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SEMISIMPLE GROUP SCHEMES
OVER CURVES AND AUTOMORPHIC FUNCTIONS

by G. HARDER

Let k denote a field and let K/k denote a fun_(_:tion field of one variable over k.
We assume K/k is a regular extension, i.e. K ® kisa field (k = algebraic closure
of k). Let Y/k denote a projective, smooth model of K/k.

I want to study semisimple affine groupschemes G/Y ; a satisfactory theory
of such groupschemes over Y has implications for the arithmetic of semisimple
algebraic groups which are defined over the function field K/k. A semisimple
groupscheme G/Y i§ called rationally trivial if its generic fiber G 5 K=Ggis a

Chevalley group ; then G/Y is locally split for the Zariski topology on Y. By
X/Y I denote the scheme of Borel subgroups of G/Y, this is a smooth projective
scheme over Y (Compare [2], Exp. XXII). From the projectivity of this scheme
follows that a Borel subgroup By C G, can be extended in a unique way to
a Borel subgroup of G/Y :

I'(X/Y) = Homy (Y, X) = I'(X/Spec(K)) .

If BCG is a Borel subgroup of G/Y we denote its unipotent radical by B,,.
The quotient B/B, = T is a split torus.

Let A(resp. A*) be the set of roots (res. positive roots) in the charactermodule
X(T)=Hom(T, G,). By m={o; ...} I denote the set of simple roots in
A*. There is a natural filtration of the unipotent radical

B,=U,DU...U,, ... U, = {e}

by smooth subschemes which are normal in B such that the quotients U,/U,,,
are line bundles, i.e. they are locally isomorphic to G,/Y. The action of T on
U,/U,,, is given by multiplication with a root o € A*. This yields a one-to-one
correspondence between the roots @ € A* and the quotients U,/U,,,. If a corres-
ponds to U,/U,,, we put W, = U,/U,,,, and call W, the line bundle associated
to the root a € A*. If W, y -+ W, are the line bundles associated to the simple

roots {a, ...a.}=m we put
ny(B) = degree (W,,') = c(W,,i)

Thus we assigned to any Borel subgroup B of G/Y a vector
n(B) = (n,(B)...n,B)EL .

This makes sense because we can canonically identify the set of simple roots
of two different Borel subgroups. If %, € 7 is a simple root and B C G/Y a Borel
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subgroup then PY© DB is the maximal parabolic subgroup of type 7 — {oc, }

containing B ([1], § 4). The root system of the semisimple part of P g of
type 7 — {0 } The unipotent radical R (P“o)) is contained in B,. The inter-

section of the filtration above with R (P( ©)y yields a filtration of R (P('°))

R, P> uUuioui>...D U‘,',‘o = {e}.
The quotients are line bundles which correspond to the roots in
r
A:o=§a€A+ z oy 5 omy >0

Now we assign a second vector p(B) == (p,(B)...p,(B)) to our Borel subgroup
B C G/Y by putting

pB) = X cW,)

aeAi
The elements X; = 2 a form a basis of X(T')®Q, in fact the X, are multiples

aeA}
of the fundamental weights x;, so we get x; = f; X, where the f; are positive inte-
gers. We express the characters X, in terms of the simple roots :

X =Za; 0 a;E€EN
and vice versa o
o, =2b; % b;€Q .

From this we get the following relations for the vectors n(B) and p(B) :

p,-(B) = ]Z a; n](B)
=1
()
n(B) = ,2 b, p;(B)
=1

It is an easy but important observation that for a given group scheme G/Y the
numbers p,(B) are bounded from above as B is running over the set of Borel
subgroups of G/Y. We call a vector p(8) = (p,(B) . . . p,(B)) maximal for a given
G/Y, if there is no Borel subgroup B' of G/Y such that p,(B) < p(B') forall,Ex
and p, (B) <p,, (B') for some o €.

Let g denote the genus of Y/k, let A > 0 denote the g.c.d. of all degrees of
positive divisors on Y. Then we have ([5], Satz 2.2.6 und Kor. 2.2.14).

THEOREM 1. — If G/Y is a semisimple rationally trivial groupscheme and if
B CG/Y is a Borel subgroup such that p(B) is maximal, then

n(B)y=—2g—-2(h—-1) forall o€Emw
We call a Borel subgroup B C G reduced if n(B) =2 — 2g — 2(h — 1) for all o;.

THEOREM 2. — There exists a constant M which only depends on g, h and
on the Dynkin diagram of G|Y such that the following statement holds : [fB C G



SEMISIMPLE GROUP SCHEMES 309

is reduced and if for oy, we have n; O(B) > M then the maximal parabolic subgroup
P 5p of type m — {a,o} contains all reduced Borel subgroups of G|Y.

To any vector n = (n, ...n,) we may associate a quasiprojective scheme
I, (X/Y) = Spec(k)

the points of which are the Borel subgroups of G satisfying n(B) = n. To be
more precise we put for any scheme S = Spec(k)

LX/Y)(S) = {BCG;((Y%(S)In,(B;k(s))=n, for any point s €E S} .

