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Metrization Theorems
(Relates to text Sec. 34)

Introduction. What properties of a topological space (X, T ) are enough to
guarantee that the topology actually is given by some metric? The space has to be
normal, since we know metric spaces are normal. And the topology has to have a
countable local basis at each point, since metric spaces have that property. In
Chapter 6 of the text, there are theorems saying, “(X, T ) is metric if and only if it
has the following topological properties . . . ”. The conditions are (1) the space is
regular, and (2) there is some countability property stronger than saying there is a
countable local basis at each point, but a little weaker than 2nd-countable (but still
strong enough that regular + the property =⇒ normal ) . In the current text
section, the theorem is less general: we characterize separable metric spaces; but this
is a good introduction to the ideas.

How does one prove that some topology on a space is given by a metric? There are
two choices: either explicitly define the metric and prove the metric topology is the
same as T , or show that X is homeomorphic to a subspace of a known metric space.
We used the first approach when we defined a metric on Rω that generates the
product topology; and now we will see a good example of the other approach, which
is also how the most general metrization theorems are proven.

Theorem (Urysohn metrization theorem). If (X, T ) is a regular space with a
countable basis for the topology, then X is homeomorphic to a subspace of the metric
space Rω.

The way I stated the above theorem, it is ambiguous: we have studied two
(inequivalent) metrics for Rω: the product space metric and the uniform metric.
The theorem is true with either metric, but it is an “if and only if” for the product
metric. Recall that in the product topology, Rω has a countable dense subset: the
set S = all vectors (q1, q2, . . .) where each qi ∈ Q and all but finitely many qi are 0.
Since Rω in the product topology is metrizable and has a countable dense subset, it
must be 2nd-countable. Each subspace of space with a countable basis also has a
countable basis. And, of course, each subspace of a metric space is metric. We
conclude that each subspace of (Rω, product metric) is metric and has a countable
basis.

The above paragraph combines ideas from various parts of our course. So let us take
this as one (bunch of) of our sample problems for the Final Exam. Your task s to
organize the various facts, ideas, etc. into a coherent proof (and to be able to fill in
details if asked); as always, an exam problem might involve filling in the details of
one particular part of a longer argument).
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Problem. [sample for final exam]

If (X, T ) is homeomorphic to a subspace of (Rω, product topology), then (X, T ) is
regular and has a countable basis.

Key steps:

a. There is a metric on Rω that gives the product topology.
b. Rω in the product topology has a countable dense subset.
c. A metric space with a countable dense subset has a countable basis for the

topology.
d. Each subspace of a 2nd-countable space is 2nd-countable.
e. Each subspace of a metric space is metrizable.
e. Each metric space is regular.
f. Put the pieces together.

On the other hand, the metric space (Rω, uniform metric) is not second-countable
(so not separable) since it has an uncountable discrete subspace K = the set of all
vectors (t1, t2, . . .) where each ti = 0 or 1. The set of all sequences of 0’s and 1’s is
uncountable, and the distance between any two elements of K is 1. So each
subspace of (Rω, uniform metric topology) is a metric space, but it need not be
separable. We really should state the Urysohn metrization theorem as two theorems:

Theorem. (X, T ) is regular with a countable basis ⇐⇒ (X, T ) is homeomorphic
to a subspace of (Rω, product topology metric).

Theorem. (X, T ) is regular with a countable basis =⇒ (X, T ) is homeomorphic to
a subspace of (Rω, uniform metric topology).

Proving the metrization theorem[s]. The text gives the details, so I will focus
on the gestalt and some highlights. Our goal is to define an embedding of X into
Rω. We want to assign to each point x ∈ X a point F (x) ∈ Rω, that is a (countably
infinite) list of “coordinates”: F (x) = (x1, x2, . . .). How can we find numbers that
measure how a point x ∈ X is related topologically to all the other points of X?
This is the bit of magic in this theorem. We will use Urysohn’s lemma infinitely
many times to define a sequence of functions fn : X → [0, 1]; these will be the
coordinate functions.

