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1.   Basic PLC fabrication process

Next-generation planar lightwave circuits (PLCs)
will need circuits that have greater functionality and
are larger in scale, but they must also be less expensive
to make. To achieve this, we must continue improving
the waveguide fabrication process and develop new
ones. A PLC fabricated using a technique for fabricat-
ing optical fibers can provide a high-quality lightwave
circuit on a substrate. This means that both PLCs and
optical fiber use the same silica-based glass material,
buried waveguide geometry, and glass forming
method. The fundamental PLC fabrication process is
shown in Fig. 1. First, SiO2 and GeO2 glass particles
are deposited on a Si substrate by flame hydrolysis
deposition (FHD). SiO2 particles are deposited to
form the under-cladding layer and GeO2-doped SiO2

particles are deposited for the core layer. The photo-
graph on the left of Fig. 1 shows the oxy-hydrogen
flame used to generate the glass particles used in the
FHD process. Then, the substrate is heated to 1000°C,
which consolidates the glass particles into a transpar-
ent glass film. Next, a rectangular core is formed by
reactive ion etching. Finally, over-cladding glass is

deposited by FHD. The photograph in the bottom
right of the figure shows that a well-defined rectangu-
lar core is embedded in the cladding glass.

PLCs employ low-cost Si substrates, so they have
the potential to provide inexpensive circuits. More-
over, they have excellent mass-production character-
istics, a low propagation loss, high stability, and good
design flexibility. We are now developing new wave-
guide fabrication and design techniques with a view
to producing lightwave circuits for new highly func-
tional large-scale integrated optical circuits.

2.   Ultralow-loss waveguide

To make large-scale optical circuits, we will need a
waveguide with low loss. PLCs exhibit extremely low
propagation losses compared with other waveguide
materials such as polymers and semiconductors.
However, PLCs have higher losses than optical fiber,
so there is room for further improvement. The propa-
gation loss spectra for a PLC waveguide are shown in
Fig. 2. Previously, a PLC had a propagation loss of
about 1.6 dB/m at a wavelength of 1.55 µm. We have
improved the waveguide fabrication process to
reduce the surface roughness of the waveguide,
which in turn has reduced the propagation loss to 0.6
dB/m. A bent waveguide is indispensable if we are to
make a long waveguide on a small area of wafer, but
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the bent waveguide becomes a source of propa-
gation loss. Waveguide junctions between
straight and bent waveguides are schematically
shown in Fig. 3 for (a) conventional and (b)
newly developed structures. In the conventional
structure, a straight waveguide and a bent wave-
guide are joined with a small optimized offset.
Nevertheless, the field distributions for the
straight and curved waveguides are slightly dif-
ferent. The loss at each junction is very small, but
since a large-scale circuit usually has more than
one hundred junctions, the loss accumulates and
becomes high overall. With our new approach,
we connected the straight and curved wave-
guides by introducing a clothoid function, which
gradually reduces the bending radius in the bend-
ing direction. This method can yield an ultralow-
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Fig. 1.   Basic PLC fabrication process.
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loss waveguide with a propagation loss of 0.3 dB/m
[1]. This waveguide will enable us to obtain optical
circuits with a larger scale and a lower loss.

3.   Waveguides for compact devices

We must consider reducing the chip size in order to
construct a large-scale optical circuit at low cost.
First, we must reduce the bending radius of the wave-
guide. For example, conventional optical fiber cannot
be bent with a curvature of less than a few centime-
ters, so the circuit size becomes very large. Using a
PLC decreases the minimum bending radius by
increasing the relative index difference ∆ ≅ (n1 –
n2)/n1 (n1: core index, n2: clad index). The minimum
bending radius for a ∆ of 0.75% (high ∆: H∆) is 5 mm
and that for a ∆ of 1.5% (super-high ∆: SH∆) is 2 mm.
To achieve a further reduction, we use a deep-ridge
waveguide, as shown in Fig. 4. The deep-ridge wave-
guide consists of a core layer sandwiched between a
SiO2 cladding layer and the substrate; both sides of
the waveguide are etched. This means that the wave-
guide is strongly confined by the air in the lateral
direction. We increased the relative index difference
for the lateral direction to 25% and achieved a mini-
mum bending radius of less than 250 µm.

The AWG (arrayed-waveguide grating) chip sizes
of conventional ∆ and deep-ridge waveguides are
compared in Fig. 5. An AWG with a deep-ridge
waveguide has a chip size of about 5 × 7 mm, which
is about 1/20 that of the H∆ waveguide and 1/6 that of
the SH∆ waveguide [2].

It has recently become easier to fabricate compact
AWGs; however, the losses of these AWGs tend to be

higher than those of conventional PLCs. We reduced
the AWG loss by introducing a vertically tapered
waveguide at the junction between slab and arrayed
waveguides [3]. The AWG has a loss of about 1.85
dB, which is almost the same as that of a convention-
al PLC-based AWG. This result shows we can
achieve excellent characteristics even when fabricat-
ing a compact AWG, which will let us obtain very-
high-density integrated devices at low cost.

4.   Flexible direct laser-written waveguide

A method of writing waveguides directly in glass
using a femtosecond laser was first proposed in 1996
[4]. We have recently utilized this approach to fabri-
cate optical circuits. The femtosecond pulses can
increase the refractive index to about 10–2. Since this
occurs only at the focal point, by scanning the focal
point, we can fabricate an optical circuit with a flexi-
ble layout design.

A PLC waveguide is fabricated with a planar core
layer, so it is difficult to make a three-dimensional
(3D) waveguide. However, the laser direct-writing
waveguide fabrication method lets us fabricate a
waveguide whose direction and shape can be readily
controlled. Therefore, this approach has the potential
to make high-density 3D circuits. In addition, we can
make new functional devices by adding a new laser-
written waveguide to a PLC.

Although the laser-written waveguide fabrication
technique is effective for achieving flexible designs,
it takes a long time to make a complex optical circuit.
An effective solution is to fabricate a circuit using a
combination of the laser-written and conventional
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PLC waveguide fabrication techniques. We can
expect to make a new waveguide circuit that offers
high functionality, which can be changed at will.

It is more difficult to write a waveguide in PLC
glass than in bulk glass because the PLC glass con-
tains a dopant required for waveguide fabrication.
When a femtosecond optical pulse is tightly focused
on the glass film, optical damage can easily be
induced and this makes it difficult to obtain a low-loss
waveguide. Figure 6 shows our new laser writing
method for forming a low-loss waveguide in a PLC.
With this approach, we write a narrow waveguide and
overlap it several times to generate a nearly rectangu-
lar core shape.

In addition, we can connect a separate PLC wave-
guide to this laser-written waveguide [5]. Schematic
views of waveguide interconnection achieved using a
laser-written waveguide are shown in Fig. 7. This fig-
ure shows the junction of a PLC waveguide and a
laser-written waveguide. The two waveguides are

well connected without any waveguide offset. The
junction- and polarization-dependent losses of the
junction are very small. This technique expands the
potential for creating flexible optical circuits.
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