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REPRESENTATIONS OF BINARY FORMS

BY QUINARY QUADRATIC FORMS

BYEONG-KWEON OH

Abstract. In this article, we survey our recent results about the representa-

tions of (positive de�nite integral) binary forms by quinary quadratic forms. In

particular, we will give various examples of quinary forms that are 2-universal,

even 2-universal, almost 2-universal and its candidates.

1. Introduction

The famous four square theorem of Lagrange[L] says that the quadratic form

x
2 + y

2 + z
2 + u

2 represents all positive integers. In the early 20-th century, Ra-

manujan [R] extended Lagrange's result by listing all 54 positive de�nite integral

quaternary diagonal forms, up to equivalence, that represent all positive integers.

Dickson [D] called such forms universal and con�rmed Ramanujan's list. Willerd-

ing [W] found 124 non-diagonal quaternary universal forms. Recently, Conway and

Schneeberger [CSc] found all quaternary universal forms. They also announced

the so called 15-theorem, which implies that every quadratic form that represents

1; 2; 3; 5; 6; 7; 10; 14 and 15 can represent all positive integers(see also [Du]).

In 1926, Kloosterman [Kl] determined all positive de�nite diagonal quaternary

quadratic forms that represent all su�ciently large integers, which we call almost

universal forms, remaining only four as candidates. Pall [P] showed that the re-

maining candidates are almost universal, so there are exactly 199 almost universal

quaternary diagonal quadratic forms that are anisotropic over some p-adic integers.

Furthermore Pall and Ross [PR] proved that there exist only �nitely many almost

universal quaternary quadratic forms that are anisotropic over some p-adic integers.

In fact, every positive de�nite quaternary quadratic form L such that Lp := L
Zp

represents all p-adic integers and is isotropic over Zp for all primes p is almost uni-

versal by Theorem 2.1 of [HJ]. Therefore there are in�nitely many almost universal

quaternary quadratic forms.

In his book [K], Kitaoka conjectured that both Z-lattices in the following genus

fA4 ? h4i; D420[2
1
2
]g represent all except only �nitely many binary Z-lattices. The

discriminant of this genus, which is 20, is the smallest among the genera of quinary

positive even Z-lattices with class number bigger than 1.

In this article, we will consider the representation problems of binary Z-lattices

by quinary Z-lattices. In particular, we will extend the above results and give an

answer to Kitaoka's above conjecture.

We shall adopt lattice theoretic language. A Z-lattice L is a �nitely generated

free Z-module in Rn equipped with a non-degenerate symmetric bilinear form B,
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such that B(L;L) � Z. The corresponding quadratic map is denoted by Q. Let

L be a Z-lattice. L is called even if Q(L) � 2Z. We de�ne Lp := L 
 Zp the

localization of L at prime p. If L admits an orthogonal basis fe1; e2; : : : ; eng, we

call L diagonal and simply write

L ' hQ(e1); : : : ; Q(en)i:

We always assume the following unless stated otherwise:

Every Z-lattice is positive de�nite.

The set of all Z-lattices K such that Lp �= Kp for all primes p (including 1) is

called the genus of L, denoted by gen(L). The number of classes in a genus is called

the class number of the genus (or of any Z-lattice in the genus), which is always

�nite. For any Z-lattice L, it is well known that every Z-lattice which is locally

represented by L is represented by some Z-lattices in the genus of L. Therefore if

the class number of L is 1, then the global representation can be reduced to the

local representation, which is completely known (see [O'M2]).

Let Pk be the set of all Z-lattices of rank k. For a Z-lattice L, we de�ne

Repn(k; gen(L)) := f` j `p ! Lp for all p; rank (`) = kg;

Repn(k;L) := f` j `! L; rank (`) = kg:

If Repn(k; gen(L)) = Pk, L is called locally k-universal and if Repn(k;L) = Pk, L

is called k-universal. If L is locally k-universal and jRepn(k; gen(L))�Repn(k;L)j

is �nite up to isometry, L is called almost k-universal. The de�nitions of locally

even k-universal Z-lattice and even k-universal Z-lattice are similar to the above

ones. We set

[a; b; c] :=

�
a b

b c

�

for convenience. For unexplained terminologies, notations, and basic facts about

Z-lattices, we refer the readers to O'Meara [O'M1] and Conway-Sloane [CS1,2].

