
An Introduction to the GNU Groff Text Processing System

Manas Laha

mlaha@aero.iitkgp.ernet.in

ABSTRACT

The GNU groff text processing system is based upon a markup language
very similar to that of UNIX troff and is mostly compatible with it. Groff is
capable of producing typeset output in a variety of formats such as Postscript,
TeX dvi, plain text and HTML. It can produce colour output in Postscript.
Groff can accept input comprising of text, figures, tables, mathematics and
embedded Postscript. This article is an introduction to groff for the new user.
Its aim is to arouse curiosity about groff and provide pointers to resources,
mostly on the Internet. It does not aim at completeness, for not only would that
take up far too much space but, considering the excellent documentation already
available from various sources, would also be redundant. This article describes
the purpose and nature of groff and briefly recounts its history. It also
describes the companion programs of groff at some length, with many exam-
ples. The ms macro package and the pic, tbl and eqn preprocessors that han-
dle line art, tables and mathematics, respectively are introduced. Some examples
of innovative uses of groff, such as its use in making presentation slides, as a
back-end processor and as a pseudo-"wysiwyg" text processor are given. Finally,
the names of some well-known books produced using either of these tools is
mentioned. In order to retain the introductory nature of this article, ‘pure’
groff is talked about hardly at all. This means that features such as programma-
bility and the writing of macros are not discussed at any length.

17 June 2003

An Introduction to the GNU Groff Text Processing System

Manas Laha

mlaha@aero.iitkgp.ernet.in

Table of Contents

1. Preamble . 3
1.1 Aims and Limitations of This Article 3
1.2 Organization of This Article 3
1.3 Availability of this article 4
1.4 License . 4
2. What is Text Processing? 4
2.1 The Structure of a Document 5
3. The Basics of GNU Groff 5
3.1 Creating Documents With Groff 6
3.2 Groff Formatting Requests 7
3.3 Groff Macros . 9
3.4 Groff Macro Packages 11
3.5 Groff Special Characters 12
3.6 Character Font and Size Changes, Superscripts and Subscripts 12
3.7 ‘Wysiwyg’ or markup? 14
3.8 A Brief History of GNU Groff 15
3.9 Articles and Documentation About Groff 16
4. Creating Documents With Groff and the Ms Macros 17
4.1 A Sample Document 18
4.2 Preparing the Document Source 18
4.2.1 Changing Character Fonts and Styles With the Ms Macros 22
4.3 Formatting the Document With Groff 23
4.4 Printing the Resulting Postscript File 24
4.4.1 Saving Paper While Printing 24
4.4.2 Saving Even More Paper While Printing 26
4.5 Output in Other Than Postscript Format 27
5. Groff Preprocessors—Equations, Figures and Tables 27
5.1 The Pic Preprocessor 28
5.2 The Tbl Preprocessor 32
5.3 The Eqn Preprocessor 41
5.4 Documents that use Pic, Tbl and Eqn 43
5.5 Refer, Chem and Other Preprocessors 43
6. Exploring Groff’s Capabilities Further 44
6.1 Groff and Colour 44
6.2 Importing a File Containing Postscriptinto a groff document source . . . 45

-2-

6.3 Output in Landscape Mode 46
7. Innovative Uses of Groff 46
7.1 Producing Presentation Slides With Groff 46
7.2 Groff as a ‘Back-End’ Processor 49
7.3 Groff and "Wysiwyg" 52
8. Books Actually Published Using Troff/Groff 54
9. The Summing Up . 55
References . 56

-3-

“This book was phototypeset by the authors using the excellent software available
on the UNIX system. The typesetting command read

pic files | tbl | eqn | troff -ms

Pic is Brian Kernighan’s language for typesetting figures; we owe Brian a special
debt of gratitude for accommodating our special and extensive figure-drawing needs
so cheerfully. Tbl is Mike Lesk’s language for laying out tables. Eqn is Brian
Kernighan and Lorinda Cherry’s language for typesetting mathematics. Troff is
Joe Ossanna’s program for formatting text on a phototypesetter, which in our case
was a Mergenthaler Linotron 202/N. The ms package of troff macros was written
by Mike Lesk. In addition, we managed the text using make due to Stu Feldman.
Cross references within the text were maintained using awk created by Al Aho,
Brian Kernighan, and Peter Weinberger, and sed created by Lee McMahon.”

— Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman, authors of
Compilers: Principles, Techniques, and Tools

“Camera-ready copy of the book was produced by the authors. It is only fitting that
a book describing an industrial-strength software system be produced with an indus-
trial-strength text processing system. Therefore one of the authors chose to use the
groff package written by James Clark, and the other author agreed begrudgingly.”

—Gary Wright and W. Richard Stevens, authors of
TCP/IP Illustrated, Volume 2: The Implementation

1. Preamble
This section tells about the aims of this article, how it is laid out and from where to obtain
its source. It also states the license under which this article is released.

1.1. Aims and Limitations of This Article
This article is aimed at giving a first feel of text processing using groff (pronounced
“gee-roff”), which is a descendant of the classic UNIX text processing system troff
(pronounced “tee-roff”). If you are an expert user of either, you will not find much here
that is likely to be new to you. On the other hand, if you have nev er used groff before

10 and wish to get an introduction to using it, then you may profit from reading this article. I
have made no attempt at giving a complete exposition of the groff system, which is
quite elaborate. However, I hav e tried to be accurate in the statements I have made here.

Should you become motivated to learn more about groff, you can refer to the
many excellent articles about troff and groff that are available, several of which I
have listed in the bibliography.

1.2. Organization of This Article
§ 2 defines what the terms ‘text processing’ and ‘document’ mean in this article. To keep
things simple, this article does not talk about how to lay out or produce books. § 3 is
devoted to a quick look at the basics of GNU groff. Only the most elementary aspects

20 of the use of groff are discussed. Macros are introduced, but only just. § 4 is about
writing articles with the ms macro package. It also tells how to format and obtain the
final form of the document. § 5 touches upon the preprocessors that work with groff to

-4-

produce figures, tables and mathematics. § 6 elucidates some further capabilities of
groff, such as usage of colour and importing of Postscript files. § 7 introduces some
not-so-obvious uses of groff, such as its use as a backend processor, its development
into a pseudo-‘wysiwyg’ text processor and its use in producing presentation slides. § 8
lists some books produced with troff and groff, as well as quotes what some of the
authors have to say about these text processors. § 9 is the concluding section.

1.3. Availability of this article
30 I have written this article about GNU groff using GNU groff. (Writing it any other

way would have made this whole exercise pointless!) The source text, including the bib-
liographic database, is available in electronic form. Anyone interested may obtain the
same from me by sending an e-mail to mlaha@aero.iitkgp.ernet.in.

1.4. License
As the author and sole copyright holder of this article, I grant this license giving unhin-
dered access to all those who want to read it. Following are the terms:

A. I, Manas Laha, have written this article entitled An Introduction to the GNU Groff
Te xt Processing System with the aim of introducing the system to new users. As its
only author I am the sole owner of the copyright to it. Nothing that is said in the

40 following paragraphs of this license or in any other license that may be imposed by
others who print or electronically host this article should be taken to prejudice my
rights as the author and sole holder of the copyright to this article in any manner.

B. Although this article is available in source form, its contents, including its title and
bibliography, may not be changed nor any derivative works be made out of it with-
out my express permission. However, authors of articles or books or of any other
endeavour to further the cause of GNU groff in particular and human knowledge
in general may quote parts of it with due acknowledgment.

C. This article is available to all interested persons to read, to access, to host and to
distribute, in source form or in any processed form, in print or electronic media.

50 However, the license to do so expressly excludes distribution in any form if such
distribution is for monetary gain, personal, institutional or corporate.

2. What is Text Processing?
For the purposes of this article, we shall take "text processing" to mean

a) the creation or assembling together of related information on a topic in a form suit-
able for storage on and processing by computer, and

b) the serving of it in various formats, printed or web-based, to the reader.

The information presented may consist of running text, tables, figures, pictures and math-
ematical equations. Web-based documents may also contain hyperlinks.

The text processing software, under the writer’s direction, has to take care of proper
60 layout and structuring of the document. This includes, but is not limited to

-5-

• paragraph justification,
• proper line- and page-breaks and hyphenation,
• usage of fonts and styles appropriate to the context,
• managing bibliographic information
• inclusion of figures and pictures from outside the document,
• automatic numbering of figures, tables and equations,
• checking for spelling errors and, last but not least,
• giving a professional and harmonious look to the finished document.

Some text processing systems include utilities that evaluate the readability of a document
70 in terms of good English!

2.1. The Structure of a Document
For the purposes of this article we shall consider documents to consist of broadly three

different types: letters, articles and books.

Document

Letter Article Book

Fig.1 A classification of documents by type

Letters are presumably the simplest kind of documents, consisting of running text without
figures or mathematics, and books the most complicated. A letter generally consists of
the sender’s and receiver’s addresses (usually, but not necessarily, written at the top), fol-
lowed by the body, consisting of paragraphs.

Journalistic articles, such as those written for newspapers and magazines, usually
are structured like letters. On the other hand scholastic articles, purporting to make a
learned exposition of some subject, generally are not only larger in size than a letter but

80 have more distinctive parts. An article on a mathematical subject also makes heavy use of
mathematical symbols and equations, and these often form a significant proportion of the
body of the article. Figure 2 shows how such an article is usually structured.

We shall exclude books from the purview of this article, not because groff is not
suited for producing books but because books are big and usually much more elaborate
than letters or articles. Therefore a discussion on how to produce books using groff
would not be in keeping with the introductory nature of this article.

3. The Basics of GNU Groff

GNU groff is a text processing system. That is, it is a collection of programs to create,
on the computer, documents of the type described in § 2.1. The contents of the document

90 are typed into the computer through a text editor, such as is used to edit program source
files. Commonly used editors belong either to the vi family or to the emacs family. The
formatting of the document into say, the title, the body, paragraphs, figures and tables is
taken care of by formatting requests which are sequences of ordinary text characters that

-6-

Article

Cover
Page

Title Author Abstract

Body

Sections

Paragraphs

Plain
Te xt Mathematics

Figures Tables

Bibliography/
References

Fig.2 Components of document type ‘article’
convey special meaning to the groff system. Once the document has been entered and
marked up, it is run through the text processor (also known as the formatter). The for-
matter is told what form of output—for example, Postscript, HTML or plain text—is
desired. Only after the formatting is complete is it possible to see the document in its
final form.

In the following sections we shall first take a look at formatting requests at the very
100 lowest level of groff. These low-level requests are sometimes known as ‘pure’ groff.

They may be likened to the individual instructions of an assembly language. All format-
ting tasks are ultimately accomplished using these pure groff requests. However, just as
in an assembly language so here, it is easier to achive common formatting tasks by group-
ing into macros the formatting requests needed to accomplish them. Entire packages of
macros are available to format documents in common use, mainly letters and articles.
This is analogous to the macro libraries that may be available for use with assembly lan-
guages.

The formatting commands of groff are numerous and require time and effort to
describe as well as to learn. Here we shall only give a few very elementary illustrative

110 examples. Complete information and many examples on the subject are available from
the references listed in the bibliography, mainly Refs.[1], [2], [3] and [4].

3.1. Creating Documents With Groff
There are, broadly speaking, two steps to creating documents with groff:

• Preparing the document source
by entering the contents of the document alongwith the markup into the computer
and

• Generating the finished document
by passing the document source through groff.

-7-

We shall here see how to prepare the document source. The second step, generating the
120 finished document, we shall take up later.

3.2. Groff Formatting Requests
The formatting requests that tell groff how to format a document are three character
strings, with the leading character being a period. For such an entity to be interpreted by
groff as a formatting request, the period must appear in the first column. For example,
the formatting request .ce tells groff to centre the line following this request across
the page. So when groff sees input like this:

.ce
This line is centred across the page

it produces the output:

130 This line is centred across the page

To take another example, the input

.rj
This line is flush with the right margin

gives, on formatting:

This line is flush with the right margin

The default behaviour of groff is to fill and adjust output lines as long as an input line
is not completely blank or contains leading spaces or tabs. So, input lines like these:

A fox jumped up one winter’s night
And begged the moon to give him light,

140 For he’d many miles to trot that night
Before he reached his den O!

Den O! Den O!
Before he reached his den O!

format into:

A fox jumped up one winter’s night And begged the moon to give him light, For
he’d many miles to trot that night Before he reached his den O!

