REPORT ON ANNUAL GROUNDWATER MONITORING, 2008 SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

for

The Boeing Company,
National Aeronautics and Space Administration (NASA),
and
U.S. Department of Energy (DOE)
Canoga Park, California

by

Haley & Aldrich, Inc.

Tucson, Arizona

Lawrence P. Smith, P.G.

Executive Vice President/COO

California Professional Geologist No. 3944

Kurt J. Blust, P.G.

Vice President

California Professional Geologist No. 4828

Laura A. Davis, P.G.

Jaura a. Davis

Senior Hydrogeologist

California Professional Geologist No. 8334

File No. 32600/05/10/M497 27 February 2009

TABLE OF CONTENTS

			Page
	OF TAE		ii iii
1.	INTRO	ODUCTION	1
	1.1	Report Organization	2
2.		JNDWATER MONITORING	3
	2.1	Groundwater Elevations and Flow Conditions 2.1.1 Near-Surface Groundwater	3
		2.1.2 Chatsworth Formation	4
		2.1.2.1 Groundwater Elevations and Flow Conditions	4
	2.2	Groundwater Quality Results	6
		2.2.1 Near-Surface Groundwater	9
		2.2.1.1 LUFT Program	10
		2.2.1.2 Evaluation Monitoring Program/Interim Corrective	
		Action Program	10
		2.2.1.3 Point of Compliance Program	11
		2.2.1.4 Near-Surface Groundwater Radiochemistry Analyses	12
		2.2.1.5 Other Monitoring	14
2		2.2.2 Chatsworth Formation	22
		2.2.2.1 LUFT Program	23
		2.2.2.2 Detection Monitoring Program	24
		2.2.2.3 Evaluation Monitoring Program/Interim Corrective	20
		Action Program	26
		2.2.2.4 Chatsworth Formation Operable Unit Constituents of Concern Analyses	28
		2.2.2.5 Monitoring of Perimeter Wells and Private Off-Site	20
		Wells and Springs	31
		2.2.2.6 Point of Compliance Program	33
		2.2.2.7 Chatsworth Formation Radiochemistry Analyses	33
		2.2.2.8 Other Monitoring	36
		2.2.3 Appendix IX Sampling	41
		2.2.3.1 Data Validation	41
		2.2.3.2 Analytical Results	42
		2.2.4 Perchlorate Characterization Sampling	43
		2.2.4.1 Monitoring	44
		2.2.4.2 Perchlorate Results	45
		2.2.4.3 Bromide Results	45
		2.2.4.4 General Mineral Results	46
		2.2.4.5 Stable Isotope Results	46
		2.2.5 Results of Fourth Quarter 2008 Verification Sampling	46
		2.2.6 Proposed First Quarter 2009 Groundwater Monitoring Schedule	47
3.	REMI	EDIAL SYSTEMS	49
	3.1	Remedial Systems Activities	49
4.	SURF	ACE WATER DISCHARGE	50
REFE	RENCE	ES.	51

TABLE OF CONTENTS (Continued)

TABLES

FIGURES

APPENDIX A - Water Level Hydrographs

APPENDIX B - Groundwater Monitoring Schedule

APPENDIX C - Monitor Well and Piezometer Construction Data

APPENDIX D - Quality Assurance Assessment

APPENDIX E - Results of Radiological Analyses

Investigation, 2008

APPENDIX F - Constituents of Concern and Perchlorate Concentration versus Time Plots

APPENDIX G - Surface Water Discharge and Permitted Groundwater Remediation

Systems

LIST OF TABLES

Table No. Title I. Summary of Annual Rainfall Measured at the Santa Susana Field Laboratory, 1960-2008 II. Summary of Water Level Data, 2008 III. Summary of Results for Volatile Organic Compounds in Shallow Wells and Piezometers, 2008 IV. Summary of Results for Volatile Organic Compounds in Chatsworth Formation Wells, 2008 V. Summary of Analyses for Fuel Hydrocarbons, 2008 VI. Summary of Analyses for Radionuclides, 2008 VII. Summary of Analyses for Metals and Cyanide, 2008 VIII. Summary of Analyses for Semi-Volatile Organic Constituents, 2008 IX. Summary of Analyses for Perchlorate, 2008 X. Summary of Analyses for Appendix IX Constituents, 2008 XI. Summary of Analyses for Constituents of Concern and Perchlorate, 2008 XII. Summary of Analyses for Inorganic Constituents, 2008 XIII. Summary of Analyses for Dioxins/Furans, Chlorinated Pesticides, and Polychlorinated Biphenyls, 2008 XIV. Summary of Analyses for Hydrazines and Surfactants, RCRA Facility

XV.	Summary of Extraction Well Water Levels and Flow Rates, 2008
XVI.	Summary of Groundwater Extractions for Permitted Groundwater Remediation Facilities, 2008
XVII.	Summary of Water Quality Results for Permitted Groundwater Remediation Facilities, 2008

LIST OF FIGURES

Figure No.	Title
1.	Facility Location Map
2.	Locations of Wells, Springs, and Groundwater Reclamation Components
3.	Locations of Piezometers
4.	Chatsworth Formation Water Elevation Contour Map - October 2008
5.	Geologic Map
6.	Maximum Concentration of Trichloroethene in Near-Surface Groundwater, 2008
7.	Maximum Concentration of cis-1,2-Dichloroethene in Near-Surface Groundwater, 2008
8.	Maximum Concentration of Trichloroethene in Chatsworth Formation Groundwater, 2008
9.	Maximum Concentration of cis-1,2-Dichloroethene in Chatsworth Formation Groundwater, 2008
10.	Maximum Concentration of 1,1-Dichloroethene in Groundwater, 2008
11.	Maximum Concentration of trans-1,2-Dichloroethene in Groundwater, 2008
12.	Maximum Concentration of Tetrachloroethene in Groundwater, 2008
13.	Maximum Concentration of 1,4-Dioxane in Groundwater, 2008
14.	Maximum Concentration of Perchlorate in Groundwater, 2008
15.	Maximum Concentration of N-Nitrosodimethylamine (NDMA) in Groundwater, 2008
16.	Maximum Concentration of Chloroform in Groundwater, 2008
17.	Maximum Concentration of Carbon Tetrachloride in Groundwater, 2008

18.	Maximum Concentration of Benzene in Groundwater, 2008
19.	Maximum Concentration of Toluene in Groundwater, 2008
20.	Maximum Concentration of Ethylbenzene in Groundwater, 2008
21.	Maximum Concentration of m- & p-Xylenes in Groundwater, 2008
22.	Maximum Concentration of o-Xylene in Groundwater, 2008
23.	Maximum Concentration of 1,1-Dichloroethane in Groundwater, 2008
24.	Maximum Concentration of 1,2-Dichloroethane in Groundwater, 2008
25.	Maximum Concentration of Methylene Chloride in Groundwater, 2008
26.	Maximum Concentration of 1,1,1-Trichloroethane in Groundwater, 2008
27.	Maximum Concentration of 1,1,2-Trichloroethane in Groundwater, 2008
28.	Maximum Concentration of Vinyl Chloride in Groundwater, 2008
29.	Maximum Concentration of Methyl Ethyl Ketone in Groundwater, 2008
30.	Maximum Concentration of Acetone in Groundwater, 2008
31.	Maximum Concentration of Trichlorofluoromethane in Groundwater, 2008
32.	Maximum Concentration of 1,1,2-Trichloro-1,2,2-Trifluoroethane in Groundwater, 2008
33.	Maximum Concentration of Ammonia as Nitrogen in Groundwater, 2008
34.	Maximum Concentration of Fluoride in Groundwater, 2008
35.	Maximum Concentration of Formaldehyde in Groundwater, 2008
36.	Maximum Concentration of Nitrate as NO ₃ in Groundwater, 2008
37.	Location of Wells Sampled for Appendix IX Constituents during 2008
38.	Detected Inorganic Results for Appendix IX Samples, 2008
39.	Detected Organic Results for Appendix IX Samples, 2008
40	Location of Referenced Site Features

LIST OF ACRONYMS AND ABBREVIATIONS

ASU air stripping unit

CCR California Code of Regulations
CFOU Chatsworth Formation Operable Unit

1,1-DCA1,1-dichloroethane1,1-DCE1,1-dichloroethenecis-1,2-DCEcis-1,2-dichloroetheneCOCconstituent of concern

DMR Discharge Monitoring Reports

DPH (California) Department of Public Health

DTSC (California) Department of Toxic Substances Control

EFH extractable fuel hydrocarbons

EPA (United States) Environmental Protection Agency FLUTe Flexible Liner Underground Technologies, LLC

FSDF Former Sodium Disposal Facility

GWRC Groundwater Resources Consultants, Inc.

K-40 potassium-40

LC liquid chromatography

LCS/LCSD laboratory control sample/laboratory control sample duplicate

LUFT leaking underground fuel tank
MCL maximum contaminant level
MDA minimum detectable activity
MDL method detection limit
mg/L milligrams per liter
MS mass spectrometry

MS/MSD matrix spike/matrix spike duplicate

MSL mean sea level

NDMA n-nitrosodimethylamine

NL notification level

NPDES National Pollutant Discharge Elimination System

PCB polychlorinated biphenyl
PCE tetrachloroethene
pCi/L picoCuries per liter
parts per thousand
pg/L picograms per liter

QAPP Quality Assurance Project Plan QA/QC quality assurance and quality control

Ra-226 radium-226 Ra-228 radium-228

RAL regulatory action level

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation
RPD replicate percent difference
SAP Sampling and Analysis Plan
SDG sample delivery group
SDWA Safe Drinking Water Act
SSFL Santa Susana Field Laboratory

SMCL secondary maximum contaminant level

SMOU Surficial Media Operable Unit

Sr-90 strontium-90

LIST OF ACRONYMS AND ABBREVIATIONS

(continued)

SVOC semi-volatile organic compound
2,3,7,8-TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
2,3,7,8-TCDD TEQ 2,3,7,8-TCDD toxic equivalency

TCE trichloroethene

trans-1,2-DCE trans-1,2-dichloroethene
TEQ toxic equivalency
micrograms per liter
U-233/234 uranium-235/234
U-235 uranium-235

U-235 uranium-235 U-238 uranium-238 UV ultra-violet

VOC volatile organic compound

V-SMOW Vienna Standard Mean Ocean Water

TABLE I
SUMMARY OF ANNUAL RAINFALL
MEASURED AT THE SANTA SUSANA FIELD LABORATORY, 1960-2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Water Year Ending in	Precipitation (inches)	Water Year Ending in	Precipitation (inches)
1960	10.52	1985	9.64
1961	6.18	1986	23.55
1962	24.79	1987	6.27
1963	13.74	1988	17.75
1964	9.96	1989	9.46
1965	16.06	1990	8.38
1966	27.18	1991	15.10
1967	23.99	1992	32.21
1968	19.54	1993	36.23
1969	32.11	1994	12.52
1970	11.81	1995	29.91
1971	16.79	1996	21.81
1972	8.68	1997	15.44
1973	20.69	1998	41.24
1974	16.11	1999	8.84
1975	16.58	2000	12.07
1976	10.99	2001	17.52
1977	13.91	2002	5.70
1978	40.06	2003	25.20
1979	22.96	2004	15.01
1980	28.61	2005	28.58
1981	16.25	2006	21.97
1982	12.11	2007	5.55
1983	40.93	2008	15.91
1984	9.50		

Average Annual Precipitation (1960-2008) = 18.49 Inches

NOTE: Precipitation reported annually for the period of October through September.

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
Piezometers					
PZ-001C	04/28/08	1768.50	Dry		
PZ-001C	08/04/08	1768.50	Dry		
PZ-001D	04/28/08	1768.50	24.22	1744.28	
PZ-001D	08/04/08	1768.50	Dry		
PZ-001E	04/28/08	1768.50	24.02	1744.48	
PZ-001E	08/04/08	1768.50	Dry		
PZ-001F	04/28/08	1768.50	24.05	1744.45	
PZ-001F	08/04/08	1768.50	Dry		
PZ-001G	04/28/08	1768.50	Dry		
PZ-003	01/29/08	1897.85	Dry		
PZ-003	04/25/08	1897.85	Dry		
PZ-003	08/14/08	1897.85	Dry		
PZ-003	10/21/08	1897.85	Dry		
PZ-005	01/28/08	1800.97	18.82	1782.15	
PZ-005	05/09/08	1800.97	16.38	1784.59	
PZ-005	07/30/08	1800.97	18.21	1782.76	
PZ-006A	01/28/08	1765.82	0.56	1765.26	
PZ-006A	04/25/08	1765.82	Dry		
PZ-006A	08/04/08	1765.82	Dry		
PZ-006A	10/27/08	1765.82	Dry		
PZ-006B	01/28/08	1765.82	10.94	1754.88	
PZ-006B	04/25/08	1765.82	8.81	1757.01	
PZ-006C	01/28/08	1765.82	8.77	1757.05	
PZ-006C	04/25/08	1765.82	7.59	1758.23	
PZ-006C	08/04/08	1765.82	Dry		
PZ-006C	10/27/08	1765.82	Dry		
PZ-006D	01/28/08	1765.82	4.96	1760.86	
PZ-006D	04/25/08	1765.82	7.53	1758.29	
PZ-006D	08/04/08	1765.82	Dry		
PZ-006D	10/27/08	1765.82	Dry		
PZ-006E	01/28/08	1765.82	Dry		
PZ-006E	04/25/08	1765.82	8.32	1757.50	
PZ-006E	08/04/08	1765.82	Dry		
PZ-006E	10/27/08	1765.82	Dry		
PZ-006F	01/28/08	1765.82	0.20	1765.62	
PZ-006G	01/28/08	1765.82	0.20	1765.62	
PZ-007D	04/28/08	1771.84	25.02	1746.82	
PZ-007E	04/28/08	1771.84	24.96	1746.88	
PZ-007F	04/28/08	1771.84	25.06	1746.78	
PZ-007G	04/28/08	1771.84	Dry		
PZ-009B	08/04/08	1761.44	Dry		
PZ-009B	04/28/08	1761.44	17.86	1743.58	
PZ-009D	04/28/08	1761.44	18.09	1743.35	
PZ-009D	08/04/08	1761.44	Dry		
PZ-009D PZ-009E	04/28/08	1761.44	18.27	1743.17	
PZ-009E	08/04/08	1761.44	Dry	17 HO. 17	
PZ-009E PZ-009F	04/28/08	1761.44	17.43	1744.01	
PZ-009F PZ-009F	08/04/08	1761.44 1761.44	Dry	1744.01	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
PZ-010D	04/28/08	1767.80	22.32	1745.48	
PZ-010E	04/28/08	1767.80	22.30	1745.50	
PZ-010F	04/28/08	1767.80	22.79	1745.01	
PZ-010G	05/22/08	1767.80	23.09	1744.71	
PZ-016A	01/29/08	1854.34	Dry		
PZ-016A	04/28/08	1854.34	Dry		
PZ-016A	08/04/08	1854.34	Dry		
PZ-016A	10/24/08	1854.34	Dry		
PZ-016B	01/29/08	1854.34	UTM		(*)
PZ-016B	04/28/08	1854.34	Dry		()
PZ-016B	08/04/08	1854.34	Dry		
PZ-016B	10/24/08	1854.34	Dry		
PZ-016C	01/29/08	1854.34	Dry		
2-016C 2-016C	04/28/08	1854.34	Dry		
					
Z-016C	08/04/08	1854.34	Dry		
2Z-016C	10/24/08	1854.34	Dry		
Z-016D	01/29/08	1854.34	Dry		
Z-016D	04/28/08	1854.34	Dry		
Z-016D	08/04/08	1854.34	Dry		
Z-016D	10/24/08	1854.34	Dry		
² Z-016E	01/29/08	1854.34	Dry		
Z-016E	04/28/08	1854.34	48.45	1805.89	
Z-016E	08/04/08	1854.34	Dry		
Z-016E	10/24/08	1854.34	Dry		
² Z-016F	01/29/08	1854.34	UTM		(*)
Z-016F	04/28/08	1854.34	Dry		
Z-016F	08/04/08	1854.34	Dry		
Z-016F	10/24/08	1854.34	Dry		
Z-016G	01/29/08	1854.34	UTM		(*)
Z-016G	04/28/08	1854.34	Dry		
Z-016G	08/04/08	1854.34	Dry		
Z-016G	10/24/08	1854.34	Dry		
Z-019	04/28/08	1776.77	28.65	1748.12	
Z-020	04/28/08	1776.44	28.15	1748.29	
Z-021	10/28/08	1759.26	UTM		(*)
Z-022	04/28/08	1774.44	27.07	1747.37	()
PZ-023	01/28/08	1758.96	5.59	1753.37	
Z-023	04/25/08	1758.96	13.92	1745.04	
PZ-023	07/31/08	1758.96	Dry		
Z-023 Z-023	10/27/08	1758.96	Dry		
PZ-023	01/28/08	1770.30	Dry		
Z-024 Z-024	04/25/08	1770.30	20.97	1749.33	
PZ-024	07/31/08	1770.30	22.82	1747.48	
PZ-024	10/27/08	1770.30	21.42	1748.88	
Z-025	01/28/08	1780.27	21.34	1758.93	
PZ-025	04/25/08	1780.27	16.15	1764.12	
Z-025	07/31/08	1780.27	18.90	1761.37	
PZ-025	10/27/08	1780.27	20.59	1759.68	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
PZ-026	01/28/08	1755.75	7.04	1748.71	
PZ-026	04/24/08	1755.75	10.60	1745.15	
PZ-026	08/01/08	1755.75	19.28	1736.47	
PZ-026	10/27/08	1755.75	22.65	1733.10	
PZ-027	01/28/08	1773.06	12.95	1760.11	
PZ-027	04/25/08	1773.06	14.78	1758.28	
PZ-027	07/31/08	1773.06	17.80	1755.26	
PZ-027	10/27/08	1773.06	19.75	1753.31	
PZ-028	01/28/08	1788.47	Dry		
PZ-028	04/25/08	1788.47	32.21	1756.26	
PZ-028	07/31/08	1788.47	34.52	1753.95	
PZ-028	10/27/08	1788.47	34.98	1753.49	
PZ-041	01/28/08	1809.10	Dry		
PZ-041	04/25/08	1809.10	9.88	1799.22	
PZ-041	07/31/08	1809.10	12.43	1796.67	
PZ-045	01/28/08	1828.55	30.11	1798.44	
PZ-045	04/28/08	1828.55	39.21	1789.34	
PZ-046	01/28/08	1826.87	Dry		
PZ-046	04/28/08	1826.87	35.73	1791.14	
PZ-047	01/28/08	1835.51	38.19	1797.32	
PZ-047	04/28/08	1835.51	37.48	1798.03	
PZ-049	07/31/08	1884.75	Dry		
PZ-050	01/28/08	1765.50	6.86	1758.64	
PZ-050	04/24/08	1765.50	9.34	1756.16	
PZ-050	07/31/08	1765.50	Dry		
PZ-050	10/22/08	1765.50	Dry		
PZ-056	01/28/08	1805.86	25.24	1780.62	
PZ-056	04/25/08	1805.86	Dry	1700.02	
PZ-056		1805.86			
PZ-056 PZ-056	07/30/08 10/22/08	1805.86	Dry Dry		
PZ-060	07/31/08	1868.90	Dry		
PZ-062	01/29/08	1716.57	Dry		
PZ-062	04/28/08	1716.57	Dry		
PZ-062	07/30/08	1716.57	Dry		
PZ-062	10/27/08	1716.57	Dry		
PZ-067A	01/29/08	1909.66	Dry	4007.50	
PZ-067A	04/24/08	1909.66	42.16	1867.50	
PZ-067A	07/30/08	1909.66	Dry		
PZ-067A	10/21/08	1909.66	Dry		
PZ-067B	01/29/08	1909.06	Dry		
PZ-067B	04/24/08	1909.06	61.79	1847.27	
PZ-067B	07/30/08	1909.06	Dry		
PZ-067B	10/21/08	1909.06	Dry		
PZ-068	01/29/08	1894.02	Dry		
PZ-068	04/24/08	1894.02	Dry		
PZ-068	08/04/08	1894.02	Dry		
PZ-068	10/21/08	1894.02	Dry		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
PZ-072	01/31/08	1768.19	UTM		(*)
PZ-072	04/24/08	1768.19	UTM		(*)
PZ-072	08/01/08	1768.19	UTM		(*)
PZ-074	01/29/08	1772.73	8.24	1764.49	,
PZ-075	01/29/08	1893.10	Dry		
PZ-075	04/25/08	1893.10	46.03	1847.07	
PZ-075	08/04/08	1893.10	Dry		
PZ-075	10/22/08	1893.10	Dry		
PZ-095	01/29/08	1760.02	Dry		
PZ-095	04/28/08	1760.02	Dry		
PZ-102	01/28/08	1827.78	Dry		
PZ-102	04/24/08	1827.78	Dry		
PZ-102	07/31/08	1827.78	Dry		
PZ-102	10/21/08	1827.78	60.51	1767.27	
PZ-103	01/28/08	1815.93	23.62	1792.31	
PZ-103	04/25/08	1815.93	23.57	1792.36	
PZ-103	07/31/08	1815.93	25.31	1790.62	
PZ-103	10/22/08	1815.93	26.27	1789.66	
PZ-104	10/22/08	1797.47	23.18	1774.29	
PZ-105	01/28/08	1803.87	19.52	1784.35	
PZ-105	04/24/08	1803.87	15.26	1788.61	
PZ-105	08/04/08	1803.87	16.99	1786.88	
PZ-105 PZ-105	10/22/08	1803.87	18.18	1785.69	
PZ-105				1772.14	
	01/28/08	1784.17	12.03		
PZ-106	04/25/08	1784.17	14.22	1769.95	
PZ-106	07/29/08	1784.17	16.80	1767.37	
PZ-108	01/28/08	1809.36	14.21	1795.15	
PZ-108	04/25/08	1809.36	11.06	1798.30	
PZ-108	07/31/08	1809.36	13.52	1795.84	
PZ-108	10/21/08	1809.36	15.48	1793.88	
PZ-109	01/28/08	1809.51	17.29	1792.22	
PZ-109	04/25/08	1809.51	16.24	1793.27	
PZ-109	07/31/08	1809.51	16.20	1793.31	
PZ-109	10/21/08	1809.51	16.49	1793.02	
PZ-114	01/28/08	1818.19	48.11	1770.08	
PZ-114	04/25/08	1818.19	47.40	1770.79	
PZ-114	08/04/08	1818.19	47.46	1770.73	
PZ-114	10/29/08	1818.19	Dry		
PZ-116	04/24/08	1763.01	23.80	1739.21	
PZ-116	08/04/08	1763.01	32.00	1731.01	
PZ-116	10/21/08	1763.01	Dry		
PZ-117	01/29/08	1845.90	Dry		
PZ-117	04/28/08	1845.90	21.61	1824.29	
PZ-117	08/01/08	1845.90	23.81	1822.09	
PZ-117	10/27/08	1845.90	25.19	1820.71	
PZ-120	10/21/08	1810.96	20.02	1790.94	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
PZ-121	02/20/08	1808.98	21.67	1787.31	
PZ-121	04/25/08	1808.98	19.63	1789.35	
PZ-121	07/31/08	1808.98	19.30	1789.68	
PZ-121	10/22/08	1808.98	20.29	1788.69	
PZ-122	07/29/08	1810.80	17.95	1792.85	
PZ-122	10/21/08	1810.80	20.18	1790.62	
PZ-124	01/28/08	1764.11	Dry		
PZ-124	04/25/08	1764.11	Dry		
PZ-124	07/31/08	1764.11	Dry		
PZ-124	10/21/08	1764.11	27.8	1736.31	
PZ-125	04/28/08	1783.91	33.71	1750.20	
PZ-125	08/04/08	1783.91	Dry		
PZ-127	01/29/08	1877.19	66.52	1810.67	
PZ-127	04/28/08	1877.19	64.92	1812.27	
PZ-127	08/04/08	1877.19	65.51	1811.68	
PZ-127	10/24/08	1877.19	66.09	1811.10	
PZ-145	10/27/08	1767.29	Dry		
Shallow Wells			<u> </u>		
ECL-FD	02/26/08	1525.00	4.17	1520.83	
ECL-FD	04/24/08	1525.00	6.08	1518.92	
ECL-FD	07/31/08	1525.00	Dry		
ECL-FD	10/27/08	1525.00	Dry		
ECL-Sump	01/30/08	1511.00	3.17	1507.83	
ECL-Sump	04/24/08	1511.00	7.72	1503.28	
ECL-Sump	07/31/08	1511.00	9.09	1501.91	
ECL-Sump	10/27/08	1511.00	Dry		
ES-01	01/31/08	1782.20	19.60	1762.60	
ES-01	04/25/08	1782.20	17.28	1764.92	
ES-01	07/29/08	1782.20	19.20	1763.00	
ES-01	10/27/08	1782.20	21.23	1760.97	
ES-02	01/30/08	1814.60	Dry		
ES-02	04/25/08	1814.60	8.41	1806.19	
ES-02	07/29/08	1814.60	Dry		
ES-02	10/21/08	1814.60	Dry		
ES-03	01/30/08	1783.39	22.80	1760.59	
ES-03	04/25/08	1783.39	18.36	1765.03	
ES-03	07/29/08	1783.39	20.39	1763.00	
ES-03	10/21/08	1783.39	22.69	1760.70	
ES-04	01/30/08	1817.24	14.21	1803.03	
ES-04	04/24/08	1817.24	7.73	1809.51	
ES-04	07/29/08	1817.24	13.14	1804.10	
ES-04	10/21/08	1817.24	Dry		
ES-05	01/31/08	1818.13	6.19	1811.94	
ES-05	04/24/08	1818.13	7.33	1810.80	
ES-05	07/29/08	1818.13	12.65	1805.48	
ES-05	10/21/08	1818.13	Dry		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
ES-06	01/30/08	1825.41	15.76	1809.65	
ES-06	04/24/08	1825.41	11.17	1814.24	
ES-06	07/29/08	1825.41	16.43	1808.98	
ES-06	10/21/08	1825.41	22.40	1803.01	
ES-07	01/30/08	1826.53	22.41	1804.12	
ES-07	04/24/08	1826.53	22.80	1803.73	
ES-07	07/29/08	1826.53	Dry		
ES-07	10/21/08	1826.53	Dry		
ES-08	01/30/08	1826.60	10.69	1815.91	
ES-08	04/24/08	1826.60	23.36	1803.24	
ES-08	07/29/08	1826.60	Dry		
ES-08	10/24/08	1826.60	Dry		
ES-09	01/30/08	1827.80	Dry		
ES-09	04/24/08	1827.80	11.08	1816.72	
ES-09	07/29/08	1827.80	Dry	1010.72	
ES-09	10/21/08	1827.80	Dry		
ES-10	01/30/08	1829.46	Dry		
ES-10	04/24/08	1829.46	12.46	1817.00	
ES-10					
ES-10	07/29/08 10/21/08	1829.46 1829.46	20.81 Dry	1808.65	
ES-11	01/30/08		17.72	1817.35	
ES-11	04/24/08	1835.07	25.41	1809.66	
		1835.07		1009.00	
ES-11	07/29/08	1835.07	Dry		
ES-11	10/21/08	1835.07	Dry	4024.00	
ES-12	01/30/08	1838.19	6.3	1831.89	
ES-12	04/24/08	1838.19	15.72	1822.47	
ES-12	07/30/08	1838.19	23.80	1814.39	
ES-12	10/24/08	1838.19	Dry	470444	
ES-13	01/30/08	1782.58	18.47	1764.11	
ES-13	04/25/08	1782.58	15.83	1766.75	
ES-13	07/29/08	1782.58	17.44	1765.14	
ES-13	10/21/08	1782.58	19.25	1763.33	
ES-14	01/29/08	1728.69	Dry	4700.00	
ES-14	04/24/08	1728.69	19.00	1709.69	
ES-14	08/01/08	1728.69	21.96	1706.73	
ES-14	10/22/08	1728.69	Dry		
ES-15	01/29/08	1730.21	Dry	4700.40	
ES-15	04/24/08	1730.21	21.08	1709.13	
ES-15	08/01/08	1730.21	24.51	1705.70	
ES-15	10/24/08	1730.21	Dry		
ES-16	01/29/08	1737.90	Dry		
ES-16	04/24/08	1737.90	20.99	1716.91	
ES-16	08/01/08	1737.90	24.22	1713.68	
ES-16	10/22/08	1737.90	Dry		
ES-17	01/29/08	1739.31	19.67	1719.64	
ES-17	04/24/08	1739.31	14.43	1724.88	
ES-17	08/01/08	1739.31	20.30	1719.01	
ES-17	10/22/08	1739.31	26.06	1713.25	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
ES-18	01/31/08	1770.25	Dry		
ES-18	04/25/08	1770.25	24.05	1746.20	
ES-18	07/31/08	1770.25	27.05	1743.20	
ES-18	10/23/08	1770.25	Dry		
ES-19	01/31/08	1769.44	23.67	1745.77	
ES-19	04/25/08	1769.44	23.30	1746.14	
ES-19	07/31/08	1769.44	26.29	1743.15	
ES-19	10/23/08	1769.44	Dry		
ES-20	01/31/08	1770.58	Dry		
ES-20	04/25/08	1770.58	Dry		
ES-20	07/31/08	1770.58	Dry		
ES-20	10/23/08	1770.58	Dry		
ES-21	01/31/08	1769.62	24.43	1745.19	
ES-21	04/25/08	1769.62	23.36	1746.26	
ES-21	07/31/08	1769.62	26.25	1743.37	
ES-21	10/23/08	1769.62	28.45	1743.37	
ES-22	01/31/08	1770.93	26.03	1744.90	
ES-22				1744.90	
	04/25/08	1770.93	24.57		
ES-22	07/31/08	1770.93	27.09	1743.84	
ES-22	10/23/08	1770.93	29.55	1741.38	
ES-23	01/30/08	1760.73	7.41	1753.32	
ES-23	04/24/08	1760.73	9.35	1751.38	
ES-23	07/31/08	1760.73	11.01	1749.72	
ES-23	10/22/08	1760.73	12.07	1748.66	
ES-24	01/29/08	1728.67	25.38	1703.29	
ES-24	04/24/08	1728.67	21.81	1706.86	
ES-24	08/01/08	1728.67	24.95	1703.72	
ES-24	10/24/08	1728.67	Dry		
ES-25	01/29/08	1737.78	Dry		
ES-25	04/24/08	1737.78	Dry		
ES-25	08/01/08	1737.78	Dry		
ES-25	10/24/08	1737.78	Dry		
ES-26	01/29/08	1748.01	16.04	1731.97	
ES-26	04/24/08	1748.01	12.13	1735.88	
ES-26	08/01/08	1748.01	18.47	1729.54	
ES-26	10/22/08	1748.01	24.45	1723.56	
ES-27	01/29/08	1740.67	23.66	1717.01	
ES-27	04/24/08	1740.67	14.94	1725.73	
ES-27	09/04/08	1740.67	13.87	1726.80	
ES-27	10/22/08	1740.67	27.59	1713.08	
ES-28	01/30/08	1759.15	7.32	1751.83	
ES-28	04/24/08	1759.15	8.71	1750.44	
ES-28	07/30/08	1759.15	10.15	1749.00	
ES-28	10/22/08	1759.15	11.20	1747.95	
ES-29	01/30/08	1760.47	7.94	1752.53	
ES-29	04/24/08	1760.47	9.56	1750.91	
ES-29	07/30/08	1760.47	11.12	1749.35	
ES-29	10/22/08	1760.47	12.03	1748.44	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
ES-30	01/30/08	1759.51	8.60	1750.91	
ES-30	04/24/08	1759.51	9.43	1750.08	
ES-30	07/30/08	1759.51	9.87	1749.64	
ES-30	10/22/08	1759.51	11.93	1747.58	
ES-31	01/30/08	1787.01	11.90	1775.11	
ES-31	04/25/08	1787.01	12.39	1774.62	
ES-31	07/30/08	1787.01	16.00	1771.01	
ES-31	10/22/08	1787.01	18.11	1768.90	
ES-32	01/29/08	1740.65	20.83	1719.82	
ES-32	04/24/08	1740.65	15.67	1724.98	
ES-32	08/01/08	1740.65	19.64	1721.01	
ES-32	10/22/08	1740.65	Dry		
HAR-02	01/30/08	1886.38	Dry		
HAR-02	04/25/08	1886.38	29.81	1856.57	
HAR-02	08/04/08	1886.38	Dry		
HAR-02	10/21/08	1886.38	Dry		
HAR-03	01/30/08	1875.48	13.75	1861.73	
HAR-03	04/24/08	1875.48	18.65	1856.83	
HAR-03	08/01/08	1875.48	23.57	1851.91	
1AR-03	10/21/08	1875.48	23.37 Dry		
HAR-04	01/30/08	1873.40	17.40	1856.00	
1AR-04 1AR-04	04/24/08	1873.40	18.02	1855.38	
HAR-04	07/30/08 10/21/08	1873.40 1873.40	20.46 22.05	1852.94 1851.35	
HAR-04					
HAR-09	01/30/08	1820.62	4.26	1816.36	
HAR-09	04/21/08	1820.62	8.63	1811.99	
HAR-09	07/31/08	1820.62	12.90	1807.72	
HAR-09	10/23/08	1820.62	15.39	1805.23	
HAR-11	01/30/08	1827.90	15.22	1812.68	
HAR-11	04/24/08	1827.90	14.32	1813.58	
HAR-11	07/31/08	1827.90	17.92	1809.98	
HAR-11	10/23/08	1827.90	21.23	1806.67	/+\
HAR-12	01/30/08	1796.73	UTM		(*)
HAR-12	04/21/08	1796.73	UTM		(*)
HAR-12	08/01/08	1796.73	UTM		(*)
HAR-12	10/23/08	1796.73	17.99	1778.74	
HAR-13	01/30/08	1801.18	18.14	1783.04	
HAR-13	04/21/08	1801.18	16.78	1784.40	
HAR-13	08/01/08	1801.18	UTM		(*)
HAR-13	10/23/08	1801.18	21.87	1779.31	
HAR-14	01/30/08	1797.02	12.72	1784.30	
HAR-14	04/21/08	1797.02	13.31	1783.71	
HAR-14	08/01/08	1797.02	15.87	1781.15	
HAR-14	10/23/08	1797.02	18.03	1778.99	
HAR-15	01/30/08	1809.69	25.46	1784.23	
HAR-15	04/21/08	1809.69	18.35	1791.34	
HAR-15	08/01/08	1809.69	20.99	1788.70	
HAR-15	10/23/08	1809.69	24.28	1785.41	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
HAR-27	01/30/08	1719.39	23.33	1696.06	
HAR-27	04/24/08	1719.39	27.20	1692.19	
HAR-27	07/31/08	1719.39	29.98	1689.41	
HAR-27	10/24/08	1719.39	31.75	1687.64	
HAR-28	01/30/08	1720.17	30.27	1689.90	
HAR-28	04/24/08	1720.17	24.49	1695.68	
HAR-28	07/31/08	1720.17	27.51	1692.66	
HAR-28	10/24/08	1720.17	30.24	1689.93	
HAR-29	01/30/08	1724.13	28.10	1696.03	
HAR-29	04/24/08	1724.13	24.33	1699.80	
HAR-29	07/31/08	1724.13	27.52	1696.61	
HAR-29	10/24/08	1724.13	30.21	1693.92	
HAR-30	01/30/08	1806.47	UTM		(*)
HAR-30	04/21/08	1806.47	17.91	1788.56	. ,
HAR-30	08/01/08	1806.47	UTM		(*)
HAR-30	11/04/08	1806.47	18.38	1788.09	()
HAR-31	01/30/08	1812.45	29.19	1783.26	
HAR-31	04/21/08	1812.45	23.12	1789.33	
HAR-31	08/01/08	1812.45	25.74	1786.71	
HAR-31	10/23/08	1812.45	29.24	1783.21	
HAR-32	01/29/08	1736.58	24.34	1712.24	
HAR-32	04/24/08	1736.58	15.94	1720.64	
HAR-32	08/04/08	1736.58	20.29	1716.29	
HAR-32	10/22/08	1736.58	27.39	1709.19	
HAR-33	01/29/08	1744.66	26.30	1718.36	
HAR-33	04/24/08	1744.66	16.25	1728.41	
HAR-33	08/04/08	1744.66	22.87	1721.79	
HAR-33	10/22/08	1744.66	27.55	1717.11	
HAR-34	01/29/08	1751.17	15.42	1735.75	
HAR-34	04/24/08	1751.17	13.29	1737.88	
HAR-34	08/04/08	1751.17	20.54	1730.63	
HAR-34	10/22/08	1751.17	Dry		
RS-01	01/29/08	1879.68	Dry		
RS-01	04/24/08	1879.68	Dry		
RS-01	08/04/08	1879.68	Dry		
RS-01	10/23/08	1879.68	Dry		
RS-02	01/30/08	1901.08	Dry		
RS-02	04/24/08	1901.08	Dry		
RS-02	08/14/08	1901.08	Dry		
RS-02	10/27/08	1901.08	Dry		
RS-03	01/30/08	1834.22	16.35	1817.87	
RS-03	04/24/08	1834.22	20.16	1814.06	
RS-03	07/29/08	1834.22	Dry		
RS-03	10/21/08	1834.22	Dry		
RS-04	01/30/08	1826.56	Dry		
RS-04	04/24/08	1826.56	23.48	1803.08	
RS-04	07/29/08	1826.56	Dry		
RS-04	10/21/08	1826.56	Dry		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RS-05	01/30/08	1783.73	Dry		
RS-05	04/25/08	1783.73	18.83	1764.90	
RS-05	07/29/08	1783.73	20.79	1762.94	
RS-05	10/21/08	1783.73	Dry		
RS-06	01/31/08	1757.43	Dry		
RS-06	04/25/08	1757.43	Dry		
RS-06	07/30/08	1757.43	Dry		
RS-06	10/27/08	1757.43	Dry		
RS-07	01/31/08	1732.27	2.62	1729.65	
RS-07	04/25/08	1732.27	5.03	1727.24	
RS-07	07/30/08	1732.27	Dry		
RS-07	10/24/08	1732.27	Dry		
RS-08	01/30/08	1821.57	6.06	1815.51	
RS-08	04/21/08	1821.57	8.52	1813.05	
RS-08	07/31/08	1821.57	12.06	1809.51	
RS-08	10/23/08	1821.57		1009.51	
			Dry		
RS-09	01/29/08	1735.52	25.27	1710.25	
RS-09	04/24/08	1735.52	20.90	1714.62	
RS-09	08/01/08	1735.52	Dry		
RS-09	10/22/08	1735.52	Dry		
RS-10	01/30/08	1762.08	Dry		
RS-10	04/24/08	1762.08	Dry		
RS-10	08/04/08	1762.08	Dry		
RS-10	10/24/08	1762.08	Dry		
RS-11	01/30/08	1790.39	Dry		
RS-11	04/25/08	1790.39	12.85	1777.54	
RS-11	07/30/08	1790.39	16.04	1774.35	
RS-11	10/22/08	1790.39	Dry		
RS-12	01/29/08	1727.48	Dry		
RS-12	04/24/08	1727.48	Dry		
RS-12	08/01/08	1727.48	Dry		
RS-12	10/22/08	1727.48	Dry		
RS-13	01/29/08	1645.13	10.62	1634.51	
RS-13	04/24/08	1645.13	21.48	1623.65	
RS-13	07/29/08	1645.13	Dry		
RS-13	10/21/08	1645.13	Dry		
RS-14	01/29/08	1734.78	Dry		
RS-14	04/24/08	1734.78	Dry		
RS-14	08/01/08	1734.78	Dry		
RS-14	10/22/08	1734.78	Dry		
RS-15	01/30/08	1764.86	3.89	1760.97	
RS-15	04/24/08	1764.86	6.68	1758.18	
RS-15			8.94		
RS-15 RS-15	07/30/08 10/22/08	1764.86 1764.86	8.9 4 10.53	1755.92 1754.33	
RS-16	01/29/08	1811.05	16.56	1794.49	
RS-16	04/24/08	1811.05	Dry		
RS-16	07/29/08	1811.05	Dry		
RS-16	10/21/08	1811.05	Dry		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RS-17	01/29/08	1766.52	7.11	1759.41	
RS-17	04/24/08	1766.52	11.04	1755.48	
RS-17	08/01/08	1766.52	13.93	1752.59	
RS-17	10/22/08	1766.52	15.14	1751.38	
RS-18	01/29/08	1802.86	4.08	1798.78	
RS-18	04/24/08	1802.86	8.65	1794.21	
RS-18	07/29/08	1802.86	12.50	1790.36	
RS-18	10/21/08	1802.86	Dry		
RS-19	01/30/08	1812.42	6.30	1806.12	
RS-19	04/25/08	1812.42	10.36	1802.06	
RS-19	07/29/08	1812.42	Dry		
RS-19	10/27/08	1812.42	Dry		
RS-20	01/30/08	1823.77	Dry		
RS-20	04/24/08	1823.77	9.55	 1814.22	
RS-20					
RS-20 RS-20	08/14/08 10/21/08	1823.77 1823.77	15.71	1808.06	
		1767.36	Dry		
RS-21	01/31/08		22.09	1745.27	
RS-21	04/25/08	1767.36	21.80	1745.56	
RS-21	08/04/08	1767.36	24.01	1743.35	
RS-21	10/23/08	1767.36	Dry		
RS-22	01/31/08	1771.23	Dry		
RS-22	04/25/08	1771.23	24.22	1747.01	
RS-22	07/31/08	1771.23	26.15	1745.08	
RS-22	10/23/08	1771.23	28.95	1742.28	
RS-23	01/29/08	1887.25	Dry		
RS-23	04/24/08	1887.25	Dry		
RS-23	07/29/08	1887.25	Dry		
RS-23	10/21/08	1887.25	Dry		
RS-24	01/31/08	1809.24	Dry		
RS-24	04/25/08	1809.24	Dry		
RS-24	07/30/08	1809.24	Dry		
RS-24	10/22/08	1809.24	Dry		
RS-25	01/30/08	1862.71	12.13	1850.58	
RS-25	04/25/08	1862.71	13.95	1848.76	
RS-25	07/30/08	1862.71	14.33	1848.38	
RS-25	10/21/08	1862.71	14.16	1848.55	
RS-27	01/29/08	1804.78	7.04	1797.74	
RS-27	04/25/08	1804.78	Dry		
RS-27	07/29/08	1804.78	Dry		
RS-27	10/21/08	1804.78	Dry		
RS-28	01/30/08	1768.59	14.34	1754.25	
RS-28	04/24/08	1768.59	8.91	1759.68	
RS-28	07/30/08	1768.59	11.65	1756.94	
RS-28	10/21/08	1768.59	13.19	1755.40	
RS-29	01/30/08	1833.09	32.30	1800.79	
RS-29	04/25/08	1833.09	Dry		
RS-29	07/30/08	1833.09	Dry		
RS-29	10/23/08	1833.09	Dry		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RS-30	01/29/08	1909.01	Dry		
RS-30	04/24/08	1909.01	17.96	1891.05	
RS-30	08/04/08	1909.01	19.97	1889.04	
RS-30	10/27/08	1909.01	Dry		
RS-31	01/29/08	1909.03	17.90	1891.13	
RS-31	04/24/08	1909.03	15.91	1893.12	
RS-31	08/04/08	1909.03	Dry		
RS-31	10/22/08	1909.03	Dry		
RS-32	01/29/08	1908.99	4.83	1904.16	
RS-32	04/24/08	1908.99	13.06	1895.93	
RS-32	08/04/08	1908.99	Dry		
RS-32	10/22/08	1908.99	Dry		
RS-54	01/29/08	1846.66	32.19	1814.47	
RS-54	04/24/08	1846.66	22.76	1823.90	
RS-54	08/19/08	1846.66	25.84	1820.82	
RS-54	10/21/08	1846.66	29.41	1817.25	
SH-01	01/30/08	1772.84	6.21	1766.63	
SH-01	04/25/08		6.59	1766.25	
		1772.84			
SH-01	07/31/08	1772.84	Dry		
SH-01	10/24/08	1772.84	Dry	4750.00	
SH-02	01/30/08	1762.76	3.77	1758.99	
SH-02	04/24/08	1762.76	6.41	1756.35	
SH-02	07/31/08	1762.76	9.82	1752.94	
SH-02	10/24/08	1762.76	Dry		
SH-03	01/30/08	1762.53	3.91	1758.62	
SH-03	04/24/08	1762.53	6.28	1756.25	
SH-03	07/31/08	1762.53	9.63	1752.90	
SH-03	10/24/08	1762.53	Dry		
SH-04	01/30/08	1765.08	5.20	1759.88	
SH-04	04/21/08	1765.08	7.82	1757.26	
SH-04	07/31/08	1765.08	11.00	1754.08	
SH-04	10/24/08	1765.08	Dry		
SH-05	01/30/08	1762.97	6.47	1756.50	
SH-05	04/24/08	1762.97	9.78	1753.19	
SH-05	07/31/08	1762.97	Dry		
SH-05	10/24/08	1762.97	Dry		
SH-06	01/30/08	1776.99	4.10	1772.89	
SH-06	04/25/08	1776.99	Dry		
SH-06	07/31/08	1776.99	Dry		
SH-06	10/24/08	1776.99	Dry		
SH-07	01/30/08	1775.11	7.61	1767.50	
SH-07	04/25/08	1775.11	10.79	1764.32	
SH-07	07/31/08	1775.11	Dry		
SH-07	10/27/08	1775.11	Dry		
SH-08	01/30/08	1763.25	5.86	1757.39	
SH-08	04/24/08	1763.25	7.43	1755.82	
SH-08	07/31/08	1763.25	10.80	1752.45	
SH-08	10/24/08	1763.25	Dry		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
SH-09	01/30/08	1761.19	3.94	1757.25	
SH-09	04/24/08	1761.19	6.72	1754.47	
SH-09	07/31/08	1761.19	Dry		
SH-09	10/24/08	1761.19	Dry		
SH-10	01/30/08	1757.69	3.76	1753.93	
SH-10	04/24/08	1757.69	Dry		
SH-10	08/01/08	1757.69	Dry		
SH-10	10/27/08	1757.69	Dry		
SH-11	01/30/08	1756.00	8.83	1747.17	
SH-11	04/25/08	1756.00	12.02	1743.98	
SH-11	07/31/08	1756.00	Dry		
SH-11	10/24/08	1756.00	Dry		
SRE-NS-E	07/30/08	1851.41	Dry		
SRE-NS-E	10/21/08	1851.41	Dry		
SRE-NS-N	07/30/08	1852.23	Dry		
SRE-NS-N	10/21/08	1852.23	Dry		
SRE-NS-W	07/30/08	1852.23	Dry		
SRE-NS-W	10/21/08	1852.23	Dry		
Chatsworth Fo		1002.20	Diy		
HAR-01	01/30/08	1874.13	59.00	1815.13	(C)
HAR-01	04/24/08	1874.13	58.05	1816.08	(C)
HAR-01	07/30/08	1874.13	57.85	1816.28	(C)
HAR-01	10/21/08	1874.13	57.65 59.41	1814.72	(C)
HAR-05	01/30/08	1812.65	29.79	1782.86	(0)
HAR-05	04/21/08	1812.65	23.75	1788.90	
HAR-05	08/01/08	1812.65	26.44	1786.21	
HAR-05	10/23/08	1812.65	29.49	1783.16	
HAR-06	01/30/08	1815.03	32.78	1782.25	
HAR-06	04/21/08	1815.03	21.73	1793.30	
HAR-06	08/01/08	1815.03	25.92	1789.11	
HAR-06	10/23/08	1815.03	29.35	1785.68	
HAR-07	01/30/08	1728.38	46.84	1681.54	
HAR-07	04/21/08	1728.38	58.52	1669.86	(0)
HAR-07	08/04/08	1728.38	67.74	1660.64	(C)
HAR-07	10/24/08	1728.38	72.35	1656.03	(C)
HAR-08	01/30/08	1730.75	52.51	1678.24	
HAR-08	04/24/08	1730.75	43.71	1687.04	(0)
HAR-08	08/04/08	1730.75	48.04	1682.71	(C)
HAR-08	10/24/08	1730.75	50.66	1680.09	(C)
HAR-16	01/30/08	1872.31	55.35	1816.96	
HAR-16	04/22/08	1872.31	54.48	1817.83	
HAR-16	07/30/08	1872.31	55.53	1816.78	
HAR-16	10/21/08	1872.31	56.73	1815.58	
HAR-17	01/29/08	1711.59	19.83	1691.76	
HAR-17	04/22/08	1711.59	15.88	1695.71	
HAR-17	08/01/08	1711.59	21.10	1690.49	
HAR-17	10/24/08	1711.59	26.17	1685.42	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
HAR-18	01/29/08	1749.41	26.97	1722.44	
HAR-18	04/24/08	1749.41	20.33	1729.08	
HAR-18	08/01/08	1749.41	22.30	1727.11	(C)
HAR-18	10/22/08	1749.41	25.75	1723.66	(C)
HAR-19	01/30/08	1833.42	190.96	1642.46	,
HAR-19	04/24/08	1833.42	189.60	1643.82	
HAR-19	07/31/08	1833.42	188.93	1644.49	
HAR-19	10/23/08	1833.42	186.61	1646.81	
HAR-20	01/30/08	1830.47	188.06	1642.41	
HAR-20	04/24/08	1830.47	186.65	1643.82	
HAR-20	07/31/08	1830.47	186.26	1644.21	
HAR-20	10/23/08	1830.47	186.51	1643.96	
HAR-21	01/30/08	1821.30	11.88	1809.42	
HAR-21	04/21/08	1821.30	7.95	1813.35	
HAR-21	07/31/08	1821.30	12.21	1809.09	
1AR-21 1AR-21	10/23/08	1821.30	14.93	1806.37	
HAR-22	01/29/08	1816.41	37.31	1779.10	
HAR-22	04/24/08	1816.41	31.21	1785.20	
HAR-22 HAR-22	08/01/08 10/23/08	1816.41 1816.41	33.02 35.73	1783.39 1780.68	
HAR-23	01/30/08	1805.87	25.59	1780.28	
HAR-23	04/21/08	1805.87	20.73	1785.14	(0)
HAR-23	08/01/08	1805.87	24.33	1781.54	(C)
HAR-23	10/23/08	1805.87	25.66	1780.21	(C)
HAR-24	01/30/08	1906.89	89.30	1817.59	
HAR-24	04/25/08	1906.89	89.62	1817.27	
HAR-24	07/30/08	1906.89	90.23	1816.66	
HAR-24	10/21/08	1906.89	99.64	1807.25	
HAR-25	01/30/08	1889.75	70.17	1819.58	
HAR-25	04/24/08	1889.75	69.40	1820.35	
IAR-25	07/30/08	1889.75	70.09	1819.66	
IAR-25	10/21/08	1889.75	71.39	1818.36	
HAR-26	01/30/08	1763.23	20.65	1742.58	
HAR-26	04/24/08	1763.23	17.30	1745.93	
HAR-26	07/31/08	1763.23	23.32	1739.91	
HAR-26	10/24/08	1763.23	25.93	1737.30	
DS-24	01/30/08	1947.30	UTM		(*)
OS-24	04/24/08	1947.30	UTM		(*)
DS-24	07/29/08	1947.30	UTM		(*)
DS-24	10/21/08	1947.30	UTM		(*)
OS-25	01/30/08	2043.58	467.83	1575.75	
OS-25	04/29/08	2043.58	466.82	1576.76	
DS-25	09/09/08	2043.58	465.73	1577.85	
OS-25	10/21/08	2043.58	465.34	1578.24	
DS-26	01/30/08	2080.58	224.59	1855.99	
DS-26	04/29/08	2080.58	224.30	1856.28	
OS-26	08/04/08	2080.58	225.41	1855.17	
DS-26	10/21/08	2080.58	227.34	1853.24	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RD-01	01/29/08	1935.89	202.10	1733.79	
RD-01	04/28/08	1935.89	203.02	1732.87	
RD-01	08/01/08	1935.89	202.51	1733.38	(C)
RD-01	10/27/08	1935.89	203.02	1732.87	(C)
RD-02	01/30/08	1873.92	161.55	1712.37	. ,
RD-02	04/28/08	1873.92	159.15	1714.77	
RD-02	08/04/08	1873.92	157.68	1716.24	
RD-02	10/24/08	1873.92	157.86	1716.06	
RD-03	01/31/08	1743.50	14.55	1728.95	
RD-03	04/25/08	1743.50	12.35	1731.15	
RD-03	07/30/08	1743.50	13.89	1729.61	
RD-03	10/24/08	1743.50	16.62	1726.88	
RD-04	01/30/08	1883.85	289.03	1594.82	
RD-04	04/24/08	1883.85	287.11	1594.82	
RD-04	07/31/08	1883.85	285.30	1598.55	
RD-04 RD-04	10/23/08	1883.85	284.58	1599.27	
RD-04	01/29/08	1704.66	88.66	1616.00	
RD-05A	04/24/08	1704.66	82.70	1621.96	
RD-05A	07/29/08	1704.66	82.52	1622.14	
RD-05A	10/21/08	1704.66	82.54	1622.12	
RD-05B	01/29/08	1705.89	58.05	1647.84	
RD-05B	04/24/08	1705.89	58.37	1647.52	
RD-05B	07/29/08	1705.89	58.84	1647.05	
RD-05B	10/21/08	1705.89	59.52	1646.37	
RD-05C	01/29/08	1705.25	51.72	1653.53	
RD-05C	04/24/08	1705.25	51.49	1653.76	
RD-05C	07/29/08	1705.25	51.42	1653.83	
RD-05C	10/21/08	1705.25	51.07	1654.18	
RD-06	01/29/08	1617.21	50.11	1567.10	
RD-06	04/24/08	1617.21	42.42	1574.79	
RD-06	07/29/08	1617.21	46.22	1570.99	
RD-06	10/21/08	1617.21	48.78	1568.43	
RD-07	01/29/08	1812.82			(1)
RD-07	04/24/08	1812.82			(1)
RD-07	07/29/08	1812.82			(1)
RD-07	10/21/08	1812.82			(1)
RD-08	01/30/08	1763.38	12.22	1751.16	
RD-08	04/24/08	1763.38	13.28	1750.10	
RD-08	07/31/08	1763.38	12.20	1751.18	
RD-08	11/06/08	1763.38	18.51	1744.87	
RD-09	01/31/08	1768.20	25.08	1743.12	
RD-09	04/25/08	1768.20	23.81	1744.39	
RD-09	08/11/08	1768.20	27.14	1741.06	
RD-09	10/27/08	1768.20	29.19	1739.01	
RD-10	01/29/08	1904.43	186.29	1718.14	
RD-10	04/28/08	1904.43	185.04	1719.39	
RD-10	08/01/08	1904.43	185.05	1719.38	
RD-10 RD-10	10/27/08	1904.43	184.31	1719.36	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RD-11	01/30/08	1762.65	18.11	1744.54	
RD-11	04/24/08	1762.65	30.32	1732.33	
RD-11	09/03/08	1762.65	29.48	1733.17	
RD-11	11/06/08	1762.65	40.41	1722.24	
RD-12	01/30/08	1762.62	16.52	1746.10	
RD-12	04/24/08	1762.62	18.91	1743.71	
RD-12	09/03/08	1762.62	29.22	1733.40	
RD-12	10/24/08	1762.62	31.21	1731.41	
RD-13	01/29/08	1840.27	54.44	1785.83	
RD-13	04/24/08	1840.27	55.08	1785.19	
RD-13	07/29/08	1840.27	56.10	1784.17	
RD-13	10/21/08	1840.27	57.26	1783.01	
RD-14	01/30/08	1824.29	75.44	1748.85	
RD-14	04/28/08	1824.29	76.51	1747.78	
RD-14	07/30/08	1824.29	60.91	1763.38	
RD-14	10/22/08	1824.29	77.97	1746.32	
RD-15	01/31/08	1817.70	49.31	1768.39	
RD-15	04/25/08	1817.70	46.06	1771.64	
RD-15	07/30/08	1817.70	47.75	1769.95	
RD-15	10/22/08	1817.70	49.89	1767.81	
RD-16	01/31/08	1808.99	47.37	1761.62	
RD-16	04/25/08	1808.99	45.24	1763.75	
RD-16	07/30/08	1808.99	48.01	1760.98	
RD-16	10/22/08	1808.99	49.75	1759.24	
RD-17	01/30/08	1836.30	28.65	1807.65	
RD-17	04/25/08	1836.30	26.92	1809.38	
RD-17	07/30/08	1836.30	27.74	1808.56	
RD-17	10/22/08	1836.30	29.52	1806.78	
RD-18	01/30/08	1839.49	87.51	1751.98	
RD-18	04/25/08	1839.49	87.38	1752.11	
RD-18	07/29/08	1839.49	86.60	1752.89	
RD-18	10/22/08	1839.49	88.66	1750.83	
RD-19	01/30/08	1853.13	88.86	1764.27	
RD-19	04/25/08	1853.13	76.62	1776.51	
RD-19	07/30/08	1853.13	77.00	1776.13	
RD-19	10/21/08	1853.13	78.62	1774.51	
RD-20	01/29/08	1819.72	44.54	1775.18	
RD-20	04/24/08	1819.72	41.73	1777.99	
RD-20	07/29/08	1819.72	43.80	1775.92	
RD-20	10/21/08	1819.72	44.36	1775.36	
RD-21	01/28/08	1866.96		3.00	(1)
RD-21	04/24/08	1866.96			(1)
RD-21	07/30/08	1866.96			(1)
RD-21	10/21/08	1866.96			(1)
RD-22	01/28/08	1853.41			(1)
RD-22	04/24/08	1853.41			(1)
RD-22	07/30/08	1853.41			(1)
RD-22	10/21/08	1853.41			(1)

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RD-23	01/28/08	1838.19			(1)
RD-23	04/24/08	1838.19			(1)
RD-23	07/30/08	1838.19			(1)
RD-23	10/21/08	1838.19			(1)
RD-24	01/29/08	1809.93	38.40	1771.53	, ,
RD-24	04/25/08	1809.93	39.88	1770.05	
RD-24	07/29/08	1809.93	39.78	1770.15	
RD-24	10/21/08	1809.93	40.45	1769.48	
RD-26	01/31/08	1880.39	106.77	1773.62	
RD-26	04/28/08	1880.39	104.04	1776.35	
RD-26	07/30/08	1880.39	104.87	1775.52	
RD-26	10/27/08	1880.39	104.96	1775.43	
RD-27	03/05/08	1841.67	53.94	1787.73	
RD-27	05/01/08	1841.67	52.72	1788.95	
RD-27	09/04/08	1841.67	54.39	1787.28	
RD-27 RD-27	11/13/08	1841.67	55.08	1786.59	
RD-29	01/29/08	1806.29	12.38	1793.91	
RD-29 RD-29					
	04/25/08	1806.29	13.86	1792.43	
RD-29	07/29/08	1806.29	16.90	1789.39	
RD-29	10/21/08	1806.29	18.94	1787.35	
RD-30	01/30/08	1768.69	14.45	1754.24	
RD-30	04/24/08	1768.69	9.19	1759.50	
RD-30	07/30/08	1768.69	11.30	1757.39	
RD-30	10/21/08	1768.69	13.52	1755.17	41)
RD-31	01/30/08	1945.02	UTM		(*)
RD-31	05/22/08	Survey Pending			(2)
RD-31	07/30/08	Survey Pending			(2)
RD-31	10/22/08	Survey Pending			(2)
RD-32	02/01/08	1808.47	25.81	1782.66	
RD-32	04/25/08	1808.47	26.83	1781.64	
RD-32	08/04/08	1808.47	29.35	1779.12	
RD-32	10/22/08	1808.47	31.50	1776.97	
RD-33A	01/31/08	1792.97			(1)
RD-33A	04/24/08	1792.97			(1)
RD-33A	07/30/08	1792.97			(1)
RD-33A	10/21/08	1792.97			(1)
RD-33B	01/28/08	1793.21	287.41	1505.80	
RD-33B	04/24/08	1793.21	285.87	1507.34	
RD-33B	07/30/08	1793.21	286.50	1506.71	
RD-33B	10/21/08	1793.21	288.38	1504.83	
RD-33C	01/31/08	1793.54	288.33	1505.21	
RD-33C	04/24/08	1793.54	287.85	1505.69	
RD-33C	07/29/08	1793.54	285.60	1507.94	
RD-33C	10/21/08	1793.54	288.69	1504.85	
RD-34A	01/30/08	1761.83	44.12	1717.71	
RD-34A	04/24/08	1761.83	30.91	1730.92	
RD-34A	07/29/08	1761.83	35.77	1736.92	
RD-34A RD-34A	10/21/08	1761.83	35.77 41.06	1720.06	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RD-34B	01/30/08	1762.51	47.51	1715.00	
RD-34B	04/24/08	1762.51	35.87	1726.64	
RD-34B	07/29/08	1762.51	39.33	1723.18	
RD-34B	10/21/08	1762.51	43.54	1718.97	
RD-34C	01/30/08	1762.60	11.50	1751.10	
RD-34C	04/24/08	1762.60	9.43	1753.17	
RD-34C	07/29/08	1762.60	9.75	1752.85	
RD-34C	10/21/08	1762.60	10.11	1752.49	
RD-35A	01/30/08	1908.62	86.09	1822.53	
RD-35A	04/24/08	1908.62	88.01	1820.61	
RD-35A	08/04/08	1908.62	89.45	1819.17	
RD-35A	11/05/08	1908.62	90.13	1818.49	
RD-35B	01/30/08	1905.65	87.97	1817.68	
RD-35B	04/24/08	1905.65	87.73	1817.92	
RD-35B	08/04/08	1905.65	87.97	1817.68	(C)
RD-35B	10/22/08	1905.65	88.20	1817.45	(C)
RD-36A	01/29/08	1913.09	91.60	1821.49	(C)
RD-36A	04/24/08	1913.09	93.40	1819.69	(C)
RD-36A					(C)
RD-36A	08/04/08 10/22/08	1913.09 1913.09	Dry Dry		(C)
RD-36B	01/29/08	1915.26	140.80	1774.46	(0)
RD-36B	04/24/08	1915.26	140.80	1774.46	
RD-36B	07/31/08	1915.26	141.92	1773.34	
RD-36B	10/22/08	1915.26	142.30	1772.96	
RD-36C	01/29/08	1913.82	193.66	1720.16	
RD-36C	04/24/08	1913.82	192.75	1721.07	
RD-36C	07/31/08	1913.82	194.09	1719.73	
RD-36C	10/22/08	1913.82	198.49	1715.33	
RD-36D	01/29/08	1920.08	363.50	1556.58	
RD-36D	04/24/08	1920.08	362.89	1557.19	
RD-36D	07/31/08	1920.08	364.04	1556.04	
RD-36D	10/22/08	1920.08	354.90	1565.18	
RD-37	01/30/08	1870.01	297.85	1572.16	(0)
RD-37	04/24/08	1870.01	273.19	1596.82	(C)
RD-37	08/04/08	1870.01	293.65	1576.36	
RD-37	10/23/08	1870.01	293.35	1576.66	
RD-38A	01/29/08	1879.47	109.49	1769.98	
RD-38A	04/25/08	1879.47	110.02	1769.45	
RD-38A	07/30/08	1879.47	Dry		
RD-38A	11/05/08	1879.47	112.84	1766.63	
RD-38B	01/29/08	1881.45	326.23	1555.22	
RD-38B	04/25/08	1881.45	325.50	1555.95	
RD-38B	09/05/08	1881.45	326.13	1555.32	
RD-38B	10/22/08	1881.45	318.40	1563.05	
RD-39A	01/29/08	1960.23	140.80	1819.43	
RD-39A	04/24/08	1960.23	153.15	1807.08	
RD-39A	07/30/08	1960.23	152.82	1807.41	
RD-39A	10/22/08	1960.23	153.80	1806.43	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RD-39B	01/29/08	1959.48			(***)
RD-39B	04/24/08	1959.48	287.80	1671.68	
RD-39B	07/31/08	1959.48	287.45	1672.03	
RD-39B	10/22/08	1959.48	288.45	1671.03	
RD-40	01/30/08	1972.02	275.76	1696.26	(C)
RD-40	04/25/08	1972.02	273.11	1698.91	(C)
RD-40	08/01/08	1972.02	UTM		(*)
RD-40	10/27/08	1972.02	283.15	1688.87	(C)
RD-41A	01/28/08	1774.48	75.22	1699.26	
RD-41A	04/24/08	1774.48	52.16	1722.32	
RD-41A	08/01/08	1774.48	60.74	1713.74	
RD-41A	10/24/08	1774.48	67.48	1707.00	
RD-41B	01/30/08	1774.71	121.60	1653.11	
RD-41B	04/24/08	1774.71	114.27	1660.44	
RD-41B	08/01/08	1774.71	113.31	1661.40	(C)
RD-41B	10/24/08	1774.71	115.07	1659.64	(C)
RD-41C	01/30/08	1773.73	132.51	1641.22	
RD-41C	04/24/08	1773.73	129.48	1644.25	
RD-41C	08/01/08	1773.73	126.34	1647.39	
RD-41C	10/24/08	1773.73	126.78	1646.95	
RD-42	01/30/08	1945.46	55.26	1890.20	
RD-42	04/25/08	1945.46	49.65	1895.81	
RD-42	08/01/08	1945.46	51.64	1893.82	
RD-42	10/27/08	1945.46	53.35	1892.11	
RD-43A	01/29/08	1680.16	40.88	1639.28	
RD-43A	04/25/08	1680.16	35.33	1644.83	
RD-43A	07/30/08	1680.16	42.95	1637.21	
RD-43A	10/22/08	1680.16	44.05	1636.11	
RD-43B	01/29/08	1680.21	90.05	1590.16	
RD-43B	04/25/08	1680.21	89.59	1590.62	
RD-43B	07/30/08	1680.21	98.90	1581.31	
RD-43B	10/22/08	1680.21	91.81	1588.40	
RD-43C	01/29/08	1679.31	92.65	1586.66	
RD-43C	04/25/08	1679.31	94.16	1585.15	
RD-43C	07/30/08	1679.31	96.20	1583.11	
RD-43C	10/22/08	1679.31	96.41	1582.90	
RD-44	01/31/08	2035.92	400.49	1635.43	
RD-44	04/25/08	2035.92	400.95	1634.97	
RD-44	07/30/08	2035.92	400.97	1634.95	
RD-44	10/21/08	2035.92	400.37	1635.55	
RD-45A	01/30/08	1841.59	247.10	1594.49	(C)
RD-45A	04/24/08	1841.59	242.55	1599.04	(C)
RD-45A	07/30/08	1841.59	242.20	1599.39	(C)
RD-45A	10/21/08	1841.59	242.75	1598.84	(C)
RD-45B	01/30/08	1840.09	247.81	1592.28	(-)
RD-45B	04/24/08	1840.09	245.55	1594.54	
RD-45B	07/30/08	1840.09	269.42	1570.67	
RD-45B	10/21/08	1840.09	243.50	1596.59	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL) Depth to Wa		Static Water Level Elevation (feet above MSL)	Notes	
RD-45C	01/30/08	1835.74	243.30	1592.44		
RD-45C	04/24/08	1835.74	240.57	1595.17		
RD-45C	07/30/08	1835.74	264.95	1570.79		
RD-45C	11/05/08	1835.74	238.99	1596.75		
RD-46A	01/31/08	1806.13	77.81	1728.32		
RD-46A	04/25/08	1806.13	74.31	1731.82		
RD-46A	07/30/08	1806.13	76.04	1730.09		
RD-46A	10/21/08	1806.13	78.60	1727.53		
RD-46B	01/31/08	1807.19	69.97	1737.22		
RD-46B	04/25/08	1807.19	69.78	1737.41		
RD-46B	07/30/08	1807.19	70.36	1736.83		
RD-46B	10/21/08	1807.19	72.15	1735.04		
RD-47	01/31/08	2045.72	454.15	1591.57		
RD-47	04/28/08	2045.72	451.57	1594.15		
RD-47	07/31/08	2045.72	450.13	1595.59		
RD-47	10/27/08	2045.72	449.82	1595.90		
RD-48A	01/31/08	1736.54	90.24	1646.30		
RD-48A	04/25/08	1736.54	103.85	1632.69		
RD-48A		1736.54				
RD-48A	07/29/08 10/21/08	1736.54	105.49 105.44	1631.05 1631.10		
RD-46A RD-48B	01/31/08	1735.40	130.52	1604.88		
				1604.87		
RD-48B	04/25/08	1735.40	130.53			
RD-48B	07/29/08	1735.40	130.34	1605.06		
RD-48B	10/21/08	1735.40	130.64	1604.76		
RD-48C	01/31/08	1734.95	173.93	1561.02		
RD-48C	04/25/08	1734.95	173.48	1561.47		
RD-48C	07/29/08	1734.95	173.23	1561.72		
RD-48C	10/21/08	1734.95	173.49	1561.46		
RD-49A	01/29/08	1867.25	13.42	1853.83		
RD-49A	04/24/08	1867.25	17.89	1849.36		
RD-49A	07/31/08	1867.25	23.69	1843.56	(C)	
RD-49A	10/23/08	1867.25	25.23	1842.02	(C)	
RD-49B	01/29/08	1867.95	225.51	1642.44		
RD-49B	04/24/08	1867.95	224.21	1643.74		
RD-49B	07/31/08	1867.95	223.22	1644.73	(C)	
RD-49B	10/23/08	1867.95	223.32	1644.63	(C)	
RD-49C	01/29/08	1869.45	270.54	1598.91		
RD-49C	04/24/08	1869.45	267.73	1601.72		
RD-49C	07/31/08	1869.45	267.60	1601.85		
RD-49C	10/23/08	1869.45	266.97	1602.48		
RD-50	01/28/08	1914.88			(1)	
RD-50	04/24/08	1914.88			(1)	
RD-50	07/30/08	1914.88			(1)	
RD-50	10/21/08	1914.88			(1)	
RD-51A	01/30/08	1832.51	Dry			
RD-51A	04/25/08	1832.51	249.90	1582.61		
RD-51A	07/30/08	1832.51	Dry			
RD-51A	11/02/08	1832.51	249.57	1582.94		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes
RD-51B	01/30/08	1832.68	252.71	1579.97	
RD-51B	04/25/08	1832.68	250.05	1582.63	
RD-51B	07/30/08	1832.68	250.55	1582.13	
RD-51B	10/23/08	1832.68	248.50	1584.18	
RD-51C	01/30/08	1831.65	239.17	1592.48	
RD-51C	04/25/08	1831.65	237.67	1593.98	
RD-51C	07/30/08	1831.65	236.68	1594.97	
RD-51C	10/23/08	1831.65	235.72	1595.93	
RD-52A	01/29/08	1755.09	127.06	1628.03	
RD-52A	04/28/08	1755.09	Dry		
RD-52A	07/30/08	1755.09	127.15	1627.94	
RD-52A	11/05/08	1755.09	127.05	1628.04	
RD-52A	01/29/08	1712.15	120.20	1591.95	
RD-52B	04/28/08	1712.15	117.92	1594.23	
RD-52B	07/30/08	1712.15	117.09	1594.23	
RD-52B RD-52B	10/23/08	1712.15	117.10	1595.05	
RD-52C	01/29/08	1712.13	117.10	1593.01	
RD-52C RD-52C		1712.83		1593.01	
	04/28/08		118.27		
RD-52C	07/30/08	1712.83	117.34	1595.49	
RD-52C	10/23/08	1712.83	116.75	1596.08	
RD-53	01/29/08	1909.19	140.07	1769.12	
RD-53	04/24/08	1909.19	140.06	1769.13	
RD-53	08/04/08	1909.19	141.43	1767.76	
RD-53	10/22/08	1909.19	142.68	1766.51	
RD-54A	01/28/08	1841.72			(1)
RD-54A	04/24/08	1841.72			(1)
RD-54A	07/30/08	1841.72			(1)
RD-54A	10/21/08	1841.72			(1)
RD-54B	01/29/08	1842.54	246.50	1596.04	
RD-54B	04/24/08	1842.54	247.16	1595.38	
RD-54B	07/29/08	1842.54	232.80	1609.74	
RD-54B	10/21/08	1842.54	245.31	1597.23	
RD-54C	01/29/08	1843.77	224.49	1619.28	
RD-54C	04/24/08	1843.77	224.65	1619.12	
RD-54C	07/29/08	1843.77	224.35	1619.42	
RD-54C	10/21/08	1843.77	226.38	1617.39	
RD-55A	01/29/08	1756.87	13.55	1743.32	
RD-55A	04/28/08	1756.87	17.88	1738.99	
RD-55A	08/01/08	1756.87	26.90	1729.97	(C)
RD-55A	10/22/08	1756.87	32.67	1724.20	(C)
RD-55B	01/29/08	1757.19	51.43	1705.76	ζ-/
RD-55B	04/28/08	1757.19	46.72	1710.47	
RD-55B	08/01/08	1757.19	48.70	1708.49	(C)
RD-55B	10/22/08	1757.19	52.60	1704.59	(C)
RD-56A	02/21/08	1758.62	322.45	1436.17	(0)
RD-56A	04/28/08	1758.62	320.72	1437.90	
RD-56A RD-56A	07/30/08 10/27/08	1758.62 1758.62	321.18 321.42	1437.44 1437.20	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes	
RD-56B	01/30/08	1761.83	182.08	1579.75		
RD-56B	04/28/08	1761.83	179.49	1582.34		
RD-56B	07/30/08	1761.83	179.74	1582.09		
RD-56B	10/27/08	1761.83	179.39	1582.44		
RD-57	01/28/08	1774.15			(1)	
RD-57	04/24/08	1774.15			(1)	
RD-57	07/30/08	1774.15			(1)	
RD-57	10/21/08	1774.15			(1)	
RD-58A	01/29/08	1756.11	81.40	1674.71		
RD-58A	04/24/08	1756.11	78.78	1677.33		
RD-58A	07/30/08	1756.11	78.25	1677.86		
RD-58A	10/22/08	1756.11	80.25	1675.86		
RD-58B	01/29/08	1761.34	105.40	1655.94		
RD-58B	04/24/08	1761.34	101.64	1659.70		
RD-58B	07/30/08	1761.34	101.86	1659.48		
RD-58B	10/22/08	1761.34	103.77	1657.57		
RD-58C	01/29/08	1759.59	121.16	1638.43		
RD-58C	04/24/08	1759.59	117.72	1641.87		
RD-58C	07/30/08	1759.59	117.80	1641.79		
RD-58C	10/22/08	1759.59	118.22	1641.37		
RD-59A	02/21/08	1340.50	UTM		(*)	
RD-59A	05/20/08	1340.50	26.87	1313.63	. ,	
RD-59A	08/14/08	1340.50	27.14	1313.36		
RD-59A	11/13/08	1340.50	27.39	1313.11		
RD-59B	02/21/08	1342.49	UTM		(*)	
RD-59B	05/20/08	1342.49	NM		(**)	
RD-59B	08/14/08	1342.49	-39.27	1381.76	(A)	
RD-59B	11/13/08	1342.49	-36.91	1379.40	(A)	
RD-59C	02/21/08	1345.41	UTM		(*)	
RD-59C	05/20/08	1345.41	NM		(**)	
RD-59C	08/14/08	1345.41	-41.58	1386.99	(A)	
RD-59C	11/13/08	1345.41	-36.91	1382.32	(A)	
RD-60	01/30/08	1870.40	89.27	1781.13	, ,	
RD-60	04/28/08	1870.40	83.13	1787.27		
RD-60	07/30/08	1870.40	82.81	1787.59		
RD-60	10/22/08	1870.40	85.28	1785.12		
RD-61	01/31/08	1845.87	107.56	1738.31		
RD-61	04/25/08	1845.87	108.28	1737.59		
RD-61	07/30/08	1845.87	108.73	1737.14		
RD-61	10/21/08	1845.87	109.23	1736.64		
RD-62	01/31/08	1837.20	206.05	1631.15		
RD-62	04/25/08	1837.20	206.16	1631.04		
RD-62	07/29/08	1837.20	206.23	1630.97		
RD-62	10/21/08	1837.20	206.36	1630.84		
RD-63	01/30/08	1764.85	27.54	1737.31		
RD-63	04/24/08	1764.85	20.48	1744.37		
RD-63	07/30/08	1764.85	22.00	1742.85		
RD-63	10/21/08	1764.85	24.63	1740.22		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Reference Point Elevation (feet above MSL)	Depth to Water (feet)	Static Water Level Elevation (feet above MSL)	Notes	
RD-64	01/28/08	1857.04			(1)	
RD-64	04/24/08	1857.04			(1)	
RD-64	07/30/08	1857.04			(1)	
RD-64	10/21/08	1857.04			(1)	
RD-65	01/28/08	1819.14			(1)	
RD-65	04/24/08	1819.14			(1)	
RD-65	07/30/08	1819.14			(1)	
RD-65	10/21/08	1819.14			(1)	
RD-66	01/29/08	1730.79	174.63	1556.16		
RD-66	04/25/08	1730.79	174.07	1556.72		
RD-66	08/04/08	1730.79	172.48	1558.31		
RD-66	10/22/08	1730.79	168.65	1562.14		
RD-67	01/31/08	1901.71	59.13	1842.58		
RD-67	04/24/08	1901.71	53.24	1848.47		
RD-67	07/29/08	1901.71	54.44	1847.27	(C)	
RD-67	10/21/08	1901.71	56.61	1845.10	(C)	
RD-68A	02/21/08	1307.64	-11.55	1319.19	(A)	
RD-68A	05/15/08	1307.64	-11.55	1319.19	(A)	
RD-68A	08/14/08	1307.64	-3.46	1311.10	(A)	
RD-68A	11/13/08	1307.64	-8.07	1315.71	(A) (A)	
RD-68B	02/21/08	1312.44	<0		(A)	
RD-68B	05/15/08	1312.44	-11.55	1323.99	(A)	
RD-68B	08/14/08	1312.44	UTM	1020.99		
RD-68B	11/13/08	1312.44	UTM		(A,*) (A,*)	
RD-69	01/29/08	1831.28	37.71	1793.57	(A,)	
RD-69	04/28/08	1831.28	NM		(**)	
RD-69	07/30/08				()	
RD-69	10/27/08	1831.28 1831.28	47.37 49.95	1783.91 1781.33		
RD-70	01/30/08	1732.26	152.60	1579.66		
RD-70 RD-70						
	04/25/08	1732.26	149.94	1582.32		
RD-70	07/30/08	1732.26	150.33	1581.93		
RD-70	10/27/08	1732.26	149.82 184.00	1582.44		
RD-71 RD-71	01/29/08 04/25/08	1740.02		1556.02		
		1740.02	183.87	1556.15		
RD-71	08/04/08 10/22/08	1740.02	183.71	1556.31		
RD-71		1740.02	178.05	1561.97	/4\	
RD-72	01/28/08	1907.25			(1)	
RD-72	04/24/08	1907.25			(1)	
RD-72	07/30/08	1907.25			(1)	
RD-72	10/21/08	1907.25	04.40	1000 40	(1)	
RD-73	01/30/08	1901.60	81.18	1820.42		
RD-73	04/24/08	1901.60	81.08	1820.52		
RD-73	07/29/08	1901.60	81.94	1819.66		
RD-73	10/22/08	1901.60	82.21	1819.39		
RD-74	01/29/08	1810.90	25.57	1785.33		
RD-74	04/24/08	1810.90	43.81	1767.09		
RD-74	07/29/08	1810.90	62.70	1748.20	***	
RD-74	10/21/08	1810.90	UTM		(*)	

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Flevation		Static Water Level Elevation (feet above MSL)	Notes	
RD-75	01/31/08	1613.30	388.82	1224.48		
RD-75	04/28/08	1613.30	388.31	1224.99		
RD-75	08/01/08	1613.30	388.31	1224.99		
RD-75	10/27/08	1613.30	389.34	1223.96		
RD-76	01/29/08	1772.27	127.78	1644.49	(C)	
RD-76	04/28/08	1772.27	127.53	1644.74	(C)	
RD-76	08/01/08	1772.27	128.05	1644.22	(C)	
RD-76	10/27/08	1772.27	127.28	1644.99	(C)	
RD-77	01/30/08	1918.48	100.87	1817.61	(-)	
RD-77	04/24/08	1918.48	100.71	1817.77		
RD-77	07/29/08	1918.48	100.80	1817.68	(C)	
RD-77	10/21/08	1918.48	101.10	1817.38	(C)	
RD-78	01/30/08	1819.84	246.50	1573.34	(5)	
RD-78	04/28/08	1819.84	245.24	1574.60		
RD-78	07/30/08	1819.84	243.68	1576.16		
RD-78	10/23/08	1819.84	242.82	1577.02		
RD-80	01/31/08	1740.18	147.46	1592.72		
RD-80	04/28/08	1740.18	145.33	1594.85		
RD-80	07/30/08	1740.18	144.43	1595.75		
RD-80	10/23/08	1740.18	143.50	1596.68		
RD-81	01/29/08	1740.18	112.06	1593.71		
RD-81	04/28/08	1705.77	110.73	1595.71		
RD-81						
RD-81	07/30/08 10/27/08	1705.77 1705.77	110.17 109.38	1595.60 1596.39		
RD-82	01/30/08	1676.73	83.86	1592.87		
RD-82	04/28/08	1676.73	81.84			
				1594.89		
RD-82	07/30/08	1676.73	81.17	1595.56		
RD-82 RD-83	10/27/08 01/30/08	1676.73 1661.18	80.37 69.14	1596.36 1592.04		
RD-83						
	04/28/08	1661.18	67.16	1594.02		
RD-83	08/04/08	1661.18	66.07	1595.11		
RD-83	10/27/08	1661.18	65.44	1595.74		
RD-84	01/29/08	1907.82	138.00	1769.82		
RD-84	04/24/08	1907.82	138.05	1769.77		
RD-84	08/04/08	1907.82	133.48	1774.34		
RD-84	10/29/08	1907.82	140.75	1767.07		
RD-85	01/30/08	1849.09	60.82	1788.27		
RD-85	04/25/08	1849.09	60.67	1788.42		
RD-85	07/29/08	1849.09	60.75	1788.34		
RD-85	10/21/08	1849.09	63.51	1785.58		
RD-86	01/30/08	1830.51	38.24	1792.27		
RD-86	04/25/08	1830.51	31.56	1798.95		
RD-86	07/29/08	1830.51	40.57	1789.94		
RD-86	11/05/08	1830.51	59.02	1771.49		
RD-87	01/30/08	1789.09	38.34	1750.75		
RD-87	04/24/08	1789.09	43.62	1745.47		
RD-87	07/29/08	1789.09	45.55	1743.54		
RD-87	10/21/08	1789.09	46.68	1742.41		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Flevation		Static Water Level Elevation (feet above MSL)	Notes	
RD-88	01/30/08	1774.62	15.64	1758.98		
RD-88	04/24/08	1774.62	21.46	1753.16		
RD-88	07/29/08	1774.62	24.70	1749.92		
RD-88	10/21/08	1774.62	25.97	1748.65		
RD-89	01/30/08	1814.18	UTM		(**)	
RD-89	04/24/08	1814.18	38.83	1775.35		
RD-89	07/29/08	1814.18	39.50	1774.68		
RD-89	10/21/08	1814.18	41.11	1773.07		
RD-90	01/30/08	1784.75	29.44	1755.31		
RD-90	04/24/08	1784.75	29.34	1755.41		
RD-90	07/29/08	1784.75	31.51	1753.24		
RD-90	10/21/08	1784.75	32.96	1751.79		
RD-91	01/29/08	1818.04	43.03	1775.01		
RD-91	04/24/08	1818.04	29.66	1788.38		
RD-91	07/29/08	1818.04	40.55	1777.49		
RD-91	10/21/08	1818.04	64.68	1753.36		
RD-92	01/30/08	1833.74	56.00	1777.74		
RD-92	04/25/08	1833.74	56.77	1776.97		
RD-92	07/30/08	1833.74	57.20	1776.54		
RD-92	10/22/08	1833.74	57.87	1775.87		
RD-93	01/30/08	1810.48	37.19	1773.29		
RD-93	04/24/08	1810.48	36.38	1774.10		
RD-93	07/29/08	1810.48	35.90	1774.58		
RD-93	10/21/08	1810.48	36.01	1774.47		
RD-94	01/30/08	1744.38	14.80	1729.58		
RD-94 RD-94	04/24/08	1744.38	12.37	1732.01		
RD-94 RD-94						
RD-94 RD-94	07/29/08 10/21/08	1744.38 1744.38	13.86 17.69	1730.52 1726.69		
RD-95	01/30/08	1811.36	52.40	1758.96		
RD-95	04/25/08		52.40 51.18	1760.18		
		1811.36				
RD-95	07/29/08	1811.36	51.10	1760.26		
RD-95	10/23/08	1811.36	52.01	1759.35		
RD-96	01/29/08	1805.14	58.00	1747.14		
RD-96	04/24/08	1805.14	58.20	1746.94		
RD-96	07/29/08	1805.14	57.90	1747.24		
RD-96	10/28/08	1805.14	55.51	1749.63		
RD-97	01/29/08	1792.22	49.94	1742.28		
RD-97	04/24/08	1792.22	45.33	1746.89		
RD-97	07/29/08	1792.22	48.00	1744.22		
RD-97	10/21/08	1792.22	43.16	1749.06		
RD-98	06/26/08	1808.73	40.46	1768.27		
RD-98	07/30/08	1808.73	41.15	1767.58		
RD-98	10/21/08	1808.73	43.16	1765.57		
WS-04A	01/31/08	1749.77	157.41	1592.36		
WS-04A	04/28/08	1749.77	155.75	1594.02		
WS-04A	08/01/08	1749.77	154.76	1595.01		
WS-04A	10/23/08	1749.77	154.52	1595.25		

TABLE IISUMMARY OF WATER LEVEL DATA, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier	Date of Measurement	Flevation		Static Water Level Elevation (feet above MSL)	Notes	
WS-05	01/30/08	1830.20	236.78	1593.42		
WS-05	04/24/08	1830.20	234.19	1596.01		
WS-05	08/04/08	1830.20	233.10	1597.10		
WS-05	10/29/08	1830.20	232.76	1597.44		
WS-06	01/29/08	1932.72	340.10	1592.62		
WS-06	04/24/08	1932.72	337.70	1595.02		
WS-06	07/31/08	1932.72	336.33	1596.39		
WS-06	10/23/08	1932.72	335.71	1597.01		
NS-07	01/31/08	1826.19	58.40	1767.79		
NS-07	04/28/08	1826.19	54.93	1771.26		
NS-07	07/30/08	1826.19	56.67	1769.52		
NS-07	10/22/08	1826.19	59.12	1767.07		
NS-08	01/30/08	1794.39	144.27	1650.12		
NS-08	04/24/08	1794.39	142.50	1651.89		
NS-08	08/01/08	1794.39	142.81	1651.58		
NS-08	10/29/08	1794.39	143.31	1651.08		
NS-09	01/30/08	1883.99	288.19	1595.80		
NS-09	04/24/08	1883.99	286.31	1597.68		
NS-09				1597.66		
NS-09 NS-09	07/31/08 10/23/08	1883.99 1883.99	284.34 283.91	1600.08		
NS-09A	01/29/08	1647.61	13.45	1634.16		
NS-09A	04/24/08	1647.61	22.81	1624.80		
NS-09A	07/29/08	1647.61	24.42	1623.19		
NS-09A	10/21/08	1647.61	24.79	1622.82		
NS-09B	01/31/08	1796.89	138.30	1658.59		
<i>N</i> S-09B	04/28/08	1796.89	130.16	1666.73		
NS-09B	07/30/08	1796.89	129.97	1666.92		
<i>N</i> S-09B	10/27/08	1796.89	132.34	1664.55		
NS-11	01/29/08	1748.70	43.07	1705.63		
<i>N</i> S-11	04/24/08	1748.70	38.09	1710.61		
NS-11	08/01/08	1748.70	43.91	1704.79		
NS-11	10/22/08	1748.70	50.14	1698.56		
NS-12	01/29/08	1705.98	114.02	1591.96		
NS-12	04/28/08	1705.98	111.61	1594.37		
NS-12	07/30/08	1705.98	110.69	1595.29		
NS-12	10/27/08	1705.98	110.02	1595.96		
NS-13	01/30/08	1658.62	66.33	1592.29		
NS-13	04/28/08	1658.62	64.23	1594.39		
NS-13	07/30/08	1658.62	63.52	1595.10		
NS-13	10/27/08	1658.62	65.53	1593.09		
NS-14	01/30/08	1878.23	322.40	1555.83		
WS-14	04/24/08	1878.23	321.85	1556.38		
WS-14	07/30/08	1878.23	320.83	1557.40		
NS-14	11/05/08	1878.23	320.50	1557.73		
NS-SP	01/31/08	1766.76	24.07	1742.69		
NS-SP	04/25/08	1766.76	22.77	1743.99		
WS-SP	08/04/08	1766.76	25.92	1740.84		
WS-SP	10/23/08	1766.76	27.98	1738.78		

TABLE II Page 27 of 35

1.	(A)	=	Artesian with	hvdrostatic	head	above	land surface
1.	()	_	AILESIAII WILII	riyurostatic i	Heau	above	ianu sunaci

- 2. (C) Depth to water measured from top of casing. During the monitoring period, pumps had been removed from several wells to allow hydrogeologic testing.
- 3. (ft btc) = Feet below top of casing.
- 4. MSL = Mean Sea Level.
- 5. NM = Not measured. 6. UTM = Unable to measure.

D7 046D

- 7. No data available/not applicable.
- 8. (*) = Unable to measure due to the following:

PZ-016B	Obstruction in multi-level casing prevented water level measurement.
PZ-016F	Obstruction in multi-level casing prevented water level measurement.
PZ-016G	Obstruction in multi-level casing prevented water level measurement.
P7-072	The plastic casing melted the cap to the casing during the 2005 Topano

The plastic casing melted the cap to the casing during the 2005 Topanga fire, PZ-072

obstructing access to measure water levels.

HAR-12 The plastic casing melted the cap to the casing during the 2005 Topanga fire,

obstructing access to measure water levels.

HAR-13 Inaccessible.

HAR-30 Obstruction in casing prevented water level measurement.

OS-24 The partially removed FLUTe system prevented water level measurement.

RD-31 A blank FLUTe liner installed in the well prevented water level measurement during

the first quarter. A Westbay system was installed during the second quarter.

RD-40 Partial collapse prevented water level measurement.

RD-59A Poor road conditions prevented access for water level measurement. RD-59B Poor road conditions prevented access for water level measurement. RD-59C Poor road conditions prevented access for water level measurement. RD-68B Open valve prevented pressure reading of artesian water level. **RD-74** Collapse prevented water level measurement.

RD-89 Obstruction in casing prevented water level measurement.

