lowered female to male ratios, reduced juvenile settlement, and caused heavy winter mortalities and behavioral anomalies (Krebs and Burns 1978).

8.4 Extent of Area Affected by **0il**

Scenarios considered by participants of the 1981 Anchorage OCSEAP Workshop included only spills or blowouts that released 50,000 barrels which, in retrospect, is a quantity far less than might be expected from mishaps involving modern tankers. Oil spill scenarios used during the North Aleutian Shelf Synthesis meeting in Anchorage (March 1982) were even smaller for the southeastern Bering Sea. Exceedingly small spills of 10,000 barrels were modelled by Pelto (1983) and covered relatively small areas of the Bering Sea (20 km by less than 1 km). The <u>AMOCO</u> <u>CADIZ</u> released 223,000 mt = 2.47 x 10° barrels of oil (1 barrel ⁻ 35

gal; specific gravity of oil about 0.85), of which 660,000 barrels reached the coastline. The **Ixtoc** blowout spilled 30,000 barrels/day into the Gulf of Mexico, and the eventual 500,000 mt released (Hood and **Calder** 1981) was equivalent to 2.5×10^6 barrels.

Spill scenarios modeled by the 1980 Asilomar Workshop included both a 100,000 mt (= 1.11 x 10° barrels) spill over two days and a release of 5,000 ret/day (55,500 barrels) for 20 days (Sonntag et al. 1980). After mixing oil to 50 m and accounting for loss of a 25% volatile fraction, an area of 7,500 km² was polluted at or above 0.2 mg/l (considered a lethal threshold in that model). If as suggested in this report the same volume of oil is mixed to 20-30 m and 0.05-0.1 mg/l is considered toxic, then an area of 15,000 km^2 might be affected. Curl and Manen (1982) predicted that a 50,000 barrel spil lin the St. George Basin would be lethal over a 100-300 km^2 area (0.2 mg/1 threshold; mixed to 50 m), and a more realistic spill of 500,000 barrels (half the value considered by **Sonntag** et al. above) would pollute an area 10 x greater. If these various scenarios are modified by mixing oil less deeply and considering oil concentrations of 0.05-.1 mg/1 WSF to be toxic, then water over an area of 10,000- 15,000 km² might be polluted by concentrations lethal to decapod larvae following a large spill.

Oil contamination of the benthos can also impact crab and shrimp populations by deleteriously affecting egg and embryonic development and stressing all benthic age-classes, especially very young juveniles. In the small scenario of 50,000 barrels, over 100 km² received oil levels of several ppt by storm mixing and fecal deposition, and hundreds of km²

were **covered** by lower concentrations (Curl and Manen 1982). After larger spills of 500,000 to one million barrels, several thousand km^2 of **benthos** could be covered by 5-10 g **oil/m²**; a level we previously suggested might be toxic to crustacean embryos during chronic exposures. Extensive coverage would be most likely and most critical nearshore in shallow water. The same magnitude of scaling up could be applied to the NAS as well, which was considered **only** in terms of very small, 10,000 barrel' (bbl), spills (Armstrong et al. 1983), which might cover an 8 x 20 km area with toxic oil concentrations. A large **spiil** of 100,000-500,000 bbl north of Unimak Island, for instance, could be transported several hundred kilometers in nearshore currents to Cape **Seniavin** and also mixed to the benthos in these shallow waters.

8.5 Predictions of Oil Impact on Decapod Larvae

Rather than work from a specific oil scenario in this section and ask if larvae would be impacted, each major decapod group will be discussed from the vantage of how severe an oil **spill** must be to significantly impact a year-class. Figure 8.2 shows proposed lease sale areas of the St. George Basin and North Aleutian Shelf, and serves as reference to the following discussions.

8.5.1 Direction of Oil Transport

Physical **oceanogrpahy** and its relation to transport and distribution of oil in the water column was reviewed by Schumacher (1982) as part of the St. George Basin Synthesis meeting. Results of computer simulations by Leendertse and **Liu** (1981) were used to formulate scenarios of oil spills and direction of surface trajectories (Figs. 8.3 and

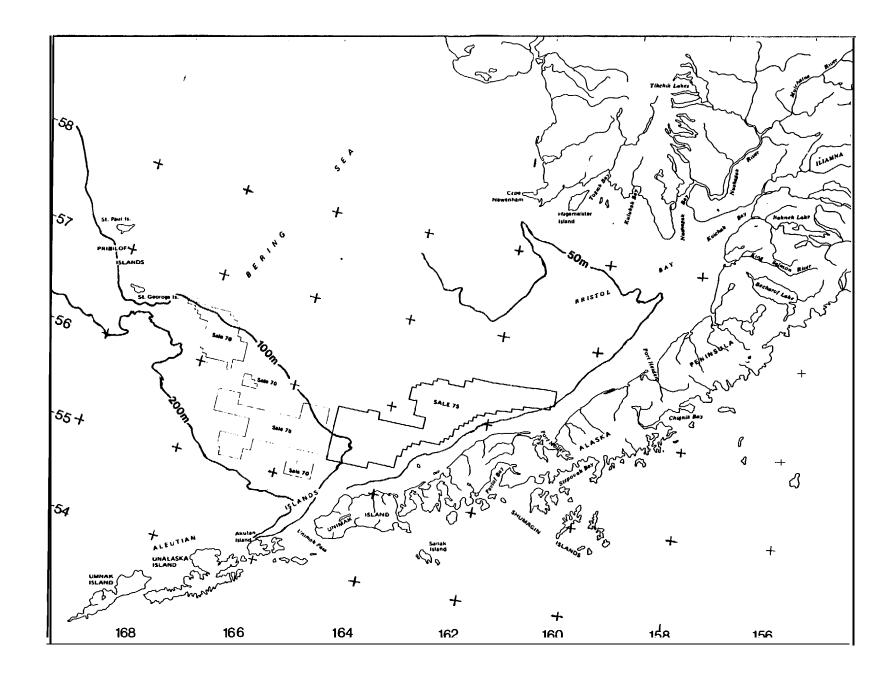


Figure 8.2 Lease sale areas in the St. George Basin between the 100 m and 200 m isobath, and along the North Aleutian Shelf.

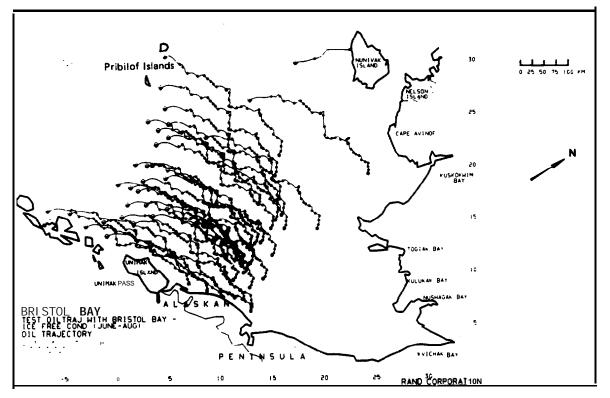


Figure 8.3 Surface oil trajectories during summer from spill points within the St. George Basin. Note easterly movement (from Leendertse and Liu 1981).

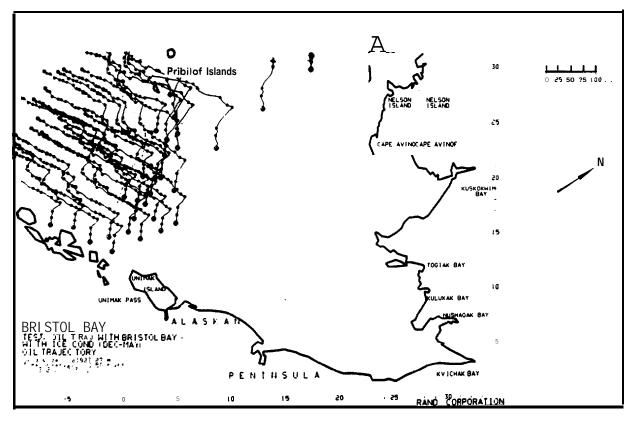


Figure 8.4 Surface oil trajectories during winter **from** spill points within the St. George **Basin**. Note westerly movements (from **Leendertse** and Liu **1981**).

8.4). During summer and fall, oil from spills in the St. George Basin would be moved by prevailing winds east over the middle shelf and **south** to **the** North Aleutian Shelf coast at **Unimak Island** eastward for **200** km. In the winter, oil would be transported northwest and in both cases a spill would cover about 250 km² after 10 days. Most significantly, the rate of movement in summer is predicted to be about 8.5 km/day, much faster than the net current transport of crab larvae along the NAS which would be about 1.7-3.4 km/day. An oil spill in space and time that **fol**-ows peak larval hatch could, theoretically, overtake a portion of the population even if initially some distance removed. However, extensive distribution of the larval population (e.g., Tanner crab) and dilution/volatilization of the oil might shield the year-class from extensive losses.

8.5.2 King Crab Larvae

As shown in Section 3.0, there are very few larvae of <u>Paralithodes</u> spp. over the St. *George* Basin, and consequently even an extensive oil disaster that is confined to the area between 100 m and 200 m would have no foreseeable effect on king crab populations. However, it is most probable that an enormous spill or blowout at numerous points within the lease sale area or along future tanker routes from St. George Basin, and certainly a spill along the NAS would be spread to areas critical for larval king crab development.

Blue king crab (\underline{P} , <u>platypus</u>) and its fishery are centered about the **Pribilof** Islands. The Rand model of transport and fate of oil following a spill in the St. George Basin shows that winter-spring trajectories

are to the west-southwest (Fig. 8.4). If a major mishap in the northern lease tract (Fig. 8.1) occurs in April or May, then oil will likely reach and surround both St. George and St. Paul Islands and affect waters in between where larvae of this species are abundant. The northern "lease area is about 125 km from St. George Island. A 50 x 150 km area of oil pollution emanating from a point around 56°45'N, 168°30'W would cover an area of 7500 km² (feasible in the model of **Sonntag** et al. 1980) including nearshore waters around the islands. In addition to killing a large percentage of the larval year-class, oil mixed to the bottom and transported to sublittoral areas around both islands could stress and kill juvenile crabs and poison eggs as previously discussed. The potential for severe decimation of blue king crab stocks by oil perturbations is high. Nearshore distribution and ecology of blue king crab is poorly understood but their dependence on the habitat must be high given the insular distribution (see results of NMFS surveys, Fig. 3.5).

Red king crab larvae (\underline{P} . <u>camtschatica</u>) are distributed along the North Aleutian Shelf (see Section 3.0). Major oil spills by tankers at Unimak Pass or blowouts in southern lease-sale tracts around 55°30'N, 165°W or within the NAS lease sale area (Fig. 8.2) during summer months would result in oil being transported to king crab nursery areas according to trajectories of the Rand model for this season (Curl and Manen 1982; Armstrong et al. 1983; Fig. 8.3). The area from the west tip of Unimak Island to the eastern edge of Port Moller out to the 50-m isobath covers about 10,500 km². A large spill at Unimak Island could cover

most of this region and, as suggested by Curl and Manen (1982) and Armstrong et al. (1983), kill virtually all of the larval year-class in this area.

More detailed station coverage of the NAS in 1982 indicates a major portion of the larval population occurs along the 50 m **isobath** (Section 3.0), and probably is transported by long-shore currents to the northeast as hypothesized by Hebard (1959) and Haynes (1974). Although the frontal system depicted by Kinder and Schumacher (1981a) is not as well studied along the NAS as in upper Bristol Bay, its integrity may be such to entrain subsurface oil at the front with resultant transport in the direction of larval crab movement. **Cline** et al. (1981) concluded from methane profiles originating from Port Moller that material rarely penetrated more than 20 km offshore and was essentially entrained shoreward of the 50 m front while moving to the northeast, thus substantiating the notion of a strong front in this region. While movement of oil as a surface film by winds results in extensive coverage within brief time periods in models of Leendertse and Liu (1981) and Pelto (1981), mixing of oil into the water column along the 50-m **isobath** might pose a more serious threat to red king crab larvae along the NAS for 10-20 days after a spill. It is known from work by Haynes (1974) that king crab larvae are abundant east of Port Moller up to Port Heiden and into Bristol Bay in July and August. If these larvae escape pollution then the damage done by a Unimak-Port Moller disaster might be somewhat attenuated. However, distribution and abundance of larvae east of Port Moller is poorly known and requires further study (now funded by OCSEAP in FY 83).

Large volumes of oil reaching shallow water of the North Aleutian Shelf would be mixed to the benthos and would directly affect *juvenile* and adult crabs, deplete food, and stress and kill developing *eggs* of **gravid** females. Because major populations of sexually mature females are invariably found off **Unimak** Island, in the area of Amak Island, and off Port **Moller** (based on NMFS surveys; see Section 3.0), and because extensive lagoons and estuaries support abundant bird and mammal **populations** as well as supply nutrients for productive **nearshore** pelagic and **benthic** communities (see discussions in Hood and **Calder**, Vol. 2, 1981), threats of oil pollution to the North Aleutian Shelf should be considered paramount in future research and management plans. A significant loss **of** any year-class should be viewed as damaging to the fishery 7-8 years later.

An important but poorly studied 1ife history stage in the southeastern Bering Sea is new"ly settled juveniles up to two years old. Their susceptibility to oil pollution may be very high, in part, because of highly restricted distribution in critical but scarce habitat. Very young juvenile king crabs less than two years old in the Kodiak region prefer rocky, cobble habitat that affords shelter from predators (Feder et al., 1980; Jewett and Powell 1981). Very little habitat of this type exists along the NAS (Michel et al. 1982) and young-of-the-year (O+) juveniles that settle on open bottom are probably vulnerable to heavy predation (Murray Hayes, NMFS, Seattle, pers. communication). Thus any habitat that offers protection to young crabs is critical to benthic survival. During an intensive search for O+ and I+ juvenile king crabs along the NAS in June, August, and October 1982, the only specimens

found from **Unimak** Island to Cape **Seniavin** were gathered by divers at Amak Island (trawl, video camera, and divers used to locate; **Walt** Pearson, **Battelle** Laboratory, **Sequim** Wa., pers. communication). Heavy oiling of the shallow sublittoral area around Amak could destroy a substantial portion of one or two juvenile **king** crab year-classes that metamorphosed in that area. (Distribution of small juveniles into upper Bristol Bay is currently under investigation through **OCSEAP** in **FY 83**).