Den O! Den O!
Before he reached his den O!

Note how the first four input lines are joined together to produce a filled and right
150 adjusted paragraph. The fifth and sixth input lines have leading spaces and so a ‘break’

occurs in the output: the filling and adjusting process stops and a new output line begins;
the leading spaces are left undisturbed.

If we wanted to alter the default behaviour so that no filling of output lines would
occur, we would have to tell that to groff with a .nf request, like this:

-8-

.nf
A fox jumped up one winter’s night
And begged the moon to give him light,
For he’d many miles to trot that night
Before he reached his den O!

160 Den O! Den O!
Before he reached his den O!

to obtain:

A fox jumped up one winter’s night
And begged the moon to give him light,
For he’d many miles to trot that night
Before he reached his den O!

Den O! Den O!
Before he reached his den O!

In typesetting, two paragraph styles are generally in vogue: one, called the ‘normal’ para-
170 graph, where the first line is indented to the right by some amount (say 0.3 inches) and

another, called the ‘block’ paragraph, where the first line is flush with the left margin.
Also, both kinds of paragraphs are separated from the immediately preceding text by
some amount of additional space; let’s say this extra space is one line. So, if we have
input such as:

.sp

.fi
This is a ‘block’ paragraph. In it the first line is
flush with the left margin, as are all lines that follow.
Note how the .sp request causes an additional space of one

180 line to be left before the paragraph begins and the .fi
request causes line filling and adjusting to occur.

then, upon formatting, we get output like this:

This is a ‘block’ paragraph. In it the first line is flush with the left margin, as are
all lines that follow. Note how the .sp request causes an additional space of one
line to be left before the paragraph begins and the .fi request causes line filling and
adjusting to occur.

Let us add a normal paragraph to this example, which now looks like this:

.sp

.fi
190 This is a ‘block’ paragraph. In it the first line is

flush with the left margin, as are all lines that follow.
Note how the .sp request causes an additional space of one
line to be left before the paragraph begins and the .fi
request causes line filling and adjusting to occur.
.sp
.fi

-9-

.ti 0.3i
And this is a ‘normal’ paragraph, in which the first
line is indented by 0.3 inches to the right. This is

200 achieved with the .ti request, which stands for
‘temporary indent’, meaning that only the line
immediately following this request is indented.
Apart from inches, other scaling factors are centimetres
(for example, .ti 1.0c) and points (as in .ti 22p). A point
is about 1/72 of an inch.

This piece of input formats into:

This is a ‘block’ paragraph. In it the first line is flush with the left margin, as are
all lines that follow. Note how the .sp request causes an additional space of one
line to be left before the paragraph begins and the .fi request causes line filling and

210 adjusting to occur.

And this is a ‘normal’ paragraph, in which the first line is indented by 0.3
inches to the right. This is achieved with the .ti request, which stands for ‘tempo-
rary indent’, meaning that only the line immediately following this request is
indented. Apart from inches, other scaling factors are centimetres (for example,
.ti 1.0c) and points (as in .ti 22p). A point is about 1/72 of an inch.

The power and flexibility of groff is much increased by the fact that it is pro-
grammable. That is, the formatter may be instructed to change its course of action
depending upon the current states of the document source and output. For example, it is
possible to instruct groff as follows:

220 If this is the first page
then

do not print the page number;
increase the top margin by 1.2 inches

else
print page number at bottom centre of page

fi

We shall not be going into the programmability of groff here.

3.3. Groff Macros
Imagine that you are creating a document where you need both the paragraph styles

230 described above. The method explained for creating them will work but will soon lead to
problems. Firstly, before every paragraph you will have to type in the appropriate format
requests. When the number of paragraphs becomes large this can quickly become irritat-
ing. Then, there is the real possibility that you may inadvertently forget a format request,
leading to a malformed paragraph. Again, let us say that, having created and marked up
the complete document, you feel that the gap between successive paragraphs needs
adjusting. Imagine what a boring and error-prone task you have before you: to search out
ev ery occurrence of .sp, determine if it pertains to a new paragraph, and then change it
to something else. And, after all this, if you wish to chage the amount of inter-paragraph

-10-

space again, you have to go through this process once more. Just the thing to put you off
240 groff for good.

But wait! There’s a trick that groff is holding up its sleeve in the form of the
macro. A macro is a collection of groff format requests of the kind we have already
seen. Let us define macros for creating block and normal paragraphs:

.\" Macro to produce a block paragraph

.de lp

.sp

.fi

..

.\" Macro to produce a normal paragraph
250 .de lp

.sp

.fi

.in 0.3i

..

Every macro has a name. The macro for producing block paragraphs is called lp, and
that for normal paragraphs is called pp. The definition of a macro begins with the .de
request followed by the macro name and is terminated with a .. on a line all by itself.
Between these go all the formatting requests that make up the macro. Incidentally, in
groff the character sequence .\" introduces a comment.

260 A macro must be defined before it is called. And in most cases a macro may be
called simply by writing its name preceded by a period. Our last example may be rewrit-
ten as:

.lp
This is a ‘block’ paragraph. In it the first line is
flush with the left margin, as are all lines that follow.
Note how the .sp request causes an additional space of one
line to be left before the paragraph begins and the .fi
request causes line filling and adjusting to occur.
.pp

270 And this is a ‘normal’ paragraph, in which the first
line is indented by 0.3 inches to the right. This is
achieved with the .ti request, which stands for
‘temporary indent’, meaning that only the line
immediately following is indented.

where we assume that the macros .lp and .pp have already been defined as shown
above. Formatting this little piece produces exactly the same output as before.

Now, having got the macro definitions in place, there is no chance of inadvertently
omitting one of the several formatting requests before a paragraph. Also, experimenting
with different paragraph formats—such as inter-paragraph spacing or first line indenta-

280 tion—is far easier, with consistent results throughout the entire document assured.

The capability to define macros and write appropriate programs in the groff lan-
guage is exploited to the hilt by groff users. For example, we have seen two macros,

-11-

.lp and .pp, to mark up two different paragraph styles. These styles are mostly the
same, except that in the second paragraph style the opening line is indented by some
specified amount. It could be argued that instead of having two macros with largely com-
mon code it would be better design to have a single macro with a parameter specifying
which kind of paragraph is wanted. So if this new paragraph macro is called just p, one
might format a normal paragraph with just the request

.p

290 and a block paragraph with the request:

.p 0

where the 0 is a parameter to the .p macro. The relevant part of the code for this macro
may look something like this:

.de p
...

if (parameter1 = 0) then .sp 0.3i
..

Many other instances of such usage abound.

300 3.4. Groff Macro Packages
While it is useful to be able to write one’s own macros, doing a realy bullet-proof job of it
can be tough. It is, in general, easier to use canned packages of macros for routine docu-
ment formatting tasks. These packages provide “a macro for any occasion”—well,
almost. With reference to the structure of a typical article as shown in Fig.2 (§ 2.1), these
macro packages have macros for the various components such as title, numbered and un-
numbered section headings, several kinds of paragraphs, figures, tables and equations.
With such a macro package, it is possible to work in functional terms, telling groff:
“This is a section heading”, “This is a block paragraph”, “This is a figure” and so on;
rather than in procedural terms, where you would have to tell groff: “Make this line

310 bold” or “Indent this line by half an inch”.

Among the major macro packages in use with groff the ms macro package,
which originated at Bell Labs in the early days of troff, still seems to be the most pop-
ular. While it is fine for producing an article like this one, its limitations would soon
become apparent were it to be used to produce a book with several chapters, a big biblio-
graphic list with lots of references, table of contents and index.

The mm macro package, also from Bell Labs, is an improvement over ms. It does
not seem to be as popular as ms, though.

The me macro package from the University of California at Berkeley, dev eloped at
around the same time as ms, is also widely used. It is more extensive and more easily

320 customizable than the ms macro package.

Another important macro package, and perhaps the reason why groff is found on
all Linux systems (just as troff is found on all UNIX systems), is the man macro pack-
age for formatting on-line manual pages.

-12-

Lately a major new set of macros named mom, written by Peter Schaffter,5 has been
added to the groff suite. It is more sophisticated than either ms or me and is being
improved. It works with groff version 1.18 or later.

3.5. Groff Special Characters
Very often during typesetting it becomes necessary to enter characters that do not have
any representation on conventional computer keyboards. In such cases groff recognizes

330 a combination of several conventional characters, in what is known as an escape
sequence, as representing these characters. All escape sequences begin with the \ (back-
slash) character. The next character determines what kind of escape sequence this is: spe-
cial character, font change instruction, size change instruction or something else again.

To take an example of a special character, the em dash (—), which is a dash
approximately as long as the width of the letter m, is written as \[em]. Similarly, the en
dash is written \[en]. If you read documentation about troff, you will see that the
em dash and the en dash are written as \(em and \(en, respectively. This is the old style
of writing escape sequences. While this style works, it restricts the escape sequence name
to only two characters. The new style can take arbitrarily long names. Special characters

340 with long names may be introduced in future as groff becomes more internationalized.
The following table lists some of the useful special characters. Several more are avail-

able. These are all listed in the Manual.1

Character Composite Name Character Composite Name
• \[bu] bullet \[sq] square
¼ \[14] 1/4 ° \[de] degree
½ \[12] 1/2 † \[dg] dagger
¾ \[34] 3/4 © \[co] copyright
— \[em] em dash ® \[rg] registered TM
– \[en] en dash § \[sc] section
- \[hy] hyphen \[ru] rule

\[ul] underrule \[br] box rule
‡ \[dd] double dagger \[ci] circle
← \[<-] left arrow → \[->] right arrow
↑ \[ua] up arrow ↓ \[da] down arrow
+ \[lh] left hand + \[rh] right hand
“ \[lq] left quote ” \[rq] right quote

Table 1 Some Groff special characters

3.6. Character Font and Size Changes, Superscripts and Subscripts
In the course of typesetting, it often becomes necessary to set characters in styles differ-
ent from the default: italics, bold, constant width or perhaps others; and in sizes
different from the standard, such as SMALL or big. In this section I shall describe how to
do these.

Font changes are effected with groff escape sequences. A font change escape
sequence consists of the character sequence \f followed by the name of the font. For

350 example,

-13-

\fIHello, World!\fP

formats to

Hello, World!

Here, \fI is the escape sequence to change to italic font and \fP is the escape sequence
to revert back to the previous font. Arbitrarily long strings may appear between two font
change escape sequences. For example:

\fIThis is a sentence in italics.\fP

produces

This is a sentence in italics.

360 The escape sequences \fB and \fR cause changes to the bold and roman fonts, respec-
tively. Some fonts require two character font names such as CW. These may be written
either as \f(CW (old style) or \f[CW] (new style). The old style is limited to accepting
only two character names while the new style can accept arbitrarily long names.

Character size changes can be similarly brought about. For example, this document
is set in 12 point characters; however, it is possible to switch to a different character size
in this way:

.ps 24
This is 24 point
.ps 6

370 and this is 6 point.
.ps 12
This is back to 12 point.

which gives:

This is 24 point
and this is 6 point.

This is back to 12 point.

Relative size changes are also possible. The input

.ps +12
This is 24 point

380 .ps -18
and this is 6 point.
.ps +6
This is back to 12 point.

leads to the same result as before:

This is 24 point
and this is 6 point.

This is back to 12 point.

The same effect may be produced with escape sequences, absolute and relative. The input

-14-

\s24This is 24 point.\s0
390 This is back to 12 point.

\s-6This is 6 point\s0.
And this is back to 12 point.

leads to the output

This is 24 point.
This is back to 12 point.
This is 6 point.
And this is back to 12 point.

Note that the escape sequence \s0 causes the size to revert back to the immediately pre-
ceding size (in this case 12 pt).

400 Superscripts and subscripts are effected with escape sequences that cause upward
or downward vertical motion. The input

The 15\uth\d day of March.

produces the output

The 15th day of March.

The escape sequence \u causes an upward motion of half a vertical line, and the escape
sequence \d causes an equal vertical motion in the downward direction.

In order to prevent them from running into the line of text just above or below the
current one, superscripts and subscripts are set in a size than smaller normal. Observe the
two following examples and notice the difference:

410 And the soothsayer said to Caesar:
“Beware the 15th of March.”

And the soothsayer said to Caesar:
“Beware the 15th of March.”

The second example, with the superscript set in characters three points smaller than nor-
mal, was produced like this:

And the soothsayer said to Caesar:
“Beware the 15\u\s-3th\s0\d of March.”