- 9. (**) RD-59B, RD-59C, and RD-69 were not monitored.
- 10. The water level measured and reported for RD-39B in the first quarter 2008 report was incorrect. The depth to water of 28.98 feet recorded by the field technician appeared to have a misplaced decimal point. It is not included in this table.
- Beginning in the second quarter 2008, static water level elevations were calculated using the following equation: $E_W = E - D + C$

Where:

 $E_W =$ Elevation of water above mean sea level (feet)

Ε Elevation above sea level at point of measurement (feet)

D Depth to water (feet)

С Calibration correction factor (feet)

12. (1) = FLUTe installed in well. Water level could not be measured. Water levels recorded by dataloggers at saturated ports were provided by MWH for the following wells:

Well	Date	Time	Port	Spacer Interval (ft btc)	Depth to Water (ft btc)
RD-07		No datalog	ger installed 1s		(10.002)
		No datalog	ger installed 2n	nd quarter 2008	
		No datalog	ger installed 3r	d quarter 2008	
		No datalog	ger installed 4tl	h quarter 2008	
RD-21	01/28/08	13:02	1	85 - 95	Dry
	01/28/08	13:02	2	105 - 115	62.496
	01/28/08	13:02	3	125 - 135	63.142
	01/28/08	13:02	4	145 - 155	80.215
	01/28/08	13:02	5	165 - 175	61.745
	04/24/08	13:02	1	85 - 95	Dry
	04/24/08	13:02	2	105 - 115	87.626
	04/24/08	13:02	3	125 - 135	88.086
	04/24/08	13:02	4	145 - 155	104.901
	04/24/08	13:02	5	165 - 175	86.779
	07/30/08	13:02	1	85 - 95	Dry
	07/30/08	13:02	2	105 - 115	87.990
	07/30/08	13:02	3	125 - 135	88.610
	07/30/08	13:02	4	145 - 155	104.758
	07/30/08	13:02	5	165 - 175	87.180
	10/21/08	13:02	1	85 - 95	Dry
	10/21/08	13:02	2	105 - 115	88.980
	10/21/08	13:02	3	125 - 135	89.702
	10/21/08	13:02	4	145 - 155	105.687
	10/21/08	13:02	5	165 - 175	88.068
RD-22	01/28/08	14:12	1	310 - 320	296.003
	01/28/08	14:12	2	330 - 340	295.842
	01/28/08	14:12	3	350 - 360	296.461
	01/28/08	14:12	4	370 - 380	298.400
	01/28/08	14:12	5	390 - 400	298.326
	01/28/08	14:12	6	410 - 420	296.537
	01/28/08	14:12	7	430 - 440	
	04/24/08	15:10	1	310 - 320	296.274
	04/24/08	15:10	2	330 - 340	296.160
	04/24/08	15:10	3	350 - 360	297.022
	04/24/08	15:10	4	370 - 380	298.819
	04/24/08	15:10	5	390 - 400	298.514
	04/24/08	15:10	6	410 - 420	297.042
	04/24/08	15:10	7	430 - 440	
	07/30/08	16:15	1	310 - 320	296.589
	07/30/08	16:15	2	330 - 340	296.578
	07/30/08	16:15	3	350 - 360	297.684
	07/30/08	16:15	4	370 - 380	299.975
	07/30/08	16:15	5	390 - 400	298.442
	07/30/08	16:15	6	410 - 420	
	07/30/08	16:15	7	430 - 440	
	10/21/08	11:10	1	310 - 320	296.660
	10/21/08	11:10	2	330 - 340	296.708
	10/21/08	11:10	3	350 - 360	298.044
	10/21/08	11:10	4	370 - 380	304.164

				Consequentes and	Double to Water
Well	Date	Time	Port	Spacer Interval (ft btc)	Depth to Water (ft btc)
RD-22	10/21/08	11:10	5	390 - 400	298.283
(cont'd)	10/21/08	11:10	6	410 - 420	
,	10/21/08	11:10	7	430 - 440	
RD-23	01/28/08	11:39	1	231 - 241	233.407
	01/28/08	11:39	2	251 - 261	223.806
	01/28/08	11:39	3	271 - 281	
	01/28/08	11:39	4	291 - 301	Dry
	01/28/08	11:39	5	311 - 321	245.444
	01/28/08	11:39	6	331 - 341	242.505
	01/28/08	11:39	7	351 - 361	242.303
	01/28/08	11:39	8	371 - 381	
	01/28/08	11:39	9	391 - 396.5	
	04/24/08	11:39	1	231 - 241	233.277
	04/24/08	11:39	2	251 - 261	223.978
	04/24/08	11:39	3	271 - 281	
	04/24/08	11:39	4	291 - 301	Dry
	04/24/08	11:39	5	311 - 321	247.006
	04/24/08	11:39	6	331 - 341	243.692
	04/24/08	11:39	7	351 - 361	243.240
	04/24/08	11:39	8	371 - 381	
	04/24/08	11:39	9	391 - 396.5	
	07/30/08	11:39	1	231 - 241	235.034
	07/30/08	11:39	2	251 - 261	224.136
	07/30/08	11:39	3	271 - 281	
	07/30/08	11:39	4	291 - 301	Dry
	07/30/08	11:39	5	311 - 321	248.086
	07/30/08	11:39	6	331 - 341	244.278
	07/30/08	11:39	7	351 - 361	243.899
	07/30/08	11:39	8	371 - 381	
	07/30/08	11:39	9	391 - 396.5	
	10/21/08	11:39	1	231 - 241	233.954
	10/21/08	11:39	2	251 - 261	225.612
	10/21/08	11:39	3	271 - 281	
	10/21/08	11:39	4	291 - 301	Dry
	10/21/08	11:39	5	311 - 321	247.604
	10/21/08	11:39	6	331 - 341	242.989
	10/21/08	11:39	7	351 - 361	243.167
	10/21/08	11:39	8	371 - 381	
	10/21/08	11:39	9	391 - 396.5	
RD-33A			ogger installed 1st		
	04/24/08	15:31	1	211 - 221	207.921
	04/24/08	15:31	2	231 - 241	208.503
	04/24/08	15:31	3	251 - 261	208.511
	04/24/08	15:31	4	271 - 281	208.761
	04/24/08	15:31	5	291 - 301	208.861
	04/24/08	15:31	6	311 - 321	209.406
	07/30/08	15:31	1	211 - 221	207.921
	07/30/08	15:31	2	231 - 241	208.473
	07/30/08	15:31	3	251 - 261	208.481
	07/30/08	15:31	4	271 - 281	208.702
	07/30/08	15:31	5	291 - 301	208.715
	07/30/08	15:31	6	311 - 321	206.681

Well	Date	Time	Port	Spacer Interval (ft btc)	Depth to Water (ft btc)
RD-33A	10/21/08	15:31	1	211 - 221	207.863
(cont'd)	10/21/08	15:31	2	231 - 241	208.341
(00/11/4)	10/21/08	15:31	3	251 - 261	208.511
	10/21/08	15:31	4	271 - 281	208.644
	10/21/08	15:31	5	291 - 301	208.570
	10/21/08	15:31	6	311 - 321	206.520
RD-50	01/28/08	11:05	1	106 - 116	102.873
110 00	01/28/08	11:05	2	126 - 136	103.320
	01/28/08	11:05	3	146 - 156	102.184
	01/28/08	11:05	4	166 - 176	102.759
	01/28/08	11:05	5	186 - 196	103.617
	04/24/08	11:05	<u> </u>	106 - 116	96.359
	04/24/08	11:05	2	126 - 136	96.735
	04/24/08	11:05	3	146 - 156	95.762
	04/24/08				
		11:05 11:05	4 5	166 - 176	96.208
	04/24/08	11:05 11:05	5 1	186 - 196 106 - 116	96.840 105.357
	07/30/08				
	07/30/08	11:05	2	126 - 136	105.959
	07/30/08	11:05	3	146 - 156	104.603
	07/30/08	11:05	4	166 - 176	105.256
	07/30/08	11:05	5	186 - 196	106.183
	10/21/08	11:05	1	106 - 116	106.238
	10/21/08	11:05	2	126 - 136	106.960
	10/21/08	11:05	3	146 - 156	105.567
	10/21/08	11:05	4	166 - 176	106.258
	10/21/08	11:05	5	186 - 196	107.192
RD-54A	01/28/08	10:20	1	150.5 - 160.5	Dry
	01/28/08	10:20	2	170.5 - 180.5	147.526
	01/28/08	10:20	3	190.5 - 200.5	
	01/28/08	10:20	4	210.5 - 220.5	151.202
	01/28/08	10:20	5	230.5 - 240.5	
	01/28/08	10:20	6	250.5 - 260.5	
	01/28/08	10:20	7	270.5 - 280.5	181.773
	04/24/08	10:20	1	150.5 - 160.5	Dry
	04/24/08	10:20	2	170.5 - 180.5	147.886
	04/24/08	10:20	3	190.5 - 200.5	
	04/24/08	10:20	4	210.5 - 220.5	151.639
	04/24/08	10:20	5	230.5 - 240.5	
	04/24/08	10:20	6	250.5 - 260.5	
	04/24/08	10:20	7	270.5 - 280.5	182.119
	07/30/08	10:20	1	150.5 - 160.5	Dry
	07/30/08	10:20	2	170.5 - 180.5	148.131
	07/30/08	10:20	3	190.5 - 200.5	
	07/30/08	10:20	4	210.5 - 220.5	152.018
	07/30/08	10:20	5	230.5 - 240.5	
	07/30/08	10:20	6	250.5 - 260.5	
	07/30/08	10:20	7	270.5 - 280.5	182.464
	10/21/08	10:20	1	150.5 - 160.5	Dry
	10/21/08	10:20	2	170.5 - 180.5	149.846
	10/21/08	10:20	3	190.5 - 200.5	
	10/21/08	10:20	4	210.5 - 220.5	153.941
	10/21/08	10:20	5	230.5 - 240.5	

Well	Date	Time	Port	Spacer Interval	Depth to Water
				(ft btc)	(ft btc)
RD-54A	10/21/08	10:20	6	250.5 - 260.5	
(cont'd)	10/21/08	10:20	7	270.5 - 280.5	180.694
RD-57	01/28/08	11:23	1	228 - 238	Dry
	01/28/08	11:23	2	248 - 258	Dry
	01/28/08	11:23	3	268 - 278	Dry
	01/28/08	11:23	4	288 - 298	Dry
	01/28/08	11:23	5	308 - 318	Dry
	01/28/08	11:23	6	328 - 338	Dry
	01/28/08	11:23	7	348 - 358	343.059
	01/28/08	11:23	8	368 - 378	355.173
	01/28/08	11:23	9	388 - 398	351.000
	01/28/08	11:23	10	408 - 418	349.383
	04/24/08	11:24	1	228 - 238	Dry
	04/24/08	11:24	2	248 - 258	Dry
	04/24/08	11:24	3	268 - 278	Dry
	04/24/08	11:24	4	288 - 298	Dry
	04/24/08	11:24	5	308 - 318	Dry
	04/24/08	11:24	6	328 - 338	Dry
	04/24/08	11:24	7	348 - 358	341.368
	04/24/08	11:24	8	368 - 378	353.841
	04/24/08	11:23	9	388 - 398	349.867
	04/24/08	11:23	10	408 - 418	348.170
	07/30/08	11:23	1	228 - 238	Dry
	07/30/08	11:23	2	248 - 258	Dry
	07/30/08	11:23	3	268 - 278	Dry
	07/30/08	11:23	4	288 - 298	Dry
	07/30/08	11:23	5	308 - 318	Dry
	07/30/08	11:23	6	328 - 338	Dry
	07/30/08	11:23	7	348 - 358	339.100
	07/30/08	11:23	8	368 - 378	
	07/30/08	11:23	9	388 - 398	349.767
	07/30/08	11:23	10	408 - 418	348.025
	10/21/08	11:23	1	228 - 238	Dry
	10/21/08	11:23	2	248 - 258	Dry
	10/21/08	11:23	3	268 - 278	Dry
	10/21/08	11:23	4	288 - 298	Dry
	10/21/08	11:23	5	308 - 318	Dry
	10/21/08	11:23	6	328 - 338	Dry
	10/21/08	11:23	7	348 - 358	342.900
	10/21/08	11:23	8	368 - 378	
	10/21/08	11:23	9	388 - 398	352.692
	10/21/08	11:23	10	408 - 418	350.913
RD-64	01/28/08	13:58	1	170.5 - 180.5	
. \ D	01/28/08	13:58	2	190.5 - 200.5	Dry
	01/28/08	13:58	3	210.5 - 220.5	
	01/28/08	13:58	4	230.5 - 240.5	
	01/28/08	13:58	5	250.5 - 260.5	234.647
	01/28/08	13:58	6		204.04 <i>1</i>
			7	270.5 - 280.5	
	01/28/08	13:58		290.5 - 300.5	222 742
	01/28/08	13:58	8	310.5 - 320.5	233.742
	01/28/08	13:58	9	330.5 - 340.5	 224 526
	01/28/08	13:58	10	350.5 - 360.5	234.526

Well	Date	Time	Port	Spacer Interval	Depth to Water (ft btc)
RD-64	01/28/08	13:58	11	(ft btc) 370.5 - 380.5	234.832
(cont.)	01/28/08	13:58	12	390.5 - 400.5	234.139
(COIII.)	04/24/08	14:56	1	170.5 - 180.5	
	04/24/08	14:56	2	190.5 - 200.5	Dry
	04/24/08	14:56	3	210.5 - 220.5	
	04/24/08	14:56	4	230.5 - 240.5	
	04/24/08	14:56	5	250.5 - 260.5	236.992
	04/24/08	14:56	6	270.5 - 280.5	250.552
	04/24/08	14:56	7	290.5 - 300.5	
	04/24/08	14:56	8	310.5 - 320.5	234.620
	04/24/08	14:56	9	330.5 - 340.5	
	04/24/08	14:56	10	350.5 - 360.5	235.391
	04/24/08	14:56	11	370.5 - 380.5	235.717
	04/24/08	14:56	12	390.5 - 400.5	232.775
	04/24/08	16:01	12		232.113
	07/30/08	16:01	2	170.5 - 180.5	
				190.5 - 200.5	Dry
	07/30/08	16:01	3	210.5 - 220.5	
	07/30/08	16:01	4	230.5 - 240.5	220.757
	07/30/08	16:01	5	250.5 - 260.5	238.757
	07/30/08	16:01	6	270.5 - 280.5	
	07/30/08	16:01	7	290.5 - 300.5	224.027
	07/30/08	16:01	8	310.5 - 320.5	234.937
	07/30/08	16:01	9	330.5 - 340.5	
	07/30/08	16:01	10	350.5 - 360.5	235.593
	07/30/08	16:01	11	370.5 - 380.5	236.080
	07/30/08	16:01	12	390.5 - 400.5	235.875
	10/21/08	10:56	1	170.5 - 180.5	
	10/21/08	10:56	2	190.5 - 200.5	Dry
	10/21/08	10:56	3	210.5 - 220.5	
	10/21/08	10:56	4	230.5 - 240.5	
	10/21/08	10:56	5	250.5 - 260.5	
	10/21/08	10:56	6	270.5 - 280.5	
	10/21/08	10:56	7	290.5 - 300.5	
	10/21/08	10:56	8	310.5 - 320.5	235.830
	10/21/08	10:56	9	330.5 - 340.5	
	10/21/08	10:56	10	350.5 - 360.5	237.195
	10/21/08	10:56	11	370.5 - 380.5	238.228
	10/21/08	10:56	12	390.5 - 400.5	
RD-65	01/28/08	10:11	1	167 - 177	Dry
	01/28/08	10:11	2	187 - 197	Dry
	01/28/08	10:11	3	207 - 217	Dry
	01/28/08	10:11	4	227 - 237	222.578
	01/28/08	10:11	5	247 - 257	218.480
	01/28/08	10:11	6	267 - 277	
	01/28/08	10:11	7	287 - 297	
	01/28/08	10:11	8	307 - 317	233.106
	01/28/08	10:11	9	327 - 337	
	01/28/08	10:11	10	347 - 357	
	01/28/08	10:11	11	367 - 377	
	01/28/08	10:11	12	387 - 397	

Well	Date	Time	Port	Spacer Interval	Depth to Water (ft btc)
RD-65	04/24/08	7:12	1	(ft btc) 167 - 177	Dry
(cont'd)	04/24/08	10:11	2	187 - 197	Dry
conta	04/24/08	10:11	3	207 - 217	Dry
	04/24/08	10:11	4	227 - 237	223.571
	04/24/08	10:11	5	247 - 257	218.700
	04/24/08	10:11	6	267 - 277	
	04/24/08	10:11	7	287 - 297	
	04/24/08	10:11	8	307 - 317	232.919
	04/24/08	8:51	9	327 - 337	
	04/24/08	8:51	10	347 - 357	253.685
	04/24/08	8:51	11		
				367 - 377	
	04/24/08	8:51	12	387 - 397	
	07/30/08	10:11	1	167 - 177	Dry
	07/30/08	10:11	2	187 - 197	Dry
	07/30/08	10:11	3	207 - 217	Dry
	07/30/08	10:11	4	227 - 237	223.615
	07/30/08	10:11	5	247 - 257	218.919
	07/30/08	10:11	6	267 - 277	
	07/30/08	10:11	7	287 - 297	
	07/30/08	10:11	8	307 - 317	233.063
	07/30/08	08:51	9	327 - 337	254.390
	07/30/08	08:51	10	347 - 357	
	07/30/08	08:51	11	367 - 377	
	07/30/08	08:51	12	387 - 397	
	10/21/08	10:11	1	167 - 177	367.991
	10/21/08	10:11	2	187 - 197	363.732
	10/21/08	10:11	3	207 - 217	222.335
	10/21/08	10:11	4	227 - 237	223.863
	10/21/08	10:11	5	247 - 257	219.197
	10/21/08	10:11	6	267 - 277	
	10/21/08	10:11	7	287 - 297	
	10/21/08	10:11	8	307 - 317	232.633
	10/21/08	08:51	9	327 - 337	253.829
	10/21/08	08:51	10	347 - 357	
	10/21/08	08:51	11	367 - 377	
	10/21/08	08:51	12	387 - 397	
RD-72	01/28/08	13:55	1	45 - 55	Dry
	01/28/08	13:55	2	65 - 75	Dry
	01/28/08	13:55	3	85 - 95	Dry
	01/28/08	13:55	4	105 - 115	94.374
	01/28/08	13:55	5	125 - 135	93.867
	01/28/08	13:55	6	145 - 155	115.863
	01/28/08	13:55	7	165 - 175	92.564
	01/28/08	13:55	8	185 - 195	91.724
	04/24/08	13:55	1	45 - 55	Dry
	04/24/08	13:55	2	45 - 35 65 - 75	Dry
	04/24/08	13:55	3	85 - 95	Dry
	04/24/08	13:55	4	105 - 115	94.517
	04/24/08				
		13:55	5	125 - 135 145 - 155	93.561
	04/24/08	13:55	6	145 - 155 165 - 175	117.465
	04/24/08 04/24/08	13:55 13:55	7 8	165 - 175 185 - 195	92.505 91.680

Well	Date	Time	Port	Spacer Interval (ft btc)	Depth to Water (ft btc)
RD-72	07/30/08	13:55	1	45 - 55	Dry
(cont'd)	07/30/08	13:55	2	65 - 75	Dry
	07/30/08	13:55	3	85 - 95	Dry
	07/30/08	13:55	4	105 - 115	95.603
	07/30/08	13:55	5	125 - 135	94.247
	07/30/08	13:55	6	145 - 155	119.155
	07/30/08	13:55	7	165 - 175	93.454
	07/30/08	13:55	8	185 - 195	92.731
	10/21/08	13:55	1	45 - 55	Dry
	10/21/08	13:55	2	65 - 75	Dry
	10/21/08	13:55	3	85 - 95	Dry
	10/21/08	13:55	4	105 - 115	96.360
	10/21/08	13:55	5	125 - 135	94.787
	10/21/08	13:55	6	145 - 155	120.830
	10/21/08	13:55	7	165 - 175	94.082
	10/21/08	13:55	8	185 - 195	93.329

13. (2) = Westbay installed in well. Water level could not be measured. Water levels recorded by cable probe were provided by MWH for the following wells:

A "Zone" is the designation given to a section of the Westbay that includes a measuring port, and a pumping port. A pumping port enables the zone to be purged in order to ensure the groundwater sampled is representative of the water at that depth.

A "QA" is a section of the Westbay that only has a measuring port. This interval can be sampled, but not purged.

\Mall	Data	Time	Dow	Zone Length	Depth to Water
Well	Date	Time	Port	(ft btc)	(ft btc)
RD-31	05/22/08	NA	Zone 12	524 - 533	206.1
	05/22/08	NA	QA-22	519 - 521	205.1
	05/22/08	NA	QA-21	510 - 516	203.4
	05/22/08	NA	Zone 11	500 - 507	208.4
	05/22/08	NA	QA-20	494 - 497	210.1
	05/22/08	NA	QA-19	486 - 491	210.7
	05/22/08	NA	QA-18	479 - 482	210.6
	05/22/08	NA	Zone 10	466 - 476	209.7
	05/22/08	NA	QA-17	459 - 463	187.4
	05/22/08	NA	Zone 09	444 - 456	170.6
	05/22/08	NA	QA-16	432 - 441	170.5
	05/22/08	NA	QA-15	422 - 429	170.5
	05/22/08	NA	QA-14	408 - 419	170.2
	05/22/08	NA	Zone 08	396 - 405	170.4
	05/22/08	NA	QA-13	390 - 393	169.5
	05/22/08	NA	Zone 07	373 - 387	170.4
	05/22/08	NA	QA-12	361 - 370	170.4
	05/22/08	NA	QA-11	354 - 358	170.4
	05/22/08	NA	QA-10	339 - 351	128.3
	05/22/08	NA	Zone 06	323 - 336	128.3
	05/22/08	NA	QA-09	313 - 320	128.4
	05/22/08	NA	QA-08	308 - 310	128.5
	05/22/08	NA	QA-07	298 - 305	128.3

Well	Date	Time	Port	Zone Length (ft btc)	Depth to Water (ft btc)
RD-31	05/22/08	NA	QA-06	293 - 295	128.2
cont'd)	05/22/08	NA	Zone 05	282 - 290	128.3
	05/22/08	NA	QA-05	275 - 279	128.7
	05/22/08	NA	QA-04	268 - 272	128.7
	05/22/08	NA	Zone 04	252 - 265	128.8
	05/22/08	NA	QA-03	246 - 249	128.8
	05/22/08	NA	Zone 03	232 - 243	128.8
	05/22/08	NA	QA-02	222 - 229	128.8
	05/22/08	NA	Zone 02	204 - 219	128.8
	05/22/08	NA	Zone 01	186 - 201	128.7
	05/22/08	NA	QA-01	182 - 30	128.7
	07/30/08	11/7		epth to water not measured	120.7
	10/22/08	NA	Zone 12	524 - 533	213.9
	10/22/08	NA	QA-22	519 - 521	214.5
	10/22/08	NA NA	QA-22 QA-21	519 - 521	214.5
	10/22/08	NA NA	Zone 11	500 - 507	212.2
	10/22/08	NA	QA-20	494 - 497	211.7
	10/22/08	NA	QA-19	486 - 491	211.8
	10/22/08	NA	QA-18	479 - 482	211.7
	10/22/08	NA	Zone 10	466 - 476	211.6
	10/22/08	NA	QA-17	459 - 463	198.3
	10/22/08	NA	Zone 09	444 - 456	174.6
	10/22/08	NA	QA-16	432 - 441	174.6
	10/22/08	NA	QA-15	422 - 429	174.6
	10/22/08	NA	QA-14	408 - 419	172.7
	10/22/08	NA	Zone 08	396 - 405	174.5
	10/22/08	NA	QA-13	390 - 393	174.2
	10/22/08	NA	Zone 07	373 - 387	174.5
	10/22/08	NA	QA-12	361 - 370	174.4
	10/22/08	NA	QA-11	354 - 358	174.4
	10/22/08	NA	QA-10	339 - 351	127.8
	10/22/08	NA	Zone 06	323 - 336	127.8
	10/22/08	NA	QA-09	313 - 320	127.7
	10/22/08	NA	QA-08	308 - 310	127.7
	10/22/08	NA	QA-07	298 - 305	127.8
	10/22/08	NA	QA-06	293 - 295	127.7
	10/22/08	NA	Zone 05	282 - 290	127.7
	10/22/08	NA	QA-05	275 - 279	127.5
	10/22/08	NA	QA-04	268 - 272	127.7
	10/22/08	NA	Zone 04	252 - 265	127.6
	10/22/08	NA	QA-03	246 - 249	127.7
	10/22/08	NA	Zone 03	232 - 243	127.6
	10/22/08	NA	QA-02	222 - 229	127.6
	10/22/08	NA	Zone 02	204 - 219	127.5
	10/22/08	NA	Zone 01	186 - 201	127.5
	10/22/08	NA	QA-01	182 - 30	127.6

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	ECL-FD	ECL SUMP	ES-01	ES-03	ES-03	ES-04
Port	 Drimon	Drimon.	Drimon.	Drimon.	Drimon.	Drim on (
Sample Type: Lab Name:	Primary Lancaster	Primary Lancaster	Primary Lancaster	Primary Lancaster	Primary Lancaster	Primary Lancaster
Collection Date:	02/26/2008	02/27/2008	02/12/2008	02/06/2008	09/04/2008	02/06/2008
Analyte (ug/L)	02/20/2000	02/21/2000	02/12/2000	02/00/2000	03/04/2000	02/00/2000
1,1,1-Trichloroethane	2 J	3 J	0.8 U	0.8 U	0.8 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	19	21	2 U	2 U	2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.1 U				
1,1-Dichloroethane	15	14	1 U	1 U	1 U	0.1 U
1,1-Dichloroethene	3 J	5	0.8 U	1 J	2 J	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,2-Dichloroethane	2	5	0.5 U	0.5 U	0.5 U	0.1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,4-Dioxane						
2-Hexanone	3 U	3 U	3 U	3 U	3 U	1 U
Acetone	6 U	6 U	6 U	6 U	6 U	3 U
Benzene	0.5 U	0.1 U				
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Bromoform	1 U	1 U	1 U	1 U	1 U	0.1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U	0.1 U
Carbon Tetrachloride	45	20	0.5 U	0.5 U	0.5 U	0.1 U
Chlorobenzene	0.8 U	0.1 U				
Chloroethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Chloroform	100	19	0.8 U	0.8 U	0.8 U	0.1 U
Chloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
cis-1,2-Dichloroethene	9	9	9	130	150 J	0.2 J
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Ethanol						
Ethylpenzene	0.8 U	0.1 U				
Ethylene glycol Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	3 U	3 U	3 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	3 U	3 U	3 U	3 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.1 U				
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U				
p-Cymene						
Tetrachloroethene	3 J	2 J	0.8 U	0.8 U	0.8 U	0.1 U
Toluene	0.7 U	0.1 U				
trans-1,2-Dichloroethene	0.8 U	0.8 U	2 J	25	27	0.1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.1 U
Trichloroethene	52	68	33	410	370	0.1 U
Trichlorofluoromethane	0.5 U	0.1 U				
Vinyl chloride	0.5 U	0.5 J	0.5 U	2	1	0.1 U

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	ES-05	ES-05	ES-06	ES-06	ES-11	ES-17
Port						
Sample Type:	Primary	Duplicate	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/06/2008	02/06/2008	02/07/2008	09/04/2008	03/05/2008	02/08/2008
Analyte (ug/L)	0.1 U	0.1 U	0.1 U	0.2 J	0.1 U	4 J
1,1,1-Trichloroethane						
1,1,2,2-Tetrachloroethane	0.1 U	1 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	5400				
1,1,2-Trichloroethane	0.1 U	2 U				
1,1-Dichloroethane	0.1 U	3 J				
1,1-Dichloroethene	0.1 U	15				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	2 U				
1,2-Dichloroethane	0.1 U	1 U				
1,2-Dichloropropane	0.1 U	2 U				
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	2 U				
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	2 U				
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	6 U
Acetone	3 U	3 U	3 U	3 U	3 U	80 J
Benzene	0.1 U	1 U				
Bromodichloromethane	0.1 U	2 U				
Bromoform	0.1 U	2 U				
Bromomethane	0.1 U	2 U				
Carbon Disulfide	0.1 U	0.1 U	0.2 U	0.4 U	0.1 U	2 U
Carbon Tetrachloride	0.1 U	1 U				
Chlorobenzene	0.1 U	2 U				
Chloroethane	0.1 U	2 U				
Chloroform	0.1 U	2 U				
Chloromethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	2 U
cis-1,2-Dichloroethene	0.2 J	0.1 U	0.1 U	0.1 U	0.1 U	240
cis-1,3-Dichloropropene	0.1 U	2 U				
Cumene						
Dibromochloromethane	0.1 U	2 U				
Ethanol						
Ethylbenzene	0.1 U	2 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	6 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	6 U
Methylene chloride	0.2 U	4 U				
m-Xylene & p-Xylene	0.1 U	2 U				
n-Butylbenzene						
o-Xylene	0.1 U	2 U				
p-Cymene						
Tetrachloroethene	0.1 U	2 U				
Toluene	0.1 U	1 U				
trans-1,2-Dichloroethene	0.1 U	2 U				
trans-1,3-Dichloropropene	0.1 U	2 U				
Trichloroethene	1	0.1 U	0.7	1.8	0.5	1200
Trichlorofluoromethane	0.1 U	1 U				
Vinyl chloride	0.1 U	1 U				

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	ES-17	ES-21	ES-21	ES-22	ES-22	ES-23
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/04/2008	02/05/2008	09/04/2008	02/08/2008	09/05/2008	02/08/2008
Analyte (ug/L) 1,1,1-Trichloroethane	5 J	0.8 U				
	3 U	0.6 U 0.5 U	0.6 U 0.5 U	0.6 U 0.5 U	0.6 U 0.5 U	0.6 U 0.5 U
1,1,2,2-Tetrachloroethane	7400	0.5 U 2 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	7400 4 U	0.8 U	0.8 U	0.8 U	0.8 U	
1,1,2-Trichloroethane	9 J	0.6 U 1 U	0.6 U 1 U	0.6 U 1 U	0.6 U 1 U	0.8 U 1 U
1,1-Dichloroethane			2 J	0.8 U	0.8 U	
1,1-Dichloroethene	28	0.8 U 	∠ J 	0.6 U	0.6 U 	0.8 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	5 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	3 U 5 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U
1,2-Dichloropropane		1 U 	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	 			1 U		
1,3-Dichlorobenzene	5 U	1 U	1 U	_	1 U	1 U
1,3,5-Trimethylbenzene	 		4.11	4.11	4.11	4.11
1,4-Dichlorobenzene	5 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	45.11		1 J			
2-Hexanone	15 U	3 U	3 U	3 U	3 U	3 U
Acetone	160	6 U	6 U	6 U	6 U	6 U
Benzene	3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	5 U	1 U	1 U	1 U	1 U	1 U
Bromoform	5 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	5 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Chloroethane	5 U	1 U	1 U	1 U	1 U	1 U
Chloroform	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Chloromethane	5 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	490 J	160	320 J	2 J	54 J	8
cis-1,3-Dichloropropene	5 U	1 U	1 U	1 U	1 U	1 U
Cumene						
Dibromochloromethane	5 U	1 U	1 U	1 U	1 U	1 U
Ethanol						
Ethylbenzene	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	15 U	3 U	3 U	3 U	3 U	3 U
Methyl isobutyl ketone (MIBK)	15 U	3 U	3 U	3 U	3 U	3 U
Methylene chloride	10 U	2 U	2 U	2 U	2 U	2 U
m-Xylene & p-Xylene	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
n-Butylbenzene						
o-Xylene	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
p-Cymene						
Tetrachloroethene	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Toluene	4 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
trans-1,2-Dichloroethene	4 U	6	29	0.8 U	1 J	0.8 U
trans-1,3-Dichloropropene	5 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	3400	280	350	12	120	43
Trichlorofluoromethane	3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	5 J	0.5 U	3	0.5 U	0.5 U	0.5 U

TABLE III SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN SHALLOW WELLS AND PIEZOMETERS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	ES-23	ES-24	ES-26	ES-26	ES-27	ES-27
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/08/2008	02/12/2008	02/08/2008	09/08/2008	02/08/2008	09/05/2008
Analyte (ug/L)	0.0.11	4.11	0.0.11	2.2.11	0.0.11	2.0.11
1,1,1-Trichloroethane	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	0.5 U	3 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	10 U	34	150	230	140
1,1,2-Trichloroethane	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1-Dichloroethane	1 U	52	1 U	1 U	1 U	1 U
1,1-Dichloroethene	0.8 U	110	0.8 U	0.8 U	0.8 U	0.8 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	5 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.5 U	3 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1 U	5 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	5 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	5 U	1 U	1 U	1 U	1 U
1,4-Dioxane						
2-Hexanone	3 U	15 U	3 U	3 U	3 U	3 U
Acetone	6 U	30 U	6 U	6 U	6 U	7 J
Benzene	0.5 U	3 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	1 U	5 U	1 U	1 U	1 U	1 U
Bromoform	1 U	5 U	1 U	1 U	1 U	1 U
Bromomethane	1 U	5 U	1 U	1 U	1 U	1 U
Carbon Disulfide	1 U	5 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	0.5 U	3 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
Chloroethane	1 U	5 U	1 U	1 U	1 U	1 U
Chloroform	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
Chloromethane	1 U	5 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	25	360	0.8 U	1 J	2 J	1 J
cis-1,3-Dichloropropene	1 U	5 U	1 U	1 U	1 U	1 U
Cumene						
Dibromochloromethane	1 U	5 U	1 U	1 U	1 U	1 U
Ethanol						
Ethylbenzene	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	15 U	3 U	3 U	3 U	3 U
Methyl isobutyl ketone (MIBK)	3 U	15 U	3 U	3 U	3 U	3 U
Methylene chloride	2 U	10 U	2 U	2 U	2 U	2 U
m-Xylene & p-Xylene	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
n-Butylbenzene						
o-Xylene	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
p-Cymene						
Tetrachloroethene	0.8 U	4 U	0.8 U	0.8 U	0.8 U	0.8 U
Toluene	0.7 U	4 U	0.7 U	0.7 U	0.7 U	0.7 U
trans-1,2-Dichloroethene	0.8 U	27	0.8 U	0.8 U	0.8 U	0.8 U
trans-1,3-Dichloropropene	1 U	5 U	1 U	1 U	1 U	1 U
Trichloroethene	48	4000	10	46	42	62
Trichlorofluoromethane	0.5 U	3 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	3 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	ES-27	ES-30	ES-30	ES-31	ES-32	HAR-03
Port						
Sample Type:	Duplicate	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/05/2008	03/11/2008	09/03/2008	02/01/2008	05/19/2008	02/29/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U	0.8 J
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	110	2 U	2 U	0.2 U	80	2 U
1,1,2-Trichloroethane	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U	0.8 U
1,1-Dichloroethane	1 U	1 U	1 U	0.1 U	0.1 U	1 U
1,1-Dichloroethene	0.8 U	0.8 U	0.8 U	0.1 J	0.4 J	0.8 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	0.1 U	0.1 U	1 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.5 U
1,2-Dichloropropane	1 U	1 U	1 U	0.1 U	0.1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	0.1 U	0.1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	1 U	0.1 U	0.1 U	1 U
1,4-Dioxane						
2-Hexanone	3 U	3 U	3 U	1 U	1 U	3 U
Acetone	7 J	6 U	6 U	3 U	23	6 U
Benzene	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.5 U
Bromodichloromethane	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Bromoform	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Bromomethane	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Carbon Disulfide	1 U	1 U	1 U	0.1 U	0.8	1 U
Carbon Tetrachloride	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.5 U
Chlorobenzene	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U	0.8 U
Chloroethane	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Chloroform	0.8 U	0.8 U	0.8 U	0.1 U	0.1 J	0.8 U
Chloromethane	1 U	1 U	1 U	0.1 U	0.2 U	1 U
cis-1,2-Dichloroethene	2 J	1 J	1 J	0.1 U	3.6	0.9 J
cis-1,3-Dichloropropene	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Ethanol						
Ethylbenzene	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	3 U	1 U	1.4 J	3 U
Methyl isobutyl ketone (MIBK)	3 U	3 U	3 U	1 U	1.4 U	3 U
Methylene chloride	2 U	2 U	2 U	0.2 U	0.4 U	2 U
m-Xylene & p-Xylene	0.8 U	0.8 U	0.8 U	0.1 U	0.4 U	0.8 U
n-Butylbenzene						
,						
o-Xylene p-Cymene	0.8 U 	0.8 U 	0.8 U 	0.1 U 	0.1 U 	0.8 U
Tetrachloroethene	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U	0.8 U
Toluene	0.7 U	0.7 U	0.7 U	0.1 U	0.1 U	0.7 U
trans-1,2-Dichloroethene	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U	0.8 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	0.1 U	0.1 U	1 U
Trichlorothene	72 0.5.11	51 0.5.11	36	0.2 J	26	150
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.5 U

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-04	HAR-04	HAR-04	HAR-04	HAR-11	HAR-11
Port						
Sample Type:	Primary	Duplicate	Split	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	C&T	Lancaster	Lancaster	Lancaster
Collection Date:	02/07/2008	02/07/2008	02/07/2008	09/04/2008	03/03/2008	09/04/2008
Analyte (ug/L)	0.1	0.1	0.0		0.4.11	0.4.11
1,1,1-Trichloroethane	2 J	2 J	2.2	6	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.1 U	0.5 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	2 U	0.2 U	2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.8 U	0.1 U	0.8 U	0.1 U	0.1 U
1,1-Dichloroethane	1 U	1 U	0.2 U	1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.8 U	0.8 U	0.3 U	0.8 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	0.1 U	1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.5 U	0.2 U	0.5 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	1 U	0.2 U	1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	0.1 U	1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	0.1 U	1 U	0.1 U	0.1 U
1,4-Dioxane						0.9 J
2-Hexanone	3 U	3 U	0.5 U	3 U	1 U	1 U
Acetone	6 U	6 U	1.1 U	6 U	3 U	6.2
Benzene	0.5 U	0.5 U	0.2 J	0.5 U	0.1 U	0.1 U
Bromodichloromethane	1 U	1 U	0.1 U	1 U	0.1 U	0.1 U
Bromoform	1 U	1 U	0.6 U	1 U	0.1 U	0.1 U
Bromomethane	1 U	1 U	0.4 U	1 U	0.1 U	0.1 U
Carbon Disulfide	1 U	1 U	0.08 U	1 U	0.1 U	0.4 U
Carbon Tetrachloride	0.5 U	0.5 U	0.2 U	0.5 U	0.1 U	0.1 U
Chlorobenzene	0.8 U	0.8 U	0.1 U	0.8 U	0.1 U	0.1 U
Chloroethane	1 U	1 U	0.3 U	1 U	0.1 U	0.2 J
Chloroform	0.8 U	0.8 U	0.2 J	0.8 U	0.1 U	0.1 U
Chloromethane	1 U	1 U	0.2 U	1 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	6	6	5.7	12 J	1.2	2.1
cis-1,3-Dichloropropene	1 U	1 U	0.1 U	1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	1 U	0.07 U	1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.8 U	0.1 U	0.8 U	0.1 U	0.3 J
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	0.6 U	3 U	1 U	1.2 R
Methyl isobutyl ketone (MIBK)	3 U	3 U	0.6 U	3 U	1 U	1 U
Methylene chloride	2 U	2 U	0.6 U	2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.8 U	0.4 U	0.8 U	0.1 U	0.8
n-Butylbenzene						
o-Xylene	0.8 U	0.8 U	0.3 U	0.8 U	0.1 U	0.6
p-Cymene						
Tetrachloroethene	0.8 U	0.8 U	0.2 J	0.8 U	0.1 U	0.1 U
Toluene	0.7 U	0.7 U	0.2 U	0.7 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.8 U	0.7 U	0.2 U	0.7 U	0.1 U	0.7 J
trans-1,3-Dichloropropene	1 U	1 U	0.09 U	1 U	0.1 U	0.1 U
Trichloroethene	330	340	330	590	0.1 U	0.1 U
Trichlorofluoromethane	0.5 U	0.5 U	0.1 U	0.5 U	0.1 U	0.1 U
Vinyl chloride	0.5 U	0.5 U	0.1 U	0.5 U	0.1 U	0.1 J
viriyi dilidilde	0.5 0	0.5 0	0.5 0	0.5 0	0.1 0	U.1 J

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-11	HAR-11	HAR-11	HAR-14	HAR-14	HAR-14
Port						
Sample Type:	Primary	Duplicate	Split	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	TA-Denver	TA-Denver	Lancaster	Lancaster
Collection Date:	12/02/2008	12/02/2008	12/02/2008	04/22/2008	08/21/2008	11/03/2008
Analyte (ug/L) 1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.48 J	0.9	0.8
	0.1 U	0.1 U	0.16 U	0.46 J 0.2 U	0.9 0.1 U	0.6 0.1 U
1,1,2,2-Tetrachloroethane						
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.79 U		16	22
1,1,2-Trichloroethane	0.1 J	0.1 J	0.32 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.16 U	0.16 U	0.2 J	0.2 J
1,1-Dichloroethene	0.1 U	0.1 U	0.14 U	7.3	11	8.7
1,2-Dibromo-3-chloropropane				0.0056 U		
1,2-Dibromoethane				0.003 U		
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.3 J	0.3 J	0.13 U	0.13 U	0.1 J	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.13 U	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.16 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane				67 J	77	
2-Hexanone	1 U	1 U	1.4 U	1.4 U	1 U	1 U
Acetone	3.8 J	3.9 J	1.9 U	1.9 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.16 U	0.16 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.17 U	0.17 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.19 U	0.19 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.21 U	0.21 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.45 U	0.45 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U	0.1 U	0.19 U	1.2	2.1	1.2
Chlorobenzene	0.1 U	0.1 U	0.17 U	0.17 U	0.1 U	0.1 U
Chloroethane	0.4 J	0.4 J	0.53 J	0.41 U	0.1 U	0.1 U
Chloroform	0.2 J	0.2 J	0.17 J	1.3	2.2	2
Chloromethane	0.2 U	0.2 U	0.3 U	0.3 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	2.1	2	2	0.15 U	0.1 U	0.1 J
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 J	0.1 J	0.16 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1.2 J	1 J	1.8 U	1.8 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.4 U	0.4 U	0.55 U	0.32 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.4 J	0.4 J	0.43 J	0.34 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.4 J	0.3 J	0.42 J	0.19 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.17 U	0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 J	0.1 J	0.15 U	0.15 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.19 U	0.19 U	0.1 U	0.1 U
Trichloroethene	1.5	1.5	1.3	3.9	4.4	5.4
Trichlorofluoromethane	0.1 U	0.1 U	0.29 U	0.29 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.29 U 0.4 U	0.29 U 0.4 U	0.1 U	0.1 U 0.1 U

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-15	HAR-15	HAR-15	HAR-15	HAR-15	HAR-27
Port						
Sample Type:	Primary	Primary	Primary	Duplicate	Split	Primary
Lab Name:	TA-Denver	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:	04/22/2008	08/21/2008	11/03/2008	11/03/2008	11/03/2008	03/11/2008
Analyte (ug/L)	0.40.11	0.4.11	0.4.11	0.4.11	0.40.11	0.4.11
1,1,1-Trichloroethane	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,1,2,2-Tetrachloroethane	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane		0.2 U	0.2 U	0.2 U	0.79 U	0.2 U
1,1,2-Trichloroethane	0.32 U	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U
1,1-Dichloroethane	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,1-Dichloroethene	0.14 U	0.1 U	0.1 U	0.1 U	0.14 U	0.1 U
1,2-Dibromo-3-chloropropane	0.0056 U					
1,2-Dibromoethane	0.003 U					
1,2-Dichlorobenzene	0.13 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2-Dichloroethane	0.13 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2-Dichloropropane	0.13 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,4-Dioxane	0.65 U	0.5 U				
2-Hexanone	1.4 U	1 U	1 U	1 U	1.4 U	1 U
Acetone	1.9 U	3 U	3 U	3 U	1.9 U	4.3 J
Benzene	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Bromodichloromethane	0.17 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Bromoform	0.19 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Bromomethane	0.21 U	0.1 U	0.1 U	0.1 U	0.21 U	0.1 U
Carbon Disulfide	0.45 U	0.4 U	0.4 U	0.4 U	0.45 U	0.1 U
Carbon Tetrachloride	0.19 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Chlorobenzene	0.17 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Chloroethane	0.41 U	0.1 U	0.1 U	0.1 U	0.41 U	0.1 U
Chloroform	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Chloromethane	0.3 U	0.2 U	0.2 U	0.2 U	0.3 U	0.1 U
cis-1,2-Dichloroethene	0.15 U	0.5 J	0.9	0.9	0.95 J	1
cis-1,3-Dichloropropene	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Cumene						
Dibromochloromethane	0.17 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Ethanol						
Ethylbenzene	0.16 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1.8 U	1 U	1 U	1 U	1.8 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.32 U	0.2 U	0.2 U	0.2 U	0.32 U	0.2 U
m-Xylene & p-Xylene	0.34 U	0.1 U	0.1 U	0.1 U	0.34 U	0.1 U
n-Butylbenzene						
o-Xylene	0.19 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
p-Cymene						
Tetrachloroethene	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Toluene	0.17 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
trans-1,2-Dichloroethene	0.15 U	0.1 U	0.1 U	0.1 U	0.15 U	0.7
trans-1,3-Dichloropropene	0.19 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Trichloroethene	0.44 J	1.9	2.3	2.2	2.2	0.1 U
Trichlorofluoromethane	0.29 U	0.1 U	0.1 U	0.1 U	0.29 U	0.1 U
Vinyl chloride	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.8
vinyi omondo	0.7 0	0.1 0	0.1 0	0.1 0	0.7 0	0.0

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-27	PZ-001D	PZ-001E	PZ-001F	PZ-007D	PZ-007E
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/09/2008	05/01/2008	05/01/2008	05/01/2008	05/16/2008	05/16/2008
Analyte (ug/L)		0.011	0.0.11	0.011	0.011	
1,1,1-Trichloroethane	0.1 U	0.8 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	2 U	2 U	2 U	2 U	2 U
1,1,2-Trichloroethane	0.1 U	0.8 U				
1,1-Dichloroethane	0.1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	0.1 U	0.8 U	0.8 U	0.8 U	0.8 U	2 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.1 U	0.5 U				
1,2-Dichloropropane	0.1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane						
2-Hexanone	1 U	3 U	3 U	3 U	3 U	3 U
Acetone	3.6 J	7 J	6 U	10 J	6 U	6 U
Benzene	0.1 U	0.5 U				
Bromodichloromethane	0.1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	0.1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	0.1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	0.4 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	0.1 U	0.5 U				
Chlorobenzene	0.1 U	0.8 U				
Chloroethane	0.1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	0.1 U	0.8 U				
Chloromethane	0.2 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	14	67	31	16	210	390
cis-1,3-Dichloropropene	0.1 U	1 U	1 U	1 U	1 U	1 U
Cumene						
Dibromochloromethane	0.1 U	1 U	1 U	1 U	1 U	1 U
Ethanol						
Ethylbenzene	0.1 U	0.8 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	3 U	3 U	3 U	3 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	3 U	3 U	3 U	3 U	3 U
Methylene chloride	0.2 U	2 U	2 U	2 U	2 U	2 U
m-Xylene & p-Xylene	0.1 U	0.8 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.8 U				
p-Cymene						
Tetrachloroethene	0.1 U	0.8 U				
Toluene	0.1 U	0.7 U				
trans-1,2-Dichloroethene	6.9	4 J	12	6	3 J	9
trans-1,3-Dichloropropene	0.1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	0.1 J	120	32	11	220	230
Trichlorofluoromethane	0.1 U	0.5 U				
Vinyl chloride	3.9	0.5 U	0.5 U	0.5 U	0.5 U	0.6 J

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	PZ-007F	PZ-009C	PZ-009D	PZ-009E	PZ-009F	PZ-010D
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/16/2008	05/21/2008	05/21/2008	05/21/2008	05/21/2008	05/21/2008
Analyte (ug/L)	0.0.11	0.8 U	0.0.11	0.0.11	0.0.11	0.0.11
1,1,1-Trichloroethane	0.8 U		0.8 U	0.8 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	0.5 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	2 U	2 U	2 U	2 U	2 U
1,1,2-Trichloroethane	0.8 U					
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	0.8 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.5 U					
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene						4.11
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane						
2-Hexanone	3 U	3 U	3 U	3 U	3 U	3 U
Acetone	6 U	6 U	6 U	6 U	25	6 U
Benzene	0.5 U					
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	0.5 U					
Chlorobenzene	0.8 U					
Chloroethane	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	0.8 U					
Chloromethane	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	120	3 J	5 J	15	7	16
cis-1,3-Dichloropropene	1 U 	1 U	1 U	1 U	1 U	1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	1 U
Ethanol						
Ethylbenzene	0.8 U					
Ethylene glycol						
Isopropanol						
Methyl othyl ketope	3 U		 3 U	3 U	3 U	3 U
Methyl ethyl ketone	3 U	3 U 3 U	3 U	3 U	3 U	3 U
Methyl isobutyl ketone (MIBK)	2 U	3 U 2 U	3 U 2 U	3 U 2 U	3 U 2 U	3 U 2 U
Methylene chloride	0.8 U	0.8 U		0.8 U	0.8 U	
m-Xylene & p-Xylene	0.6 U 	0.6 U	0.8 U 	0.6 U 	0.6 U 	0.8 U
n-Butylbenzene						
o-Xylene p-Cymene	0.8 U 					
Tetrachloroethene	0.8 U					
Toluene	0.8 U 0.7 U	0.6 U 0.7 U				
trans-1,2-Dichloroethene	0.7 U 15	0.7 U 0.8 U	0.7 U 0.9 J	0.7 U 5 J	0.7 U 1 J	0.7 U 0.8 U
trans-1,3-Dichloropropene	15 1 U	0.6 U 1 U	0.9 J 1 U	5 J 1 U	1 J 1 U	0.6 U 1 U
Trichloroethene	73	23	51	64	9	7
Trichlorofluoromethane	7.5 0.5 U	23 0.5 U	0.5 U	0.5 U	9 0.5 U	7 0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 1
viriyi Gilloffde	0.5 0	0.0 0	0.0 0	0.0 0	0.0 0	I

TABLE III SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN SHALLOW WELLS AND PIEZOMETERS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	PZ-010E	PZ-010F	PZ-010G	PZ-020	PZ-022	PZ-105
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/21/2008	05/21/2008	05/21/2008	05/12/2008	05/14/2008	11/10/2008
Analyte (ug/L)	2.2.11	0.011	2.2.11	0.0.11	0.4.11	0.4.11
1,1,1-Trichloroethane	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	2 U	2 U	2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.8 U	0.8 U	0.8 U	2 J	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	3 U	3 U	3 U	3 U	1 U	1 U
Acetone	6 U	6 U	10 J	6 U	3 U	3 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Bromoform	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Bromomethane	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Carbon Disulfide	1 U	1 U	1 U	1 U	0.4 U	0.4 U
Carbon Tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
Chlorobenzene	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Chloroethane	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Chloroform	0.8 U	0.8 U	0.8 U	0.8 U	0.1 J	0.1 U
Chloromethane	1 U	1 U	1 U	1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	10	110	39	400	0.1 U	0.1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	3 U	3 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	3 U	3 U	3 U	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Toluene	0.7 U	0.7 U	0.7 U	0.7 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.8 U	0.8 U	0.8 U	8	0.1 U	0.1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.1 U	0.1 U
Trichloroethene	2	2	0.6 J	520	0.1 U	8.9
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
Vinyl chloride	5	17	22	0.5 U	0.1 U	0.1 U

TABLE III SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN SHALLOW WELLS AND PIEZOMETERS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	PZ-120	RS-07	RS-08	RS-11	RS-13	RS-16
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:	11/13/2008	01/31/2008	04/22/2008	05/02/2008	01/31/2008	02/01/2008
Analyte (ug/L)	0.4.11	0.4.11	0.40.11	0.4.11	0.4.11	0.4.11
1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2.8	0.2 U		0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	1.1	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.4 J	0.1 U	0.14 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane			0.0056 U			
1,2-Dibromoethane			0.003 U			
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane			0.65 U			
2-Hexanone	1 U	1 U	1.4 U	1 U	1 U	1 U
Acetone	3 U	3 U	5.2 J,L	3 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.21 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.1 U	0.45 U	0.4 U	0.1 U	0.1 U
Carbon Tetrachloride	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 J	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.1 U	0.3 U	0.2 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	7.5	0.1 U	2	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1.8 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.32 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.31 J	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Trichloroethene	31	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.2 J	0.1 U	0.29 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	RS-18	RS-19	RS-21	RS-28	RS-28	RS-30
Port						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/04/2008	03/05/2008	02/05/2008	02/06/2008	11/14/2008	05/01/2008
Analyte (ug/L)	0.0.11	0.4.11	0.4.11	0.0.11	0.4.11	0.4.11
1,1,1-Trichloroethane	0.8 U	0.1 U	0.1 U	0.8 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	0.2 U	0.2 U	2 J	1.4	0.2 U
1,1,2-Trichloroethane	0.8 U	0.1 U	0.1 U	0.8 U	0.1 U	0.1 U
1,1-Dichloroethane	1 U	0.1 U	0.1 U	1 U	0.3 J	0.1 U
1,1-Dichloroethene	0.8 U	0.1 U	1.5	0.8 U	0.5	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene					0.1 U	
1,3-Dichlorobenzene	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene					0.1 U	
1,4-Dichlorobenzene	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	3 U	1 U	1 U	3 U	1 U	1 U
Acetone	6 U	3 U	3 U	6 U	3 U	30
Benzene	0.5 U	0.1 U	0.1 U	0.5 U	0.1 U	0.6
Bromodichloromethane	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Bromoform	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Bromomethane	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Carbon Disulfide	1 U	0.1 U	0.1 U	1 U	0.4 U	0.4 U
Carbon Tetrachloride	0.5 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U
Chlorobenzene	0.8 U	0.1 U	0.1 U	0.8 U	0.1 U	0.1 U
Chloroethane	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Chloroform	0.8 U	0.1 U	0.1 U	0.8 U	0.1 J	0.1 U
Chloromethane	1 U	0.1 U	0.1 U	1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.8 U	0.1 U	240	1 J	1.2	0.1 U
cis-1,3-Dichloropropene	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Cumene					0.1 U	
Dibromochloromethane	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.1 U	0.1 U	0.8 U	0.1 U	0.1 J
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	1 U	1 U	3 U	1 U	2.2 U
Methyl isobutyl ketone (MIBK)	3 U	1 U	1 U	3 U	1 U	1 U
Methylene chloride	2 U	0.2 U	0.2 U	2 U	0.2 U	0.3 U
m-Xylene & p-Xylene	0.8 U	0.1 U	0.1 U	0.8 U	0.1 U	0.1 U
n-Butylbenzene					0.1 U	
o-Xylene	0.8 U	0.1 U	0.1 U	0.8 U	0.1 U	0.1 U
p-Cymene					0.1 U	
Tetrachloroethene	0.8 U	0.1 U	0.1 U	1 J	0.7	0.1 U
Toluene	0.7 U	0.1 U	0.1 U	0.7 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.8 U	0.1 U	4.3	0.8 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	1 U	0.1 U	0.1 U	1 U	0.1 U	0.1 U
Trichloroethene	8	0.2 J	350 J	15	14	0.1 U
Trichlorofluoromethane	0.5 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U
Vinyl chloride	0.5 U	0.1 U	0.4 J	0.5 U	0.1 U	0.1 U

TABLE III
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN SHALLOW WELLS AND PIEZOMETERS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	RS-31	RS-32	RS-54	RS-54	SH-03	SH-04
Port	 Drime on :	 Duine a m /	 Duine a m /	 Duine a m :	 Duine a m :	 Drime om :
Sample Type: Lab Name:	Primary Lancaster	Primary Lancaster	Primary Lancaster	Primary Lancaster	Primary Lancaster	Primary TA-Denver
Collection Date:	05/01/2008	03/06/2008	02/12/2008	09/04/2008	02/05/2008	04/23/2008
Analyte (ug/L)	03/01/2000	03/00/2000	02/12/2000	03/04/2000	02/03/2000	04/23/2000
1,1,1-Trichloroethane	0.1 U	0.1 U	830	4200	1 J	3.8
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	1 U	3 U	0.5 U	0.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	44	190	17 J	
1,1,2-Trichloroethane	0.1 U	0.1 U	2 J	4 J	0.8 U	0.32 U
1,1-Dichloroethane	0.1 U	0.1 U	440	1300	15	19
1,1-Dichloroethene	0.1 U	0.1 U	300	1600	1 J	7.8
1,2-Dibromo-3-chloropropane						0.0056 U
1,2-Dibromoethane						0.003 U
1,2-Dichlorobenzene	0.1 U	0.1 U	2 U	5 U	1 U	0.13 U
1,2-Dichloroethane	0.1 U	0.1 U	9	14	4	5.9
1,2-Dichloropropane	0.1 U	0.1 U	2 U	5 U	1 U	0.13 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	2 U	5 U	1 U	0.16 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	2 U	5 U	1 U	0.16 U
1,4-Dioxane						22 J
2-Hexanone	1 U	1 U	6 U	15 U	3 U	1.4 U
Acetone	3 U	3 U	12 U	30 U	6 U	1.9 U
Benzene	0.1 U	0.1 U	3	8	0.5 U	0.16 U
Bromodichloromethane	0.1 U	0.1 U	2 U	5 U	1 U	0.17 U
Bromoform	0.1 U	0.1 U	2 U	5 U	1 U	0.19 U
Bromomethane	0.1 U	0.1 U	2 U	5 U	1 U	0.21 U
Carbon Disulfide	0.4 U	0.2 U	2 U	5 U	1 U	0.45 U
Carbon Tetrachloride	0.1 U	0.1 U	1 U	3 U	64	57
Chlorobenzene	0.1 U	0.1 U	2 U	4 U	0.8 U	0.17 U
Chloroethane	0.1 U	0.1 U	2 U	5 U	1 U	0.41 U
Chloroform	0.1 U	0.1 U	3 J	9 J	140	37
Chloromethane	0.2 U	0.1 U	2 U	5 U	1 U	0.3 U
cis-1,2-Dichloroethene	0.1 U	0.1 J	27	38	11	14
cis-1,3-Dichloropropene	0.1 U	0.1 U	2 U	5 U	1 U	0.16 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	2 U	5 U	1 U	0.17 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	2 U	4 U	0.8 U	0.16 U
Ethylene glycol						
Isopropanol						
Methanol				 45 H		
Methyl ethyl ketone	1 U	1 U	6 U	15 U	3 U	1.8 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	6 U	15 U	3 U	1 U
Methylene chloride	0.2 U	0.2 U	4 U	10 U	2 J	1 U
m-Xylene & p-Xylene	0.1 U	0.1 U	2 U	4 U	0.8 U	0.34 U
n-Butylbenzene		 0.1 U		4.11		0.40 11
o-Xylene	0.1 U 		2 U	4 U 	0.8 U 	0.19 U
p-Cymene Tetrachloroethene	0.1 U	0.1 U	3 J	 8 J	6	 11
Toluene	0.1 U 0.1 U	0.1 U 0.1 U	3 J 1 U	8 J 4 U	0.7 U	0.17 U
trans-1,2-Dichloroethene	0.1 U 0.1 U	0.1 U 0.1 U	2 U	4 U	0.7 U 0.8 U	0.17 U 0.36 J
trans-1,3-Dichloropropene	0.1 U	0.1 U	2 U	4 U	0.8 U 1 U	0.36 J 0.19 U
Trichloroethene	0.1 U	0.1 U	950	1700	60	94
Trichlorofluoromethane	0.1 U	0.1 U	1 U	4 J	0.5 U	0.29 U
Vinyl chloride	0.1 U	0.1 U	1 U	4 J 3 U	0.5 U	0.29 U 0.75 J
viriyi GillOliue	0.1 0	0.1 0	1 0	3.0	0.5 0	0.73 3

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN SHALLOW WELLS AND PIEZOMETERS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	SH-11
Port	
Sample Type:	Primary
Lab Name:	Lancaster
Collection Date:	02/05/2008
Analyte (ug/L)	
1,1,1-Trichloroethane	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U
1,1,2-Trichloroethane	0.1 U
1,1-Dichloroethane	0.1 J
1,1-Dichloroethene	0.1 U
1,2-Dibromo-3-chloropropane	
1,2-Dibromoethane	
1,2-Dichlorobenzene	0.1 U
1,2-Dichloroethane	0.2 J
1,2-Dichloropropane	0.1 U
1,2,4-Trimethylbenzene	
1,3-Dichlorobenzene	0.1 U
1,3,5-Trimethylbenzene	
1,4-Dichlorobenzene	0.1 U
1,4-Dioxane	
2-Hexanone	1 U
Acetone	3 U
Benzene	0.1 U
Bromodichloromethane	0.1 U
Bromoform	0.1 U
Bromomethane	0.1 U
Carbon Disulfide	0.1 U
Carbon Tetrachloride	0.1 U
Chlorobenzene	0.1 U
Chloroethane	0.1 U
Chloroform	0.1 U
Chloromethane	0.1 U
cis-1,2-Dichloroethene	0.2 J
cis-1,3-Dichloropropene	0.1 U
Cumene	
Dibromochloromethane	0.1 U
Ethanol	
Ethylbenzene	0.1 U
Ethylene glycol	
Isopropanol	
Methanol	
Methyl ethyl ketone	1 U
Methyl isobutyl ketone (MIBK)	1 U
Methylene chloride	0.2 U
m-Xylene & p-Xylene	0.1 U
n-Butylbenzene	
o-Xylene	0.1 U
p-Cymene	
Tetrachloroethene	0.1 U
Toluene	0.1 U
trans-1,2-Dichloroethene	0.1 U
trans-1,3-Dichloropropene	0.1 U
Trichloroethene	0.1 J
Trichlorofluoromethane	0.1 U
Vinyl chloride	0.1 U
viii,yi oliiolido	3.1 0

TABLE IIINOTES AND ABBREVIATIONS

1.	C&T	=	Curtis & 7	Tompkins.	Ltd.	of Berkeley	, California.

- 2. Lancaster = Lancaster Laboratories of Lancaster, Pennsylvania.
- 3. TA-Denver = TestAmerica of Arvada, Colorado.
- 4. --- = Analysis not performed.
- 5. ug/L = Micrograms per liter.
- 6. J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
- 7. L = Laboratory contaminant.
- 8. R = Rejected result (see Appendix D for details).
- 9. U = Not detected.
- 10. Analyses were performed using EPA method 8260B for all volatile organic compounds except 1,4-dioxane which was analyzed by EPA method 8260SIM.

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-07	HAR-07	HAR-07	HAR-08	HAR-08	HAR-08
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/27/2008	08/27/2008	12/03/2008	02/27/2008	05/14/2008	05/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	5 U	3 U	10 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	20 U	10 U	20 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	8 U	7 J	10 J	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	5 U	3 U	10 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene	40.11		40.11			
1,4-Dichlorobenzene	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane	1 U	1 U	0.5 U	1.1 J	0.8 J	
2-Hexanone	30 U	15 U	100 U	1 U	1 U	1 U
Acetone	60 U	30 U	300 U	3 U	3 U	3 U
Benzene	5 U	3 U	10 U	0.1 U	0.1 U 0.1 U	0.1 U
Bromodichloromethane Bromoform	10 U 10 U	5 U 5 U	10 U 10 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Bromomethane	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U 0.1 U
Carbon Disulfide	10 U	5 U	40 U	0.1 U	0.1 U	0.1 U 0.4 U
Carbon Tetrachloride	5 U	3 U	40 U	0.1 U	0.4 U	0.4 U 0.1 U
Chlorobenzene	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
Chloroethane	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
Chloroform	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
Chloromethane	10 U	5 U	20 U	0.1 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	1200	2300	4900	18	18	18
cis-1,3-Dichloropropene	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	30 U	15 U	100 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	30 U	15 U	100 U	1 U	1 U	1 U
Methylene chloride	20 U	10 U	20 U	0.2 U	0.3 U	0.3 U
m-Xylene & p-Xylene	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	8 U	4 U	10 U	0.1 U	0.1 U	0.1 U
Toluene	7 U	4 U	10 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	48 J	110	120	1.7	1.6	1.6
trans-1,3-Dichloropropene	10 U	5 U	10 U	0.1 U	0.1 U	0.1 U
Trichloroethene	14000	4100	26 J	1.5	1.5	1.4
Trichlorofluoromethane	5 U	3 U	10 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	5 U	53	36 J	2.7	2.8	2.7

TABLE IV
SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS
IN CHATSWORTH FORMATION WELLS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-08	HAR-08	HAR-08	HAR-08	HAR-16	HAR-16
Sample Port:						
Sample Type:	Primary	Primary	Duplicate	Split	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	08/27/2008	12/03/2008	12/03/2008	12/03/2008	03/05/2008	03/05/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.16 U		
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.2 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.79 U		
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.32 U		
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.16 U		
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.14 U		
1,2-Dibromo-3-chloropropane					0.12 U	0.12 U
1,2-Dibromoethane					0.096 U	0.094 U
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.13 U		
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.13 U		
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.13 U		
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U		
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U		
1,4-Dioxane	1 J	1 J				
2-Hexanone	1 U	1 U	1 U	1.4 U		
Acetone	3 J	3 U	3 U	1.9 U		
Benzene	0.1 U	0.1 U	0.1 U	0.16 U		
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.17 U		
Bromoform	0.1 U	0.1 U	0.1 U	0.17 U		
Bromomethane	0.1 U	0.1 U	0.1 U	0.21 U		
Carbon Disulfide	0.4 U	0.4 U	0.4 U	0.45 U		
Carbon Tetrachloride	0.4 U	0.4 U	0.4 U	0.43 U		
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.19 U		
Chloroethane	0.1 U	0.1 U	0.1 U	0.41 U		
Chloroform	0.1 U	0.1 U	0.1 U	0.41 U		
Chloromethane	0.1 U	0.1 U	0.1 U	0.10 U		
cis-1,2-Dichloroethene	13	20	20	16		
•	0.1 U	0.1 U	0.1 U	0.16 U		
cis-1,3-Dichloropropene Cumene	0.1 U	0.1 U 	0.1 U	0.16 U		
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.17 U		
Ethanol	0.1 U 	0.1 O 	0.1 U 	0.17 0		
	0.4 J	0.1 U	0.1 U	0.16 U		
Ethylpen glysel						
Ethylene glycol						
Isopropanol						
Methyl sthyl ketone	1 U	1 U	1 U			
Methyl iggbytyl ketone (MIRK)				1.8 U		
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U		
Methylene chloride	0.2 U	0.2 U	0.2 U	0.32 U		
m-Xylene & p-Xylene	1.5	0.1 U	0.1 J	0.34 U		
n-Butylbenzene						
o-Xylene	1.2	0.1 U	0.1 U	0.19 U		
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.2 U		
Toluene	0.5	0.1 U	0.1 U	0.17 U		
trans-1,2-Dichloroethene	1.2	3.3	3.3	2.6		
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.19 U		
Trichloroethene	1	13	14	11		
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.29 U		
Vinyl chloride	2.6	3.6	4	4.6		

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-16	HAR-16	HAR-16	HAR-16	HAR-17	HAR-17
Sample Port:						
Sample Type:	Split	Primary	Primary	Duplicate	Primary	Primary
Lab Name:	TA-Denver	TA-Denver	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:	03/05/2008	04/23/2008	10/28/2008	10/28/2008	04/23/2008	11/04/2008
Analyte (ug/L)						
1,1,1-Trichloroethane		6.4 U	16 U	16 U	0.16 U	0.8 U
1,1,2,2-Tetrachloroethane		8 U	10 U	10 U	0.2 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane			40 U	40 U		68
1,1,2-Trichloroethane		13 U	16 U	16 U	0.32 U	0.8 U
1,1-Dichloroethane		6.4 U	20 U	20 U	0.73 J	1 U
1,1-Dichloroethene		28 J	25 J	22 J	0.14 U	0.8 J
1,2-Dibromo-3-chloropropane	0.0068 U	0.0066 U			0.0056 U	
1,2-Dibromoethane		0.0036 U			0.0031 U	
1,2-Dichlorobenzene		5.2 U	20 U	20 U	0.13 U	1 U
1,2-Dichloroethane		5.2 U	10 U	10 U	0.13 U	0.5 U
1,2-Dichloropropane		5.2 U	20 U	20 U	0.13 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene		6.4 U	20 U	20 U	0.16 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene		6.4 U	20 U	20 U	0.16 U	1 U
1,4-Dioxane		24 J			3.8 J	
2-Hexanone		56 U	60 U	60 U	1.4 U	3 U
Acetone		150 J	120 U	120 U	1.9 U	6 U
Benzene		6.4 U	10 U	10 U	0.16 U	0.5 U
Bromodichloromethane		6.8 U	20 U	20 U	0.17 U	1 U
Bromoform		7.6 U	20 U	20 U	0.19 U	1 U
Bromomethane		8.4 U	20 U	20 U	0.21 U	1 U
Carbon Disulfide		18 U	20 U	20 U	0.45 U	1 U
Carbon Tetrachloride		7.6 U	10 U	10 U	0.19 U	0.5 U
Chlorobenzene		6.8 U	16 U	16 U	0.17 U	0.8 U
Chloroethane		16 U	20 U	20 U	0.41 U	1 U
Chloroform		6.4 U	16 U	16 U	0.17 J	0.8 U
Chloromethane		12 U	20 U	20 U	0.3 U	1 U
cis-1,2-Dichloroethene		160	140	140	19	22
cis-1,3-Dichloropropene		6.4 U	20 U	20 U	0.16 U	1 U
Cumene						
Dibromochloromethane		6.8 U	20 U	20 U	0.17 U	1 U
Ethanol						
Ethylbenzene		6.4 U	16 U	16 U	0.16 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone		73 U	60 U	60 U	1.8 U	3 U
Methyl isobutyl ketone (MIBK)		42 U	60 U	60 U	1 U	3 U
Methylene chloride		13 U	40 U	40 U	0.32 U	2 U
m-Xylene & p-Xylene		14 U	16 U	16 U	0.34 U	0.8 U
n-Butylbenzene		 7.0.11	40.11	40.11		
o-Xylene		7.6 U	16 U	16 U	0.19 U	0.8 U
p-Cymene						
Tetrachloroethene		15 J	16 U	16 U	0.2 U	0.8 U
Toluene		6.8 U	14 U	14 U	0.17 U	0.7 U
trans-1,2-Dichloroethene		6 U	16 U	16 U	0.4 J	0.8 U
trans-1,3-Dichloropropene		7.6 U	20 U	20 U	0.19 U	1 U
Trichloroethene		13000	10000	11000	96	110
Trichlorofluoromethane		30 J	19 J	19 J	0.29 U	0.5 U
Vinyl chloride		16 U	10 U	10 U	0.4 U	0.5 U

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-18	HAR-18	HAR-18	HAR-18	HAR-18	HAR-18
Sample Port:						
Sample Type:	Primary	Duplicate	Primary	Duplicate	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/18/2008	02/18/2008	05/13/2008	05/13/2008	08/28/2008	12/01/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.8 U	3.5 J	2.9 J	1.1 J	1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	500	540	520	360	550	520
1,1,2-Trichloroethane	0.8 U	0.8 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	3 J	3 J	7.2	6.2	3.9 J	2.6 J
1,1-Dichloroethene	43	42	140	110	60	24
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.5 U	0.5 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	6.6		11		8.4	5.5
2-Hexanone	3 U	3 U	10 U	10 U	10 U	10 U
Acetone	6 U	6 U	30 U	33 J	30 U	32 J
Benzene	0.5 U	0.5 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	1 U	1 U	4 U	4 U	4 U	4 U
Carbon Tetrachloride	0.5 U	0.5 U	1 U	1 U	1 U	1 U
Chlorobenzene	0.8 U	0.8 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	0.9 J	0.8 J	1 U	1 U	1 U	1.1 J
Chloromethane	1 U	1 U	2 U	2 U	2 U	2 U
cis-1,2-Dichloroethene	580	620	810	650	910	710
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	1 U
Ethanol						
Ethylbenzene	0.8 U	0.8 U	1 U	1 U	1 U	1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	10 U	10 U	10 U	10 U
Methyl isobutyl ketone (MIBK)	3 U	3 U	10 U	10 U	10 U	10 U
Methylene chloride	2 U	2 U	2.7 U	2.7 U	2 U	2 U
m-Xylene & p-Xylene	0.8 U	0.8 U	1 U	1 U	1 U	1 U
n-Butylbenzene						
o-Xylene	0.8 U	0.8 U	1 U	1 U	1 U	1 U
p-Cymene						
Tetrachloroethene	4 J	4 J	2 J	1.8 J	2.2 J	2.9 J
Toluene	0.7 U	0.7 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	9	9	16	12	15	8.4
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1300	1300	1400	1300	1400	1400
Trichlorofluoromethane	1	1	1 U	1 U	1 U	1 U
Vinyl chloride	39	39	62	51	72	27

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-18	HAR-18	HAR-20	HAR-20	HAR-20	HAR-20
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Split	Primary	Primary
Lab Name:	Lancaster	TA-Denver	Lancaster	C&T	Lancaster	Lancaster
Collection Date:	12/01/2008	12/01/2008	03/11/2008	03/11/2008	05/13/2008	08/20/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	1 U	0.8 U	0.8 U	0.3 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	0.5 U	0.3 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	480	590	2 U	1.3 U	0.2 J	0.4 J
1,1,2-Trichloroethane	1 U	1.6 U	0.8 U	0.5 U	0.1 U	0.1 U
1,1-Dichloroethane	2.8 J	2.6 J	1 U	0.3 U	0.1 U	0.1 U
1,1-Dichloroethene	30	16	0.8 U	0.4 U	0.1 U	0.7
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	0.65 U	1 U	0.4 U	0.1 U	0.1 U
1,2-Dichloroethane	1 U	0.65 U	0.5 U	0.3 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	0.65 U	1 U 	0.3 U 	0.1 U	0.1 U
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	 1 U	0.8 U	1 U	0.3 U	0.1 U	0.1 U
-		0.6 U 		0.5 U 	0.1 U	0.1 O
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	1 U	0.8 U	1 U	0.4 U	0.1 U	0.1 U
1,4-Dictrioroperizerie		0.6 U	3.6	0.4 0	5.8	2.9
2-Hexanone	10 U	7 U	3.0 3 U	6.7 U	1 U	1 U
Acetone	33 J	9.5 U	6 U	3.3 U	3 U	3 U
Benzene	1 U	9.5 U	0.5 U	0.3 U	0.1 U	0.1 U
Bromodichloromethane	1 U	0.85 U	1 U	0.3 U	0.1 U	0.1 U
Bromoform	1 U	0.95 U	1 U	0.7 U	0.1 U	0.1 U
Bromomethane	1 U	1 U	1 U	0.7 U	0.1 U	0.1 U
Carbon Disulfide	4 U	2.2 U	1 U	0.3 U	0.4 U	0.4 U
Carbon Tetrachloride	1 U	0.95 U	0.5 U	0.3 U	0.1 U	0.1 U
Chlorobenzene	1 U	0.85 U	0.8 U	0.3 U	0.1 U	0.1 U
Chloroethane	1 U	2 U	1 U	0.9 U	0.1 U	0.1 U
Chloroform	1.1 J	1.2 J	0.8 U	0.3 U	0.1 U	0.1 U
Chloromethane	2 U	1.5 U	1 U	0.7 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	910	600	120	98	34	130
cis-1,3-Dichloropropene	1 U	0.8 U	1 U	0.3 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	0.85 U	1 U	0.5 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	1 U	0.8 U	0.8 U	0.3 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	10 U	9.2 U	3 U	6.7 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	10 U	5.2 U	3 U	6.7 U	1 U	1 U
Methylene chloride	2 U	1.7 U	2 U	3.3 U	0.3 U	0.2 U
m-Xylene & p-Xylene	1 U	1.7 U	0.8 U	0.6 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	1 U	0.95 U	0.8 U	0.3 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	2.7 J	2.7 J	0.8 U	0.4 U	0.1 U	0.1 U
Toluene	1 U	0.85 U	0.7 U	0.3 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	13	5.7	9	7	3.7	12
trans-1,3-Dichloropropene	1 U	0.95 U	1 U	0.3 U	0.1 U	0.1 U
Trichloroethene	1300	1400	250	200	44	310
Trichlorofluoromethane	1 U	1.4 U	0.5 U	0.7 U	0.1 U	0.1 U
Vinyl chloride	53	21	1	0.7 J	1.9	1.2

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-20	HAR-22	HAR-22	HAR-23	HAR-23	HAR-24
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	11/06/2008	02/26/2008	08/25/2008	03/12/2008	08/28/2008	02/08/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.8 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 J	0.2 U	0.2 U	0.2 U	0.2 U	13
1,1,2-Trichloroethane	0.1 U	0.8 U				
1,1-Dichloroethane	0.1 U	1 U				
1,1-Dichloroethene	0.3 J	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane	0.4.11		0.4.11		0.4.11	4.11
1,2-Dichlorobenzene	0.1 U	1 U				
1,2-Dichloroethane	0.1 U 0.1 U	0.5 U 1 U				
1,2-Dichloropropane	0.1 U 	0.1 U	0.1 U	0.1 U	0.1 O 	
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	0.1 U	1 U				
•	0.1 U 	0.1 U	0.1 U	0.1 U	0.1 O 	
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	1 U				
1,4-Dictiloroberizerie	4.2	0.1 U	0.1 U	0.1 U	0.1 U	
2-Hexanone	1 U	1 U	1 U	1 U	1 U	3 U
Acetone	3 U	3 U	3 U	3 U	3.2 J,L	6 U
Benzene	0.1 U	0.5 U				
Bromodichloromethane	0.1 U	0.5 U				
Bromoform	0.1 U	1 U				
Bromomethane	0.1 U	1 U				
Carbon Disulfide	0.4 U	0.1 U	0.4 U	0.1 U	0.4 U	1 U
Carbon Tetrachloride	0.1 U	0.5 U				
Chlorobenzene	0.1 U	0.8 U				
Chloroethane	0.1 U	1 U				
Chloroform	0.1 U	2 J				
Chloromethane	0.2 U	0.1 U	0.2 U	0.1 U	0.2 U	1 U
cis-1,2-Dichloroethene	90	6.1	5.5	0.2 J	0.3 J	2 J
cis-1,3-Dichloropropene	0.1 U	1 U				
Cumene						
Dibromochloromethane	0.1 U	1 U				
Ethanol						
Ethylbenzene	0.1 U	0.8 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	3 U
Methylene chloride	0.2 U	2 U				
m-Xylene & p-Xylene	0.1 U	0.8 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.8 U				
p-Cymene						
Tetrachloroethene	0.1 U	0.8 U				
Toluene	0.1 U	0.7 U				
trans-1,2-Dichloroethene	6.5	0.3 J	0.3 J	0.1 U	0.1 U	0.8 U
trans-1,3-Dichloropropene	0.1 U	1 U				
Trichloroethene	160	1.6	1.3	2.1	2	150
Trichlorofluoromethane	0.1 U	0.5 U				
Vinyl chloride	0.5	0.2 J	0.1 J	0.1 U	0.1 U	0.5 U

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	HAR-24	HAR-26	HAR-26	OS-02	OS-04	OS-09
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/11/2008	02/08/2008	08/20/2008	02/21/2008	05/15/08	02/21/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	8 J	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	3 U	1 U	1 U	1 U	1 U	1 U
Acetone	6 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	1 U	0.1 U	0.4 U	0.1 U	0.4 U	0.1 U
Carbon Tetrachloride	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	2 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	1 U	0.1 U	0.2 U	0.1 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	3 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	0.2 U	0.2 U	0.2 U	0.3 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.7 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	140	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
	0.5 U	0.1 U 0.1 U		0.1 U 0.1 U		0.1 U
Vinyl chloride	U.3 U	U. I U	0.1 U	U. I U	0.1 U	U. I U

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	OS-09	OS-16	OS-16	OS-17	OS-17	OS-17
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/14/2008	02/14/2008	09/08/2008	03/04/2008	05/20/2008	05/20/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.4 U	0.1 U	0.4 U	1.4	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.2 U	0.1 U	0.2 U	0.1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U					
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U				
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U					
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	OS-17	OS-17	OS-17	OS-17	OS-25	OS-26
Sample Port:						
Sample Type:	Split	Primary	Duplicate	Split	Primary	Primary
Lab Name:	C&T	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	05/20/2008	08/12/2008	08/12/2008	08/12/2008	09/09/2008	02/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.4 U	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	2 U	1 U	1 U	1.4 U	1 U	1 U
Acetone	1 U	3 U	3 U	1.9 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromoform	0.2 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Bromomethane	0.2 U	0.1 U	0.1 U	0.21 U	0.1 U	0.1 U
Carbon Disulfide	0.2 J	0.4 U	0.4 U	0.45 U	0.4 U	0.2 U
Carbon Tetrachloride	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Chloroethane	0.3 U	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.3 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol		4.11	4.11	4.0.11	4.11	4.11
Methyl ethyl ketone Methyl isobutyl ketone (MIBK)	2 U 2 U	1 U 1 U	1 U 1 U	1.8 U 1 U	1 U 1 U	1 U 1 U
, ,	2 U 1 U	0.2 U	0.2 U	0.32 U	0.2 U	
Methylene chloride	0.2 U	0.2 U 0.1 U	0.2 U 0.1 U	0.32 U 0.34 U	0.2 U 0.1 U	0.2 U 0.1 U
m-Xylene & p-Xylene n-Butylbenzene	0.2 0	0.1 O 	0.1 U	0.34 0	0.1 U	0.1 U
o-Xylene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
	0.1 U		0.1 U		0.1 U 	
p-Cymene Tetrachloroethene	0.1 U	 0.1 U	0.1 U	 0.2 U	0.1 U	 0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.2 U 0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U 0.1 U	0.1 U	0.17 U 0.15 U	0.1 U 0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.15 U 0.19 U	0.1 U 0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.19 U 0.16 U	0.1 U 0.1 U	0.1 U
Trichlorofluoromethane	0.1 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.16 U 0.29 U	0.1 U 0.1 U	0.1 U
Vinyl chloride	0.2 U 0.1 U	0.1 U 0.1 U		0.29 U 0.4 U	0.1 U 0.1 U	0.1 U 0.1 U
viriyi Gillollue	U. I U	0.1 0	0.1 U	0.4 0	0.1 0	0.1 0

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	OS-26	OS-27	OS-27	OS-28	RD-01	RD-01
Sample Port:						
Sample Type:	Primary	Primary	Duplicate	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/09/2008	03/12/2008	03/12/2008	03/04/2008	02/26/2008	02/26/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	2 U	2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	3 J	3 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U	0.5 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
1,2,4-Trimethylbenzene	0.4.11	0.4.11	0.4.11	0.4.11	4 11	4.11
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U 	1 U	1 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	 0.1 U	0.1 U	0.1 U	0.1 U	1 U	 1 U
1,4-Dictilorobenzene 1,4-Dioxane	0.1 U 	0.1 U 	0.1 U	0.1 U 	2 J	1 U
2-Hexanone	1 U	1 U	1 U	1 U	3 U	3 U
Acetone	3 U	3 U	3 U	3 U	6 U	6 U
Benzene	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U	0.5 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U	0.3 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Carbon Disulfide	0.4 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Carbon Tetrachloride	0.4 U	0.1 U	0.1 U	0.1 U	0.5 U	0.5 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
Chloromethane	0.2 U	0.1 U	0.1 U	0.1 U	1 U	1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	740	730
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	3 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	3 U	3 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.2 U	2 U	2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U	0.8 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.7 U	0.7 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	29	29
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	1 U	1 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	730	720
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U	0.5 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 U	14	14

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	RD-01	RD-01	RD-01	RD-01	RD-02	RD-02
Sample Port:						
Sample Type:	Primary	Duplicate	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/05/2008	05/05/2008	08/28/2008	11/18/2008	02/28/2008	05/08/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
1,1,2,2-Tetrachloroethane	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	2 U	2 U	2 U	2 U	1 U
1,1,2-Trichloroethane	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	0.5 U
1,1-Dichloroethene	2.6 J	2.6 J	3 J	1.9 J	1 J	1.3 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.5 U
1,2-Dichloroethane	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	0.5 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.5 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.5 U
1,4-Dioxane	1.7 J		1.7 J	1.6 J	1.6 J	1.8 J
2-Hexanone	10 U	10 U	3 U	10 U	3 U	5 U
Acetone	30 U	30 U	6 U	30 U	6 U	15 U
Benzene	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	0.5 U
Bromoform	1 U	1 U	1 U	1 U	1 U	0.5 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	0.5 U
Carbon Disulfide	4 U	4 U	1 U	4 U	1 U	2 U
Carbon Tetrachloride	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
Chlorosthana	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
Chloroform	1 U	1 U	1 U	1 U	1 U	0.5 U
Chlorograph and	1 U	1 U	0.8 U	1 U	0.8 U 1 U	0.5 U
Chloromethane	2 U 610	2 U 620	1 U 670	2 U 610	340	1 U 340
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	1 U	620 1 U	1 U	1 U	340 1 U	0.5 U
Cumene				1 U		0.5 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	0.5 U
Ethanol						0.5 O
Ethylbenzene	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	10 U	10 U	3 U	10 U	3 U	5 U
Methyl isobutyl ketone (MIBK)	10 U	10 U	3 U	10 U	3 U	5 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U	1.7 U
m-Xylene & p-Xylene	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
n-Butylbenzene						
o-Xylene	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
p-Cymene						
Tetrachloroethene	1 U	1 U	0.8 U	1 U	0.8 U	0.5 U
Toluene	1 U	1 U	0.7 U	1 U	0.7 U	0.5 U
trans-1,2-Dichloroethene	28	26	30	23	31	25
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.5 U
Trichloroethene	590	640	640	560	270	250
Trichlorofluoromethane	1 U	1 U	0.5 U	1 U	0.5 U	0.5 U
Vinyl chloride	8.6	8.5	30	20	2	1.9 J

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	RD-02	RD-02	RD-02	RD-03	RD-04	RD-04
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Primary	Split
Lab Name:	Lancaster	C&T	Lancaster	Lancaster	Lancaster	C&T
Collection Date:	05/08/2008	05/08/2008	11/05/2008	08/15/2008	02/27/2008	02/27/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.5 U	0.6 UJ	0.5 U	0.1 U	0.8 U	2 U
1,1,2,2-Tetrachloroethane	0.5 U	0.6 UJ	0.5 U	0.1 U	0.5 U	2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	1 U	2.5 UJ	1 U	0.2 U	2 U	8 U
1,1,2-Trichloroethane	0.5 U	0.9 UJ	0.5 U	0.1 U	0.8 U	2 U
1,1-Dichloroethane	0.5 U	0.6 UJ	0.5 U	0.1 U	1 U	2 U
1,1-Dichloroethene	1.4 J	1.5 J	1.2 J	0.1 U	1 J	2 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.5 U	0.7 UJ	0.5 U	0.1 U	1 U	2 U
1,2-Dichloroethane	0.5 U	0.6 UJ	0.5 U	0.1 U	0.5 U	2 U
1,2-Dichloropropane	0.5 U	0.6 UJ	0.5 U	0.1 U	1 U	2 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.5 U	0.6 UJ	0.5 U	0.1 U	1 U	2 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.5 U	0.7 UJ	0.5 U	0.1 U	1 U	2 U
1,4-Dioxane			1.5 J		0.7 J	
2-Hexanone	5 U	13 UJ	5 U	1 U	3 U	40 U
Acetone	15 U	6.3 UJ	15 U	3 U	6 U	32 J,L
Benzene	0.5 U	0.6 UJ	0.5 U	0.1 U	0.5 U	2 U
Bromodichloromethane	0.5 U	0.6 UJ	0.5 U	0.1 U	1 U	2 U
Bromoform	0.5 U	1.3 UJ	0.5 U	0.1 U	1 U	4 U
Bromomethane	0.5 U	1.5 UJ	0.5 U	0.1 U	1 U	4 U
Carbon Disulfide	2 U	0.6 UJ	2 U	0.4 U	1 U	2 U
Carbon Tetrachloride	0.5 U	0.6 UJ	0.5 U	0.1 U	0.5 U	2 U
Chlorobenzene	0.5 U	0.6 UJ	0.5 U	0.1 U	0.8 U	2 U
Chloroethane	0.5 U	1.7 UJ	0.5 U	0.1 U	1 U	4 U
Chloroform Chloromethane	0.5 U 1 U	0.6 UJ	0.5 U 1 U	0.1 U 0.2 U	0.8 U 1 U	2 U 4 U
	340	1.3 UJ 390 J	310	0.2 U 0.7	160	
cis-1,2-Dichloroethene	0.5 U	0.6 UJ	0.5 U	0.7 0.1 U	160 1 U	150 2 U
cis-1,3-Dichloropropene Cumene	0.5 U 	0.6 03	0.5 0	0.1 O		2 U
Dibromochloromethane	0.5 U	0.9 UJ	0.5 U	0.1 U	1 U	2 U
Ethanol	0.5 U	0.9 03	0.5 0	0.1 U		
Ethylbenzene	0.5 U	0.6 UJ	0.5 U	0.1 U	0.8 U	2 U
Ethylene glycol	0.5 U	0.0 O3 	0.5 0	0.1 O	0.8 O	
Isopropanol						
Methanol						
Methyl ethyl ketone	5 U	13 UJ	5 U	1 U	3 U	40 U
Methyl isobutyl ketone (MIBK)	5 U	13 UJ	5 U	1 U	3 U	40 U
Methylene chloride	1.6 U	6.3 UJ	1 U	0.2 U	2 U	20 U
m-Xylene & p-Xylene	0.5 U	1 UJ	0.5 U	0.1 U	0.8 U	2.1 U
n-Butylbenzene						
o-Xylene	0.5 U	0.6 UJ	0.5 U	0.1 U	0.8 U	2 U
p-Cymene						
Tetrachloroethene	0.5 U	0.7 UJ	0.5 U	0.1 U	0.8 U	2 U
Toluene	0.5 U	0.6 UJ	0.5 U	0.1 U	0.7 U	25 L
trans-1,2-Dichloroethene	25	28 J	21	0.2 J	3 J	3.7 J
trans-1,3-Dichloropropene	0.5 U	0.6 UJ	0.5 U	0.1 U	1 U	2 U
Trichloroethene	240	280 J	210	0.1 U	1400	1400
Trichlorofluoromethane	0.5 U	1.3 UJ	0.5 U	0.1 U	0.5 U	4 U
Vinyl chloride	1.8 J	1.7 J	1.8 J	0.1 J	0.5 U	2 U

SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	RD-04	RD-04	RD-04	RD-04	RD-04	RD-05A
Sample Port:						
Sample Type:	Primary	Primary	Primary	Duplicate	Split	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:	05/08/2008	08/20/2008	10/29/2008	10/29/2008	10/29/2008	02/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	1 U	1 U	5 U	5 U	0.8 U	0.1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	5 U	5 U	1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	2 U	10 U	10 U	4 U	0.2 U
1,1,2-Trichloroethane	1 U	1 U	5 U	5 U	1.6 U	0.1 U
1,1-Dichloroethane	1 U	1 U	5 U	5 U	0.8 U	0.1 U
1,1-Dichloroethene	1 U	1.9 J	5 U	5 U	1.5 J	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	5 U	5 U	0.65 U	0.1 U
1,2-Dichloroethane	1 U	1 U	5 U	5 U	0.65 U	0.1 U
1,2-Dichloropropane	1 U	1 U	5 U	5 U	0.65 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	5 U	5 U	0.8 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	5 U	5 U	0.8 U	0.1 U
1,4-Dioxane	0.8 J	0.7 J	0.5 J			
2-Hexanone	10 U	10 U	50 U	50 U	7 U	1 U
Acetone	30 U	30 U	150 U	150 U	9.5 U	3 U
Benzene	1 U	1 U	5 U	5 U	0.8 U	0.1 U
Bromodichloromethane	1 U	1 U	5 U	5 U	0.85 U	0.1 U
Bromoform	1 U	1 U	5 U	5 U	0.95 U	0.1 U
Bromomethane	1 U	1 U	5 U	5 U	1 U	0.1 U
Carbon Disulfide	4 U	4 U	20 U	20 U	2.2 U	0.1 U
Carbon Tetrachloride	1 U	1 U	5 U	5 U	0.95 U	0.1 U
Chlorobenzene	1 U	1 U	5 U	5 U	0.85 U	0.1 U
Chloroethane	1 U	1 U	5 U	5 U	2 U	0.1 U
Chloroform	1 U	1 U	5 U	5 U	0.8 U	0.1 U
Chloromethane	2 U	2 U	10 U	10 U	1.5 U	0.1 U
cis-1,2-Dichloroethene	170	180	170	160	190	0.1 U
cis-1,3-Dichloropropene	1 U	1 U	5 U	5 U	0.8 U	0.1 U
Cumene						
Dibromochloromethane	1 U	1 U	5 U	5 U	0.85 U	0.1 U
Ethanol						
Ethylbenzene	1 U	1 U	5 U	5 U	0.8 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	10 U	10 U	50 U	50 U	9.2 U	1 U
Methyl isobutyl ketone (MIBK)	10 U	10 U	50 U	50 U	5.2 U	1 U
Methylene chloride	3.2 U	2 U	10 U	10 U	1.6 U	0.2 U
m-Xylene & p-Xylene	1 U	1 U	5 U	5 U	1.7 U	0.1 U
n-Butylbenzene						
o-Xylene	1 U	1 U	5 U	5 U	0.95 U	0.1 U
p-Cymene						
Tetrachloroethene	1 U	1 U	5 U	5 U	1 U	0.1 U
Toluene	1 U	1 U	5 U	5 U	0.85 U	0.1 U
trans-1,2-Dichloroethene	4.2 J	6.2	5 U	5 U	3.4 J	0.1 U
trans-1,3-Dichloropropene	1 U	1 U	5 U	5 U	0.95 U	0.1 U
Trichloroethene	1600	2300	1400	1400	1800	0.1 U
Trichlorofluoromethane	1 U	1 U	5 U	5 U	1.4 U	0.1 U
Vinyl chloride	1 U	1 U	5 U	5 U	2 U	0.1 U

Well Identifier:	RD-05A	RD-05B	RD-05B	RD-05B	RD-05B	RD-05B
Sample Port:						
Sample Type:	Primary	Primary	Duplicate	Split	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	C&T	Lancaster	Lancaster
Collection Date:	08/14/2008	02/18/2008	02/18/2008	02/18/2008	05/16/2008	05/16/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U				
1,1-Dichloroethane	0.1 U	0.1 U				
1,1-Dichloroethene	0.1 U	0.1 U				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U				
1,2-Dichloroethane	0.1 U	0.1 U				
1,2-Dichloropropane	0.1 U	0.1 U				
1,2,4-Trimethylbenzene	0.4.11	0.4.11	0.4.11	0.4.11	0.4.11	
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U 	0.1 U	0.1 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	 0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	 0.1 U
1,4-Dictilorobenzene 1,4-Dioxane	0.1 U 	0.1 U 	0.1 U	0.1 U 	0.1 U 	0.1 U
2-Hexanone	1 U	1 U	1 U	2 U	1 U	1 U
Acetone	3 U	3 U	3 U	2 U	3 U	3 U
Benzene	0.1 U	0.1 U				
Bromodichloromethane	0.1 U	0.1 U				
Bromoform	0.1 U	0.1 U				
Bromomethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.1 J,L	0.1 U	0.2 U	0.6	0.7
Carbon Tetrachloride	0.4 U	0.1 U	0.1 U	0.1 U	0.0 0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U				
Chloroethane	0.1 U	0.11 J	0.1 U	0.2 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U				
Chloromethane	0.2 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U				
cis-1,3-Dichloropropene	0.1 U	0.1 U				
Cumene						
Dibromochloromethane	0.1 U	0.1 U				
Ethanol						
Ethylbenzene	0.1 U	0.1 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	2 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	2 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	1 U	0.3 U	0.3 U
m-Xylene & p-Xylene	0.1 U	0.1 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U				
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U				
Toluene	0.1 U	0.1 U				
trans-1,2-Dichloroethene	0.1 U	0.1 U				
trans-1,3-Dichloropropene	0.1 U	0.1 U				
Trichloroethene	0.1 U	0.1 U				
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U				

Well Identifier:	RD-05B	RD-05B	RD-05B	RD-05B	RD-05B	RD-05C
Sample Port:						
Sample Type:	Split	Primary	Duplicate	Split	Primary	Primary
Lab Name:	C&T	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	05/16/2008	08/18/2008	08/18/2008	08/18/2008	11/05/2008	02/14/2008
Analyte (ug/L)	00/10/2000	00/10/2000	00/10/2000	00/10/2000	11/00/2000	02/14/2000
1,1,1-Trichloroethane	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 UJ	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.4 UJ	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 UJ	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 UJ	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 UJ	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 UJ	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 UJ	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	2 UJ	1 U	1 U	1.4 U	1 U	1 U
Acetone	1 UJ	3 U	3 U	4.1 U	3 U	3 U
Benzene	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Bromodichloromethane	0.1 UJ	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromoform	0.2 UJ	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Bromomethane	0.2 UJ	0.1 U	0.1 U	0.21 U	0.1 U	0.1 U
Carbon Disulfide	0.6 J	0.4 U	0.4 U	0.45 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 UJ	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Chlorobenzene	0.1 UJ	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Chloroethane	0.3 UJ	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U
Chloroform	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Chloromethane	0.2 UJ	0.2 U	0.2 U	0.3 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	0.1 UJ	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 UJ	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 UJ	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	2 UJ	1 U	1 U	1.8 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	2 UJ	1 U	1 U	1 U	1 U	1 U
Methylene chloride	1 UJ	0.2 U	0.2 U	0.32 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.2 UJ	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 UJ	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 UJ	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Toluene	0.1 UJ	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 UJ	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 UJ	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Trichloroethene	0.1 UJ	0.1 U	0.1 U	0.16 U	0.4 J	0.1 U
Trichlorofluoromethane	0.2 UJ	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U
Vinyl chloride	0.1 UJ	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U

Well Identifier:	RD-05C	RD-05C	RD-05C	RD-05C	RD-05C	RD-05C
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Duplicate	Primary
Lab Name:	Lancaster	C&T	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/14/2008	02/14/2008	05/14/2008	08/14/2008	08/14/2008	11/05/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.4 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	2 U	1 U	1 U	1 U	1 U
Acetone	3 U	1 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.6 U	0.27 J	0.4 U	0.4 J	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U					
Chloromethane	0.1 U	0.2 U				
cis-1,2-Dichloroethene	0.1 U					
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	2 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	2 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	1 U	0.3 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U					
Trichlorofluoromethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U					

Well Identifier:	RD-05C	RD-05C	RD-06	RD-06	RD-06	RD-06
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Duplicate	Split
Lab Name:	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	C&T
Collection Date:	11/05/2008	11/05/2008	02/26/2008	05/14/2008	05/14/2008	05/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.79 U	0.2 U	0.2 U	0.2 U	0.4 U
1,1,2-Trichloroethane	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.14 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	1 U	1.4 U	1 U	1 U	1 U	2 U
Acetone	3 U	1.9 U	3 U	3 U	3 U	1 U
Benzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.2 U
Bromomethane	0.1 U	0.21 U	0.1 U	0.1 U	0.1 U	0.2 U
Carbon Disulfide	0.4 U	0.45 U	0.2 J,L	0.4 J	0.4 U	0.1 U
Carbon Tetrachloride	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.41 U	0.1 U	0.1 U	0.1 U	0.3 U
Chloroform	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.3 U	0.1 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1.8 U	1 U	1 U	1 U	2 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	2 U
Methylene chloride	0.2 U	0.32 U	0.2 U	0.3 U	0.3 U	1 U
m-Xylene & p-Xylene	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U	0.2 U
n-Butylbenzene						
o-Xylene	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.16 U	0.1 U	0.1 J	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.29 U	0.1 U	0.1 U	0.1 U	0.2 U
Vinyl chloride	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-06	RD-06	RD-06	RD-06	RD-06	RD-07
Sample Port:						Z3
Sample Type:	Primary	Duplicate	Split	Primary	Duplicate	Primary
Lab Name:	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:	08/28/2008	08/28/2008	08/28/2008	11/07/2008	11/07/2008	02/05/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U	0.1 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	1 U	1 U	1.4 U	1 U	1 U	1 U
Acetone	3 U	3 U	1.9 U	3 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 J,F
Bromodichloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.21 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.45 U	0.4 U	0.4 U	0.1 U
Carbon Tetrachloride	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 J,S
Chloroethane	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U	54
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1.8 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.36 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U	0.7
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	6.3
Trichlorofluoromethane	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	RD-07	RD-07	RD-09	RD-09	RD-09	RD-09
Sample Port:	Z 3	Z3				
Sample Type:	Duplicate	Primary	Primary	Duplicate	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/05/2008	08/06/2008	05/15/2008	05/15/2008	08/20/2008	10/28/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.5 U	0.5 U	0.5 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	2 U	2 U	1 U	2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
1,1-Dichloroethane	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
1,1-Dichloroethene	0.1 J	0.1 J	0.8 U	0.8 U	0.6 J	1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.5 U	0.5 U	0.5 U	1 U
1,2-Dichloropropane	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
1,4-Dioxane			1.3 J		2.5 U	2.3
2-Hexanone	1 U	1 U	3 U	3 U	5 U	10 U
Acetone	3 U	3 U	6 U	6 U	15 U	30 U
Benzene	0.1 J,F	0.1 U	0.5 U	0.5 U	0.5 U	1 U
Bromodichloromethane	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Bromoform	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Bromomethane	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Carbon Disulfide	0.1 U	0.4 U	1 U	1 U	2 U	4 U
Carbon Tetrachloride	0.1 U	0.1 U	0.5 U	0.5 U	0.5 U	1 U
Chlorobenzene	0.3 J,S	0.1 J,S	0.8 U	0.8 U	0.5 U	1 U
Chloroethane	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Chloroform	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
Chloromethane	0.1 U	0.2 U	1 U	1 U	1 U	2 U
cis-1,2-Dichloroethene	62	41	76	78	69	71
cis-1,3-Dichloropropene	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	3 U	3 U	5 U	10 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	3 U	3 U	5 U	10 U
Methylene chloride	0.2 U	0.2 U	2 U	2 U	1 U	2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.8 U	0.8 U	0.5 U	1 U
Toluene	0.1 U	0.1 U	0.7 U	0.7 U	0.5 U	1 U
trans-1,2-Dichloroethene	0.7	0.2 J	20	21	15	15
trans-1,3-Dichloropropene	0.1 U	0.1 U	1 U	1 U	0.5 U	1 U
Trichloroethene	6.8	17	350	330	360	330
Trichlorofluoromethane	0.1 U	0.1 U	0.5 U	0.5 U	0.5 U	1 U
Vinyl chloride	0.1 U	0.1 U	0.5 U	0.5 U	0.5 J	1 U

TABLE IV SUMMARY OF ANALYSES FOR VOLATILE ORGANIC COMPOUNDS IN CHATSWORTH FORMATION WELLS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:	RD-09	RD-09	RD-10	RD-10	RD-10	RD-10
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Duplicate	Primary
Lab Name:	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	10/28/2008	10/28/2008	02/28/2008	05/06/2008	05/06/2008	08/26/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.32 U	0.8 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.4 U	0.5 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	1.6 U	2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.64 U	0.8 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.32 U	1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.56 J	0.8 U	0.2 J	0.1 J	0.1 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.26 U	1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.26 U	0.5 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.26 U	1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.32 U	1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.32 U	1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane			0.5 U	0.6 J		0.6 J
2-Hexanone	1 U	2.8 U	3 U	1 U	1 U	1 U
Acetone	3 U	3.8 U	6 U	3 U	3 U	3 U
Benzene	0.1 U	0.32 U	0.5 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.34 U	1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.38 U	1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.42 U	1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.9 U	1 U	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride Chlorobenzene	0.1 U 0.1 U	0.38 U 0.34 U	0.5 U 0.8 U	0.1 J 0.1 U	0.1 J 0.1 U	0.1 J
Chloroethane	0.1 U	0.82 U	0.8 U	0.1 U	0.1 U	0.1 U 0.1 U
Chloroform	0.1 U	0.32 U	0.8 U	0.1 J	0.1 J	0.1 U
Chloromethane	0.1 U	0.6 U	1 U	0.1 J	0.1 J	0.1 U
cis-1,2-Dichloroethene	7.1	80	10	12	12	11
cis-1,3-Dichloropropene	0.1 U	0.32 U	1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.34 U	1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.32 U	0.8 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	3.7 U	3 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	2.1 U	3 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.64 U	2 U	0.3 U	0.3 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.68 U	0.8 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.38 U	0.8 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.4 U	0.8 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.34 U	0.7 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	1.6	19	0.8 U	0.9	1	8.0
trans-1,3-Dichloropropene	0.1 U	0.38 U	1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	35	440	14	15	16	15
Trichlorofluoromethane	0.1 U	0.58 U	0.5 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.8 U	0.5 U	0.2 J	0.2 J	0.1 J

Well Identifier:	RD-10	RD-10	RD-10	RD-13	RD-13	RD-13
Sample Port:						
Sample Type:	Primary	Duplicate	Split	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:	10/29/2008	10/29/2008	10/29/2008	02/20/2008	05/13/2008	05/13/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 J	0.1 J	0.14 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane	0.5 U					
2-Hexanone	1 U	1 U	1.4 U	1 U	1 U	1 U
Acetone	3 U	3 U	1.9 U	3 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.21 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.45 U	0.1 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.3 U	0.1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	10	10	10	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1.8 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.32 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.7	0.7	0.65 J	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Trichloroethene	13	13	13	0.2 J	0.2 J	0.2 J
Trichlorofluoromethane	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 J	0.2 J	0.4 U	0.1 U	0.1 U	0.1 U

Well Identifier: Sample Port:	RD-13	RD-13	RD-13	RD-15	RD-16	RD-16
Sample Type:	Primary	Primary	Duplicate	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/03/2008	11/12/2008	11/12/2008	02/20/2008	02/27/2008	05/09/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.4 U	0.4 U	0.4 U	2.9	0.1 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 J,L	0.1 U	0.1 U
Chloroform	0.1 U					
Chloromethane	0.2 U	0.2 U	0.2 U	0.1 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	0.1 U					
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol					0.4.11	
Ethylpen glycol	0.1 U					
Ethylene glycol						
Isopropanol Methanol						
	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U					
m-Xylene & p-Xylene	0.2 U 0.1 U					
n-Butylbenzene		0.1 O 	0.1 O		0.1 O	
o-Xylene	0.1 U					
p-Cymene		0.1 O 	0.1 0	0.1 0	0.1 O	0.1 0
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.4 J	0.7 J	0.3 J	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

Well Identifier:	RD-16	RD-16	RD-16	RD-16	RD-16	RD-16
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Duplicate	Split
Lab Name:	Lancaster	C&T	Lancaster	Lancaster	Lancaster	TA-Denver
Collection Date:	05/09/2008	05/09/2008	08/25/2008	11/11/2008	11/11/2008	11/11/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.16 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.2 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.1 U	0.2 U	0.2 U	0.2 U	0.79 U
1,1,2-Trichloroethane	0.1 U	0.32 U				
1,1-Dichloroethane	0.1 U	0.16 U				
1,1-Dichloroethene	0.1 U	0.14 U				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.13 U				
1,2-Dichloroethane	0.1 U	0.13 U				
1,2-Dichloropropane	0.1 U	0.13 U				
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.16 U				
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.16 U				
1,4-Dioxane						
2-Hexanone	1 U	2 U	1 U	1 U	1 U	1.4 U
Acetone	3 U	1 U	3 U	3 U	3 U	1.9 U
Benzene Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U 0.1 U	0.16 U
Bromodichioromethane Bromoform	0.1 U 0.1 U	0.1 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.17 U
Bromomethane	0.1 U 0.1 U	0.2 U 0.3 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.19 U
Carbon Disulfide	0.1 U 0.4 U	0.3 U 0.1 U	0.1 U 0.4 U	0.1 U 0.4 J	0.1 U 0.4 J	0.21 U 0.45 U
Carbon Distillide Carbon Tetrachloride	0.4 U	0.1 U	0.4 U	0.4 J 0.1 U	0.4 J 0.1 U	0.45 U 0.19 U
Chlorobenzene	0.1 U	0.19 U 0.17 U				
Chloroethane	0.1 U	0.17 U 0.41 U				
Chloroform	0.1 U	0.16 U				
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.7 U	0.3 U
cis-1,2-Dichloroethene	0.1 U	0.15 U				
cis-1,3-Dichloropropene	0.1 U	0.16 U				
Cumene						
Dibromochloromethane	0.1 U	0.17 U				
Ethanol						
Ethylbenzene	0.1 U	0.16 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	2 U	1 U	1 U	1 U	1.8 U
Methyl isobutyl ketone (MIBK)	1 U	2 U	1 U	1 U	1 U	1 U
Methylene chloride	0.3 U	1 U	0.2 U	0.2 U	0.2 U	0.53 U
m-Xylene & p-Xylene	0.1 U	0.34 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.19 U				
p-Cymene						
Tetrachloroethene	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
Toluene	0.1 U	0.17 U				
trans-1,2-Dichloroethene	0.1 U	0.15 U				
trans-1,3-Dichloropropene	0.1 U	0.19 U				
Trichloroethene	0.1 U	0.16 U				
Trichlorofluoromethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.29 U
Vinyl chloride	0.1 U	0.4 U				