8.5.3 Tanner Crab Larvae

Larvae of **both <u>C</u>. <u>bairdi</u> and <u>C</u>. <u>opilio</u> are ubiquitously distributed over the St. George Basin, and <u>C. <u>opilio</u> populations are also large to the north and northeast over the middle shelf (Figs. 4.10-4.15). A very large oil spill might cover 10-15% of the Basin (Sonntag et al. 1980; Manen and Curl 1981) and could have a significant impact depending on the following points:**</u>

- Location. If a large spill was generally dispersed along 200 km of the 100-m isobath in a 50 km wide band, then the high densities of larvae associated with this depth in the years of our study (Fig. 4.7) could result in a high percentage of the year-class being affected.
- 2. Month. A spi 11 that coincides with the megalops larval stage would probably be more destructive than an earlier spill when zoeae are present. Larvae of both Chionoecetes spp. are molting into the megalops stage by early July, and large numbers of megalopae may be found through September. Megalopae may spend a considerable amount

of time in the neuston layer. If their occurrence at the surface is part of a diurnal migration, then most **megalopae** could be expected to be exposed to surface films of oil. Further, since **megalopae** are the last larval stage before metamorphosis, they represent the survivors of larval **development** during which natural mortality has substantially reduced populations from initial densities of S1 zoeae hatched. Extensive mortality of the **megalops** stage **could** exacerbate natural mortality rates and threaten recruitment **to** the **benthos.**

. •

3. Year. Somerton (1981) shows that <u>C</u>. opilio_in the area of the St. George Basin have successfully recruited juveniles to benthic populations only three times in 10-11 years. If a major oil disaster occurs in what is otherwise an auspicious year for <u>C</u>. opilio_larvae, then extensive mortality could imperil an infrequent, yet crucial year-class for this species' reproductive effort in the area of the St. *George* Basin.

Because of the widespread distribution of Tanner crab over the southeastern shelf, a major oil spill would be required to significantly affect a larval year-class. However, because **megalopae** may aggregate near the surface, a widespread spill of shallow depth could affect larvae over a very **large** area. Since adults of these species are primarily in water deeper than 70 m, direct impacts on adult crabs are unlikely. The results of work reported by **Incze** (1983) indicate that events **affect**ing the larval stage may be responsible for much of the sporadic nature of recruitment in this species.

8.5.4 Other Brachyuran Larvae

Larvae of <u>Erimacrus isenbeckii</u> are not abundant over large areas of the St. George Basin, and highest densities were found just north of Unimak Island (Fig. 5.1). An oil mishap over the Basin proper would not threaten the species, but oil transported along the North Aleutian Shelf from Unimak Pass could impact areas of high <u>E.isenbeckii</u> abundance. Although the commercial fishery (very small at present) is centered around the Pribilof Islands, few larvae were found in that area making it difficult to equate potential loss of larvae with impact on a fishery. Ongoing OCSEAP research should help clarify <u>Erimacrus</u> susceptibility to oil around the Pribilof Islands.

Larvae of <u>Hyas</u> **spp.**, <u>Oregonia</u> spp. and of the family **Pinnotheri**dae are widely distributed over the St. George **Basin**. Any reduction in **ben**thic populations through mortality of larvae might have some **ecologi**cal repercussion (no fisheries for these groups) .--However, as noted for Tanner crab, the area affected by even a large spill might be only 10-15% of the Basin and therefore of little **threat** to populations of these crabs as a whole. Again, if oil from a-spill is dispersed along the 100 m **isobath** (roughly the middle front) for about 200 km then a greater proportion of the larval population might be killed since densities are high in this region (Section 5.0).

8.5.5 Shrimp Larvae

Larvae of <u>Pandalus borealis</u> and species of **hippolytid** and **crangonid** shrimp are ubiquitously distributed over the St. George Basin (Section 6.0). There **is** presently no commercial fishery for any shrimp species

in this area and so deleterious effects from oil-related mortality of larvae would be ecological in nature. The combined reduction of larvae and, in turn, **benthic** recruitment of several **major** shrimp groups could **impact the benthic community through predator-prey relationships** discussed in Section 6.0. Again, the relatively small area of the Basin polluted by even large **spills** would preclude impoverishment of benthic communities to the extent various finfish and crustacean fisheries are threatened through loss of food. Nearshore surveys in 1982 along the NAS revealed very high densities of both larval and adult **crangonid** shrimp. Although these data have not been fully analyzed, the magnitude of populations may be such as to suggest **high** predator utilization of **crangonids** in this region by crabs and fish (Armstrong unpublished data; VTN Inc., Portland, OR, pers. communication).

8.5.6 Hermit Crab Larvae

Larvae of the family **Paguridae** were widely distributed over the St. George Basin and middle shelf, and higher densities were usually found east of the 100-m **isobath** (Section 7.0). It does not seem likely that oil would significantly impact hermit crabs as a group because of broad spatial distribution and protracted period of hatch, factors that would tend to restore larvae in oil-impacted areas after toxic concentrations had diminished.

8.6 Summary of Major Conclusions

At the conclusion of this two-year study a number of features have been elucidated regarding general biology and population dynamics of **decapod** larvae in the southeastern Bering Sea. Although much more research is called for on this group (OCSEAP FY 83 programs on crab biology will be very useful), several important predictions and observations pertaining to oil impact on decapod larvae in the S.E. Bering Sea can be made. These include:

- Larvae of both red and blue king crab seem most likely to be deleteriously impacted by oil pollution because distribution is nearshore and relatively restricted over the expansive shelf. There is a high probability that significant portions of an entire yearclasses could be killed by oil dispersed from a major spill, with a subsequent impact on the commercial fishery.
- 2. Larval Tanner crab populations could suffer extensive mortality depending on location, magnitude, season, and year of a spill as well as larval stage affected. Further modeling should be done with these species based on modified assumptions outlined in this section, particularly in regards to the last larval (megalops) stage. Many oil spills, however, might be relatively benign in their impact since these larvae are abundant over large areas of the St. George Basin and over the middle shelf near the NAS lease sales.
- 3. Larvae of many species of shrimp, hermit crab, and other true crabs are abundant and widely dispersed over the Basin. Most oil spills would not significantly imperil benthic populations, although the combined loss of all decapod larvae over 10-15% of the Basin could have regional consequences through impacts on predator/prey relationships in the benthic community.

- 4. Exposure of developing eggs and embryos of commercial crab stocks to contaminated sediments should be considered an important potential source of mortality in nearshore, nursery locations. There is no available literature on sensitivity of **decapod** eggs to ambient oil and research on this topic is warranted.
- 5. Further modeling of oil impacts to crab larvae should be done using the Leendertse and Liu and/or Sonntag models after modification of certain assumptions have been made including: a) shorter periods of hatch; b) 2-4 week molt cycles; c) greater toxicity of oil with threshold concentrations at 0.05-.1 mg/l; d) shallower mixing {20-30 m) but greater horizontal dispersion; e) stress and death of egg masses when sediment loads exceed 5-10 g/m²; f) large spill scenario os of 5 x l o⁵ 1 x 10⁶ barrels emanating from areas of the proposed lease sale near the Pribilof Islands, along the 100-m isobath, near Unimak Island, and along the NAS during April through July.
- 6. Significant reductions in larval populations caused by oil should be expected to adversely affect a year-class and, later, the commercial fishery when that year-class is recruited to legal size.

8.7 Research Recommendations

Areas of greatest susceptibility to oil in the southeastern Bering Sea are the **Pribilof** Islands and NAS which support much of the blue and red king crab populations, respectively. The following points **should** be given high research priorities:

 Impact of oil via water and sediment on egg development and embryo maturation of commercial crabs, based on both short and long-term exposures.

.•

- 2* Distribution and critical habitat of blue king crab larvae, young juveniles and mature females nearshore about the **Pribilof** Islands.
- 3. Extent and timing of larval red king crab hatch in upper Bristol ' Bay compared to nearshore along the NAS from Unimak Island to Port Moller.
- Area of settlement and successful juvenile development of red king crab along the NAS into Bristol Bay.

As of this writing, the latter three points are research programs sponsored by OCSEAP and scheduled for **completion** in summer, 1984.

LI TERATURE CI TED

- Adams, A. E. 1979. The life history of the snow crab, <u>Chionoecetes</u> opilio: a literature review. Alaska Sea Grant Rept. 78-13, University of Alaska, Fairbanks. 141 pp.
- Allen, J. A. 1959. On the biology of <u>Pandalus</u> borealis **Krøyer**, with reference to a population off the **Northumberland** coast. J. Mar. **Biol.** Assoc. U.K. **38(1):189-220.**
- Anderson, J. W. 1975. Laboratory studies on the effects of oil on marine organisms: An overview. A. P. I. Publication No. 4249.
- Anderson, P. J., and R. T. **Wolotira.** 1981. Historical review and current status of the Bering Sea shrimp resource. Unpublished manuscript.
- Anger, K., R. Dawirs, V. Anger, and J. Costlow. 1981. Effects of early starvation periods on zoeal development of Brachyuran crabs. Biol. Bull. 161:199-212.
- Armstrong, I.). A., and R. E. Millemann. 1974. Effects of the insecticide Carbaryl on clams and some other intertidal mudflat animals. J. Fish. Res. Board Can. 31(4): 446-470.
- Armstrong, D. A., D. V. Buchanan, M. H. Mallon, R. S. Caldwell, and R. E. Milleman. 1976. Toxicity of the insecticide Methoxychlor to the Dungeness crab, Cancer magister. Mar. Biol. 38:239-252.
- Armstrong, D., L. Incze, J. Armstrong, and D. Wencker. 1981. Abundance of larval king crab and other decapod larvae in the eastern Bering Sea and their relationship to oil and gas development in St. George Basin. Rep. submitted to St. George Basin Workshop, Anchorage, Alaska, April 1981. 10 pp.
- Armstrong, D., L. **Incze,** J. Armstrong, and D. Wencker. 1981. Distribution and abundance of decapod crustacean larvae in the **S.E.** Bering Sea with emphasis on commercial species. Pp. 365-597 in: Environmental Assessment of the Alaskan Continental Shelf. NOAA/OMPA Annual Rept. Vol. 2.
- Armstrong, D. A., G. Oliver, and C. Manen. 1983. Coastal species and habitats. Ch. 3, North Aleutian Shelf Environmental Impact Statement. NOAA/OCSEAP. (In press.)
- Bakun, A., J. Beyer, D. **Pauly,** J. G. Pope, and G. D. Sharp. 1982. Ocean sciences in relation to living resources. Can. J. Fish. Aquat. **Sci. 39:1059-1070.**

- Balsiger, J. W. 1976. A computer simulation model for the eastern Bering Sea king crab population. Northwest Fish. Cent. NOAA/NMFS. Proc. Rep.
- Barr, L. and R. McBride. 1967. Surface-to-bottom pot fishing for pandalid shrimp. U. S. Fish. Wildl. Serv. Spec. Sci. Rep. Fish. 560: 7 p.
- Barr, L. 1970. **Diel** vertical migration of <u>Pandalus</u> borealis in Kachemak Bay, Alaska. J. Fish. Res. Board Can. **27:669-676.**

٠.

- Barsdate, J., M. Nebert, and C. P. McRoy. 1974. Lagoon contributions to sediments and water of the Bering Sea. PP. 553-576 in: D. Hood and E. Kelley (eds.), Oceanography of the Bering Sea. Occasional Publ. No. 2, Inst. Mar. Sci., Univ. Alaska, Fairbanks.
- Berkeley, A. A. 1930. The post-embryonic development of the common pandalids of British Columbia. Contrib. Can Biol. N.S. (6): 79-163.
- Bigford, T. 1977. Effects of oil on behavioral responses to light, pressure, and gravity in larvae of the rock crab <u>Cancer irroratus</u>,. Mar. **Biol. 43:137-148.**
- Botsford, L. and D. Wickham. 1978. Behavior of age-specific, densitydependent models and the northern California Dungeness crab (<u>Cancer</u> magister) fishery. J. Fish. **Res.** Board Can. 35:833-843.
- Broderson, C. C., S. D. Rice, J. W. Short, T. A. Mecklenburg, and J. F. Karinen (1977). Sensitivity of larval and adult Alaskan shrimps and crabs to acute exposures of the water-soluble fraction of Cook Inlet crude oil. Pages 575-578 in Proceedings of 1977 Oil Spill Conference (Prevention, Behavior, Control, Cleanup). American Petroleum Institute, Washington, D. C.
- Butler, J. and E. Levy. 1978. Long-term fate of petroleum hydrocarbons after spills - compositional changes and microbial degradation. J. Fish. Res. Board Can. **35:604-605.**
- Butler, T. H. 1960. Maturity and breeding of the Pacific **edible** crab, <u>Cancer magister</u> Dana. J. Fish. Res. Board Can. **17:464-641.**
- Butler, T. H. 1961. Growth and age determination of the Pacific edible crab, <u>Cancer magister</u> Dana. J. Fish. Res. Board Can. **18:873-889.**
- Butler, T. H. 1964. Growth, reproduction, and distribution of **pada**lid shrimps in British Columbia. J. Fish. Res. Board Can. 21 (6): 1403-1452.

Butler, T. H. 1971. A review of the biology of the pink shrimp, <u>Pandalus borealis</u> Krøyer 1838. Can Fish. Rep. 17:17-24.