Notice the character size change commands around the "th".

3.7. ‘Wysiwyg’ or markup?
420 As you can see, the groff approach to formatting documents using markup tags is in

marked contrast to the "what you see is what you get" (wysiwyg) approach used in some
other systems. What, if any, are the advantages of the markup approach over the ‘wysi-
wyg’ approach? This is a hotly debated topic (as a search of the Internet with the
keywords ‘wysiwyg’ and ‘markup’ will reveal!). Let me list some of the pros and cons of
the markup method.

-15-

The positives:

• You can concentrate on what you are writing instead of bothering about how its
going to look. This is because, with a well-designed macro package, the markup
tags correspond to the functional parts of the document. When you tell groff

430 “The following line is a section heading”, then groff automatically selects a font
size and style that is in keeping with the rest of the document. Later, if you decide
to change the style of the document to a smaller font, groff automatically adjusts
the section heading to suit. Moreover, groff takes care to make all items marked
‘section heading’ of the same style.

• When the document source is in plain text then, at least on UNIX-like systems, it
can be examined and manipulated with all the powerful tools available for the pur-
pose.

• Another advantage pertains to the markup scheme being an open one where you
know how the document is stored internally: it is that you can develop your own

440 programs to manipulate the document in any desired way. If you feel that some fea-
ture is missing from your favourite text processing system, you can go ahead and
try to implement it yourself. Some examples of such ‘creative uses’ of groff
appear in a later section.

The negatives:

• The ‘instant feedback’ of the final form of the output that a ‘wysiwyg’ system
gives is missing from most markup systems.

However, there are ways around this, and in a later section is described how to
make your own pseudo-‘wysiwyg’ system based on groff for near-instant feed-
back.

450 • Markup text processors have a steeper learning curve than their ‘wysiwyg’ coun-
terparts. However, what is also true (and which most people don’t realise) is that
the curve is equally steep for learning efficient use of a ‘wysiwyg‘ system.

This article may help you to decide whether a markup text processing system like groff
is suitable for you.

3.8. A Brief History of GNU Groff

The full flavour of a piece of software that has its roots in UNIX cannot—in my strongly
held opinion!—be completely savoured without knowing something about its history, and
groff is no exception.

When the creators of UNIX at Bell Labs began to look for a bigger machine to run
460 their system on than the ‘unused’ DEC PDP-7 where it was born, they had to sell to their

bosses the idea of developing a ‘text formatting system’ for their company in order to get
the machine they wanted—a PDP-11. And thus, officially, UNIX was first revealed to the
world as a text formatting system.6

Of several text formatting programs then available for UNIX, the one to become
most popular was troff, written by Joe Ossanna in PDP-11 assembly language around
1973. This program was used to drive the Wang C/A/T photo-typesetter that Bell Labs
owned then, and worked with only that output device. Ossanna later rewrote the entire

-16-

program in C and continued making improvements to it until his death in an automobile
accident in 1977.

470 The creators of troff decided at the outset that special aspects of typesetting
would be handled by special purpose ‘languages’, each custom built for the task. These
special purpose languages are known as ‘preprocessors’. The first of the preprocessing
languages to make its appearance was eqn, to typeset mathematics, followed by tbl, to
typeset tables. According to Kernighan:

“Eqn came first. It was the first use of yacc for a non-programming lan-
guage. It is improbable that eqn would exist if yacc had not been available
at the right time. Tbl came next, in the same spirit as eqn, although with an
unrelated syntax. Tbl doesn’t use yacc, since its grammar is simple
enough that it’s not worthwhile.”6

480 As troff continued to be used, the need was felt for it to work with a variety of output
devices. In the early nineteen-eighties, Brian Kernighan rewrote troff, making it pro-
duce output that was independent of any physical device. This new troff became
known as ‘device independent’ troff or ditroff. This ditroff output was con-
verted for various physical devices, such as photo-typesetters and printers, by appropriate
post-processors. This is the model that groff is patterned on. By the time Kernighan
wrote ditroff, Postscript and printers than understood it had appeared. To make fuller
use of the capabilities of these new output devices came the pic preprocessor, which
understood an English-like language for describing simple pictures.

Beginning around 1989, James Clark almost single-handedly developed GNU
490 groff.7 Clark’s goal was to emulate the functionality of ditroff and its pre- and

post-processors while removing some of the bugs of the original program and making
some enhancements. Clark nursed groff up to version 1.11 and then abandoned it.
After that groff remained an orphan for some years, until new maintainers took over in
1999 and development activities resumed once more. The latest groff version at the
time of this writing is 1.19, released in May 2003. One of the most notable recent contri-
butions to groff has been the HTML post-processor that can generate HTML from
groff source.

Groff continues to be included on every Linux distribution (as does troff on
ev ery UNIX distribution), if only for the sole reason that the formatting of the online man-

500 pages depends on it. It can, however, be used for tasks of far greater variety and com-
plexity, as this article aims to show.

3.9. Articles and Documentation About Groff
The GNU groff homepage is at http://groff.ffii.org and is the primary
source of everything related to groff. The groff source tarball, downloadable from
the homepage, includes a fair amount of documentation in various formats: manpage,
HTML, PDF and Postscript; as well as some rudimentary examples. Unfortunately, most
Linux distributions tend to ignore all but the manpages in order to save CD space.

The documentation accompanying a groff source distribution attempts to keep
up to date with the latest developments in groff. But this documentation is still very

510 much ‘work in progress’ and lacks the completeness and finished touch of classical works
(which are, actually, about troff). While the older works cannot tell us about the latest

-17-

developments they are, even today, very good sources of information about groff and
its companion programs. This is because groff has consciously attempted to stay back-
ward compatible with troff. In a later section I shall talk about the historical relation
between groff and troff.

And now for the classical sources. As with all things having to do with UNIX, one
of the best introductions to troff (and hence also to groff) is by Kernighan and Pike.6

It is not only very readable but has the additional merit of being readily available in print.

The other classic in this field, out of print but nevertheless available on the Internet
520 thanks to O’Reilly Publications, is Unix Text Processing by Dougherty and O’Reilly.4

This is a really detailed exposition of all aspects of troff and how to combine it with
other UNIX tools to create a very powerful text processing system. This book is compul-
sory reading for the serious groffer (or should that be groffian? I can’t seem to make up
my mind!).

Among the articles written for the original troff, foremost mention must be
made of the manual by Ossanna himself, modified later by Kernighan.1 This is a detailed
exposition of all troff commands and their options, and is an essential companion
while writing documents with groff. Its relative lack of examples is made up for by the
tutorial by Kernighan.2 A newer, readable and informative, article on groff is The

530 GROFF and Friends HOWTO by Provins.3

Lesk8 and Kollar9 (and also Provins3) describe how to format documents using the
ms macros. Allman does the same for the Berkeley me macros, with his excellent
tutorial10 and manual,11 both of which are available with groff source distributions as
groff source. Studying them is an excellent way of learning how to write documents
using groff and me. Documentation about the mom macros is available from the mom
homepage .5

The Jeffreys Copeland and Haemer have written some interesting pieces on UNIX
and troff usage.12 Their site should be of interest to all those who love to learn new
ways of using UNIX as well as groff.

540 4. Creating Documents With Groff and the Ms Macros
This section tells about marking up a document with the ms macros. For this purpose a
sample document is first shown as it would appear after formatting by groff. Then the
document source is given and the markup tags used in it are discussed. The discussion of
ms macros is limited to those actually used in the sample document.

Following this is a description of how to use groff to transform the document
source into the final, finished, form. These forms include Postscript, TeX dvi and plain
ASCII. The last form is suitable for displaying text such as manual pages on the terminal.

Lastly, the article gives some tips on printing Postscript files on the printer, espe-
cially with an eye on conserving paper. Some ideas are given for two-sided printing and

550 ‘n-up’ printing. The latter format is useful for printing documents that are most con-
veniently produced in book form (as opposed to the more common loose-leaf form).

-18-

4.1. A Sample Document
Here is a short article, purporting to provide succinct yet deep insight into the human con-
dition, which we shall consider as our sample document:

The Road

Yours Truly

Koi Thikana Kahin Nahi

RO AD, n. A strip of land along which one may pass from where it is too tiresome to
560 be to where it is futile to go.

— Ambrose Bierce, The Devil’s Dictionary†

1. The Urge
Oh! The pain and the anguish. The itch and the sore. The dissatisfaction and the discontent. The
urge to move on. And on. Isn’t this what has brought men, women and children of all nations and
races, hues and sizes, castes and creeds to The Road?

Wasn’t there the belief and the hope, the expectation and the anticipation of Something
Better down The Road? After all isn’t the grass always greener, the air always more scented, the
fruits always sweeter and the water always cooler further down The Road?

And so it is that countless people, yes, people like you and me (me? maybe not!) have
570 taken to that strip of land called The Road.

2. The Futility
Where does The Road come from? And where does it go? Who do the answers to these questions
know?

Having skipped and hopped, jumped and tumbled, frisked and gambolled, walked and
trudged, limped and crawled their way down The Road the travellers arrive. Or think they hav e.
Where is the green grass? Where the scented air? Where is the promised land? Where the milk
and nectar?

Oh! It was then all in vain. Was it to be done all over again? Ah! The sadness. The
remorse. The dejection. The hopelessness. The cries of "It was futile!"

580 3. Deja vu
Is this the end? No. Is this even the beginning of the end? Not quite. What is this then? The begin-
ning? Yes! For history repeats itself. Again. And again. And again ...

†Ambrose Bierce, The Devil’s Dictionary, http://www.alcyone.com/max/lit/devils (1911).

The next section explains just how to create this document using groff.

4.2. Preparing the Document Source
The document source is a plain text file and hence may be created and modified using any
text editor. Some writers prefer to write the article completely in plain text and only then

590 mark it up. Others (including me!) prefer to write and mark up at the same time. Both
approaches seem to work, so take that which feels more comfortable. (If, like me, you use
pseudo-‘wysiwyg’ tools, you may find the second approach more convenient.)

-19-

The source for the sample document of the last section looks like this:
.TL
The Road
.AU
Yours Truly
.AI
Koi Thikana Kahin Nahi

600 .sp 0.3i
.LP
.QS
ROAD, n. A strip of land along which one may pass from where
it is too tiresome to be to where it is futile to go.
.rj
\[em] Ambrose Bierce, \c
.I "The Devil’s Dictionary"
.[
%A Ambrose Bierce

610 %T The Devil’s Dictionary
%I http://www.alcyone.com/max/lit/devils/
%D 1911
.]
.QE
.NH
The Urge
.LP
Oh! The pain and the anguish. The itch and the sore. The
dissatisfaction and the discontent. The urge to move on.

620 And on. Isn’t this what has brought men, women and children
of all nations and races, hues and sizes, castes and creeds
to The Road?
.PP
Wasn’t there the belief and the hope, the expectation and
the anticipation of Something Better down The Road? After
all isn’t the grass always greener, the air always more
scented, the fruits always sweeter and the water always
cooler further down The Road?
.PP

630 And so it is that countless people, yes, people like you and
me (me? maybe not!) have taken to that strip of land called
The Road.
.NH
The Futility
.LP
Where does The Road come from? And where does it go?
Who do the answers to these questions know?
.PP
Having skipped and hopped, jumped and tumbled, frisked and

-20-

640 gambolled, walked and trudged, limped and crawled their way
down The Road the travellers arrive. Or think they have.
Where is the green grass? Where the scented air? Where is
the promised land? Where the milk and nectar?
.PP
Oh! It was then all in vain. Was it to be done all over again?
Ah! The sadness. The remorse. The dejection. The hopelessness.
The cries of "It was futile!"
.NH
\f4Deja vu\fP

650 .LP
Is this the end? No. Is this even the beginning of the end? Not
quite. What is this then? The beginning? Yes! For history repeats
itself. Again. And again. And again ...

This example is marked up using the ms macros. These macros provide the functional
markup requests needed to format a document. The markup requests used in this example
are all macros. Each such macro request is equivalent to a number of pure groff
requests and consequently does many things. (See the introduction to macros in § 3.3.)

In this example, the first line is .TL. This markup request tells groff that the fol-
lowing lines make up the title of the document. The user need not bother about how the

660 title will look: groff will set it in bold, in a font two sizes larger than normal text and
centre it on the page. All lines following .TL will be taken to be the title, until another
request (that is, a line beginning with a period) is encountered.