Well Identifier:	RD-17	RD-18	RD-18	RD-18	RD-18	RD-18
Sample Port:						
Sample Type:	Primary	Primary	Primary	Duplicate	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/22/2008	02/27/2008	05/20/2008	05/20/2008	08/21/2008	11/03/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.2 J,L	0.1 U	0.4 U	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U					
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.3 U	0.3 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	1	0.1 U				
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

Well Identifier:	RD-19	RD-19	RD-19	RD-19	RD-19	RD-21
Sample Port:						Z2
Sample Type:	Primary	Primary	Split	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	C&T	Lancaster	Lancaster	Lancaster
Collection Date:	02/01/2008	05/01/2008	05/01/2008	08/11/2008	11/21/2008	02/05/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.4 U	0.2 U	0.2 U	2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2,4-Trimethylbenzene					0.4.11	4.11
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,3,5-Trimethylbenzene					0.4.11	4.11
1,4-Dichlorobenzene 1,4-Dioxane	0.1 U	0.1 U	0.1 U	0.1 U 	0.1 U	1 U
2-Hexanone	 1 U	1 U	 2 U	1 U	1 U	3 U
	3 U	3 U	2 U 1 U	3 U	3 U	3 U 6 U
Acetone Benzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 J,F
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 J,F 1 U
Bromoform	0.1 U	0.1 U	0.1 U 0.2 U	0.1 U	0.1 U	1 U
Bromomethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	1 U
Carbon Disulfide	0.1 U	0.4 U	0.2 U	0.4 U	0.4 U	1 U
Carbon Tetrachloride	0.1 U	0.4 U	0.1 U	0.4 U	0.4 U	3
Chlorobenzene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.8 U
Chloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	3 J
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	510
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	2 U	1 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	2 U	1 U	1 U	3 U
Methylene chloride	0.2 U	0.2 U	1 U	0.2 U	0.2 U	2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.8 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 J,F
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	160
Trichlorofluoromethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.5 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U

Well Identifier:	RD-21	RD-22	RD-22	RD-22	RD-22	RD-23
Sample Port:	Z3	Z2	Z2	Z2	Z2	Z3
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/06/2008	02/05/2008	05/01/2008	08/06/2008	11/11/2008	02/06/2008
Analyte (ug/L)	00/00/2000	02/03/2008	03/01/2008	00/00/2008	11/11/2000	02/00/2000
1,1,1-Trichloroethane	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	0.2 U	0.7 U	0.2 U	0.2 U	2 U
1,1,2-Trichloroethane	0.8 U	0.2 U	0.2 U	0.2 U	0.2 U	0.8 U
1.1-Dichloroethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 J
1,1-Dichloroethene	2 J	0.1 U	0.1 U	0.1 U	0.1 U	8
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dishorhoethane 1,2-Dishlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2-Dichloroethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.6 J
1,2-Dichloropropane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,3,5-Trimethylbenzene		0.1 O	0.1 O	0.1 O 	0.1 O 	
1,4-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,4-Dioxane			0.1 O	0.1 O	0.1 O	
2-Hexanone	3 U	1 U	1 U	1 U	1 U	3 U
Acetone	95	15 S	3 U	3 U	3 U	6 U
Benzene	0.6 J,F	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
Bromodichloromethane	0.0 3,1 1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
Bromoform	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Bromomethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Carbon Disulfide	1 U	0.1 U	0.4 U	0.4 U	0.4 U	1 U
Carbon Tetrachloride	0.5 U	0.1 U	0.4 U	0.4 U	0.4 U	0.5 U
Chlorobenzene	0.8 U	0.1 J	0.7 S	1 S	0.1 S	0.8 U
Chloroethane	1 U	0.5 J,5 0.1 U	0.7 U	0.1 U	0.9 U	1 U
Chloroform	1 J	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Chloromethane	1 U	0.1 U	0.7 U	0.2 U	0.2 U	1 U
cis-1,2-Dichloroethene	740	0.1 U	0.2 U	0.2 U	0.2 U	160
cis-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Cumene						
Dibromochloromethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Ethanol						
Ethylbenzene	2 J,S	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	11	2.4 J,S	1 U	1 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	3 U	1 U	1 U	1 U	1 U	3 U
Methylene chloride	2 U	0.2 U	0.2 U	0.2 U	0.2 U	2 U
m-Xylene & p-Xylene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
p-Cymene						
Tetrachloroethene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Toluene	12 F	0.1 U	0.1 U	0.1 U	0.1 U	1 J,F
trans-1,2-Dichloroethene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.9 J
trans-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Trichloroethene	69	0.1 U	0.1 U	0.1 U	0.1 U	340
Trichlorofluoromethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
Vinyl chloride	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
·						

Well Identifier:	RD-23	RD-24	RD-24	RD-26	RD-26	RD-27
Sample Port:	Z2					
Sample Type:	Primary	Primary	Duplicate	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/07/2008	02/13/2008	02/13/2008	03/03/2008	09/02/2008	03/05/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	1 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	5	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U 	0.1 U 	0.1 U 	0.1 U 	0.1 U	0.1 U
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	 0.1 U
•		0.1 0	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane		0.1 O 	0.1 O	0.1 O 	0.1 O 	0.1 O
2-Hexanone	3 U	1 U	1 U	1 U	1 U	1 U
Acetone	6 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	1 U	0.2 U	0.2 U	0.1 U	0.4 U	0.1 U
Carbon Tetrachloride	0.5 U	0.1 U	0.1 U	0.3 J	0.2 J	0.1 U
Chlorobenzene	0.8 R	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	0.8 U	0.1 U	0.1 U	0.2 J	0.2 J	0.1 U
Chloromethane	1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	30	0.1 J	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.8 U	0.1 U	0.1 U 0.1 U	0.1 U	0.1 U	0.1 U 0.1 U
Toluene	0.7 U 4 J	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U	
trans-1,2-Dichloroethene	4 J 1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U	0.1 U
trans-1,3-Dichloropropene Trichloroethene	410	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 4.5	0.1 U 2.8	0.1 U 0.1 U
Trichlorofluoromethane	0.5 U	0.1 U 0.1 U	0.1 U 0.1 U	4.5 0.1 U	2.8 0.1 U	0.1 U 0.1 U
Vinyl chloride	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-27	RD-29	RD-30	RD-30	RD-32	RD-32
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	09/04/2008	02/05/2008	02/06/2008	08/13/2008	02/19/2008	05/02/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	1.1	2.3	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 J	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 J	0.2 J	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.4 U	0.1 U	0.1 U	0.4 U	0.1 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.2 U	0.1 U	0.1 U	0.2 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.5	0.6	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methyl othyl katana	 1 U	1 U	1 U	1 U	1 U	4.11
Methyl ethyl ketone Methyl isobutyl ketone (MIBK)		1 U	1 U	1 U	1 U	1 U
, ,	1 U					1 U
Methylene chloride	0.2 U 0.1 U	0.2 U				
m-Xylene & p-Xylene n-Butylbenzene	0.1 U	0.1 U	0.1 O	0.1 U 	0.1 U	0.1 U
-	0.1 U					
o-Xylene p-Cymene	0.1 U 					
Tetrachloroethene	0.1 U	0.1 U	0.4 J	0.6	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.4 J 0.1 U	0.6 0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U
Trichloroethene	0.1 U	2.5	7.6	11	0.1 U 0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	2.5 0.1 U	7.6 0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U					
viriyi Gillollu c	U. I U	U. 1 U	U. 1 U	0.1 0	U.1 U	0.1 0

Well Identifier:	RD-32	RD-32	RD-32	RD-32	RD-32	RD-33A
Sample Port:						Z2
Sample Type:	Duplicate	Primary	Primary	Duplicate	Split	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:	05/02/2008	08/13/2008	11/10/2008	11/10/2008	11/10/2008	02/07/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.79 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.3 J
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.14 U	1
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,4-Dioxane				4.11		
2-Hexanone	1 U	1 U	1 U	1 U	1.4 U	1 U
Acetone	3 U	8.1	3 U	3 U	1.9 U	3.6 J
Benzene	0.1 U	0.6	0.1 U	0.1 U	0.16 U	0.5 J,F
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.21 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.4 U	0.4 U	0.45 U	0.1 U
Carbon Tetrachloride Chlorobenzene	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.19 U 0.17 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U 0.41 U	0.2 J,S 0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.41 U	0.1 U
Chloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.10 U	0.1 U
cis-1,2-Dichloroethene	0.2 U	0.2 U	0.2 U	0.2 U	0.15 U	4.7
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	3.8	0.1 U	0.1 U	0.16 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1.5 J	1 U	1 U	1.8 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.2 U	0.58 U	0.2 U
m-Xylene & p-Xylene	0.1 U	9.7	0.1 U	0.1 U	0.34 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	10	0.1 U	0.1 U	0.19 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.5	0.1 U	0.1 U	0.2 U	0.1 U
Toluene	0.1 U	17	0.1 U	0.1 U	0.17 U	0.9 F
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.15 U	0.6
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 J
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.29 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U

Well Identifier:	RD-33A	RD-33B	RD-33B	RD-33B	RD-33B	RD-33B
Sample Port:	Z2					
Sample Type:	Primary	Primary	Primary	Duplicate	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/08/2008	02/13/2008	05/16/2008	05/16/2008	08/07/2008	11/10/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.3 J	0.1 U				
1,1-Dichloroethene	1.1	0.1 U				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3.4 J	3.1 J	3.1 J	3 U
Benzene	0.4 J,F	0.1 U				
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.4 U	0.1 U	0.4 U	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.6 S	0.1 U				
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.2 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	4.6	0.1 U				
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.3 U	2.9 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 J	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.9 F	0.1 U				
trans-1,2-Dichloroethene	0.7	0.1 U				
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 J	0.1 U				
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

Well Identifier:	RD-33C	RD-33C	RD-33C	RD-33C	RD-33C	RD-34A
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Duplicate	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/12/2008	05/15/2008	08/07/2008	11/06/2008	11/06/2008	02/06/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U	0.3 J				
1,1-Dichloroethene	0.1 U	0.6				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U 	0.1 U 	0.1 U	0.1 U
1,2,4-Trimethylbenzene	 0.1 U	 0.1 U	0.1 U	0.1 U	0.1 U	 0.1 U
1,3-Dichlorobenzene 1,3,5-Trimethylbenzene	0.1 U 					
1,4-Dichlorobenzene	0.1 U					
1,4-Dictrioroberizerie	0.1 U	0.1 O 	0.1 O 	0.1 O 		0.1 O
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.2 J,L	0.4 U	0.4 U	0.4 U	0.4 U	0.1 U
Carbon Tetrachloride	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.9				
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U	3.9				
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

Well Identifier:	RD-34A	RD-34B	RD-34B	RD-34C	RD-34C	RD-36B
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/07/2008	02/06/2008	08/07/2008	02/12/2008	08/07/2008	02/19/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.8 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	2 U				
1,1,2-Trichloroethane	0.1 U	0.8 U				
1,1-Dichloroethane	0.3 J	0.1 U	0.2 J	0.1 U	0.1 U	1 U
1,1-Dichloroethene	0.7	0.1 J	0.3 J	0.1 U	0.1 U	0.8 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	1 U				
1,2-Dichloroethane	0.1 U	0.5 U				
1,2-Dichloropropane	0.1 U 	0.1 U 	0.1 U 	0.1 U 	0.1 U	1 U
1,2,4-Trimethylbenzene	0.1 U	 1 U				
1,3-Dichlorobenzene 1,3,5-Trimethylbenzene	0.1 U 	1 U				
1,4-Dichlorobenzene	0.1 U	1 U				
1,4-Dictiloroberizerie	0.1 U	0.1 O 	0.1 O			
2-Hexanone	1 U	1 U	1 U	1 U	1 U	3 U
Acetone	3 U	3 U	3 U	3 U	3 U	6 U
Benzene	0.1 U	0.5 U				
Bromodichloromethane	0.1 U	1 U				
Bromoform	0.1 U	1 U				
Bromomethane	0.1 U	1 U				
Carbon Disulfide	0.4 U	0.2 U	0.4 U	0.1 U	0.4 U	1 U
Carbon Tetrachloride	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.5 U
Chlorobenzene	0.1 U	0.8 U				
Chloroethane	0.1 U	1 U				
Chloroform	0.1 U	0.8 U				
Chloromethane	0.2 U	0.1 U	0.2 U	0.1 U	0.2 U	1 U
cis-1,2-Dichloroethene	1.2	0.3 J	0.8	0.1 U	0.1 U	0.8 U
cis-1,3-Dichloropropene	0.1 U	1 U				
Cumene						
Dibromochloromethane	0.1 U	1 U				
Ethanol						
Ethylbenzene	0.1 U	0.8 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	3 U
Methylene chloride	0.2 U	2 U				
m-Xylene & p-Xylene	0.1 U	0.8 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.8 U				
p-Cymene						
Tetrachloroethene	0.1 U	6				
Toluene	0.1 U	0.7 U				
trans-1,2-Dichloroethene	0.1 U	0.8 U				
trans-1,3-Dichloropropene	0.1 U	1 U				
Trichloroethene	5.3	0.5	1.3	0.1 U	0.1 U	76
Trichlorofluoromethane	0.1 U	0.5 U				
Vinyl chloride	0.1 U	0.5 U				

Well Identifier:	RD-36B	RD-36B	RD-36C	RD-36C	RD-36C	RD-36D
Sample Port:						
Sample Type:	Primary	Duplicate	Primary	Duplicate	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/14/2008	08/14/2008	02/20/2008	02/20/2008	08/15/2008	02/19/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	2 U	2 U	2 U	2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	0.1 U
1,1-Dichloroethene	0.8 U	0.8 U	4 J	5 J	5 J	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,3,5-Trimethylbenzene					4.11	
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,4-Dioxane						
2-Hexanone	3 U	3 U	3 U	3 U	3 U	1 U
Acetone	6 U	6 U	6 U	6 U	6 U	3 U
Benzene Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U 1 U	0.5 U	0.1 U
Bromodichioromethane Bromoform	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	0.1 U 0.1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U	0.1 U 0.1 J,L
Carbon Distillide Carbon Tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J,∟ 0.1 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U
Chloroethane	1 U	0.8 U	0.8 U	0.8 U	1 U	0.1 J
Chloroform	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U
Chloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
cis-1,2-Dichloroethene	1 J	1 J	59	58	67	0.1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	3 U	3 U	3 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	3 U	3 U	3 U	3 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U
n-Butylbenzene						
o-Xylene	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.1 U
p-Cymene						
Tetrachloroethene	6	6	4 J	4 J	5	0.1 U
Toluene	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.1 U
trans-1,2-Dichloroethene	0.8 U	0.8 U	6	5	3 J	0.1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.1 U
Trichloroethene	99	97	81	80	91	0.4 J
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U

Well Identifier:	RD-36D	RD-36D	RD-36D	RD-36D	RD-36D	RD-36D
Sample Port:						
Sample Type:	Duplicate	Primary	Split	Primary	Duplicate	Split
Lab Name:	Lancaster	Lancaster	C&T	Lancaster	Lancaster	TA-Denver
Collection Date:	02/19/2008	05/15/2008	05/15/2008	08/15/2008	08/15/2008	08/15/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.4 UJ	0.2 U	0.2 U	0.79 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.32 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 UJ	0.2 J	0.1 U	0.14 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.13 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.13 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.13 U
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	 0.1 U	 0.1 U	0.1 UJ	 0.1 U	0.1 U	 0.16 U
•	0.1 U 	0.1 U 	0.1 03	0.1 U	0.1 U	0.16 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
1,4-Dictrioroberizerie	0.1 U	0.1 U	0.1 OJ 	0.1 U	0.1 U	0.16 U
2-Hexanone	1 U	1 U	2 UJ	1 U	1 U	1.4 U
Acetone	3 U	5.9	1 UJ	3 U	3 U	1.9 U
Benzene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
Bromodichloromethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.10 U
Bromoform	0.1 U	0.1 U	0.2 UJ	0.1 U	0.1 U	0.17 U
Bromomethane	0.1 U	0.1 U	0.2 UJ	0.1 U	0.1 U	0.21 U
Carbon Disulfide	0.1 J,L	0.4 U	0.1 UJ	0.4 U	0.4 U	0.45 U
Carbon Tetrachloride	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.19 U
Chlorobenzene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.17 U
Chloroethane	0.1 U	0.1 J	0.3 UJ	0.1 U	0.1 U	0.41 U
Chloroform	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
Chloromethane	0.1 U	0.2 U	0.2 UJ	0.2 U	0.2 U	0.3 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 UJ	2	0.1 U	0.15 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.17 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.16 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	2 UJ	1 U	1 U	1.8 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	2 UJ	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U	1 UJ	0.2 U	0.2 U	0.32 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.2 UJ	0.1 U	0.1 U	0.34 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.19 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 UJ	0.2 J	0.1 U	0.2 U
Toluene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.17 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 UJ	0.3 J	0.1 U	0.15 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.19 U
Trichloroethene Trichlorofluoromethane	0.4 J	0.3 J	0.4 J	3.9	0.4 J	0.35 J
	0.1 U	0.1 U	0.2 UJ	0.1 U	0.1 U	0.29 U
Vinyl chloride	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.4 U

Well Identifier:	RD-37	RD-37	RD-37	RD-37	RD-38A	RD-38A
Sample Port:						
Sample Type:	Primary	Duplicate	Split	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:	09/09/2008	09/09/2008	09/09/2008	11/05/2008	05/20/2008	05/20/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.79 U	0.2 U	2 U	2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.32 U	0.1 U	0.8 U	0.8 U
1,1-Dichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	4 J	4 J
1,1-Dichloroethene	0.1 U	0.1 U	0.14 U	0.1 U	13	15
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.1 U	1 U	1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.13 U	0.1 U	0.5 U	0.5 U
1,2-Dichloropropane	0.1 U	0.1 U	0.13 U	0.1 U	1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	1 U	1 U
1,4-Dioxane						
2-Hexanone	1 U	1 U	1.4 U	1 U	3 U	3 U
Acetone	3 U	3 U	2.4 J	3 U	6 U	6 U
Benzene	0.1 U	0.1 U	0.16 U	0.1 U	0.5 U	0.5 U
Bromodichloromethane	0.1 U	0.1 U	0.17 U	0.1 U	1 U	1 U
Bromoform	0.1 U	0.1 U	0.19 U	0.1 U	1 U	1 U
Bromomethane	0.1 U	0.1 U	0.21 U	0.1 U	1 U	1 U
Carbon Disulfide	0.4 U	0.4 U	0.45 U	0.4 U	1 U	1 U
Carbon Tetrachloride	0.1 U	0.1 U	0.19 U	0.1 U	0.5 U	0.5 U
Chlorobenzene	0.1 U	0.1 U	0.17 U	0.1 U	0.8 U	0.8 U
Chloroethane	0.1 U	0.1 U	0.41 U	0.1 U	1 U	1 U
Chloroform	0.1 U	0.1 U	0.16 U	0.1 U	0.8 U	0.8 U
Chloromethane	0.2 U	0.2 U	0.3 U	0.2 U	1 U	1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.15 U	0.1 U	43	46
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.1 U	1 U	1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.1 U	1 U	1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.8 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1.8 U	1 U	3 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	3 U	3 U
Methylene chloride	0.2 U	0.2 U	0.32 U	0.2 U	2 U	2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.34 U	0.1 U	0.8 U	0.8 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.19 U	0.1 U	0.8 U	0.8 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.1 U	0.8 U	0.8 U
Toluene	0.1 U	0.1 U	0.17 U	0.1 U	0.7 U	0.7 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.15 U	0.1 U	2 J	3 J
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.19 U	0.1 U	1 U	1 U
Trichloroethene	0.1 J	0.1 J	0.16 U	0.1 U	300	350
Trichlorofluoromethane	0.1 U	0.1 U	0.29 U	0.1 U	0.5 U	0.5 U
Vinyl chloride	0.1 U	0.1 U	0.4 U	0.1 U	0.5 U	0.5 U

Well Identifier:	RD-38B	RD-38B	RD-38B	RD-39B	RD-39B	RD-39B
Sample Port:						
Sample Type:	Primary	Split	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	C&T	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/20/2008	05/20/2008	09/05/2008	03/06/2008	05/20/2008	09/05/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.4 UJ	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	0.4.11	0.4.111	0.4.11	0.4.11	0.4.11	0.4.11
1,3-Dichlorobenzene	0.1 U 	0.1 UJ 	0.1 U 	0.1 U 	0.1 U	0.1 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dictilorobenzene 1,4-Dioxane	0.1 U 	0.1 UJ 	0.1 U	0.1 U 	0.1 U 	0.1 U
2-Hexanone	1 U	2 UJ	1 U	1 U	1 U	1 U
Acetone	3 U	2 03 1 UJ	3 U	3 U	3 U	3 U
Benzene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.2 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.2 UJ	0.4 U	0.7 U	0.4 U	0.4 U
Carbon Tetrachloride	0.4 U	0.1 UJ	0.4 U	0.1 U	0.4 U	0.4 U
Chlorobenzene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.3 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 UJ	0.2 U	0.1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	2 UJ	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	2 UJ	1 U	1 U	1 U	1 U
Methylene chloride	0.3 U	1 UJ	0.2 U	0.2 U	0.3 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.2 UJ	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.2 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-39B	RD-41A	RD-41A	RD-41A	RD-41A	RD-41B
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	11/13/2008	03/11/2008	05/14/2008	08/28/2008	12/01/2008	03/11/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,3,5-Trimethylbenzene						4.11
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,4-Dioxane 2-Hexanone	 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	1.3 J 3 U
	3 U	3 U	3 U	3 U	3 U	3 U 6 U
Acetone	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
Benzene Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U 1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Carbon Disulfide	0.1 U	1.1 U	0.4 U	0.4 U	0.4 U	1 U
Carbon Tetrachloride	0.4 U	0.1 U	0.4 U	0.4 U	0.4 U	0.5 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Chloromethane	0.2 U	0.1 U	0.2 U	0.2 U	0.2 U	1 U
cis-1,2-Dichloroethene	0.1 U	4.9	4.5	7.3	8.1	1000
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	3 U
Methylene chloride	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.7 U
trans-1,2-Dichloroethene	0.1 U	1.9	1	2.6	2.9	62
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Trichloroethene	0.1 U	1.9	5	3.4	2.4	770
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U
Vinyl chloride	0.1 U	1.2	0.3 J	1.4	1.6	25

Well Identifier:	RD-41B	RD-41B	RD-41B	RD-43A	RD-43A	RD-43A
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Duplicate	Split
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	C&T
Collection Date:	05/14/2008	08/28/2008	12/01/2008	02/14/2008	02/14/2008	02/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	4 U	2 U	0.2 U	0.2 U	0.4 U
1,1,2-Trichloroethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	4.2 J	3 J	4.1 J	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane	0.8 J	1.1 J	1.5 J			
2-Hexanone	10 U	20 U	10 U	1 U	1 U	2 U
Acetone	30 U	60 U	30 U	3 U	3 U	1 U
Benzene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Bromoform	1 U	2 U	1 U	0.1 U	0.1 U	0.2 U
Bromomethane	1 U	2 U	1 U	0.1 U	0.1 U	0.2 U
Carbon Disulfide	4 U	8 U	4 U	0.1 U	0.1 U	0.1 U
Carbon Tetrachloride	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Chloroethane	1 U	2 U	1 U	0.1 U	0.1 U	0.2 U
Chloroform	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Chloromethane	2 U	4 U	2 U	0.1 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	1100	680	960	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	10 U	20 U	10 U	1 U	1 U	2 U
Methyl isobutyl ketone (MIBK)	10 U	20 U	10 U	1 U	1 U	2 U
Methylene chloride	2.8 U	4 U	2 U	0.2 U	0.2 U	1 U
m-Xylene & p-Xylene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Toluene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	48	37	46	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	1 U	2 U	1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	260	1300	840	0.1 UJ	0.1 UJ	0.1 U
Trichlorofluoromethane	1 U	2 U	1 U	0.1 U	0.1 U	0.2 U
Vinyl chloride	18	18	20	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-43A	RD-43A	RD-43B	RD-43B	RD-43B	RD-43B
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/16/2008	08/13/2008	02/14/2008	05/12/2008	08/13/2008	08/13/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene					0.4.11	
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane					4.11	4.11
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U 0.1 U	0.1 U
Bromodichioromethane Bromoform	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U
Carbon Disulfide	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U	0.1 0	0.1 U 0.6 U	0.1 U 0.4 U
Carbon Distillide Carbon Tetrachloride	0.4 U	0.4 U	0.1 U	0.5 0.1 U	0.6 U	0.4 U 0.1 U
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.1 U	0.2 U	0.1 U	0.2 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	0.1 U					
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U					
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

Well Identifier:	RD-43B	RD-43B	RD-43C	RD-43C	RD-43C	RD-43C
Sample Port:						
Sample Type:	Split	Primary	Primary	Duplicate	Split	Primary
Lab Name:	TA-Denver	Lancaster	Lancaster	Lancaster	C&T	Lancaster
Collection Date:	08/13/2008	11/06/2008	02/15/2008	02/15/2008	02/15/2008	05/12/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.2 U	0.1 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.79 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U
1,1,2-Trichloroethane	0.32 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.14 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	1.4 U	1 U	1 U	1 U	2 U	1 U
Acetone	1.9 U	3 U	3 U	3 U	1 U	3 U
Benzene	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.19 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Bromomethane	0.21 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Carbon Disulfide	0.45 U	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U
Carbon Tetrachloride	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.41 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Chloroform	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.3 U	0.2 U	0.1 U	0.1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1.8 U	1 U	1 U	1 U	2 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	2 U	1 U
Methylene chloride	0.32 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U
m-Xylene & p-Xylene	0.34 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.2 U	0.1 U				
Toluene	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.16 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U	0.1 U
Trichlorofluoromethane	0.29 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Vinyl chloride	0.4 U	0.1 U				

Well Identifier:	RD-43C	RD-43C	RD-43C	RD-43C	RD-43C	RD-44
Sample Port:						
Sample Type:	Duplicate	Primary	Primary	Duplicate	Split	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:	05/12/2008	09/08/2008	11/06/2008	11/06/2008	11/06/2008	03/03/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.79 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.14 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
1,4-Dioxane						0.5 U
2-Hexanone	1 U	1 U	1 U	1 U	1.4 U	1 U
Acetone	3 U	3 U	3 U	3 U	1.9 U	3 U
Benzene	0.1 U	0.2 J	0.1 U	0.1 U	0.16 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.21 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.4 U	0.4 U	0.45 U	0.1 U
Carbon Tetrachloride	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.41 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1.8 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.2 U	0.51 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.34 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Toluene	0.1 U	0.2 J	0.1 U	0.1 U	0.17 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.29 U	0.1 U

Well Identifier:	RD-44	RD-44	RD-45B	RD-45B	RD-45B	RD-45C
Sample Port:						
Sample Type:	Primary	Primary	Primary	Split	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	C&T	Lancaster	Lancaster
Collection Date:	05/07/2008	10/30/2008	02/18/2008	02/18/2008	08/12/2008	02/19/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.5 U	0.1 U	0.5 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	2 U	0.4 U	2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.5 U	0.1 U	0.5 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
1,4-Dioxane	0.5 U	0.5 U				
2-Hexanone	1 U	1 U	3 U	2 U	3 U	1 U
Acetone	3 U	3 U	6 U	1 U	6 U	3 U
Benzene	0.1 U	0.1 U	0.5 U	0.1 U	0.5 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
Bromoform	0.1 U	0.1 U	1 U	0.2 U	1 U	0.1 U
Bromomethane	0.1 U	0.1 U	1 U	0.2 U	1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	1 U	0.1 U	1 U	0.4 J,L
Carbon Tetrachloride	0.1 U	0.1 U	0.5 U	0.1 U	0.5 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
Chloroethane	0.1 U	0.1 U	1 U	0.2 U	1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
Chloromethane	0.2 U	0.2 U	1 U	0.2 U	1 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	24	32	32	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	3 U	2 U	3 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	3 U	2 U	3 U	1 U
Methylene chloride	0.3 U	0.2 U	2 U	1 U	2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.8 U	0.1 U	0.8 U	0.1 U
Toluene	0.1 U	0.1 U	0.7 U	0.1 U	0.7 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	2 J	2.5	2 J	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	1 U	0.1 U	1 U	0.1 U
Trichloroethene	0.1 U	0.1 U	2	1.3	2	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	0.5 U	0.2 U	0.5 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.5 U	0.1 J	0.5 U	0.1 U

Well Identifier:	RD-45C	RD-45C	RD-46A	RD-46A	RD-47	RD-47
Sample Port:						
Sample Type:	Duplicate	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/19/2008	08/12/2008	03/12/2008	09/03/2008	02/15/2008	08/18/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	3 U	5 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	10 U	20 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	3 U	5 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	 0.1 U	 0.1 U	 5 U	 10 U	0.1 U	 0.1 U
1,3-Dichlorobenzene						
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	 0.1 U	0.1 U	 5 U	 10 U	0.1 U	 0.1 U
1,4-Dictiloroperizerie	0.1 U 	0.1 U 	5 U 	10 U	0.1 U 	0.1 U
2-Hexanone	1 U	1 U	15 U	30 U	1 U	1 U
Acetone	3 U	3 U	30 U	60 U	3 U	3 U
Benzene	0.1 U	0.1 U	3 U	5 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
Carbon Disulfide	0.1 J 0.2 J,L	0.4 U	5 U	10 U	0.7 J,L	0.4 U
Carbon Tetrachloride	0.1 U	0.4 U	3 U	5 U	0.2 U	0.4 U
Chlorobenzene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	5 U	10 U	0.1 J	0.1 U
Chloroform	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
Chloromethane	0.1 U	0.2 U	5 U	10 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	500	840	0.5	0.5 J
cis-1,3-Dichloropropene	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	15 U	30 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	15 U	30 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	10 U	20 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	4 U	7 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	4 U	8 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	5 U	10 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 U	3500	8100	0.1 UJ	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	3 U	5 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	3 U	5 U	0.1 U	0.1 U

Well Identifier:	RD-48B	RD-48B	RD-48B	RD-48B	RD-48C	RD-48C
Sample Port:						
Sample Type:	Primary	Primary	Primary	Split	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	03/03/2008	05/16/2008	08/13/2008	08/13/2008	02/26/2008	02/26/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene					0.4.11	
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene					0.4.11	
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane 2-Hexanone	 1 U	1 U	1 U	 1.4 U	1 U	 1 U
	3 U	3 U	3 U	1.4 U 1.9 U	3 U	3 U
Acetone	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
Benzene Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.16 U 0.17 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.17 U 0.19 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Carbon Disulfide	0.1 J,L	0.1 U	0.4 U	0.45 U	0.4 J,L	0.1 U 0.4 J,L
Carbon Tetrachloride	0.1 J,L 0.1 U	0.4 U	0.4 U	0.43 U	0.4 J,∟ 0.1 U	0.4 J,∟ 0.1 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Chloromethane	0.1 U	0.2 U	0.2 U	0.3 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1.8 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U	0.2 U	0.34 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U

Well Identifier:	RD-48C	RD-48C	RD-48C	RD-48C	RD-48C	RD-49A
Sample Port:						
Sample Type:	Split	Primary	Primary	Primary	Duplicate	Primary
Lab Name:	C&T	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/26/2008	05/13/2008	09/03/2008	11/05/2008	11/05/2008	03/11/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	4 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
1,4-Dioxane						0.5 U
2-Hexanone	2 U	1 U	1 U	1 U	1 U	6 U
Acetone	1 U	3 U	3 U	3 U	3 U	12 U
Benzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Bromodichloromethane Bromoform	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	2 U 2 U
Bromomethane	0.2 U 0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Carbon Disulfide	0.2 U 0.26 J	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Carbon Distillide Carbon Tetrachloride	0.26 J 0.1 U	0.4 U	0.4 U	0.4 U	0.4 U	2 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Chloromethane	0.1 U	0.2 U	0.7 U	0.2 U	0.7 U	2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1200
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	2 U	1 U	1 U	1 U	1 U	6 U
Methyl isobutyl ketone (MIBK)	2 U	1 U	1 U	1 U	1 U	6 U
Methylene chloride	1 U	0.3 U	0.2 U	0.2 U	0.2 U	4 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
p-Cymene						
Tetrachloroethene	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	29
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	2 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1600
Trichlorofluoromethane	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U

Well Identifier:	RD-49A	RD-49A	RD-49A	RD-49B	RD-49B	RD-49B
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Duplicate	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/14/2008	09/02/2008	12/02/2008	02/27/2008	02/27/2008	05/07/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	2 U	1 U	2 U	0.8 U	0.8 U	1 U
1,1,2,2-Tetrachloroethane	2 U	1 U	2 U	0.5 U	0.5 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	4 U	2 U	4 U	2 U	2 U	2 U
1,1,2-Trichloroethane	2 U	1 U	2 U	0.8 U	0.8 U	1 U
1,1-Dichloroethane	2 U	1 U	2 U	1 U	1 U	1 U
1,1-Dichloroethene	2.6 J	1.5 J	2.7 J	1 J	0.9 J	1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	2 U	1 U	2 U	1 U	1 U	1 U
1,2-Dichloroethane	2 U	1 U	2 U	0.5 U	0.5 U	1 U
1,2-Dichloropropane	2 U	1 U	2 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	2 U	1 U	2 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	2 U	1 U	2 U	1 U	1 U	1 U
1,4-Dioxane	0.7 J	0.5 U	0.5 J	1.9 J		2.2
2-Hexanone	20 U	10 U	20 U	3 U	3 U	10 U
Acetone	60 U	30 U	60 U	6 U	6 U	30 U
Benzene	2 U	1 U	2 U	0.5 U	0.5 U	1 U
Bromodichloromethane	2 U	1 U	2 U	1 U	1 U	1 U
Bromoform	2 U	1 U	2 U	1 U	1 U	1 U
Bromomethane	2 U	1 U	2 U	1 U	1 U	1 U
Carbon Disulfide	8 U	4 U	8 U	1 U	1 U	4 U
Carbon Tetrachloride	2 U	1 U	2 U	0.5 U	0.5 U	1 U
Chlorobenzene	2 U	1 U	2 U	0.8 U	0.8 U	1 U
Chloroethane	2 U	1 U	2 U	1 U	1 U	1 U
Chloroform	2 U	1 U	2 U	0.8 U	0.8 U	1 U
Chloromethane	4 U	2 U	4 U	1 U	1 U	2 U
cis-1,2-Dichloroethene	1400	980	1300	280	280	260
cis-1,3-Dichloropropene	2 U	1 U	2 U	1 U	1 U	1 U
Cumene						
Dibromochloromethane	2 U	1 U	2 U	1 U	1 U	1 U
Ethanol						
Ethylbenzene	2 U	1 U	2 U	0.8 U	0.8 U	1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	20 U	10 U	20 U	3 U	3 U	10 U
Methyl isobutyl ketone (MIBK)	20 U	10 U	20 U	3 U	3 U	10 U
Methylene chloride	5.8 U	2 U	4 U	2 U	2 U	3.2 U
m-Xylene & p-Xylene	2 U	1 U	2 U	0.8 U	0.8 U	1 U
n-Butylbenzene						
o-Xylene	2 U	1 U	2 U	0.8 U	0.8 U	1 U
p-Cymene		 4 II				4.11
Tetrachloroethene	2 U	1 U	2 U	0.8 U	0.8 U	1 U
Toluene	2 U	1 U	2 U	0.7 U	0.7 U	1 U
trans-1,2-Dichloroethene	25	18	40	16	15	13
trans-1,3-Dichloropropene	2 U	1 U	2 U	1 U	1 U	1 U
Trichloroethene	2200	1100	1200	280	290	280
Trichlorofluoromethane	2 U	1 U	2 U	0.5 U	0.5 U	1 U
Vinyl chloride	2 U	1.1 J	2 U	4	4	3.6 J

Well Identifier:	RD-49B	RD-49C	RD-49C	RD-49C	RD-50	RD-50
Sample Port:					Z2	Z2
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/27/2008	02/28/2008	08/19/2008	11/10/2008	02/05/2008	08/06/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.8	0.8 U	0.3 J	0.3 J	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene 1,4-Dioxane	0.1 U 2.1	1 U 1 J	0.1 U 0.9 J	0.1 U 0.8 J	0.1 U	0.1 U
2-Hexanone	2.1 1 U	3 U	0.9 J 1 U	0.8 J 1 U	1 U	 1 U
	3 U	3 U 6 U	3 U	3 U	3 U	3 U
Acetone	0.1 U		0.1 U	0.1 U	0.1 J.F	0.3 J,F
Benzene Bromodichloromethane	0.1 U	0.5 U 1 U	0.1 U	0.1 U	0.1 J,F 0.1 U	0.3 J,F 0.1 U
Bromoform	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.1 U	1 U	0.4 U	0.4 U	0.1 U	0.1 U 0.4 U
Carbon Distillide Carbon Tetrachloride	0.4 U	0.5 U	0.4 U	0.4 U	0.1 U	0.4 U
Chlorobenzene	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 J,S
Chloroethane	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	1 U	0.2 U	0.2 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	250	87	80	82	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	3 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	3 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	2 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.7 U	0.1 U	0.1 U	0.9 F	9.1 F
trans-1,2-Dichloroethene	16	3 J	4.2	3.5	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	260	14	15	16	0.1 U	0.1 J
Trichlorofluoromethane	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	3.7	2	2	1.9	0.1 U	0.1 U

Well Identifier:	RD-51B	RD-51B	RD-51B	RD-51B	RD-51C	RD-51C
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/21/2008	05/06/2008	08/19/2008	11/03/2008	05/07/2008	05/07/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	 0.1 U	 0.1 U	 0.1 U	 0.1 U	0.1 U	 0.1 U
1,3-Dichlorobenzene	0.1 U 					
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	 0.1 U	 0.1 U	0.1 U	0.1 U	 0.1 U
1,4-Dictilorobenzene 1,4-Dioxane	0.1 U 0.5 U	0.1 U 0.5 U	0.1 U 0.5 U	0.1 U 0.5 U	0.1 U 0.5 U	0.1 U
2-Hexanone	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.1 J 0.2 J,L	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	12	12	11	11	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U	0.2 U	0.2 U	0.3 U	0.3 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	1.2	1.2	1.1	1.1	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	4.8	4.6	4.5	4.4	0.1 J	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	9.3	6.9	8.4	9	0.1 U	0.1 U

Well Identifier:	RD-51C	RD-51C	RD-51C	RD-51C	RD-51C	RD-52B
Sample Port:						
Sample Type:	Split	Primary	Duplicate	Split	Primary	Primary
Lab Name:	C&T	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	05/07/2008	08/26/2008	08/26/2008	08/26/2008	11/03/2008	02/20/2008
Analyte (ug/L)	00/01/2000	00/20/2000	00/20/2000	00/20/2000	11/00/2000	02/20/2000
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.4 U	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane	0.1 O	0.5 U		0.10 0	0.5 U	0.1 O
2-Hexanone	2 U	1 U	1 U	1.4 U	1 U	1 U
Acetone	1.6 J,L	3 U	3 U	1.9 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromomethane	0.2 U	0.1 U	0.1 U	0.10 U	0.1 U	0.1 U
Carbon Disulfide	0.1 J	0.4 U	0.4 U	0.45 U	0.4 U	0.5
Carbon Tetrachloride	0.1 U	0.4 U	0.4 U	0.43 U	0.4 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Chloroethane	0.3 U	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.3 U	0.2 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U	3.7
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	2 U	1 U	1 U	1.8 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	2 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	1 U	0.2 U	0.2 U	0.41 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.2 U	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U	1.3
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 J	0.1 J	0.16 U	0.1 U	1.2
Trichlorofluoromethane	0.2 U	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U
viriyi cilionu c	U. I U	U. I U	U. I U	U.4 U	U.1 U	U. I U

Well Identifier:	RD-52B	RD-52C	RD-52C	RD-52C	RD-52C	RD-53
Sample Port:						
Sample Type:	Primary	Primary	Duplicate	Split	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	C&T	Lancaster	Lancaster
Collection Date:	08/12/2008	02/20/2008	02/20/2008	02/20/2008	05/13/2008	02/22/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.8 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.1 U	0.2 U	4 J
1,1,2-Trichloroethane	0.1 U	0.8 U				
1,1-Dichloroethane	0.1 U	1 J				
1,1-Dichloroethene	0.1 U	11				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	1 U
1,2-Dichloroethane	0.1 U	0.5 U				
1,2-Dichloropropane	0.1 U	1 U				
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	1 U
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	2 U	1 U	3 U
Acetone	3 U	3 U	3 U	1 U	3 U	6 U
Benzene	0.1 U	0.1 U	0.1 U	0.3 U	0.1 U	0.5 U
Bromodichloromethane	0.1 U	1 U				
Bromoform	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	1 U
Carbon Disulfide	0.4 U	0.3 J,L	0.3 J,L	0.3 J	0.4 U	1 U
Carbon Tetrachloride	0.1 U	0.1 Ú	0.1 Ú	0.1 U	0.1 U	0.5 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.8 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.8 U
Chloromethane	0.2 U	0.1 U	0.1 U	0.2 U	0.2 U	1 U
cis-1,2-Dichloroethene	5.5	0.1 U	0.1 U	0.1 U	0.1 U	7
cis-1,3-Dichloropropene	0.1 U	1 U				
Cumene						
Dibromochloromethane	0.1 U	1 U				
Ethanol						
Ethylbenzene	0.1 U	0.8 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	2 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	2 U	1 U	3 U
Methylene chloride	0.2 U	0.2 U	0.2 U	1 U	0.3 U	2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.3 U	0.1 U	0.8 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.8 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.8 U
Toluene	0.1 U	0.7 U				
trans-1,2-Dichloroethene	2	0.1 U	0.1 U	0.1 U	0.1 U	0.8 U
trans-1,3-Dichloropropene	0.1 U	1 U				
Trichloroethene	1.3	0.1 U	0.1 U	0.1 U	0.1 U	230
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U
Vinyl chloride	0.1 J	0.1 U	0.1 U	0.1 U	0.1 U	0.5 U

Well Identifier:	RD-53	RD-54A	RD-54A	RD-54A	RD-54A	RD-54B
Sample Port:		Z2	Z2	Z2	Z2	
Sample Type:	Primary	Primary	Duplicate	Primary	Duplicate	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/27/2008	02/06/2008	02/06/2008	08/07/2008	08/07/2008	02/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.1 U				
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	4 J	2 U	2 U	2 U	2 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.1 U				
1,1-Dichloroethane	2 J	1 U	1 U	1 U	1 U	0.1 U
1,1-Dichloroethene	11	3 J	3 J	2 J	2 J	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.8 J	1 J	0.5 U	0.5 U	0.1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	0.1 U
1,4-Dioxane						
2-Hexanone	3 U	3 U	3 U	3 U	3 U	1 U
Acetone	6 U	6 U	6 U	6 U	6 U	3 U
Benzene	0.5 U	0.1 U				
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Bromoform	1 U	1 U	1 U	1 U	1 U	0.1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U	0.1 U
Carbon Tetrachloride	0.5 U	0.1 U				
Chlorobenzene	0.8 U	0.1 U				
Chloroethane	1 U	1 U	1 U	1 U	1 U	0.1 J
Chloroform	0.8 U	0.1 U				
Chloromethane	1 U	1 U	1 U	1 U	1 U	0.2 J
cis-1,2-Dichloroethene	9	88	89	49	46	0.1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.1 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	3 U	3 U	3 U	3 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	3 U	3 U	3 U	3 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.1 U				
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U				
p-Cymene						
Tetrachloroethene	0.8 U	0.1 U				
Toluene	0.7 U	0.3 J				
trans-1,2-Dichloroethene	0.8 U	0.9 J	0.9 J	0.9 J	0.8 U	0.1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.1 U
Trichloroethene	270	10	11	7	8	0.1 U
Trichlorofluoromethane	0.5 U	0.1 U				
Vinyl chloride	0.5 U	0.4 J				

Well Identifier:	RD-54B	RD-54B	RD-54C	RD-54C	RD-55A	RD-55A
Sample Port:						
Sample Type:	Duplicate	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/14/2008	11/07/2008	02/14/2008	08/07/2008	02/25/2008	05/06/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane					0.5 U	0.5 U
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.3 U	0.4 U	0.9 U	0.5	0.1 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 J	0.1 U	0.1 J	0.1 J	0.1 U	0.1 U
Chloroform	0.1 U					
Chloromethane	0.2 J	0.2 U	0.1 U	0.2 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.3 J	4.7
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U				
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.2 J	0.1 U				
trans-1,2-Dichloroethene	0.1 U	0.5				
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	2.2	8
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.5 J	0.3 J	0.1 U	0.1 U	0.1 U	1

Well Identifier:	RD-55A	RD-55A	RD-55A	RD-55B	RD-55B	RD-55B
Sample Port:						
Sample Type:	Duplicate	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/06/2008	08/26/2008	11/20/2008	02/25/2008	05/13/2008	08/27/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.9	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.2 J	0.3 J	0.3 J	0.2 J	0.3 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane					0.4.11	
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	 0.1 U	0.1 U	0.1 U	 0.1 U	0.1 U	 0.1 U
1,3-Dichlorobenzene						
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	 0.1 U	0.1 U	 0.1 U	 0.1 U	0.1 U	 0.1 U
1,4-Dictiloroperizerie	0.1 U 	0.1 U 0.5 U				
2-Hexanone	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Acetone	3 U	3 U	3 U	3 U	3 U	87
Benzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.4 U	0.1 J,L	0.4 U	0.4 U
Carbon Tetrachloride	0.4 U	0.4 U	0.4 U	0.1 U	0.4 U	0.4 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 J	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.1 U	0.2 U	0.3 J
cis-1,2-Dichloroethene	4.6	31	95	14	14	15
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.3 J
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 J
p-Cymene						
Tetrachloroethene	0.1 U	0.1 J	1.1	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.9
trans-1,2-Dichloroethene	0.5 J	1.9	5.3	0.1 J	0.2 J	0.1 J
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	7.7	23	73	22	25	21
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	1	4.3	14	0.2 J	0.2 J	0.1 J

Well Identifier:	RD-55B	RD-55B	RD-55B	RD-55B	RD-56B	RD-56B
Sample Port:						
Sample Type:	Duplicate	Primary	Duplicate	Split	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	08/27/2008	11/20/2008	11/20/2008	11/20/2008	02/21/2008	05/08/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1-Dichloroethene	0.3 J	0.3 J	0.3 J	0.18 J	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U 	0.1 U	0.1 U 	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	 0.16 U	0.1 U	0.1 U
•	0.1 U	0.1 U	0.1 U	0.10 0	0.1 U 	0.1 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane	0.1 O	0.1 U	0.1 O	0.10 U	0.1 O 	0.1 O
2-Hexanone	1 U	1 U	1 U	1.4 U	1 U	1 U
Acetone	84	5 J	4.8 J	5.7 J	3 U	3 U
Benzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.10 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.4 U	0.45 U	0.3 J,L	0.4 U
Carbon Tetrachloride	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.3 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	15	17	16	13	0.1 J	0.1 J
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1.8 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.32 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.3 J	0.2 J	0.2 J	0.34 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.2 J	0.1 J	0.1 J	0.19 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Toluene	0.9	0.3 J	0.4 J	0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 J	0.3 J	0.3 J	0.32 J	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Trichloroethene Trichlorofluoromethane	21 0.1 U	24	25	23	0.4 J	0.4 J
Vinyl chloride	0.1 U 0.1 J	0.1 U 0.1 J	0.1 U 0.1 J	0.29 U 0.4 U	0.1 U 0.1 U	0.1 U 0.1 U

Well Identifier:	RD-56B	RD-56B	RD-57	RD-57	RD-57	RD-57
Sample Port:			Z8	Z6	Z 5	Z 7
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/25/2008	11/11/2008	02/07/2008	05/20/2008	08/08/2008	11/11/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene 1,4-Dioxane	0.1 U	0.1 U	0.1 U	0.1 U 	0.1 U	0.1 U
2-Hexanone	 1 U	1 U	 1 U	1 U	1 U	 1 U
	3 U	3 U	11 S	3 U		
Acetone Benzene	0.1 U	0.1 U	0.1 J,F	0.1 U	3.4 J,S 0.1 J,F	4.4 J,S 0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 J,F 0.1 U	0.1 U	0.1 J,F 0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.1 U	0.1 U	0.1 U	0.4 U	0.4 U	0.1 U
Carbon Tetrachloride	0.4 U	0.4 U	0.1 U	0.4 U	0.4 U	0.4 U
Chlorobenzene	0.1 U	0.1 U	0.4 J,S	0.1 J 0.2 J,S	0.5 S	0.1 J,S
Chloroethane	0.1 U	0.1 U	0.4 U	0.2 U,U	0.5 U	0.5 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.1 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.2 J	0.1 J	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.5 J	0.4 J	0.1 U	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-58A	RD-58A	RD-58A	RD-58A	RD-58A	RD-58A
Sample Port:						
Sample Type:	Primary	Split	Primary	Primary	Duplicate	Primary
Lab Name:	Lancaster	C&T	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	02/18/2008	02/18/2008	05/19/2008	09/02/2008	09/02/2008	11/06/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	5 J	2.5	8.7 J	4.9	4.9	6.5
1,1,2-Trichloroethane	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.8 U	0.1 U	0.1 J	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.5 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
1,4-Dioxane	0.5 U		0.5 UJ	0.5 U		0.7 J
2-Hexanone	3 U	2 U	1 UJ	1 U	1 U	1 U
Acetone	6 U	1 U	3 UJ	3 U	3 U	3 U
Benzene	0.5 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Bromodichloromethane	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Bromoform	1 U	0.2 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Bromomethane	1 U	0.2 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Carbon Disulfide	1 U	0.1 U	5.6 J	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride	0.5 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Chloroethane	1 U	0.2 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Chloroform Chloromethane	0.8 U 1 U	0.1 J 0.2 U	0.1 UJ	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U
cis-1,2-Dichloroethene	16	12	0.2 UJ 19 J	7.6	7.6	0.2 U 9.9
•	1 U	0.1 U	0.1 UJ	7.6 0.1 U	7.6 0.1 U	9.9 0.1 U
cis-1,3-Dichloropropene Cumene		0.1 U	0.1 OJ 	0.1 U	0.1 U 	0.1 U
Dibromochloromethane	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Ethanol			0.1 O3 	0.1 O		0.1 O
Ethylbenzene	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	2 U	1 UJ	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	2 U	1 UJ	1 U	1 U	1 U
Methylene chloride	2 U	1 U	0.3 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.8 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Toluene	0.7 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.8 U	0.1 U	0.1 J	0.1 U	0.1 U	0.1 J
trans-1,3-Dichloropropene	1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Trichloroethene	130	100	140 J	93	97	120
Trichlorofluoromethane	0.5 U	0.2 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.5 U	0.1 U	0.2 J	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-58B	RD-58B	RD-58B	RD-58B	RD-58C	RD-58C
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	03/03/2008	05/06/2008	08/21/2008	10/30/2008	02/20/2008	02/20/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane	0.6 J	0.7 J	0.6 J	0.7 J		
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.1 U	0.4 U	0.4 U	0.4 U	0.1 U	0.1 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.5	0.5
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.6	0.1 U	0.3 J	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U					
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 U	1.4	1.4

Well Identifier:	RD-58C	RD-59A	RD-59A	RD-59A	RD-59B	RD-59B
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/15/2008	05/20/2008	08/14/2008	11/13/2008	05/20/2008	08/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.4 U					
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.2 U					
cis-1,2-Dichloroethene	0.6	0.1 U				
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol	4 11					4.11
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U					
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene					0.4.11	
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U					
Trichlorofluoromethane	0.1 U					
Vinyl chloride	1.8	0.1 U				

Well Identifier:	RD-59B	RD-59C	RD-59C	RD-59C	RD-59C	RD-60
Sample Port:						
Sample Type:	Primary	Primary	Duplicate	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	11/13/2008	05/20/2008	05/20/2008	08/14/2008	11/13/2008	02/18/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.8 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	2 U				
1,1,2-Trichloroethane	0.1 U	0.8 U				
1,1-Dichloroethane	0.1 U	2 J				
1,1-Dichloroethene	0.1 U	2 J				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						4.11
1,2-Dichlorobenzene	0.1 U	1 U				
1,2-Dichloroethane	0.1 U	2				
1,2-Dichloropropane	0.1 U	1 U				
1,2,4-Trimethylbenzene	0.4.11				0.4.11	4.11
1,3-Dichlorobenzene	0.1 U 	1 U 				
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	1 U				
1,4-Dictiloroperizerie	0.1 U 	0.1 U 	0.1 U	0.1 U	0.1 U 	1 U
2-Hexanone	1 U	1 U	1 U	1 U	1 U	3 U
Acetone	3 U	3 U	3 U	3 U	3 U	6 U
Benzene	0.1 U	0.5 U				
Bromodichloromethane	0.1 U	0.5 U				
Bromoform	0.1 U	1 U				
Bromomethane	0.1 U	1 U				
Carbon Disulfide	0.4 U	1 U				
Carbon Tetrachloride	0.4 U	0.5 U				
Chlorobenzene	0.1 U	0.8 U				
Chloroethane	0.1 U	1 U				
Chloroform	0.1 U	0.8 U				
Chloromethane	0.2 U	1 U				
cis-1,2-Dichloroethene	0.1 U	11				
cis-1,3-Dichloropropene	0.1 U	1 U				
Cumene						
Dibromochloromethane	0.1 U	1 U				
Ethanol						
Ethylbenzene	0.1 U	0.8 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	3 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	3 U
Methylene chloride	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	2 U
m-Xylene & p-Xylene	0.1 U	0.8 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.8 U				
p-Cymene						
Tetrachloroethene	0.1 U	0.8 U				
Toluene	0.1 U	0.7 U				
trans-1,2-Dichloroethene	0.1 U	2 J				
trans-1,3-Dichloropropene	0.1 U	1 U				
Trichloroethene	0.1 U	260				
Trichlorofluoromethane	0.1 U	0.5 U				
Vinyl chloride	0.1 U	0.5 U				

Well Identifier:	RD-60	RD-61	RD-61	RD-61	RD-61	RD-61
Sample Port:						
Sample Type:	Primary	Primary	Primary	Duplicate	Split	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	C&T	Lancaster
Collection Date:	08/13/2008	02/18/2008	05/01/2008	05/01/2008	05/01/2008	08/21/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.8 U	0.1 U				
1,1,2,2-Tetrachloroethane	0.5 U	0.1 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	2 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U
1,1,2-Trichloroethane	0.8 U	0.1 U				
1,1-Dichloroethane	2 J	0.1 U				
1,1-Dichloroethene	3 J	0.1 U				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	3	0.1 U				
1,2-Dichloropropane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	4 11	0.4.11	0.4.11	0.4.11	0.4.11	0.4.11
1,3-Dichlorobenzene	1 U 	0.1 U 	0.1 U 	0.1 U 	0.1 U 	0.1 U
1,3,5-Trimethylbenzene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dichlorobenzene 1,4-Dioxane	1 U	0.1 U 	0.1 U	0.1 U	0.1 U 	0.1 U
2-Hexanone	3 U	1 U	1 U	1 U	2 U	1 U
Acetone	6 U	3 U	3 U	3 U	1 U	3 U
Benzene	0.5 U	0.1 U				
Bromodichloromethane	0.5 U	0.1 U				
Bromoform	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Carbon Disulfide	1 U	0.1 U	0.4 U	0.4 U	0.2 J	0.4 U
Carbon Tetrachloride	0.5 U	0.1 U	0.4 U	0.4 U	0.2 U	0.4 U
Chlorobenzene	0.8 U	0.1 U				
Chloroethane	1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Chloroform	0.8 U	0.1 U				
Chloromethane	1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	21	0.1 U				
cis-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.8 U	0.1 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	3 U	1 U	1 U	1 U	2 U	1 U
Methyl isobutyl ketone (MIBK)	3 U	1 U	1 U	1 U	2 U	1 U
Methylene chloride	2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U
m-Xylene & p-Xylene	0.8 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
n-Butylbenzene						
o-Xylene	0.8 U	0.1 U				
p-Cymene						
Tetrachloroethene	0.8 U	0.1 U				
Toluene	0.7 U	0.1 U				
trans-1,2-Dichloroethene	0.8 U	0.1 U				
trans-1,3-Dichloropropene	1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	490	0.1 U				
Trichlorofluoromethane	0.5 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U
Vinyl chloride	0.5 U	0.1 U				

Well Identifier:	RD-61	RD-61	RD-61	RD-62	RD-62	RD-62
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Split	Primary
Lab Name:	Lancaster	TA-Denver	Lancaster	Lancaster	C&T	Lancaster
Collection Date:	08/21/2008	08/21/2008	11/21/2008	02/18/2008	02/18/2008	04/30/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.79 U	0.2 U	0.2 U	0.4 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.14 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	1 U	1.4 U	1 U	1 U	2 U	1 U
Acetone	3 U	2.7 U	3 U	3 U	1 U	3 U
Benzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.19 U	0.1 U	0.1 U	0.2 U	0.1 U
Bromomethane	0.1 U	0.21 U	0.1 U	0.1 U	0.2 U	0.1 U
Carbon Disulfide	0.4 U	0.45 U	0.4 U	0.1 J,L	0.1 U	0.4 U
Carbon Tetrachloride	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.41 U	0.1 U	0.1 U	0.2 U	0.1 U
Chloroform	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.3 U	0.2 U	0.1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1.8 U	1 U	1 U	2 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	2 U	1 U
Methylene chloride	0.2 U	0.32 U	0.2 U	0.2 U	1 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.29 U	0.1 U	0.1 U	0.2 U	0.1 U
Vinyl chloride	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-62	RD-62	RD-62	RD-62	RD-63	RD-63
Sample Port:						
Sample Type:	Primary	Primary	Duplicate	Split	Primary	Duplicate
Lab Name:	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:	08/27/2008	11/12/2008	11/12/2008	11/12/2008	02/06/2008	02/06/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.79 U	0.2 J	0.2 J
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.16 U	0.8	0.8
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.14 U	1.5	1.6
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
1,4-Dioxane						
2-Hexanone	1 U	1 U	1 U	1.4 U	1 U	1 U
Acetone	3 U	3 U	3 U	1.9 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.21 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.4 U	0.45 U	0.2 U	0.2 U
Carbon Tetrachloride	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.3 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	4.6	4.5
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1.8 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.32 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.16 U	10	10
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U

Well Identifier:	RD-63	RD-64	RD-64	RD-65	RD-66	RD-66
Sample Port:		Z 7	Z 7	Z 5		
Sample Type:	Primary	Primary	Duplicate	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/12/2008	02/06/2008	02/06/2008	02/06/2008	03/10/2008	05/16/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.3 J	2 U	2 U	2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
1,1-Dichloroethane	0.7	1 U	1 U	9	0.1 U	0.1 U
1,1-Dichloroethene	1.4	2 J	3 J	43	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.5 U	0.5 U	0.7 J	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
1,4-Dioxane	4.11				4.11	4.11
2-Hexanone	1 U	3 U	3 U	3 U	1 U	1 U
Acetone	3 U	6 U	6 U	6 U	3 U	3 U
Benzene	0.1 U	0.5 U	0.5 U	0.5 U 1 U	0.1 U	0.1 U
Bromodichloromethane Bromoform	0.1 U 0.1 U	1 U 1 U	1 U 1 U	1 U	0.1 U 0.1 U	0.1 U 0.1 U
Bromomethane	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U 0.1 U
Carbon Disulfide	0.1 U 0.4 U	1 U	1 U	1 U	0.1 J,L	0.1 U 0.4 U
Carbon Distillide Carbon Tetrachloride	0.4 U	0.5 U	0.5 U	0.5 U	0.1 J,∟ 0.1 U	0.4 U 0.1 U
Chlorobenzene	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Chloroethane	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Chloromethane	0.2 U	1 U	1 U	1 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	4.2	110	400	42	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	3 U	3 U	3 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	3 U	3 U	3 U	1 U	1 U
Methylene chloride	0.2 U	2 U	2 U	2 U	0.2 U	0.3 U
m-Xylene & p-Xylene	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.8 U	0.8 U	0.8 U	0.1 U	0.1 U
Toluene	0.1 U	0.7 U	0.7 U	0.7 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	1 J	5 J	0.8 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	1 U	1 U	1 U	0.1 U	0.1 U
Trichloroethene	10	280	49	220	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.5 U	0.6 J	0.5 U	0.1 U	0.1 U

Well Identifier:	RD-66	RD-66	RD-67	RD-67	RD-67	RD-67
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	08/13/2008	11/12/2008	03/06/2008	05/19/2008	09/03/2008	11/19/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U					
1,1,2,2-Tetrachloroethane	0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U					
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U					
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U					
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U					
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U					
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U					
1,4-Dioxane			0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	3 U	3 U	3 U	3 U	3 U	3 U
Benzene	0.1 U					
Bromodichloromethane	0.1 U					
Bromoform	0.1 U					
Bromomethane	0.1 U					
Carbon Disulfide	0.4 U	0.4 U	0.1 U	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U					
Chlorobenzene	0.1 U					
Chloroethane	0.1 U					
Chloroform	0.1 U					
Chloromethane	0.2 U	0.2 U	0.1 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U					
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U					
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U					
n-Butylbenzene						
o-Xylene	0.1 U					
p-Cymene						
Tetrachloroethene	0.1 U					
Toluene	0.1 U					
trans-1,2-Dichloroethene	0.1 U					
trans-1,3-Dichloropropene	0.1 U					
Trichloroethene	0.1 U					
Trichlorofluoromethane	0.1 U					
Vinyl chloride	0.1 U					

Well Identifier:	RD-67	RD-67	RD-68A	RD-68A	RD-68A	RD-68A
Sample Port:						
Sample Type:	Duplicate	Split	Primary	Primary	Duplicate	Primary
Lab Name:	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	11/19/2008	11/19/2008	02/21/2008	05/15/2008	05/15/2008	08/14/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.79 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.14 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	 0.1 U	 0.16 U	0.1 U	 0.1 U	0.1 U	 0.1 U
1,3-Dichlorobenzene				0.1 U 		
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	 0.1 U
1,4-Dictilorobenzene 1,4-Dioxane	0.1 U 	0.16 0	0.1 U	0.1 U	0.1 U 	0.1 U
2-Hexanone	1 U	1.4 U	1 U	1 U	1 U	1 U
Acetone	3 U	1.4 U	3 U	3 U	3 U	6.7
Benzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.10 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.10 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.45 U	0.1 U	0.4 U	0.4 U	0.4 U
Carbon Tetrachloride	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.41 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.3 U	0.1 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.15 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1.8 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.32 U	0.2 U	0.3 U	0.3 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.17 U 0.15 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U				0.1 U 0.1 U	0.1 U
trans-1,3-Dichloropropene Trichloroethene	0.1 U 0.1 U	0.19 U 0.16 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Trichlorofluoromethane	0.1 U 0.1 U	0.16 U 0.29 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Vinyl chloride	0.1 U	0.29 U	0.1 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-68A	RD-68A	RD-68A	RD-68B	RD-68B	RD-68B
Sample Port:						
Sample Type:	Primary	Duplicate	Split	Primary	Split	Primary
Lab Name:	Lancaster	Lancaster	TA-Denver	Lancaster	C&T	Lancaster
Collection Date:	11/13/2008	11/13/2008	11/13/2008	02/21/2008	02/21/2008	05/15/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.79 U	0.2 U	0.1 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.1 U	0.2 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.2 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.2 U	0.1 U
1,4-Dioxane 2-Hexanone	 1 U	1 U	 1.4 U	 1 U	 2 U	 1 U
	3.2 J	3.5 J	1.4 U 1.9 U	3 U	2 U	3 U
Acetone	3.2 J 0.1 U	3.5 J 0.1 U		0.1 U	0.3 U	0.1 U
Benzene Bromodichloromethane	0.1 U	0.1 U	0.17 J 0.17 U	0.1 U	0.3 U 0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.17 U 0.19 U	0.1 U	0.1 U 0.2 U	0.1 U 0.1 U
Bromomethane	0.1 U	0.1 U	0.19 U	0.1 U	0.2 U	0.1 U
Carbon Disulfide	0.1 U	0.4 U	0.45 U	0.1 U	0.2 U	0.1 U
Carbon Tetrachloride	0.4 U	0.4 U	0.43 U	0.1 U	0.1 U	0.4 U
Chlorobenzene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.41 U	0.1 U	0.2 U	0.1 U
Chloroform	0.1 U	0.1 U	0.16 U	0.1 U	0.2 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.3 U	0.1 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.15 U	0.1 J	0.1 U	0.1 J
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1.8 U	1 U	2 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	2 U	1 U
Methylene chloride	0.2 U	0.2 U	0.32 U	0.2 U	1 U	0.3 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.34 U	0.1 U	0.3 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.19 U	0.1 U	0.2 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.1 U	0.2 U	0.1 U
Toluene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.15 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Trichloroethene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Trichlorofluoromethane	0.1 U	0.1 U	0.29 U	0.1 U	0.2 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-68B	RD-68B	RD-68B	RD-68B	RD-69	RD-69
Sample Port:						
Sample Type:	Primary	Duplicate	Split	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:	08/14/2008	08/14/2008	08/14/2008	11/13/2008	03/11/2008	09/09/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.79 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.32 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.14 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.13 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U 	0.1 U	0.13 U	0.1 U 	0.1 U 	0.1 U
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	0.1 U	0.1 U	 0.16 U	0.1 U	0.1 U	0.1 U
•	0.1 U	0.1 0	0.10 0	0.1 U 	0.1 U 	0.1 U
1,3,5-Trimethylbenzene 1,4-Dichlorobenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
1,4-Dictrioroberizerie	0.1 O	0.1 O 	0.10 U	0.1 O 	0.1 O 	0.1 O
2-Hexanone	1 U	1 U	1.4 U	1 U	1 U	1 U
Acetone	3 U	3 U	1.9 U	3 U	3 U	3 U
Benzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	0.1 U	0.1 U	0.10 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.10 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.4 U	0.4 U	0.45 U	0.4 U	0.2 U	0.4 U
Carbon Tetrachloride	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
Chlorobenzene	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.41 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.3 U	0.2 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.17 J	0.1 J	0.1 U	0.1 U
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.17 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.16 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1.8 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	0.2 U	0.32 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.34 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.19 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U 0.1 U
Toluene	0.1 U	0.1 U 0.1 U	0.17 U	0.1 U 0.1 U	0.1 U 0.1 U	
trans-1,2-Dichloroethene	0.1 U	0.1 U 0.1 U	0.15 U		0.1 U 0.1 U	0.1 U
trans-1,3-Dichloropropene Trichloroethene	0.1 U 0.1 U	0.1 U 0.1 U	0.19 U 0.16 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Trichlorofluoromethane	0.1 U 0.1 U	0.1 U 0.1 U	0.16 U 0.29 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 U	0.29 U	0.1 U	0.1 U	0.1 U

Well Identifier:	RD-70	RD-70	RD-70	RD-70	RD-70	RD-70
Sample Port:						
Sample Type:	Primary	Split	Primary	Primary	Duplicate	Split
Lab Name:	Lancaster	C&T	Lancaster	Lancaster	Lancaster	TA-Denver
Collection Date:	03/10/2008	03/10/2008	04/30/2008	08/21/2008	08/21/2008	08/21/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.16 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.2 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.4 U	0.2 U	0.2 U	0.2 U	0.79 U
1,1,2-Trichloroethane	0.1 U	0.32 U				
1,1-Dichloroethane	0.1 U	0.16 U				
1,1-Dichloroethene	0.1 U	0.14 U				
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.13 U				
1,2-Dichloroethane	0.1 U	0.13 U				
1,2-Dichloropropane	0.1 U	0.13 U				
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.16 U				
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.16 U				
1,4-Dioxane						
2-Hexanone	1 U	2 U	1 U	1 U	1 U	1.4 U
Acetone	3 U	1 U	3 U	3 U	3 U	2.2 U
Benzene	0.1 U	0.16 U				
Bromodichloromethane	0.1 U	0.17 U				
Bromoform	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.19 U
Bromomethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.21 U
Carbon Disulfide	0.1 J,L	0.1 J	0.7	0.4 U	0.4 U	0.45 U
Carbon Tetrachloride	0.1 U	0.19 U				
Chlorobenzene	0.1 U	0.17 U				
Chloroethane	0.1 U	0.3 U	0.1 U	0.1 U	0.1 U	0.41 U
Chloroform	0.1 U	0.16 U				
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U
cis-1,2-Dichloroethene	0.1 U	0.15 U				
cis-1,3-Dichloropropene	0.1 U	0.16 U				
Cumene						
Dibromochloromethane	0.1 U	0.17 U				
Ethanol						
Ethylbenzene	0.1 U	0.16 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	2 U	1 U	1 U	1 U	1.8 U
Methyl isobutyl ketone (MIBK)	1 U	2 U	1 U	1 U	1 U	1 U
Methylene chloride	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.32 U
m-Xylene & p-Xylene	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.34 U
n-Butylbenzene						
o-Xylene	0.1 U	0.19 U				
p-Cymene						
Tetrachloroethene	0.1 U	0.2 U				
Toluene	0.1 U	0.17 U				
trans-1,2-Dichloroethene	0.1 U	0.15 U				
trans-1,3-Dichloropropene	0.1 U	0.19 U				
Trichloroethene	0.1 U	0.16 U				
Trichlorofluoromethane	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.29 U
Vinyl chloride	0.1 U	0.1 U	0.1 U	0.1 J	0.1 J	0.4 U

Well Identifier:	RD-70	RD-71	RD-71	RD-71	RD-71	RD-73
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	11/14/2008	03/10/2008	05/16/2008	08/13/2008	11/12/2008	02/19/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	3 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	38 J
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	6 J
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	21 J
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	550
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	3 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
1,2,4-Trimethylbenzene						 5 II
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
1,3,5-Trimethylbenzene						 5 II
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
1,4-Dioxane 2-Hexanone	 1 U	1 U	1 U	 1 U	1 U	 15 U
	3 U	3 U	3 U	3 U	3 U	
Acetone	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	30 U 17
Benzene Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Bromoform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Bromomethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Carbon Disulfide	0.1 U 0.5 J	0.1 J,L	0.4 U	0.4 U	0.4 U	5 U
Carbon Tetrachloride	0.5 5 0.1 U	0.1 J,L 0.1 U	0.4 U	0.4 U	0.4 U	3 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
Chloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	8 J
Chloromethane	0.2 U	0.1 U	0.2 U	0.2 U	0.2 U	5 U
cis-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	230
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	15 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	15 U
Methylene chloride	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	10 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
trans-1,2-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	4 U
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5 U
Trichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	5400
Trichlorofluoromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	3 U
Vinyl chloride	0.2 J	0.1 U	0.1 U	0.1 U	0.1 U	3 U

Well Identifier:	RD-86	RD-98	RD-98	RD-98	WS-04A	WS-04A
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	03/06/2008	06/26/2008	09/11/2008	11/14/2008	02/26/2008	09/03/2008
Analyte (ug/L)						
1,1,1-Trichloroethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1.4	1.5	1.5	0.2 U	0.2 U
1,1,2-Trichloroethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene				0.1 U		
1,3-Dichlorobenzene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene				0.1 U		
1,4-Dichlorobenzene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane		 4 II	4.11		4.11	4.11
2-Hexanone		1 U	1 U	1 U	1 U	1 U
Acetone		3 U 0.1 U	3 U 0.1 U	3 U 0.1 U	3 U 0.1 U	3 U 0.1 U
Benzene Bromodichloromethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromomethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide		0.4 U	0.1 U	0.4 U	0.1 U	0.4 U
Carbon Tetrachloride		0.4 U	0.4 U	0.4 U	0.1 U	0.4 U
Chlorobenzene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform		0.1 J	0.1 J	0.1 J	0.1 U	0.1 U
Chloromethane		0.2 U	0.2 U	0.2 U	0.1 U	0.2 U
cis-1,2-Dichloroethene		0.1 J	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,3-Dichloropropene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene				0.1 U		
Dibromochloromethane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol	200 U					
Ethylbenzene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol	10 U					
Isopropanol	50 U					
Methanol	200 U					
Methyl ethyl ketone		1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)		1 U	1 U	1 U	1 U	1 U
Methylene chloride		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene				0.1 U		
o-Xylene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene				0.1 U		
Tetrachloroethene		0.5	0.4 J	0.5 J	0.1 U	0.1 U
Toluene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,3-Dichloropropene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene Trichlorofluoromethane		9.7	8.8	10	0.1 U	0.1 U 0.1 U
		0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U
Vinyl chloride		U. I U	U. I U	U.1 U	0.1 U	U. I U

Well Identifier:	WS-05	WS-05	WS-05	WS-05	WS-06	WS-06
Sample Port:						
Sample Type:	Primary	Primary	Primary	Primary	Primary	Split
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	C&T
Collection Date:	02/26/2008	05/06/2008	08/21/2008	11/03/2008	02/28/2008	02/28/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.2 U				
1,1,2,2-Tetrachloroethane	0.1 U	0.2 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U					
1,1,2-Trichloroethane	0.1 U	0.2 U				
1,1-Dichloroethane	0.1 U					
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.3 J	0.2 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.3 U				
1,2-Dichloroethane	0.1 U					
1,2-Dichloropropane	0.1 U 	0.1 U 	0.1 U 	0.1 U 	0.1 U	0.2 U
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	0.1 U	0.2 U				
1,3,5-Trimethylbenzene	0.1 U	0.1 U	0.1 O 	0.1 U	0.1 U 	0.2 U
1,4-Dichlorobenzene	0.1 U	0.2 U				
1,4-Dictrioroberizerie	2.7	2.1	2.4	2.3	1.2 J	0.2 0
2-Hexanone	2.7 1 U	1 U	1 U	1 U	1.2 J	2.9 U
Acetone	3 U	3 U	3 U	3 U	3 U	1.5 U
Benzene	0.1 U	0.4 U				
Bromodichloromethane	0.1 U					
Bromoform	0.1 U	0.3 U				
Bromomethane	0.1 U	0.3 U				
Carbon Disulfide	0.1 U	0.4 U	0.4 U	0.4 U	0.1 U	0.1 U
Carbon Tetrachloride	0.1 U	0.2 U				
Chlorobenzene	0.1 U	0.2 U				
Chloroethane	0.1 U	0.3 U				
Chloroform	0.1 U	0.2 U				
Chloromethane	0.1 U	0.2 U	0.2 U	0.2 U	0.1 U	0.3 U
cis-1,2-Dichloroethene	1.6	2.1	1.5	1.9	100	110
cis-1,3-Dichloropropene	0.1 U					
Cumene						
Dibromochloromethane	0.1 U					
Ethanol						
Ethylbenzene	0.1 U	0.2 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	2.9 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	2.9 U
Methylene chloride	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	1.4 U
m-Xylene & p-Xylene	0.1 U	0.4 U				
n-Butylbenzene						
o-Xylene	0.1 U 	0.2 U 				
p-Cymene Tetrachloroethene	0.1 U	0.3 U				
Tetrachioroethene Toluene	0.1 U 0.1 U	0.3 U 0.2 U				
trans-1,2-Dichloroethene	0.1 U 0.2 J	0.1 U 0.2 J	0.1 U 0.2 J	0.1 U 0.2 J	11	7.4
trans-1,3-Dichloropropene	0.2 J 0.1 U	0.2 J 0.1 U	0.2 J 0.1 U	0.2 J 0.1 U	0.1 U	0.1 U
Trichloroethene	0.7 0	0.7	0.7	0.6	4.4	3.8
Trichlorofluoromethane	0.7 0.1 U	0.7 0.1 U	0.7 0.1 U	0.0 0.1 U	0.1 U	0.3 U
Vinyl chloride	0.1 U	0.1 U	0.1 J	0.1 J	5.6	3.8

Well Identifier:	WS-06	WS-06	WS-06	WS-06	WS-06	WS-09
Sample Port:						
Sample Type:	Primary	Duplicate	Primary	Duplicate	Primary	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:	05/07/2008	05/07/2008	09/09/2008	09/09/2008	10/30/2008	02/26/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	8 U				
1,1,2,2-Tetrachloroethane	0.1 U	5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.2 U	0.2 U	0.8	20 U
1,1,2-Trichloroethane	0.1 U	8 U				
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.5	10 U
1,1-Dichloroethene	0.3 J	0.3 J	0.4 J	0.3 J	11	9 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane	0.4.11				0.4.11	40.11
1,2-Dichlorobenzene	0.1 U	10 U				
1,2-Dichloroethane	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 J 0.1 U	5 U 10 U
1,2-Dichloropropane 1,2,4-Trimethylbenzene	0.1 U					
1,3-Dichlorobenzene	0.1 U	10 U				
1,3,5-Trimethylbenzene	0.1 O		0.1 O 		0.1 O	
1,4-Dichlorobenzene	0.1 U	10 U				
1,4-Dioxane	0.1 J		0.1 J		1.2 J	2
2-Hexanone	1 U	1 U	1 U	1 U	1.2 U	30 U
Acetone	3 U	3 U	3 U	3 U	3 U	60 U
Benzene	0.1 U	5 U				
Bromodichloromethane	0.1 U	10 U				
Bromoform	0.1 U	10 U				
Bromomethane	0.1 U	10 U				
Carbon Disulfide	1.1	0.7	0.4 U	0.4 U	0.4 U	10 U
Carbon Tetrachloride	0.1 U	5 U				
Chlorobenzene	0.1 U	8 U				
Chloroethane	0.1 U	10 U				
Chloroform	0.1 U	8 U				
Chloromethane	0.2 U	10 U				
cis-1,2-Dichloroethene	110	110	130	130	510 J	880
cis-1,3-Dichloropropene	0.1 U	10 U				
Cumene						
Dibromochloromethane	0.1 U	10 U				
Ethanol						
Ethylbenzene	0.1 U	8 U				
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	1 U	1 U	1 U	30 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	1 U	1 U	1 U	30 U
Methylene chloride	0.3 U	0.3 U	0.2 U	0.2 U	0.2 U	20 U
m-Xylene & p-Xylene	0.1 U	8 U				
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U 	0.1 U	8 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.6	8 U
Toluene	0.1 U 14	0.1 U	0.1 U 12	0.1 U 12	0.1 U 34 J	7 U
trans-1,2-Dichloroethene		15 0.1 U	12 0.1 U	12 0.1 U	34 J 0.1 U	19 J 10 U
trans-1,3-Dichloropropene Trichloroethene	0.1 U 4.3	0.1 U 4.4	0.1 U 5.1	0.1 U 5.3	0.1 U 980 J	16000
Trichlorofluoromethane	4.3 0.1 U	4.4 0.1 U	5.1 0.1 U	5.3 0.1 U	980 J 0.1 U	5 U
Vinyl chloride	5.1	5	6.7	6.8	1	5 U

Well Identifier:	WS-09	WS-09	WS-09	WS-09	WS-09	WS-09A
Sample Port:						
Sample Type:	Primary	Primary	Primary	Duplicate	Split	Primary
Lab Name:	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:	05/08/2008	08/20/2008	10/29/2008	10/29/2008	10/29/2008	02/29/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	10 U	10 U	50 U	50 U	8 U	0.8 U
1,1,2,2-Tetrachloroethane	10 U	10 U	50 U	50 U	10 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	20 U	20 U	100 U	100 U	40 U	2 U
1,1,2-Trichloroethane	10 U	10 U	50 U	50 U	16 U	0.8 U
1,1-Dichloroethane	10 U	10 U	50 U	50 U	8 U	1 U
1,1-Dichloroethene	10 U	11 J	50 U	50 U	11 J	0.8 U
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	10 U	10 U	50 U	50 U	6.5 U	1 U
1,2-Dichloroethane	10 U	10 U	50 U	50 U	6.5 U	0.5 U
1,2-Dichloropropane	10 U	10 U	50 U	50 U	6.5 U	1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	10 U	10 U	50 U	50 U	8 U	1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	10 U	10 U	50 U	50 U	8 U	1 U
1,4-Dioxane	6.7 J	2.5	0.5 U			0.5 U
2-Hexanone	100 U	100 U	500 U	500 U	70 U	3 U
Acetone	300 U	300 U	1500 U	1500 U	95 U	6 U
Benzene	10 U	10 U	50 U	50 U	8 U	0.5 U
Bromodichloromethane	10 U	10 U	50 U	50 U	8.5 U	1 U
Bromoform	10 U	10 U	50 U	50 U	9.5 U	1 U
Bromomethane	10 U	10 U	50 U	50 U	10 U	1 U
Carbon Disulfide	40 U	40 U	200 U	200 U	22 U	1 U
Carbon Tetrachloride	10 U	10 U	50 U	50 U	9.5 U	0.5 U
Chlorobenzene	10 U	10 U	50 U	50 U	8.5 U	0.8 U
Chloroethane	10 U	10 U	50 U	50 U	20 U	1 U
Chloroform	10 U	10 U	50 U	50 U	8 U	0.8 U
Chloromethane	20 U	20 U	100 U	100 U	15 U	1 U
cis-1,2-Dichloroethene	670	700	790	700	950	5
cis-1,3-Dichloropropene	10 U	10 U	50 U	50 U	8 U	1 U
Cumene						
Dibromochloromethane	10 U	10 U	50 U	50 U	8.5 U	1 U
Ethanol						
Ethylbenzene	10 U	10 U	50 U	50 U	8 U	0.8 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	100 U	100 U	500 U	500 U	92 U	3 U
Methyl isobutyl ketone (MIBK)	100 U	100 U	500 U	500 U	52 U	3 U
Methylene chloride	29 U	20 U	100 U	100 U	16 U	2 U
m-Xylene & p-Xylene	10 U	10 U	50 U	50 U	17 U	0.8 U
n-Butylbenzene						
o-Xylene	10 U	10 U	50 U	50 U	9.5 U	0.8 U
p-Cymene						
Tetrachloroethene	10 U	10 U	50 U	50 U	10 U	0.8 U
Toluene	10 U	10 U	50 U	50 U	8.5 U	0.7 U
trans-1,2-Dichloroethene	18 J	18 J	50 U	50 U	19 J	0.8 U
trans-1,3-Dichloropropene	10 U	10 U	50 U	50 U	9.5 U	1 U
Trichloroethene	13000	16000	14000	14000	18000	2
Trichlorofluoromethane	10 U	10 U	50 U	50 U	14 U	0.5 U
Vinyl chloride	10 U	10 U	50 U	50 U	20 U	0.5 U

Well Identifier:	WS-09A	WS-09A	WS-09A	WS-09A	WS-09A	WS-09A
Sample Port:						
Sample Type:	Primary	Duplicate	Split	Primary	Duplicate	Primary
Lab Name:	Lancaster	Lancaster	C&T	Lancaster	Lancaster	Lancaster
Collection Date:	05/15/2008	05/15/2008	05/15/2008	08/20/2008	08/20/2008	10/30/2008
Analyte (ug/L)						
1,1,1-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U	0.2 U	0.4 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	0.1 U	0.1 U	0.1 U	0.1 J	0.1 J	0.1 J
1,2-Dibromo-3-chloropropane						
1,2-Dibromoethane						
1,2-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3,5-Trimethylbenzene						
1,4-Dichlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,4-Dioxane 2-Hexanone	0.5 U 1 U	1 U	 2 U	0.5 U 1 U	1 U	0.5 U 1 U
	3 U	3 U	2 U 1.3 U	3 U	3 J	3 U
Acetone	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Benzene Bromodichloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromoform	0.1 U	0.1 U	0.1 U 0.2 U	0.1 U	0.1 U	0.1 U
Bromomethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide	0.1 U	0.4 U	0.2 J	0.4 U	0.4 U	0.1 U
Carbon Tetrachloride	0.4 U	0.4 U	0.2 J 0.1 U	0.4 U	0.4 U	0.4 U
Chlorobenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	0.1 U	0.1 U	0.3 U	0.1 U	0.1 U	0.1 U
Chloroform	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloromethane	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	19	20	20	18	20	31
cis-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cumene						
Dibromochloromethane	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethanol						
Ethylbenzene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Ethylene glycol						
Isopropanol						
Methanol						
Methyl ethyl ketone	1 U	1 U	2 U	1 U	1 U	1 U
Methyl isobutyl ketone (MIBK)	1 U	1 U	2 U	1 U	1 U	1 U
Methylene chloride	0.3 U	0.3 U	1 U	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
n-Butylbenzene						
o-Xylene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
p-Cymene						
Tetrachloroethene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	0.1 U	0.1 U	0.1 U	0.1 U	0.2 J	0.1 U
trans-1,2-Dichloroethene	1	1	0.6	1.4	1.6	2.5
trans-1,3-Dichloropropene	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Trichloroethene	6.2	6.2	6.5	4.1	4.1	4.2
Trichlorofluoromethane	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Vinyl chloride	0.1 U	0.1 J	0.1 U	0.2 J	0.2 J	0.2 J

VENTORA COONTT, CALII ORNIA	
Well Identifier:	WS-09A
Sample Port:	
Sample Type:	Duplicate
Lab Name:	Lancaster
Collection Date:	10/30/2008
Analyte (ug/L)	
1,1,1-Trichloroethane	0.1 U
1,1,2,2-Tetrachloroethane	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2 U
1,1,2-Trichloroethane	0.1 U
1,1-Dichloroethane	0.1 U
1,1-Dichloroethene	0.1 J
1,2-Dibromo-3-chloropropane	
1,2-Dibromoethane	
1,2-Dichlorobenzene	0.1 U
1,2-Dichloroethane	0.1 U
1,2-Dichloropropane	0.1 U
1,2,4-Trimethylbenzene	
1,3-Dichlorobenzene	0.1 U
1,3,5-Trimethylbenzene	
1,4-Dichlorobenzene	0.1 U
1,4-Dioxane	
2-Hexanone	1 U
Acetone	3 U
Benzene	0.1 U
Bromodichloromethane	0.1 U
Bromoform	0.1 U
Bromomethane	0.1 U
Carbon Disulfide	0.5 J
Carbon Tetrachloride	0.1 U
Chlorobenzene	0.1 U
Chloroethane	0.1 U
Chloroform	0.1 U
Chloromethane	0.2 U
cis-1,2-Dichloroethene	35
cis-1,3-Dichloropropene	0.1 U
Cumene	
Dibromochloromethane	0.1 U
Ethanol	
Ethylbenzene	0.1 U
Ethylene glycol	
Isopropanol	
Methanol	
Methyl ethyl ketone	1 U
Methyl isobutyl ketone (MIBK)	1 U
Methylene chloride	0.2 U
m-Xylene & p-Xylene	0.1 U
n-Butylbenzene	
o-Xylene	0.1 U
p-Cymene	
Tetrachloroethene	0.1 U
Toluene	0.1 U
trans-1,2-Dichloroethene	2.9
trans-1,3-Dichloropropene	0.1 U
Trichloroethene	4.6
Trichlorofluoromethane	0.1 U
Vinyl chloride	0.3 J

1.	C&T	= Curtis & Tompkins, Ltd. of Berkeley, California.
2.	Lancaster	= Lancaster Laboratories of Lancaster, Pennsylvania.
3.	TA-Denver	= TestAmerica of Arvada, Colorado.
4.		= Analysis not performed.
5.	ug/L	= Micrograms per liter.
6.	F	Sampled through multi-level FLUTe ports. Footnoted results are not representative of past groundwater samples, and may have been introduced in the FLUTe samples by compressed nitrogen gas, electrical tape and/or FLUTe components.
7.	J	 Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
8.	L	= Laboratory contaminant.
9.	R	= Rejected result (see Appendix D for details).
10.	S	= Suspect result. Result is not representative of past groundwater samples.
11.	U	= Not detected.
12.	UJ	 Not detected. Estimated detection limit as a result of analytical quality control deficiencies (see Appendix D for details).
13.	Z	= FLUTe sample port number.
14.	Analyses wer	e performed using EPA method 8260B for all VOCs except for 1,4-dioxane which was analyzed

by EPA method 8260SIM, ethanol and methanol which were analyzed by EPA method 8015B,

and ethylene glycol which was analyzed by modified EPA method 8015B.

SUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008 BOEING SANTA SUSANA FIELD LABORATORY

Well Identifier:		ES-10	ES-21	HAR-11	HAR-14	HAR-15	PZ-001D	PZ-001E	PZ-007D
Sample Port:									
Sample Type:		Primary							
Geological Unit:		Shallow							
Analysis Method:		8015B							
Lab Name:		Lancaster							
Collection Date:		05/13/08	09/04/08	09/04/08	08/21/08	08/21/08	05/01/08	05/01/08	05/16/08
Analyte	Units								
Extractable Fuel Hydrocarbons (C8-C11)	mg/L	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.19 U	1 U	0.19 U
Extractable Fuel Hydrocarbons (C12-C14)	mg/L	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.19 U	1 U	0.19 U
Extractable Fuel Hydrocarbons (C15-C20)	mg/L	0.2 U	0.19 U	0.49 J	0.19 U	0.19 U	0.19 U	1 U	0.19 U
Extractable Fuel Hydrocarbons (C21-C30)	mg/L	0.2 U	0.19 U	0.53 J	0.19 U	0.19 U	0.19 U	1 U	0.19 U
Extractable Fuel Hydrocarbons (C8-C30)	mg/L	0.2 U	0.19 U	1.1	0.19 U	0.19 U	0.19 U	1 U	0.19 U
Gasoline Range Organics (C6-C12)	ug/L								

TABLE VSUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-007E	PZ-007F	PZ-010F	PZ-020	PZ-022	PZ-050	PZ-050	PZ-105
Sample Port:									
Sample Type:		Primary							
Geological Unit:		Shallow							
Analysis Method:		8015B							
Lab Name:		Lancaster							
Collection Date:		05/16/08	05/16/08	05/21/08	05/12/08	05/14/08	02/19/08	05/07/08	11/10/08
Analyte	Units								
Extractable Fuel Hydrocarbons (C8-C11)	mg/L	0.19 U	0.2 U	0.19 U	0.2 U	0.2 U	0.2 U	0.19 U	0.094 U
Extractable Fuel Hydrocarbons (C12-C14)	mg/L	0.19 U	0.2 U	0.19 U	0.2 U	0.2 U	0.2 U	0.19 U	0.094 U
Extractable Fuel Hydrocarbons (C15-C20)	mg/L	0.19 U	0.2 U	0.19 U	0.2 U	0.2 U	0.2 U	0.19 U	0.28 J
Extractable Fuel Hydrocarbons (C21-C30)	mg/L	0.19 U	0.2 U	0.19 U	0.2 U	0.2 U	0.2 U	0.19 U	0.17 J
Extractable Fuel Hydrocarbons (C8-C30)	mg/L	0.19 U	0.2 U	0.19 U	0.2 U	0.2 U	0.2 U	0.19 U	0.48 J
Gasoline Range Organics (C6-C12)	ug/L								

TABLE VSUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-121	PZ-121	PZ-122	PZ-122	RS-16	RS-28	RS-30	RS-31
Sample Port:									
Sample Type:		Primary							
Geological Unit:		Shallow							
Analysis Method:		8015B							
Lab Name:		Lancaster							
Collection Date:		02/20/08	05/13/08	08/20/08	11/12/08	02/01/08	11/14/08	05/01/08	05/01/08
Analyte	Units								
Extractable Fuel Hydrocarbons (C8-C11)	mg/L	0.2 U	0.19 U	0.19 U	0.095 U	0.19 U	0.095 U		
Extractable Fuel Hydrocarbons (C12-C14)	mg/L	0.2 U	0.19 U	0.19 U	0.095 U	0.19 U	0.095 U		
Extractable Fuel Hydrocarbons (C15-C20)	mg/L	0.2 U	0.19 U	0.19 U	0.095 U	0.19 U	0.095 U		
Extractable Fuel Hydrocarbons (C21-C30)	mg/L	0.2 U	0.19 U	0.19 U	0.095 U	0.19 U	0.095 U		
Extractable Fuel Hydrocarbons (C8-C30)	mg/L	0.2 U	0.25 J	0.19 U	0.095 U	0.19 U	0.095 U		
Gasoline Range Organics (C6-C12)	ug/L							480	50 U

TABLE VSUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:		RS-32	RS-54	RD-07	RD-19	RD-30	RD-32	RD-32	RD-32
Sample Port:				Z 3					
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Shallow	Shallow	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth
Analysis Method:		8015B	8015B	8015B	8015B	8015B	8015B	8015B	8015B
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		03/06/08	02/12/08	02/05/08	08/11/08	08/13/08	02/19/08	08/13/08	11/10/08
Analyte	Units								
Extractable Fuel Hydrocarbons (C8-C11)	mg/L		0.28 U	380 U	0.19 U	0.19 U			
Extractable Fuel Hydrocarbons (C12-C14)	mg/L		0.28 U	380 U	0.19 U	0.19 U			
Extractable Fuel Hydrocarbons (C15-C20)	mg/L		0.28 U	380 U	0.19 U	0.19 U			
Extractable Fuel Hydrocarbons (C21-C30)	mg/L		0.28 U	380 U	0.19 U	0.19 U			
Extractable Fuel Hydrocarbons (C8-C30)	mg/L		0.28 U	380 U	0.19 U	0.19 U			
Gasoline Range Organics (C6-C12)	ug/L	58 J					50 U	120	50 U

SUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008 BOEING SANTA SUSANA FIELD LABORATORY

AA7 11 1 1 200		DD 00	DD 00	DD 00D	DD 00D	DD 000	DD 000	DD 00D	DD 00D
Well Identifier:		RD-32	RD-32	RD-36B	RD-36B	RD-36C	RD-36C	RD-36D	RD-36D
Sample Port:									
Sample Type:		Duplicate	Split	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Chatsworth							
Analysis Method:		8015B							
Lab Name:		Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		11/10/08	11/10/08	02/19/08	08/14/08	02/20/08	08/15/08	02/19/08	08/15/08
Analyte	Units								
Extractable Fuel Hydrocarbons (C8-C11)	mg/L								
Extractable Fuel Hydrocarbons (C12-C14)	mg/L								
Extractable Fuel Hydrocarbons (C15-C20)	mg/L								
Extractable Fuel Hydrocarbons (C21-C30)	mg/L								
Extractable Fuel Hydrocarbons (C8-C30)	mg/L								
Gasoline Range Organics (C6-C12)	ug/L	50 U	13 U	50 U	50 U	70 J	50 U	50 U	50 U

SUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008 BOEING SANTA SUSANA FIELD LABORATORY

Well Identifier:		RD-37	RD-38A	RD-38B	RD-38B	RD-53	RD-53	RD-60	RD-73
Sample Port:									
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Analysis Method:		8015B							
Lab Name:		Lancaster							
Collection Date:		09/09/08	05/20/08	05/20/08	09/05/08	02/22/08	08/27/08	02/18/08	02/19/08
Analyte	Units								
Extractable Fuel Hydrocarbons (C8-C11)	mg/L								
Extractable Fuel Hydrocarbons (C12-C14)	mg/L								
Extractable Fuel Hydrocarbons (C15-C20)	mg/L								
Extractable Fuel Hydrocarbons (C21-C30)	mg/L								
Extractable Fuel Hydrocarbons (C8-C30)	mg/L								
Gasoline Range Organics (C6-C12)	ug/L	50 U	190	50 U	50 U	95 J	100	130	2700

TABLE VSUMMARY OF ANALYSES FOR FUEL HYDROCARBONS, 2008

BOEING SANTA SUSANA FIELD LABORATORY

Well Identifier:		RD-86	RD-98	RD-98
Sample Port:				
Sample Type:		Primary	Primary	Primary
Geological Unit:		Chatsworth	Chatsworth	Chatsworth
Analysis Method:		8015B	8015B	8015B
Lab Name:		Lancaster	Lancaster	Lancaster
Collection Date:		03/06/08	06/26/08	09/11/08
Analyte	Units			
Extractable Fuel Hydrocarbons (C8-C11)	mg/L	0.19 U	0.2 U	0.21 U
Extractable Fuel Hydrocarbons (C12-C14)	mg/L	0.19 U	0.2 U	0.21 U
Extractable Fuel Hydrocarbons (C15-C20)	mg/L	0.19 U	0.2 U	0.21 U
Extractable Fuel Hydrocarbons (C21-C30)	mg/L	0.19 U	0.2 U	0.21 U
Extractable Fuel Hydrocarbons (C8-C30)	mg/L	0.19 U	0.2 U	0.21 U
Gasoline Range Organics (C6-C12)	ug/L			

TABLE V Page 8 of 8

1.	Lancaster	=	Lancaster Laboratories of Lancaster, Pennsylvania.
2.	TA-Denver	=	TestAmerica of Arvada, Colorado.
3.	Chatsworth	=	Chatsworth Formation wells.
4.	Shallow	=	Shallow wells and piezometers.
5.		=	Analysis not performed.
6.	mg/L	=	Milligrams per liter.
7.	ug/L	=	Micrograms per liter.
8.	J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
9.	U	=	Not detected.
10.	Z	=	FLUTe sample port number.

