
CS 152 Computer Architecture and

Engineering

 Lecture 1 - Introduction

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste

http://inst.eecs.berkeley.edu/~cs152

1/20/2009 CS152-Spring!09 2

Computing Devices Then…

EDSAC, University of Cambridge, UK, 1949

1/20/2009 CS152-Spring!09 3

Computing Devices Now

Robots

Supercomputers
Automobiles

Laptops

Set-top
boxes

Games

Smart
phones

Servers

Media
Players

Sensor Nets

Routers

Cameras

1/20/2009 CS152-Spring!09 4

What is Computer Architecture?

Application

Physics

Gap too large to

bridge in one step

(but there are exceptions,

e.g. magnetic compass)

In its broadest definition, computer architecture is the

design of the abstraction layers that allow us to implement

information processing applications efficiently using

available manufacturing technologies.

1/20/2009 CS152-Spring!09 5

Abstraction Layers in Modern Systems

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original

domain of

the computer

architect

(‘50s-’80s)

Domain of

recent

computer

architecture

(‘90s)

1/20/2009 CS152-Spring!09 6

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

Uniprocessor Performance

• VAX : 25%/year 1978 to 1986

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer

Architecture: A Quantitative Approach, 4th

edition, October, 2006

W
hat h

appened????

1/20/2009 CS152-Spring!09 7

The End of the Uniprocessor Era

Single biggest change in the history
of computing systems

1/20/2009 CS152-Spring!09 8

• Old Conventional Wisdom: Power is free, Transistors expensive

• New Conventional Wisdom: “Power wall” Power expensive, Transistors free
(Can put more on chip than can afford to turn on)

• Old CW: Sufficient increasing Instruction-Level Parallelism via compilers,
innovation (pipelining, superscalar, out-of-order, speculation, VLIW, …)

• New CW: “ILP wall” law of diminishing returns on more HW for ILP

• Old CW: Multiplies are slow, Memory access is fast

• New CW: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

• Old CW: Uniprocessor performance 2X / 1.5 yrs

• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs

! Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)

» More, simpler processors are more power efficient

Conventional Wisdom in Computer Architecture

1/20/2009 CS152-Spring!09 9

Sea Change in Chip Design

• Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm

– Caches via DRAM or 1 transistor SRAM?

1/20/2009 CS152-Spring!09 10

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …

• “… today’s processors … are nearing an impasse as technologies
approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
! Custom multiprocessors tried to beat uniprocessors
! Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)

• Difference is all microprocessor companies have switched to
multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2+ CPUs)
! Procrastination penalized: 2X sequential perf. / 5 yrs
! Biggest programming challenge: from 1 to 2 CPUs

1/20/2009 CS152-Spring!09 11

Problems with Sea Change

• Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready to supply Thread-Level Parallelism or Data-Level
Parallelism for 1000 CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
– Unlike Instruction-Level Parallelism, cannot be solved by computer

architects and compiler writers alone, but also cannot be solved without
participation of architects

• Need a reworking of all the abstraction layers in the
computing system stack

1/20/2009 CS152-Spring!09 12

Abstraction Layers in Modern Systems

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original

domain of

the computer

architect

(‘50s-’80s)

Domain of

recent

computer

architecture

(‘90s)

Reliability,

power, …

Parallel

computing,

security, …

Reinvigoration of

computer architecture,

mid-2000s onward.

1/20/2009 CS152-Spring!09 13

The New CS152
• New CS152 focuses on interaction of software and

hardware
– more architecture and less digital engineering.

• No FPGA design component
– There is now a separate FPGA design lab class (CS194 in Fall 2008),

where you can try building some of the architectural ideas we’ll explore
this semester (100% digital engineering)

• Much of the material you’ll learn this term was previously
in CS252

– Some of the current CS61C, I first saw in CS252 nearly 20 years ago!

– Maybe every 10 years, shift CS252->CS152->CS61C?

• Class contains labs based on various different machine
designs

– Experiment with how architectural mechanisms work in practice on real
software.

