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EXTENDED ABSTRACT 
 
In this talk we discuss a general philosophy for designing “robust” adaptive multivariable 
feedback control systems for plants that include both unmodeled dynamics and uncertain 
real parameters in the plant state description.  The adjective “adaptive” refers to the fact 
that the real parameter uncertainty and performance requirements require the 
implementation of a feedback architecture with greater complexity than that of the best 
possible non-adaptive controller.  The word “robust” refers to the desire that the adaptive 
control system remains stable and meets the posed performance specifications for all 
possible “legal” parameter values and unmodeled dynamics. 
 
Early approaches to adaptive control, such as the model-reference adaptive method  
(MRAC) and its variants, were concerned with real-time parameter identification and 
simultaneous adjustment of the loop-gain.  In the model-reference method the emphasis 
was on proving convergence to the real parameter and subsequent deterministic 
Lyapunov arguments for closed-loop stability.  However, the assumptions required for 
stability and convergence did not include the presence of unmodeled dynamics, 
immeasurable disturbances and sensor noise.  Moreover, no explicit performance 
requirement was posed for the adaptive system; rather the “goodness” of the model-
reference design was by the nature of the command-following error based upon 
simulations.  Classical model-reference adaptive systems would indeed become unstable 
in the presence of disturbances and high-frequency unmodeled dynamics. 
 
More recent approaches to the adaptive problem involved multiple-model techniques.  
The (large) parameter uncertainty set is subdivided into smaller subsets, each giving rise 
to a different plant model but with reduced parameter uncertainty.  One then designs a set 
of control gains or a dynamic compensator for each model so that if indeed the true 
parameter belongs to a specific model a “satisfactory” performance was obtained.  The 
identification of the most likely model is carried out by a “supervisor” which either 
switched in and out one of several controllers based primarily on deterministic concepts 
or relied upon stochastic identification concepts that generate on-line posterior 
probabilities reflecting which of the models is more likely.  In the latter approach the 
controllers could be designed either by classical LQG methods or by using more 
sophisticated methods.  
 
In all adaptive methods that employ multiple models, the complexity of the feedback 



system will depend on the number of models employed.  By decreasing the size of the 
parametric subsets one would obtain more models.  Thus, all multiple model approaches 
must address the following: 
 
(a) how to divide the initial large parameter uncertain set into N smaller subsets, 
(b) what should be the size of each subset, and 
(c) how large should N be? 
 
Up to the present time the approaches available in the literature use either the 
Vinnicombe metric to measure the “distance” between different linear systems or (in the 
stochastic versions) the Baram probabilistic metric.  The emphasis was focused upon 
feedback stability and little attention was paid to any robustness requirements on 
guaranteed adaptive performance. 
 
In this talk we shall focused on explicitly defined “robust performance” requirements on 
the adaptive system implemented by the RMMAC. 
 
If we turn our attention to the non-adaptive literature there exists a well-documented 
design methodology, and MATLAB design software, for linear time-invariant plants that 
addresses simultaneously both robust-stability and robust-performance in the presence of 
unmodeled dynamics and parametric uncertainty as well as exogenous disturbances and 
sensor noise.  This methodology, pioneered by Doyle et al, is often called the mixed-m 
design method.  The mixed-m design method incorporates the state-of-the-art in non-
adaptive multivariable robust control synthesis and exploits the proper use of frequency-
domain weights to define desired performance.  Typically, using the mixed-m design 
method, one finds that as the size of the parametric uncertainty is reduced the guaranteed 
desired performance, say disturbance-rejection, increases.  Unfortunately, very little has 
been done in integrating the non-adaptive mixed-mu design methodology with that of 
robust adaptive control studies; even though it should be apparent that the mixed-m 
design method should provide us guidance on the selection and number, N, of the models 
to be used in any multiple-model adaptive control scheme. 
 
We now summarize how in the RMMAC method we integrate the mixed-m synthesis 
with multiple model adaptive control.  We concentrate on improving the performance by 
maximizing the disturbance-rejection capability in the presence of noisy sensor 
measurements, unmodeled dynamics and parametric uncertainty.  Moreover, we use 
explicit performance requirements for the design of the  
 
Step 1. We use the mixed-m synthesis method to design the best non-adaptive controller 
for the original large parameter uncertainty set.  We increase the “gain” of the output 
performance weight until the mixed-m upper bound reaches unity.  This defines the 
“best” non-adaptive controller. 
 
Step 2. We calculate an upper bound for possible performance by neglecting parametric 
uncertainty, but including unmodeled dynamics, for the same type of performance 
specification.  We construct this upper bound on performance by designing robust 



controllers using the complex-m method and varying the real parameter over the 
uncertainty set.  In essence this could lead to an adaptive multiple-model design where 
the number of models, N, is infinite. 
 
Step 3. Since now we have both an upper bound and a lower bound on performance, we 
can make an intelligent choice on how to specify the desired performance requirements 
for the multiple-model adaptive system.  We shall describe in the talk the specific way 
this is done using specific numerical examples; the idea is to guarantee an adaptive 
performance of, say, at least 80% of the unattainable upper performance bound by using 
the smallest possible number of models, i.e. uncertainty subsets.   
 
This design methodology of Step 3 also defines the specific size of each uncertainty 
subset and it naturally includes any limits on disturbance-rejection that may arise from 
non-minimum phase zeros, unstable poles, and unmodeled dynamics.  As the 
performance requirements become more stringent, for example by increasing the 
bandwidth of the output frequency weight, the minimum number of required models 
increases.  In this manner, we fully quantify how the computational complexity of the 
adaptive system (as a function of the number N of required models) changes as we make 
our performance requirement more stringent. 
 
The procedure summarized above can be used with any of the adaptive multiple-model 
methods.  We shall illustrate its detailed design and properties, using extensive Monte 
Carlo simulations, by using the RMMAC method in the context of dynamic hypothesis-
testing, which involves generating the posterior probability for each model. The 
important point to remember is that all multiple-model adaptive schemes require the 
definition of the minimum number of models required to achieve both robust stability and 
robust performance, and these can only be defined after we pose realistic performance 
requirements for the adaptive system as summarized in Steps 1 to 3 above.  
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