The functor S = I, (X/Y) (S) is representable by a quasiprojective scheme over k
(Comp. [3]). This functor can be defined for all groupschemes of inner type.
Analagously we define for any vector p = (p, ...p,) the scheme I'?(X/Y)/k of
Borel subgroups B satisfying p,(B) = p,. Of course we have I',(X/Y) = rPx/Y)
if the relation (*) holds between n and p. If n = (n, . .. n,) is a vector whose com-
ponents satisfy n, <—2g + 1 and if I (X/Y) is not empty then the scheme
[,(X/Y) is smooth over k. Moreover we can calculate the dimension of this
scheme. For this purpose we consider the corresponding vector p < n. Then
the dimension of I, (X/Y) = I'?(X/Y) is given by

14
dm P/ =—2% PLrq_g.#a
=1 X
The following theorem 3 seems to be deeper than the preceding ones. It is only
formulated in the case of a finite ground field k = Fq, but I believe it can derived
from this special case by general theorems in algebraic geometry.

THEOREM 3. — Let k = Fq be a finite field and Y [k a smooth projective curve.
Let G/Y be a semisimple group scheme of inner type. If the components of the
vector p = (p, . ..p,) are sufficiently small and if T?(X/Y) is not empty then
we have

dim I'P’(X/Y) = — Zr 2 +(1 —g)#4A"

i=1 fl
and there is exactly one irreducible component of this ‘dimension.

I want to give an idea of the proof. Before doing this I introduce some notation.
I put
p;(B)

fi

These numbers are not necessarily integers. This is due to the fact that in general
the roots do not generate the lattice spanned by the fundamental characters. But
under a certain assumplion on the isomorphism type of G/Y they are integers,
and I will explain the idea only in this special case. For any vector 1= (I, .. .1, )
I put

l(B) =

n(G,l...1)=#T"X/Y) (F)

where p; = — f;I;. Then I consider the Laurent series
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EG,)=2nG 1 ...1).qg 7" £ ¢
1

r

It will be shown in [6] that E(G, t) is a rational function, and can be written in
the following form

PG, 1)

E@G,t)= -
a)- le 1 —qt)

Here P(G, t) is a polynomial in the variables ¢;, #; !and Q(t) is a polynomial in
the variables #; depending only on the Dynkin diagram of G /Y. Moreover the poly-

nomial Q(#) has no zeroes in the disc D(—ﬁ) = {(tl AR A <% . We

also know the residue of E(G, t) at the point (g7!... g~'). Here the residue is
defined by
r

110 -at) EG, 0,

Res,
v=1

EG,t)=
(ty...2)=(q ".ccq )

—1 1...:,)=(q_l...q

It can be expressed in terms of values the {-function of our field K/F, and we
obtain +
Res , EG, )= G €D # A +0(g-E-D#a -1

(ty.--t)=(@ " ...q” )

(Here the Riemannian hypothesis comes in!). This yields an estimate

r r
2~§1 3+ —g). A 2121 L+(1-g).#A" —1)2

|# TE(X/Y) () —q !
if the vector 1 = (I, .. .1) has sufficiently large components, say [; > ny(G) = n,.
[t can be shown that this estimate also holds with the same constant C and under
the same conditions ; > n, on 1 if we extend our ground field F, to Fq,,. of
course we have to substitute ¢” for q. Then our theorem 3 is a consequence of
a theorem of Lang and Weil [10].

Of course the properties of E(G, t) I need are not at all abvious. This function
depends on the isomorphism type [G] of G/Y and for the investigation of
E(G,t,...t) one has to consider this function as a function of [G]. Let G, /Fq
be a Chevalley group of the same type as G/Y, let Ty (resp. B, O T,) be a maximal
torus (resp. a Borel subgroup containing T;). Then G, = G, x Y is a Chevalley

scheme over Y. Let Gy(A4) be the adele group of G, x and R = q G, (og) the

I<Cgq

canonical maximal compact subgroup. Then we may identify
H' (Y , G)™> R\Gy(4)/Go(K)

From the Iwasawa decomposition we get Gy(4) = R.By(4) so for x € Gy(4)
we can write x = k, . b, (not unique).

If (s;,...,5,)=s5 is a vector whose components are complex numberswe

put 7,() = [T 1%(be)| ™" ~%. Then the following series
i=1
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Ex,s)= X nxy)
veGo(K)/Bo(K)

converges for Re(s;) > 1. It is analogous to the Eisenstein series considered by
Langlands in the number field case (Compare [7], [8]), and I will show in [6]
that Langland’s theory can be carried over to the function field case.

To x € Gy(A) corresponds a cohomology class in H\(Y, G,) and this cohomo-
logy class defines an isomorphism class of twisted semisimple group schemes
over Y and I assume that my given group scheme G/Y is in this class. Then it is
clear that

Ex,s)=E@G,q...q7)

and all desired properties of E(G, #; ...t,) can be derived from the theory of
Eisenstein series. For the estimations of the Eisenstein series which are needed
in the proof the theorem 3 the theorems 1 and 2 are important. The theorem
3 has nice consequences :

THEOREM 4. — Let G/K be a simply connected semisimple algebraic group over
the function field K/F,. Then H' (K, G) = 0.

This theorem follows from theorem 3 in the case where G/K is a Chevalley
group with out any case by case discussion (Comp. [6]). For the general case
one has to use the methods in [4].

Finally I want to mention that the calculation of the residue of E(x, s) at
(1,...1) yields.

THEOREM 5. — The Tamagawa number of a semisimple simply connected
Chevalley group G/K is one.

This is proved by the same method as Langland’s in the numberfield case
(Comp. [9].
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