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			ES-31			ES-31		RS-11			RS-16			RS-18			
			Shallow			Shallow		Shallow		Shallow				Shallow			
Geologic Unit:						Snallow			Silaliow 								
Sample Port:																	
Sample Type:		l .	Primary			Primary		Primary				Primary		Primary			
Sample Preparation:			Dissolved			Dissolved		Dissolved			Dissolved			Dissolved			
Lab Name:			Eberline		Eberline			Eberline			Eberline			Eberline			
Collection Date:			2/1/2008		8/19/2008			_	5/2/2008		_	2/1/2008		2/4/2008			
Radionuclide	Method		sult (pCi/		Result (pCi/L)		Result (pCi/L)			esult (pCi		Result (pCi/L)					
Gross Alpha, Gross Beta, Rad		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	
Gross Alpha	900.0	8.75	2.9	1.94	5.53	2.2	1.69	38.8	11	5.49	8.38	2.8	2.26	6.67	2.6	2.36	
Gross Beta	900.0	4.32	1.5	1.85	5.19	1.3	1.76	21.1	4	4.15	4.71	1.9	2.79	3.81 J	1.9	2.78	
Radium-226	903.1	0.17 U	0.4	0.715	-0.02 U	0.36	0.705	0.129 U	0.32	0.583	0.486 U	0.43	0.638	-0.075 U	0.35	0.721	
Radium-228	904.0	-0.032 U	0.17	0.405	0.450 U	0.24	0.593	-0.004 U	0.34	0.362	0.219 U	0.01	0.424	0.091 U	0.15	0.501	
Tritium	906.0	36.8 U	83	138				-53.2 U	92	159	24.3 U	81	136	26.8 U	82	137	
Gamma-emitting Radionuclide	S	•												•			
Aluminum-26	901.1																
Americium-241	901.1							ND		7.57							
Actinium-228	901.1																
Antimony-125	901.1																
Barium-133	901.1																
Beryllium-7	901.1																
Cerium-139	901.1																
Cerium-144	901.1																
Cesium-134	901.1	ND		1.58				ND		1.37	ND		1.01	ND		2.08	
Cesium-137	901.1	ND		1.23				ND		1.1	ND		0.758	ND		1.65	
Chromium-51	901.1																
Cobalt-56	901.1																
Cobalt-50 Cobalt-57	901.1	ND		0.793				ND		0.828	ND		0.412	ND		1.09	
Cobalt-58	901.1			0.733													
Cobalt-60	901.1	ND		1.26				ND		1.3	ND		1.3	ND		1.61	
	901.1	ND ND		3.19				ND ND		3.18	ND ND		1.99	ND		4.71	
Europium-152		ND						ND ND		3.63	ND ND						
Europium-154	901.1			3.77									2.37	ND		5.05	
Europium-155	901.1									4.05						4.00	
Manganese-54	901.1	ND		1.16				ND		1.25	ND		0.738	ND		1.63	
Potassium-40	901.1	ND		34.4				ND		28	ND		8.39	ND		45.4	
Radium-228	901.1																
Silver-110m	901.1																
Sodium-22	901.1	ND		1.36				ND		1.24	ND		0.806	ND		1.72	
Alpha-emitting Radionuclides					1			1			1						
Americium-241	HASL-300																
Plutonium-238	HASL-300																
Plutonium-239	HASL-300																
Strontium, Thorium, Uranium																	
Strontium-90	905.0	-0.011 U	0.26	0.504				-0.214 U	0.24	0.517	0.142 U	0.29	0.522	0.029 U	0.37	0.623	
Thorium-228	907.0													0.012 U	0.036	0.057	
Thorium-230	907.0													-0.033 U	0.054	0.11	
Thorium-232	907.0													-0.006 U	0.018	0.04	
Uranium-233/234	908.0							22.8	1.9	0.067				4.33	0.32	0.05	
Uranium-235	908.0							0.977 J	0.13	0.017				0.174 J	0.05	0.038	
Uranium-238	908.0							20.3	1.7	0.064				3.75	0.29	0.041	

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RS-25			RS-28			RS-28			RS-54		1	RS-54	
			Shallow			Shallow			Shallow			Shallow			Shallow	
Geologic Unit:			Silallow			Shallow						Shallow				
Sample Port:																
Sample Type:			Primary			Primary			Primary			Primary			Primary	
Sample Preparation:			Dissolved			Dissolved			Dissolved			Dissolved			Dissolved	
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			2/13/2008			2/6/2008			8/19/2008			2/22/2008			9/4/2008	
Radionuclide	Method		esult (pCi/	,		esult (pCi/	,		esult (pCi/L	,		esult (pCi/	,		esult (pCi/	,
Gross Alpha, Gross Beta, Radi		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	5	2.5	2.8	7.26	3.2	3.57	4.02	2.7	3.63	23	6.6	3.82	18	5.8	3.51
Gross Beta	900.0	5.43	2.5	3.78	6.85	2.4	3.09	8.1	2.4	3.33	11.8	2.6	3.28	9.93	2.6	3.47
Radium-226	903.1	0.373 U	0.44	0.717	0.786 J	0.54	0.76	-0.032 U	0.3	0.606	0.017 U	0.42	0.79	0.043 U	0.39	0.734
Radium-228	904.0	0.941 J	0.31	0.418	0.384 U	0.16	0.399	0.425 U	0.21	0.538	0.323 U	0.43	0.353	-0.091 U	1.5	1.38
Tritium	906.0	-71.1 U	88	154	-91.9 U	86	150				76.9 U	93	153	-63.5 U	92	158
Gamma-emitting Radionuclides	S	•			•			•			-			-		
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1	ND		1.69	ND		1.29				ND		1.67			
Cesium-137	901.1	ND		1.35	ND		1.15				ND		2.1			
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57		ND		0.95	ND		0.854				ND		0.88			
Cobalt-58	901.1															
	901.1	AID.		4.05	ND.		4.00				ND		1.4			
Cobalt-60	901.1	ND		1.35	ND		1.06				ND		1.4			
Europium-152	901.1	ND		3.98	ND		3.09				ND		3.26			
Europium-154	901.1	ND		4.28	ND		2.98				ND		4.06			
Europium-155	901.1															
Manganese-54	901.1	ND		1.31	ND		1				ND		1.31			
Potassium-40	901.1	ND		33.8	ND		27.6				ND		32.3			
Radium-228	901.1															
Silver-110m	901.1															
Sodium-22	901.1	ND		1.46	ND		1.02				ND		1.39			
Alpha-emitting Radionuclides																
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium		•			•			•						•		
Strontium-90	905.0	-0.087 U	0.2	0.359	0.044 U	0.23	0.451				-0.058 U	0.25	0.378			
Thorium-228	907.0										0.031 U	0.11	0.184			
Thorium-230	907.0										0.183	0.099	0.116			
Thorium-232	907.0										0.006 U	0.033	0.058			
Uranium-233/234	908.0	3.04	0.39	0.074							11.2	1.1	0.111	11.8	1.1	0.079
Uranium-235	908.0	0.108 J	0.059	0.069							0.64 J	0.16	0.056	0.730 J	0.12	0.079
Uranium-238	908.0		0.059	0.069							10.8	1.1	0.030	10.9	1.0	0.029
UIAIIIUIII-230	9U0.U	2.74	0.30	0.000							10.0	1.1	0.102	10.9	1.0	0.077

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		1	RD-07			RD-07		1	RD-15		l	RD-15		1	RD-17	
Geologic Unit:			hatsworth	1		Chatswort	h		Chatsworth	n		Chatswort	h		hatsworth	
Sample Port:			Z3	'		Z3	11		Jilataworti		١		11		iiaiswoiii	•
Sample Type:			Primary			Primary			Primary			Primary			Primary	
		l .	Dissolved			Dissolved			Dissolved			Dissolved		١,	Dissolved	
Sample Preparation:																
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			2/5/2008	1.\		8/6/2008	9. \		2/20/2008			8/6/2008	<i>n</i> \		2/22/2008	
Radionuclide	Method		esult (pCi/	,		esult (pCi/			esult (pCi/	•		esult (pCi/	,		sult (pCi/	,
Gross Alpha, Gross Beta, Radi		Activity	Error	MDA	Activity	Error	MDA 2.29									
Gross Alpha	900.0	43.1	10	2.78	26.4	6.9	2.43	10.8	3.6	2.64	6.28	2.7	2.61	5.71	2.5	
Gross Beta	900.0	20.2	4.8	3.48	18.4	3.5	4.15	6.9	2	2.99	5.74	2	2.82	8.42	1.8	2.26
Radium-226	903.1	-0.077 U	0.37	0.716	0.306 U	0.42	0.71	0.682 U	0.51	0.755	0.666 J	0.43	0.598	0.893 J	0.57	0.799
Radium-228	904.0	0.081 U	0.32	0.389	1.16	0.35	0.542	0.492 J	0.38	0.358	1.0	0.25	0.512	1.51	0.28	0.43
Tritium	906.0	78.6 U	84	138	-39.7 U	100	176	-52.2 U	87	152				-23.8 U	89	152
Gamma-emitting Radionuclides																
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1	ND		0.796				ND		1.93				ND		0.942
Cesium-137	901.1	ND		0.664				ND		1.48				ND		0.721
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57	901.1	ND		0.513				ND		1.02				ND		0.444
Cobalt-58	901.1															
Cobalt-60	901.1	ND		0.573				ND		1.58				ND		0.904
	901.1	ND ND		1.83				ND ND		4.12				ND ND		1.98
Europium-152																
Europium-154	901.1	ND		1.75				ND		4.83				ND		2.22
Europium-155	901.1									4.40						0.744
Manganese-54	901.1	ND		0.523				ND		1.46				ND		0.711
Potassium-40	901.1	ND		12.5				ND		41.3				ND		9.5
Radium-228	901.1															
Silver-110m	901.1															
Sodium-22	901.1	ND		0.595				ND		1.65				ND		0.757
Alpha-emitting Radionuclides																
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium		•			•			•			-			•		
Strontium-90	905.0	0.05 U	0.25	0.475				0.044 U	0.28	0.558				-0.169 U	0.22	0.463
Thorium-228	907.0	-0.006 U	0.023	0.049												
Thorium-230	907.0	-0.049 U	0.051	0.107												
Thorium-232	907.0	-0.02 U	0.017	0.046												
Uranium-233/234	908.0	26.3	1.6	0.087	19.1	1.7	0.076	3.51	0.45	0.091						
Uranium-235	908.0	1.17	0.13	0.03	0.45 U	0.23	0.458	0.272 J	0.1	0.063						
Uranium-238	908.0	21.3	1.3	0.082	15.4	1.4	0.074	3.15	0.42	0.075						
Orania III-200	300.0	21.0	1.0	0.002	10.7	1.7	0.07+	0.10	U.72	0.010						

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-17		1	RD-21			RD-21			RD-22		1	RD-22	
Geologic Unit:			Chatsworth	,		Chatsworth	,		Chatsworth	,		Chatswort	h		Chatswort	h
Sample Port:		,	Jiialowoili	1		Z2			Z3	1		Z2	"	١ `	Z2	11
Sample Type:			Drimon			Primary						Primary			Primary	
			Primary Dissolved		l .	Dissolved			Primary Dissolved			Dissolved	1		Dissolved	
Sample Preparation:													l			
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			8/6/2008	1.\		2/5/2008			8/6/2008	1.\		2/5/2008	// \		8/6/2008	91.
Radionuclide	Method		esult (pCi/	,		esult (pCi/	,		esult (pCi/l	,		esult (pCi/			esult (pCi/	·
Gross Alpha, Gross Beta, Rad		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	5.66	2.9	3.6	6.45	2.1	1.61	1.82 U	1.6	2.21	4.22	2.6	3.55	3.76	2.5	3.1
Gross Beta	900.0	7.02	1.9	2.52	4.99	1.6	1.95	10.3	1.9	1.93	5.97	2.2	2.82	5.54	3.4	5.15
Radium-226	903.1	1.51	0.58	0.562	0.999 J	0.57	0.747	0.105 U	0.29	0.516	1.13	0.54	0.722	1.52	0.62	0.669
Radium-228	904.0	0.894 J	0.25	0.516	0.227 U	0.19	0.381	0.108 U	0.29	0.507	2.88	0.32	0.38	2.62	0.49	0.553
Tritium	906.0				-30 U	82	140				-19.6 U	81	138			
Gamma-emitting Radionuclide																
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1				ND		1.41				ND		0.976			
Cesium-137	901.1				ND		1.15				ND		0.688			
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57	901.1				ND		0.799				ND		0.385			
Cobalt-58	901.1															
Cobalt-60	901.1				ND		1.22				ND		0.85			
Europium-152	901.1				ND		3.26				ND		1.95			
Europium-154	901.1				ND		3.7				ND ND		2.12			
•					ND		3.7				ND		2.12			
Europium-155	901.1															
Manganese-54	901.1				ND		1.28				ND		0.692			
Potassium-40	901.1				ND		21.8				ND		8.59			
Radium-228	901.1															
Silver-110m	901.1															
Sodium-22	901.1				ND		1.26				ND		0.72			
Alpha-emitting Radionuclides		1									1					
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium																
Strontium-90	905.0				-0.133 U	0.23	0.478				-0.129 U	0.23	0.474			
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	908.0				4.31	0.35	0.05	3.95	0.41	0.051						
Uranium-235	908.0				0.148 J	0.052	0.032	0.197 J	0.059	0.038						
Uranium-238	908.0				3.5	0.31	0.047	3.35	0.35	0.048						

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-23			RD-23			RD-24			RD-27			RD-27	
Geologic Unit:		(Chatsworth	n	(Chatswort	h		Chatsworth	n		Chatswort	h		Chatswort	h
Sample Port:		,	Z3		`	Z2	11	`		ı	`			`		"
Sample Type:			Primary			Primary			Primary			Primary			Primary	
Sample Preparation:			Dissolved			Dissolved			Dissolved			Dissolved	ı		Dissolved	ı
Lab Name:			Eberline			Eberline			Eberline			Eberline	•		Eberline	•
Collection Date:			2/6/2008			8/7/2008			2/13/2008			3/5/2008			9/4/2008	
Radionuclide	Method	D,	esult (pCi/	1.1		esult (pCi/	1 \		esult (pCi/		D	esult (pCi	/1 \	D	9/4/2008 esult (pCi/	
			<u>''</u>			<u> </u>			- 1			\				,
Gross Alpha, Gross Beta, Rac		Activity 2.44 J	Error	MDA	Activity 3.5	Error 1.7	MDA 1.61	Activity	Error	MDA	Activity 7.26	Error 2.7	MDA 2.5	Activity 4.12	Error 1.8	MDA 1.76
Gross Alpha Gross Beta	900.0 900.0	2.44 J 2.58 J	1.5	1.81 1.84	17.1	2.3	1.72	2.52 J 4.85	1.2 0.97	1.2 1.11	7.20	1.7	2.13	10.3	1.7	1.63
			1.3		0.899 J									2.11		
Radium-226	903.1	1.8	0.68	0.873		0.5	0.664	0.565 U	0.51	0.771	1.52	0.69	0.817		0.73	0.665
Radium-228	904.0	-0.091 U	0.13	0.381	0.669 J	0.24	0.546	0.77 J	0.23	0.422	2.5	0.33	0.35	3.01	0.39	0.392
Tritium	906.0	-50.8 U	85	146				-26.4 U	90	154	82.4 U	94	155	-88.1 U	90	156
Gamma-emitting Radionuclide					1											
Aluminum-26	901.1													ND		0.771
Americium-241	901.1													ND		0.889
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1													ND		6.74
Cerium-139	901.1													ND		0.44
Cerium-144	901.1													ND		2.89
Cesium-134	901.1	ND		1.79				ND		1.89	ND		1.35	ND		0.922
Cesium-137	901.1	ND		1.16				ND		0.633	ND		1.15	ND		0.73
Chromium-51	901.1													ND		7.5
Cobalt-56	901.1													ND		0.937
Cobalt-57	901.1	ND		0.901				ND		0.512	ND		0.856	ND		0.419
Cobalt-58	901.1													ND		0.825
Cobalt-60	901.1	ND		1.24				ND		0.593	ND		1.02	ND		0.755
Europium-152	901.1	ND		3.14				ND		2.03	ND		3.01	ND		1.79
Europium-154	901.1	ND		3.34				ND		1.54	ND		2.84	ND		2.06
Europium-155	901.1															
Manganese-54	901.1	ND		1.25				ND		0.606	ND		0.933	ND		0.698
Potassium-40	901.1	ND		23.1				ND		13.3	ND		26.9	ND		9.3
Radium-228	901.1															
Silver-110m	901.1													ND		0.979
Sodium-22	901.1	ND		1.14				ND		0.522	ND		0.963	ND		0.702
Alpha-emitting Radionuclides					1											
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium	1171012 000	Į.			!											
Strontium-90	905.0	0.107 U	0.29	0.53				-0.173 U	0.24	0.543	0.007 U	0.24	0.473			
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	908.0															
Uranium-235	908.0															
Uranium-238	908.0															
UIAIIIUIII-230	906.0															

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-29		I	RD-29			RD-30		1	RD-30		I	RD-33A	
Geologic Unit:			hatswortl	n		Chatswort	<u> </u>		Chatsworth	n	_	Chatswort	h	۱ ،	Chatsworth	0
Sample Port:						naisworii	1		maisworii	1			"		Z2	'
Sample Type:			Primary			Primary			Primary			Primary			Primary	
			Dissolved			Dissolved			Dissolved			Dissolved	ı		Dissolved	
Sample Preparation:													l			
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			2/5/2008	9. \		8/11/2008			2/6/2008	1.\		8/13/2008			2/7/2008	
Radionuclide	Method		sult (pCi/			esult (pCi/	,		esult (pCi/			esult (pCi			esult (pCi/	,
Gross Alpha, Gross Beta, Rac		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	16.8	4.7	2.67	10.8	3.7	3.21	11.8	4.5	3.8	7.56	3.6	4.06	1.48 U	1.3	1.94
Gross Beta	900.0	12	2.9	2.23	7.95	2.3	3.4	10.6	3.5	4.1	8.74	2.8	3.87	5.8	1.4	0.987
Radium-226	903.1	0.039 U	0.4	0.792	-0.023 U	0.37	0.728	0.314 U	0.5	0.859	0.161 U	0.43	0.78	0.837 J	0.5	0.716
Radium-228	904.0	0.556 J	0.14	0.379	0.69 J	0.63	0.52	-0.116 U	0.13	0.375	0.817 J	0.43	0.531	5.98	0.43	0.392
Tritium	906.0	91.7 U	85	139				-17 U	87	147	12.5 U	94	158	12.3 U	82	138
Gamma-emitting Radionuclide																
Aluminum-26	901.1										ND		0.877			
Americium-241	901.1										ND		0.966			
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1										ND		6.88			
Cerium-139	901.1										ND		0.519			
Cerium-144	901.1										ND		3.13			
Cesium-134	901.1	ND		1.44				ND		0.964	ND		0.932	ND		0.832
Cesium-137	901.1	ND		1.2				ND		0.743	ND		0.808	ND		0.667
Chromium-51	901.1										ND		6.93			
Cobalt-56	901.1										ND		0.871			
Cobalt-57	901.1	ND		0.789				ND		0.443	ND		0.42	ND		0.531
Cobalt-58	901.1										ND		0.839			
Cobalt-60	901.1	ND		1.31				ND		1.03	ND		0.893	ND		0.562
	901.1	ND ND		3.35				ND ND		2.21	ND ND		1.96	ND		1.96
Europium-152		ND ND						ND ND			ND ND		2.47	ND ND		
Europium-154	901.1			3.76						2.15			2.47	ND		1.75
Europium-155	901.1			4.00						0.754						
Manganese-54	901.1	ND		1.26				ND		0.754	ND		0.756	ND		0.566
Potassium-40	901.1	ND		32.8				ND		10	ND		9.88	ND		18.4
Radium-228	901.1															
Silver-110m	901.1										ND		0.953			
Sodium-22	901.1	ND		1.28				ND		0.733	ND		0.775	ND		0.595
Alpha-emitting Radionuclides																
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium					•						-			•		
Strontium-90	905.0	-0.187 U	0.22	0.485				-0.088 U	0.27	0.562				0.043 U	0.24	0.439
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	908.0	10.9	0.73	0.072	8.05	0.92	0.123									
Uranium-235	908.0	0.528 J	0.1	0.03	0.435 J	0.15	0.099									
Uranium-238	908.0	10.6	0.72	0.066	7.87	0.9	0.114									

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-33A			RD-33B			RD-33B			RD-33C			RD-33C	
Geologic Unit:			Chatsworth			Chatsworth	n		Chatsworth			Chatswort	h	، ا	Chatsworth	2
Sample Port:		`	Z2		,			`	Jilatoworti					· ·		•
Sample Type:			Primary			Primary			Primary			Primary			Primary	
Sample Preparation:			Dissolved			Dissolved			Dissolved			Dissolved	ı		Dissolved	
Lab Name:			Eberline			Eberline			Eberline			Eberline	•		Eberline	
Collection Date:			8/8/2008			2/13/2008			8/7/2008			2/12/2008	,		8/7/2008	
Radionuclide	Method	D	esult (pCi/l	1		esult (pCi/		D	esult (pCi/l	1		esult (pCi/		D,	esult (pCi/	1.\
				<u> </u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				,		<u> </u>				
Gross Alpha, Gross Beta, Ra		Activity 8.77	Error 2.6	MDA 1.64	Activity 0.997 U	Error	MDA 2.02	Activity 1.35 U	Error 1.6	MDA 2.62	Activity	Error	MDA	Activity 2.94 J	Error 1.8	MDA 2.11
Gross Alpha Gross Beta	900.0 900.0	6.98	1.5	2.02	5.14	1.3 2	2.02	4.86	1.3	1.85	2.4 J 4.9	1.5	1.71 1.58		2.3	3.36
				0.64	-					0.419		1.2		5.77		
Radium-226	903.1	0.963 J	0.51		0.056 U	0.46	0.872	0.575 J	0.33		1.33	0.65	0.802	1.6	0.61	0.616
Radium-228	904.0	1.95	0.34	0.55	1.18	0.25	0.394	0.844 J	0.24	0.51	1.66	0.26	0.39	2.31	0.34	0.426
Tritium	906.0				-38.4 U	89	153	-10.5 U	100	177	-80.5 U	86	151	-18.8 U	100	176
Gamma-emitting Radionuclio		T						T						1		
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1				ND		2.09				ND		1.88			
Cesium-137	901.1				ND		1.2				ND		1.46			
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57	901.1				ND		0.728				ND		1.01			
Cobalt-58	901.1															
Cobalt-60	901.1				ND		1.25				ND		1.46			
Europium-152	901.1				ND		3.19				ND		4.27			
Europium-154	901.1				ND		3.69				ND		4.74			
Europium-155	901.1															
Manganese-54	901.1				ND		1.29				ND		1.45			
Potassium-40	901.1				ND		34.7				ND		41.2			
Radium-228	901.1															
Silver-110m	901.1															
Sodium-22	901.1				ND		1.26				ND		1.61			
Alpha-emitting Radionuclides														l .		
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium														!		
Strontium-90	905.0				0.014 U	0.3	0.599				-0.065 U	0.3	0.6			
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	908.0															
Uranium-235	908.0															
Uranium-238	908.0															
Oranium-230	300.0															

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Challenge Chal	Well Identifier:		1	RD-34A			RD-34A			RD-34B		1	RD-34B		1	RD-34C	
Sample Port Primary Dissolved Di			_			l ,		_				_		h	_		n
Sample Properation: Continue			_		Ī	,	Jnaisworii	1	'	Chaisworii	l	١ ٠	maisworii	n			1
Sample Preparation: Collection Dissolvide Collection Dissolvide Collection Collec	•						D.:			 Dai			D.:				
Lab Name				,			,			,				1		,	
Collection Date														ļ			
Result Column Result R																	
Gross Alpha, Gross Beta, Radium, Tritium Activity Error MDA A									_								
Gross Alpha 90.00 23.5 6.9 3.88 16.4 5.59 19.38 4.4 5.99 19.38 4.4 5.99 19.38 4.4 5.99 19.38 4.4 5.99 19.38 4.4 5.99 19.38 5.99 19.39 5.99 19.39					,						,			,			
Gross Beta 900.0 11.4 4.3 5.39 19 3.8 4.54 6.9 2.4 3.03 8.01 2.2 2.92 4.06 1.1 1.56 6.8 6.36 4.36 9.07 1.3 0.57 0.75 0.75 1.3 0.67 0.75 0.75 1.3 0.67 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7																	
Radium-226						_						-				-	
Radium-28						-											
Tritium	Radium-226	903.1	0.5 U	0.5	0.803						0.72				1.31	0.67	
Camma-emitting Rationuclides	Radium-228	904.0	-0.059 U	0.13	0.374	0.162 U	0.12	0.403	0.01 U	0.008	0.012	1.39	0.25	0.4	1.41	0.24	0.389
Aluminum-26			1110	160	147	876	160	177	89.4 U	89	146	263	110	176	-7.73 U	90	154
Americium-224 901.1	Gamma-emitting Radionuclides	S				•						•			•		
Actinum-228 901.1	Aluminum-26	901.1															
Antimory-125 901.1	Americium-241	901.1															
Barium-133	Actinium-228	901.1															
Barium-133	Antimony-125	901.1															
Cerium-139		901.1															
Cerium-139	Bervllium-7	901.1															
Cerium-144 991.1	•																
Cesium-134 901.1 ND 0.82 ND 1.68 ND 0.992																	
Cesim-137			ND		0.82				ND		1 68				ND		0 992
Chromium-51																	
Cobalt-56 901.1																	
Cobalt-57 901.1 ND																	
Cobalt-58 901.1 ND ND 0.66 Europium-152 901.1 ND 1.84 ND ND ND 1.99 Europium-155 901.1 ND 1.84 ND ND ND ND ND ND ND ND ND ND ND																	
Cobalt-60 901.1 ND																	
Europium-152 901.1 ND 2.26 ND 3.36 ND 1.99																	
Europium-154 901.1 ND 1.84 ND 4.04 ND ND 2.08																	
Europium-155 901.1	•																
Manganese-54 901.1 ND 0.61 ND 1.32 ND 0.766 Potassium-40 901.1 ND 14 ND 34.8 ND 5.58 Radium-228 901.1	•																
Potassium-40 901.1 ND 14 ND 34.8 ND 5.58 Radium-228 901.1 Silver-110m 901.1 ND 0.626 Sodium-22 901.1 ND 0.626 ND 1.38 ND ND ND Alpha-emitting Radionuclides Americium-241 HASL-300 ND Plutonium-238 HASL-300 Plutonium-239 HASL-300 Strontium-90 905.0 -0.044 U 0.25 0.487 0.084 U 0.27 0.513 Thorium-230 907.0 0.016 U 0.065 0.112 Uranium-233/234 908.0 9.56 0.64 0.069 9.22 0.86 0.069 1.34 0.16 0.041	•																
Radium-228 901.1																	
Silver-110m 901.1 ND ND ND ND ND ND ND ND ND 0.708																	
Sodium-22 901.1 ND 0.626 ND 1.38 ND ND 0.708 Alpha-emitting Radionuclides																	
Alpha-emitting Radionuclides Americium-241 HASL-300																	
Americium-241 HASL-300		901.1	ND		0.626				ND		1.38				ND		0.708
Plutonium-238 HASL-300																	
Plutonium-239 HASL-300 -																	
Strontium, Thorium, Uranium Strontium-90 905.0 -0.044 U 0.25 0.487 0.084 U 0.27 0.513																	
Strontium-90 905.0 -0.044 U 0.25 0.487 0.084 U 0.27 0.513	Plutonium-239	HASL-300															
Thorium-228 907.0 0.016 U 0.065 0.112	Strontium, Thorium, Uranium											-			-		
Thorium-230 907.0 0.024 U 0.065 0.112	Strontium-90	905.0	-0.044 U	0.25	0.487				0.084 U	0.27	0.513				-0.106 U	0.39	0.675
Thorium-232 907.0 0 U 0.016 0.039	Thorium-228	907.0	0.016 U	0.065	0.112												
Uranium-233/234 908.0 9.56 0.64 0.069 9.22 0.86 0.069 1.34 0.16 0.041 <	Thorium-230	907.0	0.024 U	0.065	0.112												
Uranium-235 908.0 0.554 J 0.099 0.034 0.485 J 0.097 0.03 0.04 J 0.032 0.031	Thorium-232	907.0	0 U	0.016	0.039												
Uranium-235 908.0 0.554 J 0.099 0.034 0.485 J 0.097 0.03 0.04 J 0.032 0.031	Uranium-233/234	908.0	9.56	0.64	0.069	9.22	0.86	0.069	1.34	0.16	0.041						
	Uranium-235		0.554 J	0.099	0.034	0.485 J	0.097	0.03	0.04 J	0.032	0.031						
	Uranium-238					9.85	0.91	0.063									

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-34C			RD-54A			RD-54A		1	RD-54B			RD-54B	
Geologic Unit:			hatsworth			Chatsworth	,		Chatsworth	,	م ا	Chatswort	h		Chatsworth	h
Sample Port:			naisworii	1		Z2		,	Z2	1			"	`	Jilatoworti	1
Sample Type:			Primary			Primary			Primary			Primary			Primary	
			Dissolved			Dissolved			Dissolved		1	Dissolved	ı		Dissolved	ì
Sample Preparation:													l			
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			8/7/2008			2/6/2008			8/7/2008			2/14/2008			11/7/2008	
Radionuclide	Method		esult (pCi/	,		esult (pCi/l	,		esult (pCi/l	,		esult (pCi/			esult (pCi/	
Gross Alpha, Gross Beta, Radio		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	4.23	2.9	4.17	11.2	3.5	2.34	9.3	3.2	2.41	5.64	2.8	2.71	1.54 U	2.7	4.34
Gross Beta	900.0	4.45	1.2	1.65	9.02	2.8	3.15	7.06	2	2.59	5.93	2.2	3.24	6.44	1.9	2.58
Radium-226	903.1	0.827 J	0.48	0.651	1.56	0.61	0.746	0.609 J	0.41	0.583	0.983 J	0.58	0.733			
Radium-228	904.0	0.907 J	0.9	0.403	1.12	0.067	0.41	0.937 J	0.44	0.483	2.26	0.34	0.43			
Tritium	906.0	31.3 U	100	176	-17.2 U	87	148	99.9 U	110	176	-25 U	91	156			
Gamma-emitting Radionuclides																
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1													ND		3.34
Antimony-125	901.1													ND		1.72
Barium-133	901.1													ND		0.726
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1				ND		2.02				ND		1.41	ND		0.947
Cesium-137	901.1				ND		1.51				ND		1.22	ND		0.772
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57	901.1				ND		1.04				ND		0.935			
Cobalt-58	901.1															
Cobalt-60	901.1				ND		1.57				ND		1.12	ND		0.766
Europium-152	901.1				ND ND		4.46				ND ND		3.3	ND ND		1.76
Europium-154	901.1				ND		5.03				ND ND		3.28	ND ND		2.29
•					ND		5.03				ND 		3.20	ND ND		
Europium-155	901.1															1.65
Manganese-54	901.1				ND		1.52				ND		1.1	ND		0.727
Potassium-40	901.1				ND		41.7				ND		30.7	ND		8.97
Radium-228	901.1													ND		3.34
Silver-110m	901.1															
Sodium-22	901.1				ND		1.72				ND		1.11	ND		0.778
Alpha-emitting Radionuclides					1						1					
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium																
Strontium-90	905.0				-0.115 U	0.24	0.498				-0.005 U	0.26	0.502	0.01 U	0.22	0.44
Thorium-228	907.0				0.051 U	0.065	0.105									
Thorium-230	907.0				0.018 U	0.064	0.109									
Thorium-232	907.0				-0.009 U	0.018	0.044									
Uranium-233/234	908.0				7.18	0.51	0.056									
Uranium-235	908.0				0.279 J	0.07	0.029									
Uranium-238	908.0				5.82	0.43	0.048									

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-54B		1	RD-54C			RD-54C			RD-57		ı	RD-57	
Geologic Unit:			hatsworth	_	,	Chatswortl	•	,				Chatswort	h	_ ا		.
		_		1	١ ،	JilaiSWUIII	1	,	Chatsworth			Z8	11		hatsworth	1
Sample Port:						Daime a mi									Z5	
Sample Type:			Primary			Primary			Primary			Primary		l .	Primary	
Sample Preparation:			Total			Dissolved			Dissolved			Dissolved	l		Dissolved	
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			1/7/2008			2/14/2008		_	8/7/2008		_	2/7/2008			8/8/2008	
Radionuclide	Method		sult (pCi/			esult (pCi/	,		esult (pCi/l	,		esult (pCi/			esult (pCi/	
Gross Alpha, Gross Beta, Radi		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	6.34 U	5	7.27	1.32 J	1	1.29	1.71 U	1.3	1.88				0.086 U	0.73	1.29
Gross Beta	900.0	6.61	1.9	2.65	5.11	1.2	1.5	3.04 J	1.3	1.98				3.33 J	0.88	1.16
Radium-226	903.1				0.528 U	0.54	0.84	0.3 U	0.34	0.556				-0.066 U	0.31	0.625
Radium-228	904.0				0.402 U	0.23	0.516	0.411 U	0.18	0.489						
Tritium	906.0	-66.9 U	100	178	-58 U	90	156	12.5 U	100	176	-12.4 U	82	140	-12.6 U	100	177
Gamma-emitting Radionuclides	S	-						-			-			•		
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1	ND		3.17												
Antimony-125	901.1	ND		1.56												
Barium-133	901.1	ND		0.701												
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1	ND		1.22	ND		1.32				ND		1.05			
Cesium-137	901.1	ND		0.585	ND		1.19				ND ND		0.861			
Chromium-51	901.1			0.565			1.19						0.001			
Cobalt-56																
	901.1						4.05				ND.		0.705			
Cobalt-57	901.1				ND		1.65				ND		0.705			
Cobalt-58	901.1															
Cobalt-60	901.1	ND		0.617	ND		1.2				ND		0.753			
Europium-152	901.1	ND		1.91	ND		3.08				ND		2.72			
Europium-154	901.1	ND		1.62	ND		3.65				ND		2.26			
Europium-155	901.1	ND		2.17												
Manganese-54	901.1	ND		0.611	ND		1.26				ND		0.769			
Potassium-40	901.1	ND		12.2	ND		33.3				ND		17.4			
Radium-228	901.1	ND		3.17												
Silver-110m	901.1															
Sodium-22	901.1	ND		0.548	ND		1.24				ND		0.769			
Alpha-emitting Radionuclides		•						•			•			•		
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium					1											-
Strontium-90	905.0	-0.142 U	0.26	0.484	0.002 U	0.24	0.401				-0.029 U	0.23	0.432			
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	907.0															
Uranium-235	908.0															
Uranium-238	908.0															

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-59A		1	RD-59A		1	RD-59B			RD-59B			RD-59C	
Geologic Unit:			hatswort	h	۱ ،	Chatswort	2		Chatsworth	,		Chatswort	h	ے ا	hatswort	h
Sample Port:		_	naiswori	11		Jilatoworti	1			1			11	_	naiswori	11
Sample Type:			Primary			Primary			Primary			Primary			Primary	
			Dissolved			Dissolved			Dissolved			Dissolved	ı		Dissolved	ı
Sample Preparation:													l			l
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			5/20/2008			8/14/2008			5/20/2008	1.\		8/14/2008			5/20/2008	
Radionuclide	Method		sult (pCi/		1	esult (pCi/	,		esult (pCi/	,		esult (pCi/			esult (pCi/	,
Gross Alpha, Gross Beta, Radi		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	3.09	1.9	2.25	3.53	2.3	3.1	1.19 U	1.2	1.78	2.57 J	1.8	2.22	1.52 U	1.4	1.95
Gross Beta	900.0	3.63 J	2.3	3.61	5.36	1.8	2.49	3.65 J	1.1	1.46	3.26 J	1.7	2.72	2.89 J	1.3	1.97
Radium-226	903.1	0.335 U	0.41	0.672	1.07	0.63	0.834	1.03	0.48	0.546	0.452 U	0.42	0.639	0.756 J	0.46	0.638
Radium-228	904.0	0.754 J	0.2	0.405	0.336 U	0.2	0.51	1.33	0.23	0.362	1.02	0.25	0.519	1.14	0.24	0.357
Tritium	906.0	-44.1 U	93	160	-57.5 U	92	158	-57.5 U	91	158	-70.3 U	92	158	-34.6 U	93	160
Gamma-emitting Radionuclides																
Aluminum-26	901.1															
Americium-241	901.1	ND		6.33				ND		5.94				ND		1.54
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1	ND		1.3				ND		1.24				ND		1.67
Cesium-137	901.1	ND		1.17				ND		1.1				ND		1.36
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57	901.1	ND		0.857				ND		0.718				ND		0.808
Cobalt-58	901.1															
Cobalt-60	901.1	ND		1.01				ND		1.02				ND		1.46
	901.1	ND ND		3.01				ND ND		2.86				ND ND		3.43
Europium-152		ND ND		2.76				ND ND		2.00				ND		3.43
Europium-154	901.1			2.76										ND		
Europium-155	901.1															4.00
Manganese-54	901.1	ND		0.896				ND		0.94				ND		1.32
Potassium-40	901.1	ND		26.5				ND		26.9				ND		33.2
Radium-228	901.1															
Silver-110m	901.1															
Sodium-22	901.1	ND		0.935				ND		1.01				ND		1.36
Alpha-emitting Radionuclides																
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium					•			•			•			•		
Strontium-90	905.0	-0.207 U	0.21	0.459				-0.068 U	0.24	0.483				0.033 U	0.3	0.568
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	908.0															
Uranium-235	908.0															
Uranium-238	908.0															
	550.0	1			1			1						1		

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-59C			RD-63		1	RD-63		1	RD-64		1	RD-64	
Geologic Unit:			Chatsworth			Chatsworth		١,	רטא Chatsworth			Chatsworth	h	,	Chatsworth	•
Sample Port:		_	naisworii	ı		naisworii	1	١ ،	JiiaiSworii	l	,	Z7	11	`		1
•			D-1			Drimori			Dalas ami						Z7	
Sample Type:			Primary			Primary			Primary			Primary			Primary	
Sample Preparation:			Dissolved			Dissolved			Dissolved			Dissolved			Dissolved	
Lab Name:			Eberline			Eberline			Eberline			Eberline			Eberline	
Collection Date:			8/14/2008			2/6/2008			8/12/2008			2/6/2008			8/7/2008	
Radionuclide	Method		esult (pCi/l	,		esult (pCi/	,		esult (pCi/l	,		esult (pCi/	,		esult (pCi/	
Gross Alpha, Gross Beta, Radiu		Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha	900.0	0.596 U	2	3.36	6.84	4.7	6.57	7.42	3.2	2.93	7.02	2.8	2.67	4.41	2.6	2.96
Gross Beta	900.0	5.47	2.6	3.8	9.4	3.3	3.84	11	3	4.21	7.09	2.1	2.4	8.49	3	4.2
Radium-226	903.1	0.388 U	0.43	0.702	1.1	0.62	0.837	1.69	0.62	0.644	1.12	0.58	0.752	1.61	0.61	0.656
Radium-228	904.0	1.09	0.25	0.496	1.35	0.081	0.494	1.51	0.82	0.511	1.44	0.19	0.373	0.843 J	0.76	0.448
Tritium	906.0	-32.8 U	93	159	-31.7 U	86	147				111 U	92	149			
Gamma-emitting Radionuclides																
Aluminum-26	901.1															
Americium-241	901.1															
Actinium-228	901.1															
Antimony-125	901.1															
Barium-133	901.1															
Beryllium-7	901.1															
Cerium-139	901.1															
Cerium-144	901.1															
Cesium-134	901.1				ND		0.938				ND		1.29			
Cesium-137	901.1				ND		0.795				ND		1.16			
Chromium-51	901.1															
Cobalt-56	901.1															
Cobalt-57	901.1				ND		0.449				ND		0.886			
Cobalt-58	901.1															
Cobalt-60	901.1				ND		0.723				ND		1.24			
Europium-152	901.1				ND ND		2				ND ND		3.1			
•	901.1				ND ND		2.36				ND ND		3.78			
Europium-154					ND		2.36				IND		3.76			
Europium-155	901.1															
Manganese-54	901.1				ND		0.732				ND		1.2			
Potassium-40	901.1				ND		10.3				ND		22.2			
Radium-228	901.1															
Silver-110m	901.1															
Sodium-22	901.1				ND		0.804				ND		1.29			
Alpha-emitting Radionuclides		1			1											
Americium-241	HASL-300															
Plutonium-238	HASL-300															
Plutonium-239	HASL-300															
Strontium, Thorium, Uranium																
Strontium-90	905.0				0.022 U	0.24	0.472				0.062 U	0.26	0.486			
Thorium-228	907.0															
Thorium-230	907.0															
Thorium-232	907.0															
Uranium-233/234	908.0										2.96	0.27	0.055	2.88	0.32	0.048
Uranium-235	908.0										0.161 J	0.056	0.035	0.112 J	0.044	0.033
Uranium-238	908.0										2.18	0.22	0.047	2.35	0.27	0.044

TABLE VI SUMMARY OF ANALYSES FOR RADIONUCLIDES, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-98			RD-98			RD-98			RD-98	
Geologic Unit:		Chatsworth	1	۱ ،	Chatsworth	n		Chatswort	h		Chatsworth	1
Sample Port:	1			`		•	`			`		
Sample Type:		Primary			Primary			Primary			Primary	
Sample Preparation:		Dissolved			Dissolved			Dissolved	ı		Total	
Lab Name:		Eberline			Eberline			Eberline			Eberline	
Collection Date:		6/26/2008		l .	9/11/2008		l ,	11/14/200	0		1/14/2008	•
Radionuclide Method		esult (pCi/l	1		esult (pCi/			esult (pCi/			esult (pCi/	
Gross Alpha, Gross Beta, Radium, Tritium	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA	Activity	Error	MDA
Gross Alpha 900.0	5.39 J	2.7	3.00	4.16	2.2	2.24	-3.01 U	2.8	5.08	2.55 U	2.5	3.53
Gross Beta 900.0	10.9	2.9	4.00	9.65	2.2	2.3	9.67	2.2	2.69	8.72	3	4.2
Radium-226 903.1				0.43 U	0.51	0.841	3.07		2.03			
Radium-228 904.0				0.43 U 0.673 J	0.47	0.37						
Tritium 906.0	2.71 U	92	154	-145 U	97	171				-10.5 U	110	186
Gamma-emitting Radionuclides	2.710	92	134	-145 0	91	171				-10.5 0	110	100
Aluminum-26 901.1	ND		0.893	ND		0.894	l					
Americium-241 901.1	ND		5.44	ND		0.831						
			5. 44 			0.031	ND		3.21	ND		5.45
Actinium-228 901.1 Antimony-125 901.1							ND ND		1.86	ND ND		3.43
,							ND ND		0.875	ND ND		3.03 1.21
Barium-133 901.1	ND		9.34	ND		6.63			0.675			1.21
Beryllium-7 901.1												
Cerium-139 901.1	ND ND		0.821	ND		0.473						
Cerium-144 901.1			5.78	ND		3.17	ND			ND		
Cesium-134 901.1	ND		1.25	ND		1.12			0.815			1.41
Cesium-137 901.1	ND		1.09	ND		0.808	ND		0.705	ND		1.16
Chromium-51 901.1	ND		11.1	ND		7.33						
Cobalt-56 901.1	ND		1.11	ND		0.878						
Cobalt-57 901.1	ND		0.667	ND		0.385						
Cobalt-58 901.1	ND		0.985	ND		0.899						
Cobalt-60 901.1	ND		1.02	ND		0.865	ND		0.667	ND		1.17
Europium-152 901.1	ND		2.90	ND		2.14	ND		2.02	ND		3.52
Europium-154 901.1	ND		3.14	ND		2.6	ND		1.76	ND		3.67
Europium-155 901.1							ND		2.35	ND		3.54
Manganese-54 901.1	ND		0.977	ND		0.734	ND		0.621	ND		1.2
Potassium-40 901.1	ND		28.6	ND		8.64	ND		12.9	ND		23.9
Radium-228 901.1							ND		3.21	ND		5.45
Silver-110m 901.1	ND		1.28	ND		1.11						
Sodium-22 901.1	ND		1.06	ND		0.846	ND		0.597	ND		1.25
Alpha-emitting Radionuclides	T			1			1			1		
Americium-241 HASL-300	0.075 U	0.084	0.103									
Plutonium-238 HASL-300	0.120 U	0.12	0.191	-0.027 U	0.055	0.139						
Plutonium-239 HASL-300	0.04 U	0.04	0.152	-0.018 U	0.018	0.087						
Strontium, Thorium, Uranium												
Strontium-90 905.0	2.35	0.52	0.522	2.18	0.45	0.423	2.63	0.51	0.46	2.3	0.46	0.422
Thorium-228 907.0	0.046 U	0.040	0.065	0.028 U	0.056	0.096						
Thorium-230 907.0	-0.003 U	0.034	0.052	0.035 U	0.042	0.043						
Thorium-232 907.0	0.003 U	0.017	0.027	0.011 U	0.014	0.027						
Uranium-233/234 908.0	2.8	0.32	0.045	2.4	0.28	0.037						
Uranium-235 908.0	0.11 J	0.051	0.038	0.09 J	0.042	0.031						
Uranium-238 908.0	2.14	0.26	0.039	1.85	0.23	0.032						

TABLE VI

NOTES AND ABBREVIATIONS

- 1. MDA = Minimum detectable activity.
- 2. J = Result is less than contract-required MDA and greater than or equal to the MDA.
- 3. U = Not detected above the MDA; numerical value is the activity for the radionuclide.
- 4. ND = Non-detectable results for gamma-emitting radionuclides are presented as "ND".
- 5. --- = Analysis not performed.
- 6. Z = FLUTe sample port number.
- 7. pCi/L = PicoCuries per liter.
- 8. Chatsworth = Chatsworth Formation wells.
- 9. Shallow = Shallow wells.
- 10. Detected activity concentrations are presented as the activity plus or minus the error. Any activity is reported by the laboratory.
- 11. Analytical results that are less than the procedure background value are shown as negative values.
- 12. Dissolved = Dissolved radionuclides. Dissolved radionuclide samples were filtered using a 0.45 micron filter and preserved in the field.
- 13. Total = Total radionuclides. Total radionuclide samples were preserved in the field, but were not filtered.
- 14. Tritium samples were not filtered.
- 15. As discussed in Appendix D, project specific MDAs were not always attained due in part to matrix conditions (e.g., dissolved and suspended solids) and limitations in the prescribed analytical methods (e.g., sample volumes, counting times).
- 16. Eberline = Eberline Services of Richmond, California.

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		ES-11	ES-21	ES-21	ES-21	ES-21	ES-24	ES-24	ES-24
Sample Port:									
Sample Preparation:		Dissolved	Dissolved	Total	Dissolved	Dissolved	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster							
Collection Date:		03/05/2008	02/05/2008	02/05/2008	05/21/2008	09/04/2008	02/12/2008	02/12/2008	05/19/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL		0.0802 U						
Antimony	0.006	0.0003 U	0.00049 J	0.0003 U					
Arsenic	0.01	0.0007 U	0.0007 U	0.0007 U	0.0015 J	0.00095 U	0.0015 J	0.002	0.0023
Barium	1	0.019	0.0733	0.053	0.0625	0.0656	0.0714	0.0717	0.0929
Beryllium	0.004	0.000052 U	0.000052 U	0.000052 U	0.00013 U	0.00013 U	0.000093 J	0.000097 J	0.000052 U
Boron	1 NL		0.477	0.349	0.254	0.242	0.134	0.13	0.13
Cadmium	0.005	0.000099 U	0.000099 U	0.000099 U	0.00021 U	0.00021 U	0.000099 U	0.000099 U	0.000099 U
Chromium	0.05	0.0006 U	0.0006 U	0.0006 U	0.00068 U	0.00068 U	0.0006 U	0.0006 U	0.0006 U
Cobalt	NA	0.0021 U							
Copper	1.3 RAL	0.0084	0.0087	0.0974	0.0014	0.00038 U	0.0067	0.0341	0.00041 J
Cyanide	0.15								
Hexavalent Chromium	0.05					0.00002 U			
Iron	0.30 SMCL	0.0522 U	0.0849 J	0.136 J	2.72	1.83	0.0522 U	0.512	1.51
Lead	0.015 RAL	0.0011	0.0322	0.0638	0.0026	0.00005 U	0.0076	0.0381	0.0018
Magnesium	NA		23.8	17	22.6	23.1	25.6	25.1	24.4
Manganese	0.5 NL	0.0023 J	0.0101	0.0083	0.262	0.219	0.0184	0.0357	0.294
Mercury	0.002	0.000056 U	0.000098 J	0.000056 U	0.000056 U				
Molybdenum	NA	0.0046 U	0.0046 U	0.0046 U	0.0046 U	0.0049 U	0.0046 U	0.0046 U	0.0047 J
Nickel	0.1	0.0015 J	0.0022	0.0025	0.0027	0.0026	0.0047	0.005	0.0037
Potassium	NA								
Selenium	0.05	0.0014 J	0.00069 U	0.0012 J	0.0003 U	0.0003 U	0.00081 J	0.00072 J	0.00099 U
Silver	0.1 SMCL	0.000037 U	0.000031 U	0.000037 J	0.000037 U	0.000037 U	0.000031 U	0.000031 U	0.000037 U
Strontium	NA		0.181	0.243	0.305	0.333	0.565	0.556	0.54
Thallium	0.002	0.00015 U	0.000037 U	0.000037 U	0.00015 U	0.00015 U	0.000037 U	0.000037 U	0.00015 U
Tin	NA		0.0084 U	0.0084 U	0.0084 U	0.0088 U	0.0084 U	0.0084 U	0.0084 U
Vanadium	0.05 NL	0.0018 J	0.0015 U	0.0016 J	0.0027 J	0.0025 U	0.0015 U	0.0015 U	0.0015 U
Zinc	5 SMCL	0.304	0.409	0.3	0.276	0.0711	0.402	0.341	0.16
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		ES-24	ES-31	HAR-11	HAR-14	HAR-14	HAR-15	HAR-15	PZ-001D
Sample Port:									
Sample Preparation:		Total	Total	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:		05/19/2008	02/01/2008	09/04/2008	04/22/2008	08/21/2008	04/22/2008	08/21/2008	05/01/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U		0.0802 U		0.0802 U		0.0802 U	0.0879 J
Antimony	0.006	0.0003 U		0.0022	0.0001 J	0.0003 U	0.000091 J	0.0003 U	0.00035 J
Arsenic	0.01	0.0028		0.0031	0.00096 J	0.00095 U	0.0028 J	0.0022	0.001 J
Barium	1	0.0871		0.137	0.033	0.0286	0.02	0.0191	0.0161
Beryllium	0.004	0.000076 J		0.00013 U	0.00008 U	0.00013 U	0.00008 U	0.00013 U	0.000052 U
Boron	1 NL	0.128							
Cadmium	0.005	0.000099 U		0.00021 U	0.00004 U	0.00021 U	0.000091 J	0.00021 U	0.00047
Chromium	0.05	0.0006 U		0.00068 U	0.0005 U	0.00068 U	0.0005 U	0.00068 U	0.0006 U
Cobalt	NA	0.0021 U		0.0023 J	0.00044 J	0.0021 U	0.00019 J	0.0021 U	0.0021 U
Copper	1.3 RAL	0.004		0.001 J	0.00066 J	0.00038 U	0.00092 J	0.00099 J	0.0027 U
Cyanide	0.15				0.0024 U		0.0024 U		
Hexavalent Chromium	0.05			0.00002 U		0.00002 U		0.00002 U	
Iron	0.30 SMCL	2.77		1.16		0.0522 U		0.0522 U	0.0522 U
Lead	0.015 RAL	0.009		0.00018 J	0.00018 U	0.00005 U	0.00018 U	0.00005 U	0.00021 J
Magnesium	NA	25.1							
Manganese	0.5 NL	0.202		2.29		0.00084 U		0.0457	0.0811
Mercury	0.002	0.000056 U		0.000056 U	0.000027 U	0.000056 U	0.000027 U	0.000056 U	0.000056 U
Molybdenum	NA	0.0046 U		0.0049 U		0.0049 U		0.0049 U	0.0046 U
Nickel	0.1	0.0041		0.0063	0.0062	0.0017 J	0.0028	0.0022	0.0019 J
Potassium	NA		1.96						
Selenium	0.05	0.00099 U		0.00033 J	0.0026 U	0.0015 J	0.00095 U	0.0003 U	0.00035 U
Silver	0.1 SMCL	0.000037 U		0.000037 U	0.00016 U	0.000037 U	0.00016 U	0.000037 U	0.000037 U
Strontium	NA	0.551							
Thallium	0.002	0.00015 U		0.00015 U	0.000028 J	0.00015 U	0.00002 U	0.00015 U	0.00015 U
Tin	NA	0.0084 U			0.0058 U		0.0058 U		
Vanadium	0.05 NL	0.0015 U		0.0034 J	0.0015 J	0.0025 U	0.0024	0.0025 U	0.0015 U
Zinc	5 SMCL	0.294		0.161	0.0022 J	0.0081 U	0.0044 J	0.0081 U	0.0081 U
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-001E	PZ-001F	PZ-007D	PZ-007E	PZ-007F	PZ-009C	PZ-009E	PZ-009F
Sample Port:									
Sample Preparation:		Dissolved							
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster							
Collection Date:		05/01/2008	05/01/2008	05/16/2008	05/16/2008	05/16/2008	05/21/2008	05/21/2008	05/21/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.291	0.0802 U	0.0802 U	0.0802 U	0.0802 U	1.56	0.0802 U
Antimony	0.006	0.0003 U	0.0058	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0023	0.00068 J
Arsenic	0.01	0.0011 J	0.0066	0.0023	0.0013 J	0.0014 J	0.00095 U	0.0022	0.0048
Barium	1	0.0378	0.013	0.0286	0.0574	0.0164	0.0498	0.0307	0.0492
Beryllium	0.004	0.000052 U	0.00013 U	0.00013 U	0.00013 U				
Boron	1 NL								
Cadmium	0.005	0.000099 U	0.00033	0.00055	0.000099 U	0.000099 U	0.00021 J	0.0021	0.00054
Chromium	0.05	0.0006 U	0.00068 U	0.0037	0.00082 J				
Cobalt	NA	0.0083	0.0021 U						
Copper	1.3 RAL	0.00038 U	0.0036 U	0.0014	0.00088 J	0.00073 J	0.0021	0.012	0.0052
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U	0.259	0.189 J	0.0818 J	0.175 J	0.0522 U	1.97	0.12 J
Lead	0.015 RAL	0.000059 J	0.00053 J	0.00012 J	0.00005 U	0.00005 U	0.00016 J	0.0019	0.00048 J
Magnesium	NA								
Manganese	0.5 NL	0.137	0.0367	0.128	0.0293	0.153	0.0044 J	0.124	0.0631
Mercury	0.002	0.000056 U							
Molybdenum	NA	0.0046 U	0.0892	0.0046 U	0.0046 U	0.0046 U	0.0046 U	0.0153	0.0232
Nickel	0.1	0.0014 J	0.0043	0.0053	0.0039	0.0025	0.0057	0.0081	0.0029
Potassium	NA								
Selenium	0.05	0.00035 U	0.00035 U	0.0027	0.0038	0.0026	0.0003 U	0.0022	0.0003 U
Silver	0.1 SMCL	0.000037 U							
Strontium	NA								
Thallium	0.002	0.00015 U							
Tin	NA								
Vanadium	0.05 NL	0.0015 U	0.0019 J	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0054	0.0015 U
Zinc	5 SMCL	0.0081 U	0.245	0.0095 J	0.0081 U	0.0081 U	0.0081 U	0.0644	0.0153 J
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-010E	PZ-010F	PZ-010G	PZ-020	PZ-022	PZ-045	PZ-050	PZ-050
Sample Port:									
Sample Preparation:		Dissolved							
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster							
Collection Date:		05/21/2008	05/21/2008	05/21/2008	05/12/2008	05/14/2008	02/22/2008	02/19/2008	05/07/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.107 J	0.0802 U	0.0802 U	0.0802 U	0.0802 U		0.0802 U	0.217
Antimony	0.006	0.0017	0.0003 U	0.00035 J	0.0003 U				
Arsenic	0.01	0.0074	0.0037	0.0036	0.0007 U	0.0013 J	0.007 U	0.0016 J	0.0032
Barium	1	0.0133	0.0245	0.0293	0.04	0.0223	0.0116	0.0774	0.065
Beryllium	0.004	0.00013 U	0.00013 U	0.00013 U	0.000052 U	0.000052 U	0.000053 J	0.000052 U	0.000052 U
Boron	1 NL							0.121	0.111
Cadmium	0.005	0.00021 J	0.00021 U	0.00025 J	0.000099 U	0.000099 U	0.00017 J	0.000099 U	0.00014 J
Chromium	0.05	0.00078 J	0.0101	0.00068 U	0.0006 U	0.0078	0.006 U	0.0006 U	0.0006 U
Cobalt	NA	0.0021 U							
Copper	1.3 RAL	0.0017	0.00074 J	0.0017	0.0008 J	0.00085 J	0.0259	0.0094	0.0021
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.232	0.402	0.348	0.0543 J	0.0522 U	0.0595 U	0.0522 U	0.267
Lead	0.015 RAL	0.00084 J	0.000067 J	0.00044 J	0.00005 U	0.00005 U	0.00015 J	0.00019 J	0.00018 J
Magnesium	NA							16.2	15.3
Manganese	0.5 NL	0.0926	0.0886	0.169	0.0021 J	0.00084 U	0.0603	0.0572	0.029
Mercury	0.002	0.000056 U	0.000056 U	0.000056 U	0.000056 U	0.0012	0.000056 U	0.000056 U	0.000056 U
Molybdenum	NA	0.0707	0.0072 J	0.0258	0.0046 U	0.0053 J	0.0046 U	0.0046 U	0.0046 U
Nickel	0.1	0.0053	0.0058	0.0025	0.0011 J	0.0005 U	0.0056 J	0.0015 J	0.0014 J
Potassium	NA								
Selenium	0.05	0.0003 U	0.0003 U	0.0003 U	0.001 J	0.00099 U	0.0099 U	0.0029	0.0077
Silver	0.1 SMCL	0.000037 U							
Strontium	NA							0.773	0.742
Thallium	0.002	0.00015 U	0.000037 U	0.000037 U	0.00015 U				
Tin	NA							0.0084 U	0.0084 U
Vanadium	0.05 NL	0.0048 J	0.0015 U	0.0015 U	0.0016 J	0.0015 U	0.0015 U	0.0015 U	0.0028 J
Zinc	5 SMCL	0.0174 J	0.0081 U	0.0102 J	0.0081 U	0.0081 U	0.102	0.0315	0.0081 U
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-056	PZ-056	PZ-105	PZ-105	PZ-105	PZ-105	PZ-106	PZ-106
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster	C&T	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		02/21/2008	02/21/2008	02/18/2008	05/07/2008	09/09/2008	11/10/2008	02/19/2008	05/08/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL			0.0802 U					
Antimony	0.006	0.0003 U		0.0004 J	0.0004 J	0.0003 U	0.00047 J	0.0003 U	0.0003 U
Arsenic	0.01	0.007 U		0.0025	0.0033	0.0015 J	0.0024	0.00099 J	0.0007 U
Barium	1	0.0088		0.0143	0.0111	0.014	0.0006 U	0.0857	0.0706
Beryllium	0.004	0.000052 U		0.000052 U	0.000052 U	0.00013 U	0.00013 U	0.000052 U	0.000052 U
Boron	1 NL			0.152	0.138	0.153	0.156	0.134	0.125
Cadmium	0.005	0.000099 U		0.000099 U	0.00023 J	0.00035 J	0.00047 J	0.000099 U	0.000099 U
Chromium	0.05	0.006 U		0.0082	0.0006 U	0.00068 U	0.00068 U	0.0006 U	0.0006 U
Cobalt	NA	0.0021 U		0.0021 U					
Copper	1.3 RAL	0.0038 U		0.0092	0.0025	0.0139	0.0182	0.0059	0.00044 J
Cyanide	0.15								
Hexavalent Chromium	0.05	0.002	0.0023						
Iron	0.30 SMCL	0.0522 U		0.0522 U	0.0522 U	0.0522 U	0.0644 J	0.0522 U	0.0522 U
Lead	0.015 RAL	0.00005 U		0.00065 J	0.000056 J	0.00029 J	0.0017	0.000093 J	0.00005 U
Magnesium	NA			17.2	16.6	18.2	17.2	14.4	14.4
Manganese	0.5 NL	0.0012 J		0.00084 U	0.0031 J	0.0345	0.0428	0.0038 J	0.0043 J
Mercury	0.002	0.000056 U		0.000056 U					
Molybdenum	NA	0.0046 U		0.0298	0.0236	0.0261	0.0269	0.0046 U	0.0046 U
Nickel	0.1	0.005 U		0.0051	0.0038	0.0012 J	0.0018 J	0.0014 J	0.0008 J
Potassium	NA								
Selenium	0.05	0.0099 U		0.0026	0.0057	0.0003 U	0.0003 U	0.0026	0.00036 J
Silver	0.1 SMCL	0.000037 U		0.000037 U					
Strontium	NA			0.381	0.365	0.357	0.375	0.702	0.68
Thallium	0.002	0.000037 U		0.000037 U	0.00015 U	0.00015 U	0.00015 U	0.000037 U	0.00015 U
Tin	NA			0.0084 U	0.0084 U	0.0088 U	0.0088 U	0.0084 U	0.0084 U
Vanadium	0.05 NL	0.0019 J		0.0032 J	0.0024 J	0.003 J	0.0048 J	0.0015 U	0.0015 U
Zinc	5 SMCL	0.0081 U		0.0258	0.0081 U	0.0185 J	0.0907	0.0127 J	0.0081 U
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-106	PZ-109	PZ-109	PZ-109	PZ-109	PZ-116	PZ-117	PZ-121
Sample Port:									
Sample Preparation:		Dissolved							
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster							
Collection Date:		09/10/2008	02/19/2008	05/14/2008	09/09/2008	11/13/2008	05/09/2008	05/15/2008	02/20/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.0802 U	0.0802 U	0.173 J			0.808
Antimony	0.006	0.0003 U	0.0003 U	0.0015 U	0.0003 U				
Arsenic	0.01	0.00095 U	0.0034	0.0035 U	0.0016 J	0.0014 J	0.00084 J	0.0038	0.0015 J
Barium	1	0.078	0.0213	0.017	0.0201	0.0187	0.0245	0.0077	0.0307
Beryllium	0.004	0.00013 U	0.000052 U	0.000052 U	0.00013 U	0.00013 U	0.000052 U	0.000052 U	0.000052 U
Boron	1 NL	0.133	0.136	0.132	0.135	0.12			0.112
Cadmium	0.005	0.00021 U	0.000099 U	0.0005 U	0.00021 U	0.00021 U	0.00019 J	0.00046	0.00038
Chromium	0.05	0.00068 U	0.0006 U	0.003 U	0.00068 U	0.00068 U	0.0016 J	0.0083	0.0027
Cobalt	NA	0.0021 U							
Copper	1.3 RAL	0.0058	0.0088	0.0019 U	0.0149	0.0136	0.0015	0.0082	0.0072
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U	0.0522 U	0.0522 U	0.0522 U	0.315 J	0.0522 U	0.0522 U	0.964
Lead	0.015 RAL	0.00012 J	0.000083 J	0.00005 U	0.00028 J	0.00055 J	0.00005 U	0.00008 J	0.00058 J
Magnesium	NA	15.3	24.9	25.2	27.5	25.6			7.42
Manganese	0.5 NL	0.0133	0.005 J	0.0019 J	0.0743	0.0916	0.0059	0.0016 J	0.0561
Mercury	0.002	0.00006 U	0.000056 U	0.000056 U	0.000056 U	0.000056 U	0.000056 U	0.000056 U	0.000056 U
Molybdenum	NA	0.0049 U	0.09	0.0859	0.0887	0.0843	0.0088 J	0.0154	0.0079 J
Nickel	0.1	0.0443	0.0024	0.0025 U	0.001 J	0.0015 J	0.0019 J	0.0016 J	0.0045
Potassium	NA								
Selenium	0.05	0.00036 J	0.0024	0.005 U	0.0003 U	0.0003 U	0.0018 J	0.0025	0.001 J
Silver	0.1 SMCL	0.000037 U	0.000037 U	0.00019 U	0.000037 U	0.000037 U	0.000037 U	0.000037 U	0.000037 U
Strontium	NA	0.659	0.238	0.236	0.228	0.227			0.196
Thallium	0.002	0.00015 U	0.000037 U	0.00015 U	0.00015 U	0.00015 U	0.00015 U	0.00015 U	0.000037 U
Tin	NA	0.0088 U	0.0084 U	0.0084 U	0.0088 U	0.0088 U			0.0084 U
Vanadium	0.05 NL	0.0025 U	0.0025 J	0.0019 J	0.0027 J	0.0025 J	0.0015 U	0.0026 J	0.0042 J
Zinc	5 SMCL	0.0081 U	0.0315	0.0081 U	0.0214	0.0274	0.0081 U	0.0112 J	0.025
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-121	PZ-122	PZ-122	RS-08	RS-11	RS-16	RS-16	RS-18
Sample Port:									
Sample Preparation:		Dissolved	Dissolved	Dissolved	Dissolved	Total	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Shallow							
Lab Name:		Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		05/13/2008	08/21/2008	11/12/2008	04/22/2008	05/02/2008	02/01/2008	02/01/2008	02/04/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.0802 U					
Antimony	0.006	0.0003 U	0.0003 U	0.0003 U	0.00065 J		0.0003 U		0.00049 J
Arsenic	0.01	0.0013 J	0.00095 U	0.00095 U	0.0056		0.0007 U		0.0007 U
Barium	1	0.0493	0.0496	0.0478	0.056		0.0395		0.061
Beryllium	0.004	0.000052 U	0.00013 U	0.00013 U	0.00008 U		0.000052 U		0.000052 U
Boron	1 NL	0.206	0.219	0.237					
Cadmium	0.005	0.00033	0.00021 U	0.00021 U	0.000061 J		0.000099 U		0.00045
Chromium	0.05	0.0006 U	0.00068 U	0.00068 U	0.0005 U		0.0006 U		0.0006 U
Cobalt	NA	0.0021 U	0.0021 U	0.0021 U	0.0031		0.0021 U		0.0021 U
Copper	1.3 RAL	0.0015	0.0128	0.0068	0.00056 U		0.0031		0.0047
Cyanide	0.15				0.0024 U				
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U	0.0522 U	0.0522 U			0.0522 U		0.938
Lead	0.015 RAL	0.00005 U	0.000055 J	0.0005 J	0.00018 U		0.000054 J		0.002
Magnesium	NA	14.4	21.5	20.4					
Manganese	0.5 NL	0.0043 J	0.0092	0.0775			0.00096 J		0.0385
Mercury	0.002	0.000056 U	0.000056 U	0.000056 U	0.000027 U		0.00026		0.000056 U
Molybdenum	NA	0.0046 U	0.0049 U	0.0049 U			0.0046 U		0.0046 U
Nickel	0.1	0.0033	0.0025	0.0026	0.004		0.0005 U		0.0066
Potassium	NA					0.625		0.858	
Selenium	0.05	0.0016 J	0.0003 U	0.0003 U	0.0014 U		0.00064 J		0.003
Silver	0.1 SMCL	0.000037 U	0.000037 U	0.000037 U	0.00016 U		0.000031 U		0.000031 U
Strontium	NA	0.335	0.329	0.336					
Thallium	0.002	0.00015 U	0.00015 U	0.00015 U	0.00002 U		0.000037 U		0.000037 U
Tin	NA	0.0084 U	0.0088 U	0.0088 U	0.0058 U				
Vanadium	0.05 NL	0.0015 U	0.0025 U	0.0025 U	0.0035		0.0018 J		0.003 J
Zinc	5 SMCL	0.0081 U	0.0129 J	0.0267	0.002 U		0.0081 U		0.011 J
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RS-18	RS-18	RS-25	RS-28	RS-28	RS-28	RS-28	RS-54
Sample Port:									
Sample Preparation:		Total	Dissolved	Total	Total	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		02/04/2008	04/29/2008	02/13/2008	02/06/2008	05/21/2008	08/19/2008	11/14/2008	02/12/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								0.0802 U
Antimony	0.006		0.00035 J			0.0006 U	0.0003 U	0.0003 U	0.0003 U
Arsenic	0.01		0.001 J			0.0014 U	0.00095 U	0.00095 U	0.00071 J
Barium	1		0.0444			0.0378	0.0362	0.0344	0.0483
Beryllium	0.004		0.000052 U			0.0001 U	0.00013 U	0.00013 U	0.000091 J
Boron	1 NL								0.579
Cadmium	0.005		0.000099 U			0.0002 U	0.00023 J	0.00021 U	0.0012
Chromium	0.05		0.0006 U			0.0012 U	0.00068 U	0.00068 U	0.0006 U
Cobalt	NA		0.0021 U			0.0021 U	0.0021 U	0.0021 U	0.146
Copper	1.3 RAL		0.00066 J			0.00076 U	0.00056 J	0.00045 J	0.0145
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL		0.0522 U			0.0522 U	0.0522 U	0.0522 U	0.0522 U
Lead	0.015 RAL		0.000074 J			0.0001 U	0.00005 U	0.000078 J	0.0013
Magnesium	NA								26.7
Manganese	0.5 NL		0.00084 U			0.00084 U	0.0024 J	0.0017 J	0.0088
Mercury	0.002		0.000056 U			0.000056 U	0.00056 U	0.000056 U	0.000071 J
Molybdenum	NA		0.00036 U			0.0046 U	0.0049 U	0.0049 U	0.0484
Nickel	0.1		0.0079			0.0040 U	0.0005 U	0.00079 J	0.553
Potassium	NA	1.03	0.0075	6.76	3.24	0.001 0	0.0003 0	0.00075 5	0.555
Selenium	0.05	1.05	0.0032	0.70	5.24	0.0027 J	0.0023	0.0025	0.002
Silver	0.03 0.1 SMCL		0.00037 U			0.0027 J	0.0023 0.00037 U	0.0023 0.00037 U	0.002 0.000031 U
Strontium	NA		0.000037 0			0.000074 0	0.000037 0	0.000037 0	0.000031 0
Thallium	0.002		0.00015 U			0.0003 U	0.00015 U	0.00015 U	0.46 0.000037 U
Tin	0.002 NA		0.00015 0			0.0003 U	0.00015 0	0.00015 U 	0.000037 U 0.0084 U
Vanadium	0.05 NL		0.0023 J			0.0015 U	0.0025 U	0.0025 U	0.0064 U 0.0015 U
Zinc	5 SMCL		0.0023 J 0.0081 U			0.0015 U 0.0081 U	0.0025 U 0.0081 U	0.0025 U 0.0081 U	0.0541
Zirconium	NA SWICE		0.0061 0			0.0061 0	0.0061 0	0.0061 0	0.0541
ZIICOHIUIII	INA								

TABLE VII SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		RS-54	RS-54	RS-54	SH-04	HAR-07	HAR-07	HAR-07	HAR-07
Sample Port:									
Sample Preparation:		Total	Dissolved	Total	Dissolved	Dissolved	Total	Dissolved	Dissolved
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Shallow	Shallow	Shallow	Shallow	Chatsworth	Chatsworth	Chatsworth	Chatsworth
Lab Name:		Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:		02/12/2008	05/21/2008	05/21/2008	04/23/2008	02/27/2008	02/27/2008	04/23/2008	08/27/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.0802 U		0.0802 U	0.0802 U	0.018 U	0.0802 U
Antimony	0.006	0.0003 U	0.0006 U	0.0006 U	0.0002 J	0.0003 U	0.0003 U	0.00007 U	0.0003 U
Arsenic	0.01	0.00071 J	0.0014 U	0.0014 U	0.0013 J	0.0015 J	0.002	0.0004 J	0.00095 U
Barium	1	0.0437	0.0472	0.0499	0.026	0.0184	0.0324	0.025	0.0245
Beryllium	0.004	0.000093 J	0.0001 U	0.0001 U	0.00013 J	0.000052 U	0.000065 J	0.00008 U	0.00013 U
Boron	1 NL	0.508	0.444	0.446		0.0718	0.0822	0.084	0.0624
Cadmium	0.005	0.0012	0.0013	0.0015	0.00004 U	0.000099 U	0.000099 U	0.00004 U	0.00021 U
Chromium	0.05	0.0027	0.0012 U	0.0149	0.0017 J	0.0006 U	0.00067 J	0.0005 U	0.00068 U
Cobalt	NA	0.129	0.176	0.179	0.0002 J	0.0021 U	0.0021 U	0.00027 J	0.0021 U
Copper	1.3 RAL	0.0258	0.0257	0.038	0.0015 J	0.0127	0.0377	0.0075	0.0058
Cyanide	0.15				0.0024 U			0.0024 U	
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.182 J	0.0522 U	0.547		0.0522 U	0.966	0.022 U	0.0522 U
Lead	0.015 RAL	0.0035	0.0024	0.0051	0.00018 U	0.0033	0.0047	0.0016	0.0032
Magnesium	NA	23.3	24.5	24.4		17.9	19.6	20	18.8
Manganese	0.5 NL	0.0384	0.0135	0.09		0.106	0.871	0.17	0.33
Mercury	0.002	0.000063 J	0.000056 U	0.000064 J	0.000027 U	0.000056 U	0.000056 U	0.000027 U	0.000056 U
Molybdenum	NA	0.04	0.02	0.0212		0.0046 U	0.0046 U	0.00041 J	0.0049 U
Nickel	0.1	0.544	0.625	0.647	0.0013 J	0.016	0.0183	0.0014 J	0.002 J
Potassium	NA	1.83							
Selenium	0.05	0.0022	0.002 U	0.002 U	0.0011 U	0.0016 J	0.0017 J	0.0012 U	0.0003 U
Silver	0.1 SMCL	0.00022 0.000031 U	0.00074 U	0.00074 U	0.00011 U	0.000037 U	0.00017 U	0.00012 U	0.000037 U
Strontium	NA	0.404	0.383	0.388	0.00010 0	0.000037 0	0.303	0.29	0.000037 0
Thallium	0.002	0.00037 U	0.0003 U	0.0003 U	0.00002 U	0.00015 U	0.00015 U	0.00002 U	0.00015 U
Tin	0.002 NA	0.00037 U 0.0084 U	0.0003 U 0.0084 U	0.0003 U 0.0084 U	0.00002 U	0.00013 U 0.0084 U	0.00013 U	0.00002 U	0.00013 U
Vanadium	0.05 NL	0.0004 U	0.0004 U	0.0004 U	0.0038 0	0.0004 U	0.0004 U	0.0000 J	0.0005 U
Zinc	5 SMCL	0.0596	0.0482	0.189	0.002 U	0.0682	0.137	0.044	0.0475
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-16	HAR-16	HAR-16	HAR-16	HAR-16	HAR-17	HAR-18	HAR-18
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Total	Dissolved	Dissolved	Dissolved	Total
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster	Lancaster	TA-Denver	TA-Denver	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:		03/05/2008	03/05/2008	04/23/2008	04/23/2008	09/04/2008	04/23/2008	02/18/2008	02/18/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.018 U	0.098 J	0.0802 U		0.0802 U	0.0802 U
Antimony	0.006	0.0003 U	0.0003 U	0.00007 U	0.000075 U	0.0003 U	0.00007 U	0.0003 U	0.0003 U
Arsenic	0.01	0.0016 J	0.0017 J	0.00052 J	0.0013 J	0.00095 U	0.00026 J	0.0007 U	0.0007 U
Barium	1	0.0219	0.0222	0.028	0.024	0.0227	0.081	0.0288	0.0294
Beryllium	0.004	0.000052 U	0.000052 U	0.00008 U	0.00008 U	0.00013 U	0.00008 U	0.000058 J	0.000058 J
Boron	1 NL	0.402	0.401	0.39	0.39	0.41		0.0511	0.0458 J
Cadmium	0.005	0.000099 U	0.000099 U	0.00004 U	0.00004 U	0.00021 U	0.00004 U	0.000099 U	0.000099 U
Chromium	0.05	0.0006 U	0.0006 U	0.0005 U	0.00093 J	0.00068 U	0.0005 U	0.0006 U	0.0006 U
Cobalt	NA	0.0021 U	0.0021 U	0.000053 J	0.00021 U	0.0021 U	0.00042 J	0.0021 U	0.0021 U
Copper	1.3 RAL	0.0063	0.0257	0.0016 J	0.063	0.0019 J	0.01	0.0022	0.0288
Cyanide	0.15			0.0024 U			0.0024 U		
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U	0.193 J	0.059 J	0.37	0.0522 U		0.0522 U	0.101 J
Lead	0.015 RAL	0.0099	0.0105	0.0012	0.0031	0.0014	0.0028	0.00065 J	0.0026
Magnesium	NA	13.3	13.2	14	14	14.8		17.6	18.3
Manganese	0.5 NL	0.00084 U	0.0024 J	0.0022	0.0049	0.00084 U		0.0676	0.127
Mercury	0.002	0.000056 U	0.000056 U	0.000027 U	0.000027 U	0.000056 U	0.000027 U	0.000056 U	0.000056 U
Molybdenum	NA	0.0046 U	0.0046 U	0.0003 J	0.00036 J	0.0049 U		0.0046 U	0.0046 U
Nickel	0.1	0.0034	0.0037	0.0018 J	0.00076 J	0.0017 J	0.0031	0.0006 J	0.00072 J
Potassium	NA								
Selenium	0.05	0.0083	0.0082	0.0033 U	0.00071 J	0.0022	0.0013 U	0.0012 J	0.001 J
Silver	0.1 SMCL	0.000037 U	0.000037 U	0.00016 U	0.00016 U	0.000037 U	0.00016 U	0.000037 U	0.000037 U
Strontium	NA	0.292	0.29	0.31	0.3	0.308		0.396	0.401
Thallium	0.002	0.00015 U	0.00015 U	0.00002 U	0.00002 U	0.00015 U	0.00002 U	0.000037 U	0.000037 U
Tin	NA	0.0084 U	0.0084 U	0.0058 U	0.0058 U	0.0088 U	0.0058 U	0.0084 U	0.0084 U
Vanadium	0.05 NL	0.0017 J	0.0021 J	0.001 J	0.0012 J	0.0025 U	0.0003 J	0.0015 U	0.0015 U
Zinc	5 SMCL	1.25	1.29	0.96	0.98	0.991	0.18	0.047	0.0805
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-18	HAR-18	RD-04	RD-04	RD-04	RD-04	RD-07	RD-07
Sample Port:								Z3	Z3
Sample Preparation:		Dissolved	Dissolved	Dissolved	Total	Dissolved	Dissolved	Dissolved	Total
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		05/13/2008	08/28/2008	02/27/2008	02/27/2008	05/08/2008	08/20/2008	02/05/2008	02/05/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U							
Antimony	0.006	0.0003 U	0.00038 J	0.0003 U					
Arsenic	0.01	0.00076 J	0.00095 U	0.0012 J	0.0016 J	0.0011 J	0.0019 J	0.0007 U	
Barium	1	0.0227	0.0266	0.0501	0.0507	0.0466	0.0489	0.0187	
Beryllium	0.004	0.000052 U	0.00013 U	0.000059 J	0.000055 J	0.000052 U	0.00013 U	0.000058 J	
Boron	1 NL	0.0482 J	0.0439 J	0.0283 J	0.0283 J	0.0281 J	0.0336 J		
Cadmium	0.005	0.000099 U	0.00021 U	0.000099 U	0.000099 U	0.000099 U	0.00071	0.000099 U	
Chromium	0.05	0.0006 U	0.00068 U	0.0006 U	0.0006 U	0.0006 U	0.00068 U	0.0006 U	
Cobalt	NA	0.0021 U							
Copper	1.3 RAL	0.0015	0.0047	0.0024	0.0029	0.00067 J	0.0116	0.002	
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U	0.0522 U	0.364	0.411	0.412	3	0.0522 U	
Lead	0.015 RAL	0.00094 J	0.00033 J	0.00055 J	0.00061 J	0.000089 J	0.005	0.0043	
Magnesium	NA	17.3	18.4	40	41.2	39.7	37.4		
Manganese	0.5 NL	0.0257	0.128	0.239	0.249	0.264	0.319	0.00084 U	
Mercury	0.002	0.000056 U							
Molybdenum	NA	0.0046 U	0.0049 U	0.0046 U	0.0046 U	0.0046 U	0.0049 U	0.0046 U	
Nickel	0.1	0.0032	0.0005 U	0.0279	0.0288	0.0015 J	0.0053	0.00058 J	
Potassium	NA								5.02
Selenium	0.05	0.0027	0.00046 J	0.00099 U	0.0012 J	0.0035	0.0003 U	0.0043 J	
Silver	0.1 SMCL	0.000037 U	0.000031 U						
Strontium	NA	0.358	0.382	0.759	0.768	0.71	0.647		
Thallium	0.002	0.00015 U	0.00029 J	0.000037 U					
Tin	NA	0.0084 U	0.0088 U	0.0084 U	0.0084 U	0.0084 U	0.0088 U		
Vanadium	0.05 NL	0.0015 U	0.0025 U	0.0015 U	0.0015 U	0.0015 U	0.0054	0.0015 U	
Zinc	5 SMCL	0.0865	0.0793	0.449	0.484	0.425	1.22	0.0846	
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-09	RD-09	RD-09	RD-14	RD-14	RD-15	RD-15	RD-15
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		05/15/2008	05/15/2008	08/20/2008	08/21/2008	11/04/2008	02/20/2008	02/20/2008	11/04/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.0802 U					
Antimony	0.006	0.0003 U		0.0003 U					
Arsenic	0.01	0.0012 J	0.0012 J	0.00095 U	0.00095 U	0.00095 U	0.0007 U		0.00095 U
Barium	1	0.0434	0.0431	0.0418	0.0453	0.0514	0.0501		0.0489
Beryllium	0.004	0.000052 U	0.000052 U	0.00013 U	0.00013 U	0.00013 U	0.000052 U		0.00013 U
Boron	1 NL	0.312	0.306	0.31					
Cadmium	0.005	0.000099 U	0.000099 U	0.00021 U	0.00021 U	0.00021 U	0.000099 U		0.00021 U
Chromium	0.05	0.0006 U	0.0006 U	0.00068 U	0.00068 U	0.00068 U	0.0006 U		0.00068 U
Cobalt	NA	0.0021 U		0.0021 J					
Copper	1.3 RAL	0.0036	0.0086	0.0019 J	0.0029	0.00038 U	0.0035		0.0004 J
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.852	1.34	0.354	0.0653 J	0.219	0.289 J		0.0841 J
Lead	0.015 RAL	0.00094 J	0.0019	0.0013	0.00058 J	0.00027 J	0.0046		0.00012 J
Magnesium	NA	26.9	26.7	27.8					
Manganese	0.5 NL	0.161	0.16	0.151	0.0456	0.0125	0.0672		0.0612
Mercury	0.002	0.000056 U		0.000056 U					
Molybdenum	NA	0.0046 U	0.0046 U	0.0049 U	0.0049 U	0.0049 U	0.0046 U		0.0049 U
Nickel	0.1	0.0021	0.002	0.002	0.0005 U	0.00069 J	0.0025		0.0017 J
Potassium	NA							4.99	
Selenium	0.05	0.0034	0.0032	0.0003 U	0.00036 J	0.00056 J	0.003 J		0.00043 J
Silver	0.1 SMCL	0.000037 U		0.000037 U					
Strontium	NA	0.389	0.384	0.38					
Thallium	0.002	0.00015 U	0.000037 U		0.00015 U				
Tin	NA	0.0084 U	0.0084 U	0.0088 U					
Vanadium	0.05 NL	0.0015 U	0.0015 U	0.0025 U	0.0025 U	0.0025 U	0.0015 U		0.0025 U
Zinc	5 SMCL	0.216	0.249	0.234	0.438	0.311	1.28		0.368
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-17	RD-18	RD-18	RD-18	RD-18	RD-19	RD-19	RD-21
Sample Port:									Z2
Sample Preparation:		Total	Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster	Lancaster	C&T	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		02/22/2008	02/27/2008	02/27/2008	05/20/2008	11/03/2008	08/11/2008	11/21/2008	02/05/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								
Antimony	0.006		0.0003 U		0.0006 U	0.0003 U	0.0003 U	0.0003 U	0.00054 J
Arsenic	0.01		0.0026		0.0016 J	0.00095 U	0.00095 U	0.00095 U	0.0117
Barium	1		0.0626		0.0569	0.0565	0.0809	0.0799	0.0292
Beryllium	0.004		0.000052 U		0.0001 U	0.00013 U	0.00013 U	0.00013 U	0.000052 U
Boron	1 NL								
Cadmium	0.005		0.000099 U		0.0002 U	0.00021 U	0.00021 U	0.00021 U	0.000099 U
Chromium	0.05		0.0006 U		0.0012 U	0.00068 U	0.00068 U	0.00068 U	0.0006 U
Cobalt	NA		0.0021 U		0.0021 U				
Copper	1.3 RAL		0.0033		0.0024	0.004	0.0043	0.0048	0.003
Cyanide	0.15								
Hexavalent Chromium	0.05		0.0001 U	0.0001 U	0.0015 U				
Iron	0.30 SMCL		0.0522 U		0.0522 U				
Lead	0.015 RAL		0.00085 J		0.00084 J	0.00064 J	0.0018	0.0017	0.0023
Magnesium	NA								
Manganese	0.5 NL		0.00084 U		0.00084 U	0.00084 U	0.0018 J	0.0073	0.0068
Mercury	0.002		0.000056 U		0.000056 U				
Molybdenum	NA		0.0046 U		0.008 J	0.0049 U	0.0049 U	0.0049 U	0.0046 U
Nickel	0.1		0.014		0.0011 J	0.0014 J	0.0017 J	0.0017 J	0.0028
Potassium	NA	5.9							
Selenium	0.05		0.001 J		0.002 U	0.0003 U	0.00094 J	0.0013 J	0.0016 J
Silver	0.1 SMCL		0.000037 U		0.000074 U	0.000037 U	0.000037 U	0.000037 U	0.000031 U
Strontium	NA								
Thallium	0.002		0.00015 U		0.0003 U	0.00015 U	0.00015 U	0.00015 U	0.000037 U
Tin	NA								
Vanadium	0.05 NL		0.0045 J		0.0029 J	0.0035 J	0.0025 U	0.0025 U	0.0016 J
Zinc	5 SMCL		0.811		0.844	0.75	0.485	0.459	0.0574
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-21	RD-21	RD-21	RD-22	RD-22	RD-22	RD-22	RD-23
Sample Port:		Z2	Z2	Z3	Z2	Z2	Z2	Z2	Z3
Sample Preparation:		Total	Dissolved	Dissolved	Dissolved	Total	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		02/05/2008	05/01/2008	08/06/2008	02/05/2008	02/05/2008	05/01/2008	08/06/2008	02/06/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								
Antimony	0.006		0.0003 U	0.0003 U	0.0003 U		0.0003 U	0.0003 U	0.0003 UJ
Arsenic	0.01		0.0021	0.0026	0.0007 U		0.0007 U	0.00095 U	0.002
Barium	1		0.04	0.0367	0.0509		0.0482	0.0457	0.0423
Beryllium	0.004		0.000052 U	0.00013 U	0.000065 J		0.000052 U	0.00013 U	0.000052 U
Boron	1 NL								
Cadmium	0.005		0.000099 U	0.00021 U	0.000099 U		0.000099 U	0.00021 U	0.000099 U
Chromium	0.05		0.0006 U	0.00068 U	0.0006 U		0.0006 U	0.00068 U	0.0006 U
Cobalt	NA		0.0021 U	0.0021 U	0.0021 U		0.0021 U	0.0021 U	0.0021 U
Copper	1.3 RAL		0.0031 U	0.002	0.00031 J		0.0011 U	0.00038 U	0.0018 J
Cyanide	0.15					0.005 U			
Hexavalent Chromium	0.05								
Iron	0.30 SMCL		0.0522 U	0.153 J	0.37		0.322	0.313	0.0522 U
Lead	0.015 RAL		0.0035	0.00049 J	0.000081 J		0.00005 U	0.00005 U	0.00017 J
Magnesium	NA								
Manganese	0.5 NL		0.0027 J	0.012	0.0309		0.0296	0.0308	0.0067
Mercury	0.002		0.000056 U	0.000056 U	0.000056 U		0.000056 U	0.000056 U	0.000074 U
Molybdenum	NA		0.0046 U	0.0049 U	0.0046 U		0.0046 U	0.0049 U	0.0047 J
Nickel	0.1		0.0005 U	0.0017 J	0.00057 J		0.0005 U	0.0005 U	0.0016 J
Potassium	NA	3.57				5.37			
Selenium	0.05		0.0024	0.0003 U	0.00069 U		0.00035 U	0.0003 U	0.00055 J
Silver	0.1 SMCL		0.000037 U	0.000037 U	0.000031 U		0.000037 U	0.000037 U	0.000031 U
Strontium	NA								
Thallium	0.002		0.00015 U	0.00015 U	0.000037 U		0.00015 U	0.00015 U	0.000037 U
Tin	NA								
Vanadium	0.05 NL		0.0015 U	0.0025 U	0.0015 U		0.0015 U	0.0025 U	0.0015 U
Zinc	5 SMCL		0.033	0.0126 J	0.0081 U		0.0192 J	0.0081 U	0.0312
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-23	RD-23	RD-23	RD-24	RD-27	RD-27	RD-27
Sample Port:		Z3	Z3	Z2				
Sample Preparation:		Total	Dissolved	Dissolved	Total	Total	Dissolved	Dissolved
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster						
Collection Date:		02/06/2008	05/01/2008	08/07/2008	02/13/2008	03/05/2008	09/04/2008	11/13/2008
Analyte (mg/L)	MCL							
Aluminum	0.2 SMCL							
Antimony	0.006		0.0003 U	0.001			0.0003 U	0.0003 U
Arsenic	0.01		0.002	0.0013 J			0.00095 U	0.00095 U
Barium	1		0.0312	0.0305			0.084	0.0769
Beryllium	0.004		0.000052 U	0.00013 U			0.00013 U	0.00013 U
Boron	1 NL							
Cadmium	0.005		0.000099 U	0.00021 U			0.00021 U	0.00021 U
Chromium	0.05		0.0006 U	0.00068 U			0.00068 U	0.00068 U
Cobalt	NA		0.0021 U	0.0021 U			0.0021 U	0.0021 U
Copper	1.3 RAL		0.0019 U	0.0014 J			0.00075 J	0.00038 U
Cyanide	0.15							
Hexavalent Chromium	0.05							
Iron	0.30 SMCL		0.0522 U	0.0522 U			0.0522 U	0.0522 U
Lead	0.015 RAL		0.00018 J	0.0071			0.0023	0.00025 J
Magnesium	NA							
Manganese	0.5 NL		0.0059	0.00084 U			0.0097	0.0099
Mercury	0.002		0.000056 U	0.000056 U			0.000056 U	0.000056 U
Molybdenum	NA		0.0046 U	0.0049 U			0.0049 U	0.0049 U
Nickel	0.1		0.0014 J	0.0034			0.0005 U	0.0005 U
Potassium	NA	2.64			3.31	3.33		
Selenium	0.05		0.00035 U	0.0003 U			0.0003 U	0.0003 U
Silver	0.1 SMCL		0.000037 U	0.000037 U			0.000037 U	0.000037 U
Strontium	NA							
Thallium	0.002		0.00015 U	0.00015 U			0.00015 U	0.00015 U
Tin	NA							
Vanadium	0.05 NL		0.0015 U	0.0025 U			0.0025 U	0.0025 U
Zinc	5 SMCL		0.0174 J	0.384			0.129	0.104
Zirconium	NA						0.01 U	0.01 U

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-29	RD-30	RD-30	RD-30	RD-33A	RD-33A	RD-33A	RD-33A
Sample Port:						Z2	Z2	Z6	Z2
Sample Preparation:		Total	Total	Dissolved	Dissolved	Dissolved	Total	Dissolved	Dissolved
Sample Type:		Primary	Primary						
Geological Unit:		Chatsworth	Chatsworth						
Lab Name:		Lancaster	Lancaster						
Collection Date:		02/05/2008	02/06/2008	08/13/2008	11/14/2008	02/07/2008	02/07/2008	05/20/2008	08/08/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								
Antimony	0.006			0.0003 U	0.0003 U	0.0003 UJ		0.0006 U	0.0003 U
Arsenic	0.01			0.00095 U	0.00095 U	0.0013 J		0.0021 J	0.0014 J
Barium	1			0.0421	0.0408	0.0468		0.0439	0.0442
Beryllium	0.004			0.00086	0.00013 U	0.000052 U		0.0001 U	0.00013 U
Boron	1 NL								
Cadmium	0.005			0.00021 U	0.00021 U	0.000099 U		0.0002 U	0.00021 U
Chromium	0.05			0.00068 U	0.00068 U	0.0006 U		0.0012 U	0.00068 U
Cobalt	NA			0.0021 U	0.0021 U	0.0021 U		0.0021 U	0.0021 U
Copper	1.3 RAL			0.0014 J	0.0019 J	0.00063 J		0.00076 U	0.0004 J
Cyanide	0.15						0.005 U		
Hexavalent Chromium	0.05								
Iron	0.30 SMCL			0.51	0.0522 U	0.0522 U		0.0522 U	0.0522 U
Lead	0.015 RAL			0.00018 J	0.00042 J	0.00013 J		0.0001 U	0.00005 U
Magnesium	NA								
Manganese	0.5 NL			0.101	0.0332	0.0146		0.012	0.0142
Mercury	0.002			0.000056 U	0.000056 U	0.000067 U		0.000056 U	0.000056 U
Molybdenum	NA			0.0049 U	0.0049 U	0.0046 U		0.0046 U	0.0049 U
Nickel	0.1			0.0012 J	0.0013 J	0.0005 U		0.001 U	0.0026
Potassium	NA	3.8	3.92				3.34		
Selenium	0.05			0.0013 J	0.0014 J	0.00083 J		0.002 U	0.0019 J
Silver	0.1 SMCL			0.0015 J	0.00014 U	0.00003 U		0.0002 U	0.00013 U
Strontium	NA NA			0.00013 3	0.000037 0	0.000031 0		0.000074 0	0.000037 0
Thallium	0.002			0.00015 U	0.00015 U	0.000037 U		0.0003 U	0.00015 U
Tin	0.002 NA			0.00013 0	0.00013 0	0.000037 0		0.0003 0	0.00013 0
Vanadium	0.05 NL			0.0025 U	0.0025 U	0.0015 U		0.0015 U	0.0025 U
Zinc	5 SMCL			0.025	0.0307	0.0013 U		0.0013 U 0.0124 J	0.0023 U
Zirconium	NA			0.020	0.0007 				

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-33B	RD-33B	RD-33B	RD-33B	RD-33B	RD-33C	RD-33C	RD-34A
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		02/13/2008	02/13/2008	05/16/2008	08/07/2008	11/10/2008	02/12/2008	02/12/2008	02/06/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								0.0802 U
Antimony	0.006	0.0003 U		0.0003 U	0.0003 U	0.0003 U	0.0003 U		0.0003 UJ
Arsenic	0.01	0.0007 U		0.00099 J	0.00095 U	0.00095 U	0.0007 U		0.0007 U
Barium	1	0.0716		0.085	0.0539	0.0716	0.0881		0.0345
Beryllium	0.004	0.000052 U		0.000052 U	0.00013 U	0.00013 U	0.000052 U		0.000052 U
Boron	1 NL								0.201
Cadmium	0.005	0.000099 U		0.000099 U	0.00021 U	0.00021 U	0.000099 U		0.000099 U
Chromium	0.05	0.0006 U		0.0006 U	0.00068 U	0.00068 U	0.0006 U		0.0006 U
Cobalt	NA	0.0021 U		0.0021 U	0.0021 U	0.0021 U	0.0021 U		0.0021 U
Copper	1.3 RAL	0.00075 J		0.00081 J	0.00086 J	0.00038 U	0.00081 J		0.0044 J
Cyanide	0.15		0.005 U					0.005 U	
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.687		1.32	0.589	1.46	0.303		0.0712 J
Lead	0.015 RAL	0.00042 J		0.00032 J	0.0011	0.00047 J	0.0034		0.00083 J
Magnesium	NA								41.7
Manganese	0.5 NL	0.121		0.143	0.121	0.118	0.0469		0.0156
Mercury	0.002	0.000056 U		0.000056 U	0.000056 U	0.000056 U	0.000077 J		0.000081 U
Molybdenum	NA	0.0046 U		0.0046 U	0.0049 U	0.0049 U	0.0046 U		0.0046 U
Nickel	0.1	0.0007 J		0.0012 J	0.0005 U	0.00098 J	0.0005 U		0.0021 J
Potassium	NA		3.94					3.21	
Selenium	0.05	0.00078 U		0.0029	0.0003 U	0.0003 U	0.00053 U		0.0018 J
Silver	0.1 SMCL	0.000031 U		0.000037 U	0.000037 U	0.000037 U	0.000031 U		0.000031 U
Strontium	NA								0.313
Thallium	0.002	0.000037 U		0.00015 U	0.00015 U	0.00015 U	0.000037 U		0.000037 U
Tin	NA								0.0084 U
Vanadium	0.05 NL	0.0015 U		0.0015 U	0.0025 U	0.0025 U	0.0015 U		0.0015 U
Zinc	5 SMCL	0.431		0.527	0.871	0.453	0.457		0.604
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-34A	RD-34A	RD-34A	RD-34B	RD-34B	RD-34C	RD-34C	RD-46A
Sample Port:									
Sample Preparation:		Total	Dissolved	Dissolved	Dissolved	Total	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		02/06/2008	05/16/2008	08/07/2008	02/06/2008	02/06/2008	02/12/2008	02/12/2008	03/12/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.0802 U					0.0802 U
Antimony	0.006	0.0003 UJ	0.0003 U	0.0003 U	0.0003 UJ		0.0003 U		0.0003 U
Arsenic	0.01	0.0007 U	0.0014 J	0.00095 U	0.0007 U		0.0007 U		0.0009 J
Barium	1	0.0375	0.036	0.0337	0.0891		0.0675		0.0302
Beryllium	0.004	0.00007 J	0.000052 U	0.00013 U	0.000069 J		0.000052 U		0.000052 U
Boron	1 NL	0.206	0.213	0.189					0.114
Cadmium	0.005	0.0002 J	0.000099 U	0.00021 U	0.000099 U		0.000099 U		0.000099 U
Chromium	0.05	0.002 J	0.0006 U	0.00091 J	0.0006 U		0.0006 U		0.0006 U
Cobalt	NA	0.0021 U	0.0021 U	0.0021 U	0.0021 U		0.0021 U		0.0021 U
Copper	1.3 RAL	0.0924 J	0.0044	0.0011 J	0.0019 J		0.00065 J		0.00074 J
Cyanide	0.15	0.005 U				0.005 U		0.005 U	
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	4.06	0.124 J	0.0522 U	0.613		0.232		0.336
Lead	0.015 RAL	0.0151	0.00054 J	0.00022 J	0.0057 J		0.00022 J		0.00025 J
Magnesium	NA	42.8	42.6	45.1					35.6
Manganese	0.5 NL	0.0267	0.0164	0.0035 J	0.0886		0.0146		0.0245
Mercury	0.002	0.000067 U	0.000056 U	0.000056 U	0.000056 U		0.000056 U		0.000056 U
Molybdenum	NA	0.0046 U	0.0046 U	0.0049 U	0.0046 U		0.0046 U		0.0046 U
Nickel	0.1	0.0041 J	0.0074	0.0065	0.001 J		0.0005 U		0.00075 J
Potassium	NA	4.54				3.67		3.05	
Selenium	0.05	0.0018 J	0.0056	0.0036	0.00062 J		0.00053 U		0.0031
Silver	0.1 SMCL	0.000031 U	0.000037 U	0.000037 U	0.000031 U		0.000031 U		0.000037 U
Strontium	NA	0.318	0.31	0.292					0.264
Thallium	0.002	0.000037 U	0.00015 U	0.00015 U	0.000037 U		0.000037 U		0.00015 U
Tin	NA	0.0084 U	0.0084 U	0.0088 U					0.0084 U
Vanadium	0.05 NL	0.0004 J	0.0004 U	0.0025 U	0.0015 U		0.0015 U		0.0004 U
Zinc	5 SMCL	1.33	0.176	0.103	0.623		0.0678		0.307
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-46A	RD-46A	RD-46A	RD-49A	RD-49A	RD-49A	RD-49A	RD-50
Sample Port:									Z2
Sample Preparation:		Total	Dissolved	Dissolved	Dissolved	Total	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		03/12/2008	05/14/2008	09/03/2008	03/11/2008	03/11/2008	05/14/2008	05/14/2008	02/05/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.19 J	0.0802 U	0.0802 U	0.0802 U	0.0802 U	
Antimony	0.006	0.0003 U	0.0015 U	0.0003 U	0.0003 U	0.0003 U	0.0015 U	0.0015 U	0.00046 J
Arsenic	0.01	0.00081 J	0.0035 U	0.00095 U	0.0007 U	0.0007 U	0.0035 U	0.0035 U	0.0075
Barium	1	0.0318	0.0303	0.0286	0.0205	0.0212	0.0175	0.0174	0.065
Beryllium	0.004	0.000052 U	0.000052 U	0.00013 U	0.000052 U	0.000076 U	0.000052 U	0.000052 U	0.000052 U
Boron	1 NL	0.116	0.107	0.112	0.272	0.267	0.253	0.251	
Cadmium	0.005	0.000099 U	0.0005 U	0.00021 U	0.000099 U	0.000099 U	0.0005 U	0.0005 U	0.000099 U
Chromium	0.05	0.0006 U	0.003 U	0.00068 U	0.0006 U	0.0006 U	0.003 U	0.003 U	0.0006 U
Cobalt	NA	0.0021 U	0.0021 U	0.0021 U	0.0032 J	0.0027 J	0.0021 U	0.0021 U	0.0021 U
Copper	1.3 RAL	0.0391	0.0019 U	0.002 J	0.0021	0.0219	0.0106	0.0195	0.0059
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.794	0.355	1.59	5.62	7.33	0.0522 U	0.771	0.0522 U
Lead	0.015 RAL	0.002	0.00026 J	0.0017	0.0018	0.007	0.0045	0.0066	0.00029 J
Magnesium	NA	37	34.8	37.7	104	103	89.1	95.2	
Manganese	0.5 NL	0.0269	0.0241	0.0442	0.746	0.737	0.451	0.462	0.0215
Mercury	0.002	0.000056 U							
Molybdenum	NA	0.0046 U	0.0046 U	0.0049 U	0.0046 U				
Nickel	0.1	0.0011 J	0.0025 U	0.0005 U	0.0118	0.0144	0.0033 J	0.0028 J	0.00082 J
Potassium	NA								
Selenium	0.05	0.0029	0.005 U	0.0003 U	0.0023	0.0024	0.005 U	0.005 U	0.0027 J
Silver	0.1 SMCL	0.000037 U	0.00019 U	0.000037 U	0.000037 U	0.000037 U	0.00019 U	0.00019 U	0.000031 U
Strontium	NA	0.276	0.263	0.275	1.13	1.13	0.897	0.898	
Thallium	0.002	0.00015 U	0.000037 U						
Tin	NA	0.0084 U	0.0084 U	0.0088 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	
Vanadium	0.05 NL	0.0015 U	0.0015 U	0.0025 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0024 J
Zinc	5 SMCL	0.372	0.245	0.3	0.117	0.139	0.0624	0.066	0.219
Zirconium	NA								