The next request is .AU, that tells groff that an author’s name follows next.
Author names are set in normal size but italicized and centred. After the name, an
author’s institutional affiliation may be written preceded by a .AI. This will be set in
normal type. If there is more than one author then this sequence of .AU, author name,
.AI and author affiliation is repeated.

The body of this article begins with a .LP request, which calls for a block para-
graph. The .QS and .QE requests enclose a verbatim quotation, which is set in at both

670 margins with extra space before and after, to distinguish it from the main text.

A section heading is indicated with .NH for numbered heading. Different depths
of numbering are possible. The depth is indicated by a numeric argument to the .NH
request. Thus,

.NH
This is a heading at depth 1
.NH 2
This is a heading at depth 2
.NH 2
This is another heading at depth 2

680 .NH
And this is a second heading at depth 1

would, after formatting, produce:

-21-

1. This is a heading at depth 1
1.1 This is a heading at depth 2
1.2 This is another heading at depth 2
2. And this is a second heading at depth 1

Another kind of heading is the un-numbered heading, indicated by .SH:

.SH
This is an un-numbered heading

690 formats into

This is an un-numbered heading

Groff knows that headings are to be set in bold.

A typographical convention followed here is to make the paragraph immediately
following a section heading a block paragraph, indicated to groff with a .LP request.
The second and subsequent paragraphs are "normal" paragraphs, meaning that the first
line is indented by some amount. A normal paragraph is requested with .PP.

If you look again at Fig.2 (§ 2.1), you will see that the major parts of a document of
type ‘article’ are the title, the author(s), an abstract, and a body consisting of sections
which in turn consists of paragraphs. The macros provided by the ms macro package

700 closely follow the different parts of the structure of a document of type article. There’s a
macro for the title, there a macro for the author, there are macros for section headings and
also for paragraphs in a couple of styles. Although we haven’t used them in our example,
there are macros for making abstracts and bibliographies.

Using the formatting macros allows the writer to concentrate on what he is writing,
rather than on how its going to finally look. For example, he can tell groff: "This is the
document title." without bothering about specifying the details of how to make the title
centred, bold and so on. Groff will do it right!

The construct

.[
710 %A Ambrose Bierce

%T The Devil’s Dictionary
%I http://www.alcyone.com/max/lit/devils/
%D 1911
.]

is a special one, having to do with refer, a component of groff that handles biblio-
graphical references. You can see how the bibliographical reference appears as a footnote
at the bottom of the sample document. A refer reference has several key symbols. Each
symbols begins on a new line. Thus, %A denotes the author field (there may be more than
one such field), %T the title of the work, %I is the name of the publisher (in this case the

720 URL where this document is to be found), %D the date of publication. There are more such
key symbols indicating, for example, the city of publication (%C), the particular pages
within the work that this reference pertains to (%P), and so on.

Usually a set of such bibliographical references with all details is defined in a sepa-
rate file. Each reference is identifies by a unique keyword (the %K field). In the final

-22-

output, the citation within the document is replaced with a number and the details appear
at the end of the document.

4.2.1. Changing Character Fonts and Styles With the Ms Macros
Taking style changes first, the input

This is a
730 .I very

big article.

produces

This is a very big article.

as the output. Similarly, the input

It was produced with
.CW groff
text processing system.

produces

It was produced with groff text processing system.

740 as the output. Again, the input

The article
.B "will be"
improved from time to time.

gives as output

The article will be improved from time to time.

Therefore the macros .I, .B and .CW affect their arguments by setting them, respec-
tively, in italics, bold or constant width font.

Note how a string has to be enclosed in quotes in order to ‘hide’ the spaces it con-
tains. Without the quotes,

750 .B will be

would format into

willbe

and not into what was perhaps intended. This example shows that if there are two argu-
ments to a font change macro, then only the first is affected and, on output, the second
argument is concatenated to the first without any intervening space. This feature has its
uses, for example in:

The spellings
.I skil ful
and

760 .I skill ful
are both acceptable.

-23-

which formats into

The spellings skilful and skillful are both acceptable.

If we wish to set a block of text—say an entire paragraph—in a font different from the
default, we invoke the corresponding font change macro without any argument. The new
font then remains in effect until changed back again. Here is an example:

The computer program
.CW
main()

770 { printf("Hello, World!\n");
}
.R
is perhaps better known than any other.

which formats into:

The computer program
main()
{ printf("Hello, World!\n");
}
is perhaps better known than any other.

780 The macro .CW without arguments changes the font to constant width, and this change
remains effective till the macro .R changes the font back to roman again.

4.3. Formatting the Document With Groff
Once the document source is ready, it can be formatted into any of sev eral output forms.
The default output form for groff is Postscript. If the document source is stored in the
file example1.txt then the command:

groff -ms < example1.txt > /tmp/example1.ps

will produce a Postscript document in the file /tmp/example1.ps which, when
viewed in a Postscript viewer such as ghostview, will look exactly like the example of
§ 4.1. (I like all my transient output files to go into the /tmp directory; /tmp on my

790 machine is automatically wiped clean at each reboot.)

The -ms option to the groff command is the name of the macro package that has
been used to mark up the document source. If you had marked up a document with the
me macros, then to format it you would do:

groff -me < example2.txt > /tmp/example2.ps

in order to get a Postscript output file. To format a UNIX-style manual page into
Postscript, for example, on my Red Hat Linux 8.0 system

zcat /usr/share/man/man1/gcc.1.gz | groff -man > \
/tmp/gcc.ps

will produce a Postscript version of the gcc manual pages. (It actually may be a good
800 idea to print large manual pages, such as those of gcc and bash, out on paper to read

-24-

without too much strain on one’s eyes and nerves.) The command

man gcc

does something similar to:

zcat /usr/share/man/man1/gcc.1.gz | \
groff -man -Tascii | less

Here the -T ascii option tells groff that the output device is going to be a terminal.

4.4. Printing the Resulting Postscript File
In these days of high automation, printing a Postscript file amounts to little more than
clicking on a ‘Print’ button somewhere. But this method of obtaining a printout often

810 allows little control over the printing process. I, personally, am particularly concerned
about making the best use of paper and so take my printouts on both sides of a sheet
whenever practicable. If you too wish to do this, and more, then here’s how to go about it.

4.4.1. Saving Paper While Printing
The first thing is to learn how to convert the Postscript to a file in your printer’s language.
(Printers that understand Postscript are expensive.) The tool to effect such conversions is
ghostscript or gs. If, on your screen, you type

gs --help | less

you will see a list of devices that gs can output to. (243 devices are listed in gs v7.05!)
Not all of these are hardware devices, though. The ones of interest to us here are those

820 concerned with printers: deskjet for generic HP Deskjet printers, laserjet for
generic HP Laserjet printers, epson for (you guessed it!) Epson printers and many other
devices for specific models of these. The specific model drivers can better access or con-
trol the capabilities of printers of those models.

Let’s see how to convert our Postscript file into a file for a generic HP Deskjet
printer. Here is a shell script, named ps2dj, that does this:

#!/bin/sh

gs -dSAFER -dNOPAUSE -sDEVICE=deskjet -sPAPERSIZE=a4 \
-sOutputFile=${1}%02d.dj \

${1}.ps << END
830 ˆD

END

The gs manual tells what these options mean. The construct

${1}.ps << END
ˆD

END

is a Bourne shell "here document",13 and ˆD is Ctrl+V+D. If our Postscript file contains
three A4 pages, then invoking the shell script with the filename as argument, like this:

-25-

ps2dj example1

(note that the extension .ps is left out; it is supplied by the shell script) produces three
840 files, named example100.dj, example101.dj and example102.dj, which are

in a language that the printer understands.

To actually obtain double-sided printouts, you will have to bypass your system’s
print spooler (for example LPRng or CUPS). This is necessary because, when you send
several print requests through the spooler, there is no guarantee that the jobs will be
printed in the same order in which they were submitted. This, as you can imagine, can be
disastrous in two-sided printing.

Next, you will have to make your printer port globally writable. If, for example,
you have a parallel printer and your printer device is /dev/lp0 (the most common
case), then saying

850 chmod a+w /dev/lp0

will make the printer device writable by all. Now, if you simply copy the .dj files to
/dev/lp0 they should be printed on the printer. Put two sheets into the paper tray, then
type

cp example100.dj /dev/lp0
cp example102.dj /dev/lp0

This will print pages 1 and 3 on one side of each sheet.

Next, feed the sheet containing the printout of the first page such that any addi-
tional printouts would be appearing on the blank side, and say

cp example101.dj /dev/lp0

860 to obtain a printout of the second page on the back of the first one.

With a little practice, you should have no trouble obtaining double sided printouts.
If you do this regularly then, for all but the smallest documents, a shell script to manage
the printing is very useful. I use a very simple one, named prinman, that looks like this:

#!/bin/sh

Print listed pages

suff=$1
shift
pref=$1
shift

870 while ["x$1" != "x"]
do

fnam=${pref}${1}.${suff}
if [-r $fnam]
then

cat $fnam >/dev/lp0
else

-26-

echo $0: file $fnam not found, exiting

exit 1
fi

880 shift
done

and, for our example above, is inv oked in two passes, like this:

prinman dj example1 00 02

and

prinman dj example1 01

where the first argument is the filename suffix, the second argument is the "constant" part
of the filename and all the remaining arguments are the (two-digit) numeric parts of the
filename.

For long documents, I’ve found that I get the best results on my old faithful
890 DeskJet 600 by printing the even pages out in order, followed by the odd pages in reverse

order. In this way the pages all come out in the right order and need no shuffling. Let’s
say the document example1.ps has ten pages and the printer files are named exam-
ple100.dj to example109.dj. So I print out the even pages in order:

prinman dj example1 01 03 05 07 09

(the files with odd numeric extensions contain even pages and vice versa!) and then I take
the entire bunch of five pages out of the tray, turn the bunch around without disturbing the
order, put it back in the tray and print the odd pages out in reverse order:

prinman dj example1 08 06 04 02 00

This order should work for injet printers. Laser printers may require a different order,
900 though. Figure it out for yourself!

4.4.2. Saving Even More Paper While Printing
If, like me, you believe that every bit of paper wasted is that much less for coming gener-
ations (think of your children, and their children and ...) then you will like the following
ideas. Not only is it great to be able to print on both sides of the paper, but it is even better
to be able to fit two (or more!) pages on one side of the paper.

The program that allows you to do this is psnup, a part of the psutils package.
Taking our example of the ten page document once more, suppose you have produced the
Postscript file example1.ps from the groff source in the usual way. Now when you
say:

910 psnup -2up -pa4 < example1.ps > ex2up.ps

what you’re doing is producing another Postscript file with two normal pages side by side
on one page of A4 paper. The pages are automatically turned around so the side-by-side
juxtaposition happens with the physical sheet in landscape mode. The original pages 1

-27-

and 2 go on the new page 1, original pages 3 and 4 go on the new page 2 and so on. So
you now hav e a four-fold saving of paper over the automatic printing method.

Of course, there are limitations to this process. If the original pages were printed in
a point size smaller than about 12, then the reduced pages are going to be hard to read
unless you printer is a good one and you print in ‘high quality’ mode. Also, if you are
printing out a large document (like this one?) then you can’t get the pages stitched down

920 their middle like a book because they will not be in the right order.

If you wish to make a book, then you have to arrange the pages into ‘signatures’ of
two pages each, in the right order. Then you can stitch the pages down the middle and
fold them like a small book. To do this, use:

psbook < example1.ps | psnup -2up -pa4 > exbook.ps

Before actually printing exbook.ps out, take a look at it with ghostview to convince
yourself that it will really work.

4.5. Output in Other Than Postscript Format
Groff is capable of producing output in formats other than Postscript. Some of the more

important of these other formats are given in Table 2.

Output Device
Type Name

Postscript ps
TeX dvi dvi
plain text ascii
HTML html

Table 2 Groff output formats other than Postscript

To format a document marked up with the me macros to produce a dvi output file, its
930 necessary to do

groff -Tdvi -me < example1.txt > /tmp/example1.dvi

and to format a manual page that would be displayable on the terminal with cat or
less, it would be necessary to do:

groff -Tascii -man < example1.txt > /tmp/example1.asc

Generating output in HTML is similar (-Thtml) but requires additional options. The
manpage for grohtml, read in conjunction with that of groff, will tell about all that.