2. (Even) 2-universal quinary Z-lattices

In 1930, Mordell [M] proved that I5 := x
2 + y

2 + z
2 + u

2 + v
2 can represent all

binary Z-lattices, that is, I5 is 2-universal. If a Z-lattice L is locally 2-universal

and has class number 1, then L is 2-universal as mentioned above. Note that every

quaternary Z-lattice cannot be 2-universal by a local property. The complete list

of 2-universal quinary Z-lattices are the following:

Theorem 2.1 [KKR],[KKO]. The number of 2-universal quinary Z-lattices is

11. They are:

I5; I4 ? A1; I4 ? h3i; I3 ? A1 ? A1; I3 ? A1 ? h3i; I3 ? A2;

I3 ? A110[1
1

2
]; I2 ? A2 ? A

y
1; I2 ? A2 ? h3i; I2 ? A3; I2 ? A221[1

1

3
]:

In fact, all Z-lattices except K := I2 ? A2 ? A1 have class number 1, so the

proof of 2-universality is very easy. But the proof of 2-universality of K is a little

di�cult (see [KKO]). As an analogue of Conway and Schneeberger's 15-theorem,

the following theorem can be proved:
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Theorem 2.2 [KKO]. A Z-lattice is 2-universal if and only if it represents the

following 6 binary Z-lattices:

h1; 1i; h2; 3i; h3; 3i; A2; A110[1
1

2
]; A114[1

1

2
]:

This is slightly di�erent from 15-theorem in the following sense. The Z-lattice

h1; 2; 5; 5; 15i is 1-universal but it doesn't contain any quaternary 1-universal sub-

lattice. But every 2-universal Z-lattice must contain one of 2-universal quinary

Z-lattices listed in Theorem 2.1.

In the remaining of this section, we consider only even Z-lattice. To �nd all even

2-universal quinary Z-lattices, the following escalation method is very useful: Using

the binary Z-lattices which have small successive minima, for example A2; A1 ? A1,

determine the upper bounds of the successive minima of quinary Z-lattices to show

the �niteness of even 2-universal quinary Z-lattices. For each Z-lattice, check the

locally even 2-universality of it by [O'M2] and exhibit all lattices satisfying the above

conditions up to isometry. Now among the remaining lattices, �nd all Z-lattices

which have class number 1 by using the various tables such as [CS2],[N]. Clearly

these Z-lattices are even 2-universal. Lastly, for the other Z-lattices, either �nd an

exceptional binary Z-lattice or prove the universality by using various techniques.

Theorem 2.3 [KO2]. All even 2-universal Z-lattices of rank 5 and the candidates

are the followings:

(i) Even 2-universal quinary Z-lattices

A5; D5; A1 ? D4; A1 ? A4; A2 ? A3; A2 ? A2 ? A1; A2 ? A1 ? A1 ? A
y
1;

A3 ? A1 ? A1; A470[2
1

5
]; A2A224[11

1

3
]; D412[2

1

2
]; A1 ? A3 ?< 4 >;

A2 ? A230[1
1

3
]y; A1 ? A312[2

1

2
]; A1A344[11

1

4
]; A1A310[12

1

2
]; A1 ? A320[2

1

2
]y;

A3 ? A114[1
1

2
]y; A1A1A284[111

1

6
]; A2 ? A1A112[11

1

2
]; A1 ? A3 ?< 6 >y

;

A2 ? A1 ? A1 ?< 4 >y
; A1 ? A352[1

1

4
]y; [1; 1;�1]; [2; 2; 0];

[01; 11; 1]; [01; 11;�1]; [01; 01;�1]y:

(ii) Candidates

A3 ? A122[1
1

2
]; A1A376[11

1

4
]; A1 ? A1 ? A230[1

1

3
]; A1 ? A1A2102[11

1

6
];

A1 ? A1A2174[11
1

6
]; A2 ? A1A120[11

1

2
]; A1 ? A2 ? A114[1

1

2
];

A1A1A2156[111
1

6
]; [0; 1; 2]; [0; 2; 1]; [1; 2; 0]; [00; 01; 2]; [00; 10; 2];

[00; 11; 0]; [00; 11; 1]; [00; 11; 2]; [01; 10; 2]; [10; 11; 0]; [11; 11; 1]; [01; 0];

[01;�1]; [00; 0]; [00; 1]; [00; 2]; [10; 0]; [11; 1]:

The notations of each Z-lattice are given by [CS1,2] and [O1]. In (i), the class

number of the Z-lattice with y-mark is bigger than 1 and all candidates are locally

even 2-universal Z-lattice with class number bigger than 1.
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3. Almost 2-universal quinary Z-lattices

Let L be an almost 2-universal quinary Z-lattice. Clearly L is locally 2-universal

and represents primitively all positive integers. The following lemma is very useful

to show whether a quinary Z-lattice is almost 2-universal or not.