1/20/2009 CS152-Spring!09 14

CS 152 Course Focus

Understanding the design techniques, machine structures,
technology factors, evaluation methods that will determine
the form of computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Organization
• Hardware/Software Boundary

Compilers

1/20/2009 CS152-Spring!09 15

The New CS152 Executive Summary

The processor your

predecessors built in

CS152

What you’ll

understand and

experiment with in

the new CS152

Plus, the technology

behind chip-scale

multiprocessors

(CMPs)

1/20/2009 CS152-Spring!09 16

CS152 Administrivia

Instructor: Prof. Krste Asanovic

Office: 579 Soda Hall, krste@eecs

Office Hours: M 1:30-2:30PM (email to confirm), 579 Soda

T. A.: Scott Beamer, sbeamer@eecs

Office Hours: TBD

Lectures: Tu/Th, 5:00-6:30PM, 320 Soda (may change)

Section: F 12-1pm, 258 Dwinelle (room may change)

Text: Computer Architecture: A Quantitative Approach,

4th Edition (Oct, 2006)

Readings assigned from this edition, don’t use earlier Eds.

Web page: http://inst.eecs.berkeley.edu/~cs152

Lectures available online before noon, day of lecture

1/20/2009 CS152-Spring!09 17

CS152 Structure and Syllabus

Six modules
1. Simple machine design (ISAs, microprogramming, unpipelined

machines, Iron Law, simple pipelines)

2. Memory hierarchy (DRAM, caches, optimizations)

3. Virtual memory systems, exceptions, interrupts

4. Complex pipelining (score-boarding, out-of-order issue)

5. Explicitly parallel processors (vector machines, VLIW machines,
multithreaded machines)

6. Multiprocessor architectures (cache coherence, memory
models, synchronization)

1/20/2009 CS152-Spring!09 18

CS152 Course Components

• 20% Problem Sets (one per module)
– Intended to help you learn the material. Feel free to discuss with

other students and instructors, but must turn in your own solutions.
Grading based mostly on effort, but quizzes assume that you have
worked through all problems. Solutions released after PSs handed
in.

• 40% Quizzes (one per module)
– In-class, closed-book, no calculators or computers.

– Based on lectures, problem sets, and labs

• 40% Labs (one per module)
– Labs use advanced full system simulators (Virtutech Simics)

– Directed plus open-ended sections to each lab

1/20/2009 CS152-Spring!09 19

CS152 Labs

• Each lab has directed plus open-ended assignments
– Roughly 50/50 split of grade

• Directed portion is intended to ensure students learn
main concepts behind lab

– Each student must perform own lab and hand in their own lab
report

• Open-ended assigment is to allow you to show your
creativity

– Roughly a one day “mini-project”

» E.g., try an architectural idea and measure potential, negative
results OK (if explainable!)

– Students can work individually or in groups of two or three

– Group open-ended lab reports must be handed in separately

– Students can work in different groups for different assignments

1/20/2009 CS152-Spring!09 20

Related Courses

CS61C CS 152

CS 258

CS 150

Basic computer

organization, first look

at pipelines + caches

Computer Architecture,

First look at parallel

architectures

Parallel Architectures,

Languages, Systems

Digital Logic Design

Strong

Prerequisite

CS 194??

New FPGA-based

Architecture Lab Class

CS 252

Graduate Computer

Architecture,

Advanced Topics

1/20/2009 CS152-Spring!09 21

Computer Architecture:
A Little History

Throughout the course we’ll use a historical narrative to
help understand why certain ideas arose

Why worry about old ideas?

• Helps to illustrate the design process, and explains
why certain decisions were taken

• Because future technologies might be as constrained
as older ones

• Those who ignore history are doomed to repeat it
– Every mistake made in mainframe design was also made in

minicomputers, then microcomputers, where next?

1/20/2009 CS152-Spring!09 22

Charles Babbage 1791-1871
Lucasian Professor of Mathematics,
Cambridge University, 1827-1839

1/20/2009 CS152-Spring!09 23

Charles Babbage

• Difference Engine 1823

• Analytic Engine 1833
– The forerunner of modern digital computer!