5. Groff Preprocessors—Equations, Figures and Tables
As Fig.2 indicates, an article may have embedded in it figures, tables and mathematics,
and it may make references to a bibliography. There are special companion programs that

940 groff uses to handle these. These companion programs are known as preprocessors.
Some of the more important of these will be described below.

In a broad sense, these preprocessors all function in a similar manner. Each type of
entity—a picture or a table or mathematics—is described in its own language and it is the

-28-

appropriate preprocessor’s job to translate that language into pure groff requests. The
resulting file is then processed by groff as usual.

5.1. The Pic Preprocessor
The pic preprocessor translates picture descriptions in the pic language into equivalent
groff requests. Pic looks in the groff source for blocks of text enclosed between
.PS and .PE macro pairs and attempts to process those. For instance the following fig-

ure:

groff
source

groff
tools

output in
desired format

Fig.3

950 was produced with this pic code:
.PS
circle rad 0.3i "groff" "source"
arrow 1.0i "groff" "tools"
ellipse wid 1.2i "output in" "desired format"
.PE

Pic source for Fig.3

Here we have used the elementary object types arrow, circle and ellipse. These,
together with the line, box, arc and spline, are the most useful object types. Pic
object types have default sizes which may be overridden. For instance the default length

960 of a line or an arrow is 0.5 inches. In the example the default length of the arrow has been
overridden by specifying a length of 1.0 inches immediately after the keyword arrow.
The example also shows how to override the default radius of a circle (0.5 inches) and the
default width (0.75 inches) of an ellipse.

By default, pic puts each new object to the immediate right of the last one. This
behaviour can be altered by specifying directions such as up, down or right, like this:

.PS
circle rad 0.3i "\f[CW]groff\fP" "source"
arrow 1.2i "\f[CW]pic\fP, \f[CW]tbl\fP" \

"\f[CW]eqn\fP, \f[CW]refer\fP"
970 circle rad 0.4i "\f[CW]groff\fP" "+" "macros"

down; arrow 0.7i at last circle.s
box invis with .w at last arrow .c+(0.05i,0i) \

"\f[CW]gtroff +\fP" "macros e.g." \
"\f[CW]ms\fP or \f[CW]me\fP"

circle at last circle + (0.0i, -1.35i) "ditroff"
left; arrow 0.8i at last circle.w "device" "driver"
circle rad 0.3i "output"
.PE

Pic source for Fig.4

-29-

980 The down and left modifiers tell pic which way to move. Each object has associated
with it certain reference points. Closed objects such as boxes and circles have the com-
pass points .e, .w, .n, .s, .ne, .nw, .se, .sw and the geometric centre, .c, associ-
ated with them. Open objects such as lines, arcs and splines have the reference points
start, centre and end. Centre refers to the middle of the arc length between the
start and end points. And, finally, two or more pic statements may be written on one
line if they are separated by semicolons.

Objects may be referred to by their relative order of occurrence (last arrow or
2nd last box, for example). The sizes of objects may be changed. For example,
line 1.2i means a line 1.2 inches long and circle rad 0.5i means a circle of

990 radius 0.5 inches. And objects may be rendered invisible by the invis attribute, as in
box invis. The above pic code makes the following picture:

groff
source

pic, tbl
eqn, refer

groff
+

macros

gtroff +
macros e.g.
ms or me

ditroffdevice
driveroutput

Fig.4

Here is another example, with

.PS
circle "circle" "default"
circle dashed radius 0.5i "circle" "rad 0.5i" "dashed"
ellipse "ellipse" "default"
ellipse ht 1.0i wid 0.8i "ellipse" "ht 1.0i" "wid 0.8i"
.PE

Pic source for Fig.5

producing

circle
default

circle
rad 0.5i
dashed

ellipse
default

ellipse
ht 1.0i

wid 0.8i

Fig.5

-30-

Note that a circle may have the attribute dashed specified, leading it to be drawn in a
1000 dashed line. Lines, arrows and boxes may also be dashed. Ellipses and splines may not be

dashed.

Objects are always positioned one after another with extremities touching. This
may not always have the desired effect. For example, the above example certainly looks

better this when drawn this way:

circle
default

circle
rad 0.5i
dashed

ellipse
default

ellipse
ht 1.0i

wid 0.8i

Fig.6

where ‘invisible’ lines of the default length were inserted between the objects as you may
see below:

.PS
circle "circle" "default"
line invis
circle dashed radius 0.5i "circle" "rad 0.5i" "dashed"

1010 line invis
ellipse "ellipse" "default"
line invis
ellipse ht 1.0i wid 0.8i "ellipse" "ht 1.0i" "wid 0.8i"
.PE

Pic source for Fig.6

Finally, here is a larger example, showing how groff source files are processed:

groff
source
with

pictures,
tables,

math and
bibliographic

references
and

perhaps
packaged
macros

pic

tbl

eqn

refer

source in
pure

groff
and

perhaps
packaged
macros

gtroff and
macro package

(ms, me etc)

device
independent
groff

grops Postscript
output

grodvi TeX dvi
output

grotty
ASCII
output

grohtml
HTML
output

Fig.7

-31-

The boxes show the state of the document at any stage and the arrows the processes that
transform the document from one form to the next. Grops, grodvi, grotty and
grohtml are some of the device drivers available with groff. These device drivers
transform the "device independent" output into a form suitable for display with a particu-

1020 lar device. Here is the pic code that produced Fig.7:

.PS
A:box rad 0.2i ht 2.5i wid 0.95i "\f[CW]groff\fP" \

"source" "with" "pictures," \
"tables," "math and" "bibliographic" \
"references" \
"and" "perhaps" "packaged" "macros"

s=0.6i
arrow s at (A.e.x,A.e.y+0.54i) "\f[CW]pic\fP" ""
arrow s at (A.e.x,A.e.y+0.18i) "\f[CW]tbl\fP" ""

1030 arrow s at (A.e.x,A.e.y-0.18i) "\f[CW]eqn\fP" ""
arrow s at (A.e.x,A.e.y-0.54i) "\f[CW]refer\fP" ""
box rad 0.2i ht 1.5i wid 0.7i with .w at (A.e.x+s, A.e.y) \

"source in" "pure" "\f[CW]groff\fP" \
"and" "perhaps" "packaged" "macros"

arrow 1.1i at last box.e "" "\f[CW]gtroff\fP and" \
"macro package" \
"(\f[CW]ms\fP, \f[CW]me\fP etc)"

box rad 0.2i ht 0.6i wid 0.9i "device" "independent" "\f[CW]groff\fP"
B:line 0.2i

1040 spline -> from B.e to (B.e.x+0.2i,B.e.y+1.0i) \
to (B.e.x+0.5i,B.e.y+1.0i)

box invis at last spline.end "\f[CW]grops\fP" ""
box invis "Postscript" "output"
spline -> from B.e to (B.e.x+0.2i,B.e.y+0.33i) \

to (B.e.x+0.5i,B.e.y+0.33i)
box invis at last spline.end "\f[CW]grodvi\fP" ""
box invis "TeX dvi" "output"
spline -> from B.e to (B.e.x+0.2i,B.e.y-0.33i) \

to (B.e.x+0.5i,B.e.y-0.33i)
1050 box invis at last spline.end "" "\f[CW]grotty\fP"

box invis "\s-2ASCII\s0" "output"
spline -> from B.e to (B.e.x+0.2i,B.e.y-1.0i) \

to (B.e.x+0.5i,B.e.y-1.0i)
box invis at last spline.end "" "\f[CW]grohtml\fP"
box invis "\s-2HTML\s0" "output"
.PE

Pic source for Fig.7

The rad attribute of a box object is the radius of the box corners. The default value is 0.
An interesting usage here is of a pic variable. The variable s has been assigned a value

1060 of 0.6 inches. Later, wherever s occurs, it is replaced with 0.6i.

A complete description of pic would require much space. Fortunately, excellent
descriptions already exist. The original pic is described by Kernighan14 and GNU pic is
described by Raymond.15 The latter has some enhancements, the most notable of which is
the ability to use colour. These articles are essential reading for anyone desiring to use
pic. Raymond’s article is available as groff source alongwith the groff source

-32-

tarball. Stevens16, 17 describes the pic macros he used to write his books as well as a way
of converting pic to HTML.

The eponymous gnuplot and xfig programs can save pictures in the pic for-
mat (although, sadly, they cannot read pic files). If the file plotfile.pic contains

1070 the output from gnuplot saved in the pic format, then the picture may be included in
the document by either physically inserting the file or, even better, by using the copy
statement:

.PS
copy "plotfile.pic"
.PE

The advantage of the second method is that the file may be modified by gnuplot with-
out the need for changing the groff source. In this method the .PS-.PE macros occur
twice: once surrounding the copy statement, and once inside the file plotfile.pic,
surrounding the pic statements generated by gnuplot. (The latter pair are produced

1080 by gnuplot).

If a document uses pic, this is how its source, example.ps, is processed:

groff -p -ms < example.ms > /tmp/example.ps

5.2. The Tbl Preprocessor
Tbl is a language that describes the layout of tables. A description of a table in this lan-
guage is converted into pure groff by the tbl preprocessor. This section gives a brief
introduction on using tbl. A complete description is given by Cherry and Lesk.18

The description of a table has several conceptually distinct parts. In broad terms
these are:

1090 • The delimiting macros .TS and .TE,

• A one-line set of global attributes for the entire table,

• Formatting information
There may be one or more rows of these. If there is only one format row, it applies
to all data rows. If there is more than one format row, these are successively applied
to the rows of data beginning with the first. When the last format row is reached, it
applies to all the remaining rows of data. That is, if there are n format rows speci-
fied, then the first n -1 of them apply to the first n -1 rows of data in sequence, and
the nth format row applies to all the remaining data rows.

• The data itself
1100 arranged in rows, with the columns separated by a delimiter that is declared in the

global attributes section.

Table 2 (§ 4.5) was produced with the following description:

-33-

.TS
box,tab(:),centre;
c|c
c|c
l|lfCW.
Output:Device
Type:Name

1110 _
Postscript:ps
TeX dvi:dvi
plain text:ascii
HTML:html
.TE

and this is what it all means:

• There are three global attributes:

box this says that a box is to be drawn around the outer boundary of the table,
tab(:) this says that the column separator is the colon character (:),

1120 centre this tells groff to centre the table across the page.

Note how the global attributes list is terminated with a semicolon (;).

• There are three format rows:

c|c
c|c
l|lfCW.

These say that there are two columns in the table. The c|c in the first format row
say that data items in the first data row are to be centred in their columns; the c|c
in the second format row say the same thing about the data items in the second
row; and the l|lfCW in the third and final format row say that data items in the

1130 third and subsequent rows are to be left aligned in their respective columns; also,
the items in the second column are to be printed in constant width characters.

Note how the final format row is terminated with a dot.

There are other format specifiers besides l and c. In particular, the n data format
is used when data items in a column are numeric. If all items in the column are
integers, they will be right-aligned. If they include decimal points, then they will be
arranged so that all decimal points in the column are vertically aligned.

• The | character separating the two format specifiers of each format row
tells tbl to draw a vertical line between the columns. If no vertical line between
columns was desired, the format rows would have been

1140 c:c
c:c
l:lfCW.

that is, the separator would have been the tab character as specified in the global
attributes.

-34-

• The _ (underscore) character appearing all by itself
on the row immediately following the first data row is not part of the data. Instead,
it signals tbl that a single horizontal line is to be drawn across the width of the ta-
ble at this point (in this case after the first row of data).

Here is another table

1150 .TS
centre,tab(:),box;
c:c
l:l.
Preprocessor:Used to typeset
=
\f[CW]pic\fP:Line drawings
\f[CW]tbl\fP:Tables
\f[CW]eqn\fP:Mathematics
\f[CW]refer\fP:Bibliographies

1160 :and references
.TE

Tbl source for Table 3

that, on formatting, looks like this:

Preprocessor Used to typeset
pic Line drawings
tbl Tables
eqn Mathematics
refer Bibliographies

and references

Table 3

Tw o points may be noted:

• The = (equals) character appearing all by itself
on a row is like the _ of the last example but calls for a double horizontal line.

• In the last data row, there is no data in the first column.

And now a slightly more complicated example:

-35-

Macro packages available with groff
Package Comments
ms Origin: Bell Labs. First macro package to gain wide accep-

tance. Still widely used. Good for short documents.
me Origin: UC Berkeley. Not as popular as ms. But more flex-

ible and better suited to large documentation projects.
Also, better documented.

mm A "better" ms. Incorporates some features of me.
man Used to format on-line manual pages on Linux systems.