Lemma 3.1 [O3]. Let L be any locally 2-universal Z-lattice of rank 5 and for all

prime p, let d(Lp) = p
up�p, where �p is a unit in Zp and up is a non-negative

integer. Then there exists a prime p dividing 2dL such that L cannot primitively

represent binary Z-lattices ` of the form

`p ' hp�p�p; p
k
�pi;

where �p is 0 or 1, respectively the parity of up, �p is any unit in Zp and k � 2 if

p is odd and k � 7 otherwise.

Therefore L represents all binary Z-lattices ` satisfying the above property. From

these conditions, one can prove the following theorem, which is quite di�erent from

the rank 1 case.

Theorem 3.2 [O3]. The number of almost 2-universal quinary Z-lattices is �nite.

Now we consider diagonal quinary Z-lattices. As a natural generalization of

Halmos' result [H], Hwang [Hw] proved that there are exactly 3 quinary diagonal

Z-lattices that represent all binary Z-lattices except only one.

Theorem 3.3 [O3]. All of diagonal almost 2-universal quinary Z-lattices and its

exceptions are the followings:

(i) 2-universal Z-lattices

h1; 1; 1; 1; ai a = 1; 2; 3; h1; 1; 1; 2; bi b = 2; 3:

(ii) Almost 2-universal quinary Z-lattices and its exceptions

h1; 1; 1; 2; 4i : [3; 0; 3] h1; 1; 1; 1; 5i : [2; 1; 4]; [4; 1; 4]; [8; 1; 8];

h1; 1; 1; 2; 5i : [3; 0; 3]; h1; 1; 1; 2; 7i : [3; 0; 3]; [6; 0; 6];

h1; 1; 2; 2; 3i : [2; 1; 2]; h1; 1; 2; 2; 5i : [2; 1; 2]; [2; 1; 4]; [4; 1; 4]; [8; 1; 8]:

(iii) Candidates

h1; 1; 1; 3; 7i; h1; 1; 2; 3; 5i; h1; 1; 2; 3; 8i:

As an answer of the Kitaoka's question, we proved the following:

Theorem 3.4 [KKO2]. For two Z-lattices in the following gen(A4 ? h4i) =

fA4 ? h4i; D420[2
1

2
]g, the former represents all binary even Z-lattices except [4; 2; 4]

and the latter represents all except [2; 1; 4]; [4; 1; 4], and [8; 1; 8].

In [KKO2], there are various examples of representations of binary Z-lattices

by some particular quinary Z-lattices with class number 2. To prove the (almost)
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2-universality of each Z-lattice, some particular methods are needed for each Z-

lattice. As an example, we show that L = A2 ? A230[1
1
3
] is even 2-universal. Let

` be any binary even Z-lattice. Since A?4 in E7 is A230[1
1
3
],

`! L if and only if A4 ? `! E7 ? A2:

Note that

gen(E7 ? A2) = fE7 ? A2; E8 ? h6ig:

We can easily show that if A4 ? ` ! E8 ? h6i, then A4 ? ` ! E7 ? A1 ? h6i !

E7 ? A2 by considering the local property (see also [O1]). Therefore L is even

2-universal.

As a re�nement of Hsia, Kitaoka and Kneser's result [HKK], J�ochner [J] proved

that every Z-lattice L of rank 6 can represent all binary Z-lattices that are locally

represented by L and whose minimum is su�ciently large. We give some quinary

Z-lattices satisfying these properties. Let L be a quaternary Z-lattice with class

number 1. For a positive integer k, we de�ne

L(�k) := L ? h�ki;

where � = 1 if L is odd, and � = 2 if L is even.

Theorem 3.5 [KO1]. Assume that d := dL(�k) is a (odd, if � = 1) squarefree

integer. Let ` be a binary Z-lattice such that

`p ! L(�k)p

primitively at all p. Then for any � > 0, there exists a constant C > 0 depending

only on � such that

if min(`) > C � d 5+�; then `! L(�k):

Furthermore, the primitive condition cannot be omitted.

Remark. For n � 3, see [O2] for n-universal Z-lattices with minimum rank. See

also [CKR] for totally positive ternary 1-universal OK-lattices, where OK is the

ring of integers of real quadratic �eld K.
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