Application
– Mathematical Tables – Astronomy
– Nautical Tables – Navy

Background
– Any continuous function can be approximated by a

polynomial --- Weierstrass

Technology
– mechanical - gears, Jacquard’s loom, simple

calculators

1/20/2009 CS152-Spring!09 24

Difference Engine
A machine to compute mathematical tables

Weierstrass:

– Any continuous function can be approximated by a polynomial

– Any polynomial can be computed from difference tables

An example

f(n) = n2 + n + 41

d1(n) = f(n) - f(n-1) = 2n

d2(n) = d1(n) - d1(n-1) = 2

f(n) = f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2)

all you need is an adder!

n

d2(n)

d1(n)

f(n)

0

41

1

2

2

2

3

2

4

2

4 6 8

43 47 53 61

1/20/2009 CS152-Spring!09 25

Difference Engine

1823
– Babbage’s paper is published

1834
– The paper is read by Scheutz & his son in Sweden

1842
– Babbage gives up the idea of building it; he is onto Analytic

Engine!

1855
– Scheutz displays his machine at the Paris World Fare
– Can compute any 6th degree polynomial
– Speed: 33 to 44 32-digit numbers per minute!

Now the machine is at the Smithsonian

1/20/2009 CS152-Spring!09 26

Analytic Engine

1833: Babbage’s paper was published
– conceived during a hiatus in the development of the

difference engine

Inspiration: Jacquard Looms
– looms were controlled by punched cards

» The set of cards with fixed punched holes dictated the
pattern of weave ! program

» The same set of cards could be used with different
colored threads ! numbers

1871: Babbage dies
– The machine remains unrealized.

It is not clear if the analytic engine
could be built even today using only
mechanical technology

1/20/2009 CS152-Spring!09 27

Analytic Engine
The first conception of a general-purpose computer

1. The store in which all variables to be operated upon, as well
as all those quantities which have arisen from the results of
the operations are placed.

2. The mill into which the quantities about to be operated upon
are always brought.

The program
 Operation variable1 variable2 variable3

An operation in the mill required feeding two punched
cards and producing a new punched card for the store.

An operation to alter the sequence was also provided!

1/20/2009 CS152-Spring!09 28

The first programmer
Ada Byron aka “Lady Lovelace” 1815-52

Ada’s tutor was Babbage himself!

1/20/2009 CS152-Spring!09 29

Babbage’s Influence

• Babbage’s ideas had great influence later
primarily because of

– Luigi Menabrea, who published notes of Babbage’s
lectures in Italy

– Lady Lovelace, who translated Menabrea’s notes in
English and thoroughly expanded them.

“... Analytic Engine weaves algebraic patterns....”

• In the early twentieth century - the focus
shifted to analog computers but

– Harvard Mark I built in 1944 is very close in spirit to the
Analytic Engine.

1/20/2009 CS152-Spring!09 30

Harvard Mark I

• Built in 1944 in IBM Endicott laboratories
– Howard Aiken – Professor of Physics at Harvard
– Essentially mechanical but had some electro-magnetically

controlled relays and gears
– Weighed 5 tons and had 750,000 components
– A synchronizing clock that beat every 0.015 seconds (66Hz)

Performance:
 0.3 seconds for addition
 6 seconds for multiplication
 1 minute for a sine calculation

Broke down once a week!

1/20/2009 CS152-Spring!09 31

Linear Equation Solver
John Atanasoff, Iowa State University

1930’s:
– Atanasoff built the Linear Equation Solver.
– It had 300 tubes!
– Special-purpose binary digital calculator
– Dynamic RAM (stored values on refreshed capacitors)

Application:
– Linear and Integral differential equations

Background:
– Vannevar Bush’s Differential Analyzer

--- an analog computer

Technology:
– Tubes and Electromechanical relays

Atanasoff decided that the correct mode of
computation was using electronic binary
digits.

1/20/2009 CS152-Spring!09 32

Electronic Numerical Integrator
and Computer (ENIAC)
• Inspired by Atanasoff and Berry, Eckert and Mauchly designed

and built ENIAC (1943-45) at the University of Pennsylvania

• The first, completely electronic, operational, general-purpose
analytical calculator!