Perhaps the sole reason why groff is alive today!
mom Under development. Seems to hold great potential as a

macro package. Works with groff v1.18 or later.

Table 4 Macro packages for groff

that was produced with the following description:

1170 .TS
centre,box,tab(:);
c:s
l:c
lfCW:lw(4i).
T{
Macro packages available with
groff
T}
_

1180 Package:Comments
=
ms:T{
Origin: Bell Labs.
First macro package to gain wide acceptance.
Still widely used.
Good for short documents.
T}
_
me:T{

1190 Origin: UC Berkeley. Not as popular as
.CW ms .
But more flexible and better suited to
large documentation projects.
Also, better documented.
T}
_
mm:T{
A "better"
.CW ms .

-36-

1200 Incorporates some features of
.CW me .
T}
_
man:T{
Used to format on-line manual pages on Linux systems.
Perhaps the sole reason why
.CW groff
is alive today!
T}

1210 _
mom:T{
Under development. Seems to hold great potential as
a macro package. Works with
.CW groff
v1.18 or later.
T}
.TE

Tbl source for Table 4

The main changes from the earlier example are

1220 • The first format row has an s as the format specifier in the second column.
This means that the first data field of the first data row is to span across the second
field as well. That is why the "Macro packages available with groff" entry
appears centred across the overall width of the table.

The second format specifier in the third format row, lw(4i) is the l format speci-
fier augmented with a "column width" specifier. Here the width of this column is
specified to be 4 inches. This is the minimum width the column will have. If neces-
sary, the column width will automatically expand to accommodate the widest data
item in this column.

• When it becomes necessary to have a data field occupy more than one line
1230 in the table description, then that data field is enclosed between T{ and T} mark-

ers. The T{ must begin immediately after a data field separator or a newline, and
must be followed by a newline. The T} must begin immediately after a newline
and must be followed by a data field separator or another newline.

And, finally, a largish example:

-37-

Components of groff and their relationship to each other
Type Function

Groff command
line optionName Description

eqn -eLanguage for typesetting mathematics
tbl -tLanguage for typesetting tables
pic -pPreprocessor Language for typesetting line drawings.

Xfig and gnuplot can export files in the
pic format

Groff command
line optionName Description

ms -msAdequate for letters and articles but not for
books or large scale projects.

me -meMore flexible. Better suited to large projects
than ms. Better documented.

mm -mmA "better" ms. Incorporates features of me.
man -manUsed to format the on-line manual pages on

Linux systems.
mom -mom

Macro
package

Still under development. Holds great poten-
tial. Works with groff v1.18 or later.

Groff command
line optionName Description

gtroffGroff
language
processor

Converts groff source to "device indepen-
dent troff" or ditroff.

Always invoked
by the groff
command.
Groff command

line optionName Description

grops -TpsConverts ditroff to Postscript. Default
driver for groff. With this, groff can
include Postscript files and/or execute
Postscript commands in the source file.

grodvi -TdviConverts ditroff to TeX dvi format.
grotty -TasciiConverts ditroff to ASCII.
grohtml -Thtml

Device
driver

Converts ditroff to HTML. Still in alpha
stages.

Table 5 Components of the groff system

which is produced by:

.TS
centre,box,tab(:);
c:s:s:s
c|c:s:s.
T{

1240 Components of

-38-

.CW groff
and their relationship to each other
T}
_
Type:Function
=
.T&
c|c|cw(3.0i)|c
c|ˆ|ˆ|c

1250 c|cfCW|lw(3.0i)|c
c|cfCW|lw(3.0i)|cfCW
ˆ|cfCW|lw(3.0i)|cfCW.
:Name:Description:T{
.CW Groff
command
T}
:::line option
:_:_:_
Preprocessor:eqn:T{

1260 Language for typesetting mathematics
T}:-e
:tbl:T{
Language for typesetting tables
T}:-t
:pic:T{
Language for typesetting line drawings.
.CW Xfig
and
.CW gnuplot

1270 can export files in the
.CW pic
format
T}:-p
=
.T&
c|c|cw(3.0i)|c
c|ˆ|ˆ|c
c|cfCW|lw(3.0i)|c
c|cfCW|lw(3.0i)|cfCW

1280 ˆ|cfCW|lw(3.0i)|cfCW.
:Name:Description:T{
.CW Groff
command
T}
:::line option
:_:_:_
T{

-39-

.nf
Macro

1290 package
.fi
T}:ms:T{
Adequate for letters and articles but
not for books or large scale projects.
T}:-ms
:me:T{
More flexible. Better suited to large projects than
.CW ms .
Better documented.

1300 T}:-me
:mm:T{
A "better"
.CW ms .
Incorporates features of
.CW me .
T}:-mm
:man:T{
Used to format the on-line manual pages on Linux systems.
T}:-man

1310 :mom:T{
Still under development. Holds great potential. Works with
.CW groff
v1.18 or later.
T}:-mom
=
.T&
c|c|cw(3.0i)|c
c|ˆ|ˆ|c
c|cfCW|lw(3.0i)|c

1320 c|cfCW|lw(3.0i)|cfCW.
:Name:Description:T{
.CW Groff
command
T}
:::line option
:_:_:_
T{
.nf
.CW Groff

1330 language
processor
T}:gtroff:T{
Converts
.CW groff

-40-

source to "device independent
.CW troff """
or
.CW ditroff .
T}:T{

1340 .R
Always invoked by the
.CW groff
command.
T}
=
.T&
c|c|cw(3.0i)|c
c|ˆ|ˆ|c
c|cfCW|lw(3.0i)|c

1350 c|cfCW|lw(3.0i)|cfCW
ˆ|cfCW|lw(3.0i)|cfCW.
:Name:Description:T{
.CW Groff
command
T}
:::line option
:_:_:_
T{
.nf

1360 Device
driver
T}:grops:T{
Converts
.CW ditroff
to Postscript.
Default driver for
.CW groff .
With this,
.CW groff

1370 can include Postscript files and/or execute Postscript
commands in the source file.
T}:-Tps
:grodvi:T{
Converts
.CW ditroff
to TeX dvi format.
T}:-Tdvi
:grotty:T{
Converts

1380 .CW ditroff
to

-41-

.sm ASCII .
T}:-Tascii
:grohtml:T{
Converts
.CW ditroff
to
.sm HTML .
Still in alpha stages.

1390 T}:-Thtml
.TE

Tbl source for Table 5

and is a significantly larger tbl program than any we hav e seen so far. Of course, the ta-
ble it lays out is also fairly complicated. A couple of new things are introduced here:

• The .T& macro
When used in a table, this macro allows the formats of the succeeding columns to
be re-specified. It does not, however, allow the number of columns to be changed.

• The ˆ format descriptor
Just as the s format descriptor causes "horizontal spanning" of a data field, so the ˆ

1400 format specifier causes vertical spanning a column. This is what happens with all
the items in the "Type" column, such as "Preprocessor" and "Macro Package".
Observe how they are vertically centred relative to the items on their immediate
right.

If a document source makes use of tbl constructs, this is how it is processed by groff:

groff -t -ms < example.ms > /tmp/example.ps

where the document source is assumed to be in the file example.ms.

5.3. The Eqn Preprocessor
The eqn language describes the typesetting of mathematical symbols. It is simpler than
either tbl or pic, because a simple language is sufficient to describe mathematics. If

1410 you are not convinced, here’s an example to convince you. The trigonometrical identity,
sin(α + β) = sin α cos β + cos α sin β , is written in eqn as

%sin (alpha + beta) =
sin alpha cos beta + cos alpha sin beta%

The entire eqn construct is enclosed within the delimiters %% to distinguish it from the
surrounding text. This is an example of inline eqn usage. The characters %% that are used
to distinguish the eqn construct from the surrounding text are so defined by telling eqn:

.EQ
delim %%
.EN

1420 These delimiting characters may be redefined.

-42-

Greek letters, as you can see, are spelt out in English. By this rule, θ is %theta%
and δ is %delta%; Θ is %THETA% and ∆ is %DELTA%. Spaces have meaning in an eqn
statement. Thus, %sin (alpha + beta)% produces sin(α + β), whereas
%sin(alpha+beta)% produces sin(alpha + beta), not quite what was intended.

The mean of a population, x1 . . . xn, of size n :

x =
1
n

n

i=1
Σ xi (1)

is produced by

.EQ (1)
x bar = 1 over n { sum from i=1 to n { x sub i } }
.EN

and its standard deviation

σ = √ 1
n

n

i=1
Σ(xi − x)2 (2)

by

1430 .EQ (2)
sigma = sqrt { 1 over n }
{ sum from i=1 to n { (x sub i - x bar) sup 2 } } }
.EN

There are several points to note:

• The braces { and }
play the same role as they do in mathematics—they "bind" several items together
so these items behave as a single entity.

• Any string passed as an argument to the .EQ macro
appears as the "equation number" on the right margin.

1440 • The keywords sub and sup
denote subscripts and superscripts, respectively.

• Fractions are produced
with the over keyword separating the numerator from the denominator.

More complicated expressions, such as

1

1 +
1

1 +
1

1 +
1

1 + . . .

= 0. 6180 . . .

may be produced by judicious use of braces:

-43-

.EQ
1 over
{ 1 + 1 over

{ 1 + 1 over
{ 1 + 1 over

1450 { 1 + ...
}

}
}

}
= 0.6180 ...
.EN

If a document source makes use of eqn constructs, this is how it is processed by groff:

groff -e -ms < example.ms > /tmp/example.ps

where the document source is assumed to be in the file example.ms.

1460 To learn more about eqn (and there is more to learn, despite its simplicity), read
the articles by Kernighan and Cherry.19, 20

5.4. Documents that use Pic, Tbl and Eqn
Formatting documents that use all of pic, tbl and eqn is easy:

groff -p -e -t -ms < example.ms > /tmp/example.ps

does it! The first three options to groff may even be combined to get an abbreviated
form:

groff -pet -ms < example.ms > /tmp/example.ps

5.5. Refer, Chem and Other Preprocessors
1470 In addition to the preprocessors described above, there are other, perhaps less commonly

used ones. Refer is a preprocessor to manage bibliographical references within a docu-
ment. Most commonly, the bibliographic information is held in a plain-text file in a care-
fully defined format, and each item is identified by a unique keyword. Within the text, a
reference to the keyword inserts an appropriate citation of the item in question. The bibli-
ographic references in this article were produced with refer. I was unable to locate a
public source for the article by Bill Tuthill entitled Refer – A Bibliography System that is
dedicated to documenting refer. The article by Lesk21 is the work upon which refer
is based. But it is only partly devoted to refer.

Chem is another “small language” that is very useful in drawing molecular struc-
1480 tures of chemicals. It is described by Bentley, Jelinski and Kernighan.22

Bentley and Kernighan also describe a tool for printing indexes.23 This tool is more
in the nature of a ‘co-processor’ for groff, since it works in parallel with the latter to
index marked terms in a document.

-44-

Chem and index were originally written for UNIX troff They hav e not been
rewritten for GNU groff. Hence they are not part of the groff distribution although
they work with it.

Style and diction are two unique programs from UNIX troff, whuch have
been recreated as GNU diction by Michael Haardt.24 This is is a quote from the home-
page:

1490 Diction identifies wordy and commonly misused phrases. Style analy-
ses surface characteristics of a document, including sentence length and
other readability measures. These programs cannot help you structure a doc-
ument well, but they can help to avoid poor wording and compare the read-
ability (not the understandability!) of your documents with others.

6. Exploring Groff’s Capabilities Further
The capabilities of groff that we have learnt about so far are useful in producing con-
ventional documents: letters, articles like this one, or even books (although not without a
lot of bookkeeping!). All this would, of course, be in black-and-white, literally.

1500 In the following sections we shall explore groff’s features and capabilities in the
direction of colour and images. These capabilities are due to groff’s ability to execute
Postscript instructions and are available only with the Postscript output driver ps. (Let
me state at the outset that I don’t know the Postscript language. I cannot explain why or
how the things in the following sections work. All I know is that they do.)