- Butler, T. H. 1980. Shrimps of the Pacific coast of Canada. Can. Bull. Fish. Aquat. Sci. 202:280 p.
- Caldwell, R. S., E. M. Caldrone, M. H. Mallon. 1977. Effects of a sea water fraction of Cook Inlet crude oil and its major aromatic components on larval stages of the Dungeness crab, <u>Cancer magister</u> Dana. Pages 210-220 in D. A. Wolfe, ed. Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, New York. 428 pp.
- Carlisle, I). B. 1959. On the sexual biology of <u>Pandalus borealis</u> (Crustacea Decapoda) I. Histology of incretory element; II. The termination of the male phase; III. The initiation of the female phase. J. Mar. Biol. Assoc. U.K. 38: pages 381-394, 481-491, 493-506.
- Cline, J., C. Katz, and H. Curl. 1981. Circulation processes in Bristol Bay, Alaska using dissolved methane as a tracer. Pp. 29-86 in Environmental Assessment of the Alaskan Continental Shelf, Annual Reports. Vol. V. Transport. OCSEAP, BLM/NOAA, Boulder, CO.
- Cooney, R. T. 1981. Bering Sea zooplankton and **micronekton** communities with emphasis on annual production. Pp. 947-974 in Hood and **Calder,** 1981, Vol. II.
- Corner, E. D. S., R. P. Harris, C. C. Kilvington, and S. C. M. O'Hara. 1976. Petroleum compounds in the marine food web; short-term experiments on the fate of naphtnalene in <u>Calanus</u>. J. Mar. Biol. ASSOC. U.K. 56:121-133.
- Cox, B. A., J. W. Anderson, and J. C. Parker. 1975. An experimental oil spill: The distribution of aromatic hydrocarbons in the water, sediment, and animal tissues within a shrimp pond. Pages 607-612 <u>in Proc. Conf. Prevention and Control of Oil Pollution. A.P.I.</u>
- Cucci, T., and C. Epifanio. 1979. Long-term effects of water soluble fractions of Kuwait crude oil on the larval and juvenile development of the mud crab Eurypanopeus depressus. Mar. Biol. 55:215-220.
- Curl, H. 1981. Potential impacts of OCS development on shellfish resources. Draft report to OCSEAP/ONPA. 22 pp.
- Curl; H. and C. Manen. 1982. Shellfish resources. Pp. 141-159 in: J. Hameedi (cd.). The St. George Basin Environment and Possible Consequences of Planned Offshore Oil and Gas Development. UCSEAP Proc. Synthesis Meeting, Juneau, AK 1981.

Donaldson, W. E. 1980. Alaska Tanner crab investigations. Alaska Dept. Fish and Game, Comp. Rep. Proj. No. 5-41-R, Comm. Fish. Res. Dev. Act., Juneau, AK, 121 pp.

. •

- Donaldson, W. E., J. R. **Hilsinger** and R. T. **Cooney.** 1980. Growth, age, and size at maturity of Tanner crab, <u>Chionoecetes bairdi</u>, in the northern Gulf of Alaska. Inform. **Leafl.** No. 185, Alaska Dept. Fish and Game. Juneau, AK, 52 pp.
- Eaton, M. F. 1980. United States king and tanner crab fishery in the eastern Bering Sea. Document submitted to the annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, October 1980. 47 pp. Westward Regional Office, Div. of Commercial Fisheries, Alaska Dept. of Fish and Game, **P.O.** Box 686, Kodiak, Alaska.
- Eaton, M. F. 1982. United States king, Tanner and Korean hair crabs in the eastern Bering Sea. Document submitted to the Int'l. North Pacific Fisheries Commission, Annual Meeting, Tokyo, Japan, Uctober 1982. 62 pp.
- Edwards, R. R. C. 1978. Effects of water-soluble **oil** fractions on metabolism, growth, and carbon budget of the shrimp <u>Crangon</u> crangon. Mar. Biol. 46:259-265.
- Eldridge, M. B., T. Echeverria, andS. Kern. 1978. Fate of ¹⁴C benzene in eggs and larvae of Pacific herring <u>(Clupea harengus</u> pallasi) " J. Fish. Res. Board Can. 35:861-865.
- Elofsson, R. 1961. The larvae of <u>Pasiphaea multidentata</u> (Esmark) and <u>Pasiphaea tarda</u> (Krøyer). Sarsia 4:43-53.
- English, T. S. 1978. Lower Cook Inlet **meroplankton.** Pp. 146-372 in Environmental assessment of the Alaskan Continental Shelf, **Annual** reports of **pringipal** investigators. vol. v. Fish, plankton, **ben**thos, littoral. Outer Continental Shelf Environmental Assessment ProgramBLM/NOAA, Boulder, CO.
- Fasham, M. J. R. 1978. The statistical and mathematical analysis of plankton patchiness. Uceanogr. Mar. Biol. Ann. Rev. 16:43-79.
- Feder, H. 1978. Distribution, abundance, community structure, and trophic relationships of the nearshore benthos of Kodiak shelf, Cook Inlet, northeast Gulf of Alaska and the Bering Sea, pp. 416-730. In Environmental assessment of the Alaskan Continental shelf. Annual reports of principal investigators. Vol. IV. Fish, littoral and the benthos. Outer Continental Shelf Environmental Assessment Program, BLM/NOAA. Boulder, CO.

- Feder, H. M. and S. C. Jewett. 1980. A survey of the epifaunal invertebrates of the southeastern Bering Sea with notes on the feeding biology of selected species. Inst. Mar. Sci., Univ. of Alaska, Fairbanks, AK. R. 78-5. 105 pp.
- Feder, H. M. and S. C. Jewett. 1981. Distribution, abundance, community structure and trophic relationships of the nearshore epibenthos of the Kodiak continental shelf. Inst. Mar. Sci., Univ. of Alaska, Fairbanks, AK. R81-1. 215 pp.
- Feder, H. M., K. Haflinger, M. Hoberg, and J. McDonald. 1981. The infaunal invertebrates of the the southeastern Bering Sea. Pp. 257-670 in Environmental Accessment of the Alaskan Continent Shelf. Final Reports. Vol. 9, Biological studies. OCSEAP, BLM/NOAA. Boulder, CO.
- Frady, T., (cd.). 1981 <u>Proceedings of the Internationalal Pandalid</u> <u>Shrimp S mposium</u>, Kodiak, Alaska. Feb. 13-15, 1979. Univ. Alaska Sea Grant Publ. AKU-W-79-005. 519 pp.
- Fukataki, H. 1965. The period of appearance of the free-swimming planktonic larvae of the snow crab, Chionoecetes opilio. Nipponkai Ku Suisan Shiken Renraku News. 173/174:3.
- Fukataki, H. 1969. Occurrence and distribution of planktonic larvae of edible crabs belonging to the genus <u>Chionoecetes</u> (Majidae, Brachyura) in the Japan Sea. Bull. Jap. Sea Reg. Fish. Res. Lab. 21:35-54.
- Garth, J. S. 1958. **Brachyura** of the Pacific coast of America. **Oxyrhyncha.** Alan Hancock Pac. Exped. **21:1-854.**
- Goering, J. and R. Iverson. 1978. Primary production and phytoplankton composition of the southeast Bering Sea. Pages 203-240 in C. P. McRoy, ed. Processes and Resources of the Bering Sea Shelf, Ann. Rep., Univ. of Alaska, Fairbanks, AK.
- Goering, J. and C. P McRoy. 1981. A synopsis of PROBES. EOS, Transactions Amer. Geophys. Union 62:730-734.
- Grant, G. C. 1977. Middle Atlantic Bight Zooplankton: seasonal bongo and neuston collections along a transect off southern New Jersey. Special Report on Applied Marine Science and Ocean Engineering, Virginia Institute of Marine Sciences No. 173, 138 pp.
- Greenwood, M. R. 1959. Shrimp exploration *in* central Alaska waters by M/V John N. Cobb July-Aug. 1958. Comml Fish. Rev. 21 (7):1-13.
- Greenwood, J. G. 1972. The mouthparts and feeding behavior of two species of hermit crabs. J. of Nat. Hist. 6:325-337.

Hameedi, M. J. 1982. The St. George Basin Environment and Possible Consequences of Planned Offshore Oil and Gas Development. Synthesis meeting proceedings, April 1981. OCSEAP/NOAA, U.S. Dept. Commerce, Juneau, AK.

...

- Harris, R. P., V. Bergudugo, E. D. S. Corner, C. C. Kilvington, and S. C. M. O'Hara. 1977. Factors affecting the retention of a petroleum hydrocarbon by marine planktonic copepods. Pages 286-304 in D. A. Wolfe, ed. Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, New York. 478 pp.
- Harris, C., K. K. Chew, and V. Price. 1972. Relation of egg number to carapace length of sidestripe shrimp, <u>(Pandalopsis dispar)</u> from Dabob Bay, Washington. J. Fish. Res. Board Can. 29:464-465.
- Hart, J. L. 1937. Larval and adult stages of British Columbia Anomura. Can. J. Res., Sec. D, 15:179-220.
- Hart, J. L. 1960. The larval development of British Columbia **Brachyura**, II. **Majiidae**, subfamily **Oregoniiae**. Can. J. Zool. 38:539-546.
- Hart, J. F. L. 1971. Key to **planktonic** larvae of families of **decapod crustacea** of British Columbia. **Syesis 4:227-234.**
- Haynes, E. 1973. Description of the prezoea and stage I zoea of <u>Chionoecetes bairdi and C. opilio (Oxyrhyncha, Uregoniiae)</u>. Fish. bull. 71(3):769-775.
- Haynes, E. B. 1974. I. distribution and relative abundance of larvae of king crab, <u>Paralithodes camtschatica</u>, in the southeastern Bering Sea. Fish. Bull. 72(3):804-812.
- Haynes, E. B. 1976. Description of zoea of **coonstripe** shrimp, <u>Pand-alus</u> <u>hypsinotus</u>, reared in the laboratory. Fish. Bull 74(2):323-342.
- Haynes, E. B. 1978a. Description of larvae of the bumpy shrimp, <u>Pand-alus goniurus</u>, reared in situ in Kachemak Bay, Alaska. Fish. Bull. 76(1):235-248.
- Haynes, E. B. **1978b.** Description of larvae of a **hippolytid** shrimp, <u>Lebbeus groenlandicus</u>, reared in situ in Kachemak Bay, Alaska. Fish. Bull. **76(2):457-465.**
- Haynes, E. B. 1979. Description of larvae of the northern shrimp, <u>Pandalus</u> borealis, reared in situ in Kachemak Bay, Alaska. Fish. <u>Bull 77(1):157-173.</u>

- Haynes, E. B. **1980a.** Larval morphology of <u>Pandalus tridens</u> and a summary of the principal morphological **characteristics of** north Pacific **pandalid** shrimp larvae. Fish. Bull. **77:625-640.**
- Haynes, E. B. **1980b.** Stage Izoeae of a **crangonid** shrimp, <u>Crangon</u> <u>franciscorum</u> angustimana, hatched from **ovigerous** females collected in Kachemak Bay, Alaska. Fish. Bull. **77(4):991-995.**
- Haynes, E. B. 1981. Description of stage II zoeae of snow crab, <u>Chio-noecetes bairdi</u>, (Oxyrhyncha, Majidae) from plankton of lower Cook Inlet, Alaska. Fish. Bull., U.S. 79:177-182.
- Haynes, E. B. and R. L. **Wigley.** 1969. Biology of the northern shrimp, <u>Pandalus</u> borealis, in the Gulf of Maine, Am. Fish. Sot. Trans. 98(1):60-76.
- Hebard, J. F. 1959. Currents in southeastern Bering Sea and possible effects upon king crab larvae. U.S. Fish. Wildl. Serv., Spec. Sci. Rept. Fish., No. 293, 11 pp.
- Hilsinger, J. R. 1976. Selected references to the genus <u>Chionoecetes</u>. Inst. Mar. Sci., Univ. of Alaska (College, Alaska). I.M.S. Rep. 76-2. 28 pp.
- Hoeman, J. and D. Armstrong. 1981. Distribution and abundance of three species of crangonid shrimp in Grays Harbor. Pp. 225-267 in D. Armstrong, ed. <u>Distribution and Abundance of Dungeness Crab and</u> <u>Crangon Shrimp, and Dredging-Related Mortality of Invertebrates and Fish in Grays Harbor, Washington. Tech. Rept. to U.S. Army Corps of Engin., Contract No. DACW67-80-C-0086. 403 pp.</u>
- Hood, D. W., and J. A. Calder. 1981. The eastern Bering Sea shelf: oceanography and resources. Vol. 1 and 2. Office of Marine Pollution Assessment, NOAA, U. S. Dept. of Commerce. 1339 pp.
- Hood, O. W. and J. A. Calder. 1981. Summary and perspectives. pp. 1299-1322. In The Eastern Bering Sea Shelf: Oceanography and Resources. Vol. 2. Office of Marine Pollution Assessment, NOAA, U. S. Dept. of Commerce, Univ. Washington Press. 1339 pp.
- Hoopes, D. T. 1973. Alaska's fishery **resources...the Dungeness** crab. Fishery Facts No. 6, 14 pp.
- Horsted, S. A. and E. **Smidt.** 1956. The **deep seaprawn(<u>Pandalus</u> borealis Krøyer)** in Greenland waters. Medd. Komm. Havundersøg, (N.S.) 1(11):116.
- Hynes, F. W. 1930. Shrimp fishery of southeast Alaska. Appen. Rep. U. S. Comm. Fish. (1929):1-18.