– 30 tons, 72 square meters, 200KW

• Performance

– Read in 120 cards per minute

– Addition took 200 µs, Division 6 ms

– 1000 times faster than Mark I

• Not very reliable!

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
 air density, temperature, weight of shell,
 propellant charge, ...)

WW-2 Effort

1/20/2009 CS152-Spring!09 33

Electronic Discrete Variable
Automatic Computer (EDVAC)

• ENIAC’s programming system was external

– Sequences of instructions were executed independently of the
results of the calculation

– Human intervention required to take instructions “out of order”

• Eckert, Mauchly, John von Neumann and others designed
EDVAC (1944) to solve this problem

– Solution was the stored program computer

! “program can be manipulated as data”

• First Draft of a report on EDVAC was published in 1945, but just
had von Neumann’s signature!

– In 1973 the court of Minneapolis attributed the honor of inventing
the computer to John Atanasoff

1/20/2009 CS152-Spring!09 34

Stored Program Computer

manual control calculators

automatic control
external (paper tape) Harvard Mark I , 1944

Zuse’s Z1, WW2
internal

plug board ENIAC 1946
read-only memory ENIAC 1948
read-write memory EDVAC 1947 (concept)

• The same storage can be used to store program and data

Program = A sequence of instructions

How to control instruction sequencing?

 EDSAC 1950 Maurice Wilkes

1/20/2009 CS152-Spring!09 35

Technology Issues

ENIAC ! EDVAC
18,000 tubes 4,000 tubes
20 10-digit numbers 2000 word storage

mercury delay lines

ENIAC had many asynchronous parallel units
but only one was active at a time

BINAC : Two processors that checked each other
for reliability.

Didn’t work well because processors never
agreed

1/20/2009 CS152-Spring!09 36

Dominant Problem: Reliability

 Mean time between failures (MTBF)
MIT’s Whirlwind with an MTBF of 20 min. was perhaps
the most reliable machine !

Reasons for unreliability:

 1. Vacuum Tubes

 2. Storage medium
 acoustic delay lines
 mercury delay lines
 Williams tubes
 Selections

Reliability solved by invention of Core memory by
J. Forrester 1954 at MIT for Whirlwind project

1/20/2009 CS152-Spring!09 37

Commercial Activity: 1948-52

IBM’s SSEC (follow on from Harvard Mark I)

Selective Sequence Electronic Calculator

– 150 word store.
– Instructions, constraints, and tables of data were read from paper

tapes.
– 66 Tape reading stations!
– Tapes could be glued together to form a loop!
– Data could be output in one phase of computation and read in the

next phase of computation.

1/20/2009 CS152-Spring!09 38

And then there was IBM 701

IBM 701 -- 30 machines were sold in 1953-54
used CRTs as main memory, 72 tubes of 32x32b each

IBM 650 -- a cheaper, drum based machine,
 more than 120 were sold in 1954
 and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computer
technology?

IBM was making too much money!
Even without computers, IBM revenues
were doubling every 4 to 5 years in 40’s
and 50’s.

1/20/2009 CS152-Spring!09 39

Computers in mid 50’s

• Hardware was expensive

• Stores were small (1000 words)

! No resident system software!

• Memory access time was 10 to 50 times slower than the processor

cycle

! Instruction execution time was totally dominated by the memory

reference time.

• The ability to design complex control circuits to execute an

instruction was the central design concern as opposed to the

speed of decoding or an ALU operation

• Programmer’s view of the machine was inseparable from the

actual hardware implementation

1/20/2009 CS152-Spring!09 40

The IBM 650 (1953-4)

[From 650 Manual, © IBM]

Magnetic Drum

(1,000 or 2,000

10-digit decimal

words)

20-digit

accumulator

Active instruction

(including next

program counter)

Digit-serial

ALU

1/20/2009 CS152-Spring!09 41

Programmer’s view of the IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009
• “Load the contents of location 1234 into the

distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to
location 1009 for the next instruction.”

Good programmers optimized the placement of
instructions on the drum to reduce latency!