6.1. Groff and Colour
The manpage for grops describes a mechanism by which groff is able to execute
Postscript commands. Let us define some groff strings, as follows:

.ds RED \X’ps: exec 1 0 0 setrgbcolor’

.ds GREEN \X’ps: exec 0 1 0 setrgbcolor’
1510 .ds BLUE \X’ps: exec 0 0 1 setrgbcolor’

.ds YELLOW \X’ps: exec 1 1 0 setrgbcolor’

.ds MAGENTA \X’ps: exec 1 0 1 setrgbcolor’

.ds CYAN \X’ps: exec 0 1 1 setrgbcolor’

.ds BLACK \X’ps: exec 0 0 0 setrgbcolor’

.ds WHITE \X’ps: exec 1 1 1 setrgbcolor’

Then, an input of the form

*[RED]This is RED
*[GREEN]This is GREEN
*[BLUE]This is BLUE

1520 *[YELLOW]This is YELLOW
*[MAGENTA]This is MAGENTA
*[CYAN]This is CYAN
*[WHITE]This is WHITE
*[BLACK]This is BLACK

-45-

produces the following list of coloured colour names:

This is RED
This is GREEN
This is BLUE
This is YELLOW

1530 This is MAGENTA
This is CYAN
This is WHITE
This is BLACK

(The line in white will most likely not be visible because the white foreground colour
merges with the background.)

Let me explain the groff part of what’s happening here. The .ds request defines
a string whose name is the first argument and whose value is the second argument. For
example, the definition:

.ds RED \X’ps: exec 1 0 0 setrgbcolor’

1540 defines a string named RED to have the value \X’ps: exec 1 0 0 setrgb-
color’. Later, usage of the form

*[RED]This is red

causes the value of the string RED to be interpolated (that is the proper groff term) just
before the T in This. This string, which is a Postscript statement to set the foreground
colour to red, is then executed by grohtml’s internal Postscript interpreter.

Coupled with the ability to change fonts and sizes (see § 3.6), this makes it possible
to produce presentation slides or simple coloured posters.

6.2. Importing a File Containing Postscript into a groff document source
Let’s say you’ve just been to Darjeeling and got this most wonderful picture of a sunrise

1550 on Tiger Hill with your new digital camera. You’re making a writeup about the trip (using
groff, of course) and you would like to include this picture in the document, which will
be printed by one of the glossy magazines. Its possible, provided you convert the picture
into Postscript.

According to the grops manpage, a statement of the form

.PSPIC [L|R|I n] file [width [height]]

inserted into the appropriate place in the document source will cause the Postscript
graphic to be imported. Here file is the name of the file containing the illustration;
width and height give the desired width and height (the default unit is inches) of the
graphic. This macro will scale the graphic uniformly in the x and y directions so that it

1560 is no more than width wide and height high. By default, the graphic will be horizon-
tally centered. The L and R cause the graphic to be left-aligned and right-aligned respec-
tively. The I option causes the graphic to be indented by n units (inches, by default).

So, if your picture is in a file called tigerhill.ps then simply saying

-46-

.PSPIC tigerhill.ps

will import the picture and centre it on the page.

6.3. Output in Landscape Mode
Groff normally produces output in portrait mode. There are occasions, such as when
making slides for a presentation, when output is desired in landscape mode. The
Postscript device driver grops accepts an argument -l that tells it to produce output in

1570 landscape mode. Since grops is never inv oked directly, groff has a mechanism of
passing parameters to it (and to other downstream programs). In the command

groff -ms -P-l < slides.ms > slides.ps

the ‘compound option’ -P-l is the mechanism by which groff passes the -l option to
grops.

7. Innovative Uses of Groff
If UNIX is the "programmer’s operating system", then surely groff is the "programmer’s
text processor". There are chiefly two reasons for this:

Firstly
groff, like its predecessor troff, is itself programmable. The macros that we

1580 have been using are actually short programs whose statements are pure groff
requests.

And secondly,
since the document source is in plain text, all the powerful UNIX utilities for operat-
ing on plain text files (sorting, searching, joining, merging, splitting and non-inter-
active editing, for example) can be invoked to manipulate these source files before
handing them over to groff.

Thus it is possible to look for mis-spelt words using the standard UNIX spell checker, to
count the number of words in a document, to keep track of changes in a large document
as it evolves, to look for occurrences of "variant phrases" (occurrences of "semirigid",

1590 "semi-rigid" and "semi rigid" in the same article, for example) and so on.

With some programming using standard UNIX scripting languages such as bash,
sed and awk (or perl) it is possible to create many preprocessors beyond the standard
ones described earlier. One such preprocessor could be a mailmerge system. Another
could be a pre-processor to automatically number equations, tables and figures and
update references to them.

In the next couple of sections I shall outline some ideas that will substantiate the above
statements. Many more innovations are possible, the limit being your imagination and
your mastery over the UNIX programming environment.

7.1. Producing Presentation Slides With Groff
1600 We now hav e all the background required to produce slides for making presentations with

groff. These are going to be of the no-frills type: spartan and to the point. But that’s
what is required of a presentation slide, right?

-47-

We shall use the definitions of the colour names of § 6.1 here. With these, the
groff source

.bp
\s[24]*[BLUE]Linux is a great piece of software
.sp 0.5i
.ce
but ...

1610 .sp 0.5i
*[RED]How good is it for scientific applications?
.sp 0.5i

produces the Postscript output:

Linux is a great piece of software

but ...

How good is it for scientific applications?

The markup tag .bp tells groff to begin a new page; and the escape sequence \s[24]
tells it to change the font size to 24 point.

Of course we are not limited to letters of a maximum 24 point size. Here is some-
thing in 144 point (about 2 inches high):

Hi!
When using characters of large size it is usually convenient to produce the output in land-
scape mode, something we already discussed in § 6.3. This is the formatting command
again:

groff -ms -P-l < slides.ms > slides.ps

1620 We may sometimes like to draw a box around a slide to emphasize the border and hold
the viewers’ attention to the display material within it. You can try these ms macros to

draw a box although, be warned, the result may not always be what you want:

-48-

Linux is a great piece of software

but ...

How good is it for scientific applications?

Here is how it was produced:

.bp

.B1

.sp 0.5i
\s[24]*[BLUE]Linux is a great piece of software
.sp 0.5i
.ce
but ...
.sp 0.5i

1630 *[RED]How good is it for scientific applications?
.sp 0.5i
*[GREEN]
.B2

The .B1 and .B2 macros are responsible for the box. Note that if you want to specify
the colour of the line that the box will be drawn in, you must do that just before the .B2.

How do you actually project these slides? If you want to go the old-fashioned route
and project them with an overhead projector then you have to print the Postscript file on
special transparency film with a colour inkjet printer. If you eschew colour then you can
save money and print the slides out on ordinary transparency film using a laser printer. In

1640 any case your slides become "frozen" once you commit them to film.

The least expensive and also the most flexible way of projection is with an elec-
tronic projector (provided of course you don’t hav e to pay for the projector!). The great-
est advantage is that you can modify your slides at will, since they are in software. As far
as projecting them goes, if the projector is connected to a Linux system then you can
work directly with the Postscript file, using ghostview to display it and adjust the size
so that the window fills up as much of the screen as possible. (To do this most effectively
you may have to try out various screen resolutions; an A4 page in landscape mode seems
to fit 800×600 screen resolutions best.) With the proper options, you can cut down on the
bells and whistles that ghostview displays on its screen borders.

-49-

1650 For platform-independent projection capability, howev er, you should use a web
browser to show your slides. Browsers on any platform are able to display files in jpeg
and gif formats. Ghostscript can convert Postscript files into a large number of for-
mats, including jpeg, pnm and pbm (but not gif, presumably because of patent restric-
tions). Pbm can again be converted to many formats, including gif, through the
NetPBM utilities. Here’s a little shell script, called ps2jpg, to inv oke ghostscript
to convert a Postscript file into jpeg files, one file per page (or slide):

#!/bin/sh

gs -dSAFER -dNOPAUSE -sDEVICE=jpeg -sPAPERSIZE=a4 \
-sOutputFile=${1}%02d.jpg \

1660 ${1}.ps << END
ˆD

END

Suppose your Postscript file is named slides.ps and consists of four A4 pages. Then,
saying

ps2jpg slides

(note that we omit the .ps extension from the name of the Postscript file) will produce
four jpeg files named slides00.jpg to slides03.jpg. The simplest method of
displaying these is to load them in sequence into the browser before the presentation, then
go back to the first one. The browser could be kept minimised until such time that the

1670 presentation begins. (A lively screensaver helps during the hiatus!) With this scheme,
clicking on the browser’s ‘Forward’ button (with a remote mouse, perhaps) takes you to
the next slide.

7.2. Groff as a ‘Back-End’ Processor
Let’s say we’re running a small business and we have an on-line data base to track cus-
tomer orders. We pride ourselves on the promptness of our service so, every morning, one
of the first things we do is find out what orders are outstanding. The query

find all order with (order_date < todays_date)

(where todays_date is automatically set by the data base system) brings forth the
response

1680 342 2003-5-29 Hari Ghosh
97 2003-5-28 Kenaram Sau
43 2003-6-1 Chandidas Chingri
403 2003-5-30 Becharam Chatterjee

the first column being the order number and the second column the order date. Methodi-
cal organization that we are, we would like to hav e this information neatly formatted and
printed, with copies sent to the manager and the service department. We therefore save
this information to a file named ord.txt:

-50-

find all order with (order_date < todays_date) save "ord.txt"

and invoke a bash script named printord with two arguments:

1690 printord ord.txt 2

upon which two copies of the above information, neatly formatted, appear on the printer.
What does this bash script named printord contain? Here it is:

#!/bin/bash

if [$# -ne 2]
then

echo "Usage: $0 order-file number-of-copies"

exit 1;
fi

we check if the named file exists and is readable

1700 if [! -r $1]
then

echo "$0: File $1 not-existent or not readable. Exiting"

exit 2;
fi

and that the number of copies seems reasonable

if [$2 -ge 1 -a $2 -le 3]
then

echo "$0: printing $2 copies"
else

1710 echo "$0: too many copies - ${2}. Exiting"

exit 3;
fi

we make two temporary files with unique names:

TMPNAM=/tmp/${$}.order
PS_NAM=/tmp/${$}.ps

we also get today’s day and date from the system in a
custom format:

DATE=$(date +"%A %d-%m-%Y")

and now we make our table:

-51-

1720 echo ".ps 12" >> $TMPNAM
echo ".vs 14" >> $TMPNAM
echo ".ce" >> $TMPNAM
echo "\fBOutstanding orders on $DATE\fP" >> $TMPNAM
echo ".TS" >> $TMPNAM
echo ’tab (:), center, box;’ >> $TMPNAM
echo "c|c|c" >> $TMPNAM
echo "c|c|c" >> $TMPNAM
echo "n|l|l." >> $TMPNAM
echo "Order:Order:Customer" >>$TMPNAM

1730 echo "Number:Date:Name" >>$TMPNAM
echo "=" >> $TMPNAM

The rest of the table, that is, the data rows.
we assume that a customer’s name has at most four words
awk ’{ print $1":"$2":"$3" "$4" "$5" "$6 }’ < $1 >> $TMPNAM

the table ends
echo ".TE" >> $TMPNAM

and format it with groff -t

groff -t < $TMPNAM > $PS_NAM

and print the requisite number of copies

1740 lpr -#$2 $PS_NAM

and, finally, remove the temporary files

rm -f $TMPNAM $PS_NAM

and this is the table that is produced:

Outstanding orders on Tuesday 03-06-2003

Order Order Customer
Number Date Name

342 2003-5-29 Hari Ghosh
97 2003-5-28 Kenaram Sau
43 2003-6-1 Chandidas Chingri

403 2003-5-30 Becharam Chatterjee

In a similar manner, groff can be used as a back end processor to produce diagrams,
graphs, flow-charts and form letters. With a little programming using standard UNIX tools
such as bash, awk (or perl) and sed, it is possible to create a mailmerge system for
merging addresses (and, if necessary, salutations) from an address data base with form
letters.

-52-

7.3. Groff and "Wysiwyg"
Yes! It’s possible. I use it all the time. And I’ll show you how. It depends partly on the

1750 text editor and partly on the Postscript viewer. In the next few paragraphs I shall use vim
as the editor and ghostview as the Postscript viewer to illustrate the procedure.

Let’s say I am editing our example file, example.ms. This file uses pic, tbl
and eqn statements. Now, from within vim I enter the following ‘colon command’ (that
is, a : followed by the command):

:map <F1> :wˆM:!groff -ms -pet < example.ms > /tmp/ex.psˆM

What the map command does is to associate the entire string on the right with the F1
function key. In this command <F1> is got by pressing the F1 function key; and ˆM is
the "Enter" character, obtained by the keystroke sequence "Ctrl+V+M".