- INPFC International North Pacific Fishery Commission , 1960 Annual Report II. Progress report on king crab research in the eastern Bering Sea, pp. 70-75.
- INPFC International North Pacific Fishery Commission 1963 Annual Report II. King crab investigations in the eastern Bering Sea, pp. 88-101.
- INPFC International North Pacific Fishery Commission 1965 Annual Report 11. King crab investigations in the eastern Bering Sea, pp. 56-64.
- INPFC International North Pacific Fishery Commission 1982 Annual Report. King crab investigations in the Eastern Bering Sea.
- Incze, L. S. 1983. Larval life history of Tanner crabs, <u>Chionoecetes</u> <u>bairdi</u> and C. <u>opilio</u>, in the southeastern Bering Sea and relationships to regional oceanography. Ph. D. dissertation, Univ. Washington, Seattle. 191 pp.
- Incze, L. S., D. A. Armstrong and D. L. Wencker. 1982. Rates of development and growth of largae of <u>Chionoecetes bairdi and C. opilio</u> in the southeastern Bering Sea. Pp. 191-218 <u>in: Proc. Int'l. Sympos.</u> on the Genus Chionoecetes. Univ. Alaska, Fairbanks. 732 pp.
- Irvine. J. and H. G. Coffin. 1960. Laboratory_culture and early stages
 of Fabia subquadrata (Dana), (Crustacea, Decapoda). Walla Walla
 Coil., Pubs. Dept. Biol. Sci., 28:1-24.
- Ito, K. 1963. Some observations on the degree of ripeness of the eggs
 of the snow crab (Chionoecetes opilio). Bull. Jap. Sea Reg. Fish.
 Res. Lab. 11:1-12.
- Ito, K. 1968a. Ecological studies on the edible crab, <u>Chionoecetes</u> opilio (O. Fabricius) in the Japan Sea. II. Description of young crabs, with note on their distribution. Bull. Jap. Sea Reg. Fish. Res. Lab. 91:43-50. (English translation by Fish. Res. Board Can., Transl. Ser. No. 1184).
- Ito, K. 1968b. Observation on the primary features of the newly
 hatched zoeal larvae of the zuwai-crab, <u>Chionoecetes opilio</u> (0.
 Fabricius). Bull. Jap. Sea Reg. Fish. Res. Lab. 20:91-93.
- Ito, K. and I. Ikehara. 1971. Observations on the occurrence and distribution of planktonic larvae of the queen crab, <u>Chionoecetes</u> spp., in the neighboring waters of Sado Island. Bull. Jap. Sea Reg. Fish. Res. Lab. 23:83-100.
- Ivanov, B. G. 1962. Abundance of shrimp in the western part of the Gulf of Alaska. From Rybnoe Khoziastro, Fishery Economy No. 1 1962, pp. 14-17. (Translations by FRI, COF, U.W. "Notes from Soviet Fisheries Journals" byD. E. Bevan and O. A. Mathisen).

Ivanov, B. G. 1964. Results in the study of the ecology and distribution of shrimps in the Pribilof area of the Bering Sea, in Soviet Fish. Invest. in N. Pac. 1968, 2:115-125.

..

- Ivanov, B. 1969. The biology and distribution of the northern shrimp (Pandalus borealis Kr.) in the Bering Sea and Gulf of Alaska. (Trans. Vses. Nauchno Issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 65:392-416.) Transl. from Russian by Fish. Res. Board Can. Transl. Ser. No. 1576, 1970:799-810.
- Ivanov, B. G. 1971. Larvae of some far east shrimps in relation to their taxonomic status. (In Russian, English summary). Zool. Zh.. 50(5):657-665.
- Jewett, S. C. 1981. Variations in some reproductive aspects of female snow crabs, <u>Chionoecetes</u> opilio. J. Shellfish Res. 1:95-100.
- Jewett, S. C. and H. M." Feder. 1979. Autumn food of adult starry flounder <u>Platichthys stellatus</u> from the northeastern Bering Sea and the southeastern Chukchi Sea. Pp. 685-696 in Melteff, B. R. (cd.). Alaska Fisheries: 200 years and 200 miles of change. Proc. 29th Alaska Sci. Conf. Sea Grant Rept. 79-6. 796 pp.
- Jewett, S. C. and R. E. Haight. 1977. Description of megalopa of snow crab, <u>Chionoecetes bairdi</u> (Majidae, subfamily Oregoniinae). Fish. Bull., U.S. 75:459-463.
- Jewett, S. and G. Powell. 1981. Nearshore movement of king crab. Alaska Seas and Coasts **9:6-8.**
- Johnson, D. F. 1982. A comparison of recruitment strategies among brachyuran crustacean megalopae of the York River, lower Chesapeake Bay and adjacent shelf. Ph.D. dissertation, Old Dominion University. 107 pp.
- Johnson, F. G. 1977. Sublethal biological effects of petroleum hydrocarbon exposures: Bacteria, algae and invertebrates. Chapter 4., pp. 271-318 in D. C. Malins (ed.). Effects of petroleum on Arctic and Subarctic marine environments and organisins, Vol. II NOAA, NMFS U. S. Dept. of Commerce, 500 pp.
- Johnson, H. 1959. King crab, shrimp and bottom fish explorations from Shumagin Island to Unalaska, AK., summer and fall 1957. Comml. Fish. Rev. 21(3):7-19.
- Karinen, J. F. 1981. Potential effects of OCS development on shellfish resources of the St. George Basin. Report presented to St. George Basin Workshop, Anchorage, Alaska, April 1981. 13 pp.

- Kendall, A. W., Jr., J. R. Dunn, R. J. Wolotira, J. H. Bowerman, Jr., D. B. Dey, A. C. Matarese, and J. E. Munk. 1980. Zooplankton, including icthyoplankton and decapod larvae, of the Kodiak shelf. Northwest and Alaska Fisheries Center Processed Rept. No. 80-8, Nat']. Mar. Fish. Serv., Seattle, WA. 393 pp.
- Kinder, T. H. and J. D. Schumacher. 1981a. Hydrographic structure over the continental shelf of the southeastern Bering Sea. PP. 31-52 in Hood and Calder, 1981, Vol. 1.
- Kinder, T. H., and J. D. Schumacher. 1981b. Hydrographic structure over the continental shelf of the southeastern Bering Sea. Pages, 53-76 in: D. W. Hood and J. A. Calder (eds.). The Eastern Bering Sea Shelf: Oceanography and resources. Vol. I. Univ. Washington Press, Seattle. 1339 pp.
- Kinder, T. H., and J. D. Schumacher. 1981c. Circulation over the continental shelf of the southeastern Bering Sea. Pages 77-94 in: D. W. Hood and J. A. Calder (eds.). The Eastern Bering Sea Shelf: Oceanogrpahy and resources. Univ. Washington Press, Seattle. 1339 pp.
- Knudsen, J. W. 1964. Observations of the reproductive cycles and ecology of the common Brachyura and crablike Anomura of Puget Sound, Washington. Pac. Sci. 18(1):3-33.
- Ken, T. 1967. Fisheries biology of the Tanner crab, <u>Chionoecetes</u> <u>opilio</u>. I. On the prezoeal larva. Bull. Japan. Sot. Sci. Fish. 33(8):726-730.
- Ken, T. 1969. Fisheries biology of the Tanner crab. III. The density distribution and carapace width composition in relation to depth. Bull. Jpn. Sot. Sci. Fish. 35(7):624-628. (English translation by Fish. Res. Board Can., Transl. Serv. No. 1363.
- Ken, T. 1970. Fisheries biology of the Tanner crab. IV. The duration of the planktonic stages estimated by rearing experiments of larvae. Bull. Jpn. Sot. Sci. Fish. 36(3):219-224. (English translation by Fish. Res. Board Can., Transl. Serv. No. 1603).
- Korolev, N. G. 1968. The biology and commercial exploitation of the king crab, <u>Paralithodes camitschatica</u> (Tilesius) in the southeastern Bering Sea, pp. 102-108. Transl. from Russian in Soviet Fisheries Investigations in the northeast Pacific, Part II. U.S.D.I*/N.S.F.
- Kozloff, E. N. 1973. Seashore life of Puget Sound, the Strait of Georgia and the San Juan Archipelago. Univ. of Wash. Press, Seattle and London. 282 pp., plates i - xxviii.

Kurata, H. 1960. Studies on the larvae and postlarvae of <u>Paralithodes</u> <u>camtschatica</u>. III. The influence of temperature and salinity on survival and growth of the larvae. Bull. Hok. Reg. Fish. Res. Lab., No. 21, pp. 9-14. Translation by H. C. Kim, U. S. Bureau of Comm. Fisheries, Auke Bay, Alaska.

<u>.</u>-

- Kurata, H. 1961. Studies on the larvae and postlarvae of <u>Paralith-odes camtschatica</u>. IV. Growth of the postlarvae. Hokkaido Fisheries Exp. Sta., Monthly Report, Vol 18(1):1-9. Translation by J. C. Kim, U. S. Bureau of Comm. Fisheries, Auke Bay, Alaska.
- Kurata, H. 1963a. Larvae of decapoda crustaces of Hokkaido 2. Majiidae (Pisinae). Bull. Hokkaido Reg. Fish. Res. Lab. 27:25-31. Translated from Japanese by Fish. Res. Board Can. Trans. Ser. No. 1124.
- Kurata, H. 1963b. Larvae of decapoda crustaces of Hokkaido 1. Atelecyclidae (Atelecyclinae). Bull. Hokkaido Reg. Fish. Res. Lab. 27:13-24. (In Japanese, English abstract).
- Kurata, H. 1964a. Larvae of decapod crustacea of Hokkaido 5. Paguridae (Anomura). Bull. Hokkaido Reg. Fish. Res. Lab. 29:24-48. (Ln Japanese, English abstract).
- Kurata, H. 1964b. Larvae of decapod crustacea of Hokkaido 6. Lithodidae (Anomura). Bull Hoklkaido Reg. Fish. Res. Lab. 29:49-65. (<u>I</u>n Japanese, English abstract).
- Kurata, H. 1964c. Larvae of decapod crustacea of Hokkaido 3. Pandalidae. (<u>In</u> Japanese English summary). Bull. Hokkaido Reg. Fish. Res. Lab. 28:23-34.
- Kurata, H. 1964d. Larvae of the decapod crustacea of Hokkaido. 4. Crangonidae and Glyphocrangonidae (in Japanese, English summary). Bull Hokkaido Reg. Fish. Res. Lab. 28:35-50. Trans. by Div. Foreign Fish. Nat. Mar. Fish. Serv. NOAA.
- Kuwatani, Y., T. Wakui, and T. Nakanishi. 1971. Studies on the larvae and-post-larvae of a Tanner crab, <u>Chionoecetes opilio elongatus</u> Rathbun. 1. On the protozoeal larvae. Bull. Hokkaido Reg. Fish. Reg. Lab. 37:32-40.
- Laughlin, R. B. Jr., and J. M. Neff. 1977. Interactive effects of temperature, salinity shock and chronic exposure to No. 2 fuel oil on survival, development rate and respiration of the horseshoe crab, <u>Limulus</u> polyphemus. Pages 182-191 <u>in</u> D. A. Wolfe, ed. Fate and Effects of Petroleum Hydrocarbons on Marine Organisms and Ecosystems.
- Lebour, M. V. 1940. The Larvae of the Pandalidae. J. Mar. Biol. Assoc. U.K. 24:239-259.

Lee, R. F., C. Ryan and M. L. **Neuhauser.** 1976. Fate of petroleum hydrocarbons taken up from food and water by the blue crab <u>Call-inectes sapidus.</u> Mar. **Biol. 37:363-370.**

...

- Leendertse, J. J. and S. K. Liu. **1981.** Modeling of tides and circulations of the Bering Sea. Pp. 87-108 in Environmental assessment of the Alaskan Continental **shelf, Annual reports.** Vol. V. Transport. OCSEAP, **BLM/NOAA,** Boulder, CO.
- Le Meal, Y. and M. Quillien-Monot. 1981. Estude des populations de la macrofaune et de leurs juveniles sur les plages des abers benoit et wrath. Proc. Intern. Symp. Centro Oceanol. Bretogne, Brest, France 1979. Publ. Nation. Exploit. Oceans.
- Lough, R. 1975. Dynamics of crab larvae (Anomura, Brachyura) off the central Oregon coast, 1969-1971. Oregon State Univ., Dept. Oceanography, Phil. dissertation, 299 pp.
- Loveland, H. A., Jr. 1968. Larval development under laboratory conditions of <u>Crangon alaskensis</u> Rathbun (Crustacea: Decapoda) Ms. thesis, Walla Walla College, Walla Walla, WA., 23 pp.
- Lowry, L. F., K. J. Frost, and J. J. Burns. 1979. Potential resource competition in the southeastern Bering Sea: fisheries and phocid seals. Pp. 287-296 in Melteff, B. R., ed. Alaska Fisheries: 200 Years and 200 Miles of Change. Proc. 29th Alaska Sci. Conf., 796 pp.
- Lowry, L. F., K. J. Frost, and J. J. Burns. 1981. Trophic relationships among ice-inhabiting phocid seals and functionally related marine mammals in the Bering Sea. Pp. 99-174 in Environmental assessment of the Alaskan continental shelf. Final reports of principal investigators. Vol. II. Biological Studies. U. S. Dept. Comm. NOAA/BLM, 670 pp.
- Makarov, V. V. 1938. Anomura. (Translated from Russian by Israel Program for Scientific Translations, Jerusalem, 1972).
- Makarov, R. R. 1966. Larvae of the shrimps and crabs of the west Kamchatkam shelf and their distribution. (Translated from Russian by B. Haigh). Natl. Lending Libr. Sci. Technol., Boston Spa, Yorkshire. 199 pp.
- Makarov, R. R. 1968. On the larval development of the genus <u>Sclero-</u> <u>crangon</u> g. o. Sars (Caridea, Crangonidae). Crustacean (14): 27-37.
- Malins, D. C. 1977a. Metabolism of aromatic hydrocarbons in marine organisms. Ann. New York Acad. Sci. 298:482-496.
- Malins, D. 1977b. Biotransformation of petroleum hydrocarbons in marine organisms indigenous to the Arctic and Subarctic. Pages 47-59 in

Douglas Wolfe, ed. Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystems. **Pergammon** Press. 478 pp.

Manen, C. A. and H. E. Curl, **eds. 1981.** Draft **summary report** of the shellfish workshop. Report presented to St. George Basin Lease Area Synthesis Meeting, Anchorage, Alaska, April 1981. 31 pp.