CS152-Spring!09 41

34 1009
nts of location 1234 into the
it also into the upper accumulalal tor;

mulalal tor to zero; and then go to
r the next instruction.”

Good programmers optimized the placement of
instructions on the drum to reduce latency!

1/20/2009 CS152-Spring!09 42

The Earliest Instruction Sets

Single Accumulator - A carry-over from the calculators.

LOAD x AC " M[x]
STORE x M[x] " (AC)

ADD x AC " (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC " 2 # (AC)
SHIFT RIGHT

JUMP x PC " x
JGE x if (AC) $ 0 then PC " x

LOAD ADR x AC " Extract address field(M[x])
STORE ADR x

Typically less than 2 dozen instructions!

1/20/2009 CS152-Spring!09 43

Programming:
Single Accumulator Machine

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci " Ai + Bi, 1 % i % n

How to modify the addresses A, B and C ?

A

B

C

N

ONE

code

-n

1

1/20/2009 CS152-Spring!09 44

Self-Modifying Code

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
 total book-
 keeping
instruction
fetches

operand
fetches

stores

Ci " Ai + Bi, 1 % i % n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

4

1/20/2009 CS152-Spring!09 45

Modify existing instructions
LOAD x, IX AC " M[x + (IX)]
ADD x, IX AC " (AC) + M[x + (IX)]

...

Add new instructions to manipulate index registers
JZi x, IX if (IX)=0 then PC " x

 else IX " (IX) + 1
LOADi x, IX IX " M[x] (truncated to fit IX)

...

Index Registers
Tom Kilburn, Manchester University, mid 50’s

One or more specialized registers to simplify
address calculation

Index registers have accumulator-like
characteristics

1/20/2009 CS152-Spring!09 46

Using Index Registers

LOADi -n, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself
• Efficiency has improved dramatically (ops / iter)
 with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

• Costs: Instructions are 1 to 2 bits longer

Index registers with ALU-like circuitry
Complex control

A

LASTA

Ci " Ai + Bi, 1 % i % n

5(2)
2
1

1/20/2009 CS152-Spring!09 47

Operations on Index Registers

To increment index register by k
AC " (IX) new instruction
AC " (AC) + k
IX " (AC) new instruction

also the AC must be saved and restored.

It may be better to increment IX directly
INCi k, IX IX " (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x] " (IX) (extended to fit a word)

...

IX begins to look like an accumulator
! several index registers

several accumulators
! General Purpose Registers

1/20/2009 CS152-Spring!09 48

Evolution of Addressing Modes

1. Single accumulator, absolute address
LOAD x

2. Single accumulator, index registers
LOAD x, IX

3. Indirection
LOAD (x)

4. Multiple accumulators, index registers, indirection

LOAD R, IX, x

or LOAD R, IX, (x) the meaning?

 R " M[M[x] + (IX)]

or R " M[M[x + (IX)]]

5. Indirect through registers
LOAD RI, (RJ)

6. The works
LOAD RI, RJ, (RK) RJ = index, RK = base addr

1/20/2009 CS152-Spring!09 49

Variety of Instruction Formats

• Two address formats: the destination is same as
one of the operand sources

(Reg # Reg) to Reg RI " (RI) + (RJ)
(Reg # Mem) to Reg RI " (RI) + M[x]

– x can be specified directly or via a register
– effective address calculation for x could include indexing,

indirection, ...

• Three address formats: One destination and up to
two operand sources per instruction

(Reg x Reg) to Reg RI " (RJ) + (RK)
(Reg x Mem) to Reg RI " (RJ) + M[x]

1/20/2009 CS152-Spring!09 50

More Instruction Formats

• Zero address formats: operands on a stack

add M[sp-1] " M[sp] + M[sp-1]
load M[sp] " M[M[sp]]

– Stack can be in registers or in memory (usually top of stack
cached in registers)

• One address formats: Accumulator machines
– Accumulator is always other implicit operand

Many different formats are possible!