TABLE VII SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-50	RD-54A	RD-54A	RD-54A	RD-54A	RD-54B	RD-54B	RD-54B
Sample Port:		Z2	Z2	Z2	Z2	Z2			
Sample Preparation:		Dissolved	Dissolved	Total	Dissolved	Dissolved	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		05/01/2008	02/06/2008	02/06/2008	05/01/2008	08/07/2008	02/14/2008	02/14/2008	11/07/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								
Antimony	0.006	0.00046 J	0.0003 UJ		0.0003 U	0.0003 U	0.0003 U		0.0003 U
Arsenic	0.01	0.0064	0.0055 J		0.0048	0.0044	0.0007 U		0.00095 U
Barium	1	0.0561	0.0423		0.0414	0.0381	0.0419		0.0507
Beryllium	0.004	0.000052 U	0.000052 U		0.000052 U	0.00013 U	0.000052 U		0.00013 U
Boron	1 NL								
Cadmium	0.005	0.000099 U	0.000099 U		0.000099 U	0.00021 U	0.000099 U		0.00021 U
Chromium	0.05	0.0006 U	0.0006 U		0.0006 U	0.00068 U	0.0006 U		0.00068 U
Cobalt	NA	0.0021 U	0.0021 U		0.0021 U	0.0021 U	0.0021 U		0.0021 U
Copper	1.3 RAL	0.0021 U	0.00032 J		0.0024 U	0.00038 U	0.0016		0.00081 J
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U	0.0522 U		0.1 J	0.186 J	1.47		3.11
Lead	0.015 RAL	0.0013	0.00019 J		0.00038 J	0.00005 U	0.00041 J		0.0006 J
Magnesium	NA								
Manganese	0.5 NL	0.0191	0.105		0.131	0.162	0.0822		0.126
Mercury	0.002	0.000056 U	0.000056 U		0.000056 U	0.000056 U	0.000056 U		0.000056 U
Molybdenum	NA	0.0046 U	0.0046 U		0.0046 U	0.0049 U	0.0046 U		0.0049 U
Nickel	0.1	0.0005 U	0.0015 J		0.0014 J	0.0008 J	0.0005 U		0.0005 U
Potassium	NA			3.18				3.69	
Selenium	0.05	0.0022	0.00078 J		0.00035 U	0.0003 U	0.001 J		0.0003 U
Silver	0.1 SMCL	0.000037 U	0.000031 U		0.000037 U	0.000037 U	0.000031 U		0.000037 U
Strontium	NA								
Thallium	0.002	0.00015 U	0.000037 U		0.00015 U	0.00015 U	0.000037 U		0.00015 U
Tin	NA								
Vanadium	0.05 NL	0.0024 J	0.0015 U		0.0015 U	0.0025 U	0.0015 U		0.0025 U
Zinc	5 SMCL	0.188	0.0188 J		0.0936	0.0094 J	1.34		1.16
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-54C	RD-54C	RD-54C	RD-54C	RD-55A	RD-55A	RD-55A	RD-55A
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Dissolved	Total	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		02/14/2008	02/14/2008	05/16/2008	08/07/2008	02/25/2008	02/25/2008	05/06/2008	08/26/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL					0.0802 U	0.0802 U	0.0802 U	0.124 J
Antimony	0.006	0.0003 U		0.0003 U	0.0003 U	0.0015 U	0.0015 U	0.0003 U	0.00048 J
Arsenic	0.01	0.0007 U		0.0021	0.00095 U	0.0035 U	0.0035 U	0.0007 U	0.00097 J
Barium	1	0.0301		0.0714	0.0379	0.0545	0.0562	0.0397	0.0439
Beryllium	0.004	0.000052 U		0.000052 U	0.00013 U	0.00043 U	0.00056 U	0.000052 U	0.00013 U
Boron	1 NL					0.0542	0.0533	0.0523	0.0536
Cadmium	0.005	0.000099 U		0.000099 U	0.00021 U	0.0005 U	0.0005 U	0.000099 U	0.00021 U
Chromium	0.05	0.0006 U		0.0006 U	0.00068 U	0.003 U	0.003 U	0.0006 U	0.0082
Cobalt	NA	0.0021 U		0.0021 U					
Copper	1.3 RAL	0.0014		0.00092 J	0.00038 U	0.0019 U	0.025	0.0016	0.133
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.304		1.51	1.41	0.0522 U	0.84	0.0522 U	2.76
Lead	0.015 RAL	0.00069 J		0.00051 J	0.000098 J	0.00085 J	0.0018 J	0.0002 J	0.0401
Magnesium	NA					19.3	18.7	17.3	16.8
Manganese	0.5 NL	0.114		0.241	0.237	0.0351	0.0476	0.0094	0.274
Mercury	0.002	0.000056 U		0.000056 U					
Molybdenum	NA	0.0046 U		0.0051 J	0.0049 U	0.0046 U	0.0046 U	0.0046 U	0.0049 U
Nickel	0.1	0.0005 U		0.0013 J	0.00075 J	0.0025 U	0.0025 U	0.0016 J	0.0055
Potassium	NA		4.37						
Selenium	0.05	0.00078 U		0.0044	0.0003 U	0.005 U	0.005 U	0.0021	0.00095 J
Silver	0.1 SMCL	0.000031 U		0.000037 U	0.000037 U	0.00019 U	0.00019 U	0.000037 U	0.000051 J
Strontium	NA					0.515	0.502	0.431	0.422
Thallium	0.002	0.000037 U		0.00015 U	0.00015 U	0.00075 U	0.00075 U	0.00015 U	0.00015 U
Tin	NA					0.0084 U	0.0084 U	0.0084 U	0.0088 U
Vanadium	0.05 NL	0.0015 U		0.0015 U	0.0025 U	0.0015 U	0.0015 U	0.0015 U	0.0025 U
Zinc	5 SMCL	0.374		1.49	0.704	0.021	0.0382	0.0211	0.705
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-57	RD-57	RD-57	RD-57	RD-57	RD-59A	RD-59A	RD-59A
Sample Port:		Z8	Z8	Z6	Z 5	Z 7			
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		02/07/2008	02/07/2008	05/20/2008	08/08/2008	11/11/2008	05/20/2008	05/20/2008	08/14/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL								
Antimony	0.006	0.0003 UJ		0.0006 U	0.0039	0.0003 U	0.0006 U		0.0003 U
Arsenic	0.01	0.0011 J		0.0017 J	0.142	0.00095 U	0.0015 J		0.0018 J
Barium	1	0.0656		0.0483	0.0293	0.0353	0.0499		0.0512
Beryllium	0.004	0.000052 U		0.0001 U	0.00013 U	0.00013 U	0.0001 U		0.0012
Boron	1 NL								
Cadmium	0.005	0.000099 U		0.0002 U	0.00021 U	0.00021 U	0.0002 U		0.00021 U
Chromium	0.05	0.0006 U		0.0012 U	0.0023	0.00068 U	0.0013 J		0.00068 U
Cobalt	NA	0.0021 U		0.0021 U	0.0021 U	0.0021 U	0.0021 U		0.0021 U
Copper	1.3 RAL	0.00046 J		0.00076 U	0.00066 J	0.0136	0.0019 J		0.0026
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0522 U		0.0522 U	1.07	0.0522 U	0.0522 U		0.0522 U
Lead	0.015 RAL	0.00011 J		0.0001 U	0.00005 U	0.004	0.0011 J		0.0011
Magnesium	NA						27.4		
Manganese	0.5 NL	0.0606		0.0432	0.0993	0.0041 J	0.3		0.362
Mercury	0.002	0.000073 U		0.000056 U	0.000056 U	0.000056 U	0.000056 U		0.000056 U
Molybdenum	NA	0.0046 U		0.0046 U	0.0049 U	0.0049 U	0.0046 U		0.0083 J
Nickel	0.1	0.00074 J		0.001 U	0.0037	0.0015 J	0.0025 J		0.0018 J
Potassium	NA		3				4.15	3.96	
Selenium	0.05	0.00053 U		0.002 U	0.0024	0.0003 U	0.002 U		0.0003 U
Silver	0.1 SMCL	0.000031 U		0.000074 U	0.000037 U	0.000037 U	0.000074 U		0.000037 U
Strontium	NA								
Thallium	0.002	0.000037 U		0.0003 U	0.00015 U	0.00015 U	0.0003 U		0.00015 U
Tin	NA								
Vanadium	0.05 NL	0.0015 U		0.0015 U	0.0025 U	0.0025 U	0.0015 U		0.0025 U
Zinc	5 SMCL	0.0081 U		0.0081 U	0.0081 U	0.0439	0.0289		0.0371
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-59B	RD-59B	RD-59B	RD-59C	RD-59C	RD-59C	RD-60	RD-60
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Total	Dissolved	Dissolved	Total
Sample Type:		Primary	Primary						
Geological Unit:		Chatsworth	Chatsworth						
Lab Name:		Lancaster	Lancaster						
Collection Date:		05/20/2008	05/20/2008	08/14/2008	05/20/2008	05/20/2008	08/14/2008	02/18/2008	02/18/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL							0.0802 U	0.0802 U
Antimony	0.006	0.0006 U		0.0003 U	0.0006 U		0.0003 U	0.0003 U	0.0003 U
Arsenic	0.01	0.0014 U		0.00098 J	0.0014 U		0.00095 U	0.0007 U	0.0007 U
Barium	1	0.0391		0.0402	0.0441		0.0478	0.0301	0.03
Beryllium	0.004	0.0001 U		0.0008	0.0001 U		0.00097	0.000087 J	0.000067 J
Boron	1 NL							0.111	0.113
Cadmium	0.005	0.0002 U		0.00021 U	0.0002 U		0.00021 U	0.000099 U	0.000099 U
Chromium	0.05	0.0012 U		0.00068 U	0.0012 U		0.00068 U	0.001 J	0.0006 U
Cobalt	NA	0.0021 U		0.0021 U	0.0021 U		0.0021 U	0.0021 U	0.0021 U
Copper	1.3 RAL	0.00076 U		0.00038 U	0.0016 J		0.0023	0.0504	0.0116
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0727 J		0.0522 U	0.0522 U		0.0522 U	6.51	4.87
Lead	0.015 RAL	0.0006 J		0.00024 J	0.00043 J		0.00076 J	0.0068	0.0002 J
Magnesium	NA	16.1			12.2			94.9	96.4
Manganese	0.5 NL	0.0237		0.0241	0.0173		0.0182	0.167	0.163
Mercury	0.002	0.000056 U		0.000056 U	0.000056 U		0.000056 U	0.000056 U	0.000056 U
Molybdenum	NA	0.0046 U		0.0049 U	0.0046 U		0.0049 U	0.0046 U	0.0046 U
Nickel	0.1	0.001 U		0.0005 U	0.001 U		0.0005 U	0.0045	0.0040
Potassium	NA	3.02	2.92		2.27	2.26			
Selenium	0.05	0.002 U		0.0003 U	0.002 U		0.0003 U	0.0036	0.0038
Silver	0.03 0.1 SMCL	0.0002 U		0.0003 U	0.0002 U		0.0003 U	0.00007 U	0.00037 U
Strontium	NA	0.000074 0		0.000037 0	0.000074 0		0.000037 0	0.565	0.563
Thallium	0.002	0.0003 U		0.00015 U	0.0003 U		0.00015 U	0.000037 U	0.00037 U
Tin	0.002 NA	0.0003 0		0.00015 0	0.0003 0		0.00015 0	0.000037 U 0.0084 U	0.000037 U 0.0084 U
Vanadium	0.05 NL	0.0015 U		0.0025 U	0.0015 U		0.0025 U	0.0084 U	0.0004 U
Zinc	5 SMCL	0.0013 U		0.0023 U	0.0013 U		0.0023 U	2.8	2.32
Zirconium	NA	0.0001 0		0.0001 O	0.0001 0		0.0001 0	2.0	2.02

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-60	RD-60	RD-63	RD-64	RD-67	RD-67	RD-67	RD-67
Sample Port:					Z 7				
Sample Preparation:		Dissolved	Dissolved	Total	Total	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		05/01/2008	08/13/2008	02/06/2008	02/06/2008	03/06/2008	05/19/2008	09/03/2008	11/19/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U						
Antimony	0.006	0.0003 U	0.0003 U						
Arsenic	0.01	0.0007 U	0.0013 J						
Barium	1	0.0226	0.0219						
Beryllium	0.004	0.000052 U	0.0021						
Boron	1 NL	0.155	0.152						
Cadmium	0.005	0.000099 U	0.00021 U						
Chromium	0.05	0.0006 U	0.00068 U						
Cobalt	NA	0.0021 U	0.0021 U						
Copper	1.3 RAL	0.0028 U	0.0079						
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.317	0.0851 J			0.72	0.47	1.38	0.222
Lead	0.015 RAL	0.0007 J	0.0012						
Magnesium	NA	84.1	73.9						
Manganese	0.5 NL	0.0419	0.0255			0.0771	0.0563	0.106	0.0483
Mercury	0.002	0.000056 U	0.000056 U						
Molybdenum	NA	0.0046 U	0.0049 U						
Nickel	0.1	0.0028	0.0031						
Potassium	NA			4.84	4.01				
Selenium	0.05	0.0034	0.0037						
Silver	0.1 SMCL	0.000037 U	0.000037 U						
Strontium	NA	0.482	0.468			0.354	0.312	0.398	0.304
Thallium	0.002	0.00015 U	0.00015 U						
Tin	NA	0.0084 U	0.0088 U						
Vanadium	0.05 NL	0.0015 U	0.0025 U						
Zinc	5 SMCL	1.79	1.19			0.62	0.452	0.0439	0.129
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-73	RD-73	RD-73	RD-73	RD-85	RD-85	RD-85	RD-85
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		02/19/2008	02/19/2008	05/14/2008	09/05/2008	03/12/2008	05/21/2008	09/04/2008	11/18/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.0802 U	0.0802 U				
Antimony	0.006	0.0003 U	0.0003 U	0.0015 U	0.0003 U	0.00062 J	0.0006 U	0.0003 U	0.0003 U
Arsenic	0.01	0.0014 J	0.0015 J	0.0035 U	0.00095 U	0.0013 J	0.0014 U	0.00095 U	0.00095 U
Barium	1	0.0616	0.0605	0.0551	0.0589	0.0314	0.0302	0.0338	0.0263
Beryllium	0.004	0.000052 U	0.000052 U	0.000052 U	0.00013 U	0.000052 U	0.0001 U	0.00013 U	0.00013 U
Boron	1 NL	0.466	0.448	0.705	0.81				
Cadmium	0.005	0.000099 U	0.000099 U	0.0005 U	0.00021 U	0.000099 U	0.0002 U	0.00021 U	0.00021 U
Chromium	0.05	0.0006 U	0.0006 U	0.003 U	0.00068 U	0.0006 U	0.0012 U	0.00068 U	0.00068 U
Cobalt	NA	0.0021 U							
Copper	1.3 RAL	0.0036	0.295	0.0085	0.0016 J	0.0016	0.00076 U	0.00097 J	0.0019 J
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL	0.0709 J	0.428	0.0522 U	0.0692 J	0.272	0.0522 U	0.087 J	0.0522 U
Lead	0.015 RAL	0.0019	0.0115	0.0018	0.0008 J	0.000075 J	0.0001 U	0.0001 J	0.00005 U
Magnesium	NA	26.6	26.1	23	25.3				
Manganese	0.5 NL	0.798	0.798	0.646	0.569	0.495	0.0282	1.15	0.0516
Mercury	0.002	0.000056 U	0.000056 U	0.00006 U	0.000056 U	0.000056 U	0.000056 U	0.000056 U	0.000056 U
Molybdenum	NA	0.0046 U	0.0046 U	0.0046 U	0.0049 U	0.0046 U	0.0046 U	0.0049 U	0.0049 U
Nickel	0.1	0.0037	0.0061	0.0037 J	0.0034	0.0073	0.001 J	0.0058	0.0024
Potassium	NA								
Selenium	0.05	0.0052	0.0054	0.005 U	0.00059 J	0.0021	0.002 U	0.0003 U	0.0003 U
Silver	0.1 SMCL	0.000037 U	0.00006 J	0.00019 U	0.000037 U	0.000037 U	0.000074 U	0.000037 U	0.000037 U
Strontium	NA	0.526	0.515	0.472	0.502				
Thallium	0.002	0.000037 U	0.000037 U	0.00015 U	0.00015 U	0.00015 U	0.0003 U	0.00015 U	0.00015 U
Tin	NA	0.0084 U	0.0084 U	0.0084 U	0.0088 U				
Vanadium	0.05 NL	0.0015 U	0.0015 U	0.0015 U	0.0025 U	0.0015 U	0.0015 U	0.0025 U	0.0025 U
Zinc	5 SMCL	0.738	0.889	0.902	1.19	0.0103 J	0.0081 U	0.0081 U	0.0081 U
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-86	RD-86	RD-86	RD-86	RD-86	RD-86	RD-92	RD-92
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Total	Dissolved	Dissolved	Dissolved	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		03/06/2008	03/06/2008	05/05/2008	05/05/2008	09/08/2008	11/21/2008	03/05/2008	11/20/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U							
Antimony	0.006	0.0003 U	0.0003 U	0.00045 J	0.0003 U				
Arsenic	0.01	0.001 J	0.0011 J	0.00074 J	0.00081 J	0.00095 U	0.00095 U	0.0007 U	0.00095 U
Barium	1	0.0375	0.0359	0.04	0.0408	0.0319	0.032	0.0399	0.0383
Beryllium	0.004	0.000052 U	0.000052 U	0.000052 U	0.000052 U	0.00013 U	0.00013 U	0.000052 U	0.00013 U
Boron	1 NL	0.116	0.116	0.124	0.131	0.116			
Cadmium	0.005	0.000099 U	0.000099 U	0.000099 U	0.000099 U	0.00021 U	0.00021 U	0.000099 U	0.00021 U
Chromium	0.05	0.0006 U	0.0006 U	0.0006 U	0.0006 U	0.00068 U	0.00068 U	0.0006 U	0.00068 U
Cobalt	NA	0.0021 U	0.0021 U	0.0021 U	0.0021 U	0.00092 U	0.0021 U	0.0021 U	0.0021 U
Copper	1.3 RAL	0.0066	0.0196	0.0051	0.033	0.0104	0.0046	0.0022	0.00038 U
Cyanide	0.15								
Hexavalent Chromium	0.05	0.0001 U	0.0001 U						
Iron	0.30 SMCL	0.186 J	0.344	0.0981 J	0.223	0.185 J	0.863	0.0522 U	0.0522 U
Lead	0.015 RAL	0.0019	0.0024	0.0014	0.0034	0.0009 J	0.00005 U	0.0012	0.00005 U
Magnesium	NA	26.3	25.9	27.3	28.3	28.5			
Manganese	0.5 NL	0.0773	0.0549	0.0782	0.0764	0.0061	0.0098	0.0027 J	0.0025 J
Mercury	0.002	0.000056 U							
Molybdenum	NA	0.0046 U	0.0046 U	0.0046 U	0.0046 U	0.0012 J	0.0049 U	0.0046 U	0.0049 U
Nickel	0.1	0.0131	0.0118	0.0096	0.0099	0.0049	0.0041	0.0026	0.0005 U
Potassium	NA								
Selenium	0.05	0.0015 J	0.0014 J	0.00041 J	0.00036 J	0.00052 J	0.0005 J	0.0017 J	0.0003 U
Silver	0.1 SMCL	0.000037 U	0.000037 U	0.000037 U	0.000037 U	0.00014 J	0.000037 U	0.000037 U	0.000037 U
Strontium	NA	0.399	0.392	0.422	0.435	0.364			
Thallium	0.002	0.00015 U							
Tin	NA	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0088 U			
Vanadium	0.05 NL	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0025 U	0.0025 U	0.0019 J	0.0029 J
Zinc	5 SMCL	0.0275	0.0297	0.023	0.0454	0.163	0.0934	0.0771	0.0915
Zirconium	NA								

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-98	RD-98	RD-98	RD-98	RD-98	WS-09	WS-09	WS-09
Sample Port:									
Sample Preparation:		Dissolved	Total	Dissolved	Total	Dissolved	Dissolved	Total	Dissolved
Sample Type:		Primary							
Geological Unit:		Chatsworth							
Lab Name:		Lancaster							
Collection Date:		06/26/2008	06/26/2008	09/11/2008	09/11/2008	11/14/2008	02/26/2008	02/26/2008	05/08/2008
Analyte (mg/L)	MCL								
Aluminum	0.2 SMCL	0.0802 U	0.152 J			0.0802 U	0.0802 U	0.0802 U	0.0802 U
Antimony	0.006	0.0003 U							
Arsenic	0.01	0.00095 U	0.00098 J	0.0014 J	0.00095 J				
Barium	1	0.0424	0.0442	0.0417	0.0424	0.041	0.0381	0.0382	0.0349
Beryllium	0.004	0.00013 U	0.000052 J	0.00006 J	0.000052 U				
Boron	1 NL	0.08	0.0813			0.0663	0.0297 J	0.028 J	0.0314 J
Cadmium	0.005	0.00021 U	0.000099 U	0.000099 U	0.000099 U				
Chromium	0.05	0.00068 U	0.0006 U	0.0006 U	0.0006 U				
Cobalt	NA	0.0021 U							
Copper	1.3 RAL	0.00094 J	0.0015	0.00056 J	0.003	0.0068	0.0014	0.0205	0.00068 J
Cyanide	0.15								
Hexavalent Chromium	0.05								
Iron	0.30 SMCL			0.0803 J	0.0522 U	0.0522 U	0.404	0.482	0.361
Lead	0.015 RAL	0.00005 U	0.00017 J	0.00012 J	0.00005 U	0.00029 J	0.00043 J	0.002	0.00097 J
Magnesium	NA	14.5	15.1	15.1		14.3	41.7	41.5	44.3
Manganese	0.5 NL			0.0073	0.0058	0.0036 J	0.0141	0.0554	0.0142
Mercury	0.002	0.000056 U	0.000056 U	0.000075 U	0.000056 U				
Molybdenum	NA	0.0049 U	0.0095 U	0.0049 U	0.0049 U	0.0049 U	0.0046 U	0.0046 U	0.0046 U
Nickel	0.1	0.0039 J	0.0041 J	0.00082 J	0.00063 J	0.002 J	0.0282	0.0288	0.0012 J
Potassium	NA								
Selenium	0.05	0.0012 J	0.0012 J	0.00047 J	0.00055 J	0.00066 J	0.00099 U	0.00099 U	0.0031
Silver	0.1 SMCL	0.000037 U	0.000051 J	0.000037 U					
Strontium	NA	0.208	0.209			0.198	0.791	0.781	0.762
Thallium	0.002	0.00015 U							
Tin	NA					0.0088 U	0.0084 U	0.0084 U	0.0084 U
Vanadium	0.05 NL	0.0025 U	0.0015 U	0.0015 U	0.0015 U				
Zinc	5 SMCL	0.0098 J	0.0125 J	0.0093 J	0.0157 J	0.016 J	0.103	0.112	0.109
Zirconium	NA	0.01 U	0.01 U			0.01 U			

TABLE VII
SUMMARY OF ANALYSES FOR METALS AND CYANIDE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-09	WS-09A	WS-09A	WS-09A	WS-09A	WS-09A
Sample Port:							
Sample Preparation:		Dissolved	Dissolved	Total	Dissolved	Total	Dissolved
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		08/20/2008	02/29/2008	02/29/2008	05/15/2008	05/15/2008	08/20/2008
Analyte (mg/L)	MCL						
Aluminum	0.2 SMCL	0.0802 U	0.0802 U	0.104 J	0.0802 U	0.0802 U	0.0802 U
Antimony	0.006	0.0003 U	0.0004 J	0.00048 J	0.0003 U	0.0003 U	0.0003 U
Arsenic	0.01	0.00095 U	0.0013 J	0.0014 J	0.0013 J	0.0017 J	0.0015 J
Barium	1	0.0373	0.0351	0.0369	0.0578	0.0619	0.0602
Beryllium	0.004	0.00013 U	0.000066 J	0.000052 U	0.000052 U	0.000052 U	0.00013 U
Boron	1 NL	0.0328 J	0.0778	0.071	0.0992	0.103	0.108
Cadmium	0.005	0.00021 U	0.000099 U	0.000099 U	0.000099 U	0.000099 U	0.00021 U
Chromium	0.05	0.0022	0.0006 U	0.0012 J	0.0006 U	0.00084 J	0.00068 U
Cobalt	NA	0.0021 U					
Copper	1.3 RAL	0.001 J	0.0044	0.0611	0.00092 J	0.0025	0.00045 J
Cyanide	0.15						
Hexavalent Chromium	0.05						
Iron	0.30 SMCL	0.467	0.267	1.27	1.27	2.36	1.97
Lead	0.015 RAL	0.00034 J	0.00083 J	0.0062	0.0004 J	0.001	0.00016 J
Magnesium	NA	44.2	14.9	14.5	21.3	22.1	24.7
Manganese	0.5 NL	0.0408	0.0333	0.0454	0.305	0.321	0.31
Mercury	0.002	0.000056 U					
Molybdenum	NA	0.0049 U	0.0046 U	0.0046 U	0.0046 U	0.0046 U	0.0049 U
Nickel	0.1	0.0062	0.0044	0.0058	0.0024	0.0037	0.002 J
Potassium	NA						
Selenium	0.05	0.0003 U	0.0023	0.002	0.0015 J	0.00099 U	0.0003 U
Silver	0.1 SMCL	0.000037 U	0.000037 U	0.000057 J	0.000037 U	0.000037 U	0.000037 U
Strontium	NA	0.763	0.34	0.341	0.511	0.533	0.573
Thallium	0.002	0.00015 U					
Tin	NA	0.0088 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0088 U
Vanadium	0.05 NL	0.0025 U	0.0024 J	0.0029 J	0.0015 U	0.0015 J	0.0025 U
Zinc	5 SMCL	0.131	0.0167 J	0.21	0.0272	0.0785	0.0081 U
Zirconium	NA						

NOTES AND ABBREVIATIONS

1.	C&T	=	Curtis & Tompkins, Ltd. of Berkeley, California.
2.	Lancaster	=	Lancaster Laboratories of Lancaster, Pennsylvania.
3.	TA-Denver	=	TestAmerica of Arvada, Colorado.
4.	Chatsworth	=	Chatsworth Formation wells.
5.	Shallow	=	Shallow wells and piezometers.
6.	Dissolved	=	Dissolved metals. Dissolved metal samples were filtered using a 0.45 micron filter and preserved in the field.
7.	Total	=	Total metals. Total metal samples were preserved in the field, but were not filtered.
8.		=	Analysis not performed.
9.	mg/L	=	Milligrams per liter.
10.	J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
11.	U	=	Not detected.
12.	UJ	=	Not detected. Estimated detection limit as a result of analytical quality control deficiencies (see Appendix D for details).
13.	MCL	=	Maximum Contaminant Level, California primary drinking water standard.
14.	NA	=	Not available; no MCL promulgated.
15.	SMCL	=	Secondary drinking water MCL.
16	RAL	=	Regulatory Action Level to be met at a customer tap.
17.	NL	=	Advisory California Notification Level for unregulated chemical contaminants.

- 18. MCLs, SMCLs, RALs, and NLs are from the California Department of Public Health (2006, 2007b, 2008).
- 19. Mercury was analyzed by EPA method 7470A.

Aluminum, barium, boron, cobalt, iron, magnesium, manganese, molybdenum, strontium, tin, vanadium, zinc, and zirconium were analyzed by EPA method 6010B. Barium, cobalt, manganese, molybdenum, vanadium, and zinc were analyzed by EPA method 6020 during the second quarter. Hexavalent chromium was analyzed by Curtis & Tompkins Laboratories of Berkeley, California using EPA method 7199 in the first quarter 2008 and EPA method 7196A in the second quarter 2008.

Hexavalent chromium was analyzed by Weck Laboratories of City of Industry, California using EPA method 7199 in the third quarter 2008. Cyanide was analyzed by EPA method 9012A.

All other metals were analyzed by EPA method 6020.

20. Cyanide samples were not filtered.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		ES-21	HAR-11	HAR-14	HAR-14	HAR-14	HAR-15	HAR-15
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster	Lancaster	TA-Denver	Weck	Lancaster	TA-Denver	Weck
Collection Date:		09/04/2008	09/04/2008	04/22/2008	04/22/2008	08/21/2008	04/22/2008	04/22/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U	1 U	0.29 UJ		0.9 U	0.27 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U	1 U			0.9 U		
1,3-Dinitrobenzene	8270C, 8330	2 U	2 U	2.1 UJ		2 U	1.9 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U	1 U	0.3 UJ		0.9 U	0.28 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U	1 U	0.67 UJ		0.9 U	0.61 U	
2,4-Dimethylphenol	8270C	3 U	3 U	0.61 UJ		3 U	0.56 U	
2,4-Dinitrophenol	8270C	19 U	20 U	10 UJ		19 U	9.6 U	
2,4-Dinitrotoluene	8270C, 8330	1 U	1 U	0.23 UJ		0.9 U	0.21 U	
2,6-Dinitrotoluene	8270C, 8330	1 U	1 U	0.34 UJ		0.9 U	0.31 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U	2 U	0.27 UJ		2 U	0.25 U	
2-Chlorophenol	8270C	1 U	1 U	2.1 UJ		0.9 U	1.9 U	
2-Methylnaphthalene	8310			0.3 UJ			0.28 U	
2-Nitrophenol	8270C	1 U	1 U	0.41 UJ		0.9 U	0.37 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U	2 U	2.1 UJ		2 U	1.9 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U	5 U	4.2 UJ		5 U	3.8 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U	1 U	0.45 UJ		0.9 U	0.41 U	
4-Chlorophenylphenyl ether	8270C	2 U	2 U	0.28 UJ		2 U	0.26 U	
4-Nitrophenol	8270C	10 U	10 U	1.3 UJ		9 U	1.2 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U	1 U	0.29 UJ		0.9 U	0.27 U	
Acenaphthylene	8270C, 8310	1 U	1 U	0.51 UJ		0.9 U	0.47 U	
Anthracene	8270C, 8310	1 U	1 U	0.44 UJ		0.9 U	0.4 U	
Benzidine	8270C	19 U	20 U			19 U		
Benzo(a)anthracene	8270C, 8310	1 U	1 U	0.37 UJ		0.9 U	0.34 U	
Benzo(a)pyrene	8270C, 8310	1 U	1 U	0.33 UJ		0.9 U	0.3 U	
Benzo(b)fluoranthene	8270C, 8310	1 U	1 U	0.56 UJ		0.9 U	0.51 U	
Benzo(ghi)perylene	8270C, 8310	1 U	1 U	0.52 UJ		0.9 U	0.48 U	
Benzo(k)fluoranthene	8270C, 8310	1 U	1 U	0.48 UJ		0.9 U	0.44 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		ES-21	HAR-11	HAR-14	HAR-14	HAR-14	HAR-15	HAR-15
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster	Lancaster	TA-Denver	Weck	Lancaster	TA-Denver	Weck
Collection Date:		09/04/2008	09/04/2008	04/22/2008	04/22/2008	08/21/2008	04/22/2008	04/22/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U	1 U	1 UJ		0.9 U	0.93 U	
bis(2-Chloroethyl) ether	8270C	1 U	1 U	0.43 UJ		0.9 U	0.39 U	
bis(2-Chloroisopropyl) ether	8270C	1 U	1 U	0.29 UJ		0.9 U	0.27 U	
bis(2-Ethylhexyl) phthalate	8270C	2 U	2 U	0.83 J		2 U	0.54 U	
Butyl benzyl phthalate	8270C	2 U	2 U	1 UJ		2 U	0.96 U	
Chrysene	8270C, 8310	1 U	1 U	0.57 UJ		0.9 U	0.52 U	
Dibenzo(a,h)anthracene	8270C, 8310	1 U	1 U	0.54 UJ		0.9 U	0.49 U	
Diethyl phthalate	8270C	2 U	2 U	0.4 UJ		2 U	0.36 U	
Dimethyl phthalate	8270C	2 U	2 U	0.22 UJ		2 U	0.2 U	
Di-n-butyl phthalate	8270C	2 U	2 U	1.2 UJ		2 U	1.1 U	
Di-n-octyl phthalate	8270C	2 U	2 U	0.37 UJ		2 U	0.34 U	
Fluoranthene	8270C, 8310	1 U	1 U	0.21 UJ		0.9 U	0.19 U	
Fluorene	8270C, 8310	1 U	1 U	0.33 UJ		0.9 U	0.3 U	
Hexachlorobenzene	8270C	1 U	1 U	0.69 UJ		0.9 U	0.63 U	
Hexachlorobutadiene	8270C	1 U	1 U	0.54 UJ		0.9 U	0.49 U	
Hexachloroethane	8270C	1 U	1 U	0.48 UJ		0.9 U	0.44 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U	1 U	0.68 UJ		0.9 U	0.62 U	
Isophorone	8270C	1 U	1 U	0.22 UJ		0.9 U	0.2 U	
Naphthalene	8270C, 8310	1 U	1 U	0.3 UJ		0.9 U	0.28 U	
Nitrobenzene	8270C, 8330	1 U	1 U	0.85 UJ		0.9 U	0.78 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U	1 U		0.002 U	0.9 U		0.002 U
n-Nitrosodiethylamine	521				0.002 U			0.002 U
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	2 U		0.36	2 U		0.002 U
n-Nitrosodiphenylamine	8270C	2 U	2 U	0.46 UJ		2 U	0.42 U	
p-Chloro-m-cresol	8270C	1 U	1 U	0.94 UJ		0.9 U	0.86 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U	3 U	0.76 UJ		3 U	0.76 U	
PETN	8330							
Phenanthrene	8270C, 8310	1 U	1 U	0.27 UJ		0.9 U	0.25 U	
Phenol	8270C	1 U	1 U	2.1 UJ		0.9 U	1.9 U	
Pyrene	8310			0.39 UJ			0.36 U	
RDX	8330							
sym-Trinitrobenzene	8330			4.2 UJ			3.8 U	
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-15	HAR-15	PZ-001D	PZ-001E	PZ-006A	PZ-006C	PZ-006C
Sample Type:		Duplicate	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Shallow						
Lab Name:		Weck	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		04/22/2008	08/21/2008	05/01/2008	05/01/2008	02/26/2008	02/27/2008	04/30/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U	1 U	1 U			
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U	1 U	1 U			
1,3-Dinitrobenzene	8270C, 8330		2 U	2 U	2 U			
1-Methyl naphthalene	8310					0.48 U	0.48 U	0.25 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U	1 U	1 U			
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U	1 U	1 U			
2,4-Dimethylphenol	8270C		3 U	3 U	3 U			
2,4-Dinitrophenol	8270C		21 U	20 U	19 U			
2,4-Dinitrotoluene	8270C, 8330		1 U	1 U	1 U			
2,6-Dinitrotoluene	8270C, 8330		1 U	1 U	1 U			
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U	2 U	2 U			
2-Chlorophenol	8270C		1 U	1 U	1 U			
2-Methylnaphthalene	8310					0.48 U	0.48 U	0.25 U
2-Nitrophenol	8270C		1 U	1 U	1 U			
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U	2 U	2 U			
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U	5 U	5 U			
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U	1 U	1 U			
4-Chlorophenylphenyl ether	8270C		2 U	2 U	2 U			
4-Nitrophenol	8270C		10 U	10 U	10 U			
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U	1 U	1 U	0.48 U	0.48 U	0.49 U
Acenaphthylene	8270C, 8310		1 U	1 U	1 U	0.48 U	0.48 U	0.98 U
Anthracene	8270C, 8310		1 U	1 Ū	1 U	0.039 U	0.6 U	0.03 U
Benzidine	8270C		21 U	20 U	19 U			
Benzo(a)anthracene	8270C, 8310		1 U	1 U	1 U	0.019 U	0.019 U	0.0098 U
Benzo(a)pyrene	8270C, 8310		1 U	1 U	1 U	0.019 U	0.019 U	0.0098 U
Benzo(b)fluoranthene	8270C, 8310		1 U	1 U	1 U	0.039 U	0.039 U	0.0079 U
Benzo(ghi)perylene	8270C, 8310		1 U	1 U	1 U	0.097 U	0.097 U	0.059 U
Benzo(k)fluoranthene	8270C, 8310		1 U	1 U	1 U	0.019 U	0.019 U	0.0079 U

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-15	HAR-15	PZ-001D	PZ-001E	PZ-006A	PZ-006C	PZ-006C
Sample Type:		Duplicate	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Shallow						
Lab Name:		Weck	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		04/22/2008	08/21/2008	05/01/2008	05/01/2008	02/26/2008	02/27/2008	04/30/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U	1 U	1 U			
bis(2-Chloroethyl) ether	8270C		1 U	1 U	1 U			
bis(2-Chloroisopropyl) ether	8270C		1 U	1 U	1 U			
bis(2-Ethylhexyl) phthalate	8270C		2 U	2 U	2 U			
Butyl benzyl phthalate	8270C		2 U	2 U	2 U			
Chrysene	8270C, 8310		1 U	1 U	1 U	0.077 U	0.078 U	0.039 U
Dibenzo(a,h)anthracene	8270C, 8310		1 U	1 U	1 U	0.039 U	0.039 U	0.02 U
Diethyl phthalate	8270C		2 U	2 U	2 U			
Dimethyl phthalate	8270C		2 U	2 U	2 U			
Di-n-butyl phthalate	8270C		2 U	2 U	2 U			
Di-n-octyl phthalate	8270C		2 U	2 U	2 U			
Fluoranthene	8270C, 8310		1 U	1 U	1 U	0.039 U	0.039 U	0.02 U
Fluorene	8270C, 8310		1 U	1 U	1 U	0.48 U	0.48 U	0.1 U
Hexachlorobenzene	8270C		1 U	1 U	1 U			
Hexachlorobutadiene	8270C		1 U	1 U	1 U			
Hexachloroethane	8270C		1 U	1 U	1 U			
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U	1 U	1 U	0.077 U	0.078 U	0.039 U
Isophorone	8270C		1 U	1 U	1 U			
Naphthalene	8270C, 8310		1 U	1 U	1 U	0.48 U	0.48 U	0.98 U
Nitrobenzene	8270C, 8330		1 U	1 U	1 U			
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	0.002 U	1 U	1 U	1 U			
n-Nitrosodiethylamine	521	0.002 U						
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U	2 U					
n-Nitrosodiphenylamine	8270C		2 U	2 U	2 U			
p-Chloro-m-cresol	8270C		1 U	1 U	1 U			
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U	3 U	3 U			
PETN	8330							
Phenanthrene	8270C, 8310		1 U	1 U	1 U	0.077 U	0.078 U	0.039 U
Phenol	8270C		1 U	1 U	1 U			
Pyrene	8310					0.17 U	0.17 U	0.098 U
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-006D	PZ-006D	PZ-006E	PZ-007D	PZ-007E	PZ-007F	PZ-010F
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		02/27/2008	04/30/2008	04/30/2008	05/16/2008	05/16/2008	05/16/2008	05/21/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C				1 U	0.9 U	1 U	1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C				1 U	0.9 U	1 U	1 U
1,3-Dinitrobenzene	8270C, 8330				2 U	2 U	2 U	2 U
1-Methyl naphthalene	8310	0.48 U	0.24 U	0.25 U				
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C				1 U	0.9 U	1 U	1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C				1 U	0.9 U	1 U	1 U
2,4-Dimethylphenol	8270C				3 U	3 U	3 U	3 U
2,4-Dinitrophenol	8270C				19 U	19 U	19 U	20 U
2,4-Dinitrotoluene	8270C, 8330				1 U	0.9 U	1 U	1 U
2,6-Dinitrotoluene	8270C, 8330				1 U	0.9 U	1 U	1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C				2 U	2 U	2 U	2 U
2-Chlorophenol	8270C				1 U	0.9 U	1 U	1 U
2-Methylnaphthalene	8310	0.48 U	0.24 U	0.25 U				
2-Nitrophenol	8270C				1 U	0.9 U	1 U	1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C				2 U	2 U	2 U	2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C				5 U	5 U	5 U	5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C				1 U	0.9 U	1 U	1 U
4-Chlorophenylphenyl ether	8270C				2 U	2 U	2 U	2 U
4-Nitrophenol	8270C				10 U	9 U	10 U	10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.48 U	0.49 U	0.5 U	1 U	0.9 U	1 U	1 U
Acenaphthylene	8270C, 8310	0.48 U	0.98 U	1 U	1 U	0.9 U	1 U	1 U
Anthracene	8270C, 8310	0.038 U	0.05 U	0.04 U	1 U	0.9 U	1 U	1 U
Benzidine	8270C				19 U	19 U	19 U	20 U
Benzo(a)anthracene	8270C, 8310	0.019 U	0.0098 U	0.01 U	1 U	0.9 U	1 U	1 U
Benzo(a)pyrene	8270C, 8310	0.019 U	0.0098 U	0.02 U	1 U	0.9 U	1 U	1 U
Benzo(b)fluoranthene	8270C, 8310	0.038 U	0.0078 U	0.008 U	1 U	0.9 U	1 U	1 U
Benzo(ghi)perylene	8270C, 8310	0.096 U	0.059 U	0.06 U	1 U	0.9 U	1 U	1 U
Benzo(k)fluoranthene	8270C, 8310	0.019 U	0.0078 U	0.008 U	1 U	0.9 U	1 U	1 U

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-006D	PZ-006D	PZ-006E	PZ-007D	PZ-007E	PZ-007F	PZ-010F
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		02/27/2008	04/30/2008	04/30/2008	05/16/2008	05/16/2008	05/16/2008	05/21/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C				1 U	0.9 U	1 U	1 U
bis(2-Chloroethyl) ether	8270C				1 U	0.9 U	1 U	1 U
bis(2-Chloroisopropyl) ether	8270C				1 U	0.9 U	1 U	1 U
bis(2-Ethylhexyl) phthalate	8270C				2 U	2 U	2 U	2 U
Butyl benzyl phthalate	8270C				2 U	2 U	2 U	2 U
Chrysene	8270C, 8310	0.077 U	0.039 U	0.04 U	1 U	0.9 U	1 U	1 U
Dibenzo(a,h)anthracene	8270C, 8310	0.038 U	0.02 U	0.02 U	1 U	0.9 U	1 U	1 U
Diethyl phthalate	8270C				2 U	2 U	2 U	2 U
Dimethyl phthalate	8270C				2 U	2 U	2 U	2 U
Di-n-butyl phthalate	8270C				2 U	2 U	2 U	2 U
Di-n-octyl phthalate	8270C				2 U	2 U	2 U	2 U
Fluoranthene	8270C, 8310	0.038 U	0.02 U	0.02 U	1 U	0.9 U	1 U	1 U
Fluorene	8270C, 8310	0.48 U	0.1 U	0.1 U	1 U	0.9 U	1 U	1 U
Hexachlorobenzene	8270C				1 U	0.9 U	1 U	1 U
Hexachlorobutadiene	8270C				1 U	0.9 U	1 U	1 U
Hexachloroethane	8270C				1 U	0.9 U	1 U	1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.077 U	0.039 U	0.04 U	1 U	0.9 U	1 U	1 U
Isophorone	8270C				1 U	0.9 U	1 U	1 U
Naphthalene	8270C, 8310	0.48 U	0.98 U	1 U	1 U	0.9 U	1 U	1 U
Nitrobenzene	8270C, 8330				1 U	0.9 U	1 U	1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521				1 U	0.9 U	1 U	1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C							
n-Nitrosodiphenylamine	8270C				2 U	2 U	2 U	2 U
p-Chloro-m-cresol	8270C				1 U	0.9 U	1 U	1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C				3 U	3 U	3 U	3 U
PETN	8330							
Phenanthrene	8270C, 8310	0.077 U	0.039 U	0.042 J	1 U	0.9 U	1 U	1 U
Phenol	8270C				1 U	0.9 U	1 U	1 U
Pyrene	8310	0.17 U	0.098 U	0.1 U				
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-020	PZ-022	PZ-023	PZ-023	PZ-025	PZ-025	PZ-025
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		05/12/2008	05/14/2008	02/20/2008	05/06/2008	02/22/2008	05/05/2008	08/19/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U	1 U					
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U	1 U					
1,3-Dinitrobenzene	8270C, 8330	2 U	2 U					
1-Methyl naphthalene	8310			0.5 U	0.24 U	0.49 U	0.24 U	0.24 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U	1 U					
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U	1 U					
2,4-Dimethylphenol	8270C	3 U	3 U					
2,4-Dinitrophenol	8270C	20 U	20 U					
2,4-Dinitrotoluene	8270C, 8330	1 U	1 U					
2,6-Dinitrotoluene	8270C, 8330	1 U	1 U					
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U	2 U					
2-Chlorophenol	8270C	1 U	1 U					
2-Methylnaphthalene	8310			0.5 U	0.24 U	0.49 U	0.24 U	0.24 U
2-Nitrophenol	8270C	1 U	1 U					
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U	2 U					
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U	5 U					
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U	1 U					
4-Chlorophenylphenyl ether	8270C	2 U	2 U					
4-Nitrophenol	8270C	10 U	10 U					
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U	1 U	0.5 U	0.49 U	0.49 U	0.49 U	0.48 U
Acenaphthylene	8270C, 8310	1 U	1 U	0.5 U	0.98 U	0.49 U	0.97 U	0.96 U
Anthracene	8270C, 8310	1 U	1 U	0.04 U	0.02 U	0.039 U	0.019 U	0.019 U
Benzidine	8270C	20 U	20 U					
Benzo(a)anthracene	8270C, 8310	1 U	1 U	0.02 U	0.0098 U	0.019 U	0.0097 U	0.0096 U
Benzo(a)pyrene	8270C, 8310	1 U	1 U	0.02 U	0.0098 U	0.019 U	0.0097 U	0.0096 U
Benzo(b)fluoranthene	8270C, 8310	1 U	1 U	0.04 U	0.0078 U	0.039 U	0.0078 U	0.0077 U
Benzo(ghi)perylene	8270C, 8310	1 U	1 U	0.099 U	0.059 U	0.097 U	0.058 U	0.058 U
Benzo(k)fluoranthene	8270C, 8310	1 U	1 U	0.02 U	0.0078 U	0.019 U	0.0078 U	0.0077 U

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-020	PZ-022	PZ-023	PZ-023	PZ-025	PZ-025	PZ-025
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		05/12/2008	05/14/2008	02/20/2008	05/06/2008	02/22/2008	05/05/2008	08/19/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U	1 U					
bis(2-Chloroethyl) ether	8270C	1 U	1 U					
bis(2-Chloroisopropyl) ether	8270C	1 U	1 U					
bis(2-Ethylhexyl) phthalate	8270C	2 U	2 U					
Butyl benzyl phthalate	8270C	2 U	2 U					
Chrysene	8270C, 8310	1 U	1 U	0.079 U	0.039 U	0.078 U	0.039 U	0.039 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U	1 U	0.04 U	0.02 U	0.039 U	0.019 U	0.019 U
Diethyl phthalate	8270C	2 U	2 U					
Dimethyl phthalate	8270C	2 U	2 U					
Di-n-butyl phthalate	8270C	2 U	2 U					
Di-n-octyl phthalate	8270C	2 U	2 U					
Fluoranthene	8270C, 8310	1 U	1 U	0.04 U	0.02 U	0.039 U	0.019 U	0.019 U
Fluorene	8270C, 8310	1 U	1 U	0.5 U	0.098 U	0.49 U	0.097 U	0.096 U
Hexachlorobenzene	8270C	1 U	1 U					
Hexachlorobutadiene	8270C	1 U	1 U					
Hexachloroethane	8270C	1 U	1 U					
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U	1 U	0.079 U	0.039 U	0.078 U	0.039 U	0.039 U
Isophorone	8270C	1 U	1 U					
Naphthalene	8270C, 8310	1 U	1 U	0.5 U	0.98 U	0.49 U	0.97 U	0.96 U
Nitrobenzene	8270C, 8330	1 U	1 U					
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U	1 U					
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C							
n-Nitrosodiphenylamine	8270C	2 U	2 U					
p-Chloro-m-cresol	8270C	1 U	1 U					
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U	3 U					
PETN	8330							
Phenanthrene	8270C, 8310	1 U	1 U	0.079 U	0.039 U	0.078 U	0.039 U	0.039 U
Phenol	8270C	1 U	1 U					
Pyrene	8310			0.18 U	0.098 U	0.18 U	0.097 U	0.096 U
RDX	8330			0.10 0	0.050 0	0.10 0	0.037 0	0.050 0
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-025	PZ-026	PZ-026	PZ-026	PZ-027	PZ-027	PZ-027
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		11/11/2008	02/21/2008	05/07/2008	09/10/2008	02/25/2008	05/05/2008	11/11/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C							
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C							
1,3-Dinitrobenzene	8270C, 8330							
1-Methyl naphthalene	8310	0.24 U	0.48 U	0.24 U	0.24 U	0.48 U	0.24 U	0.24 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C							
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C							
2,4-Dimethylphenol	8270C							
2,4-Dinitrophenol	8270C							
2,4-Dinitrotoluene	8270C, 8330							
2,6-Dinitrotoluene	8270C, 8330							
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C							
2-Chlorophenol	8270C							
2-Methylnaphthalene	8310	0.24 U	0.48 U	0.24 U	0.24 U	0.48 U	0.24 U	0.24 U
2-Nitrophenol	8270C							
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C							
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C							
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C							
4-Chlorophenylphenyl ether	8270C							
4-Nitrophenol	8270C							
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.47 U	0.48 U	0.48 U	0.49 U	0.48 U	0.49 U	0.48 U
Acenaphthylene	8270C, 8310	0.95 U	0.48 U	0.97 U	0.98 U	0.48 U	0.98 U	0.95 U
Anthracene	8270C, 8310	0.019 U	0.038 U	0.019 U	0.02 U	0.039 U	0.02 U	0.019 U
Benzidine	8270C							
Benzo(a)anthracene	8270C, 8310	0.0095 U	0.019 U	0.0097 U	0.0098 U	0.019 U	0.0098 U	0.0095 U
Benzo(a)pyrene	8270C, 8310	0.0095 U	0.019 U	0.0097 U	0.0098 U	0.019 U	0.0098 U	0.0095 U
Benzo(b)fluoranthene	8270C, 8310	0.0076 U	0.038 U	0.0077 U	0.0078 U	0.039 U	0.0078 U	0.0076 U
Benzo(ghi)perylene	8270C, 8310	0.057 U	0.095 U	0.058 U	0.059 U	0.097 U	0.059 U	0.057 U
Benzo(k)fluoranthene	8270C, 8310	0.0076 U	0.019 U	0.0077 U	0.0078 U	0.019 U	0.0078 U	0.0076 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-025	PZ-026	PZ-026	PZ-026	PZ-027	PZ-027	PZ-027
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary	Primary
Geological Unit:		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		11/11/2008	02/21/2008	05/07/2008	09/10/2008	02/25/2008	05/05/2008	11/11/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C							
bis(2-Chloroethyl) ether	8270C							
bis(2-Chloroisopropyl) ether	8270C							
bis(2-Ethylhexyl) phthalate	8270C							
Butyl benzyl phthalate	8270C							
Chrysene	8270C, 8310	0.038 U	0.076 U	0.039 U	0.039 U	0.077 U	0.039 U	0.038 U
Dibenzo(a,h)anthracene	8270C, 8310	0.019 U	0.038 U	0.019 U	0.02 U	0.039 U	0.02 U	0.019 U
Diethyl phthalate	8270C							
Dimethyl phthalate	8270C							
Di-n-butyl phthalate	8270C							
Di-n-octyl phthalate	8270C							
Fluoranthene	8270C, 8310	0.019 U	0.038 U	0.019 U	0.02 U	0.039 U	0.02 U	0.019 U
Fluorene	8270C, 8310	0.095 U	0.48 U	0.097 U	0.098 U	0.48 U	0.098 U	0.095 U
Hexachlorobenzene	8270C							
Hexachlorobutadiene	8270C							
Hexachloroethane	8270C							
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.038 U	0.076 U	0.039 U	0.039 U	0.077 U	0.039 U	0.038 U
Isophorone	8270C							
Naphthalene	8270C, 8310	0.95 U	0.48 U	0.97 U	0.98 U	0.48 U	0.98 U	0.95 U
Nitrobenzene	8270C, 8330	0.55 0	0.40 0	0.07 0	0.50 0			0.55 0
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521							
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C							
n-Nitrosodiphenylamine	8270C							
p-Chloro-m-cresol	8270C							
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C							
PETN	8330							
Phenanthrene	8270C, 8310	0.038 U	0.076 U	0.039 U	0.039 U	0.077 U	0.039 U	0.038 U
Phenol	8270C, 6310 8270C	0.036 U 	0.076 0		0.039 0	0.077 0	0.039 0	
	8270C 8310	0.095 U	0.17 U	0.097 U	0.098 U	0.17 U	0.098 U	0.095 U
Pyrene RDX								
	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-028	PZ-050	PZ-050	PZ-106	PZ-106	PZ-106	RS-08
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver
Collection Date:		05/06/2008	02/19/2008	05/07/2008	02/19/2008	05/08/2008	09/10/2008	04/22/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U	1 U	1 U	1 U	1 U	0.27 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U	1 U	1 U	1 U	1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U	2 U	2 U	2 U	2 U	1.9 U
1-Methyl naphthalene	8310	0.26 U						
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U	1 U	1 U	1 U	1 U	0.28 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U	1 U	1 U	1 U	1 U	0.61 U
2,4-Dimethylphenol	8270C		3 U	3 U	3 U	3 U	3 U	0.55 U
2,4-Dinitrophenol	8270C		20 U	19 U	19 U	19 U	19 U	9.5 U
2,4-Dinitrotoluene	8270C, 8330		1 U	1 U	1 U	1 U	1 U	0.21 U
2,6-Dinitrotoluene	8270C, 8330		1 U	1 U	1 U	1 U	1 U	0.3 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U	2 U	2 U	2 U	2 U	0.25 U
2-Chlorophenol	8270C		1 U	1 U	1 U	1 U	1 U	1.9 U
2-Methylnaphthalene	8310	0.26 U						0.28 U
2-Nitrophenol	8270C		1 U	1 U	1 U	1 U	1 U	0.37 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U	2 U	2 U	2 U	2 U	1.9 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U	5 U	5 U	5 U	5 U	3.8 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U	1 U	1 U	1 U	1 U	0.41 U
4-Chlorophenylphenyl ether	8270C		2 U	2 U	2 U	2 U	2 U	0.26 U
4-Nitrophenol	8270C		10 U	1.2 U				
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.51 U	1 U	1 U	1 U	1 U	1 U	0.27 U
Acenaphthylene	8270C, 8310	1 U	1 U	1 U	1 U	1 U	1 U	0.47 U
Anthracene	8270C, 8310	0.02 U	1 Ū	1 U	1 U	1 Ū	1 Ū	0.4 U
Benzidine	8270C		20 U	19 U	19 U	19 U	19 U	
Benzo(a)anthracene	8270C, 8310	0.01 U	1 U	1 U	1 U	1 U	1 U	0.33 U
Benzo(a)pyrene	8270C, 8310	0.01 U	1 U	1 U	1 U	1 U	1 U	0.29 U
Benzo(b)fluoranthene	8270C, 8310	0.0082 U	1 U	1 U	1 U	1 U	1 U	0.5 U
Benzo(ghi)perylene	8270C, 8310	0.061 U	1 U	1 U	1 U	1 U	1 U	0.48 U
Benzo(k)fluoranthene	8270C, 8310	0.0082 U	1 U	1 U	1 U	1 U	1 U	0.44 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		PZ-028	PZ-050	PZ-050	PZ-106	PZ-106	PZ-106	RS-08
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver
Collection Date:		05/06/2008	02/19/2008	05/07/2008	02/19/2008	05/08/2008	09/10/2008	04/22/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U	1 U	1 U	1 U	1 U	0.92 U
bis(2-Chloroethyl) ether	8270C		1 U	1 U	1 U	1 U	1 U	0.39 U
bis(2-Chloroisopropyl) ether	8270C		1 U	1 U	1 U	1 U	1 U	0.27 U
bis(2-Ethylhexyl) phthalate	8270C		2 U	2 U	2 U	2 U	2 U	0.53 U
Butyl benzyl phthalate	8270C		2 U	2 U	2 U	2 U	2 U	0.95 U
Chrysene	8270C, 8310	0.041 U	1 U	1 U	1 U	1 U	1 U	0.51 U
Dibenzo(a,h)anthracene	8270C, 8310	0.02 U	1 U	1 U	1 U	1 U	1 U	0.48 U
Diethyl phthalate	8270C		2 U	2 U	2 U	2 U	2 U	0.36 U
Dimethyl phthalate	8270C		2 U	2 U	2 U	2 U	2 U	0.2 U
Di-n-butyl phthalate	8270C		2 U	2 U	2 U	2 U	2 U	1.1 U
Di-n-octyl phthalate	8270C		2 U	2 U	2 U	2 U	2 U	0.33 U
Fluoranthene	8270C, 8310	0.02 U	1 U	1 U	1 U	1 U	1 U	0.19 U
Fluorene	8270C, 8310	0.1 U	1 U	1 U	1 U	1 U	1 U	0.29 U
Hexachlorobenzene	8270C		1 U	1 U	1 U	1 U	1 U	0.63 U
Hexachlorobutadiene	8270C		1 U	1 U	1 U	1 U	1 U	0.48 U
Hexachloroethane	8270C		1 U	1 U	1 U	1 U	1 U	0.44 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.041 U	1 U	1 U	1 U	1 U	1 U	0.62 U
Isophorone	8270C		1 U	1 U	1 U	1 U	1 U	0.2 U
Naphthalene Naphthalene	8270C, 8310	1 U	1 U	1 U	1 U	1 U	1 U	0.28 U
Nitrobenzene	8270C, 8330		1 U	1 U	1 U	1 U	1 U	0.77 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U	1 U	1 U	1 U	1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C						2 U	
n-Nitrosodiphenylamine	8270C		2 U	2 U	2 U	2 U	2 U	0.42 U
p-Chloro-m-cresol	8270C		1 U	1 U	1 U	1 U	1 U	0.86 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U	3 U	3 U	3 U	3 U	0.77 U
PETN	8330							
Phenanthrene	8270C, 8310	0.041 U	1 U	1 U	1 U	1 U	1 U	0.25 U
Phenol	8270C		1 U	1 U	1 U	1 U	1 U	1.9 U
Pyrene	8310	0.1 U						0.35 U
RDX	8330							
sym-Trinitrobenzene	8330							3.8 U
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RS-08	RS-16	RS-28	RS-32	RS-32	RS-32	SH-01
Sample Type:		Primary	Primary	Primary	Primary	Primary	Duplicate	Primary
Geological Unit:		Shallow						
Lab Name:		Weck	Lancaster	Lancaster	Lancaster	Weck	Weck	Lancaster
Collection Date:		04/22/2008	02/01/2008	11/14/2008	03/06/2008	03/06/2008	03/06/2008	02/04/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 UJ	0.9 U	1 U			
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 UJ	0.9 U	1 U			
1,3-Dinitrobenzene	8270C, 8330		2 UJ	2 U	2 U			
1-Methyl naphthalene	8310							0.48 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 UJ	0.9 U	1 U			
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 UJ	0.9 U	1 U			
2,4-Dimethylphenol	8270C		3 UJ	3 U	3 U			
2,4-Dinitrophenol	8270C		19 UJ	19 U	20 U			
2,4-Dinitrotoluene	8270C, 8330		1 UJ	0.9 U	1 U			
2,6-Dinitrotoluene	8270C, 8330		1 UJ	0.9 U	1 U			
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 UJ	2 U	2 U			
2-Chlorophenol	8270C		1 UJ	0.9 U	1 U			
2-Methylnaphthalene	8310							0.48 U
2-Nitrophenol	8270C		1 UJ	0.9 U	1 U			
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 UJ	2 U	2 U			
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 UJ	5 U	5 U			
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 UJ	0.9 U	1 U			
4-Chlorophenylphenyl ether	8270C		2 UJ	2 U	2 U			
4-Nitrophenol	8270C		10 UJ	9 U	10 U			
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 UJ	0.9 U	1 U			0.48 U
Acenaphthylene	8270C, 8310		1 UJ	0.9 U	1 U			0.48 U
Anthracene	8270C, 8310		1 UJ	0.9 U	1 U			0.038 U
Benzidine	8270C		19 UJ	19 U	20 U			
Benzo(a)anthracene	8270C, 8310		1 UJ	0.9 U	1 U			0.019 U
Benzo(a)pyrene	8270C, 8310		1 UJ	0.9 U	1 U			0.019 U
Benzo(b)fluoranthene	8270C, 8310		1 UJ	0.9 U	1 U			0.038 U
Benzo(ghi)perylene	8270C, 8310		1 UJ	0.9 U	1 U			0.095 U
Benzo(k)fluoranthene	8270C, 8310		1 UJ	0.9 U	1 U			0.019 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RS-08	RS-16	RS-28	RS-32	RS-32	RS-32	SH-01
Sample Type:		Primary	Primary	Primary	Primary	Primary	Duplicate	Primary
Geological Unit:		Shallow						
Lab Name:		Weck	Lancaster	Lancaster	Lancaster	Weck	Weck	Lancaster
Collection Date:		04/22/2008	02/01/2008	11/14/2008	03/06/2008	03/06/2008	03/06/2008	02/04/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 UJ	0.9 U	1 U			
bis(2-Chloroethyl) ether	8270C		1 UJ	0.9 U	1 U			
bis(2-Chloroisopropyl) ether	8270C		1 UJ	0.9 U	1 U			
bis(2-Ethylhexyl) phthalate	8270C		2 UJ	2 U	2 U			
Butyl benzyl phthalate	8270C		2 UJ	2 U	2 U			
Chrysene	8270C, 8310		1 UJ	0.9 U	1 U			0.076 U
Dibenzo(a,h)anthracene	8270C, 8310		1 UJ	0.9 U	1 U			0.038 U
Diethyl phthalate	8270C		2 UJ	2 U	2 U			
Dimethyl phthalate	8270C		2 UJ	2 U	2 U			
Di-n-butyl phthalate	8270C		2 UJ	2 U	2 U			
Di-n-octyl phthalate	8270C		2 UJ	2 U	2 U			
Fluoranthene	8270C, 8310		1 UJ	0.9 U	1 U			0.038 U
Fluorene	8270C, 8310		1 UJ	0.9 U	1 U			0.48 U
Hexachlorobenzene	8270C		1 UJ	0.9 U	1 U			
Hexachlorobutadiene	8270C		1 UJ	0.9 U	1 U			
Hexachloroethane	8270C		1 UJ	0.9 U	1 U			
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 UJ	0.9 U	1 U			0.076 U
Isophorone	8270C		1 UJ	0.9 U	1 U			
Naphthalene	8270C, 8310		1 UJ	0.9 U	1 U			0.48 U
Nitrobenzene	8270C, 8330		1 UJ	0.9 U	1 U			
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	0.002 U	1 UJ	0.9 U	1 U			
n-Nitrosodiethylamine	521	0.002 U						
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U		2 U		0.00034 U	0.00047 U	
n-Nitrosodiphenylamine	8270C		2 UJ	2 U	2 U			
p-Chloro-m-cresol	8270C		1 UJ	0.9 U	1 U			
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 UJ	3 U	3 U			
PETN	8330							
Phenanthrene	8270C, 8310		1 UJ	0.9 U	1 U			0.076 U
Phenol	8270C		1 UJ	0.9 U	1 U			
Pyrene	8310							0.17 U
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		SH-01	SH-02	SH-02	SH-03	SH-03	SH-04	SH-04
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		04/30/2008	02/05/2008	04/30/2008	02/05/2008	05/02/2008	02/04/2008	04/23/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C							
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C							
1,3-Dinitrobenzene	8270C, 8330							
1-Methyl naphthalene	8310	0.24 U	0.48 U	0.24 U	0.48 U	0.24 U	0.48 U	0.24 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C							
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C							
2,4-Dimethylphenol	8270C							
2,4-Dinitrophenol	8270C							
2,4-Dinitrotoluene	8270C, 8330							
2,6-Dinitrotoluene	8270C, 8330							
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C							
2-Chlorophenol	8270C							
2-Methylnaphthalene	8310	0.24 U	0.48 U	0.24 U	0.48 U	0.24 U	0.48 U	0.24 U
2-Nitrophenol	8270C							
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C							
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C							
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C							
4-Chlorophenylphenyl ether	8270C							
4-Nitrophenol	8270C							
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.48 U						
Acenaphthylene	8270C, 8310	0.97 U	0.48 U	0.96 U	0.48 U	0.96 U	0.48 U	0.96 U
Anthracene	8270C, 8310	0.019 U	0.038 U	0.019 U	0.038 U	0.019 U	0.038 U	0.019 U
Benzidine	8270C							
Benzo(a)anthracene	8270C, 8310	0.0097 U	0.019 U	0.0096 U	0.019 U	0.0096 U	0.019 U	0.0096 U
Benzo(a)pyrene	8270C, 8310	0.0097 U	0.019 U	0.0096 U	0.019 U	0.0096 U	0.019 U	0.0096 U
Benzo(b)fluoranthene	8270C, 8310	0.0078 U	0.038 U	0.0077 U	0.038 U	0.0077 U	0.038 U	0.0077 U
Benzo(ghi)perylene	8270C, 8310	0.058 U	0.096 U	0.058 U	0.096 U	0.058 U	0.096 U	0.058 U
Benzo(k)fluoranthene	8270C, 8310	0.0078 U	0.019 U	0.0077 U	0.019 U	0.0077 U	0.019 U	0.0077 U

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		SH-01	SH-02	SH-02	SH-03	SH-03	SH-04	SH-04
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		Lancaster						
Collection Date:		04/30/2008	02/05/2008	04/30/2008	02/05/2008	05/02/2008	02/04/2008	04/23/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C							
bis(2-Chloroethyl) ether	8270C							
bis(2-Chloroisopropyl) ether	8270C							
bis(2-Ethylhexyl) phthalate	8270C							
Butyl benzyl phthalate	8270C							
Chrysene	8270C, 8310	0.039 U	0.077 U	0.038 U	0.076 U	0.039 U	0.077 U	0.039 U
Dibenzo(a,h)anthracene	8270C, 8310	0.019 U	0.038 U	0.019 U	0.038 U	0.019 U	0.038 U	0.019 U
Diethyl phthalate	8270C							
Dimethyl phthalate	8270C							
Di-n-butyl phthalate	8270C							
Di-n-octyl phthalate	8270C							
Fluoranthene	8270C, 8310	0.019 U	0.038 U	0.019 U	0.038 U	0.019 U	0.038 U	0.019 U
Fluorene	8270C, 8310	0.097 U	0.48 U	0.096 U	0.48 U	0.096 U	0.48 U	0.096 U
Hexachlorobenzene	8270C							
Hexachlorobutadiene	8270C							
Hexachloroethane	8270C							
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.039 U	0.077 U	0.038 U	0.076 U	0.039 U	0.077 U	0.039 U
Isophorone	8270C							
Naphthalene	8270C, 8310	0.97 U	0.48 U	0.96 U	0.48 U	0.96 U	0.48 U	0.96 U
Nitrobenzene	8270C, 8330							
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521							
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C							
n-Nitrosodiphenylamine	8270C							
p-Chloro-m-cresol	8270C							
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C							
PETN	8330							
Phenanthrene	8270C, 8310	0.039 U	0.077 U	0.038 U	0.076 U	0.039 U	0.077 U	0.039 U
Phenol	8270C							
Pyrene	8310	0.097 U	0.17 U	0.096 U	0.17 U	0.096 U	0.17 U	0.096 U
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		SH-04	SH-04	SH-05	SH-05	SH-08	SH-08	SH-09
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		TA-Denver	Weck	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		04/23/2008	04/23/2008	02/05/2008	05/02/2008	02/05/2008	05/02/2008	02/05/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	0.27 UJ						
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C							
1,3-Dinitrobenzene	8270C, 8330	1.9 UJ						
1-Methyl naphthalene	8310			0.49 U	0.25 U	0.48 U	0.24 U	0.48 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	0.28 UJ						
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	0.61 UJ						
2,4-Dimethylphenol	8270C	0.55 UJ						
2,4-Dinitrophenol	8270C	9.5 UJ						
2,4-Dinitrotoluene	8270C, 8330	0.21 UJ						
2,6-Dinitrotoluene	8270C, 8330	0.3 UJ						
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	0.25 UJ						
2-Chlorophenol	8270C	1.9 UJ						
2-Methylnaphthalene	8310	0.28 UJ		0.49 U	0.25 U	0.48 U	0.24 U	0.48 U
2-Nitrophenol	8270C	0.37 UJ						
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	1.9 UJ						
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	3.8 UJ						
4-Am-2.6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	0.41 UJ						
4-Chlorophenylphenyl ether	8270C	0.26 UJ						
4-Nitrophenol	8270C	1.2 UJ						
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.27 UJ		0.49 U	0.5 U	0.48 U	0.47 U	0.48 U
Acenaphthylene	8270C, 8310	0.47 UJ		0.49 U	0.99 U	0.48 U	0.95 U	0.48 U
Anthracene	8270C, 8310	0.4 UJ		0.039 U	0.02 U	0.038 U	0.019 U	0.039 U
Benzidine	8270C							
Benzo(a)anthracene	8270C, 8310	0.33 UJ		0.019 U	0.0099 U	0.019 U	0.0095 U	0.019 U
Benzo(a)pyrene	8270C, 8310	0.29 UJ		0.019 U	0.0099 U	0.019 U	0.0095 U	0.019 U
Benzo(b)fluoranthene	8270C, 8310	0.5 UJ		0.039 U	0.0079 U	0.038 U	0.0076 U	0.039 U
Benzo(ghi)perylene	8270C, 8310	0.48 UJ		0.097 U	0.059 U	0.096 U	0.057 U	0.097 U
Benzo(k)fluoranthene	8270C, 8310	0.44 UJ		0.019 U	0.0079 U	0.019 U	0.0076 U	0.019 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		SH-04	SH-04	SH-05	SH-05	SH-08	SH-08	SH-09
Sample Type:		Primary						
Geological Unit:		Shallow						
Lab Name:		TA-Denver	Weck	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		04/23/2008	04/23/2008	02/05/2008	05/02/2008	02/05/2008	05/02/2008	02/05/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	0.92 UJ						
bis(2-Chloroethyl) ether	8270C	0.39 UJ						
bis(2-Chloroisopropyl) ether	8270C	0.27 UJ						
bis(2-Ethylhexyl) phthalate	8270C	0.53 UJ						
Butyl benzyl phthalate	8270C	0.95 UJ						
Chrysene	8270C, 8310	0.51 UJ		0.078 U	0.04 U	0.077 U	0.038 U	0.077 U
Dibenzo(a,h)anthracene	8270C, 8310	0.48 UJ		0.039 U	0.02 U	0.038 U	0.019 U	0.039 U
Diethyl phthalate	8270C	0.36 UJ						
Dimethyl phthalate	8270C	0.2 UJ						
Di-n-butyl phthalate	8270C	1.1 UJ						
Di-n-octyl phthalate	8270C	0.33 UJ						
Fluoranthene	8270C, 8310	0.19 UJ		0.039 U	0.02 U	0.038 U	0.019 U	0.039 U
Fluorene	8270C, 8310	0.29 UJ		0.49 U	0.099 U	0.48 U	0.095 U	0.48 U
Hexachlorobenzene	8270C	0.63 UJ						
Hexachlorobutadiene	8270C	0.48 UJ						
Hexachloroethane	8270C	0.44 UJ						
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.62 UJ		0.078 U	0.04 U	0.077 U	0.038 U	0.077 U
Isophorone	8270C	0.2 UJ						
Naphthalene Naphthalene	8270C, 8310	0.28 UJ		0.49 U	0.99 U	0.48 U	0.95 U	0.48 U
Nitrobenzene	8270C, 8330	0.77 UJ						
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		0.002 U					
n-Nitrosodiethylamine	521		0.002 U					
n-Nitrosodimethylamine	1625M, 521, 8270C		0.12					
n-Nitrosodiphenylamine	8270C	0.42 UJ						
p-Chloro-m-cresol	8270C	0.86 UJ						
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	0.77 UJ						
PETN	8330							
Phenanthrene	8270C, 8310	0.25 UJ		0.078 U	0.04 U	0.077 U	0.038 U	0.077 U
Phenol	8270C	1.9 UJ						
Pyrene	8310	0.35 UJ		0.18 U	0.099 U	0.17 U	0.095 U	0.17 U
RDX	8330							
sym-Trinitrobenzene	8330	3.8 UJ						
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		SH-09	SH-10	SH-11	SH-11	HAR-07	HAR-07	HAR-07
Sample Type:		Primary						
Geological Unit:		Shallow	Shallow	Shallow	Shallow	Chatsworth	Chatsworth	Chatsworth
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Weck	TA-Denver
Collection Date:		05/02/2008	02/05/2008	02/05/2008	05/02/2008	02/27/2008	02/27/2008	04/23/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C					1 U		0.27 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C					1 U		
1,3-Dinitrobenzene	8270C, 8330					2 U		1.9 U
1-Methyl naphthalene	8310	0.24 U	0.48 U	0.48 U	0.24 U			
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C					1 U		0.28 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C					1 U		0.61 U
2,4-Dimethylphenol	8270C					3 U		0.55 U
2,4-Dinitrophenol	8270C					19 U		9.5 U
2,4-Dinitrotoluene	8270C, 8330					1 U		0.21 U
2,6-Dinitrotoluene	8270C, 8330					1 U		0.3 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C					2 U		0.25 U
2-Chlorophenol	8270C					1 U		1.9 U
2-Methylnaphthalene	8310	0.24 U	0.48 U	0.48 U	0.24 U			0.28 U
2-Nitrophenol	8270C					1 U		0.37 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C					2 U		1.9 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C					5 U		3.8 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C					1 U		0.41 U
4-Chlorophenylphenyl ether	8270C					2 U		0.26 U
4-Nitrophenol	8270C					10 U		1.2 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.49 U	0.48 U	0.48 U	0.48 U	1 U		0.27 U
Acenaphthylene	8270C, 8310	0.97 U	0.48 U	0.48 U	0.95 U	1 U		0.47 U
Anthracene	8270C, 8310	0.019 U	0.038 U	0.038 U	0.019 U	1 U		0.4 U
Benzidine	8270C					19 U		
Benzo(a)anthracene	8270C, 8310	0.0097 U	0.019 U	0.019 U	0.0095 U	1 U		0.33 U
Benzo(a)pyrene	8270C, 8310	0.0097 U	0.019 U	0.019 U	0.0095 U	1 U		0.29 U
Benzo(b)fluoranthene	8270C, 8310	0.0078 U	0.038 U	0.038 U	0.0076 U	1 U		0.5 U
Benzo(ghi)perylene	8270C, 8310	0.058 U	0.096 U	0.096 U	0.057 U	1 U		0.48 U
Benzo(k)fluoranthene	8270C, 8310	0.0078 U	0.019 U	0.019 U	0.0076 U	1 U		0.44 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		SH-09	SH-10	SH-11	SH-11	HAR-07	HAR-07	HAR-07
Sample Type:		Primary						
Geological Unit:		Shallow	Shallow	Shallow	Shallow	Chatsworth	Chatsworth	Chatsworth
Lab Name:		Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Weck	TA-Denver
Collection Date:		05/02/2008	02/05/2008	02/05/2008	05/02/2008	02/27/2008	02/27/2008	04/23/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C					1 U		0.92 U
bis(2-Chloroethyl) ether	8270C					1 U		0.39 U
bis(2-Chloroisopropyl) ether	8270C					1 U		0.27 U
bis(2-Ethylhexyl) phthalate	8270C					2 U		0.53 U
Butyl benzyl phthalate	8270C					2 U		0.95 U
Chrysene	8270C, 8310	0.039 U	0.077 U	0.077 U	0.038 U	1 U		0.51 U
Dibenzo(a,h)anthracene	8270C, 8310	0.019 U	0.038 U	0.038 U	0.019 U	1 U		0.48 U
Diethyl phthalate	8270C					2 U		0.36 U
Dimethyl phthalate	8270C					2 U		0.2 U
Di-n-butyl phthalate	8270C					2 U		1.1 U
Di-n-octyl phthalate	8270C					2 U		0.33 U
Fluoranthene	8270C, 8310	0.019 U	0.038 U	0.038 U	0.019 U	1 U		0.19 U
Fluorene	8270C, 8310	0.097 U	0.48 U	0.48 U	0.095 U	1 U		0.29 U
Hexachlorobenzene	8270C					1 U		0.63 U
Hexachlorobutadiene	8270C					1 U		0.48 U
Hexachloroethane	8270C					1 U		0.44 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.039 U	0.077 U	0.077 U	0.038 U	1 U		0.62 U
Isophorone	8270C					1 U		0.2 U
Naphthalene	8270C, 8310	0.97 U	0.48 U	0.48 U	0.95 U	1 U		0.28 U
Nitrobenzene	8270C, 8330					1 U		0.77 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521					1 U		
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C						0.034 J	
n-Nitrosodiphenylamine	8270C					2 U		0.42 U
p-Chloro-m-cresol	8270C					1 U		0.86 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C					3 U		0.76 U
PETN	8330							
Phenanthrene	8270C, 8310	0.039 U	0.077 U	0.077 U	0.038 U	1 U		0.25 U
Phenol	8270C					1 U		1.9 U
Pyrene	8310	0.097 U	0.17 U	0.17 U	0.095 U			0.35 U
RDX	8330							
sym-Trinitrobenzene	8330							3.8 U
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-07	HAR-07	HAR-07	HAR-07	HAR-07	HAR-07	HAR-08
Sample Type:		Primary	Primary	Primary	Primary	Primary	Split	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	TA-Denver	Lancaster
Collection Date:		04/23/2008	08/27/2008	08/27/2008	12/03/2008	12/03/2008	12/03/2008	02/27/2008
Analyte (ug/L)		-						
1,2,4-Trichlorobenzene	8270C		1 U		0.9 U			0.9 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		0.9 U			0.9 U
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U			2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		0.9 U			0.9 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		0.9 U			0.9 U
2,4-Dimethylphenol	8270C		3 U		3 U			3 U
2,4-Dinitrophenol	8270C		19 U		19 U			19 U
2,4-Dinitrotoluene	8270C, 8330		1 U		0.9 U			0.9 U
2,6-Dinitrotoluene	8270C, 8330		1 U		0.9 U			0.9 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U			2 U
2-Chlorophenol	8270C		1 U		0.9 U			0.9 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		0.9 U			0.9 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U			2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U			5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		0.9 U			0.9 U
4-Chlorophenylphenyl ether	8270C		2 U		2 U			2 U
4-Nitrophenol	8270C		10 U		9 U			9 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		0.9 U			0.9 U
Acenaphthylene	8270C, 8310		1 U		0.9 U			0.9 U
Anthracene	8270C, 8310		1 U		0.9 U			0.9 U
Benzidine	8270C		19 U		19 U			19 U
Benzo(a)anthracene	8270C, 8310		1 U		0.9 U			0.9 U
Benzo(a)pyrene	8270C, 8310		1 U		0.9 U			0.9 U
Benzo(b)fluoranthene	8270C, 8310		1 U		0.9 U			0.9 U
Benzo(ghi)perylene	8270C, 8310		1 U		0.9 U			0.9 U
Benzo(k)fluoranthene	8270C, 8310		1 U		0.9 U			0.9 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-07	HAR-07	HAR-07	HAR-07	HAR-07	HAR-07	HAR-08
Sample Type:		Primary	Primary	Primary	Primary	Primary	Split	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	TA-Denver	Lancaster
Collection Date:		04/23/2008	08/27/2008	08/27/2008	12/03/2008	12/03/2008	12/03/2008	02/27/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		0.9 U			0.9 U
bis(2-Chloroethyl) ether	8270C		1 U		0.9 U			0.9 U
bis(2-Chloroisopropyl) ether	8270C		1 U		0.9 U			0.9 U
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U			2 U
Butyl benzyl phthalate	8270C		2 U		2 U			2 U
Chrysene	8270C, 8310		1 U		0.9 U			0.9 U
Dibenzo(a,h)anthracene	8270C, 8310		1 U		0.9 U			0.9 U
Diethyl phthalate	8270C		2 U		2 U			2 U
Dimethyl phthalate	8270C		2 U		2 U			2 U
Di-n-butyl phthalate	8270C		2 U		2 U			2 U
Di-n-octyl phthalate	8270C		2 U		2 U			2 U
Fluoranthene	8270C, 8310		1 U		0.9 U			0.9 U
Fluorene	8270C, 8310		1 U		0.9 U			0.9 U
Hexachlorobenzene	8270C		1 U		0.9 U			0.9 U
Hexachlorobutadiene	8270C		1 U		0.9 U			0.9 U
Hexachloroethane	8270C		1 U		0.9 U			0.9 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		0.9 U			0.9 U
Isophorone	8270C		1 U		0.9 U			0.9 U
Naphthalene	8270C, 8310		1 U		0.9 U			0.9 U
Nitrobenzene	8270C, 8330		1 U		0.9 U			0.9 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	0.002 U	1 U		0.9 U			0.9 U
n-Nitrosodiethylamine	521	0.002 U						
n-Nitrosodimethylamine	1625M, 521, 8270C	0.029	2 U	0.034	2 U	0.036	0.03	
n-Nitrosodiphenylamine	8270C		2 U		2 U			2 U
p-Chloro-m-cresol	8270C		1 U		0.9 U			0.9 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U			3 U
PETN	8330							
Phenanthrene	8270C, 8310		1 U		0.9 U			0.9 U
Phenol	8270C		1 U		0.9 U			0.9 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-08						
Sample Type:		Primary	Primary	Primary	Split	Primary	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Babcock	Lancaster	Weck	Lancaster
Collection Date:		02/27/2008	05/14/2008	05/14/2008	05/14/2008	08/27/2008	08/27/2008	12/03/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U			1 U		1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U			1 U		1 U
1,3-Dinitrobenzene	8270C, 8330		2 U			2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U			1 U		1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U			1 U		1 U
2,4-Dimethylphenol	8270C		3 U			3 U		3 U
2,4-Dinitrophenol	8270C		19 U			19 U		19 U
2,4-Dinitrotoluene	8270C, 8330		1 U			1 U		1 U
2,6-Dinitrotoluene	8270C, 8330		1 U			1 U		1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U			2 U		2 U
2-Chlorophenol	8270C		1 U			1 U		1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U			1 U		1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U			2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U			5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U			1 U		1 U
4-Chlorophenylphenyl ether	8270C		2 U			2 U		2 U
4-Nitrophenol	8270C		10 U			10 U		10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U			1 U		1 U
Acenaphthylene	8270C, 8310		1 U			1 U		1 U
Anthracene	8270C, 8310		1 U			1 U		1 U
Benzidine	8270C		19 U			19 U		19 U
Benzo(a)anthracene	8270C, 8310		1 U			1 U		1 U
Benzo(a)pyrene	8270C, 8310		1 U			1 U		1 U
Benzo(b)fluoranthene	8270C, 8310		1 U			1 U		1 U
Benzo(ghi)perylene	8270C, 8310		1 U			1 U		1 U
Benzo(k)fluoranthene	8270C, 8310		1 U			1 U		1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-08						
Sample Type:		Primary	Primary	Primary	Split	Primary	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Babcock	Lancaster	Weck	Lancaster
Collection Date:		02/27/2008	05/14/2008	05/14/2008	05/14/2008	08/27/2008	08/27/2008	12/03/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U			1 U		1 U
bis(2-Chloroethyl) ether	8270C		1 U			1 U		1 U
bis(2-Chloroisopropyl) ether	8270C		1 U			1 U		1 U
bis(2-Ethylhexyl) phthalate	8270C		2 U			2 U		2 U
Butyl benzyl phthalate	8270C		2 U			2 U		2 U
Chrysene	8270C, 8310		1 U			1 U		1 U
Dibenzo(a,h)anthracene	8270C, 8310		1 U			1 U		1 U
Diethyl phthalate	8270C		2 U			2 U		2 U
Dimethyl phthalate	8270C		2 U			2 U		2 U
Di-n-butyl phthalate	8270C		2 U			2 U		2 U
Di-n-octyl phthalate	8270C		2 U			2 U		2 U
Fluoranthene	8270C, 8310		1 U			1 U		1 U
Fluorene	8270C, 8310		1 U			1 U		1 U
Hexachlorobenzene	8270C		1 U			1 U		1 U
Hexachlorobutadiene	8270C		1 U			1 U		1 U
Hexachloroethane	8270C		1 U			1 U		1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U			1 U		1 U
Isophorone	8270C		1 U			1 U		1 U
Naphthalene	8270C, 8310		1 U			1 U		1 U
Nitrobenzene	8270C, 8330		1 U			1 U		1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U	0.002 U	0.007 UJ	1 U		1 U
n-Nitrosodiethylamine	521			0.002 U	0.005 UJ			
n-Nitrosodimethylamine	1625M, 521, 8270C	0.00028 U		0.012	0.0074 J	2 U	0.014	2 U
n-Nitrosodiphenylamine	8270C		2 U			2 U		2 U
p-Chloro-m-cresol	8270C		1 U			1 U		1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U			3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310		1 U			1 U		1 U
Phenol	8270C		1 U			1 U		1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-08	HAR-08	HAR-16	HAR-16	HAR-16	HAR-17	HAR-17
Sample Type:		Primary	Split	Primary	Primary	Split	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	TA-Denver	TA-Denver	Weck	Babcock	TA-Denver	Weck
Collection Date:		12/03/2008	12/03/2008	04/23/2008	04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C			0.27 U			0.27 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C							
1,3-Dinitrobenzene	8270C, 8330			1.9 U			1.9 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C			0.28 U			0.28 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C			0.61 U			0.62 U	
2,4-Dimethylphenol	8270C			0.55 U			0.56 U	
2,4-Dinitrophenol	8270C			9.5 U			9.7 U	
2,4-Dinitrotoluene	8270C, 8330			0.21 U			0.21 U	
2,6-Dinitrotoluene	8270C, 8330			0.3 U			0.31 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C			0.25 U			0.25 U	
2-Chlorophenol	8270C			1.9 U			1.9 U	
2-Methylnaphthalene	8310			0.28 U			0.28 U	
2-Nitrophenol	8270C			0.37 U			0.38 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C			1.9 U			1.9 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C			3.8 U			3.9 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C			0.41 U			0.42 U	
4-Chlorophenylphenyl ether	8270C			0.26 U			0.26 U	
4-Nitrophenol	8270C			1.2 U			1.2 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310			0.27 U			0.27 U	
Acenaphthylene	8270C, 8310			0.47 U			0.48 U	
Anthracene	8270C, 8310			0.4 U			0.41 U	
Benzidine	8270C							
Benzo(a)anthracene	8270C, 8310			0.33 U			0.34 U	
Benzo(a)pyrene	8270C, 8310			0.29 U			0.3 U	
Benzo(b)fluoranthene	8270C, 8310			0.5 U			0.52 U	
Benzo(ghi)perylene	8270C, 8310			0.48 U			0.48 U	
Benzo(k)fluoranthene	8270C, 8310			0.44 U			0.45 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-08	HAR-08	HAR-16	HAR-16	HAR-16	HAR-17	HAR-17
Sample Type:		Primary	Split	Primary	Primary	Split	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	TA-Denver	TA-Denver	Weck	Babcock	TA-Denver	Weck
Collection Date:		12/03/2008	12/03/2008	04/23/2008	04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C			0.92 U			0.94 U	
bis(2-Chloroethyl) ether	8270C			0.39 U			0.4 U	
bis(2-Chloroisopropyl) ether	8270C			0.27 U			0.27 U	
bis(2-Ethylhexyl) phthalate	8270C			0.53 U			0.54 U	
Butyl benzyl phthalate	8270C			0.95 U			0.97 U	
Chrysene	8270C, 8310			0.51 U			0.52 U	
Dibenzo(a,h)anthracene	8270C, 8310			0.48 U			0.49 U	
Diethyl phthalate	8270C			0.36 U			0.37 U	
Dimethyl phthalate	8270C			0.2 U			0.2 U	
Di-n-butyl phthalate	8270C			1.1 U			1.1 U	
Di-n-octyl phthalate	8270C			0.33 U			0.34 U	
Fluoranthene	8270C, 8310			0.19 U			0.19 U	
Fluorene	8270C, 8310			0.29 U			0.3 U	
Hexachlorobenzene	8270C			0.63 U			0.64 U	
Hexachlorobutadiene	8270C			0.48 U			0.49 U	
Hexachloroethane	8270C			0.44 U			0.45 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310			0.62 U			0.63 U	
Isophorone	8270C			0.2 U			0.2 U	
Naphthalene	8270C, 8310			0.28 U			0.28 U	
Nitrobenzene	8270C, 8330			0.77 U			0.79 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521				0.002 U	3.5 UJ		0.002 U
n-Nitrosodiethylamine	521				0.002 U	2.5 UJ		0.002 U
n-Nitrosodimethylamine	1625M, 521, 8270C	0.023	0.018		0.44	6.8 J		0.033
n-Nitrosodiphenylamine	8270C			0.42 U			0.43 U	
p-Chloro-m-cresol	8270C			0.86 U			0.87 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C			0.8 U			0.76 U	
PETN	8330							
Phenanthrene	8270C, 8310			0.25 U			0.25 U	
Phenol	8270C			1.9 U			1.9 U	
Pyrene	8310			0.35 U			0.36 U	
RDX	8330							
sym-Trinitrobenzene	8330			3.8 U			3.9 U	
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-18						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/18/2008	02/18/2008	05/13/2008	05/13/2008	08/28/2008	08/28/2008	12/01/2008
Analyte (ug/L)		_						
1,2,4-Trichlorobenzene	8270C	1 U		0.9 U		1 U		1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		0.9 U		1 U		1 U
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		0.9 U		1 U		1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		0.9 U		1 U		1 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	19 U		19 U		19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	1 U		0.9 U		1 U		1 U
2,6-Dinitrotoluene	8270C, 8330	1 U		0.9 U		1 U		1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		0.9 U		1 U		1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		0.9 U		1 U		1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		0.9 U		1 U		1 U
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U		2 U
4-Nitrophenol	8270C	10 U		9 U		10 U		10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		0.9 U		1 U		1 U
Acenaphthylene	8270C, 8310	1 U		0.9 U		1 U		1 Ū
Anthracene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzidine	8270C	19 U		19 U		19 U		19 U
Benzo(a)anthracene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(a)pyrene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(b)fluoranthene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(ghi)perylene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(k)fluoranthene	8270C, 8310	1 U		0.9 U		1 U		1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-18						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/18/2008	02/18/2008	05/13/2008	05/13/2008	08/28/2008	08/28/2008	12/01/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		0.9 U		1 U		1 U
bis(2-Chloroethyl) ether	8270C	1 U		0.9 U		1 U		1 U
bis(2-Chloroisopropyl) ether	8270C	1 U		0.9 U		1 U		1 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 U		0.9 U		1 U		1 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		0.9 U		1 U		1 U
Diethyl phthalate	8270C	2 U		2 U		2 R		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 R		2 U
Di-n-butyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 U		0.9 U		1 U		1 U
Fluorene	8270C, 8310	1 U		0.9 U		1 U		1 U
Hexachlorobenzene	8270C	1 U		0.9 U		1 U		1 U
Hexachlorobutadiene	8270C	1 U		0.9 U		1 U		1 U
Hexachloroethane	8270C	1 U		0.9 U		1 U		1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		0.9 U		1 U		1 U
Isophorone	8270C	1 U		0.9 U		1 U		1 U
Naphthalene	8270C, 8310	1 U		0.9 U		1 U		1 U
Nitrobenzene	8270C, 8330	1 U		0.9 U		1 U		1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U		0.9 U	0.0041	1 U		1 U
n-Nitrosodiethylamine	521				0.002 U			
n-Nitrosodimethylamine	1625M, 521, 8270C		0.12		0.59	2 R	0.034 U	2 U
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		0.9 U		1 U		1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 U		0.9 U		1 U		1 U
Phenol	8270C	1 U		0.9 U		1 U		1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-18	HAR-20	HAR-20	HAR-20	HAR-20	HAR-20	HAR-20
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		12/01/2008	03/11/2008	03/11/2008	05/13/2008	05/13/2008	08/20/2008	08/20/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		0.9 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		0.9 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		0.9 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		0.9 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		19 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		0.9 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		0.9 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		0.9 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		0.9 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		0.9 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		9 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		0.9 U		1 U	
Acenaphthylene	8270C, 8310		1 U		0.9 U		1 U	
Anthracene	8270C, 8310		1 U		0.9 U		1 U	
Benzidine	8270C		19 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 U		0.9 U		1 Ū	
Benzo(k)fluoranthene	8270C, 8310		1 U		0.9 U		1 U	

TABLE VIII SUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-18	HAR-20	HAR-20	HAR-20	HAR-20	HAR-20	HAR-20
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		12/01/2008	03/11/2008	03/11/2008	05/13/2008	05/13/2008	08/20/2008	08/20/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		0.9 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		0.9 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		0.9 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		0.9 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		0.9 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		0.9 U		1 U	
Fluorene	8270C, 8310		1 U		0.9 U		1 U	
Hexachlorobenzene	8270C		1 U		0.9 U		1 U	
Hexachlorobutadiene	8270C		1 U		0.9 U		1 U	
Hexachloroethane	8270C		1 U		0.9 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		0.9 U		1 U	
Isophorone	8270C		1 U		0.9 U		1 U	
Naphthalene	8270C, 8310		1 U		0.9 U		1 U	
Nitrobenzene	8270C, 8330		1 U		0.9 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U		0.9 U	0.002 U	1 U	
n-Nitrosodiethylamine	521					0.002 U		
n-Nitrosodimethylamine	1625M, 521, 8270C	0.25 J		0.023		0.009	2 U	0.055 U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		0.9 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		0.9 U		1 U	
Phenol	8270C		1 U		0.9 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