".-

- Marukawa, H. 1933. Biological and fishery research on Japanese king crab <u>Paralithodes camtschatica (Tilesius)</u> (in Japanese, English summary). J. Imp. Fish. Exp. Stn. Tokyo 4(37):1-152.
- Maurin, Cl. 1981. Ecological impact on living resources. Pp. 677-686 in: <u>AMOCO CADIZ</u>. Fates and Effects of the Oil Spill. Proc. Intern. Symp. Centre Oceanol. Bretogne Brest. France, 1979. Public Centre National Exploit. Oceans.
- May, R. c. 1974. Larval mortality in marine fishes and the critical period concept. Pages 3-19 in: J. H. S. Blaxter (cd.). The Early Life History of Fish. Springer-Verlag, New York. 765 pp.
- Mayo, D., D. Page, J. Cooley, E. Sorenson, F. Bradley, E. Gilfillan, and S. Hanson. 1978. Weathering characteristics of petroleum hydrocarbons deposited in five clay marine sediments, Searsport, Maine. J. Fish. Res. Board Can. 35:552-562.
- McAuliffe, C. 1977. Dispersal and alteration of oil discharged on a water surface. Pages 19-35 in D. Wolfe, ed. Fate and Effects of Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, 478 pp.
- McBride, J. 1974. The fecundity of five species of pandalid shrimps in Kachemak Bay, Alaska, unpublished M.S. thesis, NMFS, Jan. 1974, 69 pp. <u>I</u>n NPFMC 1978.
- McCaughran, D. A., and G. C. Powell. 1977. Growth model for Alaska king crab (Paralithodes camtschatica). J. Fish. Res. Board Can. 34(7):989-995.
- McConaugh, J. R., D. F. Johnson, A. J. Porvenzano, and R. C. Maris. 1982. Horizontal and vertical distribution of larvae of <u>Callinec-</u> tes sapidus (Crustacea, Decapoda) near the mouth of the Chesapeake Bay. Submitted to Limnology and Oceanography.
- McDonald, J., H. M. Feder, and M. Hoberg. 1981. Bivalve molluscs of the southeastern Bering Sea. Pages 1155-1204 in Hood and Calder, Vol. II, 1981.
- McKelvey, R., D. Hankin, K. Yanosko, and C. Snygg. 1980. Stahl e
 cycles in multistage recruitment models: an application to the
 northern California Dungeness crab (Cancer magister) fishery. Can.
 J. Fish. Aqua. Sci. 37:2323-2345.

- McLaughlin, P. A. 1963. Survey of the benthic invertebrate fauna of the eastern Bering Sea. Spec. Scient. Rep. U. S. Fish. Wildl. Serv. #401, 75 pp.
- McLaughlin, P. A. 1974. The hermit crabs (Crustacea, Decapoda, Paguridae) of northwestern N. America. Zool. Verb. Leiden, Netherlands #130, 396 pp.
- McRoy, C. P. 1966. The standing stock and ecology of eelgrass (Zostera marina L.) in Izembek Lagoon, Alaska. M.S. thesis, Univ. Washington. 138 pp.
- McRoy, P. and J. Goering. 1974. The influence of ice on the primary productivity of the Bering Sea. Pages 403-421 in D. Hood and E. Kelley, eds. Oceanography of the Bering Sea. Inst. Mar. Sci. Publ.
- Mecklenburg, T. A., S. D. Rice, and J. F. Karinen. 1977. Effects of Cook Inlet crude oil water soluble fraction on survival and molting of king crab (<u>Paralithodes camtschatica</u>) and coonstripe shrimp (<u>Pandalus hypsinotus</u>) larvae. Pages 221-228 in E. A. Wolfe, ed. Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, New York. 478 pp.
- Michel, J., D. Domeracki, L. Thebeau, C. Getter, and M. Hayes. 1982. Sensitivity of coastal environments and wildlife to spilled oil of the British Bay area of the Bering Sea, Alaska. Research Planning Inst. Report RPI/R/82/1/15-1 to NOAA NA80RAC000154.
- Miller, B. S. 1967. Stomach contents of adult starry flounder and sand sole in East Sound, Orcas Island, Washington. J. Fish. Res. Board Can. 24:2515-2526.
- Miller, P. E., and H. G. Coffin. 1961. A laboratory study of the developmental stages of <u>Hapalogaster mertensi</u> (Brandt). Walla Walla Coll., Dept. of Biol. Sci. 30:1-20.
- Moore, S. and R. Dwyer. 1974. Effects of oil on marine organisms; a critical assessment of published data. Water Resources 8:819-827.
- Motoda, S. 1969. Devices of simple plankton apparatus IV. Bull. Fat. Fish. Hokkaido Univ. 20(3):180-183.
- Motoda, S., M. Anraku, and T. Minoda. 1957. Experiments on the performance of plankton samplings with net. Bull. Fat. Fish. Hokkaido Univ. 8(1):1-22.
- Motoh, H. 1973. Laboratory-reared zoea and megalopae of zuwai crab from the Sea of Japan. Bull. Jpn. Sot. Sci. Fish. 39(12): 1223-1230.

- Motoh, H. 1976. The larval stages of Benizuwai-gani, <u>Chionoecetes</u> <u>Japonicus</u> Rathbun reared in the laboratory. Bull. Jpn. Sot. Sci. Fish. 43(5): 533-542.
- Needler, A. B. 1933. Larvae of some British Columbian Hippolytidae. Contrib. Can. Biol. Fish. N.S. 8(18):237-242.
- Needler, A. B. 1938. The larval development of <u>Pandalus stenolepis</u>. J. Fish. Res. Board Can. **4:88-95**.
- Neyman, A. A. 1963. Quantitative distribution of **benthos** on the shelf and upper slopes of the Eastern Bering Sea. **Izv.** TINRO, **Vol.** 50.
- Neyman, A. A. 1969. Distribution of **trophic** groupings of bottom population on the shelf in various geographic zones (using the Bering and East China seas as examples). **Tr. VNIRO,** Vol. 65.
- Niebauer, H. J. 1981. Recent fluctuations in sea ice distribution in the eastern Bering Sea. Pp. 133-140 in Hood and Calder, 1981, Vol. I.
- NOAA:NMFS. 1969. Cruise results. Cruise No. 79-02, chartered vessel R/V Sunset Bay, U. S. Dept. of Commerce, Oct. 1, 1979, 6PP.
- NOAA. 1979. Cruise results. Cruise No. OR-79-03. NOAA vessel R/V <u>Oregon</u>. U. S. Dept. of Commerce, Northwest and Alaska Fishery Center (unprocessed report), 8 pp.
- NOAA (National Oceanic and Atmospheric Administration). 1981. Fisheries of the United States, 1980. Current fishery statistics No. 8100. NOAA, U. S. Dept. of Commerce, Wash., D. C., April 1981. 132 pp.
- NOAA. 1981. Office of marine pollution assessment. Environmental assessment of the Alaskan continental shelf. U. S. Dept. of Commerce, O.C.S. Vol II, Biological studies. July 1981.
- North Pacific Fishery Management Council (NPFMC).1978. Fishery Management plan and draft E.I.S. for the shrimp fishery in the Bering Sea. U. S. Dept. of Commerce. Nov. 1978. 73 pp.
- NPFMC (North Pacific Fishery Management Council). 1980. Western Alaska king crab draft fishery management plan. 115 pp.
- Nyblade, C. F. 1974. Coexistence in synpatric hermit crabs. PhD. dissertation. Univ. of Wash. 241 pp.
- Nyblade, C. F., and P. A. McLaughlin. 1975. The larval development of <u>Labidochirus splendescens</u> (Owen) Decapoda: Paguridae. Crustacean, 29(3):271-289.

- Olsen, J. C. 1961. **Pandalid** shrimp life history research at **Kachamak** Bay, Alaska. Mar. Fish. Res. V. 35; #3-4, **N.M.F.** reprint #973, Auke Bay, Alaska.
- Omori, M., and S. Apollonia. 1969. Breeding and fecundity of <u>Pasi-</u> phaea <u>multidentata</u>. J. Fish. Res. Board Can. 26:1969-1983.
- Orton, J. H. 1927. On the mode of feeding of the hermit crab, <u>Eupa-</u> <u>gurus bernhardus</u> and some other decapoda. J. Mar. Biol. Assoc., U.K. 14:909-921.
- Otto, R. S. 1981a. Eastern Bering Sea crab fisheries. Pp. 1037-1069 in Hood and Calder, 1981, Vol. II.
- Otto, R. S. **1981b.** Eastern Bering Sea king and Tanner **crab** fisheries and their relationship to proposed oil and gas leases in St. George Basin. Rep. presented to St. George Basin Workshop, Anchorage, Alaska, April 1981.
- Otto, R. s., R. A. Macintosh, A. K. Fukuyama, T. M. Armetta, and C. J. Pace. 1979. Eastern Bering Sea survey: King and Tanner crab. Northwest and Alaska Fisheries Center. Processed Rept. No. 79-14, Nat'l Mar. Fish. Serv., Seattle, WA. 74 pp.
- Otto, R. S., R. A. Macintosh, T. M. Armetta, and S. Wilson. 1980. King and Tanner crab research in the eastern Bering Sea, 1980. (Document submitted to the annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, October 1980). 54 pp. U. S. Dept. Comm. NOAA, NMFS, NWAFC, 2725 Montlake Blvd. E., Seattle, WA 98112.
- Otto, R. S., A. K. **Fukuyama,** T. M. Armetta, R. A. Macintosh, and J. McBride. 1980. King and Tanner crab research in the eastern Bering Sea, 1979. Int. N. Pac. Fish. **Comm.** Ann. Rep. 1979, pp.78-95.
- Otto, R. R. Macintosh, T. Armetta, W. Meyers, and K. Stahl. 1981. United States crab research in eastern Bering Sea during 1981. Submitted for 1981 INPFC meeting. N.W. & Alaska Fish. Center, Seattle, WA. 61 pp.
- Otto, R. S., R. A. Macintosh, T. M. Armetta, and W. S. Meyers. 1982. United States crab research in the Eastern Bering Sea during 1982. (Document submitted to the annual meeting of the International North Pacific Fisheries Commission, Tokyo, Japan, October 1982). 57 pp. NWAFC, NMFS, NOAA, Seattle, WA.

Pacific Packers Report, Spring 1981. Pp.39-45.

Paul, A. J., J. M. Paul, P. A. Shoemaker, and H. M. Feder. 1979. Prey density and feeding response in laboratory-reared stage one zoea of

king crab <u>Paralithodes camtschatica</u>, snow crab <u>Chionoecetes bairdi</u>, and pink shrimp <u>Pandalus borealis</u>. Pages 739-746 in B. R. <u>Melteff</u>, ed. Alaska Fishe2000s: years and 200 miles of change. Proc. 29th Alaska Sci. Conf. Sea Grant Report 79-6. 796 pp.

- Pearson, W., P. Sugarman, D. Woodruff, T. Blaylock, and B. Olla. 1980. Detection of petroleum hydrocarbons by the Dungeness crab, <u>Cancer</u> magister. Fish. Bull. 78:821-826.
- Pelto, M. 1983. Transport Workshop. Draft for North Aleutian Shelf environmental Impact Statement. March 1982. NOAA/OCSEAP workshop, Anchorage. (In press.)
- Pereyra, W. T., J. E. Reeves, and R. G. Bakala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rept. Northwest and Alaska Fisheries Center, 619 pp. Nat'l Mar. Fish. Serv., Seattle, WA.
- Pike, R. B., and D. I. Williamson. 1959. Crustacea decapoda: larvae XI. Paguridae, Coenobitidae, Dromiidae and Homolidae. Cons. Perm. Int. Explor. Mer. Fiche 81:1-9.
- Pike, R. B., and D. I. Williamson. 1961. The larvae of <u>Spirontocaris</u> and related genera (Decapoda, Hippolytidae). Crustacean 2(3):187-208.
- Pike, R. B., and D. I. Williamson. 1962. The larvae of some species of **Pandalidae** (Decapoda). Crustacean **6:265-284.**
- Poole, R. 1966. A description of Laboratory-reared zoeae of <u>Cancer</u> <u>magister</u> Dana, and megal opae taken under natural conditions (Decapoda, Brachyura). Crustacean 11:83-97.
- Powell, G. C. 1967. Growth of king crabs in the vicinity of Kodiak Island, Alaska. AK. Dep. Fish. Game, Inf. Leafl. No. 92.
- Powell, G. C., and R. B. Nickerson. 1965. Aggregations among juvenile king crabs (Paralithodes camtschatica Tilesius) Kodiak, Alaska. Animal Behavior 13(2-3):374-380.
- Powell, G. C., K. E. James, and C. L. Hurd. 1974. Ability of male king crab, <u>Paralithodes camtschatica</u>, to mate repeatedly, Kodiak, Alaska, 1973. Fish. Bull. 72(1):171-179.
- Powles, H. 1966. Observations on the biology of two species of spider crab, <u>Chionoecetes opilio</u> and <u>Hyas araneus</u>, in the Gulf of St. Lawrence. Fish. Res. Board Can., <u>Manuscr.</u> Rept. Ser. (Biol) No. 884.
- Rasmussen, B. 1967. Note on growth and protandric hemaphroditism in the deep sea prawn, <u>Pandalus borealis</u>. Symposium on Crustacea, Part II, Mar. Biol. Assoc. India 1965, pp.701-706.

Rathbun, M. J. 1918. The grapsoid crabs of America. Bull. U. S. Nat. Mus.97:1-461.

٠.