The space (X, T ) has a countable basis B and it it regular, so it is normal. Given
any closed set A and open neighborhood U(A), there exists a Urysohn function for
the disjoint closed sets X − U and A. That is, there exists f : X → [0, 1] such that
f(x) = 0 for all x /∈ U and f(a) = 1 for all a ∈ A. In particular, for any pair Bn, Bm

of elements of B that happen to have B̄n ⊆ Bm, there exists a function
f : X → [0, 1] with f = 1 on B̄n and f = 0 outside Bm.
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Since B is countable, the set of such pairs Bn, Bm is countable. Number these pairs
in any order, and let f1, f2, . . . be the Urysohn functions defined in the preceding
paragraph. Then define F : X → [0, 1] by

F (x) = (f1(x), f2(x), . . .).

We need to prove that the function F is 1-1, continuous, and has a continuous
inverse (From F (X) → X). The questions of continuity have to depend on what
topology we use for Rω. But we can check injectivity before worrying about the
topology.

Proposition. The function F : X → Rω is injective

Proof. Suppose x, y ∈ X with x 6= y. Since X is Hausdorff, there exist disjoint
neighborhoods U(x), V (y). Since B is a basis, there exists some Bm with
x ∈ Bm ⊆ U . Since X is regular, there exists a neighborhood U ′(x) such that
Ū ′ ⊆ Bm. And, again since B is a basis, there exists a basis set Bn with
x ∈ Bn ⊆ U ′. Since Ū ′ ⊆ Bm, we thus have B̄n ⊆ Bm. The Urysohn function fj

associated to the pair Bn, Bm has x → 1 and y → 0; so F (x) 6= F (y). �

The text goes on to show that, in the product topology, F is continuous and has a
continuous inverse. The proof that F is continuous is easy because each coordinate
function is continuous; the proof that F is an open map takes more work; see the
text for the details.

To use the uniform topology, we need to change F . Recall that in the product
topology, if we are studying a function from a space into a product space, i.e. some
G : Y →

∏
α∈J Xα, and we want to show that G is continuous, it is sufficient to

check that each component function Gα : Y → Xα is continuous. But in the uniform
topology, this is not sufficient.

Example (Page 127, problem 4a). The function G : R → Rω defined by
G(t) = (t, 2t, 3t, 4t, . . .) is not continuous in the uniform topology on Rω. In
particular, there is no neighborhood of 0 that is mapped by G into a uniform
ǫ-neighborhood of (0, 0, 0, . . . ).

To make the coordinate function F topologically “well-behaved” for the uniform
metric on Rω, we need to eliminate the difficulty suggested by the above example.
We do this by making the coordinate functions fj get smaller as j gets larger.
Specifically, define

G : X → Rω by G(x) = (f1(x),
1

2
f2(x),

1

3
f3(x),

1

4
f4(x), . . .)

There is one more part of the proofs that is “cute”, “clever”, or ‘annoyingly slick”,
depending on your tastes: The uniform metric topology is finer than the product
topology on Rω. SO once we know F is an open map in the product topology (that
takes work), it is easy to see that F , hence G, is an open map in the uniform
topology. Conversely, once we know G is continuous in the uniform topology (that
takes work), it is easy to see that F is continuous in the product topology.
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Here are some sample problems for the Final Exam that you can use to solidify your
understanding of these proofs. The first is an easier special case; the others are the
“standard” Urysohn metrization theorem.

Problem. [sample for final exam]

Prove: If X is a compact Hausdorff space with a countable basis, then there exists
an embedding of X into Rω, where Rω has the product topology.

Problem. [sample for final exam]

Write a one-to-two page proof:

If X is a regular space with a countable basis, then there exists an embedding of X
into Rω, where Rω has the uniform topology.

Problem. [sample for final exam]

Write a one-to-two page proof:

If X is a regular space with a countable basis, then there exists an embedding of X
into Rω, where Rω has the unifom topology.

(end of handout)

c©J. Simon, all rights reserved page 4