See last page of table for notes and abbreviations. Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-20	HAR-20	HAR-26	HAR-26	HAR-26	HAR-26	OS-28
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Lancaster	Lancaster	Lancaster	Weck
Collection Date:		11/06/2008	11/06/2008	02/08/2008	05/19/2008	08/20/2008	11/04/2008	03/04/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U						
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U						
1,3-Dinitrobenzene	8270C, 8330	2 U						
1-Methyl naphthalene	8310			0.48 U	0.24 U	0.24 U	0.24 U	
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U						
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U						
2,4-Dimethylphenol	8270C	3 U						
2,4-Dinitrophenol	8270C	20 U						
2,4-Dinitrotoluene	8270C, 8330	1 R						
2,6-Dinitrotoluene	8270C, 8330	1 R						
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U						
2-Chlorophenol	8270C	1 U						
2-Methylnaphthalene	8310			0.48 U	0.24 U	0.24 U	0.24 U	
2-Nitrophenol	8270C	1 U						
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U						
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U						
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U						
4-Chlorophenylphenyl ether	8270C	2 U						
4-Nitrophenol	8270C	10 U						
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		0.48 U	0.49 U	0.48 U	0.49 U	
Acenaphthylene	8270C, 8310	1 U		0.48 U	0.97 U	0.96 U	0.98 U	
Anthracene	8270C, 8310	1 U		0.038 U	0.051 J	0.021 J	0.079 J	
Benzidine	8270C	20 U						
Benzo(a)anthracene	8270C, 8310	1 U		0.019 U	0.0097 U	0.0096 U	0.0098 U	
Benzo(a)pyrene	8270C, 8310	1 U		0.019 U	0.0097 U	0.0096 U	0.0098 U	
Benzo(b)fluoranthene	8270C, 8310	1 U		0.038 U	0.0078 U	0.0076 U	0.0078 U	
Benzo(ghi)perylene	8270C, 8310	1 U		0.095 U	0.058 U	0.057 U	0.059 U	
Benzo(k)fluoranthene	8270C, 8310	1 U		0.019 U	0.0078 U	0.0076 U	0.0078 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		HAR-20	HAR-20	HAR-26	HAR-26	HAR-26	HAR-26	OS-28
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Lancaster	Lancaster	Lancaster	Weck
Collection Date:		11/06/2008	11/06/2008	02/08/2008	05/19/2008	08/20/2008	11/04/2008	03/04/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U						
bis(2-Chloroethyl) ether	8270C	1 U						
bis(2-Chloroisopropyl) ether	8270C	1 U						
bis(2-Ethylhexyl) phthalate	8270C	2 U						
Butyl benzyl phthalate	8270C	2 U						
Chrysene	8270C, 8310	1 U		0.076 U	0.039 U	0.038 U	0.039 U	
Dibenzo(a,h)anthracene	8270C, 8310	1 U		0.038 U	0.019 U	0.019 U	0.02 U	
Diethyl phthalate	8270C	2 R						
Dimethyl phthalate	8270C	2 U						
Di-n-butyl phthalate	8270C	2 U						
Di-n-octyl phthalate	8270C	2 U						
Fluoranthene	8270C, 8310	1 U		0.038 U	0.019 U	0.019 U	0.02 U	
Fluorene	8270C, 8310	1 U		0.48 U	0.097 U	0.096 U	0.098 U	
Hexachlorobenzene	8270C	1 U						
Hexachlorobutadiene	8270C	1 U						
Hexachloroethane	8270C	1 U						
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		0.076 U	0.039 U	0.038 U	0.039 U	
Isophorone	8270C	1 U						
Naphthalene	8270C, 8310	1 U		0.48 U	0.97 U	0.96 U	0.98 U	
Nitrobenzene	8270C, 8330	1 U						
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U						
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	0.043 J					0.00054 U
n-Nitrosodiphenylamine	8270C	2 U						
p-Chloro-m-cresol	8270C	1 U						
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U						
PETN	8330							
Phenanthrene	8270C, 8310	1 U		0.076 U	0.039 U	0.038 U	0.039 U	
Phenol	8270C	1 U						
Pyrene	8310			0.17 U	0.097 U	0.096 U	0.098 U	
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-01						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/26/2008	05/05/2008	05/05/2008	08/28/2008	08/28/2008	11/18/2008	11/18/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	0.9 U	1 U		1 U		0.9 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	0.9 U	1 U		1 U		0.9 U	
1,3-Dinitrobenzene	8270C, 8330	2 U	2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	0.9 U	1 U		1 U		0.9 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	0.9 U	1 U		1 U		0.9 U	
2,4-Dimethylphenol	8270C	3 U	3 U		3 U		3 U	
2,4-Dinitrophenol	8270C	19 U	19 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330	0.9 U	1 U		1 U		0.9 U	
2,6-Dinitrotoluene	8270C, 8330	0.9 U	1 U		1 U		0.9 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U	2 U		2 U		2 U	
2-Chlorophenol	8270C	0.9 U	1 U		1 U		0.9 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	0.9 U	1 U		1 U		0.9 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U	2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U	5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	0.9 U	1 U		1 U		0.9 U	
4-Chlorophenylphenyl ether	8270C	2 U	2 U		2 U		2 U	
4-Nitrophenol	8270C	9 U	10 U		10 U		9 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Acenaphthylene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Anthracene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Benzidine	8270C	19 U	19 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Benzo(a)pyrene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Benzo(b)fluoranthene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Benzo(ghi)perylene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Benzo(k)fluoranthene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-01						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/26/2008	05/05/2008	05/05/2008	08/28/2008	08/28/2008	11/18/2008	11/18/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	0.9 U	1 U		1 U		0.9 U	
bis(2-Chloroethyl) ether	8270C	0.9 U	1 U		1 U		0.9 U	
bis(2-Chloroisopropyl) ether	8270C	0.9 U	1 U		1 U		0.9 U	
bis(2-Ethylhexyl) phthalate	8270C	2 U	2 U		2 U		2 U	
Butyl benzyl phthalate	8270C	2 U	2 U		2 U		2 U	
Chrysene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Dibenzo(a,h)anthracene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Diethyl phthalate	8270C	2 U	2 U		2 R		2 U	
Dimethyl phthalate	8270C	2 U	2 U		2 R		2 U	
Di-n-butyl phthalate	8270C	2 U	2 U		2 U		2 U	
Di-n-octyl phthalate	8270C	2 U	2 U		2 U		2 U	
Fluoranthene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Fluorene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Hexachlorobenzene	8270C	0.9 U	1 U		1 U		0.9 U	
Hexachlorobutadiene	8270C	0.9 U	1 U		1 U		0.9 U	
Hexachloroethane	8270C	0.9 U	1 U		1 U		0.9 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Isophorone	8270C	0.9 U	1 U		1 U		0.9 U	
Naphthalene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Nitrobenzene	8270C, 8330	0.9 U	1 U		1 U		0.9 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	0.9 U	1 U	0.002 U	1 U		0.9 U	
n-Nitrosodiethylamine	521			0.002 U				
n-Nitrosodimethylamine	1625M, 521, 8270C	0.02		0.011	2 R	0.02 U	2 U	0.012 U
n-Nitrosodiphenylamine	8270C	2 U	2 U		2 U		2 U	
p-Chloro-m-cresol	8270C	0.9 U	1 U		1 U		0.9 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U	3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310	0.9 U	1 U		1 U		0.9 U	
Phenol	8270C	0.9 U	1 U		1 U		0.9 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-02	RD-02	RD-02	RD-02	RD-02	RD-02	RD-04
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/28/2008	02/28/2008	05/08/2008	05/08/2008	11/05/2008	11/05/2008	02/27/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		0.9 U		0.9 U		1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		0.9 U		0.9 U		1 U
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		0.9 U		0.9 U		1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		0.9 U		0.9 U		1 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	19 U		19 U		19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	1 U		0.9 U		0.9 U		1 U
2,6-Dinitrotoluene	8270C, 8330	1 U		0.9 U		0.9 U		1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		0.9 U		0.9 U		1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		0.9 U		0.9 U		1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		0.9 U		0.9 U		1 U
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U		2 U
4-Nitrophenol	8270C	10 U		9 U		9 U		10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Acenaphthylene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Anthracene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Benzidine	8270C	19 U		19 U		19 U		19 U
Benzo(a)anthracene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Benzo(a)pyrene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Benzo(b)fluoranthene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Benzo(ghi)perylene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Benzo(k)fluoranthene	8270C, 8310	1 U		0.9 U		0.9 U		1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-02	RD-02	RD-02	RD-02	RD-02	RD-02	RD-04
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/28/2008	02/28/2008	05/08/2008	05/08/2008	11/05/2008	11/05/2008	02/27/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		0.9 U		0.9 U		1 U
bis(2-Chloroethyl) ether	8270C	1 U		0.9 U		0.9 U		1 U
bis(2-Chloroisopropyl) ether	8270C	1 U		0.9 U		0.9 U		1 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Diethyl phthalate	8270C	2 U		2 U		2 U		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-butyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Fluorene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Hexachlorobenzene	8270C	1 U		0.9 U		0.9 U		1 U
Hexachlorobutadiene	8270C	1 U		0.9 U		0.9 U		1 U
Hexachloroethane	8270C	1 U		0.9 U		0.9 U		1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Isophorone	8270C	1 U		0.9 U		0.9 U		1 U
Naphthalene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Nitrobenzene	8270C, 8330	1 U		0.9 U		0.9 U		1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U		0.9 U	0.002 U	0.9 U		1 U
n-Nitrosodiethylamine	521				0.002 U			
n-Nitrosodimethylamine	1625M, 521, 8270C		0.0031		0.0057	2 U	0.005 U	
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		0.9 U		0.9 U		1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 U		0.9 U		0.9 U		1 U
Phenol	8270C	1 U		0.9 U		0.9 U		1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-04						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/27/2008	02/27/2008	02/27/2008	05/08/2008	05/08/2008	08/20/2008	08/20/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		19 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		10 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		1 U	
Acenaphthylene	8270C, 8310		1 U		1 U		1 U	
Anthracene	8270C, 8310		1 U		1 U		1 U	
Benzidine	8270C		19 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 U		1 U		1 U	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-04						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/27/2008	02/27/2008	02/27/2008	05/08/2008	05/08/2008	08/20/2008	08/20/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		1 U	
Fluorene	8270C, 8310		1 U		1 U		1 U	
Hexachlorobenzene	8270C		1 U		1 U		1 U	
Hexachlorobutadiene	8270C		1 U		1 U		1 U	
Hexachloroethane	8270C		1 U		1 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		1 U	
Isophorone	8270C		1 U		1 U		1 U	
Naphthalene	8270C, 8310		1 U		1 U		1 U	
Nitrobenzene	8270C, 8330		1 U		1 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U		1 U	0.002 U	1 U	
n-Nitrosodiethylamine	521					0.002 U		
n-Nitrosodimethylamine	1625M, 521, 8270C	0.00076 U		0.00076 U		0.0038	2 U	0.005 U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		1 U	
Phenol	8270C		1 U		1 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

	RD-04	RD-04	RD-08	RD-08	RD-08	RD-08	RD-09
	Primary	Primary	Primary	Primary	Primary	Primary	Primary
	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth
	Lancaster	Weck	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
	10/29/2008	10/29/2008	03/03/2008	05/02/2008	09/04/2008	11/18/2008	05/15/2008
8270C	0.9 U						1 U
8330							
8270C	0.9 U						1 U
8270C, 8330	2 R						2 U
8310			0.48 U	0.24 U	0.24 U	0.24 U	
8330							
8270C	0.9 U						1 U
8330							
8270C	0.9 R						1 U
8270C	3 U						3 U
8270C	19 U						21 U
							1 U
							1 U
	2 U						2 U
	0.9 U						1 Ū
			0.48 U	0.24 U	0.24 U	0.24 U	
	0.9 R						1 U
	2 R						2 U
	5 U						5 U
	09 R						1 U
							2 U
							11 U
	09 R		0.48 U	0.47 U	0.48 U	0.48 U	1 U
							1 U
							1 U
						0.02 0	21 U
							1 U
							1 U
							1 U
							1 U
8270C, 8310	0.9 U		0.030 U	0.0076 U	0.0076 U	0.0077 U	1 U
	8270C 8270C, 8330 8310 8330 8270C 8330 8270C 8270C 8270C, 8330 8270C, 8330 8270C, 8330 8270C 8310 8270C 8310 8270C 8330 8270C, 8310 8270C, 8310	Primary Chatsworth Lancaster 10/29/2008 8270C 0.9 U 8330 8270C, 8330 2 R 8310 8330 8270C 0.9 U 8330 8270C 0.9 U 8330 8270C 0.9 U 8330 8270C 0.9 R 8270C 3 U 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C 2 U 8270C 0.9 U 8310 8270C 2 U 8270C 0.9 U 8310 8270C 2 R 8330 8270C 0.9 R 8330 8270C 19 U 8330 8270C 19 U 8330 8270C 19 U 8370C 19 U 8270C, 8310 0.9 R	Primary Chatsworth Lancaster 10/29/2008 Primary Chatsworth Weck 10/29/2008 Primary Chatsworth Weck 10/29/2008 8270C 0.9 U 8330 8330 8270C, 8330 2 R 8310 8330 8270C 0.9 U 8270C 0.9 R 8270C 3 U 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C 2 U 8270C 2 U 8270C 0.9 R 8330 8270C 0.9 R 8330 8270C 2 R <td< td=""><td>Primary Chatsworth Lancaster 10/29/2008 Primary Chatsworth Weck Lancaster 10/29/2008 Primary Chatsworth Weck Lancaster 03/03/2008 8270C 0.9 U 8330 8270C, 8330 2 R 8270C, 8330 2 R 8310 8330 8270C 0.9 U 8330 8270C 0.9 U 8270C 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C 2 U 8270C 0.9 U 8270C 0.9 R 8270C 2 R </td><td>Primary Chatsworth Lancaster Lancaster 10/29/2008 Primary Chatsworth Chatsworth Lancaster 10/29/2008 Primary Chatsworth Chatsworth Lancaster Lancaster 10/29/2008 Primary Chatsworth Lancaster 10/29/2008 Primary Chatsworth Chatsworth Lancaster 10/29/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/20/2008 Primary Chatsworth Lancaster 10/20/20/2008 Primary Chatsworth Lancaster 10/20/20/2008 Primary Chatsworth Lancaster 10/20/20/20/20/20/20/20/20/20/20/20/20/20</td><td> Primary Chatsworth Lancaster Lancaster 10/29/2008</td><td>Primary Chatsworth Lancaster taleases Primary Chatsworth Lancaster taleases</td></td<>	Primary Chatsworth Lancaster 10/29/2008 Primary Chatsworth Weck Lancaster 10/29/2008 Primary Chatsworth Weck Lancaster 03/03/2008 8270C 0.9 U 8330 8270C, 8330 2 R 8270C, 8330 2 R 8310 8330 8270C 0.9 U 8330 8270C 0.9 U 8270C 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C, 8330 0.9 R 8270C 2 U 8270C 0.9 U 8270C 0.9 R 8270C 2 R	Primary Chatsworth Lancaster Lancaster 10/29/2008 Primary Chatsworth Chatsworth Lancaster 10/29/2008 Primary Chatsworth Chatsworth Lancaster Lancaster 10/29/2008 Primary Chatsworth Lancaster 10/29/2008 Primary Chatsworth Chatsworth Lancaster 10/29/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/2008 Primary Chatsworth Lancaster 10/20/20/2008 Primary Chatsworth Lancaster 10/20/20/2008 Primary Chatsworth Lancaster 10/20/20/2008 Primary Chatsworth Lancaster 10/20/20/20/20/20/20/20/20/20/20/20/20/20	Primary Chatsworth Lancaster Lancaster 10/29/2008	Primary Chatsworth Lancaster taleases Primary Chatsworth Lancaster taleases

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-04	RD-04	RD-08	RD-08	RD-08	RD-08	RD-09
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:		10/29/2008	10/29/2008	03/03/2008	05/02/2008	09/04/2008	11/18/2008	05/15/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	0.9 U						1 U
bis(2-Chloroethyl) ether	8270C	0.9 R						1 U
bis(2-Chloroisopropyl) ether	8270C	0.9 U						1 U
bis(2-Ethylhexyl) phthalate	8270C	2 U						2 U
Butyl benzyl phthalate	8270C	2 U						2 U
Chrysene	8270C, 8310	0.9 R		0.077 U	0.038 U	0.038 U	0.039 U	1 U
Dibenzo(a,h)anthracene	8270C, 8310	0.9 U		0.038 U	0.019 U	0.019 U	0.019 U	1 U
Diethyl phthalate	8270C	2 R						2 U
Dimethyl phthalate	8270C	2 U						2 U
Di-n-butyl phthalate	8270C	2 R						2 U
Di-n-octyl phthalate	8270C	2 U						2 U
Fluoranthene	8270C, 8310	0.9 R		0.038 U	0.019 U	0.019 U	0.019 U	1 U
Fluorene	8270C, 8310	0.9 R		0.48 U	0.094 U	0.095 U	0.097 U	1 U
Hexachlorobenzene	8270C	0.9 R						1 U
Hexachlorobutadiene	8270C	0.9 U						1 U
Hexachloroethane	8270C	0.9 U						1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.9 U		0.077 U	0.038 U	0.038 U	0.039 U	1 U
Isophorone	8270C	0.9 R						1 U
Naphthalene Naphthalene	8270C, 8310	0.9 R		0.48 U	0.94 U	0.95 U	0.97 U	1 U
Nitrobenzene	8270C, 8330	0.9 R						1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	0.9 U						1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	0.005* U					
n-Nitrosodiphenylamine	8270C	2 U						2 U
p-Chloro-m-cresol	8270C	0.9 U						1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U						3 U
PETN	8330							
Phenanthrene	8270C, 8310	0.9 R		0.077 U	0.038 U	0.038 U	0.039 U	1 U
Phenol	8270C	0.9 U						1 U
Pyrene	8310			0.17 U	0.094 U	0.095 U	0.097 U	
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-09	RD-09	RD-09	RD-09	RD-09	RD-10	RD-10
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		05/15/2008	08/20/2008	08/20/2008	10/28/2008	10/28/2008	02/28/2008	02/28/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		19 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		10 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		1 U	
Acenaphthylene	8270C, 8310		1 U		1 U		1 U	
Anthracene	8270C, 8310		1 U		1 U		1 U	
Benzidine	8270C		19 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 Ū		1 U		1 Ū	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-09	RD-09	RD-09	RD-09	RD-09	RD-10	RD-10
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		05/15/2008	08/20/2008	08/20/2008	10/28/2008	10/28/2008	02/28/2008	02/28/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		3 J		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		1 U	
Fluorene	8270C, 8310		1 U		1 U		1 U	
Hexachlorobenzene	8270C		1 U		1 U		1 U	
Hexachlorobutadiene	8270C		1 U		1 U		1 U	
Hexachloroethane	8270C		1 U		1 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		1 U	
Isophorone	8270C		1 U		1 U		1 U	
Naphthalene	8270C, 8310		1 U		1 U		1 U	
Nitrobenzene	8270C, 8330		1 U		1 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U		1 U		1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U	2 U	0.005 U	2 U	0.005* U		0.00042 U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		1 U	
Phenol	8270C		1 U		1 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-10	RD-10	RD-10	RD-10	RD-10	RD-10	RD-11
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		05/06/2008	05/06/2008	08/26/2008	08/26/2008	10/29/2008	10/29/2008	02/12/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		1 U		1 U		
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		1 U		1 U		
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 R		
1-Methyl naphthalene	8310							0.61 U
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		1 U		1 U		
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		1 U		1 R		
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		
2,4-Dinitrophenol	8270C	19 U		19 U		20 U		
2,4-Dinitrotoluene	8270C, 8330	1 U		1 U		1 R		
2,6-Dinitrotoluene	8270C, 8330	1 U		1 U		1 R		
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		
2-Chlorophenol	8270C	1 U		1 U		1 U		
2-Methylnaphthalene	8310							0.61 U
2-Nitrophenol	8270C	1 U		1 U		1 R		
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 R		
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		1 U		1 R		
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 R		
4-Nitrophenol	8270C	10 U		10 U		10 U		
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		1 U		1 R		0.61 U
Acenaphthylene	8270C, 8310	1 U		1 U		1 R		0.61 U
Anthracene	8270C, 8310	1 U		1 U		1 R		0.5 U
Benzidine	8270C	19 U		19 U		20 U		
Benzo(a)anthracene	8270C, 8310	1 U		1 U		1 U		0.025 U
Benzo(a)pyrene	8270C, 8310	1 U		1 U		1 U		0.025 U
Benzo(b)fluoranthene	8270C, 8310	1 U		1 U		1 U		0.049 U
Benzo(ghi)perylene	8270C, 8310	1 U		1 U		1 U		0.12 U
Benzo(k)fluoranthene	8270C, 8310	1 U		1 U		1 U		0.025 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-10	RD-10	RD-10	RD-10	RD-10	RD-10	RD-11
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		05/06/2008	05/06/2008	08/26/2008	08/26/2008	10/29/2008	10/29/2008	02/12/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		1 U		1 U		
bis(2-Chloroethyl) ether	8270C	1 U		1 U		1 R		
bis(2-Chloroisopropyl) ether	8270C	1 U		1 U		1 U		
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		3 J,L		
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		
Chrysene	8270C, 8310	1 U		1 U		1 R		0.098 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		1 U		1 U		0.049 U
Diethyl phthalate	8270C	2 U		2 U		2 R		
Dimethyl phthalate	8270C	2 U		2 U		2 U		
Di-n-butyl phthalate	8270C	2 U		2 U		2 R		
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		
Fluoranthene	8270C, 8310	1 U		1 U		1 R		0.049 U
Fluorene	8270C, 8310	1 U		1 U		1 R		0.61 U
Hexachlorobenzene	8270C	1 U		1 U		1 R		
Hexachlorobutadiene	8270C	1 U		1 U		1 U		
Hexachloroethane	8270C	1 U		1 U		1 U		
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		1 U		1 U		0.098 U
Isophorone	8270C	1 U		1 U		1 R		
Naphthalene	8270C, 8310	1 U		1 U		1 R		0.61 U
Nitrobenzene	8270C, 8330	1 U		1 U		1 R		
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U		1 U		1 U		
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C		0.002 U	2 U	0.005 U	2 U	0.005* U	
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		
p-Chloro-m-cresol	8270C	1 U		1 U		1 U		
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		
PETN	8330							
Phenanthrene	8270C, 8310	1 U		1 U		1 R		0.098 U
Phenol	8270C	1 U		1 U		1 U		
Pyrene	8310							0.22 U
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-11	RD-11	RD-12	RD-12	RD-12	RD-12	RD-13
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster						
Collection Date:		05/19/2008	09/04/2008	02/08/2008	05/01/2008	09/04/2008	11/14/2008	02/20/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C							
1,2-Dinitrobenzene	8330							0.2 U
1,2-Diphenylhydrazine	8270C							
1,3-Dinitrobenzene	8270C, 8330							0.2 U
1-Methyl naphthalene	8310	0.24 U	0.25 U	0.48 U	0.24 U	0.24 U	0.24 U	
1-Nitronaphthalene	8330							0.2 U
2,4,6-Trichlorophenol	8270C							
2,4,6-Trinitrotoluene	8330							0.2 U
2,4-Dichlorophenol	8270C							
2,4-Dimethylphenol	8270C							
2,4-Dinitrophenol	8270C							
2,4-Dinitrotoluene	8270C, 8330							0.2 U
2.6-Dinitrotoluene	8270C, 8330							0.2 U
2-Amino-4,6-Dinitrotoluene	8330							0.2 U
2-Chloronaphthalene	8270C							
2-Chlorophenol	8270C							
2-Methylnaphthalene	8310	0.24 U	0.25 U	0.48 U	0.24 U	0.24 U	0.24 U	
2-Nitrophenol	8270C							
2-Nitrotoluene	8330							0.2 U
3,3'-Dichlorobenzidine	8270C							
3-Nitrotoluene	8330							0.4 U
4,6-Dinitro-o-cresol	8270C							
4-Am-2.6-DNT	8330							0.3 U
4-Bromophenyl phenyl ether	8270C							
4-Chlorophenylphenyl ether	8270C							
4-Nitrophenol	8270C							
4-Nitrotoluene	8330							0.6 U
Acenaphthene	8270C, 8310	0.48 U	0.5 U	0.48 U	0.47 U	0.49 U	0.48 U	
Acenaphthylene	8270C, 8310	0.97 U	1 U	0.48 U	0.95 U	0.98 U	0.96 U	
Anthracene	8270C, 8310	0.19	0.3 U	0.038 U	0.019 U	0.02 U	0.019 U	
Benzidine	8270C							
Benzo(a)anthracene	8270C, 8310	0.0097 U	0.01 U	0.019 U	0.0095 U	0.0098 U	0.0096 U	
Benzo(a)pyrene	8270C, 8310	0.0097 U	0.01 U	0.019 U	0.0095 U	0.0098 U	0.0096 U	
Benzo(b)fluoranthene	8270C, 8310	0.0037 U	0.008 U	0.038 U	0.0076 U	0.0078 U	0.0077 U	
Benzo(ghi)perylene	8270C, 8310	0.058 U	0.06 U	0.095 U	0.057 U	0.059 U	0.057 U	
Benzo(k)fluoranthene	8270C, 8310	0.0078 U	0.008 U	0.019 U	0.007 U	0.0078 U	0.0077 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-11	RD-11	RD-12	RD-12	RD-12	RD-12	RD-13
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster						
Collection Date:		05/19/2008	09/04/2008	02/08/2008	05/01/2008	09/04/2008	11/14/2008	02/20/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C							
bis(2-Chloroethyl) ether	8270C							
bis(2-Chloroisopropyl) ether	8270C							
bis(2-Ethylhexyl) phthalate	8270C							
Butyl benzyl phthalate	8270C							
Chrysene	8270C, 8310	0.039 U	0.04 U	0.076 U	0.038 U	0.039 U	0.038 U	
Dibenzo(a,h)anthracene	8270C, 8310	0.019 U	0.02 U	0.038 U	0.019 U	0.02 U	0.019 U	
Diethyl phthalate	8270C							
Dimethyl phthalate	8270C							
Di-n-butyl phthalate	8270C							
Di-n-octyl phthalate	8270C							
Fluoranthene	8270C, 8310	0.019 U	0.02 U	0.038 U	0.019 U	0.02 U	0.019 U	
Fluorene	8270C, 8310	0.097 U	0.1 U	0.48 U	0.095 U	0.098 U	0.096 U	
Hexachlorobenzene	8270C							
Hexachlorobutadiene	8270C							
Hexachloroethane	8270C							
HMX	8330							0.65 U
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.039 U	0.04 U	0.076 U	0.038 U	0.039 U	0.038 U	
Isophorone	8270C							
Naphthalene	8270C, 8310	0.97 U	1 U	0.48 U	0.95 U	0.98 U	0.96 U	
Nitrobenzene	8270C, 8330							0.2 U
Nitroglycerin	8330							5.2 U
n-Nitrosodi-n-propylamine	8270C, 521							
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C							
n-Nitrosodiphenylamine	8270C							
p-Chloro-m-cresol	8270C							
p-Dinitrobenzene	8330							0.2 U
Pentachlorophenol	8270C							
PETN	8330							6 U
Phenanthrene	8270C, 8310	0.039 U	0.04 U	0.076 U	0.038 U	0.039 U	0.038 U	
Phenol	8270C							
Pyrene	8310	0.097 U	0.1 U	0.17 U	0.095 U	0.098 U	0.096 U	
RDX	8330							0.2 U
sym-Trinitrobenzene	8330							0.2 U
Tetryl	8330							0.3 U

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-13						
Sample Type:		Primary	Primary	Primary	Duplicate	Primary	Primary	Duplicate
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Weck	Lancaster	Weck	Weck
Collection Date:		02/20/2008	05/13/2008	05/13/2008	05/13/2008	09/03/2008	09/03/2008	09/03/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C							
1,2-Dinitrobenzene	8330		0.2 U			0.2 U		
1,2-Diphenylhydrazine	8270C							
1,3-Dinitrobenzene	8270C, 8330		0.2 U			0.2 U		
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330		0.2 U			0.2 U		
2,4,6-Trichlorophenol	8270C							
2,4,6-Trinitrotoluene	8330		0.2 U			0.2 U		
2,4-Dichlorophenol	8270C							
2,4-Dimethylphenol	8270C							
2,4-Dinitrophenol	8270C							
2,4-Dinitrotoluene	8270C, 8330		0.2 U			0.2 U		
2,6-Dinitrotoluene	8270C, 8330		0.2 U			0.2 U		
2-Amino-4,6-Dinitrotoluene	8330		0.2 U			0.2 U		
2-Chloronaphthalene	8270C							
2-Chlorophenol	8270C							
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C							
2-Nitrotoluene	8330		0.2 U			0.2 U		
3,3'-Dichlorobenzidine	8270C							
3-Nitrotoluene	8330		0.4 U			0.4 U		
4,6-Dinitro-o-cresol	8270C							
4-Am-2,6-DNT	8330		0.3 U			0.3 U		
4-Bromophenyl phenyl ether	8270C							
4-Chlorophenylphenyl ether	8270C							
4-Nitrophenol	8270C							
4-Nitrotoluene	8330		0.6 U			0.6 U		
Acenaphthene	8270C, 8310							
Acenaphthylene	8270C, 8310							
Anthracene	8270C, 8310							
Benzidine	8270C							
Benzo(a)anthracene	8270C, 8310							
Benzo(a)pyrene	8270C, 8310							
Benzo(b)fluoranthene	8270C, 8310							
Benzo(ghi)perylene	8270C, 8310							
Benzo(k)fluoranthene	8270C, 8310							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-13						
Sample Type:		Primary	Primary	Primary	Duplicate	Primary	Primary	Duplicate
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Weck	Lancaster	Weck	Weck
Collection Date:		02/20/2008	05/13/2008	05/13/2008	05/13/2008	09/03/2008	09/03/2008	09/03/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C							
bis(2-Chloroethyl) ether	8270C							
bis(2-Chloroisopropyl) ether	8270C							
bis(2-Ethylhexyl) phthalate	8270C							
Butyl benzyl phthalate	8270C							
Chrysene	8270C, 8310							
Dibenzo(a,h)anthracene	8270C, 8310							
Diethyl phthalate	8270C							
Dimethyl phthalate	8270C							
Di-n-butyl phthalate	8270C							
Di-n-octyl phthalate	8270C							
Fluoranthene	8270C, 8310							
Fluorene	8270C, 8310							
Hexachlorobenzene	8270C							
Hexachlorobutadiene	8270C							
Hexachloroethane	8270C							
HMX	8330		0.65 U			0.65 U		
Indeno(1,2,3-cd)pyrene	8270C, 8310							
Isophorone	8270C							
Naphthalene Naphthalene	8270C, 8310							
Nitrobenzene	8270C, 8330		0.2 U			0.2 U		
Nitroglycerin	8330		5.2 U			5.2 U		
n-Nitrosodi-n-propylamine	8270C, 521							
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.00028 U		0.002 U	0.002 U		0.005 U	0.005 U
n-Nitrosodiphenylamine	8270C							
p-Chloro-m-cresol	8270C							
p-Dinitrobenzene	8330		0.2 U			0.2 U		
Pentachlorophenol	8270C							
PETN	8330		6 U			6 U		
Phenanthrene	8270C, 8310							
Phenol	8270C							
Pyrene	8310							
RDX	8330		0.2 U			0.2 U		
sym-Trinitrobenzene	8330		0.2 U			0.2 U		
Tetryl	8330		0.3 U			0.3 U		

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-13	RD-13	RD-13	RD-30	RD-41A	RD-41A	RD-41A
Sample Type:		Primary	Primary	Duplicate	Primary	Primary	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Weck	Lancaster	Lancaster	Weck	Lancaster
Collection Date:		11/12/2008	11/12/2008	11/12/2008	08/13/2008	03/11/2008	03/11/2008	05/14/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C				1 U	1 U		1 U
1,2-Dinitrobenzene	8330	0.2 U						
1,2-Diphenylhydrazine	8270C				1 U	1 U		1 U
1,3-Dinitrobenzene	8270C, 8330	0.2 U			2 U	2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330	0.2 U						
2,4,6-Trichlorophenol	8270C				1 U	1 U		1 U
2,4,6-Trinitrotoluene	8330	0.2 U						
2,4-Dichlorophenol	8270C				1 U	1 U		1 U
2,4-Dimethylphenol	8270C				3 U	3 U		3 U
2,4-Dinitrophenol	8270C				20 U	19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	0.2 U			1 U	1 U		1 U
2,6-Dinitrotoluene	8270C, 8330	0.45 U			1 U	1 U		1 U
2-Amino-4,6-Dinitrotoluene	8330	0.2 U						
2-Chloronaphthalene	8270C				2 U	2 U		2 U
2-Chlorophenol	8270C				1 U	1 U		1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C				1 U	1 U		1 U
2-Nitrotoluene	8330	0.25 U						
3,3'-Dichlorobenzidine	8270C				2 U	2 U		2 U
3-Nitrotoluene	8330	0.4 U						
4,6-Dinitro-o-cresol	8270C				5 U	5 U		5 U
4-Am-2,6-DNT	8330	0.3 U						
4-Bromophenyl phenyl ether	8270C				1 U	1 U		1 U
4-Chlorophenylphenyl ether	8270C				2 U	2 U		2 U
4-Nitrophenol	8270C				10 U	10 U		10 U
4-Nitrotoluene	8330	0.6 U						
Acenaphthene	8270C, 8310				1 U	1 U		1 U
Acenaphthylene	8270C, 8310				1 U	1 U		1 U
Anthracene	8270C, 8310				1 U	1 U		1 U
Benzidine	8270C				20 U	19 U		19 U
Benzo(a)anthracene	8270C, 8310				1 U	1 U		1 U
Benzo(a)pyrene	8270C, 8310				1 U	1 U		1 U
Benzo(b)fluoranthene	8270C, 8310				1 U	1 U		1 U
Benzo(ghi)perylene	8270C, 8310				1 U	1 U		1 U
Benzo(k)fluoranthene	8270C, 8310				1 U	1 U		1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-13	RD-13	RD-13	RD-30	RD-41A	RD-41A	RD-41A
Sample Type:		Primary	Primary	Duplicate	Primary	Primary	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Weck	Lancaster	Lancaster	Weck	Lancaster
Collection Date:		11/12/2008	11/12/2008	11/12/2008	08/13/2008	03/11/2008	03/11/2008	05/14/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C				1 U	1 U		1 U
bis(2-Chloroethyl) ether	8270C				1 U	1 U		1 U
bis(2-Chloroisopropyl) ether	8270C				1 U	1 U		1 U
bis(2-Ethylhexyl) phthalate	8270C				2 U	2 U		2 U
Butyl benzyl phthalate	8270C				2 U	2 U		2 U
Chrysene	8270C, 8310				1 U	1 U		1 U
Dibenzo(a,h)anthracene	8270C, 8310				1 U	1 U		1 U
Diethyl phthalate	8270C				2 U	2 U		2 U
Dimethyl phthalate	8270C				2 U	2 U		2 U
Di-n-butyl phthalate	8270C				2 U	2 U		2 U
Di-n-octyl phthalate	8270C				2 U	2 U		2 U
Fluoranthene	8270C, 8310				1 U	1 U		1 U
Fluorene	8270C, 8310				1 U	1 U		1 U
Hexachlorobenzene	8270C				1 U	1 U		1 U
Hexachlorobutadiene	8270C				1 U	1 U		1 U
Hexachloroethane	8270C				1 U	1 U		1 U
HMX	8330	0.69 U						
Indeno(1,2,3-cd)pyrene	8270C, 8310				1 U	1 U		1 U
Isophorone	8270C				1 U	1 U		1 U
Naphthalene	8270C, 8310				1 U	1 U		1 U
Nitrobenzene	8270C, 8330	0.2 U			1 U	1 U		1 U
Nitroglycerin	8330	5.2 U						
n-Nitrosodi-n-propylamine	8270C, 521				1 U	1 U		1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C		0.005 U	0.005 U	2 U		0.0014 U	
n-Nitrosodiphenylamine	8270C				2 U	2 U		2 U
p-Chloro-m-cresol	8270C				1 U	1 U		1 U
p-Dinitrobenzene	8330	0.2 U						
Pentachlorophenol	8270C				3 U	3 U		3 U
PETN	8330	6 U						
Phenanthrene	8270C, 8310				1 U	1 U		1 U
Phenol	8270C				1 U	1 U		1 U
Pyrene	8310							
RDX	8330	0.2 U						
sym-Trinitrobenzene	8330	0.2 U						
Tetryl	8330	0.3 U						

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-41A	RD-41A	RD-41A	RD-41B	RD-41B	RD-41B	RD-41B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		05/14/2008	08/28/2008	08/28/2008	03/11/2008	03/11/2008	05/14/2008	05/14/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		20 U		19 U		20 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		10 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		1 U	
Acenaphthylene	8270C, 8310		1 U		1 U		1 U	
Anthracene	8270C, 8310		1 U		1 U		1 U	
Benzidine	8270C		20 U		19 U		20 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 U		1 U		1 U	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-41A	RD-41A	RD-41A	RD-41B	RD-41B	RD-41B	RD-41B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		05/14/2008	08/28/2008	08/28/2008	03/11/2008	03/11/2008	05/14/2008	05/14/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		1 U	
Diethyl phthalate	8270C		2 R		2 U		2 U	
Dimethyl phthalate	8270C		2 R		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		1 U	
Fluorene	8270C, 8310		1 U		1 U		1 U	
Hexachlorobenzene	8270C		1 U		1 U		1 U	
Hexachlorobutadiene	8270C		1 U		1 U		1 U	
Hexachloroethane	8270C		1 U		1 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		1 U	
Isophorone	8270C		1 U		1 U		1 U	
Naphthalene	8270C, 8310		1 U		1 U		1 U	
Nitrobenzene	8270C, 8330		1 U		1 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U		1 U		1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U	2 R	0.005 U		0.0012 U		0.002 U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		1 U	
Phenol	8270C		1 U		1 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-41B	RD-41B	RD-41B	RD-41B	RD-44	RD-44	RD-44
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Lancaster	Weck
Collection Date:		08/28/2008	08/28/2008	12/01/2008	12/01/2008	03/03/2008	05/07/2008	05/07/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		0.9 U		1 U	1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		0.9 U		1 U	1 U	
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U	2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		0.9 U		1 U	1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		0.9 U		1 U	1 U	
2,4-Dimethylphenol	8270C	3 U		3 U		3 U	3 U	
2,4-Dinitrophenol	8270C	20 U		19 U		19 U	19 U	
2,4-Dinitrotoluene	8270C, 8330	1 U		0.9 U		1 U	1 U	
2,6-Dinitrotoluene	8270C, 8330	1 U		0.9 U		1 U	1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U	2 U	
2-Chlorophenol	8270C	1 U		0.9 U		1 U	1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		0.9 U		1 U	1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U	2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U	5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		0.9 U		1 U	1 U	
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U	2 U	
4-Nitrophenol	8270C	10 U		9 U		10 U	10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Acenaphthylene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Anthracene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Benzidine	8270C	20 U		19 U		19 U	19 U	
Benzo(a)anthracene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Benzo(a)pyrene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Benzo(b)fluoranthene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Benzo(ghi)perylene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Benzo(k)fluoranthene	8270C, 8310	1 U		0.9 U		1 U	1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-41B	RD-41B	RD-41B	RD-41B	RD-44	RD-44	RD-44
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Lancaster	Weck
Collection Date:		08/28/2008	08/28/2008	12/01/2008	12/01/2008	03/03/2008	05/07/2008	05/07/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		0.9 U		1 U	1 U	
bis(2-Chloroethyl) ether	8270C	1 U		0.9 U		1 U	1 U	
bis(2-Chloroisopropyl) ether	8270C	1 U		0.9 U		1 U	1 U	
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U	2 U	
Butyl benzyl phthalate	8270C	2 U		2 U		2 U	2 U	
Chrysene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Dibenzo(a,h)anthracene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Diethyl phthalate	8270C	2 R		2 U		2 U	2 U	
Dimethyl phthalate	8270C	2 R		2 U		2 U	2 U	
Di-n-butyl phthalate	8270C	2 U		2 U		2 U	2 U	
Di-n-octyl phthalate	8270C	2 U		2 U		2 U	2 U	
Fluoranthene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Fluorene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Hexachlorobenzene	8270C	1 U		0.9 U		1 U	1 U	
Hexachlorobutadiene	8270C	1 U		0.9 U		1 U	1 U	
Hexachloroethane	8270C	1 U		0.9 U		1 U	1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Isophorone	8270C	1 U		0.9 U		1 U	1 U	
Naphthalene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Nitrobenzene	8270C, 8330	1 U		0.9 U		1 U	1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521	1 U		0.9 U		1 U	1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 R	0.005 U	2 U	0.005 U	0.00034 U		0.002 U
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U	2 U	
p-Chloro-m-cresol	8270C	1 U		0.9 U		1 U	1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U	3 U	
PETN	8330							
Phenanthrene	8270C, 8310	1 U		0.9 U		1 U	1 U	
Phenol	8270C	1 U		0.9 U		1 U	1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-44	RD-44	RD-44	RD-44	RD-44	RD-44	RD-49A
Sample Type:		Duplicate	Split	Primary	Primary	Duplicate	Split	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Babcock	Lancaster	Weck	Weck	TA-Denver	Lancaster
Collection Date:		05/07/2008	05/07/2008	10/30/2008	10/30/2008	10/30/2008	10/30/2008	03/11/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C			1 U				1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C			1 U				1 U
1,3-Dinitrobenzene	8270C, 8330			2 U				2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C			1 U				1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C			1 U				1 U
2,4-Dimethylphenol	8270C			3 U				3 U
2,4-Dinitrophenol	8270C			19 U				21 U
2,4-Dinitrotoluene	8270C, 8330			1 U				1 U
2,6-Dinitrotoluene	8270C, 8330			1 U				1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C			2 U				2 U
2-Chlorophenol	8270C			1 U				1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C			1 U				1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C			2 U				2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C			5 U				5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C			1 U				1 U
4-Chlorophenylphenyl ether	8270C			2 U				2 U
4-Nitrophenol	8270C			10 U				11 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310			1 U				1 U
Acenaphthylene	8270C, 8310			1 U				1 U
Anthracene	8270C, 8310			1 U				1 U
Benzidine	8270C			19 U				21 U
Benzo(a)anthracene	8270C, 8310			1 U				1 U
Benzo(a)pyrene	8270C, 8310			1 U				1 U
Benzo(b)fluoranthene	8270C, 8310			1 U				1 U
Benzo(ghi)perylene	8270C, 8310			1 U				1 U
Benzo(k)fluoranthene	8270C, 8310			1 U				1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-44	RD-44	RD-44	RD-44	RD-44	RD-44	RD-49A
Sample Type:		Duplicate	Split	Primary	Primary	Duplicate	Split	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Babcock	Lancaster	Weck	Weck	TA-Denver	Lancaster
Collection Date:		05/07/2008	05/07/2008	10/30/2008	10/30/2008	10/30/2008	10/30/2008	03/11/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C			1 U				1 U
bis(2-Chloroethyl) ether	8270C			1 U				1 U
bis(2-Chloroisopropyl) ether	8270C			1 U				1 U
bis(2-Ethylhexyl) phthalate	8270C			2 U				17
Butyl benzyl phthalate	8270C			2 U				2 U
Chrysene	8270C, 8310			1 U				1 U
Dibenzo(a,h)anthracene	8270C, 8310			1 U				1 U
Diethyl phthalate	8270C			2 U				2 U
Dimethyl phthalate	8270C			2 U				2 U
Di-n-butyl phthalate	8270C			2 U				2 U
Di-n-octyl phthalate	8270C			2 U				2 U
Fluoranthene	8270C, 8310			1 U				1 U
Fluorene	8270C, 8310			1 U				1 U
Hexachlorobenzene	8270C			1 U				1 U
Hexachlorobutadiene	8270C			1 U				1 U
Hexachloroethane	8270C			1 U				1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310			1 U				1 U
Isophorone	8270C			1 U				1 U
Naphthalene	8270C, 8310			1 U				1 U
Nitrobenzene	8270C, 8330			1 U				1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521			1 U				1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U	0.002 U	2 U	0.005* U	0.005* U	0.0048 U	
n-Nitrosodiphenylamine	8270C			2 U				2 U
p-Chloro-m-cresol	8270C			1 U				1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C			3 U				3 U
PETN	8330							
Phenanthrene	8270C, 8310			1 U				1 U
Phenol	8270C			1 U				1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-49A	RD-49A	RD-49A	RD-49A	RD-49A	RD-49A	RD-49B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Weck	Lancaster
Collection Date:		03/11/2008	05/14/2008	05/14/2008	09/02/2008	09/02/2008	12/02/2008	02/27/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		10 U			1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		10 U			1 U
1,3-Dinitrobenzene	8270C, 8330		2 U		19 U			2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		10 U			1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		10 U			1 U
2,4-Dimethylphenol	8270C		3 U		29 U			3 U
2,4-Dinitrophenol	8270C		20 U		190 U			19 U
2,4-Dinitrotoluene	8270C, 8330		1 U		10 U			1 U
2,6-Dinitrotoluene	8270C, 8330		1 U		10 U			1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		19 U			2 U
2-Chlorophenol	8270C		1 U		10 U			1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		10 U			1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		19 U			2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		48 U			5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		10 U			1 U
4-Chlorophenylphenyl ether	8270C		2 U		19 U			2 U
4-Nitrophenol	8270C		10 U		96 U			10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		10 U			1 U
Acenaphthylene	8270C, 8310		1 U		10 U			1 U
Anthracene	8270C, 8310		1 U		10 U			1 U
Benzidine	8270C		20 U		190 U			19 U
Benzo(a)anthracene	8270C, 8310		1 U		10 U			1 U
Benzo(a)pyrene	8270C, 8310		1 Ū		10 U			1 U
Benzo(b)fluoranthene	8270C, 8310		1 U		10 U			1 U
Benzo(ghi)perylene	8270C, 8310		1 Ū		10 U			1 U
Benzo(k)fluoranthene	8270C, 8310		1 U		10 U			1 U

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-49A	RD-49A	RD-49A	RD-49A	RD-49A	RD-49A	RD-49B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Weck	Lancaster
Collection Date:		03/11/2008	05/14/2008	05/14/2008	09/02/2008	09/02/2008	12/02/2008	02/27/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		10 U			1 U
bis(2-Chloroethyl) ether	8270C		1 U		10 U			1 U
bis(2-Chloroisopropyl) ether	8270C		1 U		10 U			1 U
bis(2-Ethylhexyl) phthalate	8270C		5		160			2 U
Butyl benzyl phthalate	8270C		2 U		19 U			2 U
Chrysene	8270C, 8310		1 U		10 U			1 U
Dibenzo(a,h)anthracene	8270C, 8310		1 U		10 U			1 U
Diethyl phthalate	8270C		2 U		19 U			2 U
Dimethyl phthalate	8270C		2 U		19 U			2 U
Di-n-butyl phthalate	8270C		2 U		19 U			2 U
Di-n-octyl phthalate	8270C		2 U		19 U			2 U
Fluoranthene	8270C, 8310		1 U		10 U			1 U
Fluorene	8270C, 8310		1 U		10 U			1 U
Hexachlorobenzene	8270C		1 U		10 U			1 U
Hexachlorobutadiene	8270C		1 U		10 U			1 U
Hexachloroethane	8270C		1 U		10 U			1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		10 U			1 U
Isophorone	8270C		1 U		10 U			1 U
Naphthalene	8270C, 8310		1 U		10 U			1 U
Nitrobenzene	8270C, 8330		1 U		10 U			1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U		10 U			1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.001 U		0.002 U	19 U	0.005 U	0.005 U	
n-Nitrosodiphenylamine	8270C		2 U		19 U			2 U
p-Chloro-m-cresol	8270C		1 U		10 U			1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		29 U			3 U
PETN	8330							
Phenanthrene	8270C, 8310		1 U		10 U			1 U
Phenol	8270C		1 U		10 U			1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-49B	RD-49B	RD-49B	RD-49B	RD-49B	RD-49C	RD-49C
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/27/2008	05/07/2008	05/07/2008	08/27/2008	08/27/2008	02/28/2008	02/28/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		19 U		19 U		21 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		10 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		1 U	
Acenaphthylene	8270C, 8310		1 U		1 U		1 U	
Anthracene	8270C, 8310		1 U		1 U		1 U	
Benzidine	8270C		19 U		19 U		21 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 U		1 U		1 U	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-49B	RD-49B	RD-49B	RD-49B	RD-49B	RD-49C	RD-49C
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/27/2008	05/07/2008	05/07/2008	08/27/2008	08/27/2008	02/28/2008	02/28/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		1 U	
Fluorene	8270C, 8310		1 U		1 U		1 U	
Hexachlorobenzene	8270C		1 U		1 U		1 U	
Hexachlorobutadiene	8270C		1 U		1 U		1 U	
Hexachloroethane	8270C		1 U		1 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		1 U	
Isophorone	8270C		1 U		1 U		1 U	
Naphthalene	8270C, 8310		1 U		1 U		1 U	
Nitrobenzene	8270C, 8330		1 U		1 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C, 521		1 U	0.002 U	1 U		1 U	
n-Nitrosodiethylamine	521			0.002 U				
n-Nitrosodimethylamine	1625M, 521, 8270C	0.00028 U		0.032	2 U	0.038		0.0059 J
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		1 U	
Phenol	8270C		1 U		1 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-49C	RD-49C	RD-49C	RD-49C	RD-49C	RD-51B	RD-51B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Weck	Lancaster	Weck
Collection Date:		08/19/2008	08/19/2008	11/10/2008	11/10/2008	11/10/2008	02/21/2008	02/21/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		1 U			1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		1 U			1 U	
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U			2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		1 U			1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		1 U			1 U	
2,4-Dimethylphenol	8270C	3 U		3 U			3 U	
2,4-Dinitrophenol	8270C	19 U		19 U			19 U	
2,4-Dinitrotoluene	8270C, 8330	1 U		1 U			1 U	
2,6-Dinitrotoluene	8270C, 8330	1 U		1 U			1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U			2 U	
2-Chlorophenol	8270C	1 U		1 U			1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		1 U			1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U			2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U			5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		1 U			1 U	
4-Chlorophenylphenyl ether	8270C	2 U		2 U			2 U	
4-Nitrophenol	8270C	10 U		10 U			10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		1 U			1 U	
Acenaphthylene	8270C, 8310	1 U		1 U			1 U	
Anthracene	8270C, 8310	1 U		1 U			1 U	
Benzidine	8270C	19 U		19 U			19 U	
Benzo(a)anthracene	8270C, 8310	1 U		1 U			1 U	
Benzo(a)pyrene	8270C, 8310	1 U		1 Ū			1 Ū	
Benzo(b)fluoranthene	8270C, 8310	1 U		1 U			1 U	
Benzo(ghi)perylene	8270C, 8310	1 U		1 U			1 U	
Benzo(k)fluoranthene	8270C, 8310	1 U		1 U			1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-49C	RD-49C	RD-49C	RD-49C	RD-49C	RD-51B	RD-51B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Weck	Lancaster	Weck
Collection Date:		08/19/2008	08/19/2008	11/10/2008	11/10/2008	11/10/2008	02/21/2008	02/21/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		1 U			1 U	
bis(2-Chloroethyl) ether	8270C	1 U		1 U			1 U	
bis(2-Chloroisopropyl) ether	8270C	1 U		1 U			1 U	
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U			2 U	
Butyl benzyl phthalate	8270C	2 U		2 U			2 U	
Chrysene	8270C, 8310	1 U		1 U			1 U	
Dibenzo(a,h)anthracene	8270C, 8310	1 U		1 U			1 U	
Diethyl phthalate	8270C	2 U		2 U			2 U	
Dimethyl phthalate	8270C	2 U		2 U			2 U	
Di-n-butyl phthalate	8270C	2 U		2 U			2 U	
Di-n-octyl phthalate	8270C	2 U		2 U			2 U	
Fluoranthene	8270C, 8310	1 U		1 U			1 U	
Fluorene	8270C, 8310	1 U		1 U			1 U	
Hexachlorobenzene	8270C	1 U		1 U			1 U	
Hexachlorobutadiene	8270C	1 U		1 U			1 U	
Hexachloroethane	8270C	1 U		1 U			1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		1 U			1 U	
Isophorone	8270C	1 U		1 U			1 U	
Naphthalene	8270C, 8310	1 U		1 U			1 U	
Nitrobenzene	8270C, 8330	1 U		1 U			1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	1 U		1 U			1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	0.006 U	2 U	0.0058* U	0.0062 U		0.00028 U
n-Nitrosodiphenylamine	8270C	2 U		2 U			2 U	
p-Chloro-m-cresol	8270C	1 U		1 U			1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U			3 U	
PETN	8330							
Phenanthrene	8270C, 8310	1 U		1 U			1 U	
Phenol	8270C	1 U		1 U			1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-51B	RD-51B	RD-51B	RD-51B	RD-51B	RD-51B	RD-51C
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		05/06/2008	05/06/2008	08/19/2008	08/19/2008	11/03/2008	11/03/2008	05/07/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		1 U		1 U		0.9 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		1 U		1 U		0.9 U
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		1 U		1 U		0.9 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		1 U		1 U		0.9 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	19 U		19 U		19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	1 U		1 U		1 R		0.9 U
2,6-Dinitrotoluene	8270C, 8330	1 U		1 U		1 R		0.9 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		1 U		1 U		0.9 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		1 U		1 U		0.9 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		1 U		1 U		0.9 U
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 R		2 U
4-Nitrophenol	8270C	10 U		10 U		10 U		9 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		1 U		1 U		0.9 U
Acenaphthylene	8270C, 8310	1 U		1 U		1 U		0.9 U
Anthracene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzidine	8270C	19 U		19 U		19 U		19 U
Benzo(a)anthracene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(a)pyrene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(b)fluoranthene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(ghi)perylene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(k)fluoranthene	8270C, 8310	1 U		1 U		1 U		0.9 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-51B	RD-51B	RD-51B	RD-51B	RD-51B	RD-51B	RD-51C
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		05/06/2008	05/06/2008	08/19/2008	08/19/2008	11/03/2008	11/03/2008	05/07/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		1 U		1 U		0.9 U
bis(2-Chloroethyl) ether	8270C	1 U		1 U		1 U		0.9 U
bis(2-Chloroisopropyl) ether	8270C	1 U		1 U		1 U		0.9 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 U		1 U		1 U		0.9 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		1 U		1 U		0.9 U
Diethyl phthalate	8270C	2 U		2 U		2 U		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-butyl phthalate	8270C	2 U		2 U		2 R		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 U		1 U		1 U		0.9 U
Fluorene	8270C, 8310	1 U		1 U		1 U		0.9 U
Hexachlorobenzene	8270C	1 U		1 U		1 U		0.9 U
Hexachlorobutadiene	8270C	1 U		1 U		1 U		0.9 U
Hexachloroethane	8270C	1 U		1 U		1 U		0.9 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		1 U		1 U		0.9 U
Isophorone	8270C	1 U		1 U		1 U		0.9 U
Naphthalene	8270C, 8310	1 U		1 U		1 U		0.9 U
Nitrobenzene	8270C, 8330	1 U		1 U		1 U		0.9 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	1 U		1 U		1 U		0.9 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C		0.002 U	2 U	0.005 U	2 U	0.005* U	
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		1 U		1 U		0.9 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 U		1 U		1 U		0.9 U
Phenol	8270C	1 U		1 U		1 U		0.9 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-51C						
Sample Type:		Primary	Primary	Primary	Primary	Primary	Duplicate	Split
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Weck	TA-Denver
Collection Date:		05/07/2008	08/26/2008	08/26/2008	11/03/2008	11/03/2008	11/03/2008	11/03/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		0.9 U			
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		0.9 U			
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U			
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		0.9 U			
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		0.9 U			
2,4-Dimethylphenol	8270C		3 U		3 U			
2,4-Dinitrophenol	8270C		20 U		19 U			
2,4-Dinitrotoluene	8270C, 8330		1 U		0.9 R			
2,6-Dinitrotoluene	8270C, 8330		1 U		0.9 R			
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U			
2-Chlorophenol	8270C		1 U		0.9 U			
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		0.9 U			
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U			
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U			
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		0.9 U			
4-Chlorophenylphenyl ether	8270C		2 U		2 R			
4-Nitrophenol	8270C		10 U		9 U			
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		0.9 U			
Acenaphthylene	8270C, 8310		1 U		0.9 U			
Anthracene	8270C, 8310		1 U		0.9 U			
Benzidine	8270C		20 U		19 U			
Benzo(a)anthracene	8270C, 8310		1 U		0.9 U			
Benzo(a)pyrene	8270C, 8310		1 Ū		0.9 U			
Benzo(b)fluoranthene	8270C, 8310		1 U		0.9 U			
Benzo(ghi)perylene	8270C, 8310		1 Ū		0.9 U			
Benzo(k)fluoranthene	8270C, 8310		1 U		0.9 U			

Haley & Aldrich, Inc.

TABLE VIII SUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-51C						
Sample Type:		Primary	Primary	Primary	Primary	Primary	Duplicate	Split
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Weck	TA-Denver
Collection Date:		05/07/2008	08/26/2008	08/26/2008	11/03/2008	11/03/2008	11/03/2008	11/03/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		0.9 U			
bis(2-Chloroethyl) ether	8270C		1 U		0.9 U			
bis(2-Chloroisopropyl) ether	8270C		1 U		0.9 U			
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U			
Butyl benzyl phthalate	8270C		2 U		2 U			
Chrysene	8270C, 8310		1 U		0.9 U			
Dibenzo(a,h)anthracene	8270C, 8310		1 U		0.9 U			
Diethyl phthalate	8270C		2 U		2 U			
Dimethyl phthalate	8270C		2 U		2 U			
Di-n-butyl phthalate	8270C		2 U		2 R			
Di-n-octyl phthalate	8270C		2 U		2 U			
Fluoranthene	8270C, 8310		1 U		0.9 U			
Fluorene	8270C, 8310		1 U		0.9 U			
Hexachlorobenzene	8270C		1 U		0.9 U			
Hexachlorobutadiene	8270C		1 U		0.9 U			
Hexachloroethane	8270C		1 U		0.9 U			
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		0.9 U			
Isophorone	8270C		1 U		0.9 U			
Naphthalene	8270C, 8310		1 U		0.9 U			
Nitrobenzene	8270C, 8330		1 U		0.9 U			
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		1 U		0.9 U			
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U	2 U	0.005 U	2 U	0.005* U	0.005* U	0.0048 U
n-Nitrosodiphenylamine	8270C		2 U		2 U			
p-Chloro-m-cresol	8270C		1 U		0.9 U			
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U			
PETN	8330							
Phenanthrene	8270C, 8310		1 U		0.9 U			
Phenol	8270C		1 U		0.9 U			
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

See last page of table for notes and abbreviations. Haley & Aldrich, Inc.

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-55A						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/25/2008	02/25/2008	05/06/2008	05/06/2008	08/26/2008	08/26/2008	11/20/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		1 U		1 U		0.9 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		1 U		1 U		0.9 U
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		1 U		1 U		0.9 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		1 U		1 U		0.9 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	20 U		19 U		19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	1 U		1 U		1 U		0.9 U
2,6-Dinitrotoluene	8270C, 8330	1 U		1 U		1 U		0.9 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		1 U		1 U		0.9 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		1 U		1 U		0.9 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		1 U		1 U		0.9 U
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U		2 U
4-Nitrophenol	8270C	10 U		10 U		10 U		9 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		1 U		1 U		0.9 U
Acenaphthylene	8270C, 8310	1 U		1 U		1 U		0.9 U
Anthracene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzidine	8270C	20 U		19 U		19 U		19 U
Benzo(a)anthracene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(a)pyrene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(b)fluoranthene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(ghi)perylene	8270C, 8310	1 U		1 U		1 U		0.9 U
Benzo(k)fluoranthene	8270C, 8310	1 U		1 U		1 U		0.9 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-55A						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/25/2008	02/25/2008	05/06/2008	05/06/2008	08/26/2008	08/26/2008	11/20/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		1 U		1 U		0.9 U
bis(2-Chloroethyl) ether	8270C	1 U		1 U		1 U		0.9 U
bis(2-Chloroisopropyl) ether	8270C	1 U		1 U		1 U		0.9 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 U		1 U		1 U		0.9 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		1 U		1 U		0.9 U
Diethyl phthalate	8270C	2 U		2 U		2 U		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-butyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 U		1 U		1 U		0.9 U
Fluorene	8270C, 8310	1 U		1 U		1 U		0.9 U
Hexachlorobenzene	8270C	1 U		1 U		1 U		0.9 U
Hexachlorobutadiene	8270C	1 U		1 U		1 U		0.9 U
Hexachloroethane	8270C	1 U		1 U		1 U		0.9 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		1 U		1 U		0.9 U
Isophorone	8270C	1 U		1 U		1 U		0.9 U
Naphthalene	8270C, 8310	1 U		1 U		1 U		0.9 U
Nitrobenzene	8270C, 8330	1 U		1 U		1 U		0.9 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	1 U		1 U		1 U		0.9 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C		0.00028 U		0.002 U	2 U	0.005 U	2 U
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		1 U		1 U		0.9 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 U		1 U		1 U		0.9 U
Phenol	8270C	1 U		1 U		1 U		0.9 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-55A	RD-55B	RD-55B	RD-55B	RD-55B	RD-55B	RD-55B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		11/20/2008	02/25/2008	02/25/2008	05/13/2008	05/13/2008	08/27/2008	08/27/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		19 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		10 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		1 U	
Acenaphthylene	8270C, 8310		1 U		1 U		1 U	
Anthracene	8270C, 8310		1 U		1 U		1 U	
Benzidine	8270C		19 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1.1 J		1 U		1 U	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-55A	RD-55B	RD-55B	RD-55B	RD-55B	RD-55B	RD-55B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		11/20/2008	02/25/2008	02/25/2008	05/13/2008	05/13/2008	08/27/2008	08/27/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		1 U	
Fluorene	8270C, 8310		1 U		1 U		1 U	
Hexachlorobenzene	8270C		1 U		1 U		1 U	
Hexachlorobutadiene	8270C		1 U		1 U		1 U	
Hexachloroethane	8270C		1 U		1 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		1 U	
Isophorone	8270C		1 U		1 U		1 U	
Naphthalene	8270C, 8310		1 U		1 U		1 U	
Nitrobenzene	8270C, 8330		1 U		1 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		1 U		1 U		1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.005 U		0.00028 U		0.002 U	2 U	0.005 U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		1 U	
Phenol	8270C		1 U		1 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-55B	RD-55B	RD-58A	RD-58A	RD-58A	RD-58A	RD-58A
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary	Duplicate
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Weck
Collection Date:		11/20/2008	11/20/2008	02/18/2008	02/18/2008	05/19/2008	05/19/2008	05/19/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	0.9 U		1 U		1 U		
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	0.9 U		1 U		1 U		
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	0.9 U		1 U		1 U		
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	0.9 U		1 U		1 U		
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		
2,4-Dinitrophenol	8270C	19 U		20 U		19 U		
2,4-Dinitrotoluene	8270C, 8330	0.9 U		1 U		1 U		
2,6-Dinitrotoluene	8270C, 8330	0.9 U		1 U		1 U		
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		
2-Chlorophenol	8270C	0.9 U		1 U		1 U		
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	0.9 U		1 U		1 U		
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	0.9 U		1 U		1 U		
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U		
4-Nitrophenol	8270C	9 U		10 U		10 U		
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	0.9 U		1 U		1 U		
Acenaphthylene	8270C, 8310	0.9 U		1 U		1 U		
Anthracene	8270C, 8310	0.9 U		1 U		1 U		
Benzidine	8270C	19 U		20 U		19 U		
Benzo(a)anthracene	8270C, 8310	0.9 U		1 U		1 U		
Benzo(a)pyrene	8270C, 8310	0.9 U		1 U		1 U		
Benzo(b)fluoranthene	8270C, 8310	0.9 U		1 U		1 U		
Benzo(ghi)perylene	8270C, 8310	0.9 U		1 U		1 U		
Benzo(k)fluoranthene	8270C, 8310	0.9 U		1 U		1 U		

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-55B	RD-55B	RD-58A	RD-58A	RD-58A	RD-58A	RD-58A
Sample Type:		Primary	Primary	Primary	Primary	Primary	Primary	Duplicate
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Weck
Collection Date:		11/20/2008	11/20/2008	02/18/2008	02/18/2008	05/19/2008	05/19/2008	05/19/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	0.9 U		1 U		1 U		
bis(2-Chloroethyl) ether	8270C	0.9 U		1 U		1 U		
bis(2-Chloroisopropyl) ether	8270C	0.9 U		1 U		1 U		
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		
Chrysene	8270C, 8310	0.9 U		1 U		1 U		
Dibenzo(a,h)anthracene	8270C, 8310	0.9 U		1 U		1 U		
Diethyl phthalate	8270C	2 U		2 U		2 U		
Dimethyl phthalate	8270C	2 U		2 U		2 U		
Di-n-butyl phthalate	8270C	2 U		2 U		2 U		
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		
Fluoranthene	8270C, 8310	0.9 U		1 U		1 U		
Fluorene	8270C, 8310	0.9 U		1 U		1 U		
Hexachlorobenzene	8270C	0.9 U		1 U		1 U		
Hexachlorobutadiene	8270C	0.9 U		1 U		1 U		
Hexachloroethane	8270C	0.9 U		1 U		1 U		
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	0.9 U		1 U		1 U		
Isophorone	8270C	0.9 U		1 U		1 U		
Naphthalene Naphthalene	8270C, 8310	0.9 U		1 U		1 U		
Nitrobenzene	8270C, 8330	0.9 U		1 U		1 U		
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	0.9 U		1 U		1 U		
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	0.005 U		0.00028 U		0.002 U	0.002 U
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		
p-Chloro-m-cresol	8270C	0.9 U		1 U		1 U		
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		
PETN	8330							
Phenanthrene	8270C, 8310	0.9 U		1 U		1 U		
Phenol	8270C	0.9 U		1 U		1 U		
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-58A	RD-58A	RD-58A	RD-58A	RD-58B	RD-58B	RD-58B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		09/02/2008	09/02/2008	11/06/2008	11/06/2008	03/03/2008	03/03/2008	05/06/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		1 U		1 U		1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		1 U		1 U		1 U
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		1 U		1 U		1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		1 U		1 U		1 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	20 U		19 U		19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	1 U		1 R		1 U		1 U
2,6-Dinitrotoluene	8270C, 8330	1 U		1 R		1 U		1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		1 U		1 U		1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		1 U		1 U		1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		1 U		1 U		1 U
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U		2 U
4-Nitrophenol	8270C	10 U		10 U		10 U		10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		1 U		1 U		1 U
Acenaphthylene	8270C, 8310	1 U		1 U		1 U		1 U
Anthracene	8270C, 8310	1 U		1 U		1 U		1 U
Benzidine	8270C	20 U		19 Ū		19 U		19 U
Benzo(a)anthracene	8270C, 8310	1 U		1 U		1 U		1 U
Benzo(a)pyrene	8270C, 8310	1 U		1 Ū		1 Ū		1 U
Benzo(b)fluoranthene	8270C, 8310	1 U		1 U		1 U		1 U
Benzo(ghi)perylene	8270C, 8310	1 U		1 U		1 Ū		1 U
Benzo(k)fluoranthene	8270C, 8310	1 U		1 U		1 U		1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-58A	RD-58A	RD-58A	RD-58A	RD-58B	RD-58B	RD-58B
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		09/02/2008	09/02/2008	11/06/2008	11/06/2008	03/03/2008	03/03/2008	05/06/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		1 U		1 U		1 U
bis(2-Chloroethyl) ether	8270C	1 U		1 U		1 U		1 U
bis(2-Chloroisopropyl) ether	8270C	1 U		1 U		1 U		1 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 U		1 U		1 U		1 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		1 U		1 U		1 U
Diethyl phthalate	8270C	2 U		2 R		2 U		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-butyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 U		1 U		1 U		1 U
Fluorene	8270C, 8310	1 U		1 U		1 U		1 U
Hexachlorobenzene	8270C	1 U		1 U		1 U		1 U
Hexachlorobutadiene	8270C	1 U		1 U		1 U		1 U
Hexachloroethane	8270C	1 U		1 U		1 U		1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		1 U		1 U		1 U
Isophorone	8270C	1 U		1 U		1 U		1 U
Naphthalene	8270C, 8310	1 U		1 U		1 U		1 U
Nitrobenzene	8270C, 8330	1 U		1 U		1 U		1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	1 U		1 U		1 U		1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	0.005 U	2 U	0.005 U		0.00028 U	
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		1 U		1 U		1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 U		1 U		1 U		1 U
Phenol	8270C	1 U		1 U		1 U		1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-58B	RD-58B	RD-58B	RD-58B	RD-58B	RD-67	RD-67
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		05/06/2008	08/21/2008	08/21/2008	10/30/2008	10/30/2008	03/06/2008	03/06/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		20 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		10 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		1 U	
Acenaphthylene	8270C, 8310		1 U		1 U		1 U	
Anthracene	8270C, 8310		1 U		1 U		1 U	
Benzidine	8270C		20 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 U		1 U		1 Ū	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-58B	RD-58B	RD-58B	RD-58B	RD-58B	RD-67	RD-67
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		05/06/2008	08/21/2008	08/21/2008	10/30/2008	10/30/2008	03/06/2008	03/06/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		1 U	
Fluorene	8270C, 8310		1 U		1 U		1 U	
Hexachlorobenzene	8270C		1 U		1 U		1 U	
Hexachlorobutadiene	8270C		1 U		1 U		1 U	
Hexachloroethane	8270C		1 U		1 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		1 U	
Isophorone	8270C		1 U		1 U		1 U	
Naphthalene	8270C, 8310		1 U		1 U		1 U	
Nitrobenzene	8270C, 8330		1 U		1 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		1 U		1 U		1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.002 U	2 U	0.005 U	2 U	0.005* U		0.00039 UJ
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		1 U	
Phenol	8270C		1 U		1 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-67						
Sample Type:		Duplicate	Primary	Primary	Duplicate	Split	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Weck	Babcock	Lancaster	Weck
Collection Date:		03/06/2008	05/19/2008	05/15/2008	05/15/2008	05/15/2008	09/03/2008	09/03/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U				1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U				1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U				2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U				1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U				1 U	
2,4-Dimethylphenol	8270C		3 U				3 U	
2,4-Dinitrophenol	8270C		19 U				19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U				1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U				1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U				2 U	
2-Chlorophenol	8270C		1 U				1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U				1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U				2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U				5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U				1 U	
4-Chlorophenylphenyl ether	8270C		2 U				2 U	
4-Nitrophenol	8270C		10 U				10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U				1 U	
Acenaphthylene	8270C, 8310		1 U				1 U	
Anthracene	8270C, 8310		1 U				1 U	
Benzidine	8270C		19 U				19 U	
Benzo(a)anthracene	8270C, 8310		1 U				1 U	
Benzo(a)pyrene	8270C, 8310		1 U				1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U				1 U	
Benzo(ghi)perylene	8270C, 8310		1 U				1 U	
Benzo(k)fluoranthene	8270C, 8310		1 U				1 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-67						
Sample Type:		Duplicate	Primary	Primary	Duplicate	Split	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Weck	Babcock	Lancaster	Weck
Collection Date:		03/06/2008	05/19/2008	05/15/2008	05/15/2008	05/15/2008	09/03/2008	09/03/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U				1 U	
bis(2-Chloroethyl) ether	8270C		1 U				1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U				1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U				7	
Butyl benzyl phthalate	8270C		2 U				2 U	
Chrysene	8270C, 8310		1 U				1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U				1 U	
Diethyl phthalate	8270C		2 U				2 U	
Dimethyl phthalate	8270C		2 U				2 U	
Di-n-butyl phthalate	8270C		2 U				2 U	
Di-n-octyl phthalate	8270C		2 U				2 U	
Fluoranthene	8270C, 8310		1 U				1 U	
Fluorene	8270C, 8310		1 U				1 U	
Hexachlorobenzene	8270C		1 U				1 U	
Hexachlorobutadiene	8270C		1 U				1 U	
Hexachloroethane	8270C		1 U				1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U				1 U	
Isophorone	8270C		1 U				1 U	
Naphthalene	8270C, 8310		1 U				1 U	
Nitrobenzene	8270C, 8330		1 U				1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		1 U				1 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.00033 U		0.002 U	0.002 U	0.002 UJ	2 U	0.005 U
n-Nitrosodiphenylamine	8270C		2 U				2 U	
p-Chloro-m-cresol	8270C		1 U				1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U				3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U				1 U	
Phenol	8270C		1 U				1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-67	RD-67	RD-67	RD-67	RD-98	RD-98	WS-05
Sample Type:		Duplicate	Primary	Primary	Duplicate	Primary	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Weck	Lancaster	Lancaster	Lancaster
Collection Date:		09/03/2008	11/19/2008	11/19/2008	11/19/2008	06/26/2008	09/11/2008	02/26/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		0.9 U			1 U	1 U	1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		0.9 U			1 U	1 U	1 U
1,3-Dinitrobenzene	8270C, 8330		2 U			2 U	2 U	2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		0.9 U			1 U	1 U	1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		0.9 U			1 U	1 U	1 U
2,4-Dimethylphenol	8270C		3 U			3 U	3 U	3 U
2,4-Dinitrophenol	8270C		19 U			19 U	20 U	19 U
2,4-Dinitrotoluene	8270C, 8330		0.9 U			1 U	1 U	1 U
2,6-Dinitrotoluene	8270C, 8330		0.9 U			1 U	1 U	1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U			2 U	2 U	2 U
2-Chlorophenol	8270C		0.9 U			1 U	1 U	1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		0.9 U			1 U	1 U	1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U			2 U	2 U	2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U			5 U	5 U	5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		0.9 U			1 U	1 U	1 U
4-Chlorophenylphenyl ether	8270C		2 U			2 U	2 U	2 U
4-Nitrophenol	8270C		9 U			10 U	10 U	10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		0.9 U			1 U	1 U	1 U
Acenaphthylene	8270C, 8310		0.9 U			1 U	1 U	1 U
Anthracene	8270C, 8310		0.9 U			1 U	1 U	1 U
Benzidine	8270C		19 U			19 U	20 U	19 U
Benzo(a)anthracene	8270C, 8310		0.9 U			1 U	1 U	1 U
Benzo(a)pyrene	8270C, 8310		0.9 U			1 U	1 U	1 U
Benzo(b)fluoranthene	8270C, 8310		0.9 U			1 U	1 U	1 U
Benzo(ghi)perylene	8270C, 8310		0.9 U			1 U	1 U	1 U
Benzo(k)fluoranthene	8270C, 8310		0.9 U			1 U	1 U	1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-67	RD-67	RD-67	RD-67	RD-98	RD-98	WS-05
Sample Type:		Duplicate	Primary	Primary	Duplicate	Primary	Primary	Primary
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Weck	Lancaster	Lancaster	Lancaster
Collection Date:		09/03/2008	11/19/2008	11/19/2008	11/19/2008	06/26/2008	09/11/2008	02/26/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		0.9 U			1 U	1 U	1 U
bis(2-Chloroethyl) ether	8270C		0.9 U			1 U	1 U	1 U
bis(2-Chloroisopropyl) ether	8270C		0.9 U			1 U	1 U	1 U
bis(2-Ethylhexyl) phthalate	8270C		2 U			2 U	2 U	2 U
Butyl benzyl phthalate	8270C		2 U			2 U	2 U	2 U
Chrysene	8270C, 8310		0.9 U			1 U	1 U	1 U
Dibenzo(a,h)anthracene	8270C, 8310		0.9 U			1 U	1 U	1 U
Diethyl phthalate	8270C		2 U			2 U	2 U	2 U
Dimethyl phthalate	8270C		2 U			2 U	2 U	2 U
Di-n-butyl phthalate	8270C		2 U			2 U	2 U	2 U
Di-n-octyl phthalate	8270C		2 U			2 U	2 U	2 U
Fluoranthene	8270C, 8310		0.9 U			1 U	1 U	1 U
Fluorene	8270C, 8310		0.9 U			1 U	1 U	1 U
Hexachlorobenzene	8270C		0.9 U			1 U	1 U	1 U
Hexachlorobutadiene	8270C		0.9 U			1 U	1 U	1 U
Hexachloroethane	8270C		0.9 U			1 U	1 U	1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		0.9 U			1 U	1 U	1 U
Isophorone	8270C		0.9 U			1 U	1 U	1 U
Naphthalene Naphthalene	8270C, 8310		0.9 U			1 U	1 U	1 U
Nitrobenzene	8270C, 8330		0.9 U			1 U	1 U	1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		0.9 U			1 U	1 U	1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.005 U	2 U	0.005 U	0.005 U	2 U	2 U	
n-Nitrosodiphenylamine	8270C		2 U			2 U	2 U	2 U
p-Chloro-m-cresol	8270C		0.9 U			1 U	1 U	1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U			3 U	3 U	3 U
PETN	8330							
Phenanthrene	8270C, 8310		0.9 U			1 U	1 U	1 U
Phenol	8270C		0.9 U			1 U	1 U	1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-05						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/26/2008	05/06/2008	05/06/2008	08/21/2008	08/21/2008	11/03/2008	11/03/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		1 U		0.9 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		1 U		0.9 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		1 U		0.9 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		1 U		0.9 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		20 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		1 U		0.9 R	
2,6-Dinitrotoluene	8270C, 8330		1 U		1 U		0.9 R	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		1 U		0.9 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		1 U		0.9 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		1 U		0.9 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 R	
4-Nitrophenol	8270C		10 U		10 U		9 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		1 U		0.9 U	
Acenaphthylene	8270C, 8310		1 U		1 U		0.9 U	
Anthracene	8270C, 8310		1 U		1 U		0.9 U	
Benzidine	8270C		20 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		1 U		0.9 U	
Benzo(a)pyrene	8270C, 8310		1 U		1 U		0.9 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		1 U		0.9 U	
Benzo(ghi)perylene	8270C, 8310		1 U		1 U		0.9 U	
Benzo(k)fluoranthene	8270C, 8310		1 U		1 U		0.9 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-05						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		02/26/2008	05/06/2008	05/06/2008	08/21/2008	08/21/2008	11/03/2008	11/03/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		1 U		0.9 U	
bis(2-Chloroethyl) ether	8270C		1 U		1 U		0.9 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		1 U		0.9 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		1 U		0.9 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		1 U		0.9 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 R	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		1 U		0.9 U	
Fluorene	8270C, 8310		1 U		1 U		0.9 U	
Hexachlorobenzene	8270C		1 U		1 U		0.9 U	
Hexachlorobutadiene	8270C		1 U		1 U		0.9 U	
Hexachloroethane	8270C		1 U		1 U		0.9 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		1 U		0.9 U	
Isophorone	8270C		1 U		1 U		0.9 U	
Naphthalene	8270C, 8310		1 U		1 U		0.9 U	
Nitrobenzene	8270C, 8330		1 U		1 U		0.9 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		1 U		1 U		0.9 U	
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	0.00044 U		0.002 U	2 U	0.005 U	2 U	0.005* U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		1 U		0.9 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		1 U		0.9 U	
Phenol	8270C		1 U		1 U		0.9 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

Haley & Aldrich, Inc.

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-06						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/28/2008	02/28/2008	05/07/2008	05/07/2008	09/09/2008	09/09/2008	10/30/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		0.9 U		1 U		1 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		0.9 U		1 U		1 U
1,3-Dinitrobenzene	8270C, 8330	2 U		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		0.9 U		1 U		1 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 U		0.9 U		1 U		1 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	20 U		19 U		19 U		20 U
2,4-Dinitrotoluene	8270C, 8330	1 U		0.9 U		1 U		1 U
2,6-Dinitrotoluene	8270C, 8330	1 U		0.9 U		1 U		1 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		0.9 U		1 U		1 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 U		0.9 U		1 U		1 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 U		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 U		0.9 U		1 U		1 U
4-Chlorophenylphenyl ether	8270C	2 U		2 U		2 U		2 U
4-Nitrophenol	8270C	10 U		9 U		10 U		10 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 U		0.9 U		1 U		1 U
Acenaphthylene	8270C, 8310	1 U		0.9 U		1 U		1 U
Anthracene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzidine	8270C	20 U		19 U		19 U		20 U
Benzo(a)anthracene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(a)pyrene	8270C, 8310	1 U		0.9 U		1 Ū		1 U
Benzo(b)fluoranthene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(ghi)perylene	8270C, 8310	1 U		0.9 U		1 U		1 U
Benzo(k)fluoranthene	8270C, 8310	1 U		0.9 U		1 U		1 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-06						
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		02/28/2008	02/28/2008	05/07/2008	05/07/2008	09/09/2008	09/09/2008	10/30/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		0.9 U		1 U		1 U
bis(2-Chloroethyl) ether	8270C	1 U		0.9 U		1 U		1 U
bis(2-Chloroisopropyl) ether	8270C	1 U		0.9 U		1 U		1 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 U		0.9 U		1 U		1 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		0.9 U		1 U		1 U
Diethyl phthalate	8270C	2 U		2 U		2 U		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-butyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 U		0.9 U		1 U		1 U
Fluorene	8270C, 8310	1 U		0.9 U		1 U		1 U
Hexachlorobenzene	8270C	1 U		0.9 U		1 U		1 U
Hexachlorobutadiene	8270C	1 U		0.9 U		1 U		1 U
Hexachloroethane	8270C	1 U		0.9 U		1 U		1 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		0.9 U		1 U		1 U
Isophorone	8270C	1 U		0.9 U		1 U		1 U
Naphthalene	8270C, 8310	1 U		0.9 U		1 U		1 U
Nitrobenzene	8270C, 8330	1 U		0.9 U		1 U		1 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	1 U		0.9 U		1 U		1 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C		0.00043 U		0.002 U	2 U	0.005 U	2 U
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		0.9 U		1 U		1 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 U		0.9 U		1 U		1 U
Phenol	8270C	1 U		0.9 U		1 U		1 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-06	WS-09	WS-09	WS-09	WS-09	WS-09	WS-09
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		10/30/2008	02/26/2008	02/26/2008	05/08/2008	05/08/2008	08/20/2008	08/20/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C		1 U		0.9 U		1 U	
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C		1 U		0.9 U		1 U	
1,3-Dinitrobenzene	8270C, 8330		2 U		2 U		2 U	
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C		1 U		0.9 U		1 U	
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C		1 U		0.9 U		1 U	
2,4-Dimethylphenol	8270C		3 U		3 U		3 U	
2,4-Dinitrophenol	8270C		19 U		19 U		19 U	
2,4-Dinitrotoluene	8270C, 8330		1 U		0.9 U		1 U	
2,6-Dinitrotoluene	8270C, 8330		1 U		0.9 U		1 U	
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C		2 U		2 U		2 U	
2-Chlorophenol	8270C		1 U		0.9 U		1 U	
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C		1 U		0.9 U		1 U	
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C		2 U		2 U		2 U	
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C		5 U		5 U		5 U	
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C		1 U		0.9 U		1 U	
4-Chlorophenylphenyl ether	8270C		2 U		2 U		2 U	
4-Nitrophenol	8270C		10 U		9 U		10 U	
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310		1 U		0.9 U		1 U	
Acenaphthylene	8270C, 8310		1 U		0.9 U		1 U	
Anthracene	8270C, 8310		1 U		0.9 U		1 U	
Benzidine	8270C		19 U		19 U		19 U	
Benzo(a)anthracene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(a)pyrene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(b)fluoranthene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(ghi)perylene	8270C, 8310		1 U		0.9 U		1 U	
Benzo(k)fluoranthene	8270C, 8310		1 U		0.9 U		1 U	

TABLE VIII SUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008 **BOEING SANTA SUSANA FIELD LABORATORY** VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-06	WS-09	WS-09	WS-09	WS-09	WS-09	WS-09
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Weck	Lancaster	Weck	Lancaster	Weck	Lancaster	Weck
Collection Date:		10/30/2008	02/26/2008	02/26/2008	05/08/2008	05/08/2008	08/20/2008	08/20/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C		1 U		0.9 U		1 U	
bis(2-Chloroethyl) ether	8270C		1 U		0.9 U		1 U	
bis(2-Chloroisopropyl) ether	8270C		1 U		0.9 U		1 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U		2 U		2 U	
Butyl benzyl phthalate	8270C		2 U		2 U		2 U	
Chrysene	8270C, 8310		1 U		0.9 U		1 U	
Dibenzo(a,h)anthracene	8270C, 8310		1 U		0.9 U		1 U	
Diethyl phthalate	8270C		2 U		2 U		2 U	
Dimethyl phthalate	8270C		2 U		2 U		2 U	
Di-n-butyl phthalate	8270C		2 U		2 U		2 U	
Di-n-octyl phthalate	8270C		2 U		2 U		2 U	
Fluoranthene	8270C, 8310		1 U		0.9 U		1 U	
Fluorene	8270C, 8310		1 U		0.9 U		1 U	
Hexachlorobenzene	8270C		1 U		0.9 U		1 U	
Hexachlorobutadiene	8270C		1 U		0.9 U		1 U	
Hexachloroethane	8270C		1 U		0.9 U		1 U	
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310		1 U		0.9 U		1 U	
Isophorone	8270C		1 U		0.9 U		1 U	
Naphthalene	8270C, 8310		1 U		0.9 U		1 U	
Nitrobenzene	8270C, 8330		1 U		0.9 U		1 U	
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521		1 U		0.9 U	0.002 U	1 U	
n-Nitrosodiethylamine	521					0.002 U		
n-Nitrosodimethylamine	1625M, 521, 8270C	0.005* U		0.0032 J		0.0042	2 U	0.005 U
n-Nitrosodiphenylamine	8270C		2 U		2 U		2 U	
p-Chloro-m-cresol	8270C		1 U		0.9 U		1 U	
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C		3 U		3 U		3 U	
PETN	8330							
Phenanthrene	8270C, 8310		1 U		0.9 U		1 U	
Phenol	8270C		1 U		0.9 U		1 U	
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

See last page of table for notes and abbreviations. Haley & Aldrich, Inc.

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-09	WS-09	WS-09A	WS-09A	WS-09A	WS-09A	WS-09A
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		10/29/2008	10/29/2008	02/29/2008	02/29/2008	05/15/2008	05/15/2008	08/20/2008
Analyte (ug/L)								
1,2,4-Trichlorobenzene	8270C	1 U		1 U		0.9 U		0.9 U
1,2-Dinitrobenzene	8330							
1,2-Diphenylhydrazine	8270C	1 U		1 U		0.9 U		0.9 U
1,3-Dinitrobenzene	8270C, 8330	2 R		2 U		2 U		2 U
1-Methyl naphthalene	8310							
1-Nitronaphthalene	8330							
2,4,6-Trichlorophenol	8270C	1 U		1 U		0.9 U		0.9 U
2,4,6-Trinitrotoluene	8330							
2,4-Dichlorophenol	8270C	1 R		1 U		0.9 U		0.9 U
2,4-Dimethylphenol	8270C	3 U		3 U		3 U		3 U
2,4-Dinitrophenol	8270C	19 U		19 U		19 U		19 U
2,4-Dinitrotoluene	8270C, 8330	1 R		1 U		0.9 U		0.9 U
2,6-Dinitrotoluene	8270C, 8330	1 R		1 U		0.9 U		0.9 U
2-Amino-4,6-Dinitrotoluene	8330							
2-Chloronaphthalene	8270C	2 U		2 U		2 U		2 U
2-Chlorophenol	8270C	1 U		1 U		0.9 U		0.9 U
2-Methylnaphthalene	8310							
2-Nitrophenol	8270C	1 R		1 U		0.9 U		0.9 U
2-Nitrotoluene	8330							
3,3'-Dichlorobenzidine	8270C	2 R		2 U		2 U		2 U
3-Nitrotoluene	8330							
4,6-Dinitro-o-cresol	8270C	5 U		5 U		5 U		5 U
4-Am-2,6-DNT	8330							
4-Bromophenyl phenyl ether	8270C	1 R		1 U		0.9 U		0.9 U
4-Chlorophenylphenyl ether	8270C	2 R		2 U		2 U		2 U
4-Nitrophenol	8270C	10 U		10 U		9 U		9 U
4-Nitrotoluene	8330							
Acenaphthene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Acenaphthylene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Anthracene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Benzidine	8270C	19 U		19 U		19 U		19 U
Benzo(a)anthracene	8270C, 8310	1 U		1 U		0.9 U		0.9 U
Benzo(a)pyrene	8270C, 8310	1 U		1 U		0.9 U		0.9 U
Benzo(b)fluoranthene	8270C, 8310	1 U		1 U		0.9 U		0.9 U
Benzo(ghi)perylene	8270C, 8310	1 U		1 U		0.9 U		0.9 U
Benzo(k)fluoranthene	8270C, 8310	1 U		1 U		0.9 U		0.9 U

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-09	WS-09	WS-09A	WS-09A	WS-09A	WS-09A	WS-09A
Sample Type:		Primary						
Geological Unit:		Chatsworth						
Lab Name:		Lancaster	Weck	Lancaster	Weck	Lancaster	Weck	Lancaster
Collection Date:		10/29/2008	10/29/2008	02/29/2008	02/29/2008	05/15/2008	05/15/2008	08/20/2008
Analyte (ug/L)								
bis(2-Chloroethoxy)methane	8270C	1 U		1 U		0.9 U		0.9 U
bis(2-Chloroethyl) ether	8270C	1 R		1 U		0.9 U		0.9 U
bis(2-Chloroisopropyl) ether	8270C	1 U		1 U		0.9 U		0.9 U
bis(2-Ethylhexyl) phthalate	8270C	2 U		2 U		2 U		2 U
Butyl benzyl phthalate	8270C	2 U		2 U		2 U		2 U
Chrysene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Dibenzo(a,h)anthracene	8270C, 8310	1 U		1 U		0.9 U		0.9 U
Diethyl phthalate	8270C	2 R		2 U		2 U		2 U
Dimethyl phthalate	8270C	2 U		2 U		2 U		2 U
Di-n-butyl phthalate	8270C	2 R		2 U		2 U		2 U
Di-n-octyl phthalate	8270C	2 U		2 U		2 U		2 U
Fluoranthene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Fluorene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Hexachlorobenzene	8270C	1 R		1 U		0.9 U		0.9 U
Hexachlorobutadiene	8270C	1 U		1 U		0.9 U		0.9 U
Hexachloroethane	8270C	1 U		1 U		0.9 U		0.9 U
HMX	8330							
Indeno(1,2,3-cd)pyrene	8270C, 8310	1 U		1 U		0.9 U		0.9 U
Isophorone	8270C	1 R		1 U		0.9 U		0.9 U
Naphthalene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Nitrobenzene	8270C, 8330	1 R		1 U		0.9 U		0.9 U
Nitroglycerin	8330							
n-Nitrosodi-n-propylamine	8270C,521	1 U		1 U		0.9 U		0.9 U
n-Nitrosodiethylamine	521							
n-Nitrosodimethylamine	1625M, 521, 8270C	2 U	0.005* U		0.00041 U		0.002 U	2 U
n-Nitrosodiphenylamine	8270C	2 U		2 U		2 U		2 U
p-Chloro-m-cresol	8270C	1 U		1 U		0.9 U		0.9 U
p-Dinitrobenzene	8330							
Pentachlorophenol	8270C	3 U		3 U		3 U		3 U
PETN	8330							
Phenanthrene	8270C, 8310	1 R		1 U		0.9 U		0.9 U
Phenol	8270C	1 U		1 U		0.9 U		0.9 U
Pyrene	8310							
RDX	8330							
sym-Trinitrobenzene	8330							
Tetryl	8330							

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-09A	WS-09A	WS-09A
Sample Type:		Primary	Primary	Primary
Geological Unit:		Chatsworth	Chatsworth	Chatsworth
Lab Name:		Weck	Lancaster	Weck
Collection Date:		08/20/2008	10/30/2008	10/30/2008
Analyte (ug/L)				
1,2,4-Trichlorobenzene	8270C		0.9 U	
1,2-Dinitrobenzene	8330			
1,2-Diphenylhydrazine	8270C		0.9 U	
1,3-Dinitrobenzene	8270C, 8330		2 U	
1-Methyl naphthalene	8310			
1-Nitronaphthalene	8330			
2,4,6-Trichlorophenol	8270C		0.9 U	
2,4,6-Trinitrotoluene	8330			
2,4-Dichlorophenol	8270C		0.9 U	
2,4-Dimethylphenol	8270C		3 U	
2,4-Dinitrophenol	8270C		19 U	
2,4-Dinitrotoluene	8270C, 8330		0.9 U	
2,6-Dinitrotoluene	8270C, 8330		0.9 U	
2-Amino-4,6-Dinitrotoluene	8330			
2-Chloronaphthalene	8270C		2 U	
2-Chlorophenol	8270C		0.9 U	
2-Methylnaphthalene	8310			
2-Nitrophenol	8270C		0.9 U	
2-Nitrotoluene	8330			
3,3'-Dichlorobenzidine	8270C		2 U	
3-Nitrotoluene	8330			
4,6-Dinitro-o-cresol	8270C		5 U	
4-Am-2,6-DNT	8330			
4-Bromophenyl phenyl ether	8270C		0.9 U	
4-Chlorophenylphenyl ether	8270C		2 U	
4-Nitrophenol	8270C		9 U	
4-Nitrotoluene	8330			
Acenaphthene	8270C, 8310		0.9 U	
Acenaphthylene	8270C, 8310		0.9 U	
Anthracene	8270C, 8310		0.9 U	
Benzidine	8270C		19 U	
Benzo(a)anthracene	8270C, 8310		0.9 U	
Benzo(a)pyrene	8270C, 8310		0.9 U	
Benzo(b)fluoranthene	8270C, 8310		0.9 U	
Benzo(ghi)perylene	8270C, 8310		0.9 U	
Benzo(k)fluoranthene	8270C, 8310		0.9 U	

TABLE VIIISUMMARY OF ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:		WS-09A	WS-09A	WS-09A
Sample Type:		Primary	Primary	Primary
Geological Unit:		Chatsworth	Chatsworth	Chatsworth
Lab Name:		Weck	Lancaster	Weck
Collection Date:		08/20/2008	10/30/2008	10/30/2008
Analyte (ug/L)				
bis(2-Chloroethoxy)methane	8270C		0.9 U	
bis(2-Chloroethyl) ether	8270C		0.9 U	
bis(2-Chloroisopropyl) ether	8270C		0.9 U	
bis(2-Ethylhexyl) phthalate	8270C		2 U	
Butyl benzyl phthalate	8270C		2 U	
Chrysene	8270C, 8310		0.9 U	
Dibenzo(a,h)anthracene	8270C, 8310		0.9 U	
Diethyl phthalate	8270C		2 U	
Dimethyl phthalate	8270C		2 U	
Di-n-butyl phthalate	8270C		2 U	
Di-n-octyl phthalate	8270C		2 U	
Fluoranthene	8270C, 8310		0.9 U	
Fluorene	8270C, 8310		0.9 U	
Hexachlorobenzene	8270C		0.9 U	
Hexachlorobutadiene	8270C		0.9 U	
Hexachloroethane	8270C		0.9 U	
HMX	8330			
Indeno(1,2,3-cd)pyrene	8270C, 8310		0.9 U	
Isophorone	8270C		0.9 U	
Naphthalene	8270C, 8310		0.9 U	
Nitrobenzene	8270C, 8330		0.9 U	
Nitroglycerin	8330			
n-Nitrosodi-n-propylamine	8270C,521		0.9 U	
n-Nitrosodiethylamine	521			
n-Nitrosodimethylamine	1625M, 521, 8270C	0.005 U	2 U	0.005* U
n-Nitrosodiphenylamine	8270C		2 U	
p-Chloro-m-cresol	8270C		0.9 U	
p-Dinitrobenzene	8330			
Pentachlorophenol	8270C		3 U	
PETN	8330			
Phenanthrene	8270C, 8310		0.9 U	
Phenol	8270C		0.9 U	
Pyrene	8310			
RDX	8330			
sym-Trinitrobenzene	8330			
Tetryl	8330			

G:\Projects\26472\Reports\M497 2008 Annual\Tables\2009-0227-HAI-SSFL_M497_T08-F.xls

TABLE VIII

NOTES AND EXPLANATIONS

Babcock = E.S. Babcock & Sons Laboratories of Riverside, California. 1. 2. Lancaster = Lancaster Laboratories of Lancaster, Pennsylvania. TA-Denver 3. = TestAmerica of Arvada, Colorado. Weck = Weck Laboratories of City of Industry, California. 5. Chatsworth = Chatsworth Formation wells. Shallow = Shallow wells and piezometers. 6. = Micrograms per liter. 7. ug/L 8. J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details). R 9. = Rejected result (see Appendix D for details). 10. U Not detected. = Not detected. Estimated detection limit as a result of analytical quality control 11. UJ deficiencies (see Appendix D for details). = Some NDMA samples collected during the fourth guarter were preserved with sodium thiosulfate. All other NDMA samples were sampled in 12. (*)

13. Semi-volatile organic compounds were analyzed by EPA method 8270C.

Polynuclear aromatic hydrocarbons (PAHs) were analyzed by EPA method 8310.

unpreserved bottles (see Appendix D for details).

Nitroaromatics/nitramines were analyzed by EPA method 8330.

n-Nitrosodi-n-propylamine, n-Nitrosodiethylamine, and n-Nitrosodimethylamine were analyzed by EPA method 521 during the first and second quarters. Low-level n-Nitrosodimethylamine was analyzed by EPA method 1625M during the third and fourth quarters.

14. 8270C, 8310 = Method 8270C was used for all well samples with the following exceptions, which were analyzed by Lancaster using method 8310:

HAR-26	PZ-006(E)	PZ-027	RD-12	SH-04	SH-10
PZ-006(A)	PZ-023	PZ-028	SH-01	SH-05	SH-11
PZ-006(C)	PZ-025	RD-08	SH-02	SH-08	
PZ-006(D)	PZ-026	RD-11	SH-03	SH-09	

- 15. 8270C, 8330 = Method 8270C was used for all well samples except for RD-13 samples which were analyzed by method 8330.
- 16. 1625M, 521, 8270C = Method 8270C was used by Lancaster Laboratories.

 Method 521 was used by Weck Laboratories during the first and second quarters, and by E.S. Babcock & Sons Laboratories during the second quarter.