- Rathbun, M. J. 1925. The spider crabs of America. Bull. U. S. Nat. Mus. 129:1-613.
- Rathbun, M. J. 1930. The cancroid crabs of America of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae, and Xanthidae. Bull. U. S. Nat. Mus. 152:1-609.
- Rathjen, W. F., and M. Yesaki. 1966. Alaska shrimp explorations. 1962-1964. Comml. Fish. Rev. 28(4):1-14.
- Reeves, J. E., and R. Marasco. 1980. An evaluation of alternative management options for the southeastern Bering Sea king crab fishery. Northwest and Alaska Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA, 98112, 85 pp.
- Rice, A. L., and I. Kristensen. 1982. Surface swarms of swimming crab megalopae at Curacao (Decapoda, Brachyura). Crustacean 42:223-240.
- Rice, R. L. 1981. Feeding habits of crangonid shrimps and some aspects of sediment-detrital food systems in lower Cook Inlet, Alaska. M.S. thesis, Univ. of Alaska, 64 pp.
- Rice, S. D., A. **Moles,** T. L. Taylor, and J. F. **Karinen.** 1979. Sensitivity of 39 Alaskan marine species to Cook Inlet crude **oil** and No. 2 fuel oil. Proc. 1979 Oil Spill Conference, pp. 549-554.
- Rice, S. D., J. W. Short, C. C. Broderson, T. A. Mecklenburg, D. A. Moles, C. J. Misch, D. L. Cheatham, and J. F. Karinen. 1975. Acute toxicity and uptake-depuration studies with Cook Inlet crude oil, Prudhoe Bay crude oil, No. 2 fuel oil and several subarctic marine organisms. Dec. 1 1975. Northwest and Alaska Fisheries Center, NMFS, NOAA, U. S. Dept. of Commerce, Auke Bay Fisheries Laboratory, P. O. Box 155, Auke Bay, Alaska. Processed Report, 144 pp.
- Richardson, J., F. Orth, and E. Combs. 1978. The historical role of regulation of foreign fishing in the development of Alaska's shellfish industry. Pages 491-501 in B. R. Melteff, ed. Alaska Fisheries: 200 years and 200 miles of change. Proc. 29th Alaska Sci. Conf., 796 pp.
- Roberts, M. H., Jr. 1968. Functional morphology of mouth parts in the hermit crabs <u>Pagurus</u> <u>longicarpus</u> and <u>Pagurus</u> <u>pollicaris</u>. Chesapeake Sci. 9:9-21.
- Roberts, M. H., Jr. 1974. Larval development of <u>Pagurus</u> <u>longicarpus</u> Say reared in the laboratory V. Effect of diet on survival and molting. **Biol.** Bull. **146(1):67-77.**

Roncholt, L. L. 1963. Distribution and relative abundance of commercial Pandalids in the N.E. Pacific ocean. Spec. Sci. Rep. U. S. Fish. Wildl. Serv. 449, 28 pp.

.

Rossi, S. S. and J. W. Anderson. 1977. Accumulation and release of fuel-oil-derived **diaromatic** hydrocarbons by the **polychaete** <u>Neanthes</u> **arenacoedentata.** Mar. **Biol. 39:51-55.**

Rothlisberg, P. C. 1980. A complete larval description of <u>Pandalus</u> <u>jordani</u> Rathbun (Decapoda, Pandalidae) and its relation to other members of the genus <u>Pandalus</u>. Crustacean 38(1):19-48.

Sakurai, M., S. Vamishiro, S. Kawashima, N. Omi, and K. Abe. 1972. Fishes and fisheries in Kushiro. Kushiro series No. 13: Municipality of Kushiro, Chapter 2. (not seen, cited by Otto et al. 1980).

Sanborn, H. R., and D. C. Malins. 1977. Toxicity and metabolism of naphthalene: A study with marine larval invertebrates. Proc. Sot. for Expt. Biol. Medicine. 154:151-155.

Sasakawa, Y. 1973. Studies on blue king crab resources in the western Bering Sea - I. Spawning cycle. Bull. Jap. Sot. Sci. Fish. 39(10):1031-1037.

- Sasakawa, Y. 1975. Studies on blue king crab resources in the western Bering Sea - II. Verification of spawning cycle and growth by tagging experiments. Bull. Jap. Sot. Sci. Fish. 41(9):937-940.
- Sate, S. 1958. Studies on larval development and fishery biology of king crab, <u>Paralithodes camtschatica</u> (Telesius), (In Japanese, English summary). Bull. Hokkaido Reg. Fish. Res. Lab. 17:1-102.
- Sate, S. and S. Tanaka. 1949. Study on the larval stage of <u>Parali-</u> <u>thodes camtschatica</u>(Tilesius), I. morphological research. <u>Hokkaido Suisan Shikenjo, Hokusuishil:7-24. (Translated from</u> Japanese by Fish and Wildlife Service, Bureau of Commercial Fisheries, Biological Laboratory, Auke Bay, Alaska).
- Schneider, D. and G. Hunt. 1982. Carbon flux to seabirds in waters with different mixing regimes in the southeastern Bering Sea. Mar. Biol. 67:337-344.
- Schumacher, J. D. 1982. Chapter 2. Transport and Fate of Spilled Oil. Pages 7-37 in M. J. Hameedi (cd.). The St. George Basin Environment and Possible Consequences of Planned Offshore Oil and Gas Development. April 1981. OCSEAP, U.S. Dept. Commerce, Juneau, AK.
- Shaw, D. 1977. Hydrocarbons in the water column. Pages 8-18 in E. Wolfe, ed. Fate and Effects of Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, 478 pp.

- Sitts, R., and A. Knight. 1979. Predation by the estuarine shrimps Crangon franciscorum Stimpson and Palaemon macrodactylus Rathbun. Biol. Bull. 156:356-368.
- Slizkin, A. G. 1973. Ecologic description of the Bering Sea population
 of plue crab (Paralithodes platypus Brandt, 1850). Tr. VINRO, Vol.
 81, Vladivostok, pp. 201-208.
- Smith, G. B. and R. E. Bakkala. 1982. Demersal fish resources of the eastern Bering Sea: Spring 1976. NOAA Tech. Rept. NMFS SSRF-754. 129 Pp.
- Smith, G. B. and G. E. Walters. 1982. Relationships between crabs and groundfish in the eastern Bering Sea.__ln: First Internat'l Sympos. on the Genus Chionoecetes. Univ. Alaska Press, Fairbanks. (In press.)
- Smith, P. E., and S. L. Richardson. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Paper No. 175. United Nations Food and Agriculture Organization, Rome. 100 pp.
- Smyth, P. D. 1980. <u>Callinectes</u> (Decapoda: Portunidae) larvae in the Middle Atlantic Bight, 1975-1977. Fish. Bull. **78:251-265.**
- Somerton, D. 1978. Fitting straight lines to Hiatt growth diagrams: a re-evaluation. J. Cons. Int. Explor. Mer. 39:15-19.
- Somerton, D. A. 1979. A reappraisal of the declining trend of recruitment to the Bering Sea stock of Tanner crab <u>(Chionoecetes</u> <u>bairdi</u>). Norfish Tech. Rep. 92, Ctr. for Quant. Sci. in Fish., For. and Wildlife, College of Fisheries, Univ. of Wash., Seattle. WA.
- Somerton, D. 1981. Life history and population dynamics of two species of Tanner crab, <u>Chionoecetes bairdi</u> and <u>C. opilio</u>, in the eastern Bering Sea. Ph.D. dissertation, Univ. of Washington, Seattle, WA.
- Somerton, D., and L. Low. 1977. Determination of minimum size and yield limitations for Tanner crabs in the eastern Bering Sea. NMFS Processed Rep. 49 pp.
- Somerton, D. A. and R. A. Macintosh. 1982. Aspects of the life history of the blue king crab (<u>Paralithodes platypus</u>) in Alaska. (Document submitted to the annual meeting of the International North Pacific Fisheries Commission, Tokyo, Japan, Oct. 1982.) 19 pp. NWAFC, NMFS, NOAA, Seattle, WA 98122.
- Somerton, D. A. and R. A. Macintosh. 1983a. The size and sexual maturity of the blue crab, Paralithodes platypus, in Alaska. Fish. Bull. (In press.)

- Somerton, O. A. and R. A. Macintosh. 1983b. Weight size relationships
 for three blue king crab, Paralithodes platypus, populations in
 Alaska. Crustacean. (In press.)
- Sonntag, N., R. Everitt, D. **Marmorek**, and R. **Hilborn**. 1980. Report of the Bering Sea ecological processes study **modelling** workshop. Unprocessed report to OCSEAP/OMPA. 96 pp.
- Squires, H. J. 1964. Neotype of <u>Argis</u> lar as compared to <u>Argis</u> <u>dentata</u> (Crustacea, Decapoda).J. Fish. Res. Board Can. 21(3):461-467.
- Squires, H. G. 1965. Larvae and megalopa of <u>Argis</u> <u>dentata</u> (Crustacea-Decapoda) from Ungava Bay, Alaska. J. Fish. Res. Board Can. " 22(1):69-82.
- Squires, H. G. 1967. Decapod crustacea from the Calanus collection in Hudson Bay, 1953-1954 and 1958-1961. J. Fish. Res. Board Can. 24(9):1873-1903.
- Stephenson, K. 1935. The larvae of the Crustacea Decapoda found in the water between W. Grønland and the Arctic America. The Godthaab Expedition 1928. Medd. Grønland 80(1):94 pp.
- Stevens, B., and D. Annstrong. 1981. Distribution and abundance studies of <u>Cancer magister</u> in Grays Harbor. Pages 42-98 in D. Armstrong, ed. Distribution and Abundance of Dungeness Crab and Crangon Shrimp, and Dredging-related Mortality of Invertebrates and Fish in Grays Harbor, Washington. Final Rep. to Army Corps of Engin; Contract DACW 67-80-C-0086. 402 pp.
- Stevens, B. G., D. Armstrong, and R. Cusimano. 1982. Feeding habits of the Dungeness crab, <u>Cancer magister</u>, as determined by the index of relative importance. Mar. Biol. 72:135-145.
- Stinson,J.E. 1975. The effect of ocean currents, bottom temperatures, and other biological considerations in regard to the location and abundance of mature southeastern Bering Sea king crab, <u>Paralithodes camtschatica</u>. Unpublished M.S. thesis, College of Fisheries, Univ. Wash., Seattle, WA.
- Stickney, A. P., and H. C. Perkins. 1980. Environmental physiology of northern shrimp, <u>Pandalus borealis</u>. Dept. of Marine Resources, Maine., Project No. 3-324-R. 47 pp.
- Takeuchi, I. 1962. On the distribution of **zoeal** larvae of king crab, <u>Paralithodes camtshchatica</u>, in the southeastern Bering Sea in 1960. <u>Bull. of Hokkaido Reg. Fish. Res. Lab.</u>, No. 24, pp 163-170.
- Takeuchi, I. 1969. On the distribution of the larval stage of "Ōkurigani", <u>Erimacrus isenbeckii</u> and "Zuwai-gani", <u>Chionoecetes opilio</u>

<u>elongatus</u> in the northeastern and eastern regions of Hokkaido in 1958. Bull. Hokkaido Reg. Fish. Lab. **35:20-43.** (In Japanese, English abstract).

.-

- Tatem, H. E. 1977. Accumulation of naphthalenes by grass shrimp: effects on respiration, hatching, and larval growth. Pages 201-209 in D. A. Wolfe, ed. Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, New York. 478 pp.
- Thompson, M. T. 1903. The metamorphosis of the hermit crab. Proc. Boston Sot. Nat. **Hist. 31(4):147-209.**
- Vanderhorst, J., C. Gibson, L. Moore. **1976.** Toxicity of No. 2 fuel oil to coonstripe shrimp. Marine **Pollut.** Bull. **7:106-108.**
- Varanasi, U., and D. Malins. 1977. Metabolism of petroleum hydrocarbons: accumulation and biotransformation in marine organisms. Pages 175-270 in D. Malins, ed. Effects of Petroleum on Arctic and Subarctic Marine Environments and Organisms, Vol 2. Academic Press.
- Vernberg, W. B. and F. J. Vernberg. 1972. Environmental Physiology of Marine Animals. Springer-Verlag, Berlin. 346 pp.
- **Vinogradov,** L. G. 1946. The geographic distribution of the Kamchatka crab. Izv. TINRO, Vol. 22.
- Warren, C. E. 1971. Biology and water pollution control. W. B. Saunders Co. 434 pp.
- Matson, J. 1969. Biological investigations on the spider crab <u>Chio-</u> <u>noecetes</u> <u>opilio</u>. Proc. Meeting on Atlantic Crab Fish. <u>Development</u>, <u>Can. Fish. Rept.</u> 13:24-27.
- Watson, J. 1970. Maturity, mating, and egg laying in the spider crab, <u>Chionoecetes</u> opilio. J. Fish. Board Can. 27(9):1607-1616.
- Watson, J. 1972. Mating behavior in the spider crab, <u>Chionoecetes</u> opilio. J. Fish. Res. Board Can. 29(4):447-449.
- Weber, D. D. 1967. Growth of the immature king crab <u>Paralithodes</u> <u>camtschatica</u> (Tilesius). Int. North Pac. Fish. Comm., Bull. 21, Pp. 21-47.
- Weebe, P. H., K. H. Burt, C. H. Boyd, and A. W. Morton. 1976. A multiple opening/closing net and environmental sensing system for sampling zooplankton. J. Mar. Res. 34:313-326.
- Wells, P. G., and J. B. Spraque. 1976. Effects of crude oil on american lobster (<u>Homarus americanus</u>) larvae in laboratory. J. Fish. Res. Board Can. **33:1604-1614.**

- Wencker, D. L., L. S. Incze, and D. A. Armstrong. 1982. Distinguishing between <u>Chionoecetes bairdi</u> and <u>C. opilio_zoeae</u> collected in the southeastern Bering Sea. Pages 219-230 in: Proc.Int'l. Sympos. on the Genus <u>Chionoecete</u>s. Univ. Alaska, Fairbanks. 732 pp.
- Wiebe, P. H., G. D. Grice, and E. Hoagland. 1973. Acid-iron waste as a factor affecting the distribution and abundance of zooplankton in the New York Bight. II. Spatial variations in the field and implications for monitoring studies. Estuarine Coastal Mar. Sci. 1:51-64.
- Wil 1 iamson, D. 1. 1957. Crustacea: Decapoda Larvae V. Caridea Family Hippolytidae. The sea: International Council for the Exploration of Fiches D'Identification du Zooplankton. Cons. Perm. Int. Explor. Mer. Fiche 68:1-5.
- Williamson, D. I. 1960a. Crustacea, Depapoda: Larave VII. Caridae Family Crangonidae. Cons. Perm. Int. Explor. Mer. Fiche 90:1-5.
- Williamson, 0.1. 1960b. Larval stages of Parasipnaea sivado and some other Pasiphaeidae (Decapoda). Crustaceana 11(4):331-341.
- Williamson, D. I. 1961. Probable larvae of <u>Pasiphaea multidenta</u> (Esmark). Crustacean 2:158.
- Williamson, D. I. 1962. Crustacea, Decapoda: Larvae IV. Caridea Families Oplophoridae, Nematocarcinidae and Pasiphaeidae. Cons. Perm. Int. Explor. Mer Fiche 92:1-5.
- Williamson, D. I. 1967. Crustacea, Decapoda: Larvae IV. Caridea Families: Pandalidae and Alpheidae. Cons. Perm. Int. Explor Mer. Fiche 109:1-5.
- wolfe, D. A. (cd.). 1977. Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystems. Pergammon Press, New York, 478 pp.
- Yamahora, H. 1965. Report on the investigation of the snow crab (<u>Chionoecetes opil io</u>) for fiscal year 1964. Data of the Yamagata Prefecture Marine Research Station. (Cited by Ito, 1970).
- Yamahora, H. 1969. On the free-swimming period of the zuwai-gani <u>Chionoecetes opilio</u> and the benizuwai-gani C. japonicus arvae. Combined and cooperative designated research onbottomfish resources for fiscal year 1968. Data of the Yamagata Prefecture Marine Research Station:1-18. (Cited by Ito, 1970).
- Yoshida, H. 1941. On the reproduction of useful crabs in North Korea Pdrt 11. Suisan Kenkyushi 36(7):116-123. (In English, translated from Japanese by Dr. Hack Chin Kim, NMFS, Seattle).