With the map defined and vim in command mode, pressing the F1 key causes vim
1760 to interpret the character string mapped to F1 exactly as if it was typed from the

keyboard: the :w followed by "Enter" causes the file to be written to disk and the :!
causes the rest of the string to be passed to the shell to be interpreted and executed as a
shell command—that is, the groff command gets executed, producing the ex.ps
Postscript file.

In order for the next step to work—and the magic to begin—you must start vim,
define the mapping of the F1 key, and press F1 at least once. Now, either open another
terminal window, or in the present one stop vim temporarily with ˆZ. Just to make sure,
check that the file /tmp/ex.ps is indeed there. Then start ghostview in the back-
ground with the -watch option (and, of course, your other favourite options):

1770 ghostview -watch /tmp/ex.ps &

The -watch option tells ghostview to watch the file it is displaying (here
/tmp/ex.ps), and each time that file changes, to load it afresh.

Now get back to editing. If you had stopped vim with ˆZ, you can resume it by
typing fg at the shell prompt. Make some changes to the file and press F1 again. Bring
the ghostview window to the top with a mouse click, and you should see your latest
changes reflected there! Now, each time you press F1 from within vim, the latest
changes will appear in the ghostview window. How’s that for "wysiwyg"?

This method of making "wysiwyg" work is alright but, after the initial novelty
wears off and you wish to make routine use of this facility, you begin to notice at least

1780 three areas which could be improved: having to type in the map colon command each
time you start vim, having to temporarily stop vim in order to start ghostview and,
having to close the ghostview window after your work is done. Wouldn’t it be nicer if
these steps were automatically taken care of?

We shall take up the first problem first. At the time of starting up, vim can be
made to read a startup file, like this:

vim -u vimstart.rc example.ms

where the startup file vimstart.rc contains option settings that change vim’s
behaviour in certain ways. Its possible that you are already using such a startup file
named, say, .vimrc residing in your home directory.

-53-

1790 Now, map commands can be written into the startup file and vim will read and
interpret them in the usual way. The difficulty in this case is that the name of the groff
document source file is likely to change from one invocation of vim to another, thus
making it necessary to edit the startup file every time. We would effectively be trading
one irritant for another. Let us therefore call bash to our aid through the following shell
script named, say, grin (for groff interactive):

#!/bin/bash

we shall expect this script to have only one parameter,
which will be the name of the groff source file that
vim has to edit. # is the shell variable that contains the

1800 # number of keyword parameters passed to this script

if [$# -ne 1]
then

echo "Usage: $0 groff-source-file"

exit 1;
fi

we assume that the user already has a startup file, .vimrc
we shall create a temporary startup file using our
process-id (returned in the shell variable $)

TMPNAM=/tmp/${$}.vimrc

1810 # into which we shall copy the existing .vimrc from the
user’s home directory

cp ˜/.vimrc $TMPNAM

to this we shall append the map command. Note that $1 is
the value of the first argument to this shell script,
which is just the name of the file that vim has to edit
and ˆM is Ctrl-V-M:

echo ’map #1 :wˆM:!groff -ms -pet <’ "$1" ’> \
/tmp/ex.psˆM’ >> $TMPNAM

and then start vim

1820 vim -u $TMPNAM $1

when vim exits, we remove the temporary vim startup file

rm -f $TMPNAM

-54-

Now if grin is declared an executable file:

chmod u+x grin

and invoked with the groff document source file as the only parameter:

grin example.ms

then vim will start with the map command already defined.

Grin may be improved so that it automatically starts ghostscript in "watch
mode" and terminates it once vim ends.

1830 8. Books Actually Published Using Troff/Groff
Finally! The question you’ve been dying to ask all this while. If groff (and/or troff)
is not something only of interest to geeks and nerds, if it is not a fossil, if it is alive and
kicking then someone, somewhere, must be using it to write articles and books with.
Who, then? Where? When?

Some answers are provided by Corderoy25 who lists about 50 such publications, the
latest of which was in the year 2001. All Bell Labs publications use troff. That
includes classics like The C Programming Language by Kernighan and Ritchie, The UNIX
Programming Environment by Kernighan and Pike and The C++ Programming Language
by Stroustrup. “But that’s natural, since they wrote troff! Those don’t count. Who are

1840 the others?”, do I hear you say? Well then, many of O’Reilly’s books were set with
troff, particularly Unix Text Processing,4 which is about troff. All of the late W.
Richard Stevens’ books (The TCP/IP Illustrated and UNIX Network Programming series
among them) were set in GNU groff. Here is what Wright and Stevens have to say
about the production of their book TCP/IP Illustrated, Volume 2: The Implementation:

“Camera-ready copy of the book was produced by the authors. It is only fit-
ting that a book describing an industrial-strength software system be pro-
duced with an industrial-strength text processing system. Therefore one of
the authors chose to use the groff package written by James Clark, and the
other author agreed begrudgingly.”

1850 Compiler Design in C by Holub is another example. And Computer Networks, 3 Ed. by
Tanenbaum yet another. Indeed, I can’t resist quoting Tanenbaum:

“The book was typeset in Times Roman using troff, which, after all these
years, is still the only way to go. While troff is not as trendy as ‘wysiwyg’
systems, the reader is invited to compare the typesetting quality of this book
with books produced by ‘wysiwyg’ systems.” (1996)25

McKusick, Bostic, Karels and Quarterman, authors of The Design and Implementation of
the 4.4BSD Operating System write:

“This book was produced using James Clark’s implementations of pic,
tbl, eqn and groff. The index was generated by awk scripts derived

1860 from indexing programs written by Jon Bentley and Brian Kernighan. Most
of the art was created with xfig.”25

Nor are books on UNIX software the only ones produced using groff and kin. Collins
English Dictionary & Thesaurus, 2nd Ed. and Collins German Dictionary, 4th Ed. were
also produced using troff.25 And how’s this for a marriage of XML and groff, in the
words of Erik T. Ray, author of Learning XML (Guide to) Creating Self-Describing Data:

-55-

“The print version of this book was created by translating the DocBook XML
markup of its source files into a set of gtroff macros using a filter devel-
oped at O’Reilly & Associates by Norman Walsh. Steve Talbott designed and
wrote the underlying macro set on the basis of the GNU troff -mgs

1870 macros; Lenny Muellner adapted them to XML and implemented the book
design. The GNU groff text formatter Version 1.11.1 was used to generate
PostScript output.” 25

Finally, Accelerated C++ by Koenig and Moo is also produced using troff. This book
came out in the year 2001.

9. The Summing Up
In this article I have made an attempt to introduce the novice to text processing with GNU
groff. I have tried to show that, combined with the other tools of UNIX, groff can
handle most text processing tasks.

This article may be taken to be a ‘sampler’ of the text processing capabilities of
1880 groff. As I hav e hinted often enough, what I have shown is by no means all that

groff can do.

In trying to keep this article to a reasonable length, I have had to completely forgo
any attempt at discussing ‘pure’ groff and its programmability, which is at the heart of
its power. Howev er, the interested reader can always refer to the articles listed in the bib-
liography and referred to in the text to learn more.

If this article serves to awaken the curiosity of its readers about groff, I shall con-
sider my efforts amply rewarded.

————————————————×————————————————

-56-

References
1890 1. Joseph F. Ossanna and Brian W. Kernighan, Nroff/Troff User’s Manual,

http://netlib.bell-labs.com/cm/cs/cstr/54.ps.gz. Postscript
format. Describes troff completely and in detail. Has few examples. Should be
accompanied by Kernighan’s Tutorial.

2. Brian W. Kernighan, A TROFF Tutorial,
http://www.kohala.com/start/troff/v7man/trofftut/troff-
tut.ps. Postscript format. Many examples.

3. Dean Provins, Groff and Friends HOWTO, http://www.ucal-
gary.ca/˜dprovins/groff.ps.gz (2001). Postscript format.

4. Dale Dougherty and Tim O’Reilly, Unix Text Processing,
1900 http://www.oreilly.com/openbook/utp/.

5. Peter Schaffter, http://www.ncf.ca/˜df191/mom.html. Homepage for
the mom macros.

6. Brian W. Kernighan and Rob Pike, “CHAPTER 9 Document Preparation” in The
UNIX Programming Environment, Prentice Hall of India Private Limited, New
Delhi (1987). Very readable introduction to troff. Also, readily and cheaply
available in most bookshops.

7. James Clark’s homepage is at http://www.jclark.com/bio.htm. James
Clark originally wrote the groff suite of programs.

8. M. E. Lesk, Using the -ms Macros with Troff and Nroff,
1910 http://www.kohala.com/start/troff/v7man/msmacros/msmacros.ps.

Postscript format.

9. Larry Kollar, Using groff with the -ms macros, http://tylx.tri-
pod.com/ms.ps.gz.

10. Eric P. Allman, Writing Papers With NROFF Using -me. Groff source format.
Av ailable with groff source.

11. Eric P. Allman, -Me Reference Manual. Groff source format. Available with
groff source.

12. Jeffrey Copeland and Jeffrey Haemer, Jeffre ys Copeland & Haemer’s “Work”
Columns, http://www.alumni.caltech.edu/˜copeland/work. Mis-

1920 cellaneous take-offs on UNIX and groff. Some of them should make interesting
reading for the groff enthusiast.

13. Brian W. Kernighan and Rob Pike, “CHAPTER 3 Using the Shell” in The UNIX
Programming Environment, p. 94, Prentice Hall of India Private Limited, New
Delhi (1987).

14. Brian W. Kernighan, PIC—A Graphics Language for Typesetting (Revised User
Manual), http://netlib.bell-labs.com/cm/cs/cstr/116.ps.gz.
Postscript format.

15. Eric S Raymond, Making Pictures with GNU PIC,
http://www.kohala.com/start/troff/gpic.raymond.ps.

1930 Postscript format.

-57-

16. W. Richard Stevens, Examples of pic Macros.,
http://www.kohala.com/start/troff/troff.html. The pic
macros that Stevens used to write his books such as UNIX Network Programming
and TCP/IP Illustrated. Postscript format.

17. W. Richard Stevens, Turning PIC Into HTML,
http://www.kohala.com/start/troff/troff.html. Programs and
scripts to convert pic into HTML. Postscript format.

18. Lorinda L. Cherry and M. E. Lesk, Tbl—A Program to Format Tables,
http://cm.bell-labs.com/cm/cs/doc/76/tbl.ps.gz. Postscript

1940 format.

19. Brian W. Kernighan and Lorinda L. Cherry, A System for Typesetting Mathematics,
www.kohala.com/start/troff/v7man/eqn/cacm.ps. Postscript for-
mat.

20. Brian W. Kernighan and Lorinda L. Cherry, Typesetting Mathematics, User’s Guide
(Second Edition),
http://www.kohala.com/start/troff/v7man/eqn/eqn2e.ps.
Postscript format.

21. M. E. Lesk, Some Applications of Inverted Indices on Unix Systems,
http://www.kohala.com/start/troff/v7man/refer/refer.ps. I

1950 could not locate the article by Bill Tuthill that describes refer. This document is
only partly devoted to refer. Postscript format.

22. J. L. Bentley, L. W. Jelinski, and B. W. Kernighan, “CHEM—A Program for Type-
setting Chemical Structure Diagrams,” Computers and Chemistry, http://netlib.bell-
labs.com/cm/cs/cstr/122.ps.gz, Bell Labs (April 1986.). Another “small language”,
that is useful for drawing molecular structures of chemicals. In Postscript.

23. J.L. Bentley, B.W. Kernighan, and Tools for Printing Indexes,
http://netlib.bell-labs.com/cm/cs/cstr/128.ps.gz, Bell Labs
(October 1986). A set of tools to work with troff and print indexes of docu-
ments. Postscript.

1960 24. Michael Haardt, Style and Diction, http://www.gnu.org/software/dic-
tion/diction.html. Diction and style are two standard UNIX commands.
Diction identifies wordy and commonly misused phrases. Style analyses surface
characteristics of a document, including sentence length and other readability mea-
sures.

25. Ralph Corderoy, Publications that use troff,
http://troff.org/pubs.html. This webpage lists about 50 publications
that use troff. The list includes books writeen by people from Bell Labs (naturally),
as well as, among others, W. Richard Stevens.