 Method 1625M was used by Weck Laboratories during the third and fourth quarters.
- 17. n-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

TABLE IXSUMMARY OF ANALYSES FOR PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Analyte:	Perchlorate
Method:	314.0
Result Value Units:	ua/L

Result Value	ug/L			
Well	Camania Tura	l ab Nama	Data Callagtad	
Identifier	Sample Type	Lab Name	Date Collected	
Piezometers	;			
PZ-108	Primary	Lancaster	02/20/2008	0.7 U
PZ-108	Primary	Lancaster	05/13/2008	0.7 U
PZ-108	Primary	Lancaster	08/20/2008	0.7 U
PZ-108	Primary	Lancaster	11/12/2008	0.7 U
PZ-121	Primary	Lancaster	02/20/2008	0.7 U
PZ-121	Primary	Lancaster	05/13/2008	0.7 U
PZ-121	Primary	Lancaster	08/20/2008	0.7 U
PZ-121	Primary	Lancaster	11/12/2008	0.7 U
PZ-122	Primary	Lancaster	08/21/2008	0.7 U
PZ-122	Primary	Lancaster	11/12/2008	0.7 U
Shallow Wel	ls			
RS-16	Primary	Lancaster	02/01/2008	0.7 U
	Formation Wells			
HAR-07	Primary	Lancaster	02/27/2008	0.7 U
HAR-07	Primary	TA-Denver	04/23/2008	0.28 U
HAR-07	Primary	Lancaster	08/27/2008	0.7 U
HAR-07	Primary	Lancaster	12/03/2008	0.7 U
HAR-08	Primary	Lancaster	02/27/2008	0.7 U
HAR-08	Split	C&T	02/27/2008	0.47 U
HAR-08	Primary	Lancaster	05/14/2008	0.7 U
HAR-08	Primary	Lancaster	08/27/2008	0.7 U
HAR-08	Primary	Lancaster	12/03/2008	0.7 U
HAR-18	Primary	Lancaster	02/18/2008	0.7 U
HAR-18	Primary	Lancaster	05/13/2008	0.7 U
HAR-18	Primary	Lancaster	08/28/2008	0.7 U
HAR-18	Duplicate	Lancaster	08/28/2008	0.7 U
HAR-18	Primary	Lancaster	12/01/2008	0.7 U
HAR-20	Primary	Lancaster	03/11/2008	0.7 U
HAR-20	Primary	Lancaster	05/13/2008	0.7 U
HAR-20	Primary	Lancaster	08/20/2008	0.7 U
HAR-20	Primary	Lancaster	11/06/2008	0.7 U
HAR-24	Primary	Lancaster	02/08/2008	179
HAR-24	Split	C&T	02/08/2008	210
HAR-24	Primary	Lancaster	05/01/2008	169
HAR-24	Primary	Lancaster	08/11/2008	189 J
HAR-24	Split	TA-Denver	08/11/2008	190
HAR-24	Primary	Lancaster	10/29/2008	187
HAR-25	Primary	Lancaster	02/08/2008	33.1
HAR-25	Primary	Lancaster	05/01/2008	30.1
HAR-25	Primary	Lancaster	08/11/2008	27.6 J
HAR-25	Split	TA-Denver	08/11/2008	31
HAR-25	Primary	Lancaster	10/29/2008	32.5
OS-02	Primary	Lancaster	02/21/2008	0.7 U
OS-03	Primary	Lancaster	05/15/2008	0.7 U
OS-03	Split	C&T	05/15/2008	0.64 U
OS-04	Primary	Lancaster	05/15/2008	0.7 U

TABLE IXSUMMARY OF ANALYSES FOR PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Result Value	ug/L			
Well Identifier	Sample Type	Lab Name	Date Collected	
OS-05	Primary	Lancaster	05/15/2008	0.7 U
OS-09	Primary	Lancaster	02/21/2008	0.7 U
OS-09	Primary	Lancaster	05/15/2008	0.7 U
OS-09	Primary	Lancaster	08/14/2008	0.7 U
OS-09	Duplicate	Lancaster	08/14/2008	0.7 U
OS-09	Primary	Lancaster	12/02/2008	0.7 U
OS-09	Duplicate	Lancaster	12/02/2008	0.7 U
OS-10	Primary	Lancaster	02/21/2008	0.7 U
OS-16	Primary	Lancaster	02/14/2008	0.7 U
OS-16	Primary	Lancaster	09/08/2008	0.7 U
OS-17	Primary	Lancaster	03/04/2008	0.7 U
OS-17	Primary	Lancaster	08/12/2008	0.7 U
OS-25	Primary	Lancaster	09/09/2008	0.7 U
OS-26	Primary	Lancaster	02/14/2008	0.7 U
OS-27	Primary	Lancaster	03/12/2008	0.7 U
OS-28	Primary	Lancaster	03/04/2008	0.7 U
RD-01	Primary	Lancaster	02/26/2008	0.7 U
RD-01	Primary	Lancaster	05/05/2008	0.7 U
RD-01	Primary	Lancaster	08/28/2008	0.7 U
RD-01	Primary	Lancaster	11/18/2008	0.7 U
RD-01	Duplicate	Lancaster	11/18/2008	0.7 U
RD-02	Primary	Lancaster	02/28/2008	0.7 U
RD-02	Primary	Lancaster	05/08/2008	0.7 U
RD-02	Primary	Lancaster	11/05/2008	0.7 U
RD-02	Duplicate	Lancaster	11/05/2008	0.7 U
RD-04	Primary	Lancaster	02/27/2008	0.7 U
RD-04	Primary	Lancaster	05/08/2008	0.7 U
RD-04	Primary	Lancaster	08/20/2008	0.7 U
RD-04	Primary	Lancaster	10/29/2008	0.7 U
RD-09	Primary	Lancaster	05/15/2008	0.7 U
RD-09	Primary	Lancaster	08/20/2008	0.7 U
RD-09	Primary	Lancaster	10/28/2008	0.7 U
RD-10	Primary	Lancaster	02/28/2008	51.3
RD-10	Primary	Lancaster	05/06/2008	51.6
RD-10	Split	C&T	05/06/2008	70
RD-10	Primary	Lancaster	08/26/2008	53.9
RD-10	Primary	Lancaster	10/29/2008	57.2
RD-10	Split	TA-Denver	10/29/2008	63
RD-10	Primary	Lancaster	02/20/2008	0.7 U
RD-13	Primary	Lancaster	05/13/2008	0.7 U
RD-13	Primary	Lancaster	09/03/2008	0.7 U
RD-13	Primary	Lancaster	11/12/2008	0.7 U
RD-13 RD-32	Primary	Lancaster	02/19/2008	0.7 U
RD-32 RD-32	Split	C&T	02/19/2008	0.7 U 0.47 U
RD-32 RD-36B	Spill Primary			0.47 U
RD-36C	Primary	Lancaster Lancaster	02/19/2008	0.7 U
RD-36D	Primary	Lancaster	02/20/2008 02/19/2008	0.7 U
עסט-טטע	ı-ııııaı y	Lancasiei	02/19/2000	0.7 0

TABLE IXSUMMARY OF ANALYSES FOR PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Result Value	ug/L			
Well	Sample Type	Lab Name	Date Collected	
Identifier	Sample Type	Lab Name	Date Collected	
RD-37	Primary	Lancaster	09/09/2008	0.7 U
RD-37	Duplicate	Lancaster	09/09/2008	0.7 U
RD-38A	Primary	Lancaster	05/20/2008	0.7 U
RD-38B	Primary	Lancaster	05/20/2008	0.7 U
RD-39B	Primary	Lancaster	03/06/2008	0.7 U
RD-41A	Primary	Lancaster	03/11/2008	0.7 U
RD-41A	Primary	Lancaster	05/14/2008	0.7 U
RD-41A	Primary	Lancaster	08/28/2008	0.7 U
RD-41B	Primary	Lancaster	03/11/2008	0.7 U
RD-41B	Primary	Lancaster	05/14/2008	0.7 U
RD-41B	Primary	Lancaster	08/28/2008	0.7 U
RD-41B	Primary	Lancaster	12/01/2008	0.7 U
RD-43A	Primary	Lancaster	02/14/2008	0.7 U
RD-43B	Primary	Lancaster	02/14/2008	0.7 U
RD-43B	Split	C&T	02/14/2008	0.47 U
RD-43C	Primary	Lancaster	02/15/2008	0.7 U
RD-44	Primary	Lancaster	03/03/2008	0.7 U
RD-44	Primary	Lancaster	05/07/2008	0.7 U
RD-44	Primary	Lancaster	10/30/2008	0.7 U
RD-45B	Primary	Lancaster	02/18/2008	0.7 U
RD-45C	Primary	Lancaster	02/19/2008	0.7 U
RD-47	Primary	Lancaster	02/15/2008	0.7 U
RD-49A	Primary	Lancaster	03/11/2008	0.7 U
RD-49A	Split	C&T	03/11/2008	0.47 U
RD-49A	Primary	Lancaster	05/14/2008	0.7 U
RD-49A	Primary	Lancaster	09/02/2008	0.7 U
RD-49B	Primary	Lancaster	02/27/2008	0.7 U
RD-49B	Primary	Lancaster	05/07/2008	0.7 U
RD-49B	Primary	Lancaster	08/27/2008	0.7 U
RD-49C	Primary	Lancaster	02/28/2008	0.7 U
RD-49C	Primary	Lancaster	08/19/2008	0.7 UJ
RD-49C	Primary	Lancaster	11/10/2008	0.7 U
RD-49C	Split	TA-Denver	11/10/2008	0.28 U
RD-51B	Primary	Lancaster	02/21/2008	0.7 U
RD-51B	Primary	Lancaster	05/06/2008	0.7 U
RD-51B	Primary	Lancaster	08/19/2008	0.7 UJ
RD-51B	Primary	Lancaster	11/03/2008	0.7 U
RD-51C	Primary	Lancaster	05/07/2008	0.7 U
RD-51C	Split	C&T	05/07/2008	0.64 U
RD-51C	Primary	Lancaster	08/26/2008	0.7 U
RD-51C	Primary	Lancaster	11/03/2008	0.7 U
RD-51C	Primary	Lancaster	02/20/2008	0.7 U
RD-52B	Split	C&T	02/20/2008	0.7 U 0.47 U
RD-52B	Spill Primary	Lancaster		0.47 U 0.7 U
	•	Lancaster	02/20/2008 02/25/2008	0.7 U 0.7 U
RD-55A RD-55A	Primary Primary			
	Primary	Lancaster	05/06/2008	0.7 U
RD-55A	Split	C&T	05/06/2008	0.64 U

TABLE IXSUMMARY OF ANALYSES FOR PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Result Value	ug/L			
Well Identifier	Sample Type	Lab Name	Date Collected	
RD-55A	Primary	Lancaster	08/26/2008	0.7 U
RD-55A	Primary	Lancaster	11/20/2008	0.7 U
RD-55B	Primary	Lancaster	02/25/2008	0.7 U
RD-55B	Primary	Lancaster	05/13/2008	0.7 U
RD-55B	Primary	Lancaster	08/27/2008	0.7 U
RD-55B	Primary	Lancaster	11/20/2008	0.7 U
RD-58A	Primary	Lancaster	02/18/2008	0.7 U
RD-58A	Primary	Lancaster	05/19/2008	0.7 U
RD-58A	Primary	Lancaster	09/02/2008	0.7 U
RD-58A	Primary	Lancaster	11/06/2008	0.7 U
RD-58B	Primary	Lancaster	03/03/2008	0.7 U
RD-58B	Primary	Lancaster	05/06/2008	0.7 U
RD-58B	Split	C&T	05/06/2008	0.64 U
RD-58B	Primary	Lancaster	08/21/2008	0.7 U
RD-58B	Primary	Lancaster	10/30/2008	0.7 U
RD-59A	Primary	Lancaster	05/20/2008	0.7 U
RD-59B	Primary	Lancaster	05/20/2008	0.7 U
RD-59C	Primary	Lancaster	05/20/2008	0.7 U
RD-59C	Split	C&T	05/20/2008	0.64 U
RD-66	Primary	Lancaster	03/10/2008	0.7 U
RD-68A	Primary	Lancaster	02/21/2008	0.7 U
RD-68B	Primary	Lancaster	02/21/2008	0.7 U
RD-70	Primary	Lancaster	03/10/2008	0.7 U
RD-71	Primary	Lancaster	03/10/2008	0.7 U
RD-73	Primary	Lancaster	02/19/2008	14.9
RD-73	Primary	Lancaster	05/14/2008	74.2
RD-73	Primary	Lancaster	09/05/2008	90
RD-73	Split	TA-Denver	09/05/2008	120
RD-73	Primary	Lancaster	11/04/2008	92.2
RD-75	Primary	Lancaster	03/12/2008	0.7 U
RD-77	Primary	Lancaster	02/19/2008	250
RD-77	Primary	Lancaster	05/14/2008	267
RD-77	Primary	Lancaster	11/21/2008	234
RD-78	Primary	Lancaster	03/12/2008	0.7 U
RD-78	Split	C&T	03/12/2008	0.47 U
RD-80	Primary	Lancaster	03/05/2008	0.7 U
RD-81	Primary	Lancaster	03/06/2008	0.7 U
RD-82	Primary	Lancaster	03/11/2008	0.7 U
RD-83	Primary	Lancaster	03/06/2008	0.7 U
RD-84	Primary	Lancaster	02/22/2008	0.7 U
RD-98	Primary	Lancaster	06/26/2008	0.7 UJ
RD-98	Primary	Lancaster	09/11/2008	0.7 U
WS-04A	Primary	Lancaster	02/26/2008	0.7 U
WS-04A	Split	C&T	02/26/2008	0.47 U
WS-05	Primary	Lancaster	02/26/2008	6.4 J
WS-05	Split	C&T	02/26/2008	0.47 U
WS-05	Primary	Lancaster	05/06/2008	0.7 UJ

TABLE IXSUMMARY OF ANALYSES FOR PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Result Value	ug/∟			
Well Identifier	Sample Type	Lab Name	Date Collected	
WS-05	Split	C&T	05/06/2008	0.64 U
WS-05	Primary	Lancaster	08/21/2008	0.7 U
WS-05	Primary	Lancaster	11/03/2008	0.7 U
WS-05	Duplicate	Lancaster	11/03/2008	0.7 U
WS-05	Split	TA-Denver	11/03/2008	0.28 U
WS-06	Primary	Lancaster	02/28/2008	0.7 U
WS-06	Primary	Lancaster	05/07/2008	0.7 U
WS-06	Primary	Lancaster	09/09/2008	0.7 U
WS-06	Primary	Lancaster	10/30/2008	0.7 U
WS-09	Primary	Lancaster	02/26/2008	0.7 U
WS-09	Primary	Lancaster	05/08/2008	0.7 U
WS-09	Primary	Lancaster	08/20/2008	0.7 U
WS-09	Primary	Lancaster	10/29/2008	0.7 U
WS-09A	Primary	Lancaster	02/29/2008	0.7 U
WS-09A	Primary	Lancaster	05/15/2008	0.7 U
WS-09A	Primary	Lancaster	08/20/2008	0.7 U
WS-09A	Duplicate	Lancaster	08/20/2008	0.7 U
WS-09A	Primary	Lancaster	10/30/2008	0.7 U
WS-09B	Primary	Lancaster	02/28/2008	0.7 U
WS-12	Primary	Lancaster	02/27/2008	0.7 U
WS-13	Primary	Lancaster	02/25/2008	0.7 U
WS-14	Primary	Lancaster	02/22/2008	0.7 U

1.	C&T	=	Curtis & Tompkins, Ltd. of Berkeley, California.
2.	Lancaster	=	Lancaster Laboratories of Lancaster, Pennsylvania.
3.	TA-Denver	=	TestAmerica of Arvada, Colorado.
4.	ug/L	=	Micrograms per liter.
5.	J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
6.	U	=	Not detected.
7.	UJ	=	Not detected. Estimated detection limit as a result of analytical quality control deficiencies (see Appendix D for details).

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Inorganics						
Well Identifier:			HAR-14	HAR-15	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Primary	Primary	Primary	Primary
Sample Preparation:			Dissolved	Dissolved	Dissolved	Dissolved
Lab Name:			TA-Denver	TA-Denver	TA-Denver	TA-Denver
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units	MCL				
Antimony	mg/L	0.006	0.0001 J	0.000091 J	0.00065 J	0.0002 J
Arsenic	mg/L	0.01	0.00096 J	0.0028 J	0.0056	0.0013 J
Barium	mg/L	1	0.033	0.02	0.056	0.026
Beryllium	mg/L	0.004	0.00008 U	0.00008 U	0.00008 U	0.00013 J
Cadmium	mg/L	0.005	0.00004 U	0.000091 J	0.000061 J	0.00004 U
Chromium	mg/L	0.05	0.0005 U	0.0005 U	0.0005 U	0.0017 J
Cobalt	mg/L	NA	0.00044 J	0.00019 J	0.0031	0.0002 J
Copper	mg/L	1 SMCL	0.00066 J	0.00092 J	0.00056 U	0.0015 J
Cyanide	mg/L	0.15	0.0024 U	0.0024 U	0.0024 U	0.0024 U
Lead	mg/L	0.015 RAL	0.00018 U	0.00018 U	0.00018 U	0.00018 U
Mercury	mg/L	0.002	0.000027 U	0.000027 U	0.000027 U	0.000027 U
Nickel	mg/L	0.1	0.0062	0.0028	0.004	0.0013 J
Selenium	mg/L	0.05	0.0026 U	0.00095 U	0.0014 U	0.0011 U
Silver	mg/L	0.1 SMCL	0.00016 U	0.00016 U	0.00016 U	0.00016 U
Sulfide	mg/L	NA	0.0071 U	0.071 U	0.0071 U	0.0071 U
Thallium	mg/L	0.002	0.000028 J	0.00002 U	0.00002 U	0.00002 U
Tin	mg/L	NA	0.0058 U	0.0058 U	0.0058 U	0.0058 U
Vanadium	mg/L	0.05 NL	0.0015 J	0.0024	0.0035	0.0028
Zinc	mg/L	5 SMCL	0.0022 J	0.0044 J	0.002 U	0.002 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Inorganics						
Well Identifier:			HAR-07	HAR-16	HAR-16	HAR-17
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Primary	Primary	Primary
Sample Preparation:			Dissolved	Dissolved	Total	Dissolved
Lab Name:			TA-Denver	TA-Denver	TA-Denver	TA-Denver
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
Antimony	mg/L	0.006	0.00007 U	0.00007 U	0.000075 U	0.00007 U
Arsenic	mg/L	0.01	0.0004 J	0.00052 J	0.0013 J	0.00026 J
Barium	mg/L	1	0.025	0.028	0.024	0.081
Beryllium	mg/L	0.004	0.00008 U	0.00008 U	0.00008 U	0.00008 U
Cadmium	mg/L	0.005	0.00004 U	0.00004 U	0.00004 U	0.00004 U
Chromium	mg/L	0.05	0.0005 U	0.0005 U	0.00093 J	0.0005 U
Cobalt	mg/L	NA	0.00027 J	0.000053 J	0.00021 U	0.00042 J
Copper	mg/L	1 SMCL	0.0075	0.0016 J	0.063	0.01
Cyanide	mg/L	0.15	0.0024 U	0.0024 U	0.0024 U	0.0024 U
Lead	mg/L	0.015 RAL	0.0016	0.0012	0.0031	0.0028
Mercury	mg/L	0.002	0.000027 U	0.000027 U	0.000027 U	0.000027 U
Nickel	mg/L	0.1	0.0014 J	0.0018 J	0.00076 J	0.0031
Selenium	mg/L	0.05	0.0012 U	0.0033 U	0.00071 J	0.0013 U
Silver	mg/L	0.1 SMCL	0.00016 U	0.00016 U	0.00016 U	0.00016 U
Sulfide	mg/L	NA	0.0071 U	0.0071 U	0.0071 U	0.0071 U
Thallium	mg/L	0.002	0.00002 U	0.00002 U	0.00002 U	0.00002 U
Tin	mg/L	NA	0.0058 U	0.0058 U	0.0058 U	0.0058 U
Vanadium	mg/L	0.05 NL	0.0002 J	0.001 J	0.0012 J	0.0003 J
Zinc	mg/L	5 SMCL	0.044	0.96	0.98	0.18

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides						
Well Identifier:			HAR-14	HAR-15	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			TA-Denver	TA-Denver	TA-Denver	Lancaster
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units	MCL				
Aldrin	ug/L	0.002 AAL	0.0057 U	0.0058 U	0.0057 U	0.0038 U
alpha-BHC	ug/L	0.015 AAL	0.0051 U	0.0052 U	0.0051 U	0.0026 U
beta-BHC	ug/L	0.025 AAL	0.0084 U	0.0085 U	0.0084 U	0.0038 U
delta-BHC	ug/L	NA	0.0056 U	0.0057 U	0.0056 U	0.0069 J
Gamma-BHC (Lindane)	ug/L	0.2	0.0066 U	0.0068 U	0.0066 U	0.0019 U
Chlordane	ug/L	0.1	0.13 U	0.14 U	0.13 U	0.066 U
Chlorobenzilate	ug/L	NA	0.041 U	0.042 U	0.041 U	
4,4'-DDD	ug/L	NA	0.0074 U	0.0075 U	0.0074 U	0.0038 U
4,4'-DDE	ug/L	NA	0.0072 U	0.0074 U	0.0072 U	0.0052 J
4,4'-DDT	ug/L	NA	0.014 U	0.015 U	0.014 U	0.0057 U
Diallate	ug/L	NA	0.19 U	0.19 U	0.19 U	
Dieldrin	ug/L	0.002 AAL	0.006 U	0.0062 U	0.006 U	0.0038 U
Dinoseb	ug/L	7	0.23 U	0.23 U	0.23 U	
Endosulfan-I	ug/L	NA	0.0056 U	0.0057 U	0.0056 U	0.0028 U
Endosulfan-II	ug/L	NA	0.0067 U	0.0069 U	0.0067 U	0.0038 U
Endosulfan sulfate	ug/L	NA	0.0055 U	0.0056 U	0.0055 U	0.0038 U
Endrin	ug/L	2	0.0076 U	0.0077 U	0.0076 U	0.0038 U
Endrin aldehyde	ug/L	- NA	0.0084 U	0.0086 U	0.0084 U	0.019 U
Heptachlor	ug/L	0.01	0.0074 U	0.0075 U	0.0074 U	0.0093 J
Heptachlor epoxide	ug/L	0.01	0.0072 U	0.0074 U	0.0072 U	0.0028 U
Isodrin	ug/L	NA	1.9 U	1.7 U	1.7 U	
Kepone	ug/L	NA	0.33 U	0.34 U	0.33 U	
Methoxychlor	ug/L	30	0.012 U	0.013 U	0.012 U	0.028 U
Aroclor 1016	ug/L	0.5(total)	0.12 U	0.12 UJ	0.12 U	
Aroclor 1221	ug/L	0.5(total)	0.21 U	0.21 UJ	0.21 U	
Aroclor 1232	ug/L	0.5(total)	0.16 U	0.16 UJ	0.16 U	
Aroclor 1242	ug/L	0.5(total)	0.1 U	0.1 UJ	0.1 U	
Aroclor 1248	ug/L	0.5(total)	0.088 U	0.09 UJ	0.088 U	
Aroclor 1254	ug/L	0.5(total)	0.11 U	0.11 UJ	0.11 U	
Aroclor 1260	ug/L	0.5(total)	0.15 U	0.16 UJ	0.15 U	
Toxaphene	ug/L	3 ` ′	0.35 U	0.36 U	0.35 U	0.95 U
2,4-D	ug/L	70	0.68 U	0.67 U	0.66 U	
2,4,5-T	ug/L	NA	0.19 U	0.19 U	0.19 U	
2,4,5-TP (Silvex)	ug/L	50	0.25 U	0.24 U	0.24 U	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L	NA	0.67 U	0.67 U	0.65 U	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/L	NA	1.8 U	1.9 U	1.9 U	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L	NA	1.2 U	1.2 U	1.2 U	
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/L	NA	0.62 U	0.61 U	0.69 U	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	1.1 U	1.4 U	1.1 U	
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.58 U	0.63 U	0.65 U	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	1.3 U	1.5 U	1.3 U	
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L	NA	0.91 U	0.97 U	0.98 U	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/L	NA	1.1 U	1.3 U	1.1 U	
1,2,3,7,8-Pentachlorodibenzofuran	pg/L	NA	1.3 U	1.8 U	1.7 U	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/L	NA	1.9 U	2.7 U	2.2 U	
1,2,3,7,8-Pentachiorodibenzo-p-dioxin	pg/L	NA	1.9 U	2.7 U	2.2 U	

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides						
Well Identifier:			HAR-14	HAR-15	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			TA-Denver	TA-Denver	TA-Denver	Lancaster
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units	MCL				
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.62 U	0.65 U	0.69 U	
2,3,4,7,8-Pentachlorodibenzofuran	pg/L	NA	1.1 U	1.5 U	1.5 U	
2,3,7,8-TCDD	pg/L	30	3.8 U	5.1 U	4.4 U	
2,3,7,8-TCDD TEQ	pg/L	30	6.99 U	9.41 U	8.05 U	
2,3,7,8-Tetrachlorodibenzofuran	pg/L	NA	2.6 U	3.6 U	2.6 U	
Octachlorodibenzofuran	pg/L	NA	2.7 U	2.7 U	2 U	
Octachlorodibenzo-p-dioxin	pg/L	NA	15 U	16 U	16 U	

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides						
Well Identifier:			SH-04	SH-04	HAR-07	HAR-07
Geological Unit:			Shallow	Shallow	Chatsworth	Chatsworth
Sample Type:			Primary	Split	Primary	Primary
Lab Name:			TA-Denver	TA-Denver	TA-Denver	TA-Knoxville
Collection Date:			04/23/2008	04/23/2008	04/23/2008	08/27/2008
Analyte	Units	MCL				
Aldrin	ug/L	0.002 AAL		0.0072 J	0.0057 U	
alpha-BHC	ug/L	0.015 AAL		0.0051 U	0.0051 U	
beta-BHC	ug/L	0.025 AAL		0.0084 U	0.0084 U	
delta-BHC	ug/L	NA		0.0056 U	0.0056 U	
Gamma-BHC (Lindane)	ug/L	0.2		0.0066 U	0.0066 U	
Chlordane	ug/L	0.1		0.13 U	0.13 U	
Chlorobenzilate	ug/L	NA		0.041 U	0.041 U	
4,4'-DDD	ug/L	NA		0.013 J	0.0074 U	
4,4'-DDE	ug/L	NA		0.023 J	0.0072 U	
4,4'-DDT	ug/L	NA		0.014 U	0.014 U	
Diallate	ug/L	NA		0.19 U	0.19 U	
Dieldrin	ug/L	0.002 AAL		0.006 U	0.006 U	
Dinoseb	ug/L	7	0.23 U		0.22 U	
Endosulfan-l	ug/L	NA		0.0056 U	0.0056 U	
Endosulfan-II	ug/L	NA		0.0076 J	0.0067 U	
Endosulfan sulfate	ug/L	NA		0.0055 U	0.0055 U	
Endrin	ug/L	2		0.0076 U	0.0076 U	
Endrin aldehyde	ug/L	NA		0.0084 U	0.0084 U	
Heptachlor	ug/L	0.01		0.015 J	0.0074 U	
Heptachlor epoxide	ug/L	0.01		0.0072 U	0.0072 U	
Isodrin	ug/L	NA	1.7 U		1.7 U	
Kepone	ug/L	NA		0.33 U	0.33 U	
Methoxychlor	ug/L	30		0.012 U	0.012 U	
Aroclor 1016	ug/L	0.5(total)	0.12 U		0.12 U	
Aroclor 1221	ug/L	0.5(total)	0.21 U		0.21 U	
Aroclor 1232	ug/L	0.5(total)	0.16 U		0.16 U	
Aroclor 1242	ug/L	0.5(total)	0.1 U		0.1 U	
Aroclor 1248	ug/L	0.5(total)	0.088 U		0.088 U	
Aroclor 1254	ug/L	0.5(total)	0.11 U		0.11 U	
Aroclor 1260	ug/L	0.5(total)	0.15 U		0.15 U	
Toxaphene	ug/L	3		0.35 U	0.35 U	
2,4-D	ug/L	70	0.67 U		0.65 U	
2,4,5-T	ug/L	NA	0.19 U		0.19 U	
2,4,5-TP (Silvex)	ug/L	50	0.24 U		0.24 U	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L	NA	1 U		0.78 U	0.61 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/L	NA	1.7 U		1.5 U	1.2 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L	NA	1.7 U		2 J	0.9 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/L	NA	0.69 U		0.91 U	0.53 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	1.2 U		1.5 U	0.9 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.71 U		0.86 U	0.48 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/L pg/L	NA NA	1.4 U		1.7 U	1.1 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L pg/L	NA NA	0.94 U		1.7 U 1.2 U	0.58 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin		NA NA	1.2 U		1.2 U 1.5 U	0.93 U
1,2,3,7,8,9-nexachiorodibenzo-p-dioxin	pg/L				1.5 U 1.5 U	0.93 U 1.1 U
	pg/L	NA NA	1.8 U			
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/L	NA	1.7 U		1.9 U	1.2 U

SUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY CALIFORNIA

Pesticides						
Well Identifier:			SH-04	SH-04	HAR-07	HAR-07
Geological Unit:			Shallow	Shallow	Chatsworth	Chatsworth
Sample Type:			Primary	Split	Primary	Primary
Lab Name:			TA-Denver	TA-Denver	TA-Denver	TA-Knoxville
Collection Date:			04/23/2008	04/23/2008	04/23/2008	08/27/2008
Analyte	Units	MCL				
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.71 U		0.86 U	0.54 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/L	NA	1.4 U		1.2 U	0.88 U
2,3,7,8-TCDD	pg/L	30	4.9 U		4.1 U	3.7 U
2,3,7,8-TCDD TEQ	pg/L	30	8.12 U		0.02 J	5.9 U
2,3,7,8-Tetrachlorodibenzofuran	pg/L	NA	3.1 U		2.4 U	2 U
Octachlorodibenzofuran	pg/L	NA	2.6 U		5.8 J	1.3 U
Octachlorodibenzo-p-dioxin	pg/L	NA	8.6 U		9.7 U	1.4 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides						
Well Identifier:			HAR-07	HAR-16	HAR-16	HAR-16
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Duplicate	Primary	Primary	Duplicate
Lab Name:			TA-Knoxville	TA-Denver	TA-Knoxville	TA-Knoxville
Collection Date:			08/27/2008	04/23/2008	09/04/2008	09/04/2008
Analyte	Units	MCL				
Aldrin	ug/L	0.002 AAL		0.0057 U		
alpha-BHC	ug/L	0.015 AAL		0.0051 U		
beta-BHC	ug/L	0.025 AAL		0.0084 U		
delta-BHC	ug/L	NA		0.0056 U		
Gamma-BHC (Lindane)	ug/L	0.2		0.0066 U		
Chlordane	ug/L	0.1		0.13 U		
Chlorobenzilate	ug/L	NA		0.041 U		
4,4'-DDD	ug/L	NA		0.0074 U		
4,4'-DDE	ug/L	NA		0.0071 U		
4,4'-DDT	ug/L	NA		0.014 U		
Diallate	ug/L	NA		0.014 U		
Dieldrin	ug/L	0.002 AAL		0.19 U		
Dinoseb	ug/L	7		0.000 U		
Endosulfan-l	ug/L ug/L	, NA		0.0056 U		
Endosulfan-II				0.0056 U 0.0067 U		
	ug/L	NA				
Endosulfan sulfate	ug/L	NA		0.0055 U		
Endrin	ug/L	2		0.0076 U		
Endrin aldehyde	ug/L	NA		0.0084 U		
Heptachlor	ug/L	0.01		0.0074 U		
Heptachlor epoxide	ug/L	0.01		0.0072 U		
Isodrin	ug/L	NA		1.7 U		
Kepone	ug/L	NA		0.33 U		
Methoxychlor	ug/L	30		0.012 U		
Aroclor 1016	ug/L	0.5(total)		0.12 U		
Aroclor 1221	ug/L	0.5(total)		0.21 U		
Aroclor 1232	ug/L	0.5(total)		0.16 U		
Aroclor 1242	ug/L	0.5(total)		0.1 U		
Aroclor 1248	ug/L	0.5(total)		0.088 U		
Aroclor 1254	ug/L	0.5(total)		0.11 U		
Aroclor 1260	ug/L	0.5(total)		0.15 U		
Toxaphene	ug/L	3		0.35 U		
2,4-D	ug/L	70		0.65 U		
2,4,5-T	ug/L	NA		0.19 U		
2,4,5-TP (Silvex)	ug/L	50		0.24 U		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L	NA	0.55 U	0.55 U	0.83 U	0.75 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/L	NA	0.86 U	0.81 U	1.5 U	1.5 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L	NA	0.79 U	0.94 U	1.1 U	0.98 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/L	NA	0.43 U	0.51 U	0.62 U	0.61 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	0.75 U	0.9 U	1.1 U	0.8 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.39 U	0.49 U	0.63 U	0.62 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	0.81 U	1 U	1.2 U	0.92 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L	NA	0.48 U	0.68 U	0.69 U	0.66 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/L	NA	0.73 U	0.89 U	1.1 U	0.8 U
1,2,3,7,8-Pentachlorodibenzofuran		NA	0.93 U	0.96 U	1.4 U	1 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/L	NA	0.99 U	1.2 U	1.6 U	1.4 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin 1,2,3,7,8-Pentachlorodibenzofuran	pg/L pg/L	NA NA	0.73 U 0.93 U	0.89 U 0.96 U	1.1 U 1.4 U	0.8 U 1 U

See last 2 pages of table for notes and abbreviations. Haley & Aldrich, Inc.

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides						
Well Identifier:			HAR-07	HAR-16	HAR-16	HAR-16
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Duplicate	Primary	Primary	Duplicate
Lab Name:			TA-Knoxville	TA-Denver	TA-Knoxville	TA-Knoxville
Collection Date:			08/27/2008	04/23/2008	09/04/2008	09/04/2008
Analyte	Units	MCL				
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.41 U	0.52 U	0.64 U	0.62 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/L	NA	0.77 U	0.78 U	1.1 U	0.89 U
2,3,7,8-TCDD	pg/L	30	3.4 U	3.2 U	2.9 U	2.7 U
2,3,7,8-TCDD TEQ	pg/L	30	5.3 U	0.0012 J	5.7 U	5.1 U
2,3,7,8-Tetrachlorodibenzofuran	pg/L	NA	1.9 U	1.8 U	2.3 U	1.8 U
Octachlorodibenzofuran	pg/L	NA	1.3 U	4 J	1.4 U	1.5 U
Octachlorodibenzo-p-dioxin	pg/L	NA	0.97 U	6.3 U	1.1 U	1.8 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides					
Well Identifier:			HAR-17	HAR-17	HAR-17
Geological Unit:			Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Primary	Duplicate
Lab Name:			TA-Denver	TA-Knoxville	TA-Knoxville
Collection Date:			04/23/2008	09/04/2008	09/04/2008
Analyte	Units	MCL			
Aldrin	ug/L	0.002 AAL	0.0059 U		
alpha-BHC	ug/L	0.015 AAL	0.0053 U		
beta-BHC	ug/L	0.025 AAL	0.0087 U		
delta-BHC	ug/L	NA	0.0058 U		
Gamma-BHC (Lindane)	ug/L	0.2	0.0069 U		
Chlordane	ug/L	0.1	0.14 U		
Chlorobenzilate	ug/L	NA	0.042 U		
4,4'-DDD	ug/L	NA	0.0077 U		
4,4'-DDE	ug/L	NA	0.0075 U		
4,4'-DDT	ug/L	NA	0.015 U		
Diallate	ug/L	NA	0.19 U		
Dieldrin	ug/L	0.002 AAL	0.0063 U		
Dinoseb	ug/L	7	0.23 U		
Endosulfan-I	ug/L	NA	0.0058 U		
Endosulfan-II	ug/L	NA	0.007 U		
Endosulfan sulfate	ug/L	NA	0.0057 U		
Endrin	ug/L	2	0.0079 U		
Endrin aldehyde	ug/L	NA	0.0088 U		
Heptachlor	ug/L	0.01	0.0077 U		
Heptachlor epoxide	ug/L	0.01	0.0075 U		
Isodrin	ug/L	NA	1.7 U		
Kepone	ug/L	NA	0.35 U		
Methoxychlor	ug/L	30	0.013 U		
Aroclor 1016	ug/L	0.5(total)	0.12 U		
Aroclor 1221	ug/L	0.5(total)	0.21 U		
Aroclor 1232	ug/L	0.5(total)	0.17 U		
Aroclor 1242	ug/L	0.5(total)	0.1 U		
Aroclor 1248	ug/L	0.5(total)	0.092 U		
Aroclor 1254	ug/L	0.5(total)	0.11 U		
Aroclor 1260	ug/L	0.5(total)	0.16 U		
Toxaphene	ug/L	3	0.37 U		
2,4-D	ug/L	70	0.67 U		
2,4,5-T	ug/L	NA	0.19 U		
2,4,5-TP (Silvex)	ug/L	50	0.24 U		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L	NA	0.75 U	0.85 U	1.1 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/L	NA	1.5 U	1.8 U	2 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L	NA	1.3 U	1.1 U	1.4 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/L	NA	0.65 U	0.69 U	0.95 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	1 U	0.92 U	1.1 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.64 U	0.63 U	0.86 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/L	NA	1.3 U	1.1 U	1.3 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L	NA	0.86 U	0.7 U	0.97 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/L	NA	1.1 U	0.94 U	1.1 U
1,2,3,7,8-Pentachlorodibenzofuran	pg/L	NA	1.3 U	1.2 U	1.6 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/L	NA	1.5 U	1.6 U	1.7 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Pesticides					
Well Identifier:			HAR-17	HAR-17	HAR-17
Geological Unit:			Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Primary	Duplicate
Lab Name:			TA-Denver	TA-Knoxville	TA-Knoxville
Collection Date:			04/23/2008	09/04/2008	09/04/2008
Analyte	Units	MCL			
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/L	NA	0.63 U	0.65 U	0.88 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/L	NA	1 U	1 U	1.3 U
2,3,7,8-TCDD	pg/L	30	4.1 U	3.2 U	4.1 U
2,3,7,8-TCDD TEQ	pg/L	30	0.0009 J	6.0 U	7.2 U
2,3,7,8-Tetrachlorodibenzofuran	pg/L	NA	2.4 U	2.2 U	2.3 U
Octachlorodibenzofuran	pg/L	NA	3.1 J	1.9 U	2.3 U
Octachlorodibenzo-p-dioxin	pg/L	NA	5.4 U	1.6 U	1.9 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compounds								
Well Identifier:			HAR-14	HAR-14	HAR-15	HAR-15		
Geological Unit:			Shallow	Shallow	Shallow	Shallow		
Sample Type:			Primary	Primary	Primary	Primary		
Lab Name:			TA-Denver	Weck	TA-Denver	Weck		
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/22/2008		
Analyte	Units	MCL						
1,2-Dichlorobenzene	ug/l	600	0.13 U		0.13 U			
1,2,4,5-Tetrachlorobenzene	ug/L	NA	1.8 UJ		1.7 U			
1,2,4-Trichlorobenzene	ug/L	5	0.29 UJ		0.27 U			
1,3-Dichlorobenzene	ug/L	600 AAL	0.32 UJ		0.29 U			
1,3-Dinitrobenzene	ug/L	NA	2.1 UJ		1.9 U			
1,4-Dichlorobenzene	ug/L	5	0.16 U		0.16 U			
1,3,5-Trinitrobenzene	ug/L	NA	4.2 UJ		3.8 U			
1,4-Phenylenediamine	ug/L	NA	5.2 UJ		4.8 U			
1-Naphthylamine	ug/L	NA	1 UJ		0.96 U			
1,4-Naphthoquinone	ug/L	NA	2.1 UJ		1.9 U			
2,3,4,6-Tetrachlorophenol	ug/L	NA	2.1 UJ		1.9 U			
2,4,5-Trichlorophenol	ug/L	NA	0.47 UJ		0.43 U			
2,4,6-Trichlorophenol	ug/L	NA	0.3 UJ		0.28 U			
2,4-Dichlorophenol	ug/L	NA	0.67 UJ		0.61 U			
2,4-Dimethylphenol	ug/L	100 AAL	0.61 UJ		0.56 U			
2,4-Dinitrophenol	ug/L	NA	10 UJ		9.6 U			
2,4-Dinitrotoluene	ug/L	NA	0.23 UJ		0.21 U			
2,6-Dichlorophenol	ug/L	NA	1.4 UJ		1.3 U			
2,6-Dinitrotoluene	ug/L	NA	0.34 UJ		0.31 U			
2-Acetylaminofluorene	ug/L	NA	7.3 UJ		6.7 U			
2-Chloronaphthalene	ug/L	NA	0.27 UJ		0.25 U			
2-Chlorophenol	ug/L	NA	2.1 UJ		1.9 U			
2-Methylnaphthalene	ug/L	NA	0.3 UJ		0.28 U			
2-Methylphenol	ug/L	NA	1 UJ		0.94 U			
2-Nitroaniline	ug/L	NA	0.34 UJ		0.31 U			
2-Nitrophenol	ug/L	NA	0.41 UJ		0.37 U			
3 & 4-Methylphenol	ug/L	NA	0.26 UJ		0.24 U			
3,3'-Dichlorobenzidine	ug/L	NA	2.1 UJ		1.9 U			
3,3'-Dimethylbenzidine	ug/L	NA	4.2 UJ		3.8 U			
3-Methylcholanthrene	ug/L	NA	1.8 UJ		1.6 U			
3-Nitroaniline	ug/L	NA	0.28 UJ		0.26 U			
4,6-Dinitro-2-Methylphenol	ug/L	NA	4.2 UJ		3.8 U			
4-Aminobiphenyl	ug/L	NA	4.7 UJ		4.3 U			
4-Bromophenyl phenyl ether	ug/L	NA	0.45 UJ		0.41 U			
4-Chloro-3-methylphenol	ug/L	NA	0.94 UJ		0.86 U			
4-Chloroaniline	ug/L	NA	0.3 UJ		0.28 U			
4-Chlorophenylphenyl ether	ug/L	NA	0.28 UJ		0.26 U			
4-Nitroaniline	ug/L	NA	2.1 UJ		1.9 U			
4-Nitrophenol	ug/L	NA	1.3 UJ		1.2 U			
4-Nitroquinoline-1-oxide	ug/L	NA	21 UJ		19 U			
5-Nitro-o-toluidine	ug/L	NA	1.5 UJ		1.3 U			
7,12-Dimethylbenz(a)anthracene	ug/L	NA	1.6 UJ		1.5 U			
a,a-Dimethylphenethylamine	ug/L	NA	21 UJ		19 U			
Acenaphthene	ug/L	NA	0.29 UJ		0.27 U			

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compour	nds					
Well Identifier:			HAR-14	HAR-14	HAR-15	HAR-15
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			TA-Denver	Weck	TA-Denver	Weck
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/22/2008
Analyte	Units	MCL				
Acenaphthylene	ug/L	NA	0.51 UJ		0.47 U	
Acetophenone	ug/L	NA	0.25 UJ		0.23 U	
alpha-Picoline	ug/L	NA	1.3 UJ		1.2 U	
Aniline	ug/L	NA	2.1 UJ		1.9 U	
Anthracene	ug/L	NA	0.44 UJ		0.4 U	
Aramite	ug/L	NA	21 UJ		19 U	
Benzo(a)anthracene	ug/L	NA	0.37 UJ		0.34 U	
Benzo(a)pyrene	ug/L	0.2	0.33 UJ		0.3 U	
Benzo(b)fluoranthene	ug/L	NA	0.56 UJ		0.51 U	
Benzo(ghi)perylene	ug/L	NA	0.52 UJ		0.48 U	
Benzo(k)fluoranthene	ug/L	NA	0.48 UJ		0.44 U	
Benzyl alcohol	ug/L	NA	0.24 UJ		0.22 U	
beta-Naphthylamine	ug/L	NA	1 UJ		0.96 U	
bis(2-Chloroethoxy)methane	ug/L	NA	1 UJ		0.93 U	
bis(2-Chloroethyl) ether	ug/L	NA	0.43 UJ		0.39 U	
bis(2-Chloroisopropyl) ether	ug/L	NA	0.29 UJ		0.27 U	
bis(2-Ethylhexyl) phthalate	ug/L	4	0.83 J		0.54 U	
Butyl benzyl phthalate	ug/L	NA	1 UJ		0.96 U	
Chrysene	ug/L	NA	0.57 UJ		0.52 U	
Dibenzo(a,h)anthracene	ug/L	NA	0.54 UJ		0.49 U	
Dibenzofuran	ug/L	NA	0.3 UJ		0.28 U	
Diethyl phthalate	ug/L	NA	0.4 UJ		0.36 U	
Dimethoate	ug/L	1 AAL	0.43 U		0.44 U	
Dimethyl phthalate	ug/L	NA	0.22 UJ		0.2 U	
Di-n-butyl phthalate	ug/L	NA	1.2 UJ		1.1 U	
Di-n-octyl phthalate	ug/L	NA	0.37 UJ		0.34 U	
Diphenylamine	ug/L	NA	1.1 UJ		1 U	
Disulfoton	ug/L	NA	0.31 U		0.32 U	
Ethyl methanesulfonate	ug/L	NA	0.99 UJ		0.91 U	
Famphur	ug/L	NA	0.17 U		0.18 U	
Fluoranthene	ug/L	NA	0.21 UJ		0.19 U	
Fluorene	ug/L	NA	0.33 UJ		0.3 U	
Hexachlorobenzene	ug/L	1	0.69 UJ		0.63 U	
Hexachlorobutadiene	ug/L	NA	0.54 UJ		0.49 U	
Hexachlorocyclopentadiene	ug/L	50	1.6 UJ		1.5 U	
Hexachloroethane	ug/L	NA	0.48 UJ		0.44 U	
Hexachlorophene	ug/L	NA	2.7 U		2.7 U	
Hexachloropropene	ug/L	NA	2.1 UJ		1.9 U	
Indeno(1,2,3-cd)pyrene	ug/L	NA	0.68 UJ		0.62 U	
Isodrin	ug/L	NA	1.9 UJ		1.7 U	
Isophorone	ug/L	NA	0.22 UJ		0.2 U	
Isosafrole	ug/L	NA	2.1 UJ		1.9 U	
Methapyrilene	ug/L	NA	21 UJ		19 U	
Methyl methanesulfonate	ug/L	NA	1 UJ		0.96 U	

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compounds								
Well Identifier:			HAR-14	HAR-14	HAR-15	HAR-15		
Geological Unit:			Shallow	Shallow	Shallow	Shallow		
Sample Type:			Primary	Primary	Primary	Primary		
Lab Name:			TA-Denver	Weck	TA-Denver	Weck		
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/22/2008		
Analyte	Units	MCL						
Methyl parathion	ug/L	2 AAL	0.14 UJ		0.14 U			
Naphthalene	ug/L	17 NL	0.3 UJ		0.28 U			
Nitrobenzene	ug/L	NA	0.85 UJ		0.78 U			
n-Nitrosodiethylamine	ug/L	0.01 NL		0.002 U		0.002 U		
n-Nitrosodimethylamine	ug/L	0.01 NL		0.36		0.002 U		
n-Nitrosodi-n-butylamine	ug/L	NA	1.3 UJ		1.2 U			
n-Nitrosodi-n-propylamine	ug/L	0.01 NL		0.002 U		0.002 U		
n-Nitrosodiphenylamine	ug/L	NA	0.46 UJ		0.42 U			
n-Nitrosomethylethylamine	ug/L	NA	1.8 UJ		1.7 U			
n-Nitrosomorpholine	ug/L	NA	2.1 UJ		1.9 U			
n-Nitrosopiperidine	ug/L	NA	2.1 UJ		1.9 U			
n-Nitrosopyrrolidine	ug/L	NA	0.84 UJ		0.77 U			
o,o,o-Triethylphosphorothioate	ug/L	NA	2.1 UJ		1.9 U			
o-Toluidine	ug/L	NA	1.5 UJ		1.3 U			
Parathion	ug/L	40 AAL	0.14 U		0.14 U			
p-Dimethylaminoazobenzene	ug/L	NA	2.1 UJ		1.9 U			
Pentachlorobenzene	ug/L	NA	2.1 UJ		1.9 U			
Pentachloroethane	ug/L	NA	2.1 UJ		1.9 U			
Pentachloronitrobenzene	ug/L	20 AAL	2.1 UJ		1.9 U			
Pentachlorophenol	ug/L	1	0.76 UJ		0.76 U			
Phenacetin	ug/L	NA	1.1 UJ		1 U			
Phenanthrene	ug/L	NA	0.27 UJ		0.25 U			
Phenol	ug/L	4200 AAL	2.1 UJ		1.9 U			
Phorate	ug/L	NA	0.15 U		0.15 U			
Pronamide	ug/L	NA	2.1 UJ		1.9 U			
Pyrene	ug/L	NA	0.39 UJ		0.36 U			
Pyridine	ug/L	NA	1.8 UJ		1.6 U			
Safrole	ug/L	NA	1.2 UJ		1.1 U			
Sulfotepp	ug/L	NA	0.16 U		0.17 U			
Thionazin	ug/L	NA	0.3 U		0.31 U			

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compoun	ds					
Well Identifier:			HAR-15	RS-08	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Duplicate	Primary	Primary	Primary
Lab Name:			Weck	TA-Denver	Weck	TA-Denver
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units	MCL				
1,2-Dichlorobenzene	ug/l	600		0.13 U		0.13 U
1,2,4,5-Tetrachlorobenzene	ug/L	NA		1.6 U		1.6 UJ
1,2,4-Trichlorobenzene	ug/L	5		0.27 U		0.27 UJ
1,3-Dichlorobenzene	ug/L	600 AAL		0.28 U		0.28 UJ
1,3-Dinitrobenzene	ug/L	NA		1.9 U		1.9 UJ
1,4-Dichlorobenzene	ug/L	5		0.16 U		0.16 U
1,3,5-Trinitrobenzene	ug/L	NA		3.8 U		3.8 UJ
1,4-Phenylenediamine	ug/L	NA		4.8 U		4.8 UJ
1-Naphthylamine	ug/L	NA		0.95 U		0.95 UJ
1,4-Naphthoquinone	ug/L	NA		1.9 U		1.9 UJ
2,3,4,6-Tetrachlorophenol	ug/L	NA		1.9 U		1.9 UJ
2,4,5-Trichlorophenol	ug/L	NA		0.43 U		0.43 UJ
2,4,6-Trichlorophenol	ug/L	NA		0.28 U		0.28 UJ
2,4-Dichlorophenol	ug/L	NA		0.61 U		0.61 UJ
2,4-Dimethylphenol	ug/L	100 AAL		0.55 U		0.55 UJ
2,4-Dinitrophenol	ug/L	NA		9.5 U		9.5 UJ
2,4-Dinitrotoluene	ug/L	NA		0.21 U		0.21 UJ
2,6-Dichlorophenol	ug/L	NA		1.3 U		1.3 UJ
2,6-Dinitrotoluene	ug/L	NA		0.3 U		0.3 UJ
2-Acetylaminofluorene	ug/L	NA		6.6 U		6.6 UJ
2-Chloronaphthalene	ug/L	NA		0.25 U		0.25 UJ
2-Chlorophenol	ug/L	NA		1.9 U		1.9 UJ
2-Methylnaphthalene	ug/L	NA		0.28 U		0.28 UJ
2-Methylphenol	ug/L	NA		0.93 U		0.93 UJ
2-Nitroaniline	ug/L	NA		0.3 U		0.3 UJ
2-Nitrophenol	ug/L	NA		0.37 U		0.37 UJ
3 & 4-Methylphenol	ug/L	NA		0.24 U		0.24 UJ
3,3'-Dichlorobenzidine	ug/L	NA		1.9 U		1.9 UJ
3,3'-Dimethylbenzidine	ug/L	NA		3.8 U		3.8 UJ
3-Methylcholanthrene	ug/L	NA		1.6 U		1.6 UJ
3-Nitroaniline	ug/L	NA		0.25 U		0.25 UJ
4,6-Dinitro-2-Methylphenol	ug/L	NA		3.8 U		3.8 UJ
4-Aminobiphenyl	ug/L	NA		4.3 U		4.3 U
4-Bromophenyl phenyl ether	ug/L	NA		0.41 U		0.41 UJ
4-Chloro-3-methylphenol	ug/L	NA		0.86 U		0.86 UJ
4-Chloroaniline	ug/L	NA		0.28 U		0.28 UJ
4-Chlorophenylphenyl ether	ug/L	NA		0.26 U		0.26 UJ
4-Nitroaniline	ug/L ug/L	NA		1.9 U		1.9 UJ
4-Nitrophenol	ug/L ug/L	NA NA		1.9 U		1.9 UJ
4-Nitroquinoline-1-oxide	ug/L ug/L	NA NA		1.2 U 19 U		1.2 UJ 19 U
5-Nitro-o-toluidine	-	NA NA		1.3 U		
	ug/L	NA NA		1.5 U		1.3 UJ 1.5 UJ
7,12-Dimethylbenz(a)anthracene	ug/L					
a,a-Dimethylphenethylamine	ug/L	NA NA		19 U		19 UJ
Acenaphthene	ug/L	NA		0.27 U		0.27 UJ

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compou	nds					
Well Identifier:			HAR-15	RS-08	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Duplicate	Primary	Primary	Primary
Lab Name:			Weck	TA-Denver	Weck	TA-Denver
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units					
Acenaphthylene	ug/L	NA		0.47 U		0.47 UJ
Acetophenone	ug/L	NA		0.23 U		0.23 UJ
alpha-Picoline	ug/L	NA		1.1 U		1.1 UJ
Aniline	ug/L	NA		1.9 U		1.9 UJ
Anthracene	ug/L	NA		0.4 U		0.4 UJ
Aramite	ug/L	NA		19 U		19 UJ
Benzo(a)anthracene	ug/L	NA		0.33 U		0.33 UJ
Benzo(a)pyrene	ug/L	0.2		0.29 U		0.29 UJ
Benzo(b)fluoranthene	ug/L	NA		0.5 U		0.5 UJ
Benzo(ghi)perylene	ug/L	NA		0.48 U		0.48 UJ
Benzo(k)fluoranthene	ug/L	NA		0.44 U		0.44 UJ
Benzyl alcohol	ug/L	NA		0.22 U		0.22 UJ
beta-Naphthylamine	ug/L	NA		0.95 U		0.95 UJ
bis(2-Chloroethoxy)methane	ug/L	NA		0.92 U		0.92 UJ
bis(2-Chloroethyl) ether	ug/L	NA		0.39 U		0.39 UJ
bis(2-Chloroisopropyl) ether	ug/L	NA		0.27 U		0.27 UJ
bis(2-Ethylhexyl) phthalate	ug/L	4		0.53 U		0.53 UJ
Butyl benzyl phthalate	ug/L	NA		0.95 U		0.95 UJ
Chrysene	ug/L	NA		0.51 U		0.51 UJ
Dibenzo(a,h)anthracene	ug/L	NA		0.48 U		0.48 UJ
Dibenzofuran	ug/L	NA		0.28 U		0.28 UJ
Diethyl phthalate	ug/L	NA		0.36 U		0.36 UJ
Dimethoate	ug/L	1 AAL		0.44 U		0.45 U
Dimethyl phthalate	ug/L	NA		0.2 U		0.2 UJ
Di-n-butyl phthalate	ug/L	NA		1.1 U		1.1 UJ
Di-n-octyl phthalate	ug/L	NA		0.33 U		0.33 UJ
Diphenylamine	ug/L	NA		1 U		1 UJ
Disulfoton	ug/L	NA		0.31 U		0.31 U
Ethyl methanesulfonate	ug/L	NA		0.9 U		0.9 UJ
Famphur	ug/L	NA		0.17 U		0.17 U
Fluoranthene	ug/L	NA		0.19 U		0.19 UJ
Fluorene	ug/L	NA		0.29 U		0.29 UJ
Hexachlorobenzene	ug/L	1		0.63 U		0.63 UJ
Hexachlorobutadiene	ug/L	NA		0.48 U		0.48 UJ
Hexachlorocyclopentadiene	ug/L	50		1.5 U		1.5 UJ
Hexachloroethane	ug/L	NA		0.44 U		0.44 UJ
Hexachlorophene	ug/L	NA		2.7 U		2.7 U
Hexachloropropene	ug/L	NA		1.9 U		1.9 UJ
Indeno(1,2,3-cd)pyrene	ug/L	NA		0.62 U		0.62 UJ
Isodrin	ug/L	NA		1.7 U		1.7 UJ
Isophorone	ug/L	NA		0.2 U		0.2 UJ
Isosafrole	ug/L	NA		1.9 U		1.9 UJ
Methapyrilene	ug/L	NA		19 U		19 UJ
Methyl methanesulfonate	ug/L	NA		0.95 U		0.95 UJ

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compounds								
Well Identifier:			HAR-15	RS-08	RS-08	SH-04		
Geological Unit:			Shallow	Shallow	Shallow	Shallow		
Sample Type:			Duplicate	Primary	Primary	Primary		
Lab Name:			Weck	TA-Denver	Weck	TA-Denver		
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008		
Analyte	Units	MCL						
Methyl parathion	ug/L	2 AAL		0.14 U		0.14 UJ		
Naphthalene	ug/L	17 NL		0.28 U		0.28 UJ		
Nitrobenzene	ug/L	NA		0.77 U		0.77 UJ		
n-Nitrosodiethylamine	ug/L	0.01 NL	0.002 U		0.002 U			
n-Nitrosodimethylamine	ug/L	0.01 NL	0.002 U		0.002 U			
n-Nitrosodi-n-butylamine	ug/L	NA		1.2 U		1.2 UJ		
n-Nitrosodi-n-propylamine	ug/L	0.01 NL	0.002 U		0.002 U			
n-Nitrosodiphenylamine	ug/L	NA		0.42 U		0.42 UJ		
n-Nitrosomethylethylamine	ug/L	NA		1.7 U		1.7 UJ		
n-Nitrosomorpholine	ug/L	NA		1.9 U		1.9 UJ		
n-Nitrosopiperidine	ug/L	NA		1.9 U		1.9 UJ		
n-Nitrosopyrrolidine	ug/L	NA		0.76 U		0.76 UJ		
o,o,o-Triethylphosphorothioate	ug/L	NA		1.9 U		1.9 UJ		
o-Toluidine	ug/L	NA		1.3 U		1.3 UJ		
Parathion	ug/L	40 AAL		0.14 U		0.14 U		
p-Dimethylaminoazobenzene	ug/L	NA		1.9 U		1.9 U		
Pentachlorobenzene	ug/L	NA		1.9 U		1.9 UJ		
Pentachloroethane	ug/L	NA		1.9 U		1.9 UJ		
Pentachloronitrobenzene	ug/L	20 AAL		1.9 U		1.9 UJ		
Pentachlorophenol	ug/L	1		0.77 U		0.77 U		
Phenacetin	ug/L	NA		1 U		1 UJ		
Phenanthrene	ug/L	NA		0.25 U		0.25 UJ		
Phenol	ug/L	4200 AAL		1.9 U		1.9 UJ		
Phorate	ug/L	NA		0.15 U		0.15 U		
Pronamide	ug/L	NA		1.9 U		1.9 UJ		
Pyrene	ug/L	NA		0.35 U		0.35 UJ		
Pyridine	ug/L	NA		1.6 U		1.6 UJ		
Safrole	ug/L	NA		1.1 U		1.1 UJ		
Sulfotepp	ug/L	NA		0.16 U		0.16 U		
Thionazin	ug/L	NA		0.3 U		0.31 U		

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compoun	ds					
Well Identifier:			SH-04	HAR-07	HAR-07	HAR-16
Geological Unit:			Shallow	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			Weck	TA-Denver	Weck	TA-Denver
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
1,2-Dichlorobenzene	ug/l	600				5.2 U
1,2,4,5-Tetrachlorobenzene	ug/L	NA		1.6 U		1.6 U
1,2,4-Trichlorobenzene	ug/L	5		0.27 U		0.27 U
1,3-Dichlorobenzene	ug/L	600 AAL		0.28 U		0.28 U
1,3-Dinitrobenzene	ug/L	NA		1.9 U		1.9 U
1,4-Dichlorobenzene	ug/L	5				6.4 U
1,3,5-Trinitrobenzene	ug/L	NA		3.8 U		3.8 U
1,4-Phenylenediamine	ug/L	NA		4.8 U		4.8 U
1-Naphthylamine	ug/L	NA		0.95 U		0.95 U
1,4-Naphthoquinone	ug/L	NA		1.9 U		1.9 U
2,3,4,6-Tetrachlorophenol	ug/L	NA		1.9 U		1.9 U
2,4,5-Trichlorophenol	ug/L	NA		0.43 U		0.43 U
2,4,6-Trichlorophenol	ug/L	NA		0.28 U		0.28 U
2,4-Dichlorophenol	ug/L	NA		0.61 U		0.61 U
2,4-Dimethylphenol	ug/L	100 AAL		0.55 U		0.55 U
2,4-Dinitrophenol	ug/L	NA		9.5 U		9.5 U
2,4-Dinitrotoluene	ug/L	NA		0.21 U		0.21 U
2,6-Dichlorophenol	ug/L	NA		1.3 U		1.3 U
2,6-Dinitrotoluene	ug/L	NA		0.3 U		0.3 U
2-Acetylaminofluorene	ug/L	NA		6.6 U		6.6 U
2-Chloronaphthalene	ug/L	NA		0.25 U		0.25 U
2-Chlorophenol	ug/L	NA		1.9 U		1.9 U
2-Methylnaphthalene	ug/L	NA		0.28 U		0.28 U
2-Methylphenol	ug/L	NA		0.93 U		0.93 U
2-Nitroaniline	ug/L	NA		0.3 U		0.3 U
2-Nitrophenol	ug/L	NA		0.37 U		0.37 U
3 & 4-Methylphenol	ug/L	NA		0.24 U		0.24 U
3,3'-Dichlorobenzidine	ug/L	NA		1.9 U		1.9 U
3,3'-Dimethylbenzidine	ug/L	NA		3.8 U		3.8 U
3-Methylcholanthrene	ug/L	NA		1.6 U		1.6 U
3-Nitroaniline	ug/L	NA		0.25 U		0.25 U
4,6-Dinitro-2-Methylphenol	ug/L	NA		3.8 U		3.8 U
4-Aminobiphenyl	ug/L	NA		4.3 U		4.3 U
4-Bromophenyl phenyl ether	ug/L	NA		0.41 U		0.41 U
4-Chloro-3-methylphenol	ug/L	NA		0.86 U		0.86 U
4-Chloroaniline	ug/L	NA		0.28 U		0.28 U
4-Chlorophenylphenyl ether	ug/L	NA		0.26 U		0.26 U
4-Nitroaniline	ug/L ug/L	NA		1.9 U		1.9 U
4-Nitrophenol	ug/L ug/L	NA		1.9 U		1.9 U
4-Nitroquinoline-1-oxide	ug/L ug/L	NA		1.2 U		1.2 U
5-Nitro-o-toluidine	-	NA NA		1.3 U		1.3 U
7,12-Dimethylbenz(a)anthracene	ug/L	NA NA		1.5 U		1.5 U
- · · · · · · · · · · · · · · · · · · ·	ug/L	NA NA		1.5 U 19 U		1.5 U 19 U
a,a-Dimethylphenethylamine	ug/L					
Acenaphthene	ug/L	NA		0.27 U		0.27 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compo	unds					
Well Identifier:			SH-04	HAR-07	HAR-07	HAR-16
Geological Unit:			Shallow	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			Weck	TA-Denver	Weck	TA-Denver
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
Acenaphthylene	ug/L	NA		0.47 U		0.47 U
Acetophenone	ug/L	NA		0.23 U		0.23 U
alpha-Picoline	ug/L	NA		1.1 U		1.1 U
Aniline	ug/L	NA		1.9 U		1.9 U
Anthracene	ug/L	NA		0.4 U		0.4 U
Aramite	ug/L	NA		19 U		19 U
Benzo(a)anthracene	ug/L	NA		0.33 U		0.33 U
Benzo(a)pyrene	ug/L	0.2		0.29 U		0.29 U
Benzo(b)fluoranthene	ug/L	NA		0.5 U		0.5 U
Benzo(ghi)perylene	ug/L	NA		0.48 U		0.48 U
Benzo(k)fluoranthene	ug/L	NA		0.44 U		0.44 U
Benzyl alcohol	ug/L	NA		0.22 U		0.22 U
beta-Naphthylamine	ug/L	NA		0.95 U		0.95 U
bis(2-Chloroethoxy)methane	ug/L	NA		0.92 U		0.92 U
bis(2-Chloroethyl) ether	ug/L	NA		0.39 U		0.39 U
bis(2-Chloroisopropyl) ether	ug/L	NA		0.27 U		0.27 U
bis(2-Ethylhexyl) phthalate	ug/L	4		0.53 U		0.53 U
Butyl benzyl phthalate	ug/L	NA		0.95 U		0.95 U
Chrysene	ug/L	NA		0.51 U		0.51 U
Dibenzo(a,h)anthracene	ug/L	NA		0.48 U		0.48 U
Dibenzofuran	ug/L	NA		0.28 U		0.28 U
Diethyl phthalate	ug/L	NA		0.36 U		0.36 U
Dimethoate	ug/L	1 AAL		0.45 U		0.45 U
Dimethyl phthalate	ug/L	NA		0.2 U		0.2 U
Di-n-butyl phthalate	ug/L	NA		1.1 U		1.1 U
Di-n-octyl phthalate	ug/L	NA		0.33 U		0.33 U
Diphenylamine	ug/L	NA		1 U		1 U
Disulfoton	ug/L	NA		0.31 U		0.31 U
Ethyl methanesulfonate	ug/L	NA		0.9 U		0.9 U
Famphur	ug/L	NA		0.17 U		0.17 U
Fluoranthene	ug/L	NA		0.19 U		0.19 U
Fluorene	ug/L	NA		0.29 U		0.29 U
Hexachlorobenzene	ug/L	1		0.63 U		0.63 U
Hexachlorobutadiene	ug/L	NA		0.48 U		0.48 U
Hexachlorocyclopentadiene	ug/L	50		1.5 U		1.5 U
Hexachloroethane	ug/L	NA		0.44 U		0.44 U
Hexachlorophene	ug/L	NA				2.7 U
Hexachloropropene	ug/L	NA		1.9 U		1.9 U
Indeno(1,2,3-cd)pyrene	ug/L	NA		0.62 U		0.62 U
Isodrin	ug/L	NA		1.7 U		1.7 U
Isophorone	ug/L	NA		0.2 U		0.2 U
Isosafrole	ug/L	NA		1.9 U		1.9 U
Methapyrilene	ug/L	NA		19 U		19 U
Methyl methanesulfonate	ug/L	NA		0.95 U		0.95 U
- Thousand The Control of the Contro	ug/∟	1171		0.00 0		0.00 0

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compour	nds					
Well Identifier:			SH-04	HAR-07	HAR-07	HAR-16
Geological Unit:			Shallow	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			Weck	TA-Denver	Weck	TA-Denver
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
Methyl parathion	ug/L	2 AAL		0.14 U		0.14 U
Naphthalene	ug/L	17 NL		0.28 U		0.28 U
Nitrobenzene	ug/L	NA		0.77 U		0.77 U
n-Nitrosodiethylamine	ug/L	0.01 NL	0.002 U		0.002 U	
n-Nitrosodimethylamine	ug/L	0.01 NL	0.12		0.029	
n-Nitrosodi-n-butylamine	ug/L	NA		1.2 U		1.2 U
n-Nitrosodi-n-propylamine	ug/L	0.01 NL	0.002 U		0.002 U	
n-Nitrosodiphenylamine	ug/L	NA		0.42 U		0.42 U
n-Nitrosomethylethylamine	ug/L	NA		1.7 U		1.7 U
n-Nitrosomorpholine	ug/L	NA		1.9 U		1.9 U
n-Nitrosopiperidine	ug/L	NA		1.9 U		1.9 U
n-Nitrosopyrrolidine	ug/L	NA		0.76 U		0.76 U
o,o,o-Triethylphosphorothioate	ug/L	NA		1.9 U		1.9 U
o-Toluidine	ug/L	NA		1.3 U		1.3 U
Parathion	ug/L	40 AAL		0.14 U		0.14 U
p-Dimethylaminoazobenzene	ug/L	NA		1.9 U		1.9 U
Pentachlorobenzene	ug/L	NA		1.9 U		1.9 U
Pentachloroethane	ug/L	NA		1.9 U		1.9 U
Pentachloronitrobenzene	ug/L	20 AAL		1.9 U		1.9 U
Pentachlorophenol	ug/L	1		0.76 U		0.8 U
Phenacetin	ug/L	NA		1 U		1 U
Phenanthrene	ug/L	NA		0.25 U		0.25 U
Phenol	ug/L	4200 AAL		1.9 U		1.9 U
Phorate	ug/L	NA		0.15 U		0.15 U
Pronamide	ug/L	NA		1.9 U		1.9 U
Pyrene	ug/L	NA		0.35 U		0.35 U
Pyridine	ug/L	NA		1.6 U		1.6 U
Safrole	ug/L	NA		1.1 U		1.1 U
Sulfotepp	ug/L	NA		0.16 U		0.16 U
Thionazin	ug/L	NA		0.31 U		0.31 U

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compoun	ds					
Well Identifier:			HAR-16	HAR-16	HAR-17	HAR-17
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Split	Primary	Primary
Lab Name:			Weck	Babcock	TA-Denver	Weck
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
1,2-Dichlorobenzene	ug/l	600			0.13 U	
1,2,4,5-Tetrachlorobenzene	ug/L	NA			1.7 U	
1,2,4-Trichlorobenzene	ug/L	5			0.27 U	
1,3-Dichlorobenzene	ug/L	600 AAL			0.29 U	
1,3-Dinitrobenzene	ug/L	NA			1.9 U	
1,4-Dichlorobenzene	ug/L	5			0.16 U	
1,3,5-Trinitrobenzene	ug/L	NA			3.9 U	
1,4-Phenylenediamine	ug/L	NA			4.8 U	
1-Naphthylamine	ug/L	NA			0.97 U	
1,4-Naphthoquinone	ug/L	NA			1.9 U	
2,3,4,6-Tetrachlorophenol	ug/L	NA			1.9 U	
2,4,5-Trichlorophenol	ug/L	NA			0.44 U	
2,4,6-Trichlorophenol	ug/L	NA			0.28 U	
2,4-Dichlorophenol	ug/L	NA			0.62 U	
2,4-Dimethylphenol	ug/L	100 AAL			0.56 U	
2,4-Dinitrophenol	ug/L	NA			9.7 U	
2,4-Dinitrotoluene	ug/L	NA			0.21 U	
2,6-Dichlorophenol	ug/L	NA			1.3 U	
2,6-Dinitrotoluene	ug/L	NA			0.31 U	
2-Acetylaminofluorene	ug/L	NA			6.8 U	
2-Chloronaphthalene	ug/L	NA			0.25 U	
2-Chlorophenol	ug/L	NA			1.9 U	
2-Methylnaphthalene	ug/L	NA			0.28 U	
2-Methylphenol	ug/L	NA			0.95 U	
2-Nitroaniline	ug/L	NA			0.31 U	
2-Nitrophenol	ug/L	NA			0.38 U	
3 & 4-Methylphenol	ug/L	NA			0.24 U	
3,3'-Dichlorobenzidine	ug/L	NA			1.9 U	
3,3'-Dimethylbenzidine	ug/L	NA			3.9 U	
3-Methylcholanthrene	ug/L ug/L	NA			1.6 U	
3-Nitroaniline	ug/L	NA			0.26 U	
4,6-Dinitro-2-Methylphenol	ug/L	NA			3.9 U	
4-Aminobiphenyl	ug/L ug/L	NA			4.4 U	
4-Bromophenyl phenyl ether	ug/L ug/L	NA			0.42 U	
4-Chloro-3-methylphenol		NA			0.42 U 0.87 U	
4-Chloroaniline	ug/L	NA			0.87 U	
4-Chlorophenylphenyl ether	ug/L	NA			0.26 U	
4-Nitroaniline	ug/L	NA			1.9 U	
	ug/L					
4-Nitrophenol	ug/L	NA NA			1.2 U	
4-Nitroquinoline-1-oxide	ug/L	NA			19 U	
5-Nitro-o-toluidine	ug/L	NA			1.4 U	
7,12-Dimethylbenz(a)anthracene	ug/L	NA			1.5 U	
a,a-Dimethylphenethylamine	ug/L	NA			19 U	
Acenaphthene	ug/L	NA			0.27 U	

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compo	unds					
Well Identifier:			HAR-16	HAR-16	HAR-17	HAR-17
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Split	Primary	Primary
Lab Name:			Weck	Babcock	TA-Denver	Weck
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
Acenaphthylene	ug/L	NA			0.48 U	
Acetophenone	ug/L	NA			0.23 U	
alpha-Picoline	ug/L	NA			1.2 U	
Aniline	ug/L	NA			1.9 U	
Anthracene	ug/L	NA			0.41 U	
Aramite	ug/L	NA			19 U	
Benzo(a)anthracene	ug/L	NA			0.34 U	
Benzo(a)pyrene	ug/L	0.2			0.3 U	
Benzo(b)fluoranthene	ug/L	NA			0.52 U	
Benzo(ghi)perylene	ug/L	NA			0.48 U	
Benzo(k)fluoranthene	ug/L	NA			0.45 U	
Benzyl alcohol	ug/L	NA			0.22 U	
beta-Naphthylamine	ug/L	NA			0.97 U	
bis(2-Chloroethoxy)methane	ug/L	NA			0.94 U	
bis(2-Chloroethyl) ether	ug/L	NA			0.4 U	
bis(2-Chloroisopropyl) ether	ug/L	NA			0.27 U	
bis(2-Ethylhexyl) phthalate	ug/L	4			0.54 U	
Butyl benzyl phthalate	ug/L	NA			0.97 U	
Chrysene	ug/L	NA			0.52 U	
Dibenzo(a,h)anthracene	ug/L	NA			0.49 U	
Dibenzofuran	ug/L	NA			0.28 U	
Diethyl phthalate	ug/L	NA			0.37 U	
Dimethoate	ug/L	1 AAL			0.45 U	
Dimethyl phthalate	ug/L	NA			0.2 U	
Di-n-butyl phthalate	ug/L	NA			1.1 U	
Di-n-octyl phthalate	ug/L	NA			0.34 U	
Diphenylamine	ug/L	NA			1 U	
Disulfoton	ug/L	NA			0.31 U	
Ethyl methanesulfonate	ug/L	NA			0.91 U	
Famphur	ug/L	NA			0.17 U	
Fluoranthene	ug/L	NA			0.19 U	
Fluorene	ug/L	NA			0.3 U	
Hexachlorobenzene	ug/L	1			0.64 U	
Hexachlorobutadiene	ug/L	NA			0.49 U	
Hexachlorocyclopentadiene	ug/L	50			1.5 U	
Hexachloroethane	ug/L	NA			0.45 U	
Hexachlorophene	ug/L	NA			2.7 U	
Hexachloropropene	ug/L	NA			1.9 U	
Indeno(1,2,3-cd)pyrene	ug/L	NA			0.63 U	
Isodrin	ug/L ug/L	NA			1.7 U	
Isophorone	ug/L ug/L	NA			0.2 U	
Isosafrole	ug/L ug/L	NA			1.9 U	
Methapyrilene		NA NA			1.9 U	
	ug/L					
Methyl methanesulfonate	ug/L	NA			0.97 U	

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Semi-Volatile Organic Compou	nds					
Well Identifier:			HAR-16	HAR-16	HAR-17	HAR-17
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Split	Primary	Primary
Lab Name:			Weck	Babcock	TA-Denver	Weck
Collection Date:			04/23/2008	04/23/2008	04/23/2008	04/23/2008
Analyte	Units	MCL				
Methyl parathion	ug/L	2 AAL			0.14 U	
Naphthalene	ug/L	17 NL			0.28 U	
Nitrobenzene	ug/L	NA			0.79 U	
n-Nitrosodiethylamine	ug/L	0.01 NL	0.002 U	2.5 UJ		0.002 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.44	6.8 J		0.033
n-Nitrosodi-n-butylamine	ug/L	NA			1.2 U	
n-Nitrosodi-n-propylamine	ug/L	0.01 NL	0.002 U	3.5 UJ		0.002 U
n-Nitrosodiphenylamine	ug/L	NA			0.43 U	
n-Nitrosomethylethylamine	ug/L	NA			1.7 U	
n-Nitrosomorpholine	ug/L	NA			1.9 U	
n-Nitrosopiperidine	ug/L	NA			1.9 U	
n-Nitrosopyrrolidine	ug/L	NA			0.78 U	
o,o,o-Triethylphosphorothioate	ug/L	NA			1.9 U	
o-Toluidine	ug/L	NA			1.4 U	
Parathion	ug/L	40 AAL			0.14 U	
p-Dimethylaminoazobenzene	ug/L	NA			1.9 U	
Pentachlorobenzene	ug/L	NA			1.9 U	
Pentachloroethane	ug/L	NA			1.9 U	
Pentachloronitrobenzene	ug/L	20 AAL			1.9 U	
Pentachlorophenol	ug/L	1			0.76 U	
Phenacetin	ug/L	NA			1 U	
Phenanthrene	ug/L	NA			0.25 U	
Phenol	ug/L	4200 AAL			1.9 U	
Phorate	ug/L	NA			0.15 U	
Pronamide	ug/L	NA			1.9 U	
Pyrene	ug/L	NA			0.36 U	
Pyridine	ug/L	NA			1.6 U	
Safrole	ug/L	NA			1.1 U	
Sulfotepp	ug/L	NA			0.16 U	
Thionazin	ug/L	NA			0.31 U	

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Volatile Organic Compounds	}					
Well Identifier:			HAR-14	HAR-15	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			TA-Denver	TA-Denver	TA-Denver	TA-Denver
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units	MCL				
1,1,1,2-Tetrachloroethane	ug/L	NA	0.17 U	0.17 U	0.17 U	0.17 U
1,1,1-Trichloroethane	ug/L	200	0.48 J	0.16 U	0.16 U	3.8
1,1,2,2-Tetrachloroethane	ug/L	1	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5	0.32 U	0.32 U	0.32 U	0.32 U
1,1-Dichloroethane	ug/L	5	0.16 U	0.16 U	0.16 U	19
1,1-Dichloroethene	ug/L	6	7.3	0.14 U	0.14 U	7.8
1,2,3-Trichloropropane	ug/L	0.005 NL	0.0017 U	0.0017 U	0.0017 U	0.0027 J
1,2-Dibromo-3-chloropropane	ug/L	0.2	0.0056 U	0.0056 U	0.0056 U	0.0056 U
1,2-Dibromoethane	ug/L	0.05	0.003 U	0.003 U	0.003 U	0.003 U
1,2-Dichlorobenzene	ug/L	600	0.13 U	0.13 U	0.13 U	0.13 U
1,2-Dichloroethane	ug/L	0.5	0.13 U	0.13 U	0.13 U	5.9
1,2-Dichloropropane	ug/L	5	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	ug/L	600 AAL	0.16 U	0.16 U	0.16 U	0.16 U
1,4-Dichlorobenzene	ug/L	5	0.16 U	0.16 U	0.16 U	0.16 U
1,4-Dioxane	ug/L	3 NL	67 J	0.65 U	0.65 U	22 J
2-Hexanone	ug/L	NA	1.4 U	1.4 U	1.4 U	1.4 U
Acetone	ug/L	NA	1.9 U	1.9 U	5.2 J,L	1.9 U
Acetonitrile	ug/L	NA	9.6 U	9.6 U	9.6 U	9.6 U
Acrolein	ug/L	NA	2.8 U	2.8 U	2.8 U	2.8 U
Acrylonitrile	ug/L	NA	1.4 U	1.4 U	1.4 U	1.4 U
Allyl chloride	ug/L	NA	0.17 U	0.17 U	0.17 U	0.17 U
Benzene	ug/L	1	0.16 U	0.16 U	0.16 U	0.16 U
Bromodichloromethane	ug/L	80 TTHM	0.17 U	0.17 U	0.17 U	0.17 U
Bromoform	ug/L	80 TTHM	0.19 U	0.19 U	0.19 U	0.19 U
Bromomethane	ug/L	NA	0.21 U	0.21 U	0.21 U	0.21 U
Carbon Disulfide	ug/L	160 NL	0.45 U	0.45 U	0.45 U	0.45 U
Carbon Tetrachloride	ug/L	0.5	1.2	0.19 U	0.19 U	57
Chlorobenzene	ug/L	70	0.17 U	0.17 U	0.17 U	0.17 U
Chloroethane	ug/L	NA	0.41 U	0.41 U	0.41 U	0.41 U
Chloroform	ug/L	80 TTHM	1.3	0.16 U	0.16 U	37
Chloromethane	ug/L	NA	0.3 U	0.3 U	0.3 U	0.3 U
Chloroprene	ug/L ug/L	NA	0.14 U	0.14 U	0.14 U	0.14 U
cis-1,2-Dichloroethene	ug/L ug/L	6	0.15 U	0.15 U	2	14
cis-1,3-Dichloropropene	ug/L ug/L	0.5(total)	0.15 U	0.15 U	0.16 U	0.16 U
Dibromochloromethane	-	80 TTHM	0.10 U	0.10 U	0.10 U	0.10 U
Dibromomethane	ug/L	NA	0.17 U	0.17 U	0.17 U	0.17 U
	ug/L		0.17 U			
Dichlorodifluoromethane	ug/L	1000 NL	3.7 U	0.31 U 3.7 U	0.31 U 3.7 U	0.31 U 3.7 U
Ethyl cyanide	ug/L	NA				
Ethyl methacrylate	ug/L	NA	0.86 U	0.86 U	0.86 U	0.86 U
Ethylbenzene	ug/L	300	0.16 U	0.16 U	0.16 U	0.16 U
lodomethane	ug/L	NA	0.23 U	0.23 U	0.23 U	0.23 U
Isobutanol	ug/L	NA	36 U	36 U	36 U	36 U
Methacrylonitrile	ug/L	NA	1.6 U	1.6 U	1.6 U	1.6 U
Methyl ethyl ketone	ug/L	NA 100 NII	1.8 U	1.8 U	1.8 U	1.8 U
Methyl isobutyl ketone (MIBK)	ug/L	120 NL	1 U	1 U	1 U	1 U

See last 2 pages of table for notes and abbreviations. Haley & Aldrich, Inc.

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Volatile Organic Compound	s					
Well Identifier:			HAR-14	HAR-15	RS-08	SH-04
Geological Unit:			Shallow	Shallow	Shallow	Shallow
Sample Type:			Primary	Primary	Primary	Primary
Lab Name:			TA-Denver	TA-Denver	TA-Denver	TA-Denver
Collection Date:			04/22/2008	04/22/2008	04/22/2008	04/23/2008
Analyte	Units	MCL				
Methyl methacrylate	ug/L	NA	1.1 U	1.1 U	1.1 U	1.1 U
Methylene chloride	ug/L	5	0.32 U	0.32 U	0.32 U	1 U
m-Xylene & p-Xylene	ug/L	1750(total)	0.34 U	0.34 U	0.34 U	0.34 U
o-Xylene	ug/L	1750(total)	0.19 U	0.19 U	0.19 U	0.19 U
Styrene	ug/L	100	0.17 U	0.17 U	0.17 U	0.17 U
Tetrachloroethene	ug/L	5	0.2 U	0.2 U	0.2 U	11
Toluene	ug/L	150	0.17 U	0.17 U	0.17 U	0.17 U
trans-1,2-Dichloroethene	ug/L	10	0.15 U	0.15 U	0.31 J	0.36 J
trans-1,3-Dichloropropene	ug/L	0.5(total)	0.19 U	0.19 U	0.19 U	0.19 U
trans-1,4-Dichloro-2-butene	ug/L	NA	0.8 U	0.8 U	0.8 U	0.8 U
Trichloroethene	ug/L	5	3.9	0.44 J	0.16 U	94
Trichlorofluoromethane	ug/L	150	0.29 U	0.29 U	0.29 U	0.29 U
Vinyl acetate	ug/L	NA	0.94 U	0.94 U	0.94 U	0.94 U
Vinyl chloride	ug/L	0.5	0.4 U	0.4 U	0.4 U	0.75 J

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Volatile Organic Compounds	;			
Well Identifier:			HAR-16	HAR-17
Geological Unit:			Chatsworth	Chatsworth
Sample Type:			Primary	Primary
Lab Name:			TA-Denver	TA-Denver
Collection Date:			04/23/2008	04/23/2008
Analyte	Units	MCL		
1,1,1,2-Tetrachloroethane	ug/L	NA	6.8 U	0.17 U
1,1,1-Trichloroethane	ug/L	200	6.4 U	0.16 U
1,1,2,2-Tetrachloroethane	ug/L	1	8 U	0.2 U
1,1,2-Trichloroethane	ug/L	5	13 U	0.32 U
1,1-Dichloroethane	ug/L	5	6.4 U	0.73 J
1,1-Dichloroethene	ug/L	6	28 J	0.14 U
1,2,3-Trichloropropane	ug/L	0.005 NL	0.014	0.0017 U
1,2-Dibromo-3-chloropropane	ug/L	0.2	0.0066 U	0.0056 U
1,2-Dibromoethane	ug/L	0.05	0.0036 U	0.0031 U
1,2-Dichlorobenzene	ug/L	600	5.2 U	0.13 U
1,2-Dichloroethane	ug/L	0.5	5.2 U	0.13 U
1,2-Dichloropropane	ug/L	5	5.2 U	0.13 U
1,3-Dichlorobenzene	ug/L	600 AAL	6.4 U	0.16 U
1,4-Dichlorobenzene	ug/L	5	6.4 U	0.16 U
1,4-Dioxane	ug/L	3 NL	24 J	3.8 J
2-Hexanone	ug/L	NA	56 U	1.4 U
Acetone	ug/L	NA	150 J	1.9 U
Acetonitrile	ug/L	NA	380 U	9.6 U
Acrolein	ug/L	NA	2.8 U	2.8 U
Acrylonitrile	ug/L	NA	1.4 U	1.4 U
Allyl chloride	ug/L	NA	6.8 U	0.17 U
Benzene	ug/L	1	6.4 U	0.16 U
Bromodichloromethane	ug/L	80 TTHM	6.8 U	0.17 U
Bromoform	ug/L	80 TTHM	7.6 U	0.17 U
Bromomethane	ug/L ug/L	NA	8.4 U	0.13 U
Carbon Disulfide	ug/L	160 NL	18 U	0.45 U
Carbon Tetrachloride	ug/L ug/L	0.5	7.6 U	0.43 U
Chlorobenzene	ug/L ug/L	70	6.8 U	0.13 U
Chloroethane	ug/L ug/L	NA	16 U	0.41 U
Chloroform	ug/L ug/L	80 TTHM	6.4 U	0.47 J
Chloromethane	-	NA	12 U	0.17 J
Chloroprene	ug/L ug/L	NA	5.6 U	0.3 U 0.14 U
cis-1,2-Dichloroethene		6	160	19
cis-1,3-Dichloropropene	ug/L ug/L	0.5(total)	6.4 U	0.16 U
Dibromochloromethane	-	80 TTHM	6.8 U	0.10 U
Dibromomethane	ug/L	NA	6.8 U	0.17 U
	ug/L		12 U	0.17 U
Dichlorodifluoromethane	ug/L	1000 NL		
Ethyl cyanide	ug/L	NA NA	150 U	3.7 U
Ethyl methacrylate	ug/L	NA 200	34 U	0.86 U
Ethylbenzene	ug/L	300	6.4 U	0.16 U
lodomethane	ug/L	NA	9.2 U	0.23 U
Isobutanol	ug/L	NA	1500 U	36 U
Methacrylonitrile	ug/L	NA	64 U	1.6 U
Methyl ethyl ketone	ug/L	NA	73 U	1.8 U
Methyl isobutyl ketone (MIBK)	ug/L	120 NL	42 U	1 U

See last 2 pages of table for notes and abbreviations. Haley & Aldrich, Inc.

TABLE XSUMMARY OF ANALYSES FOR APPENDIX IX CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY CALIFORNIA

Volatile Organic Compounds	s			
Well Identifier:			HAR-16	HAR-17
Geological Unit:			Chatsworth	Chatsworth
Sample Type:			Primary	Primary
Lab Name:			TA-Denver	TA-Denver
Collection Date:			04/23/2008	04/23/2008
Analyte	Units	MCL		
Methyl methacrylate	ug/L	NA	44 U	1.1 U
Methylene chloride	ug/L	5	13 U	0.32 U
m-Xylene & p-Xylene	ug/L	1750(total)	14 U	0.34 U
o-Xylene	ug/L	1750(total)	7.6 U	0.19 U
Styrene	ug/L	100	6.8 U	0.17 U
Tetrachloroethene	ug/L	5	15 J	0.2 U
Toluene	ug/L	150	6.8 U	0.17 U
trans-1,2-Dichloroethene	ug/L	10	6 U	0.4 J
trans-1,3-Dichloropropene	ug/L	0.5(total)	7.6 U	0.19 U
trans-1,4-Dichloro-2-butene	ug/L	NA	32 U	0.8 U
Trichloroethene	ug/L	5	13000	96
Trichlorofluoromethane	ug/L	150	30 J	0.29 U
Vinyl acetate	ug/L	NA	38 U	0.94 U
Vinyl chloride	ug/L	0.5	16 U	0.4 U

TABLE XNOTES AND ABBREVIATIONS

1. 2. 3. 4.	Babcock Lancaster TA-Denver Weck	= = = =	E.S. Babcock and Sons Laboratories of Riverside, California. Lancaster Laboratories of Lancaster, Pennsylvania. TestAmerica of Arvada, Colorado. Weck Laboratories of City of Industry, California.
5.		=	Analysis not performed.
6. 7.	Chatsworth Shallow	=	Chatsworth Formation wells. Shallow wells.
8. 9. 10.	mg/L ug/L pg/L	= = =	Milligrams per liter. Micrograms per liter. Picograms per liter.
11.	Dissolved	=	Dissolved trace metals. Dissolved trace metal samples were filtered and preserved in the field using a 0.45 micron filter.
12.	Total	=	Total trace metals. Total trace metal samples were not filtered, but were preserved in the field.
14. 15. 16. 17.	AAL MCL SMCL RAL NL NA		Archived Advisory Level, California advisory level for unregulated chemical contaminants. Maximum Contaminant Level, California primary drinking water standard. Secondary drinking water MCL. Regulatory Action Level to be met at a customer tap. Advisory California Notification Level for unregulated chemical contaminants. Not applicable; no MCL promulgated.
19.	ТТНМ	=	MCL for total trihalomethanes including bromoform, chloroform, bromodichloromethane, and dibromochloromethane.
20.	J	=	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
21.	L	=	Laboratory contaminant.
22.	2,3,7,8-TCDD TEQ	=	Toxicity equivalent. TEQs were calculated using 2005 toxic equivalency factors (van den Berg et al., 2006).
23.	U	=	Not detected; numerical value represents the Method Detection Limit for that
24.	UJ	=	compound. Not detected. Estimated detection limit as a result of analytical quality control deficiencies (see Appendix D for details).

25. TestAmerica-Denver served as the primary laboratory during the second quarter with the following exceptions:

Analyte	Primary Laboratory	EPA Method
n-Nitrosodiethylamine	Weck Laboratories	521
n-Nitrosodimethylamine	Weck Laboratories	521
n-Nitrosodi-n-propylamine	Weck Laboratories	521
Dioxins / Furans	TestAmerica-Knoxville	8290
	of Knoxville, Tennessee	
1,4-Dioxane	TestAmerica-Phoenix	8260 SIM
	of Phoenix, Arizona	
1,2,3-Trichloropropane	TestAmerica-Ontario	SRL 524M
	of Ontario, California	

26. Cyanide and sulfide samples were not filtered.

27. Appendix IX Analytical Methods

EPA Method	Analysis	
376.2	Sulfide	
504.1	1,2-Dibromo-3-chloropropane	
	1,2-Dibromoethane	
521	n-Nitrosodiethylamine	
	n-Nitrosodimethylamine	
	n-Nitrosodi-n-propylamine	
SRL 524M	1,2,3-Trichloropropane	
6010B/6020/7470A	Metals	
8081A	Organochlorine pesticides	
8082	PCBs	
8141A	Organophosphorous compounds	
8151A	Chlorinated herbicides	
8260B	Volatile organic compounds	
Modified 8260SIM	1,4-Dioxane	
8270C	Semi-volatile organic compounds	
8270SIM	Pentachlorophenol	
8290	Dioxins/furans	
8321A	Hexachlorophene	
9012A	Cyanide	

- 28. AALs, MCLs, SMCLs, RALs, and NLs are from the California Department of Public Health (2006, 2007a, 2007b, 2008).
- 29. During analysis by EPA method 8270C, n-Nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for n-Nitrosodiphenylamine represents the combined total of both compounds.