•

Young, A. and T. Hazlett. 1978. The effect of salinity and temperature on the larval developiogenidae). J. Exp. Mar.-Biol. Ecol. (Crustacea : Decapoda : 34:131-141.

. .

APPENDI CES:

- A: S.E. Bering Sea Shrimp Species List
- B: References Used for Identification of Shrimp Larvae in the **S.E.** Bering Sea
- c: Paguridae and Lithodidae Found in the Bering Sea
- D: Distinguishing Between <u>Chionoecetes</u> bairdi and <u>C. Opilio</u> Zoeae Collected in the Southeast Bering Sea

.

APPENDIX A: S.E. Bering Sea shrimp - Species list.

...

Order Decapoda Family Pasiphaeidae Pasiphaea pacifica Family **Pandalidae** Pandalus borealis Kroyer Pandalus goniurus Stimpson Pandalus montagui tridens Rathbun Pandalus stenolepis Pandalopsis dispar Family Hippolytidae Spirontocaris lamellicornis (Dana) Spirontocaris_ochotensis (Brandt) *Spirontocaris prionota *Spirontocaris arcuata <u>Eualus</u> macilenta (Kroyer) <u>Eualus gaimardii belcheri</u> *Eualus fabricii *Eualus barbatus *Eualus pusiolus *Eualus avinus *Eualus townsendi *Lebbeus groenlandicus *Lebbeus grandimanus (ormerly L. polaris) *Heptacarpus camtschaticus *Heptacarpus moseri Family Crangonidae Crangon dalli Rathbun Crangon communis Rathbun *Crangon alaskensis **Sclerocrangon_boreas Argis dentata (Rathbun) *Argis <u>lar</u> *Argis alaskensis *Argis crassa Family **Oplophoridae** *Hymenodora frontalis *Hymenodora facialis

This list is based on Feder & Jewett 1980 from NMFS/NOAA 1975 and 1976 survey cruise.

^{*}Additions to list from species ranges given by Butler 1980.

^{**}Larvae attached to adult; not expected to appear in plankton.

APPENDIXB. References used for identification of shrimp larvae in the S.E. Bering Sea, and location of source material used by each author.

..

<u>Pandalidae</u> Author	<u>Species or group, location</u>	
Berkeley, A., 1930	<u>Pandalopsis</u> <u>dispar</u> British Columbia	
Haynes, E., 1976	<u>Pandalus hypsinotus</u> Kachemak Bay, Alaska	
Haynes, E., 1978	<u>P. goniurus</u> Kachemak Bay, Alaska	
Haynes, E., 1979	<u>P. borealis</u> Kachemak Bay, Alaska	
Haynes, E., 1980	<u>P. tridens</u> Kachemak Bay, Alaska	
Ivanov, B., 1971	P. tridens Kamtchatka	
Kurata, H., 1964c	<u>P</u> . <u>borealis</u> and other pandalids Hokkaido, Japan	
Needler, A. B., 1938	P <u>stenolepis</u> British Columbia	
Pike and Williamson, 1962	Pandalid sp. British Columbia	
Rothlisberg, P., 1980	Pandalid sp. West Coast of U.S.A.	
Williamson, D., 1967	Pandlid sp. British Columbia	
<u>Hippolytidae</u>		
Haynes, E., 1978b	<u>Lebbeus groenlandicus</u> Kachemak Bay, Alaska	
Ivanov, B., 1971	<u>Eualus macilenta, E. barbatus,</u> <u>Spirontocaris</u> sp., and L. <u>groenlandicus</u> (Stage 1's) Kamtchatka Penn.	
Needler, A. B., 1933	Hippolytid Larvae British Columbia	
Pike; R. B. and Williamson, D. I., 1960	<u>Spirontocaris</u> and related genera (includes <u>L. polaris</u> = <u>L. grandi</u> - manus, L. <u>groenlandicus</u> , <u>E. gaimardii</u> , and <u>E. gaimardii</u> belcheri. <u>F. pusiolus</u> , <u>E. fabri-</u> " cii, British Columbia	

Larval Descriptions

APPENDIX B. References used for identification of shrimp larvae in the **S.E.** Bering Sea, and location of source material used by each author. -Continued.

Larval Descriptions Continued

Crangonidae

..

<u>Species or group, location</u> Author Crangon franciscorus augustimana Haynes, E., **1980b** (Stage I) Kachemak Bay, Alaska Crangonidae and Glyphocrangonidae, Kurata, H., **1964d** Hokkaido, Japan Crangon alaskensis Lovel and, H. A., 1968 San Juan Ts., Washington Crangon_dalli, Sclerocrangon_ Makarov, R., 1966 boreas, <u>Argis lar, A</u>. crassa, Paracrangon <u>echinata</u> (spiny larvae) Sclerocrangon sp. Ochotsk Sea Makarov, R., 1968 Argis dentata Squires, H. J., 1965 N. Quebec, Ungava Bay Crangonid larvae Williamson, D. I., 1960 North Sea, Barents Sea Pasi phaei dae Pasiphaea multidenta and **Elofsson**, R., 1961 P. tarda, western Norway <u>P. multidentata</u> and <u>P. tarda</u> Williamson, D. I., 1960 British Isles **Oplophoridae** and Pasiphaei dae Williamson, D. I., 1962 1 arvae North Sea, British Isles and Barents Sea

APPENDIX C.	Paguridae and	Lithodidae found in the Bering
	Sea (compiled	from McLaughlin 1963, 1974;
	Pereyra et al.	1976; Federand Jewett 1980).

--

Family Paguridae Pagurus aleuticus beringanus brandtii
P capillatus
<u>confragosus</u>
cornutus
dalli
<u>hirsutiusculus</u>
kennerlyi
mertensii middendorff山
achotoncic
P. <u>rathbuni</u> P. <u>tanneri</u> P. <u>townsendi</u> P. <u>trigonocheirus</u> P. <u>undosus</u> Elassochirus <u>cavimanus</u> E. gilli
P. tanneri
P. townsendi
P. trigonocheirus
P. undosus
<u>Elassochirus</u> cavimanus
<u>E. gilli</u>
E. tenuimanus
Labidochirus splendescens
Family Lithodidae
Dermaturus mandtii
Haplogaster grebnitzkii
Lithodes aequispina
Phyllolithodes papillosus
Placetron woznessenskii
Pristopus verilli
Sculptolithodes derjugini
Paralithodes camtschatica
<u>P. platypus</u>

863

Distinguishing Between *Chionoecetes Bairdi* and C. *Opilio* Zoeae Collected in the Southeast Bering Sea

Deborah L. Wencker Lewis S. Incze David A. Armstrong University of Washington School of Fisheries Seattle, Washington

Previously printed in:

PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON THE GENUS <u>CHIONOECETES</u>

May 3 - 6, 1982

University of Alaska December 1982

TABLE OF CONTENTS

ABSTRACT***	869
INTRODUCTION	869
DISTINGUISHING BETWEEN <u>C. BAIRDI</u> AND <u>C. OPILIO</u>	870
Observations on Length of Posterior Lateral Spine	870
Further Observations on Abdominal Morphology	871
Additional Morphological Features Useful in Species Identification	874
APPLICATION OF FINDINGS TO FIELD STUDIES	876
ACKNOWLEDGEMENTS	877
LITERATURE CITED	877

DISTINGUISHING BETWEEN CHIONOECETES BAIRDI AND C. OPILIO ZOEAE COLLECTED IN THE S.E. BERING SEA

Deborah L. Wencker, Lewis S. Incze and David A.-Armstrong

School of Fisheries, WH-10, College of Ocean and **Fisheries** Science, University of Washington Seattle, WA 98195 USA

ABSTRACT

Three morphological characteristics which enable separation of zoea larvae of Chionoecetes bairdi and C. opilio are discussed; two are described here for the first time. Use of all three characteristics enables species identification of most Chionoecetes zoeae found in plankton samples from the southeastern Bering Sea.

INTRODUCTION

Zoeae of Chionoecetes bairdi and C. opilio are morphologically very similar, being larvae of two very closely related species which apparently still interbreed in nature (Johnson 1976, Pereyra et al. 1976). Several descriptions of zoea larvae of the two species have been published: C. bairdi and C. opilio Stage I zoeae from the S.E. Bering Sea (Haynes 1973), C. bairdi Stage II zoeae from Cook Inlet, Alaska waters (Haynes 1981) and C. opilio Stage I and II . zoeae from the waters of Japan (Motoh 1973, Kurata 1963¹, Kuwatani et al. 1971). Haynes (1973, 1981) compared zoeae of both species from U.S. and Japanese waters in order to define morphological characteristics which could be used to distinguish between zoeae of the two species in areas where both exist.

Based on examination **in** our study of several thousand **ZOEAE** of both Chionoecetes species from the southeastern Bering Sea (C. opilio and C. bairdi) and also specimens from the western Beaufort Sea (C. opilio) and the Gulf of Alaska (C. bairdi), we have found that: (1) the principal criterion employed by Haynes in papers describing the morphological differences between **ZOEAE** of C. opilio from Japan and C. bairdi from U.S. waters (Haynes 1981) is more useful than the criteria he employed earlier to describe differences between Stage I zoeae of- these two species from the southeastern Bering Sea, but (2) additional characteristics are necessary for distinguishing between the species because of variability in the diagnostic length relationships recommended. In this paper we compare our findings from plankton samples (mostly from the southeastern Bering Sea) with Haynes' findings (Haynes 1973, 1981) and describe two additional characteristics of the zoeae which extend Haynes' (1981) diagnosis of species differences.

Plankton samples from the southeastern Bering Sea are those of Incze et al. (this volume). Samples from Kodiak Is., Alaska were provided to us by A.J. Paul, Institute of Marine Science, University of Alaska, Seward; Lower Cook Inlet, Alaska samples were provided by Dr. T.S. English, School of Oceanography, University of Washington, Seattle; and western Beaufort Sea samples were provided by Dr. R. Homer, Seattle. Specimens were initially preserved in 3-4% buffered formalin and later transferred to 70% ethanol: water with glycerin.

DISTINGUISHING BETWEEN C. BAIRDI AND C. OPILIO

Observations on Length of Posterior Lateral Spine

Haynes (1973) described morphological features of Stage I zoeae of *C.bairdi* and C.*opilio* hatched from **ovigerous** females collected in the southeastern Bering Sea. Although the larvae described in his study were very similar, Haynes felt that they could be distinguished on the basis of subtle morphological differences:

"Stage I zoeae [of the two species] are identical except for a *few* subtle differences in abdominal morphology. The most obvious difference is in the length of the posterior lateral spines on the third and fourth abdominal segments. In C. *bairdi*, *the* spines overlap the adjacent segments by about one-third the length of the spines. In C. *opilio*, the spines on the **third** segment barely extend past the posterior margin of the fourth segment, **and** those on the fourth segment do not quite reach the posterior margin of the fifth segment."

However, relative length of the posterior lateral spine (PLS) of specimens collected in this study usually did not provide clear evidence of the species according to the criteria outlined above. From examination of several thousand specimens it has become clear that a wide range of PLS lengths exist.

Mea surements were made of PLS length relative to the posterior margin of abdominal segments for C. bairdi and C. opilio from Haynes' (1973) published figures to assist us in comparing Haynes' criteria with the measurements made of zoeae collected in our study. From Haynes' figures the following were calculated: (1) the percent of the third abdominal PLS that extends past the posterior margin of the fourth abdominal segment and (2) the percent of the fourth abdominal segment PLS that extends past, or doesn't quite reach, the posterior margin of the fifth abdominal segment. Our measurements made of Haynes' figures are shown in Fig. Similar measurements were made on a number of Stage I 1. zoeae of C. bairdi obtained from two sources: ovigerous females collected off Kodiak Is., Alaska and plankton samples collected in Lower Cook Inlet, Alaska (C. opilio has never been reported from these areas). The posterior lateral spines on either side of an abdomen of these zoeae frequently differed in length, as they did in Haynes' (1973) figures. In all cases illustrated in Fig. 1, the measurement of the longer spine was used when the PLS passed the posterior margin of the following segment and the shorter was used when the PLS did not reach this margin. Still, it can be seen (Fig. 1) that the relationships of PLS length to the margin of the following segment in known C. bairdi zoeae can vary substantially and can be quite similar to relationships illustrated for C. opilio by Haynes (1973). For Chionoecetes spp. collected from the plankton of the southeast Bering Sea, where both species exist, the relative lengths of the PLS show a continuum of values which make it virtually impossible to separate zoeae in all but extreme cases.