C

B

A
SP

Register

1/20/2009 CS152-Spring!09 51

Data formats:

Bytes, Half words, words and double words

Some issues

• Byte addressing

 Big Endian 0 1 2 3

 vs. Little Endian 3 2 1 0

• Word alignment

Suppose the memory is organized in 32-bit words.

Can a word address begin only at 0, 4, 8, ?

Data Formats and Memory Addresses

 0 1 2 3 4 5 6 7

Most Significant

Byte

Least Significant

Byte

Byte Addresses

1/20/2009 CS152-Spring!09 52

Software Developments

up to 1955 Libraries of numerical routines
 - Floating point operations
 - Transcendental functions
 - Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956

Operating Systems -
 - Assemblers, Loaders, Linkers, Compilers

 - Accounting programs to keep track of
 usage and charges

 Machines required experienced operators
 ! Most users could not be expected to understand
 these programs, much less write them

! Machines had to be sold with a lot of resident
software

1/20/2009 CS152-Spring!09 53

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of
computers!

701 & 7094
650 & 7074
702 & 7080
1401 & 7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche

business, scientific, real time, ...

! IBM 360

1/20/2009 CS152-Spring!09 54

IBM 360 : Design Premises
Amdahl, Blaauw and Brooks, 1964

• The design must lend itself to growth and successor
machines

• General method for connecting I/O devices

• Total performance - answers per month rather than bits
per microsecond ! programming aids

• Machine must be capable of supervising itself without
manual intervention

• Built-in hardware fault checking and locating aids to
reduce down time

• Simple to assemble systems with redundant I/O devices,
memories etc. for fault tolerance

• Some problems required floating point words larger than
36 bits

1/20/2009 CS152-Spring!09 55

IBM 360: A General-Purpose
Register (GPR) Machine

• Processor State

– 16 General-Purpose 32-bit Registers

» may be used as index and base register

» Register 0 has some special properties

– 4 Floating Point 64-bit Registers

– A Program Status Word (PSW)

»PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses

– But no instruction contains a 24-bit address!

• Data Formats

– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

The IBM 360 is why bytes are 8-bits long today!

1/20/2009 CS152-Spring!09 56

IBM 360: Initial Implementations

 Model 30 . . . Model 70

Storage 8K - 64 KB 256K - 512 KB

Datapath 8-bit 64-bit

Circuit Delay 30 nsec/level 5 nsec/level

Local Store Main Store Transistor Registers

Control Store Read only 1µsec Conventional circuits

IBM 360 instruction set architecture (ISA) completely
hid the underlying technological differences between
various models.

Milestone: The first true ISA designed as portable
hardware-software interface!

With minor modifications it still survives today!

1/20/2009 CS152-Spring!09 57

IBM 360: 45 years later…
The zSeries z10 Microprocessor

• 4.4 GHz in IBM 65nm SOI CMOS technology

• 994 million transistors in 454mm2

• 64-bit virtual addressing
– original S/360 was 24-bit, and S/370 was 31-bit extension

• Quad core design

• Dual-issue in-order superscalar CISC pipeline

• Out-of-order memory accesses

• Redundant datapaths
– every instruction performed in two parallel datapaths and

results compared

• 64KB L1 I-cache, 128KB L1 D-cache on-chip

• 3MB private L2 unified cache per core, on-chip

• Off-chip L3 cache of up to 48MB

• 10K-entry Branch Target Buffer
– Very large buffer to support commercial workloads

• Hardware for decimal floating-point arithmetic
– Important for business applications

[IEEE Micro, March 2008]

1/20/2009 CS152-Spring!09 58

And in conclusion …

• Computer Architecture >> ISAs and RTL

• CS152 is about interaction of hardware and software,
and design of appropriate abstraction layers

• Computer architecture is shaped by technology and
applications

– History provides lessons for the future

• Computer Science at the crossroads from sequential
to parallel computing

– Salvation requires innovation in many fields, including computer
architecture

• Thursday is “Intro to Simics” section with Scott

• Read Chapter 1, then Appendix B for next time!

1/20/2009 CS152-Spring!09 59

Acknowledgements

• These slides contain material developed and
copyright by:

– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

• MIT material derived from course 6.823

• UCB material derived from course CS252