Further Observations on Abdominal Morphology

Haynes (1973) also observed that Stage I zoeae of C. opilio from Japanese waters described by Kurata (1963) primarily differed from his Stage I zoeae in the length of the curved lateral processes on the third abdominal segment. In a subsequent paper, Haynes (1981) compared both stages of C. opilio, which he had obtained from Japan, with corresponding stages of C. bairdi from Alaska waters, and on the basis of these later observations he concluded:

"For both stages, zoeae of C. *bairdi* are morphologically identical with zoeae of C. *opilio* from Hokkaido and the Sea of Japan, except for the length of the curved lateral Processes on the third abdominal somite. In Stage I and II zoeae of C. *opilio* from Hokkaido and the Sea of Japan, the--curved lateral processes reach the posterior margin of the third abdominal **somite**, but in Stage I and II zoeae of *C. bairdi*, they are markedly shorter."

Haynes' later paper thus emphasized the use of the curved lateral process on the third abdominal segment [the length of which was previously described for C. opilio by Kurata (1963)1 as a principal diagnostic feature for distinguishing between both zoeal stages of the two species: one from the eastern Pacific (C. bairdi) and one from the western Pacific (C. opilio). However, Haynes (1981) acknowledged:

"Stage II zoea of C. *opilio* from the eastern Pacific Ocean have not been identified, and **it is** not known **if** they can be distinguished from Stage II zoeae of *C. bairdi* by the length of their lateral Processes."

Therefore, **it** remained unknown at that time how well these observations would apply to specimens collected **in** the south-eastern **Bering** Sea.

Using the relationship of the length of lateral process on the third abdominal segment to the posterior margin of that segment (Haynes 1981), we were able to separate numerous Chionoecetes zoeae from the southeast Bering Sea into two groups, presumably corresponding to the two species of inter-In many instances, then, the relationship recommended est. by Haynes (1981) appears applicable when specimens of C. opilio are from the eastern Pacific, as well. However, we have found considerable variability in the relative length of the lateral process and it frequently is not possible to distinguish between the two species using this character alone. Specifically, the more *slender*, longer processes do not always reach the posterior margin of the segment, yet they clearly differ in shape and length from the shorter processes on other zoeae. We searched for additional characteristics in specimens from the clearly separated **zoeal** groups (using the above lateral process criterion of Haynes) to see if other morphological features could be used to distinguish between the two species when the lateral process length relationship did not clearly indicate one species or the other. Two additional characteristics have proven helpful in this respect: (1) length from the distal end of the rostral spine to the distal end of the dorsal spine and (2) the shape and relative length of the carapace lateral spines. These characteristics are described in the following section.

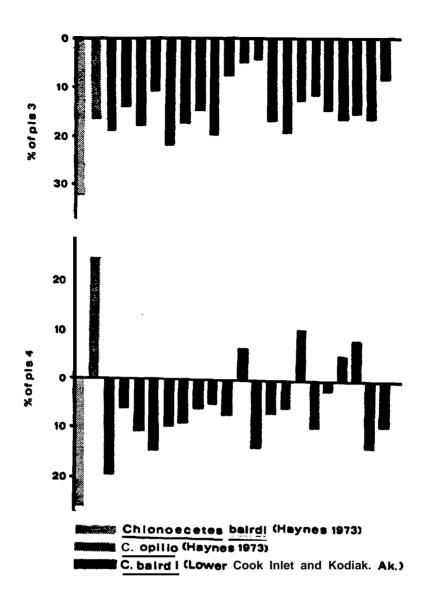


Figure 1. Comparison of PLS length in specimens illustrated by Haynes (1973) and in specimens examined in this study. Figure illustrates: (1) percent of the length of the third abdominal segment PLS that extends past the posterior margin of the fourth abdominal segment (upper chart); (2) percent of the length of the fourth abdominal segment PLS that extends past (downward in this figure) or does not quite reach (upward in this figure) the posterior margin of the fifth abdominal segment (lower graph).

Additional Morphological Features Useful in Species Identification

Measurements of length from the tip of the rostral spine to the **tip** of the dorsal **spine** (rostral-dorsal length = RDL) of Stage I and II zoeae from the southeastern Bering Sea with longer lateral processes [hereafter referred to as knobs, after Kurata (1963)] were always in the range of RDL values given by Motoh (1973, 1976) and Kurata (1963, 1969) for C. opilio from Japan (Table 1). That is, specimens diagnosed as C. opilio according to Haynes' (1981) lateral process (knob) criterion always had RDL measurements greater than or equal to 4.5 mm. Haynes (1973, 1981) did not specify a difference in RDL measurements between the two Those *Chionoecetes* zoeae collected from the southspecies. east Bering Sea which had shorter knobs had RDLs in the range given by Haynes (1973, 1981) for C. bairdi, i.e. less than 4.6 mm for Stage I and less than 6.4 mm for Stage In addition, we also found that Stage II zoeae with II. shorter knobs had shorter RDLs than those reported by Haynes (Table 1). Measurements of these RDLs ranged from 5.5-5.9S mm. We thus found a consistent relationship of RDL to knob length in specimens for both groups of zoeae: those with obviously short and those with obviously long knobs (lateral processes).

The zoeae from the southeast **Bering** Sea that constitute these two categories also differed from each other in the shape and length of their carapace lateral spines (CLS). The CLS of zoeae with long knobs appeared straight, while the CLS of zoeae with short knobs appeared to droop downward (centrally). As a general rule, the straighter CLS were shorter relative to the zoea's RDL, whereas the drooping CLS were longer relative to the RDL. These characteristics in addition to the one proposed by Haynes (1981) were used in our study to distinguish between zoeae of *Chionoecetes* spp. and are summarized in Table 2.

When these characteristics were used, most zoeae of Chionoecetes spp. from shelf waters of the southeastern Bering Sea could be tentatively identified as C. bairdi and C. opilio. This <u>included</u> the numerous specimens in which the knob length relationship did not provide conclusive evidence for species identification. Our identifications were then 'tested" against data from plankton studies and information on the distribution and relative abundance of adults of the two species.

Table 1. **Rostral-dorsal** lengths of *Chionoecetesbairdi* and C. *opilio* stage I and II zoeae tabulated from the current literature.

.-

	C. opilio Kurata(1963,1969)	C. opilio Motoh(1973,1976)	C. bairdi Haynes(1973,1981)
Stage I	4.5 - 4.9mm	4.8 - 5.4 mm	3.96 - 4.55 mm
Stage I	I 6.0 - 6.9 mm	6.2 - 7.1 mm	5.95 - 6.37 mm

Table 2. Summary of diagnostic features used to identify Stage I and II zoeae of C. bairdi and C. opilio collected in plankton samples from the southeast Bering Sea: Knob (curved lateral process), RDL (rostral - dorsal length) and CLS (carapace lateral spines) (see text for details).

	C. bairdi	C. opilio
Knob	Shorter	Longer
Stage I	3.96 - 4.55 mm	4.5 - 5.4 mm
RDL Stage II	5.50 - 6.37 mm	6.0 - 7.1 mm
CLS	Generally long and drooping ventrally	Generally short and straight

Certain aspects of the timing of appearance of the lar-vae in the plankton and spatial patterns of distribution and abundance provided evidence needed to corroborate the species identifications we had made using the above characteristics The larvae with the to extend **Haynes'** (1981) description. longer RDL and shorter, straighter **CLS** were found in the plankton earlier in the season than the larvae of opposite This was characteristics (see Incze et al., this volume). consistent with information provided to us by D. Somerton (see D. Somerton's larval paper, this volume), namely, that the state of maturation of egg masses of female Tanner crabs observed during National Marine Fisheries Service surveys in the area indicated that C. opilio hatched earlier than The larval species description was further sub-C. bairdi. stantiated by specimens collected in areas where the bottom crab fauna was clearly dominated by one species or the other. Finally, areas of the Bering Sea which contained zoeae of only one description during a sampling season eventually gave rise to megalops larvae which were identified to species according to Jewett and Haight (1977); the megalops identifications confirmed our zoea identifications. All the above lines of evidence were in agreement with our zoea species identifications from four years of plankton samples.

Some *Chionoecetes* zoeae from the southeastern **Bering** Sea could not be categorized by the criteria described above. The **RDL** of these zoeae, found **in** water shallower than 200 m, often was **in** the area of range overlap of **RDL** for *C. opilio* and *C.bairdi* (Table 1); the knob character was often intermediate ; and the CLS character occasionally did not match the knobs . even when the latter were distinct. For these specimens, which were not abundant, no species designation could be made. It is possible that these were F_1 progeny of inter-specific matings between C. *opilio* and C. *bairdi*, but it would not be possible to determine **this with** morphological evidence alone. Since the relationship of genetic phenotype dominance among the various characters **is** unknown, **it is** also **possible** that F_1 progeny were included in one or the other (or both) of the species groups we have established above. Because the degree of inter-specific breeding is **unknown**, the extent of this error cannot be estimated.

Some plankton samples collected from regions overlying the continental slope contained **zoeae** which did not conform in appearance to any of the zoeae described above (*C.bairdi*, *C. opilio* or the unidentified *Chionoecetes* zoeaé found over the shelf). These may have been the larvae of deeper dwelling species of *Chionoecetes*. As in the case of the shallower unknown zoeae, however, such specimens were not numerous. We also compared our diagnostic features to zoeae from other areas. C. bairdi zoeae from Lower Cook Inlet, Alaska and Kodiak Is., Alaska exhibited all three characteristics listed in Table 2 for C. bairdi Stage I zoeae. Stage II C.bairdi which we obtained from plankton samples collected from Lower Cook Inlet, Alaska also exhibited all three of the characteristics listed in Table 2 for that stage. C. opilio zoeae (only 10 obtained) from the western Beaufort Sea (where C.bairdi does not occur) exhibited all the characteristics listed in Table 2 for C. opilio Stage I and II zoeae. We thus feel that the additional species characters described in this paper have general applicability to the species descriptions. In our study we found it necessary to use these characters in addition to the diagnostic feature suggested by Haynes (1981) to distinguish between zoeal larvae of C. bairdi and C. opilio.

ACKNOWLEDGMENTS

This research was supported by the Outer Continental Shelf Environmental Assessment Program of the Bureau of Land Management (Contract NA-81-RAC-00059) and the National Science Foundation (Processes and Resources of the Bering Sea Shelf; NSF grant DPP76-23340). We are grateful to Dr. T.S. English, Dr. R. Homer, K. Daly and A.J. Paul for making additional zooplankton samples and crab larvae collections available to this study for examination. We thank Valerie Munzlinger for kindly typing this manuscript. This paper is Contribution Number 588 of the School of Fisheries, University of Washington, Seattle.

LITERATURE CITED

- Haynes, E. 1973. Description of the prezoea and Stage II zoeae of *Chionoecetes bairdi* and *C.opilio* (Oxyrhyncha, Oregoniinae). Fish. Bull., U.S. <u>7</u>1: 769-775.
- Haynes, E. 1981. Description of Stage II **zoeae** of snow crab, *Chionoecetesbairdi*, (Oxyrhyncha, Majidae) from plankton of Lower Cook Inlet, Alaska. Fish. Bull., U.S., <u>7</u>9: 177-182.
- Jewett, S.C. and R.E. Haight. 1977. Description of megalopa of snow crab, Chionoecetesbairdi (Majidae, subfamily Oregoniinae). Fish. Bull., U.S._75: 459-463.
- Johnson, A.G. 1976. Electrophoretic evidence of hybrid snow crab, Chionoecetesbairdixopilio. Fish. Bull., U.S. <u>74</u>: 693-694.

- Kurata, H. 1963. Larvae of Decapoda Crustacea of Hokkaido 2. Majidae (Pisnae). Bull. Hokkaido Reg. Fish. Lab. 27: 25-31. [Translated from Japanese by Fish. Res. Board Can. Trans. Series No. 1124].
- Kurata, H. 1969. Larvae of Decapoda Brachyura of Arasaki, Sagami Bay - IV. Majidae. Bull. Tokai Reg. Fish. Res. Lab. <u>5</u>7: 81-127. [In Japanese, English abstract].
- Kuwatani, Y., T. Wakui, and T. Nakanishi. 1971. Studies the on larvae and post-larvae of a Tanner crab Chionoecetes opilio elongatus Rathbun. 1. On the protozoeal larvae. Bull. Hokkaido Reg. Fish. Res. Lab. 37: 32-40. [In Japanese, English Abstract].
- Motoh, H. 1973. Laboratory-reared zoea and megalopae of Zuwai crab from the Sea of Japan. Bull. Jpn. Sot. Sci. Fish. <u>39(12)</u> : 1223-1230.
- Motoh, H. 1976. The larval stages of Benizuwai-gani, Chionoecetesjaponicus Rathbun reared in the laboratory. Bull. Jpn. Sot. Sci. Fish. 42(5): 533-542.
- Pereyra, W.T., J.E. Reeves and R.G. Bakala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rept., Northwest and Alaska Fisheries Center, Nat'l Mar. Fish. Serv. Seattle, WA. 619p.
- Rathbun, M.J. 1924. New species and subspecies of spider crabs. Proc. U.S. Natl. Mus. 64: 1-5.

FOOTNOTES

1. Kurata (1963) described Stage I and II zoeae of what he called C. opilioelongatus based upon Rathbun's (1924) designation of the subspecies. According to references cited by Haynes (1981) the sub-specific designation is not warranted, therefore, we have used the species designation C. opilio for zoeae described by Kurata.