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			PZ-006A	PZ-006C	PZ-006C	PZ-006D	PZ-006D	PZ-006E	PZ-023	PZ-023
Geological Unit:			Shallow							
Sample Type:			Primary							
Lab Name:			Lancaster							
Collection Date:			02/26/2008	02/27/2008	04/30/2008	02/27/2008	04/30/2008	04/30/2008	02/20/2008	05/06/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200								
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200								
1,1,2-Trichloroethane	ug/L	5								
1,1-Dichloroethane	ug/L	5								
1,1-Dichloroethene	ug/L	6								
1,2-Dichloroethane	ug/L	0.5								
1,3-Dinitrobenzene	ug/L	NA								
1,4-Dioxane	ug/L	3 NL								
Acetone	ug/L	NA								
Benzene	ug/L	1								
Carbon Tetrachloride	ug/L	0.5								
Chloroform	ug/L	80 TTHM								
cis-1,2-Dichloroethene	ug/L	6								
Ethylbenzene	ug/L	300								
Methyl ethyl ketone	ug/L	NA								
Methylene chloride	ug/L	5								
m-Xylene & p-Xylene	ug/L	1750 total								
Nitrobenzene	ug/L	NA								
n-Nitrosodimethylamine	ug/L	0.01 NL								
o-Xylene	ug/L	1750 total								
Perchlorate	ug/L	6								
Tetrachloroethene	ug/L	5								
Toluene	ug/L	150								
trans-1,2-Dichloroethene	ug/L	10								
Trichloroethene	ug/L	5								
Trichlorofluoromethane	ug/L	150								
Vinyl chloride	ug/L	0.5								
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA								
Fluoride	mg/L									
Formaldehyde	ug/L	100 NL	10 U	14 J	26 J	13 J	24 J	54	10 U	10 U
Nitrate-NO3	mg/L									

Well Identifier:			PZ-025	PZ-025	PZ-025	PZ-025	PZ-026	PZ-026	PZ-026	PZ-027
Geological Unit:			Shallow							
Sample Type:			Primary							
Lab Name:			Lancaster							
Collection Date:			02/22/2008	05/05/2008	08/19/2008	11/11/2008	02/21/2008	05/07/2008	09/10/2008	02/25/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200								
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200								
1,1,2-Trichloroethane	ug/L	5								
1,1-Dichloroethane	ug/L	5								
1,1-Dichloroethene	ug/L	6								
1,2-Dichloroethane	ug/L	0.5								
1,3-Dinitrobenzene	ug/L	NA								
1,4-Dioxane	ug/L	3 NL								
Acetone	ug/L	NA								
Benzene	ug/L	1								
Carbon Tetrachloride	ug/L	0.5								
Chloroform	ug/L	80 TTHM								
cis-1,2-Dichloroethene	ug/L	6								
Ethylbenzene	ug/L	300								
Methyl ethyl ketone	ug/L	NA								
Methylene chloride	ug/L	5								
m-Xylene & p-Xylene	ug/L	1750 total								
Nitrobenzene	ug/L	NA								
n-Nitrosodimethylamine	ug/L	0.01 NL								
o-Xylene	ug/L	1750 total								
Perchlorate	ug/L	6								
Tetrachloroethene	ug/L	5								
Toluene	ug/L	150								
trans-1,2-Dichloroethene	ug/L	10								
Trichloroethene	ug/L	5								
Trichlorofluoromethane	ug/L	150								
Vinyl chloride	ug/L	0.5								
Naturally Occurring Constituents	- 3									
Ammonia-N	mg/L	NA								
Fluoride	mg/L	2								
Formaldehyde	ug/L	100 NL	10 U							
Nitrate-NO3	mg/L									

Well Identifier:			PZ-027	PZ-027	PZ-028	RS-32	RS-32	SH-01	SH-01	SH-02
Geological Unit:			Shallow							
Sample Type:			Primary	Primary	Primary	Primary	Duplicate	Primary	Primary	Primary
Lab Name:			Lancaster	Lancaster	Lancaster	Weck	Weck	Lancaster	Lancaster	Lancaster
Collection Date:			05/05/2008	11/11/2008	05/06/2008	03/06/2008	03/06/2008	02/04/2008	04/30/2008	02/05/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200								
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200								
1,1,2-Trichloroethane	ug/L	5								
1,1-Dichloroethane	ug/L	5								
1,1-Dichloroethene	ug/L	6								
1,2-Dichloroethane	ug/L	0.5								
1,3-Dinitrobenzene	ug/L	NA								
1,4-Dioxane	ug/L	3 NL								
Acetone	ug/L	NA								
Benzene	ug/L	1								
Carbon Tetrachloride	ug/L	0.5								
Chloroform	ug/L	80 TTHM								
cis-1,2-Dichloroethene	ug/L	6								
Ethylbenzene	ug/L	300								
Methyl ethyl ketone	ug/L	NA								
Methylene chloride	ug/L	5								
m-Xylene & p-Xylene	ug/L	1750 total								
Nitrobenzene	ug/L	NA								
n-Nitrosodimethylamine	ug/L	0.01 NL				0.00034 U	0.00047 U			
o-Xylene	ug/L	1750 total								
Perchlorate	ug/L	6								
Tetrachloroethene	ug/L	5								
Toluene	ug/L	150								
trans-1,2-Dichloroethene	ug/L	10								
Trichloroethene	ug/L	5								
Trichlorofluoromethane	ug/L	150								
Vinyl chloride	ug/L	0.5								
Naturally Occurring Constituents		-								
Ammonia-N	mg/L	NA								
Fluoride	mg/L	2								
Formaldehyde	ug/L	100 NL	10 U	10 U	10 U			10 U	10 U	10 U
Nitrate-NO3	mg/L									

Well Identifier:			SH-02	SH-03	SH-03	SH-04	SH-04	SH-04	SH-05	SH-05
Geological Unit:			Shallow							
Sample Type:			Primary							
Lab Name:			Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:			04/30/2008	02/05/2008	05/02/2008	02/04/2008	04/23/2008	04/23/2008	02/05/2008	05/02/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200		1 J				3.8		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200		17 J						
1,1,2-Trichloroethane	ug/L	5		0.8 U				0.32 U		
1,1-Dichloroethane	ug/L	5		15				19		
1,1-Dichloroethene	ug/L	6		1 J				7.8		
1,2-Dichloroethane	ug/L	0.5		4				5.9		
1,3-Dinitrobenzene	ug/L	NA						1.9 U		
1,4-Dioxane	ug/L	3 NL						22 J		
Acetone	ug/L	NA		6 U				1.9 U		
Benzene	ug/L	1		0.5 U				0.16 U		
Carbon Tetrachloride	ug/L	0.5		64				57		
Chloroform	ug/L	80 TTHM		140				37		
cis-1,2-Dichloroethene	ug/L	6		11				14		
Ethylbenzene	ug/L	300		0.8 U				0.16 U		
Methyl ethyl ketone	ug/L	NA		3 U						
Methylene chloride	ug/L	5		2 J				1 U		
m-Xylene & p-Xylene	ug/L	1750 total		0.8 U				0.34 U		
Nitrobenzene	ug/L	NA						0.77 U		
n-Nitrosodimethylamine	ug/L	0.01 NL						0.12		
o-Xylene	ug/L	1750 total		0.8 U				0.19 U		
Perchlorate	ug/L	6								
Tetrachloroethene	ug/L	5		6				11		
Toluene	ug/L	150		0.7 U				0.17 U		
trans-1,2-Dichloroethene	ug/L	10		0.8 U				0.36 J		
Trichloroethene	ug/L	5		60				94		
Trichlorofluoromethane	ug/L	150		0.5 U				0.29 U		
Vinyl chloride	ug/L	0.5		0.5 U				0.75 J		
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA								
Fluoride	mg/L	2								
Formaldehyde	ug/L	100 NL	10 U		10 U	10 U				
	uu/ L									

Well Identifier:			SH-08	SH-08	SH-09	SH-09	SH-10	SH-11	SH-11	HAR-07
Geological Unit:			Shallow	Chatsworth						
Sample Type:			Primary							
Lab Name:			Lancaster							
Collection Date:			02/05/2008	05/02/2008	02/05/2008	05/02/2008	02/05/2008	02/05/2008	05/02/2008	02/27/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200						0.1 U		8 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200						0.2 U		20 U
1,1,2-Trichloroethane	ug/L	5						0.1 U		8 U
1,1-Dichloroethane	ug/L	5						0.1 J		10 U
1,1-Dichloroethene	ug/L	6						0.1 U		8 U
1,2-Dichloroethane	ug/L	0.5						0.2 J		5 U
1,3-Dinitrobenzene	ug/L	NA								2 U
1,4-Dioxane	ug/L	3 NL								1 U
Acetone	ug/L	NA						3 U		60 U
Benzene	ug/L	1						0.1 U		5 U
Carbon Tetrachloride	ug/L	0.5						0.1 U		5 U
Chloroform	ug/L	80 TTHM						0.1 U		8 U
cis-1,2-Dichloroethene	ug/L	6						0.2 J		1200
Ethylbenzene	ug/L	300						0.1 U		8 U
Methyl ethyl ketone	ug/L	NA						1 U		30 U
Methylene chloride	ug/L	5						0.2 U		20 U
m-Xylene & p-Xylene	ug/L	1750 total						0.1 U		8 U
Nitrobenzene	ug/L	NA								1 U
n-Nitrosodimethylamine	ug/L	0.01 NL								0.034 J
o-Xylene	ug/L	1750 total						0.1 U		8 U
Perchlorate	ug/L	6								0.7 U
Tetrachloroethene	ug/L	5						0.1 U		8 U
Toluene	ug/L	150						0.1 U		7 U
trans-1,2-Dichloroethene	ug/L	10						0.1 U		48 J
Trichloroethene	ug/L	5						0.1 J		14000
Trichlorofluoromethane	ug/L	150						0.1 U		5 U
Vinyl chloride	ug/L	0.5						0.1 U		5 U
Naturally Occurring Constituents	-									
Ammonia-N	mg/L	NA								0.03 U
Fluoride	mg/L	2								0.3
Formaldehyde	ug/L	100 NL	10 U	12 J						
Nitrate-NO3	mg/L	45								0.23 J

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			HAR-07	HAR-07	HAR-07	HAR-07	HAR-08	HAR-08	HAR-08	HAR-08
Geological Unit:			Chatsworth							
Sample Type:			Primary	Primary	Primary	Split	Primary	Split	Primary	Duplicate
Lab Name:			TA-Denver	Lancaster	Lancaster	TA-Denver	Lancaster	C&T	Lancaster	Lancaster
Collection Date:			04/23/2008	08/27/2008	12/03/2008	12/03/2008	02/27/2008	02/27/2008	05/14/2008	05/14/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200		4 U	10 U		0.1 U		0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200		10 U	20 U		0.2 U		0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5		4 U	10 U		0.1 U		0.1 U	0.1 U
1,1-Dichloroethane	ug/L	5		5 U	10 U		0.1 U		0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6		7 J	10 J		0.1 U		0.1 U	0.1 U
1,2-Dichloroethane	ug/L	0.5		3 U	10 U		0.1 U		0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA	1.9 U	2 U	2 U		2 U		2 U	
1,4-Dioxane	ug/L	3 NL		1 U	0.5 U		1.1 J		0.8 J	
Acetone	ug/L	NA		30 U	300 U		3 U		3 U	3 U
Benzene	ug/L	1		3 U	10 U		0.1 U		0.1 U	0.1 U
Carbon Tetrachloride	ug/L	0.5		3 U	10 U		0.1 U		0.1 U	0.1 U
Chloroform	ug/L	80 TTHM		4 U	10 U		0.1 U		0.1 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6		2300	4900		18		18	18
Ethylbenzene	ug/L	300		4 U	10 U		0.1 U		0.1 U	0.1 U
Methyl ethyl ketone	ug/L	NA		15 U	100 U		1 U		1 U	1 U
Methylene chloride	ug/L	5		10 U	20 U		0.2 U		0.3 U	0.3 U
m-Xylene & p-Xylene	ug/L	1750 total		4 U	10 U		0.1 U		0.1 U	0.1 U
Nitrobenzene	ug/L	NA	0.77 U	1 U	0.9 U		0.9 U		1 U	
n-Nitrosodimethylamine	ug/L	0.01 NL	0.029	0.034	0.036	0.03	0.00028 U		0.012	
o-Xylene	ug/L	1750 total		4 U	10 U		0.1 U		0.1 U	0.1 U
Perchlorate	ug/L	6	0.28 U	0.7 U	0.7 U		0.7 U	0.47 U	0.7 U	
Tetrachloroethene	ug/L	5		4 U	10 U		0.1 U		0.1 U	0.1 U
Toluene	ug/L	150		4 U	10 U		0.1 U		0.1 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10		110	120		1.7		1.6	1.6
Trichloroethene	ug/L	5		4100	26 J		1.5		1.5	1.4
Trichlorofluoromethane	ug/L	150		3 U	10 U		0.1 U		0.1 U	0.1 U
Vinyl chloride	ug/L	0.5		53	36 J		2.7		2.8	2.7
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA		0.22	0.89		0.03 U		0.03 U	
Fluoride	mg/L		0.6 U	0.39	0.33		0.24		0.36	
Formaldehyde	ug/L	100 NL	42 U	12 U	29 J		15 J		10 U	
Nitrate-NO3	mg/L	45		0.42 J	0.22 U		0.22 U		0.22 U	

Well Identifier:			HAR-08	HAR-08	HAR-08	HAR-08	HAR-08	HAR-18	HAR-18	HAR-18
Geological Unit:			Chatsworth							
Sample Type:			Split	Primary	Primary	Duplicate	Split	Primary	Duplicate	Primary
Lab Name:			Babcock	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:			05/14/2008	08/27/2008	12/03/2008	12/03/2008	12/03/2008	02/18/2008	02/18/2008	05/13/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200		0.1 U	0.1 U	0.1 U	0.16 U	0.8 U	0.8 U	3.5 J
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200		0.2 U	0.2 U	0.2 U	0.79 U	500	540	520
1,1,2-Trichloroethane	ug/L	5		0.1 U	0.1 U	0.1 U	0.32 U	0.8 U	0.8 U	1 U
1,1-Dichloroethane	ug/L	5		0.1 U	0.1 U	0.1 U	0.16 U	3 J	3 J	7.2
1,1-Dichloroethene	ug/L	6		0.1 U	0.1 U	0.1 U	0.14 U	43	42	140
1,2-Dichloroethane	ug/L	0.5		0.1 U	0.1 U	0.1 U	0.13 U	0.5 U	0.5 U	1 U
1,3-Dinitrobenzene	ug/L	NA		2 U	2 U			2 U		2 U
1,4-Dioxane	ug/L	3 NL		1 J	1 J			6.6		11
Acetone	ug/L	NA		3 J	3 U	3 U	1.9 U	6 U	6 U	30 U
Benzene	ug/L	1		0.1 U	0.1 U	0.1 U	0.16 U	0.5 U	0.5 U	1 U
Carbon Tetrachloride	ug/L	0.5		0.1 U	0.1 U	0.1 U	0.19 U	0.5 U	0.5 U	1 U
Chloroform	ug/L	80 TTHM		0.1 U	0.1 U	0.1 U	0.16 U	0.9 J	0.8 J	1 U
cis-1,2-Dichloroethene	ug/L	6		13	20	20	16	580	620	810
Ethylbenzene	ug/L	300		0.4 J	0.1 U	0.1 U	0.16 U	0.8 U	0.8 U	1 U
Methyl ethyl ketone	ug/L	NA		1 U	1 U	1 U	1.8 U	3 U	3 0	10 U
Methylene chloride	ug/L	5		0.2 U	0.2 U	0.2 U	0.32 U	2 U	2 U	2.7 U
m-Xylene & p-Xylene	ug/L	1750 total		1.5	0.1 U	0.1 J	0.34 U	0.8 U	0.8 U	1 U
Nitrobenzene	ug/L	NA		1 U	1 U			1 U		0.9 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.0074 J	0.014	0.023		0.018	0.12		0.59
o-Xylene	ug/L	1750 total		1.2	0.1 U	0.1 U	0.19 U	0.8 U	0.8 U	1 U
Perchlorate	ug/L	6		0.7 U	0.7 U			0.7 U		0.7 U
Tetrachloroethene	ug/L	5		0.1 U	0.1 U	0.1 U	0.2 U	4 J	4 J	2 J
Toluene	ug/L	150		0.5	0.1 U	0.1 U	0.17 U	0.7 U	0.7 U	1 U
trans-1,2-Dichloroethene	ug/L	10		1.2	3.3	3.3	2.6	9	9	16
Trichloroethene	ug/L	5		1	13	14	11	1300	1300	1400
Trichlorofluoromethane	ug/L	150		0.1 U	0.1 U	0.1 U	0.29 U	1	1	1 U
Vinyl chloride	ug/L	0.5		2.6	3.6	4	4.6	39	39	62
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA		0.03 U	0.057 J			0.03 U		0.033 J
Fluoride	mg/L	2		0.33	0.3			0.31		0.3
Formaldehyde	ug/L	100 NL		18 U	10 U			12 J		10 U
Nitrate-NO3	mg/L	45		0.22 U	0.22 U			35		28

BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			HAR-18	HAR-18	HAR-18	HAR-18	HAR-18	HAR-18	HAR-20	HAR-20
Geological Unit:			Chatsworth							
Sample Type:			Duplicate	Primary	Duplicate	Primary	Duplicate	Split	Primary	Split
Lab Name:			Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	C&T
Collection Date:			05/13/2008	08/28/2008	08/28/2008	12/01/2008	12/01/2008	12/01/2008	03/11/2008	03/11/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	2.9 J	1.1 J		1 U	1 U	0.8 U	0.8 U	0.3 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	360	550		520	480	590	2 U	1.3 U
1,1,2-Trichloroethane	ug/L	5	1 U	1 U		1 U	1 U	1.6 U	0.8 U	0.5 U
1,1-Dichloroethane	ug/L	5	6.2	3.9 J		2.6 J	2.8 J	2.6 J	1 U	0.3 U
1,1-Dichloroethene	ug/L	6	110	60		24	30	16	0.8 U	0.4 U
1,2-Dichloroethane	ug/L	0.5	1 U	1 U		1 U	1 U	0.65 U	0.5 U	0.3 U
1,3-Dinitrobenzene	ug/L	NA		2 U		2 U			2 U	
1,4-Dioxane	ug/L	3 NL		8.4		5.5			3.6	
Acetone	ug/L	NA	33 J	30 U		32 J	33 J	9.5 U	6 U	3.3 U
Benzene	ug/L	1	1 U	1 U		1 U	1 U	0.8 U	0.5 U	0.3 U
Carbon Tetrachloride	ug/L	0.5	1 U	1 U		1 U	1 U	0.95 U	0.5 U	0.3 U
Chloroform	ug/L	80 TTHM	1 U	1 U		1.1 J	1.1 J	1.2 J	0.8 U	0.3 U
cis-1,2-Dichloroethene	ug/L	6	650	910		710	910	600	120	98
Ethylbenzene	ug/L	300	1 U	1 U		1 U	1 U	0.8 U	0.8 U	0.3 U
Methyl ethyl ketone	ug/L	NA	10 U	10 U		10 U	10 U	9.2 U	3 U	6.7 U
Methylene chloride	ug/L	5	2.7 U	2 U		2 U	2 U	1.7 U	2 U	3.3 U
m-Xylene & p-Xylene	ug/L	1750 total	1 U	1 U		1 U	1 U	1.7 U	0.8 U	0.6 U
Nitrobenzene	ug/L	NA		1 U		1 U			1 U	
n-Nitrosodimethylamine	ug/L	0.01 NL		0.034 U		0.25 J			0.023	
o-Xylene	ug/L	1750 total	1 U	1 U		1 U	1 U	0.95 U	0.8 U	0.3 U
Perchlorate	ug/L	6		0.7 U	0.7 U	0.7 U			0.7 U	
Tetrachloroethene	ug/L	5	1.8 J	2.2 J		2.9 J	2.7 J	2.7 J	0.8 U	0.4 U
Toluene	ug/L	150	1 U	1 U		1 U	1 U	0.85 U	0.7 U	0.3 U
trans-1,2-Dichloroethene	ug/L	10	12	15		8.4	13	5.7	9	7
Trichloroethene	ug/L	5	1300	1400		1400	1300	1400	250	200
Trichlorofluoromethane	ug/L	150	1 U	1 U		1 U	1 U	1.4 U	0.5 U	0.7 U
Vinyl chloride	ug/L	0.5	51	72		27	53	21	1	0.7 J
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA		0.03 U		0.03 U			0.26	
Fluoride	mg/L	2		0.34		0.39			0.24	
Formaldehyde	ug/L	100 NL		11 U		10 U			10 U	
Nitrate-NO3	mg/L	45		27		33			0.22 U	

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			HAR-20	HAR-20	HAR-20	HAR-26	HAR-26	HAR-26	HAR-26	OS-28
Geological Unit:			Chatsworth							
Sample Type:			Primary							
Lab Name:			Lancaster	Weck						
Collection Date:			05/13/2008	08/20/2008	11/06/2008	02/08/2008	05/19/2008	08/20/2008	11/04/2008	03/04/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 J	0.4 J	0.2 J	0.2 U		0.2 U		
1,1,2-Trichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
1,1-Dichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
1,1-Dichloroethene	ug/L	6	0.1 U	0.7	0.3 J	0.1 U		0.1 U		
1,2-Dichloroethane	ug/L	0.5	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
1,3-Dinitrobenzene	ug/L	NA	2 U	2 U	2 U					
1,4-Dioxane	ug/L	3 NL	5.8	2.9	4.2					
Acetone	ug/L	NA	3 U	3 U	3 U	3 U		3 U		
Benzene	ug/L	1	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Carbon Tetrachloride	ug/L	0.5	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Chloroform	ug/L	80 TTHM	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
cis-1,2-Dichloroethene	ug/L	6	34	130	90	0.1 U		0.1 U		
Ethylbenzene	ug/L	300	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1 U	1 U		1 U		
Methylene chloride	ug/L	5	0.3 U	0.2 U	0.2 U	0.2 U		0.2 U		
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Nitrobenzene	ug/L	NA	0.9 U	1 U	1 U					
n-Nitrosodimethylamine	ug/L	0.01 NL	0.009	0.055 U	0.043 J					0.00054 U
o-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Perchlorate	ug/L	6	0.7 U	0.7 U	0.7 U					
Tetrachloroethene	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Toluene	ug/L	150	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
trans-1,2-Dichloroethene	ug/L	10	3.7	12	6.5	0.1 U		0.1 U		
Trichloroethene	ug/L	5	44	310	160	0.1 U		0.1 U		
Trichlorofluoromethane	ug/L	150	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U		
Vinyl chloride	ug/L	0.5	1.9	1.2	0.5	0.1 U		0.1 U		
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA	0.03 U	0.3 U	0.042 U					
Fluoride	mg/L		0.36	0.26	0.2					
Formaldehyde	ug/L	100 NL	10 U	10 J	10 U	10 U	10 J	10 U	10 U	
Nitrate-NO3	mg/L	45	0.05 U	0.22 U	0.28 J					

Page 9 of 30

TABLE XI
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
Page 10 of 30

Well Identifier:			RD-01	RD-02						
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Primary	Duplicate	Primary	Primary	Duplicate	Primary
Lab Name:			Lancaster							
Collection Date:			02/26/2008	02/26/2008	05/05/2008	05/05/2008	08/28/2008	11/18/2008	11/18/2008	02/28/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	2 U	2 U	2 U	2 U	2 U	2 U		2 U
1,1,2-Trichloroethane	ug/L	5	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
1,1-Dichloroethane	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U		1 U
1,1-Dichloroethene	ug/L	6	3 J	3 J	2.6 J	2.6 J	3 J	1.9 J		1 J
1,2-Dichloroethane	ug/L	0.5	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U		0.5 U
1,3-Dinitrobenzene	ug/L	NA	2 U		2 U		2 U	2 U		2 U
1,4-Dioxane	ug/L	3 NL	2 J		1.7 J		1.7 J	1.6 J		1.6 J
Acetone	ug/L	NA	6 U	6 U	30 U	30 U	6 U	30 U		6 U
Benzene	ug/L	1	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U		0.5 U
Carbon Tetrachloride	ug/L	0.5	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U		0.5 U
Chloroform	ug/L	80 TTHM	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
cis-1,2-Dichloroethene	ug/L	6	740	730	610	620	670	610		340
Ethylbenzene	ug/L	300	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
Methyl ethyl ketone	ug/L	NA	3 U	3 U	10 U	10 U	3 U	10 U		3 U
Methylene chloride	ug/L	5	2 U	2 U	2 U	2 U	2 U	2 U		2 U
m-Xylene & p-Xylene	ug/L	1750 total	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
Nitrobenzene	ug/L	NA	0.9 U		1 U		1 U	0.9 U		1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.02		0.011		0.02 U	0.012 U		0.0031
o-Xylene	ug/L	1750 total	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
Perchlorate	ug/L	6	0.7 U		0.7 U		0.7 U	0.7 U	0.7 U	0.7 U
Tetrachloroethene	ug/L	5	0.8 U	0.8 U	1 U	1 U	0.8 U	1 U		0.8 U
Toluene	ug/L	150	0.7 U	0.7 U	1 U	1 U	0.7 U	1 Ū		0.7 U
trans-1,2-Dichloroethene	ug/L	10	29	29	28	26	30	23		31
Trichloroethene	ug/L	5	730	720	590	640	640	560		270
Trichlorofluoromethane	ug/L	150	0.5 U	0.5 U	1 U	1 U	0.5 U	1 U		0.5 U
Vinyl chloride	ug/L	0.5	14	14	8.6	8.5	30	20		2
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA	0.03 U		0.19		0.03 U	0.043 U		0.03 U
Fluoride	mg/L		0.36		0.42		0.31	0.24		0.34
Formaldehyde	ug/L	100 NL	10 U		10 U		68	50 J		18 J
Nitrate-NO3	mg/L	45	0.77		0.52		1.7	0.22 U		0.22 U

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-02	RD-02	RD-02	RD-02	RD-02	RD-04	RD-04	RD-04
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Split	Primary	Duplicate	Primary	Split	Primary
Lab Name:			Lancaster	Lancaster	C&T	Lancaster	Lancaster	Lancaster	C&T	Lancaster
Collection Date:			05/08/2008	05/08/2008	05/08/2008	11/05/2008	11/05/2008	02/27/2008	02/27/2008	05/08/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.5 U	0.5 U	0.6 UJ	0.5 U		0.8 U	2 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	1 U	1 U	2.5 UJ	1 U		2 U	8 U	2 U
1,1,2-Trichloroethane	ug/L	5	0.5 U	0.5 U	0.9 UJ	0.5 U		0.8 U	2 U	1 U
1,1-Dichloroethane	ug/L	5	0.5 U	0.5 U	0.6 UJ	0.5 U		1 U	2 U	1 U
1,1-Dichloroethene	ug/L	6	1.3 J	1.4 J	1.5 J	1.2 J		1 J	2 U	1 U
1,2-Dichloroethane	ug/L	0.5	0.5 U	0.5 U	0.6 UJ	0.5 U		0.5 U	2 U	1 U
1,3-Dinitrobenzene	ug/L	NA	2 U			2 U		2 U		2 U
1,4-Dioxane	ug/L	3 NL	1.8 J			1.5 J		0.7 J		0.8 J
Acetone	ug/L	NA	15 U	15 U	6.3 UJ	15 U		6 U	32 J,L	30 U
Benzene	ug/L	1	0.5 U	0.5 U	0.6 UJ	0.5 U		0.5 U	2 U	1 U
Carbon Tetrachloride	ug/L	0.5	0.5 U	0.5 U	0.6 UJ	0.5 U		0.5 U	2 U	1 U
Chloroform	ug/L	80 TTHM	0.5 U	0.5 U	0.6 UJ	0.5 U		0.8 U	2 U	1 U
cis-1,2-Dichloroethene	ug/L	6	340	340	390 J	310		160	150	170
Ethylbenzene	ug/L	300	0.5 U	0.5 U	0.6 UJ	0.5 U		0.8 U	2 U	1 U
Methyl ethyl ketone	ug/L	NA	5 U	5 U	13 UJ	5 U		3 U	40 U	10 U
Methylene chloride	ug/L	5	1.7 U	1.6 U	6.3 UJ	1 U		2 U	20 U	3.2 U
m-Xylene & p-Xylene	ug/L	1750 total	0.5 U	0.5 U	1 UJ	0.5 U		0.8 U	2.1 U	1 U
Nitrobenzene	ug/L	NA	0.9 U			0.9 U		1 U		1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.0057			0.005 U		0.00076 U		0.0038
o-Xylene	ug/L	1750 total	0.5 U	0.5 U	0.6 UJ	0.5 U		0.8 U	2 U	1 U
Perchlorate	ug/L	6	0.7 U			0.7 U	0.7 U	0.7 U		0.7 U
Tetrachloroethene	ug/L	5	0.5 U	0.5 U	0.7 UJ	0.5 U		0.8 U	2 U	1 U
Toluene	ug/L	150	0.5 U	0.5 U	0.6 UJ	0.5 U		0.7 U	25 L	1 U
trans-1,2-Dichloroethene	ug/L	10	25	25	28 J	21		3 J	3.7 J	4.2 J
Trichloroethene	ug/L	5	250	240	280 J	210		1400	1400	1600
Trichlorofluoromethane	ug/L	150	0.5 U	0.5 U	1.3 UJ	0.5 U		0.5 U	4 U	1 U
Vinyl chloride	ug/L	0.5	1.9 J	1.8 J	1.7 J	1.8 J		0.5 U	2 U	1 U
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA	0.097 J			0.03 U		0.03 U		0.088 J
Fluoride	mg/L		0.39			0.3		0.25		0.29
Formaldehyde	ug/L	100 NL	10 U			19 U		15 J		12 J
Nitrate-NO3	mg/L	45	0.05 U			0.22 U		0.22 U		0.05 U

Well Identifier:			RD-04	RD-04	RD-04	RD-04	RD-08	RD-08	RD-08	RD-08
Geological Unit:			Chatsworth							
Sample Type:			Primary	Primary	Duplicate	Split	Primary	Primary	Primary	Primary
Lab Name:			Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	Lancaster
Collection Date:			08/20/2008	10/29/2008	10/29/2008	10/29/2008	03/03/2008	05/02/2008	09/04/2008	11/18/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	1 U	5 U	5 U	0.8 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	2 U	10 U	10 U	4 U				
1,1,2-Trichloroethane	ug/L	5	1 U	5 U	5 U	1.6 U				
1,1-Dichloroethane	ug/L	5	1 U	5 U	5 U	0.8 U				
1,1-Dichloroethene	ug/L	6	1.9 J	5 U	5 U	1.5 J				
1,2-Dichloroethane	ug/L	0.5	1 U	5 U	5 U	0.65 U				
1,3-Dinitrobenzene	ug/L	NA	2 U	2 R						
1,4-Dioxane	ug/L	3 NL	0.7 J	0.5 J						
Acetone	ug/L	NA	30 U	150 U	150 U	9.5 U				
Benzene	ug/L	1	1 U	5 U	5 U	0.8 U				
Carbon Tetrachloride	ug/L	0.5	1 U	5 U	5 U	0.95 U				
Chloroform	ug/L	80 TTHM	1 U	5 U	5 U	0.8 U				
cis-1,2-Dichloroethene	ug/L	6	180	170	160	190				
Ethylbenzene	ug/L	300	1 U	5 U	5 U	0.8 U				
Methyl ethyl ketone	ug/L	NA	10 U	50 U	50 U	9.2 U				
Methylene chloride	ug/L	5	2 U	10 U	10 U	1.6 U				
m-Xylene & p-Xylene	ug/L	1750 total	1 Ū	5 U	5 U	1.7 U				
Nitrobenzene	ug/L	NA	1 U	0.9 R						
n-Nitrosodimethylamine	ug/L	0.01 NL	0.005 U	0.005* U						
o-Xylene	ug/L	1750 total	1 U	5 U	5 U	0.95 U				
Perchlorate	ug/L	6	0.7 U	0.7 U						
Tetrachloroethene	ug/L	5	1 U	5 U	5 U	1 U				
Toluene	ug/L	150	1 U	5 U	5 U	0.85 U				
trans-1.2-Dichloroethene	ug/L	10	6.2	5 U	5 U	3.4 J				
Trichloroethene	ug/L	5	2300	1400	1400	1800				
Trichlorofluoromethane	ug/L	150	1 U	5 U	5 U	1.4 U				
Vinyl chloride	ug/L	0.5	1 U	5 U	5 U	2 U				
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA	0.03 U	0.033 J						
Fluoride	mg/L	2	0.3	0.29						
Formaldehyde	ug/L	100 NL	51	35 J			10 U	10 U	13 U	13 J
Nitrate-NO3	mg/L		0.22 U	0.22 U						

Page 12 of 30

Page 13 of 30

SUMMARY OF ANALYSES FOR CONSTITUENTS OF BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA	CONCERN AND) PERCHLOR	ATE, 2008
Well Identifier:	RD-09	RD-09	RD-09

Well Identifier:			RD-09	RD-09	RD-09	RD-09	RD-09	RD-09	RD-10	RD-10
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Primary	Primary	Duplicate	Split	Primary	Primary
Lab Name:			Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster
Collection Date:			05/15/2008	05/15/2008	08/20/2008	10/28/2008	10/28/2008	10/28/2008	02/28/2008	05/06/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.32 U	0.8 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	2 U	2 U	1 U	2 U	0.2 U	1.6 U	2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.64 U	0.8 U	0.1 U
1,1-Dichloroethane	ug/L	5	1 U	1 U	0.5 U	1 U	0.1 U	0.32 U	1 U	0.1 U
1,1-Dichloroethene	ug/L	6	0.8 U	0.8 U	0.6 J	1 U	0.1 U	0.56 J	0.8 U	0.2 J
1,2-Dichloroethane	ug/L	0.5	0.5 U	0.5 U	0.5 U	1 U	0.1 U	0.26 U	0.5 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA	2 U		2 U	2 U			2 U	2 U
1,4-Dioxane	ug/L	3 NL	1.3 J		2.5 U	2.3			0.5 U	0.6 J
Acetone	ug/L	NA	6 U	6 U	15 U	30 U	3 U	3.8 U	6 U	3 U
Benzene	ug/L	1	0.5 U	0.5 U	0.5 U	1 U	0.1 U	0.32 U	0.5 U	0.1 U
Carbon Tetrachloride	ug/L	0.5	0.5 U	0.5 U	0.5 U	1 U	0.1 U	0.38 U	0.5 U	0.1 J
Chloroform	ug/L	80 TTHM	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.32 U	0.8 U	0.1 J
cis-1,2-Dichloroethene	ug/L	6	76	78	69	71	7.1	80	10	12
Ethylbenzene	ug/L	300	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.32 U	0.8 U	0.1 U
Methyl ethyl ketone	ug/L	NA	3 U	3 U	5 U	10 U	1 U	3.7 U	3 U	1 U
Methylene chloride	ug/L	5	2 U	2 U	1 U	2 U	0.2 U	0.64 U	2 U	0.3 U
m-Xylene & p-Xylene	ug/L	1750 total	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.68 U	0.8 U	0.1 U
Nitrobenzene	ug/L	NA	1 U		1 U	1 U			1 U	1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.002 U		0.005 U	0.005* U			0.00042 U	0.002 U
o-Xylene	ug/L	1750 total	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.38 U	0.8 U	0.1 U
Perchlorate	ug/L	6	0.7 U		0.7 U	0.7 U			51.3	51.6
Tetrachloroethene	ug/L	5	0.8 U	0.8 U	0.5 U	1 U	0.1 U	0.4 U	0.8 U	0.1 U
Toluene	ug/L	150	0.7 U	0.7 U	0.5 U	1 U	0.1 U	0.34 U	0.7 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10	20	21	15	15	1.6	19	0.8 U	0.9
Trichloroethene	ug/L	5	350	330	360	330	35	440	14	15
Trichlorofluoromethane	ug/L	150	0.5 U	0.5 U	0.5 U	1 U	0.1 U	0.58 U	0.5 U	0.1 U
Vinyl chloride	ug/L	0.5	0.5 U	0.5 U	0.5 J	1 U	0.1 U	0.8 U	0.5 U	0.2 J
Naturally Occurring Constituents										
Ammonia-N	mg/L		0.038 J		0.03 U	0.03 U			0.03 U	0.05 J
Fluoride	mg/L	2	0.25		0.22	0.18			0.4	0.42
Formaldehyde	ug/L	100 NL	10 UJ		19 J	13 J			10 U	10 U
Nitrate-NO3	mg/L	45	0.22 UJ		0.37 J	0.22 U			0.78	0.25

Well Identifier:			RD-10	RD-10	RD-10	RD-10	RD-10	RD-11	RD-11	RD-11
Geological Unit:			Chatsworth							
Sample Type:			Duplicate	Primary	Primary	Duplicate	Split	Primary	Primary	Primary
Lab Name:			Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster
Collection Date:			05/06/2008	08/26/2008	10/29/2008	10/29/2008	10/29/2008	02/12/2008	05/19/2008	09/04/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U			
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U	0.2 U	0.2 U	0.2 U	0.79 U			
1,1,2-Trichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U	0.32 U			
1,1-Dichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U			
1,1-Dichloroethene	ug/L	6	0.1 J	0.1 J	0.1 J	0.1 J	0.14 U			
1,2-Dichloroethane	ug/L	0.5	0.1 U	0.1 U	0.1 U	0.1 U	0.13 U			
1,3-Dinitrobenzene	ug/L	NA		2 U	2 R					
1,4-Dioxane	ug/L	3 NL		0.6 J	0.5 U					
Acetone	ug/L	NA	3 U	3 U	3 U	3 U	1.9 U			
Benzene	ug/L	1	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U			
Carbon Tetrachloride	ug/L	0.5	0.1 J	0.1 J	0.1 U	0.1 U	0.19 U			
Chloroform	ug/L	80 TTHM	0.1 J	0.1 U	0.1 U	0.1 U	0.16 U			
cis-1,2-Dichloroethene	ug/L	6	12	11	10	10	10			
Ethylbenzene	ug/L	300	0.1 U	0.1 U	0.1 U	0.1 U	0.16 U			
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1 U	1 U	1.8 U			
Methylene chloride	ug/L	5	0.3 U	0.2 U	0.2 U	0.2 U	0.32 U			
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.1 U	0.1 U	0.34 U			
Nitrobenzene	ug/L	NA		1 U	1 R					
n-Nitrosodimethylamine	ug/L	0.01 NL		0.005 U	0.005* U					
o-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.1 U	0.1 U	0.19 U			
Perchlorate	ug/L	6		53.9	57.2		63			
Tetrachloroethene	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U			
Toluene	ug/L	150	0.1 U	0.1 U	0.1 U	0.1 U	0.17 U			
trans-1,2-Dichloroethene	ug/L	10	1	0.8	0.7	0.7	0.65 J			
Trichloroethene	ug/L	5	16	15	13	13	13			
Trichlorofluoromethane	ug/L	150	0.1 U	0.1 U	0.1 U	0.1 U	0.29 U			
Vinyl chloride	ug/L	0.5	0.2 J	0.1 J	0.1 J	0.2 J	0.4 U			
Naturally Occurring Constituents		-								
Ammonia-N	mg/L	NA		0.03 U	0.03 U					
Fluoride	mg/L			0.41	0.4					
Formaldehyde	ug/L	100 NL		10 U	10 U			11 J	10 U	10 U
Nitrate-NO3	mg/L			0.85	0.54					

Page 14 of 30

TABLE XI
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
Page 15 of 30

Well Identifier:			RD-12	RD-12	RD-12	RD-12	RD-13	RD-13	RD-13	RD-13
Geological Unit:			Chatsworth							
Sample Type:			Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary
Lab Name:			Lancaster							
Collection Date:			02/08/2008	05/01/2008	09/04/2008	11/14/2008	02/20/2008	05/13/2008	05/13/2008	09/03/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200						0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200						0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5						0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	ug/L	5						0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6						0.1 U	0.1 U	0.1 U
1,2-Dichloroethane	ug/L	0.5						0.1 U	0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA								0.2 U
1,4-Dioxane	ug/L	3 NL								
Acetone	ug/L	NA						3 U	3 U	3 U
Benzene	ug/L	1						0.1 U	0.1 U	0.1 U
Carbon Tetrachloride	ug/L	0.5						0.1 U	0.1 U	0.1 U
Chloroform	ug/L	80 TTHM						0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6						0.1 U	0.1 U	0.1 U
Ethylbenzene	ug/L	300						0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	ug/L	NA						1 U	1 U	1 U
Methylene chloride	ug/L	5						0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	ug/L	1750 total						0.1 U	0.1 U	0.1 U
Nitrobenzene	ug/L	NA								0.2 U
n-Nitrosodimethylamine	ug/L	0.01 NL					0.00028 U	0.002 U	0.002 U	0.005 U
o-Xylene	ug/L	1750 total						0.1 U	0.1 U	0.1 U
Perchlorate	ug/L	6						0.7 U		0.7 U
Tetrachloroethene	ug/L	5						0.1 U	0.1 U	0.1 U
Toluene	ug/L	150						0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10						0.1 U	0.1 U	0.1 U
Trichloroethene	ug/L	5						0.2 J	0.2 J	0.4 J
Trichlorofluoromethane	ug/L	150						0.1 U	0.1 U	0.1 U
Vinyl chloride	ug/L	0.5						0.1 U	0.1 U	0.1 U
Naturally Occurring Constituents	- 3	-								
Ammonia-N	mg/L	NA								
Fluoride	mg/L									
Formaldehyde	ug/L	100 NL	10 U		10 U					
Nitrate-NO3	mg/L									

BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-13	RD-13	RD-13	RD-41A	RD-41A	RD-41A	RD-41A	RD-41B
Geological Unit:			Chatsworth							
Sample Type:			Duplicate	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary
Lab Name:			Weck	Lancaster						
Collection Date:			09/03/2008	11/12/2008	11/12/2008	03/11/2008	05/14/2008	08/28/2008	12/01/2008	03/11/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200		0.1 U	0.8 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200		0.2 U	2 U					
1,1,2-Trichloroethane	ug/L	5		0.1 U	0.8 U					
1,1-Dichloroethane	ug/L	5		0.1 U	1 U					
1,1-Dichloroethene	ug/L	6		0.1 U	5 J					
1,2-Dichloroethane	ug/L	0.5		0.1 U	0.5 U					
1,3-Dinitrobenzene	ug/L	NA		0.2 U		2 U	2 U	2 U		2 U
1,4-Dioxane	ug/L	3 NL				0.5 U	0.5 U	0.5 U	0.5 U	1.3 J
Acetone	ug/L	NA		3 U	3 U	3 U	3 U	3 U	3 U	6 U
Benzene	ug/L	1		0.1 U	0.5 U					
Carbon Tetrachloride	ug/L	0.5		0.1 U	0.5 U					
Chloroform	ug/L	80 TTHM		0.1 U	0.8 U					
cis-1,2-Dichloroethene	ug/L	6		0.1 U	0.1 U	4.9	4.5	7.3	8.1	1000
Ethylbenzene	ug/L	300		0.1 U	0.8 U					
Methyl ethyl ketone	ug/L	NA		1 U	1 U	1 U	1 U	1 U	1 U	3 U
Methylene chloride	ug/L	5		0.2 U	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	2 U
m-Xylene & p-Xylene	ug/L	1750 total		0.1 U	0.8 U					
Nitrobenzene	ug/L	NA		0.2 U		1 U	1 U	1 U		1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.005 U	0.005 U	0.005 U	0.0014 U	0.002 U	0.005 U		0.0012 U
o-Xylene	ug/L	1750 total		0.1 U	0.8 U					
Perchlorate	ug/L	6		0.7 U		0.7 U	0.7 U	0.7 U		0.7 U
Tetrachloroethene	ug/L	5		0.1 U	0.8 U					
Toluene	ug/L	150		0.1 U	0.7 U					
trans-1,2-Dichloroethene	ug/L	10		0.1 U	0.1 U	1.9	1	2.6	2.9	62
Trichloroethene	ug/L	5		0.2 J	0.3 J	1.9	5	3.4	2.4	770
Trichlorofluoromethane	ug/L	150		0.1 U	0.5 U					
Vinyl chloride	ug/L	0.5		0.1 U	0.1 U	1.2	0.3 J	1.4	1.6	25
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA				0.12 U	0.03 U	0.03 U		0.1 U
Fluoride	mg/L	2				0.34	0.44	0.28		0.19
Formaldehyde	ug/L	100 NL		10 U		26 J	17 J	34 U		28 J
Nitrate-NO3	mg/L	45				0.22 U	0.22 U	0.22 U		0.22 U

Well Identifier:			RD-41B	RD-41B	RD-41B	RD-41B	RD-44	RD-44	RD-44	RD-44
Geological Unit:			Chatsworth							
Sample Type:			Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Split
Lab Name:			Lancaster	Lancaster	Lancaster	Weck	Lancaster	Lancaster	Lancaster	Babcock
Collection Date:			05/14/2008	08/28/2008	12/01/2008	12/01/2008	03/03/2008	05/07/2008	05/07/2008	05/07/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	1 U	2 U	1 U		0.1 U	0.1 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	2 U	4 U	2 U		0.2 U	0.2 U		
1,1,2-Trichloroethane	ug/L	5	1 U	2 U	1 U		0.1 U	0.1 U		
1,1-Dichloroethane	ug/L	5	1 U	2 U	1 U		0.1 U	0.1 U		
1,1-Dichloroethene	ug/L	6	4.2 J	3 J	4.1 J		0.1 U	0.1 U		
1,2-Dichloroethane	ug/L	0.5	1 U	2 U	1 U		0.1 U	0.1 U		
1,3-Dinitrobenzene	ug/L	NA	2 U	2 U	2 U		2 U	2 U		
1,4-Dioxane	ug/L	3 NL	0.8 J	1.1 J	1.5 J		0.5 U	0.5 U		
Acetone	ug/L	NA	30 U	60 U	30 U		3 U	3 U		
Benzene	ug/L	1	1 U	2 U	1 U		0.1 U	0.1 U		
Carbon Tetrachloride	ug/L	0.5	1 U	2 U	1 Ū		0.1 U	0.1 U		
Chloroform	ug/L	80 TTHM	1 U	2 U	1 U		0.1 U	0.1 U		
cis-1,2-Dichloroethene	ug/L	6	1100	680	960		0.1 U	0.1 U		
Ethylbenzene	ug/L	300	1 U	2 U	1 U		0.1 U	0.1 U		
Methyl ethyl ketone	ug/L	NA	10 U	20 U	10 U		1 U	1 U		
Methylene chloride	ug/L	5	2.8 U	4 U	2 U		0.2 U	0.3 U		
m-Xylene & p-Xylene	ug/L	1750 total	1 U	2 U	1 Ū		0.1 U	0.1 U		
Nitrobenzene	ug/L	NA	1 U	1 U	0.9 U		1 U	1 U		
n-Nitrosodimethylamine	ug/L	0.01 NL	0.002 U	0.005 U	2 U	0.005 U	0.00034 U	0.002 U	0.002 U	0.002 U
o-Xylene	ug/L	1750 total	1 U	2 U	1 U		0.1 U	0.1 U		
Perchlorate	ug/L	6	0.7 U	0.7 U	0.7 U		0.7 U	0.7 U		
Tetrachloroethene	ug/L	5	1 U	2 U	1 U		0.1 U	0.1 U		
Toluene	ug/L	150	1 U	2 U	1 U		0.1 U	0.1 U		
trans-1,2-Dichloroethene	ug/L	10	48	37	46		0.1 U	0.1 U		
Trichloroethene	ug/L	5	260	1300	840		0.1 U	0.1 U		
Trichlorofluoromethane	ug/L	150	1 U	2 U	1 U		0.1 U	0.1 U		
Vinyl chloride	ug/L	0.5	18	18	20		0.1 U	0.1 U		
Naturally Occurring Constituents			-							
Ammonia-N	mg/L	NA	0.03 U	0.03 U	0.03 U		0.03 U	0.14		
Fluoride	mg/L		0.21	0.27	0.22		0.31	0.38		
Formaldehyde	ug/L	100 NL	52	15 U	35 J		16 J			
Nitrate-NO3	mg/L		0.22 U	0.22 U	0.22 U		0.22 U	0.05 U		

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-44	RD-44	RD-44	RD-49A	RD-49A	RD-49A	RD-49A	RD-49A
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Split	Primary	Split	Primary	Primary	Primary
Lab Name:			Lancaster	Weck	TA-Denver	Lancaster	C&T	Lancaster	Lancaster	Lancaster
Collection Date:			10/30/2008	10/30/2008	10/30/2008	03/11/2008	03/11/2008	05/14/2008	09/02/2008	12/02/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U			2 U		2 U	1 U	2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U			4 U		4 U	2 U	4 U
1,1,2-Trichloroethane	ug/L	5	0.1 U			2 U		2 U	1 U	2 U
1,1-Dichloroethane	ug/L	5	0.1 U			2 U		2 U	1 U	2 U
1,1-Dichloroethene	ug/L	6	0.1 U			2 J		2.6 J	1.5 J	2.7 J
1,2-Dichloroethane	ug/L	0.5	0.1 U			1 U		2 U	1 U	2 U
1,3-Dinitrobenzene	ug/L	NA	2 U			2 U		2 U	19 U	
1,4-Dioxane	ug/L	3 NL	0.5 U			0.5 U		0.7 J	0.5 U	0.5 J
Acetone	ug/L	NA	3 U			12 U		60 U	30 U	60 U
Benzene	ug/L	1	0.1 U			1 U		2 U	1 U	2 U
Carbon Tetrachloride	ug/L	0.5	0.1 U			1 U		2 U	1 U	2 U
Chloroform	ug/L	80 TTHM	0.1 U			2 U		2 U	1 U	2 U
cis-1,2-Dichloroethene	ug/L	6	0.1 U			1200		1400	980	1300
Ethylbenzene	ug/L	300	0.1 U			2 U		2 U	1 U	2 U
Methyl ethyl ketone	ug/L	NA	1 U			6 U		20 U	10 U	20 U
Methylene chloride	ug/L	5	0.2 U			4 U		5.8 U	2 U	4 U
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U			2 U		2 U	1 U	2 U
Nitrobenzene	ug/L	NA	1 U			1 U		1 U	10 U	
n-Nitrosodimethylamine	ug/L	0.01 NL	0.005* U	0.005* U	0.0048 U	0.001 U		0.002 U	0.005 U	0.005 U
o-Xylene	ug/L	1750 total	0.1 U			2 U		2 U	1 U	2 U
Perchlorate	ug/L	6	0.7 U			0.7 U	0.47 U	0.7 U	0.7 U	
Tetrachloroethene	ug/L	5	0.1 U			2 U		2 U	1 U	2 U
Toluene	ug/L	150	0.1 U			1 U		2 U	1 U	2 U
trans-1,2-Dichloroethene	ug/L	10	0.1 U			29		25	18	40
Trichloroethene	ug/L	5	0.1 U			1600		2200	1100	1200
Trichlorofluoromethane	ug/L	150	0.1 U			1 U		2 U	1 U	2 U
Vinyl chloride	ug/L	0.5	0.1 U			1 U		2 U	1.1 J	2 U
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA	0.03 U			0.095 U		0.03 U	0.031 J	0.03 U
Fluoride	mg/L		0.45			0.29		0.38	0.29	0.36
Formaldehyde	ug/L	100 NL	17 J			110 J		19 J	52	
Nitrate-NO3	mg/L	45	0.32 J			0.22 U		0.22 U	0.22 U	0.22 U

Page 18 of 30

Well Identifier:			RD-49B	RD-49B	RD-49B	RD-49B	RD-49C	RD-49C	RD-49C	RD-49C
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary
Lab Name:			Lancaster	Weck						
Collection Date:			02/27/2008	02/27/2008	05/07/2008	08/27/2008	02/28/2008	08/19/2008	11/10/2008	11/10/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	2 U	2 U	2 U	0.2 U	2 U	0.2 U	0.2 U	
1,1,2-Trichloroethane	ug/L	5	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
1,1-Dichloroethane	ug/L	5	1 U	1 U	1 U	0.1 U	1 U	0.1 U	0.1 U	
1,1-Dichloroethene	ug/L	6	1 J	0.9 J	1 U	0.8	0.8 U	0.3 J	0.3 J	
1,2-Dichloroethane	ug/L	0.5	0.5 U	0.5 U	1 U	0.1 U	0.5 U	0.1 U	0.1 U	
1,3-Dinitrobenzene	ug/L	NA	2 U		2 U	2 U	2 U	2 U	2 U	
1,4-Dioxane	ug/L	3 NL	1.9 J		2.2	2.1	1 J	0.9 J	0.8 J	
Acetone	ug/L	NA	6 U	6 U	30 U	3 U	6 U	3 U	3 U	
Benzene	ug/L	1	0.5 U	0.5 U	1 U	0.1 U	0.5 U	0.1 U	0.1 U	
Carbon Tetrachloride	ug/L	0.5	0.5 U	0.5 U	1 U	0.1 U	0.5 U	0.1 U	0.1 U	
Chloroform	ug/L	80 TTHM	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
cis-1,2-Dichloroethene	ug/L	6	280	280	260	250	87	80	82	
Ethylbenzene	ug/L	300	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
Methyl ethyl ketone	ug/L	NA	3 U	3 U	10 U	1 U	3 U	1 U	1 U	
Methylene chloride	ug/L	5	2 U	2 U	3.2 U	0.2 U	2 U	0.2 U	0.2 U	
m-Xylene & p-Xylene	ug/L	1750 total	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
Nitrobenzene	ug/L	NA	1 U		1 U	1 U	1 U	1 U	1 U	
n-Nitrosodimethylamine	ug/L	0.01 NL	0.00028 U		0.032	0.038	0.0059 J	0.006 U	0.0058* U	0.0062 U
o-Xylene	ug/L	1750 total	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
Perchlorate	ug/L	6	0.7 U		0.7 U	0.7 U	0.7 U	0.7 UJ	0.7 U	
Tetrachloroethene	ug/L	5	0.8 U	0.8 U	1 U	0.1 U	0.8 U	0.1 U	0.1 U	
Toluene	ug/L	150	0.7 U	0.7 U	1 U	0.1 U	0.7 U	0.1 U	0.1 U	
trans-1,2-Dichloroethene	ug/L	10	16	15	13	16	3 J	4.2	3.5	
Trichloroethene	ug/L	5	280	290	280	260	14	15	16	
Trichlorofluoromethane	ug/L	150	0.5 U	0.5 U	1 U	0.1 U	0.5 U	0.1 U	0.1 U	
Vinyl chloride	ug/L	0.5	4	4	3.6 J	3.7	2	2	1.9	
Naturally Occurring Constituents	_									
Ammonia-N	mg/L	NA	0.03 U		0.055 J	0.03 U	0.03 U	0.054 U	0.56	
Fluoride	mg/L		0.23		0.25	0.27	0.33	0.38	0.26	
Formaldehyde	ug/L	100 NL	13 J		10 U	12 U	21 J	36 J	12 J	
Nitrate-NO3	mg/L	45	0.22 U		0.05 U	0.22 U	0.22 U	0.22 U	0.22 U	

Page 19 of 30

TABLE XI
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008
Page 20 of 30

BOEING SANTA SUSANA FIELD LABORATORY

Well Identifier:			RD-49C	RD-51B	RD-51B	RD-51B	RD-51B	RD-51C	RD-51C	RD-51C
Geological Unit:			Chatsworth							
Sample Type:			Split	Primary	Primary	Primary	Primary	Primary	Duplicate	Split
Lab Name:			TA-Denver	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	C&T
Collection Date:			11/10/2008	02/21/2008	05/06/2008	08/19/2008	11/03/2008	05/07/2008	05/07/2008	05/07/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200		0.1 U						
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200		0.2 U	0.4 U					
1,1,2-Trichloroethane	ug/L	5		0.1 U						
1,1-Dichloroethane	ug/L	5		0.1 U						
1,1-Dichloroethene	ug/L	6		0.1 U						
1,2-Dichloroethane	ug/L	0.5		0.1 U						
1,3-Dinitrobenzene	ug/L	NA		2 U	2 U	2 U	2 U	2 U		
1,4-Dioxane	ug/L	3 NL		0.5 U						
Acetone	ug/L	NA		3 U	3 U	3 U	3 U	3 U	3 U	1.6 J,L
Benzene	ug/L	1		0.1 U						
Carbon Tetrachloride	ug/L	0.5		0.1 U						
Chloroform	ug/L	80 TTHM		0.1 U						
cis-1,2-Dichloroethene	ug/L	6		12	12	11	11	0.1 U	0.1 U	0.1 U
Ethylbenzene	ug/L	300		0.1 U						
Methyl ethyl ketone	ug/L	NA		1 U	1 U	1 U	1 U	1 U	1 U	2 U
Methylene chloride	ug/L	5		0.2 U	0.3 U	0.2 U	0.2 U	0.3 U	0.3 U	1 U
m-Xylene & p-Xylene	ug/L	1750 total		0.1 U	0.2 U					
Nitrobenzene	ug/L	NA		1 U	1 U	1 U	1 U	0.9 U		
n-Nitrosodimethylamine	ug/L	0.01 NL		0.00028 U	0.002 U	0.005 U	0.005* U	0.002 U		
o-Xylene	ug/L	1750 total		0.1 U						
Perchlorate	ug/L	6	0.28 U	0.7 U	0.7 U	0.7 UJ	0.7 U	0.7 U		0.64 U
Tetrachloroethene	ug/L	5		0.1 U						
Toluene	ug/L	150		0.1 U						
trans-1,2-Dichloroethene	ug/L	10		1.2	1.2	1.1	1.1	0.1 U	0.1 U	0.1 U
Trichloroethene	ug/L	5		4.8	4.6	4.5	4.4	0.1 J	0.1 U	0.1 U
Trichlorofluoromethane	ug/L	150		0.1 U	0.2 U					
Vinyl chloride	ug/L	0.5		9.3	6.9	8.4	9	0.1 U	0.1 U	0.1 U
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA		0.03 U	0.14	0.03 U	0.19	0.17		
Fluoride	mg/L			0.35	0.39	0.4	0.19	0.29		
Formaldehyde	ug/L	100 NL		16 J	22 J	35 J	23 J	10 U		
Nitrate-NO3	mg/L			0.22 U	0.05 U	0.22 U	0.22 U	0.05 U		

BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-51C	RD-51C	RD-51C	RD-51C	RD-51C	RD-51C	RD-55A	RD-55A
Geological Unit:			Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary	Duplicate	Split	Primary	Duplicate	Split	Primary	Primary
Lab Name:			Lancaster	Lancaster	TA - Denver	Lancaster	Weck	TA-Denver	Lancaster	Lancaster
Collection Date:			08/26/2008	08/26/2008	08/26/2008	11/03/2008	11/03/2008	11/03/2008	02/25/2008	05/06/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U	0.1 U	0.16 U	0.1 U			0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U	0.2 U	0.79 U	0.2 U			0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5	0.1 U	0.1 U	0.32 U	0.1 U			0.1 U	0.1 U
1,1-Dichloroethane	ug/L	5	0.1 U	0.1 U	0.16 U	0.1 U			0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6	0.1 U	0.1 U	0.14 U	0.1 U			0.1 U	0.1 U
1,2-Dichloroethane	ug/L	0.5	0.1 U	0.1 U	0.13 U	0.1 U			0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA	2 U			2 U			2 U	2 U
1,4-Dioxane	ug/L	3 NL	0.5 U			0.5 U			0.5 U	0.5 U
Acetone	ug/L	NA	3 U	3 U	1.9 U	3 U			3 U	3 U
Benzene	ug/L	1	0.1 U	0.1 U	0.16 U	0.1 U			0.1 U	0.1 U
Carbon Tetrachloride	ug/L	0.5	0.1 U	0.1 U	0.19 U	0.1 U			0.1 U	0.1 U
Chloroform	ug/L	80 TTHM	0.1 U	0.1 U	0.16 U	0.1 U			0.1 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6	0.1 U	0.1 U	0.15 U	0.1 U			0.3 J	4.7
Ethylbenzene	ug/L	300	0.1 U	0.1 U	0.16 U	0.1 U			0.1 U	0.1 U
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1.8 U	1 U			1 U	1 U
Methylene chloride	ug/L	5	0.2 U	0.2 U	0.41 U	0.2 U			0.2 U	0.3 U
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.34 U	0.1 U			0.1 U	0.1 U
Nitrobenzene	ug/L	NA	1 U			0.9 U			1 U	1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.005 U			0.005* U	0.005* U	0.0048 U	0.00028 U	0.002 U
o-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.19 U	0.1 U			0.1 U	0.1 U
Perchlorate	ug/L	6	0.7 U			0.7 U			0.7 U	0.7 U
Tetrachloroethene	ug/L	5	0.1 U	0.1 U	0.2 U	0.1 U			0.1 U	0.1 U
Toluene	ug/L	150	0.1 U	0.1 U	0.17 U	0.1 U			0.1 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10	0.1 U	0.1 U	0.15 U	0.1 U			0.1 U	0.5
Trichloroethene	ug/L	5	0.1 J	0.1 J	0.16 U	0.1 U			2.2	8
Trichlorofluoromethane	ug/L	150	0.1 U	0.1 U	0.29 U	0.1 U			0.1 U	0.1 U
Vinyl chloride	ug/L	0.5	0.1 U	0.1 U	0.4 U	0.1 U			0.1 U	1
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA	0.038 U			0.058 J			0.03 U	0.06 J
Fluoride	mg/L		0.29			0.27			0.44	0.44
Formaldehyde	ug/L	100 NL	10 U			10 U			22 J	10 U
Nitrate-NO3	mg/L		0.22 U			0.22 U			16	13

SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-55A	RD-55A	RD-55A	RD-55B	RD-55B	RD-55B	RD-55B	RD-55B
Geological Unit:			Chatsworth							
Sample Type:			Duplicate	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary
Lab Name:			Lancaster							
Collection Date:			05/06/2008	08/26/2008	11/20/2008	02/25/2008	05/13/2008	08/27/2008	08/27/2008	11/20/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U							
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U	0.2 U	0.9	0.2 U				
1,1,2-Trichloroethane	ug/L	5	0.1 U							
1,1-Dichloroethane	ug/L	5	0.1 U							
1,1-Dichloroethene	ug/L	6	0.1 U	0.2 J	0.3 J	0.3 J	0.2 J	0.3 J	0.3 J	0.3 J
1,2-Dichloroethane	ug/L	0.5	0.1 U							
1,3-Dinitrobenzene	ug/L	NA		2 U	2 U	2 U	2 U	2 U		2 U
1,4-Dioxane	ug/L	3 NL		0.5 U		0.5 U				
Acetone	ug/L	NA	3 U	3 U	3 U	3 U	3 U	87	84	5 J
Benzene	ug/L	1	0.1 U							
Carbon Tetrachloride	ug/L	0.5	0.1 U							
Chloroform	ug/L	80 TTHM	0.1 U							
cis-1,2-Dichloroethene	ug/L	6	4.6	31	95	14	14	15	15	17
Ethylbenzene	ug/L	300	0.1 U							
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	ug/L	5	0.3 U	0.2 U						
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U	0.3 J	0.3 J	0.2 J				
Nitrobenzene	ug/L	NA		1 U	0.9 U	1 U	1 U	1 U		0.9 U
n-Nitrosodimethylamine	ug/L	0.01 NL		0.005 U	0.005 U	0.00028 U	0.002 U	0.005 U		0.005 U
o-Xylene	ug/L	1750 total	0.1 U	0.2 J	0.2 J	0.1 J				
Perchlorate	ug/L	6		0.7 U		0.7 U				
Tetrachloroethene	ug/L	5	0.1 U	0.1 J	1.1	0.1 U				
Toluene	ug/L	150	0.1 U	0.9	0.9	0.3 J				
trans-1,2-Dichloroethene	ug/L	10	0.5 J	1.9	5.3	0.1 J	0.2 J	0.1 J	0.1 J	0.3 J
Trichloroethene	ug/L	5	7.7	23	73	22	25	21	21	24
Trichlorofluoromethane	ug/L	150	0.1 U							
Vinyl chloride	ug/L	0.5	1	4.3	14	0.2 J	0.2 J	0.1 J	0.1 J	0.1 J
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA		0.03 U	0.03 U	0.03 U	0.03 U	0.076 J		0.03 U
Fluoride	mg/L	2		0.46	0.56	0.64	0.61	0.64		0.36
Formaldehyde	ug/L	100 NL		13 J	10 U	17 J	15 J	25 U		10 U
Nitrate-NO3	mg/L	45		9.1	7.2	0.22 U	0.22 U	0.22 U		0.22 U

Well Identifier:			RD-55B	RD-55B	RD-58A	RD-58A	RD-58A	RD-58A	RD-58A	RD-58A
Geological Unit:			Chatsworth							
Sample Type:			Duplicate	Split	Primary	Split	Primary	Duplicate	Primary	Duplicate
Lab Name:			Lancaster	TA-Denver	Lancaster	C&T	Lancaster	Weck	Lancaster	Lancaster
Collection Date:			11/20/2008	11/20/2008	02/18/2008	02/18/2008	05/19/2008	05/19/2008	09/02/2008	09/02/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U	0.16 U	0.8 U	0.1 U	0.1 UJ		0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U	0.79 U	5 J	2.5	8.7 J		4.9	4.9
1,1,2-Trichloroethane	ug/L	5	0.1 U	0.32 U	0.8 U	0.1 U	0.1 UJ		0.1 U	0.1 U
1,1-Dichloroethane	ug/L	5	0.1 U	0.16 U	1 U	0.1 U	0.1 UJ		0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6	0.3 J	0.18 J	0.8 U	0.1 U	0.1 J		0.1 U	0.1 U
1,2-Dichloroethane	ug/L	0.5	0.1 U	0.13 U	0.5 U	0.1 U	0.1 UJ		0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA			2 U		2 U		2 U	
1,4-Dioxane	ug/L	3 NL			0.5 U		0.5 U		0.5 U	
Acetone	ug/L	NA	4.8 J	5.7 J	6 U	1 U	3 UJ		3 U	3 U
Benzene	ug/L	1	0.1 U	0.16 U	0.5 U	0.1 U	0.1 UJ		0.1 U	0.1 U
Carbon Tetrachloride	ug/L	0.5	0.1 U	0.19 U	0.5 U	0.1 U	0.1 UJ		0.1 U	0.1 U
Chloroform	ug/L	80 TTHM	0.1 U	0.16 U	0.8 U	0.1 J	0.1 UJ		0.1 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6	16	13	16	12	19		7.6	7.6
Ethylbenzene	ug/L	300	0.1 U	0.16 U	0.8 U	0.1 U	0.1 UJ		0.1 U	0.1 U
Methyl ethyl ketone	ug/L	NA	1 U	1.8 U	3 U	2 U	1 UJ		1 U	1 U
Methylene chloride	ug/L	5	0.2 U	0.32 U	2 U	1 U	0.3 U		0.2 U	0.2 U
m-Xylene & p-Xylene	ug/L	1750 total	0.2 J	0.34 U	0.8 U	0.1 U	0.1 UJ		0.1 U	0.1 U
Nitrobenzene	ug/L	NA			1 U		1 U		1 U	
n-Nitrosodimethylamine	ug/L	0.01 NL			0.00028 U		0.002 U	0.002 U	0.005 U	
o-Xylene	ug/L	1750 total	0.1 J	0.19 U	0.8 U	0.1 U	0.1 UJ		0.1 U	0.1 U
Perchlorate	ug/L	6			0.7 U		0.7 U		0.7 U	
Tetrachloroethene	ug/L	5	0.1 U	0.2 U	0.8 U	0.1 U	0.1 UJ		0.1 U	0.1 U
Toluene	ug/L	150	0.4 J	0.17 U	0.7 U	0.1 U	0.1 UJ		0.1 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10	0.3 J	0.32 J	0.8 U	0.1 U	0.1 J		0.1 U	0.1 U
Trichloroethene	ug/L	5	25	23	130	100	140 J		93	97
Trichlorofluoromethane	ug/L	150	0.1 U	0.29 U	0.5 U	0.2 U	0.1 UJ		0.1 U	0.1 U
Vinyl chloride	ug/L	0.5	0.1 J	0.4 U	0.5 U	0.1 U	0.2 J		0.1 U	0.1 U
Naturally Occurring Constituents	-									
Ammonia-N	mg/L	NA			0.03 U		0.03 U		0.03 U	
Fluoride	mg/L				0.4		0.41		0.44	
Formaldehyde	ug/L	100 NL			15 J		10 U		36 J	
Nitrate-NO3	mg/L	45			0.22 U		0.22 U		0.22 U	

Page 23 of 30

TABLE XI
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
Page 24 of 30

Well Identifier:			RD-58A	RD-58B	RD-58B	RD-58B	RD-58B	RD-67	RD-67	RD-67
Geological Unit:			Chatsworth							
Sample Type:			Primary	Primary	Primary	Primary	Primary	Primary	Duplicate	Primary
Lab Name:			Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Lancaster	Weck	Lancaster
Collection Date:			11/06/2008	03/03/2008	05/06/2008	08/21/2008	10/30/2008	03/06/2008	03/06/2008	05/19/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U		0.1 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	6.5	0.2 U		0.2 U				
1,1,2-Trichloroethane	ug/L	5	0.1 U		0.1 U					
1,1-Dichloroethane	ug/L	5	0.1 U		0.1 U					
1,1-Dichloroethene	ug/L	6	0.1 U		0.1 U					
1,2-Dichloroethane	ug/L	0.5	0.1 U		0.1 U					
1,3-Dinitrobenzene	ug/L	NA	2 U	2 U	2 U	2 U	2 U	2 U		2 U
1,4-Dioxane	ug/L	3 NL	0.7 J	0.6 J	0.7 J	0.6 J	0.7 J	0.5 U		0.5 U
Acetone	ug/L	NA	3 U	3 U	3 U	3 U	3 U	3 U		3 U
Benzene	ug/L	1	0.1 U		0.1 U					
Carbon Tetrachloride	ug/L	0.5	0.1 U		0.1 U					
Chloroform	ug/L	80 TTHM	0.1 U		0.1 U					
cis-1,2-Dichloroethene	ug/L	6	9.9	0.1 U		0.1 U				
Ethylbenzene	ug/L	300	0.1 U		0.1 U					
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1 U	1 U	1 U	1 U		1 U
Methylene chloride	ug/L	5	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U		0.3 U
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U		0.1 U					
Nitrobenzene	ug/L	NA	1 U	1 U	1 U	1 U	1 U	1 U		1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.005 U	0.0003 U	0.002 U	0.005 U	0.005* U	0.00039 UJ	0.00033 U	0.002 U
o-Xylene	ug/L	1750 total	0.1 U		0.1 U					
Perchlorate	ug/L	6	0.7 U							
Tetrachloroethene	ug/L	5	0.1 U		0.1 U					
Toluene	ug/L	150	0.1 U	0.6	0.1 U	0.3 J	0.1 U	0.1 U		0.1 U
trans-1,2-Dichloroethene	ug/L	10	0.1 J	0.1 U		0.1 U				
Trichloroethene	ug/L	5	120	0.1 U		0.1 U				
Trichlorofluoromethane	ug/L	150	0.1 U		0.1 U					
Vinyl chloride	ug/L	0.5	0.1 U		0.1 U					
Naturally Occurring Constituents	J									
Ammonia-N	mg/L	NA	0.05 U	0.03 U	0.1	0.03 U	0.03 U	0.03 U		0.03 U
Fluoride	mg/L		0.08 U	0.45	0.51	0.53	0.58	0.58		0.59
Formaldehyde	ug/L	100 NL	22 U	17 J	23 J	25 J	57	28 J		27 J
Nitrate-NO3	mg/L		0.22 U	0.22 U	0.05 U	0.22 U	0.22 U	0.22 U		0.22 U

Well Identifier:			RD-67	WS-05						
Geological Unit:			Chatsworth							
Sample Type:			Duplicate	Split	Primary	Duplicate	Primary	Duplicate	Split	Primary
Lab Name:			Weck	Babcock	Lancaster	Weck	Lancaster	Lancaster	TA-Denver	Lancaster
Collection Date:			05/19/2008	05/19/2008	09/03/2008	09/03/2008	11/19/2008	11/19/2008	11/19/2008	02/26/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200			0.1 U		0.1 U	0.1 U	0.16 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200			0.2 U		0.2 U	0.2 U	0.79 U	0.2 U
1,1,2-Trichloroethane	ug/L	5			0.1 U		0.1 U	0.1 U	0.32 U	0.1 U
1,1-Dichloroethane	ug/L	5			0.1 U		0.1 U	0.1 U	0.16 U	0.1 U
1,1-Dichloroethene	ug/L	6			0.1 U		0.1 U	0.1 U	0.14 U	0.1 U
1,2-Dichloroethane	ug/L	0.5			0.1 U		0.1 U	0.1 U	0.13 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA			2 U		2 U			2 U
1,4-Dioxane	ug/L	3 NL			0.5 U		0.5 U			2.7
Acetone	ug/L	NA			3 U		3 U	3 U	1.9 U	3 U
Benzene	ug/L	1			0.1 U		0.1 U	0.1 U	0.16 U	0.1 U
Carbon Tetrachloride	ug/L	0.5			0.1 U		0.1 U	0.1 U	0.19 U	0.1 U
Chloroform	ug/L	80 TTHM			0.1 U		0.1 U	0.1 U	0.16 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6			0.1 U		0.1 U	0.1 U	0.15 U	1.6
Ethylbenzene	ug/L	300			0.1 U		0.1 U	0.1 U	0.16 U	0.1 U
Methyl ethyl ketone	ug/L	NA			1 U		1 U	1 U	1.8 U	1 U
Methylene chloride	ug/L	5			0.2 U		0.2 U	0.2 U	0.32 U	0.2 U
m-Xylene & p-Xylene	ug/L	1750 total			0.1 U		0.1 U	0.1 U	0.34 U	0.1 U
Nitrobenzene	ug/L	NA			1 U		0.9 U			1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.002 U	0.002 UJ	0.005 U	0.005 U	0.005 U	0.005 U		0.00044 U
o-Xylene	ug/L	1750 total			0.1 U		0.1 U	0.1 U	0.19 U	0.1 U
Perchlorate	ug/L	6								6.4 J
Tetrachloroethene	ug/L	5			0.1 U		0.1 U	0.1 U	0.2 U	0.1 U
Toluene	ug/L	150			0.1 U		0.1 U	0.1 U	0.17 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10			0.1 U		0.1 U	0.1 U	0.15 U	0.2 J
Trichloroethene	ug/L	5			0.1 U		0.1 U	0.1 U	0.16 U	0.7
Trichlorofluoromethane	ug/L	150			0.1 U		0.1 U	0.1 U	0.29 U	0.1 U
Vinyl chloride	ug/L	0.5			0.1 U		0.1 U	0.1 U	0.4 U	0.1 U
Naturally Occurring Constituents										
Ammonia-N	mg/L	NA			0.03 U		0.048 U			0.03 U
Fluoride	mg/L				0.87		0.41			0.27
Formaldehyde	ug/L	100 NL			35 J		31 J			10 U
Nitrate-NO3	mg/L	45			0.22 U		0.22 U			0.22 U

Well Identifier:			WS-05	WS-05	WS-05	WS-05	WS-05	WS-05	WS-06	WS-06
Geological Unit:			Chatsworth							
Sample Type:			Split	Primary	Primary	Primary	Duplicate	Split	Primary	Split
Lab Name:			C&T	Lancaster	Lancaster	Lancaster	Lancaster	TA-Denver	Lancaster	C&T
Collection Date:			02/26/2008	05/06/2008	08/21/2008	11/03/2008	11/03/2008	11/03/2008	02/28/2008	02/28/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200		0.2 U	0.2 U	0.2 U			0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
1,1-Dichloroethane	ug/L	5		0.1 U	0.1 U	0.1 U			0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6		0.1 U	0.1 U	0.1 U			0.3 J	0.2 J
1,2-Dichloroethane	ug/L	0.5		0.1 U	0.1 U	0.1 U			0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA		2 U	2 U	2 U			2 U	
1,4-Dioxane	ug/L	3 NL		2.1	2.4	2.3			1.2 J	
Acetone	ug/L	NA		3 U	3 U	3 U			3 U	1.5 U
Benzene	ug/L	1		0.1 U	0.1 U	0.1 U			0.1 U	0.4 U
Carbon Tetrachloride	ug/L	0.5		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
Chloroform	ug/L	80 TTHM		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
cis-1,2-Dichloroethene	ug/L	6		2.1	1.5	1.9			100	110
Ethylbenzene	ug/L	300		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
Methyl ethyl ketone	ug/L	NA		1 U	1 U	1 U			1 U	2.9 U
Methylene chloride	ug/L	5		0.3 U	0.2 U	0.2 U			0.2 U	1.4 U
m-Xylene & p-Xylene	ug/L	1750 total		0.1 U	0.1 U	0.1 U			0.1 U	0.4 U
Nitrobenzene	ug/L	NA		1 U	1 U	0.9 U			1 U	
n-Nitrosodimethylamine	ug/L	0.01 NL		0.002 U	0.005 U	0.005* U			0.00043 U	
o-Xylene	ug/L	1750 total		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
Perchlorate	ug/L	6	0.47 U	0.7 UJ	0.7 U	0.7 U	0.7 U	0.28 U	0.7 U	
Tetrachloroethene	ug/L	5		0.1 U	0.1 U	0.1 U			0.1 U	0.3 U
Toluene	ug/L	150		0.1 U	0.1 U	0.1 U			0.1 U	0.2 U
trans-1,2-Dichloroethene	ug/L	10		0.2 J	0.2 J	0.2 J			11	7.4
Trichloroethene	ug/L	5		0.7	0.7	0.6			4.4	3.8
Trichlorofluoromethane	ug/L	150		0.1 U	0.1 U	0.1 U			0.1 U	0.3 U
Vinyl chloride	ug/L	0.5		0.1 U	0.1 J	0.1 J			5.6	3.8
Naturally Occurring Constituents	J									
Ammonia-N	mg/L	NA		0.083 J	0.03 U	0.059 J			0.03 U	
Fluoride	mg/L			0.3	0.35	0.3			0.33	
Formaldehyde	ug/L	100 NL		10 U	17 J	10 U			39 J	
Nitrate-NO3	mg/L			0.05 U	0.22 U	0.22 U			0.22 U	

Page 26 of 30

BOEING SANTA SUSANA FIELD LABORATORY

Well Identifier:			WS-06	WS-06	WS-06	WS-06	WS-06	WS-09	WS-09	WS-09
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Primary	Duplicate	Primary	Primary	Primary	Primary
Lab Name:			Lancaster							
Collection Date:			05/07/2008	05/07/2008	09/09/2008	09/09/2008	10/30/2008	02/26/2008	05/08/2008	08/20/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	0.1 U	8 U	10 U	10 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U	0.2 U	0.2 U	0.2 U	0.8	20 U	20 U	20 U
1,1,2-Trichloroethane	ug/L	5	0.1 U	8 U	10 U	10 U				
1,1-Dichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U	0.5	10 U	10 U	10 U
1,1-Dichloroethene	ug/L	6	0.3 J	0.3 J	0.4 J	0.3 J	11	9 J	10 U	11 J
1,2-Dichloroethane	ug/L	0.5	0.1 U	0.1 U	0.1 U	0.1 U	0.1 J	5 U	10 U	10 U
1,3-Dinitrobenzene	ug/L	NA	2 U		2 U		2 U	2 U	2 U	2 U
1,4-Dioxane	ug/L	3 NL	0.9 J		0.9 J		1.2 J	2	6.7 J	2.5
Acetone	ug/L	NA	3 U	3 U	3 U	3 U	3 U	60 U	300 U	300 U
Benzene	ug/L	1	0.1 U	5 U	10 U	10 U				
Carbon Tetrachloride	ug/L	0.5	0.1 U	5 U	10 U	10 U				
Chloroform	ug/L	80 TTHM	0.1 U	8 U	10 U	10 U				
cis-1,2-Dichloroethene	ug/L	6	110	110	130	130	510 J	880	670	700
Ethylbenzene	ug/L	300	0.1 U	8 U	10 U	10 U				
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1 U	1 U	1 U	30 U	100 U	100 U
Methylene chloride	ug/L	5	0.3 U	0.3 U	0.2 U	0.2 U	0.2 U	20 U	29 U	20 U
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U	8 U	10 U	10 U				
Nitrobenzene	ug/L	NA	0.9 U		1 U		1 U	1 U	0.9 U	1 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.002 U		0.005 U		0.005* U	0.0032 J	0.0042	0.005 U
o-Xylene	ug/L	1750 total	0.1 U	8 U	10 U	10 U				
Perchlorate	ug/L	6	0.7 U		0.7 U		0.7 U	0.7 U	0.7 U	0.7 U
Tetrachloroethene	ug/L	5	0.1 U	0.1 U	0.1 U	0.1 U	0.6	8 U	10 U	10 U
Toluene	ug/L	150	0.1 U	7 U	10 U	10 U				
trans-1,2-Dichloroethene	ug/L	10	14	15	12	12	34 J	19 J	18 J	18 J
Trichloroethene	ug/L	5	4.3	4.4	5.1	5.3	980 J	16000	13000	16000
Trichlorofluoromethane	ug/L	150	0.1 U	5 U	10 U	10 U				
Vinyl chloride	ug/L	0.5	5.1	5	6.7	6.8	1	5 U	10 U	10 U
Naturally Occurring Constituents	J									
Ammonia-N	mg/L	NA	0.16		0.032 J		0.03 U	0.03 U	0.06 J	0.03 U
Fluoride	mg/L		0.3		0.28		0.32	0.29	0.31	0.31
Formaldehyde	ug/L	100 NL	10 J		10 U		38 J	14 J	14 J	21 J
Nitrate-NO3	mg/L		0.05 U		0.22 U		0.22 U	0.26 J	0.37	0.31 J

TABLE XI
SUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
Page 28 of 30

Output

Description:

Des

Well Identifier:			WS-09	WS-09	WS-09	WS-09A	WS-09A	WS-09A	WS-09A	WS-09A
Geological Unit:			Chatsworth							
Sample Type:			Primary	Duplicate	Split	Primary	Primary	Duplicate	Split	Primary
Lab Name:			Lancaster	Lancaster	TA-Denver	Lancaster	Lancaster	Lancaster	C&T	Lancaster
Collection Date:			10/29/2008	10/29/2008	10/29/2008	02/29/2008	05/15/2008	05/15/2008	05/15/2008	08/20/2008
Analyte	Units	MCL								
Organic Constituents and Perchlorate										
1,1,1-Trichloroethane	ug/L	200	50 U	50 U	8 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	100 U	100 U	40 U	2 U	0.2 U	0.2 U	0.4 U	0.2 U
1,1,2-Trichloroethane	ug/L	5	50 U	50 U	16 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	ug/L	5	50 U	50 U	8 U	1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6	50 U	50 U	11 J	0.8 U	0.1 U	0.1 U	0.1 U	0.1 J
1,2-Dichloroethane	ug/L	0.5	50 U	50 U	6.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA	2 R			2 U	2 U			2 U
1,4-Dioxane	ug/L	3 NL	0.5 U			0.5 U	0.5 U			0.5 U
Acetone	ug/L	NA	1500 U	1500 U	95 U	6 U	3 U	3 U	1.3 J	3 U
Benzene	ug/L	1	50 U	50 U	8 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbon Tetrachloride	ug/L	0.5	50 U	50 U	9.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroform	ug/L	80 TTHM	50 U	50 U	8 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6	790	700	950	5	19	20	20	18
Ethylbenzene	ug/L	300	50 U	50 U	8 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	ug/L	NA	500 U	500 U	92 U	3 U	1 U	1 U	2 U	1 U
Methylene chloride	ug/L	5	100 U	100 U	16 U	2 U	0.3 U	0.3 U	1 U	0.2 U
m-Xylene & p-Xylene	ug/L	1750 total	50 U	50 U	17 U	0.8 U	0.1 U	0.1 U	0.2 U	0.1 U
Nitrobenzene	ug/L	NA	1 R			1 U	0.9 U			0.9 U
n-Nitrosodimethylamine	ug/L	0.01 NL	0.005* U			0.00041 U	0.002 U			0.005 U
o-Xylene	ug/L	1750 total	50 U	50 U	9.5 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
Perchlorate	ug/L	6	0.7 U			0.7 U	0.7 U			0.7 U
Tetrachloroethene	ug/L	5	50 U	50 U	10 U	0.8 U	0.1 U	0.1 U	0.1 U	0.1 U
Toluene	ug/L	150	50 U	50 U	8.5 U	0.7 U	0.1 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10	50 U	50 U	19 J	0.8 U	1	1	0.6	1.4
Trichloroethene	ug/L	5	14000	14000	18000	2	6.2	6.2	6.5	4.1
Trichlorofluoromethane	ug/L	150	50 U	50 U	14 U	0.5 U	0.1 U	0.1 U	0.2 U	0.1 U
Vinyl chloride	ug/L	0.5	50 U	50 U	20 U	0.5 U	0.1 U	0.1 J	0.1 U	0.2 J
Naturally Occurring Constituents	<u> </u>									
Ammonia-N	mg/L	NA	0.03 U			0.03 U	0.041 J			0.03 U
Fluoride	mg/L		0.29			0.27	0.31			0.32
Formaldehyde	ug/L	100 NL	19 J			11 J	53 J			86
Nitrate-NO3	mg/L	45	0.22 U			1.7	0.22 U			0.22 U

TABLE XISUMMARY OF ANALYSES FOR CONSTITUENTS OF CONCERN AND PERCHLORATE, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			WS-09A	WS-09A	WS-09A
Geological Unit:			Chatsworth	Chatsworth	Chatsworth
Sample Type:			Duplicate	Primary	Duplicate
Lab Name:			Lancaster	Lancaster	Lancaster
Collection Date:			08/20/2008	10/30/2008	10/30/2008
Analyte	Units	MCL			
Organic Constituents and Perchlorate					
1,1,1-Trichloroethane	ug/L	200	0.1 U	0.1 U	0.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1200	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	ug/L	5	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	ug/L	6	0.1 J	0.1 J	0.1 J
1,2-Dichloroethane	ug/L	0.5	0.1 U	0.1 U	0.1 U
1,3-Dinitrobenzene	ug/L	NA		2 U	
1,4-Dioxane	ug/L	3 NL		0.5 U	
Acetone	ug/L	NA	3 J	3 U	3 U
Benzene	ug/L	1	0.1 U	0.1 U	0.1 U
Carbon Tetrachloride	ug/L	0.5	0.1 U	0.1 U	0.1 U
Chloroform	ug/L	80 TTHM	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	ug/L	6	20	31	35
Ethylbenzene	ug/L	300	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	ug/L	NA	1 U	1 U	1 U
Methylene chloride	ug/L	5	0.2 U	0.2 U	0.2 U
m-Xylene & p-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.1 U
Nitrobenzene	ug/L	NA		0.9 U	
n-Nitrosodimethylamine	ug/L	0.01 NL		0.005* U	
o-Xylene	ug/L	1750 total	0.1 U	0.1 U	0.1 U
Perchlorate	ug/L	6	0.7 U	0.7 U	
Tetrachloroethene	ug/L	5	0.1 U	0.1 U	0.1 U
Toluene	ug/L	150	0.2 J	0.1 U	0.1 U
trans-1,2-Dichloroethene	ug/L	10	1.6	2.5	2.9
Trichloroethene	ug/L	5	4.1	4.2	4.6
Trichlorofluoromethane	ug/L	150	0.1 U	0.1 U	0.1 U
Vinyl chloride	ug/L	0.5	0.2 J	0.2 J	0.3 J
Naturally Occurring Constituents					
Ammonia-N	mg/L	NA		0.089 J	
Fluoride	mg/L	2		0.19	
Formaldehyde	ug/L	100 NL		110	
Nitrate-NO3	mg/L	45		0.31 J	

NOTES AND ABBREVIATIONS

4	Doboook	E.S. Babcock & Sons Laboratories of Riverside, California.
1.	Babcock	
2.	C&T	= Curtis & Tompkins of Berkeley, California.
3.	Lancaster	= Lancaster Laboratories of Lancaster, Pennsylvania.
4.	TA-Denver	= TestAmerica of Arvada, Colorado.
5.	Weck	= Weck Laboratories of City of Industry, California.
6.	Chatsworth	= Chatsworth Formation wells.
7.	Shallow	= Shallow wells and piezometers.
8.	NA	= Not applicable; no MCL promulgated.
9.	NL	Advisory California Notification Level for unregulated chemical contaminants.
10.	MCL	= Maximum Contaminant Level, California primary drinking water standard.
11.	mg/L	= Milligrams per liter.
12	ug/L	= Micrograms per liter.
13.		= Analysis not performed.
14.	Total	= MCL for sum of xylene isomers.
15.	J	= Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method
		Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).
16.	L	= Laboratory contaminant.
17.	TTHM	= MCL for total trihalomethanes including bromoform, chloroform, bromodichloromethane, and dibromochloromethane.
18.	U	= Not detected.
19.	UJ	 Not detected. Estimated detection limit as a result of analytical quality control
		deficiencies (see Appendix D for details).
20.	(*)	= Some NDMA samples collected during the fourth quarter were preserved with sodium thiosulfate. All other NDMA samples were sampled in

- 21. Low level N-nitrosodimethylamine (NDMA) analyses were performed on primary and duplicate samples by Weck Laboratories using EPA method 521 during the first and second quarters, and using EPA method 1625M during the third and fourth quarters.
 During the second quarter, NDMA analyses were performed on split samples by E.S. Babcock & Sons of Riverside, California using EPA method 521.
 During the fourth quarter, NDMA analyses were performed on split samples by TestAmerica of Arvada, Colorado using EPA method 1625M.
- 22. Low level 1,4-dioxane analyses were performed on primary samples by Lancaster Laboratories using modified EPA method 8260SIM.
- 23. Ammonia-N, fluoride, formaldehyde, and nitrate-NO3 analyses were performed using EPA methods 350.3, 300.0, 8315A, and 300.0, respectively, by Lancaster Laboratories.
- 24. Perchlorate analyses were performed by Lancaster Laboratories on primary samples during the year; by TestAmerica-Denver on primary samples during the second quarter and on split samples during the third and fourth quarters; and by Curtis & Tompkins on split samples during the first and second quarters using EPA method 314.0.
- 25. Semi-volatile organic compounds 1,3-dinitrobenzene and nitrobenzene were analyzed using EPA method 8270C by Lancaster Laboratories and TestAmerica-Denver.
- 26. Constituents were analyzed using EPA method 8260B unless otherwise stated.
- 27. MCLs and NLs are from the California Department of Public Health (2007b, 2008).

unpreserved bottles (see Appendix D for details).

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			PZ-005	PZ-005	PZ-005	PZ-103	PZ-103	PZ-103	PZ-103
Geological Unit:			Shallow						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/19/2008	05/09/2008	08/21/2008	02/18/2008	05/08/2008	08/19/2008	11/11/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA							
Bromide	mg/L	NA	0.81	0.59	0.77	0.69	0.63	0.46 J	0.58
Calcium, Dissolved	mg/L	NA							
Carbonate	mg/L	NA							
Chloride	mg/L	250, 500, 600 SMCL	112	95.5	80.3	177	210	174	256
Fluoride	mg/L	2	0.47	0.61	0.59	0.5 U	0.55	0.41	0.51
Magnesium, Dissolved	mg/L	NA							
Nitrate-NO3	mg/L	45	64		71	49		0.22 U	61
рН	pH Units	6.5-8.5 SMCL							
Potassium, Dissolved	mg/L	NA							
Sodium, Dissolved	mg/L	NA							
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL							
Sulfate	mg/L	250, 500, 600 SMCL	160	177	144	94.3	90.1	96.6	83.7
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL							
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			PZ-106	PZ-106	PZ-106	PZ-108	PZ-108	PZ-108	PZ-108
Geological Unit:			Shallow						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/19/2008	05/08/2008	09/10/2008	02/20/2008	05/13/2008	08/20/2008	11/12/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA							
Bromide	mg/L	NA	0.5 J	0.42 J	0.4 U	0.54	0.44 J	0.59	0.4 U
Calcium, Dissolved	mg/L	NA							
Carbonate	mg/L	NA							
Chloride	mg/L	250, 500, 600 SMCL	53.5	58.8	59.2	56.4	49.3	70.4	46.6
Fluoride	mg/L	2	0.31	0.35	0.24	0.61	0.59 J	0.9	0.56
Magnesium, Dissolved	mg/L	NA							
Nitrate-NO3	mg/L	45	26		24	9.4		14	9.4
рН	pH Units	6.5-8.5 SMCL							
Potassium, Dissolved	mg/L	NA							
Sodium, Dissolved	mg/L	NA							
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL							
Sulfate	mg/L	250, 500, 600 SMCL	120	140	113	218	147	171	130
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL							
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			PZ-109	PZ-109	PZ-109	PZ-109	PZ-121	PZ-121	PZ-121
Geological Unit:			Shallow						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/19/2008	05/14/2008	09/09/2008	11/13/2008	02/20/2008	05/13/2008	08/20/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA							
Bromide	mg/L	NA	1	0.94	0.89	0.87	0.4 U	0.4 U	0.45 J
Calcium, Dissolved	mg/L	NA							
Carbonate	mg/L	NA							
Chloride	mg/L	250, 500, 600 SMCL	64.4	65.9	59.7	64.7	36.2	47.4	41.9
Fluoride	mg/L	2	1.1	1.1	1	0.97	0.69	0.62 J	0.64
Magnesium, Dissolved	mg/L	NA							
Nitrate-NO3	mg/L	45	8.4		6.7	7.9	15		42
рН	pH Units	6.5-8.5 SMCL					7.1 J	6.6	
Potassium, Dissolved	mg/L	NA							
Sodium, Dissolved	mg/L	NA							
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL							
Sulfate	mg/L	250, 500, 600 SMCL	141	152	140	143	118	135	129
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL							
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			PZ-121	PZ-122	PZ-122	HAR-24	HAR-24	HAR-24	HAR-24
Geological Unit:			Shallow	Shallow	Shallow	Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			11/12/2008	08/21/2008	11/12/2008	02/08/2008	05/01/2008	08/11/2008	10/29/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA							
Bromide	mg/L	NA	0.4 U	0.51	0.4 U	0.52	1.2	0.58	0.4 U
Calcium, Dissolved	mg/L	NA							
Carbonate	mg/L	NA							
Chloride	mg/L	250, 500, 600 SMCL	46.5	36.1	36.4				
Fluoride	mg/L	2	0.67	0.44	0.35				
Magnesium, Dissolved	mg/L	NA							
Nitrate-NO3	mg/L	45	38	13	12				
pН	pH Units	6.5-8.5 SMCL		7.2	6.9 J				
Potassium, Dissolved	mg/L	NA							
Sodium, Dissolved	mg/L	NA							
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL							
Sulfate	mg/L	250, 500, 600 SMCL	65.3	100	111				
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL							
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			HAR-25	HAR-25	HAR-25	HAR-25	OS-02	OS-02	OS-03
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/08/2008	05/01/2008	08/11/2008	10/29/2008	02/21/2008	11/13/2008	05/15/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA					269		251
Bromide	mg/L	NA	0.4 U	0.4 U	0.4 U	0.4 U			
Calcium, Dissolved	mg/L	NA					9.5		53.8
Carbonate	mg/L	NA					0.46 U		0.46 U
Chloride	mg/L	250, 500, 600 SMCL					30		33.8
Fluoride	mg/L	2					6	5.4	
Magnesium, Dissolved	mg/L	NA					3.53		14.9
Nitrate-NO3	mg/L	45					1.6		0.22 U
pН	pH Units	6.5-8.5 SMCL					8.1 J		7.8
Potassium, Dissolved	mg/L	NA					1.89		2.88
Sodium, Dissolved	mg/L	NA					171		92.6
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL					774		762
Sulfate	mg/L	250, 500, 600 SMCL					85.2		106
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL					500		464
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			OS-04	OS-05	OS-09	OS-09	OS-09	OS-09	OS-10
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			05/15/2008	05/15/2008	02/21/2008	05/15/2008	08/14/2008	12/02/2008	02/21/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA	303	286	263	262	259	259	256
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	109	89.6	3.37	3.11	3.03	3.37	4.98
Carbonate	mg/L	NA	0.46 U	0.46 U	6.3	9.4	9.8	7.1	5.5
Chloride	mg/L	250, 500, 600 SMCL	40.6	40.8	27.9	20.4	27.1	25.2	20.5
Fluoride	mg/L	2							
Magnesium, Dissolved	mg/L	NA	26.3	23.1	2.03	1.86	1.82	1.81	1.42
Nitrate-NO3	mg/L	45	0.22 U						
рН	pH Units	6.5-8.5 SMCL	7.2	7.2	8.6 J	8.6	8.6	8.6 J	8.4 J
Potassium, Dissolved	mg/L	NA	4.25	3.68	1.82	1.24	0.981	1.18	1.69
Sodium, Dissolved	mg/L	NA	82.5	91.9	198	192	186	204	157
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	965	918	861	869	833	875	688
Sulfate	mg/L	250, 500, 600 SMCL	186	163	133	124	126	129	67.6
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	632	597	541	526	541	530	439
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA			-50.2	-53.3	-51.3	-45.7	
Delta Oxygen-18	per mil	NA			-7.51	-7.42	-7.36	-7.61	

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			OS-16	OS-17	OS-25	OS-26	OS-27	OS-28	RD-32
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/14/2008	03/04/2008	09/09/2008	02/14/2008	03/12/2008	03/04/2008	02/19/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA	337	381		323	349	344	281
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	134	115		126	118	122	101
Carbonate	mg/L	NA	0.46 U	0.46 U		0.46 U	0.46 U	0.46 U	0.46 U
Chloride	mg/L	250, 500, 600 SMCL	64	0.2 U		67.4	46.9	58.9	38.7
Fluoride	mg/L	2							
Magnesium, Dissolved	mg/L	NA	27.7	69.3		60.5	30.9	64.1	18.6
Nitrate-NO3	mg/L	45	0.5	0.22 U					
рН	pH Units	6.5-8.5 SMCL	7.1 J	7.7 J		7.1 J	7.6	7.6 J	7.3 J
Potassium, Dissolved	mg/L	NA	3.41	5.29		3.96	4.33	5.04	3.22
Sodium, Dissolved	mg/L	NA	64.8	71.2		62.3	53.7	71.3	38.5
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	999	1160		1150	968	1130	738
Sulfate	mg/L	250, 500, 600 SMCL	141	278		260	146	292	77.8
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	640	839		792	642	858	464
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-36B	RD-36C	RD-36D	RD-37	RD-38A	RD-38B	RD-39B
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/19/2008	02/20/2008	02/19/2008	09/09/2008	05/20/2008	05/20/2008	03/06/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA	95.9	221	285	212	280	300	320
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	42.5	131	107	124	107	93.3	96.6
Carbonate	mg/L	NA	0.46 U						
Chloride	mg/L	250, 500, 600 SMCL	32.2	145	76.7	264	40.6	37.1	37.8
Fluoride	mg/L	2							
Magnesium, Dissolved	mg/L	NA	5.95	22	23.4	41.9	14.8	23.4	27.2
Nitrate-NO3	mg/L	45	16	0.22 U	0.22 U	0.22 U	3.3 J	0.22 U	0.66
pН	pH Units	6.5-8.5 SMCL	6.4 J	7.2 J	7.3 J	7.3	6.9 J	7.3 J	7.4
Potassium, Dissolved	mg/L	NA	1.09	3.52	3.61	4.94	2	3.32	3.49
Sodium, Dissolved	mg/L	NA	26	58.4	39.8	78.5	38.5	47.2	44.5
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	388	982	814	1190	782	787	790
Sulfate	mg/L	250, 500, 600 SMCL	31.1	72	72.6	81.8	68.1	91.3	76.3
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	246	605	495	756	475	469	501
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-43A	RD-43B	RD-43C	RD-45B	RD-45C	RD-51B	RD-51C
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/14/2008	02/14/2008	02/15/2008	02/18/2008	02/19/2008	02/21/2008	05/07/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA	334	325	335	246	197	324	315
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	126	127	125	112	59.3	109	87.3
Carbonate	mg/L	NA	0.46 U						
Chloride	mg/L	250, 500, 600 SMCL	20.5	41.7	41.3	31.4	28.5	48.7	41.7
Fluoride	mg/L	2						0.35	0.29
Magnesium, Dissolved	mg/L	NA	25.3	25.9	27.7	28	13	40.2	29.4
Nitrate-NO3	mg/L	45	14	0.22 U	0.05 U				
pH	pH Units	6.5-8.5 SMCL	7 J	7.4 J	7.3 J	7.3	7.6 J	7.2 J	7.5 J
Potassium, Dissolved	mg/L	NA	2.66	2.83	3.59	3.22	2.93	5.85	4.44
Sodium, Dissolved	mg/L	NA	30.3	31.9	35.1	61.3	46.4	69.9	88.4
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	798	836	878	915	569	950	991
Sulfate	mg/L	250, 500, 600 SMCL	92.2	102	115	219	70	151	164
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	511	540	568	673	348	636	651
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-52B	RD-52C	RD-59A	RD-59B	RD-59C	RD-66	RD-67
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/20/2008	02/20/2008	05/20/2008	05/20/2008	05/20/2008	03/10/2008	03/06/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							279
Bicarbonate	mg/L	NA	353	289	271	246	253	335	
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	143	135	94	56.7	36.9	163	147
Carbonate	mg/L	NA	0.46 U						
Chloride	mg/L	250, 500, 600 SMCL	47.6	39.1	44.8	42.6	31.6	72.3	35.4
Fluoride	mg/L	2							0.58
Magnesium, Dissolved	mg/L	NA	35.2	29.6	27.4	16.1	12.2	34.1	36.7
Nitrate-NO3	mg/L	45	0.22 U	0.22 U	0.05 UJ	0.22 U	0.05 UJ	0.22 U	0.22 U
pН	pH Units	6.5-8.5 SMCL	7.1 J	7.2 J	7.2 J	7.5 J	7.8 J	7.2	7.2
Potassium, Dissolved	mg/L	NA	4.63	3.9	4.15	3.02	2.27	3.78	3.73
Sodium, Dissolved	mg/L	NA	63.7	57.7	94.4	96.8	120	61.2	37.1
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	1070	969	977	758	780	1120	1060
Sulfate	mg/L	250, 500, 600 SMCL	214	257	190	125	108	210	277
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	770	694	633	468	481	745 J	738
Turbidity	NTU	5 SMCL							11.7
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-67	RD-67	RD-67	RD-68A	RD-68B	RD-70	RD-71
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			05/19/2008	09/03/2008	11/19/2008	02/21/2008	02/21/2008	03/10/2008	03/10/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA	278	280	277				
Bicarbonate	mg/L	NA				199	282	308	332
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	137	161	127	32.8	66.8	109	95.5
Carbonate	mg/L	NA				0.46 U	0.46 U	0.46 U	0.46 U
Chloride	mg/L	250, 500, 600 SMCL	33.2	49	33.4	41.9	32.5	44.2	32.8
Fluoride	mg/L	2	0.59	0.87	0.41				
Magnesium, Dissolved	mg/L	NA	34.1	43.9	31.9	26.4	20.4	34.4	18.4
Nitrate-NO3	mg/L	45	0.22 U						
pН	pH Units	6.5-8.5 SMCL	7.3	7.3	7.2	8.2 J	7.4 J	7.2	7.2
Potassium, Dissolved	mg/L	NA	3.52	3.92	4.54	4.95	4.33	5.53	2.93
Sodium, Dissolved	mg/L	NA	34.3	44.2	32.6	82.8	94.2	66.5	49.6
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	956	935	915	647	784	938	748
Sulfate	mg/L	250, 500, 600 SMCL	248	213	242	87.1	107	173	40.2
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	677	685	667	386	504	657 J	461 J
Turbidity	NTU	5 SMCL	5.6	9.3	2.7				
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-73	RD-73	RD-73	RD-73	RD-75	RD-77	RD-77
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			02/19/2008	05/14/2008	09/05/2008	11/04/2008	03/12/2008	02/19/2008	05/14/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA					330	166	
Bromide	mg/L	NA	0.85	0.97	1.4	1.2		0.62	0.4 U
Calcium, Dissolved	mg/L	NA					156	70.9	
Carbonate	mg/L	NA					0.46 U	0.46 U	
Chloride	mg/L	250, 500, 600 SMCL					40.4	34.8	
Fluoride	mg/L	2							
Magnesium, Dissolved	mg/L	NA					85.4	13.5	
Nitrate-NO3	mg/L	45					0.22 U	20	
pН	pH Units	6.5-8.5 SMCL					7.6	6.6 J	
Potassium, Dissolved	mg/L	NA					6.24	2.51	
Sodium, Dissolved	mg/L	NA					67.2	31.2	
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL					1420	563	
Sulfate	mg/L	250, 500, 600 SMCL					513	64.9	
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL					1160	359	
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-77	RD-78	RD-80	RD-81	RD-82	RD-83	RD-84
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			11/21/2008	03/12/2008	03/05/2008	03/06/2008	03/11/2008	03/06/2008	02/22/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA		314	298	363	335	281	298
Bromide	mg/L	NA	0.4 U						
Calcium, Dissolved	mg/L	NA		174	229	131	108	112	143
Carbonate	mg/L	NA		0.46 U					
Chloride	mg/L	250, 500, 600 SMCL		82.4	35.7	62.9	59.5	47.8	127
Fluoride	mg/L	2							
Magnesium, Dissolved	mg/L	NA		35.6	47.5	50.3	42.5	36.8	22.5
Nitrate-NO3	mg/L	45		0.22 U	32				
pН	pH Units	6.5-8.5 SMCL		7.1	7.1	7.3	7.1	7.2	6.9 J
Potassium, Dissolved	mg/L	NA		4.91	5.56	6.02	3.82	4.66	3.12
Sodium, Dissolved	mg/L	NA		60.9	59.6	76.5	68.9	70.1	74.3
Sodium, Total	mg/L	NA							
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL		1240	1340	1210	1050	1020	1080
Sulfate	mg/L	250, 500, 600 SMCL		290	522	281	181	255	81.2
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL		893	1080	866	696	737	672
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XIISUMMARY OF ANALYSES FOR INORGANIC CONSTITUENTS, 2008
BOEING SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:			RD-98	RD-98	WS-04A	WS-09B	WS-12	WS-13	WS-14
Geological Unit:			Chatsworth						
Sample Type:			Primary						
Lab Name:			Lancaster						
Collection Date:			06/26/2008	09/11/2008	02/26/2008	02/28/2008	02/27/2008	02/25/2008	02/22/2008
Analyte	Result Value Units	MCL							
Alkalinity as CaCO3	mg/L	NA							
Bicarbonate	mg/L	NA	283	283	165	360	290	295	257
Bromide	mg/L	NA							
Calcium, Dissolved	mg/L	NA	109	105	86	130	93.9	85.3	102
Carbonate	mg/L	NA	0.46 U						
Chloride	mg/L	250, 500, 600 SMCL	39.1	38.3	18.6	58.1	40.3	40.6	59.3
Fluoride	mg/L	2	0.31	0.35					
Magnesium, Dissolved	mg/L	NA	14.5	15.1	20.3	44.8	29.1	30.9	27.1
Nitrate-NO3	mg/L	45	4.3	4.3 J	7.5	0.37 J	0.22 U	0.22 U	0.22 U
pH	pH Units	6.5-8.5 SMCL	7.1	7	7 J	7 J	7.3	7.5 J	7.3 J
Potassium, Dissolved	mg/L	NA	3.4	3.87	2.78	5.34	3.98	4.2	4.66
Sodium, Dissolved	mg/L	NA	44.5	40.5	27.5	56.2	65.6	84.2	59.5
Sodium, Total	mg/L	NA	43.9						
Specific Conductivity	umhos/cm	900, 1600, 2200 SMCL	780	762	656	1050	876	914	855
Sulfate	mg/L	250, 500, 600 SMCL	92.6	88.5	156	202	154	154	127
Total Dissolved Solids	mg/L	500, 1000, 1500 SMCL	513	498	444	748	591	598	559
Turbidity	NTU	5 SMCL							
Delta Deuterium	per mil	NA							
Delta Oxygen-18	per mil	NA							

TABLE XII Page 15 of 15

NOTES AND ABBREVIATIONS

1. Lancaster = Lancaster Laboratories of Lancaster, Pennsylvania.

2. MCL = Maximum Contaminant Level, California primary drinking water standard.

3. NA = Not applicable; no MCL promulgated.

4. SMCL = California Secondary Drinking Water MCL Ranges: Recommended, Upper, and Short Term.

5. Shallow = Shallow wells and piezometers.
 6. Chatsworth = Chatsworth Formation wells.
 7. --- = Analysis not performed.

8. mg/L = Milligrams per liter.

9. per mil = Parts per thousand.

10. umhos/cm = Micromhos per centimeter.
 11. NTU = Nephelometric turbidity units.

12. J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).

- 13. U = Not detected.
- 14. UJ = Not detected. Estimated detection limit as a result of analytical quality control deficiencies (see Appendix D for details).
- 15. Well OS-09 has been also referred to as Brandeis-Bardin Campus "Bathtub Well No. 1".
- 16. MCLs and SMCLs are from the California Department of Public Health (2006, 2008). The pH SMCL is from the Environmental Protection Agency (2003).
- 17. G.G. Hatch Laboratories of Ottawa, Ontario performed oxygen-18 and deuterium isotope analyses using mass spectroscopy.
- 18. Calcium, magnesium, potassium, and sodium samples were filtered and acidified in the field and were analyzed using EPA Method 6010B.

 Only 6010B results from wells sampled for all four metals are included in this table.
- Alkalinity as CaCO3, bicarbonate, and carbonate samples were analyzed using EPA Method SM2320B.
- 20. Bromide, chloride, fluoride, nitrate-NO3, and sulfate samples were analyzed using EPA Method 300.0.
- 21. pH, specific conductivity, total dissolved solids, and turbidity samples were analyzed using EPA Methods 150.1, 120.1, 160.1, and 180.1, respectively.

Haley & Aldrich, Inc.

Page 1 of 13

Well Identifier: ES-10 ES-11 ES-21 HAR-11 Sample Port: Geological Unit: Shallow Shallow Shallow Shallow Sample Type: Primary Primary Primary Primary Lab Name: TA-Knoxville TA-Knoxville Lancaster Lancaster

Lab Name:				I A-Knoxville	Lancaster	Lancaster	I A-Knoxville
Collection Date:				05/13/2008	03/05/2008	09/04/2008	09/04/2008
Analyte	Method	Result Value Units	MCL				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA	3.6 U		0.85 U	0.97 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA	1.6 U		1.7 U	1.6 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA	1 U		1.1 U	1.4 U
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	1.8 U		0.57 U	0.76 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.98 U		0.83 U	1.4 U
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.68 U		0.59 U	0.74 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1.2 U		0.93 U	1.6 U
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA	0.86 U		0.6 U	0.7 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1 U		0.82 U	1.4 U
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L pg/L	NA	1.2 U		1.2 U	1.6 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290		NA	1.2 U		1.5 U	2.2 U
		pg/L	NA	0.76 U		0.57 U	0.82 U
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L					
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	1 U		0.97 U	1.4 U
2,3,7,8-TCDD	8290	pg/L	30	4.4 U		3.2 U	4 U
2,3,7,8-TCDD TEQ	8290	pg/L	30	0.0016 J		5.7 U	7.7 U
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA	2.8 U		1.9 U	2.3 U
Octachlorodibenzofuran	8290	pg/L	NA	4.6 U		2.1 U	2.1 U
Octachlorodibenzo-p-dioxin	8290	pg/L	NA	5.4 J		3.3 U	7.5 U
Aroclor 1016	8082	ug/L	0.5 (total)		0.095 U	0.096 U	
Aroclor 1221	8082	ug/L	0.5 (total)		0.095 U	0.096 U	
Aroclor 1232	8082	ug/L	0.5 (total)		0.19 U	0.19 U	
Aroclor 1242	8082	ug/L	0.5 (total)		0.095 U	0.096 U	
Aroclor 1248	8082	ug/L	0.5 (total)		0.095 U	0.096 U	
Aroclor 1254	8082	ug/L	0.5 (total)		0.095 U	0.096 U	
Aroclor 1260	8082	ug/L	0.5 (total)		0.095 U	0.096 U	
4,4'-DDD	8081A	ug/L	NA				
4,4'-DDE	8081A	ug/L	NA				
4,4'-DDT	8081A	ug/L	NA				
Aldrin	8081A	ug/L	0.002 AAL				
alpha-BHC	8081A	ug/L	0.015 AAL				
beta-BHC	8081A	ug/L	0.025 AAL				
Chlordane	8081A	ug/L	0.1				
Chlorobenzilate	8081A	ug/L	NA				
delta-BHC	8081A	ug/L	NA				
Diallate	8081A	ug/L	NA				
Dieldrin	8081A	ug/L	0.002 AAL				
Endosulfan I	8081A	ug/L	NA				
Endosulfan II	8081A	ug/L	NA				
Endosulfan sulfate	8081A	ug/L	NA				
Endrin	8081A	ug/L	2				
Endrin aldehyde	8081A	ug/L	NA				
gamma-BHC	8081A	ug/L	0.2				
Heptachlor	8081A	ug/L	0.01				
Heptachlor epoxide	8081A	ug/L	0.01				
Kepone	8081A	ug/L	NA				
p,p'-Methoxychlor	8081A	ug/L	30				
Toxaphene	8081A	ug/L	3				

Page 2 of 13

VENTURA COUNTY, CALIFORNIA

Well Identifier:				HAR-14	HAR-14	HAR-15	HAR-15
Sample Port:							
Geological Unit:				Shallow	Shallow	Shallow	Shallow
Sample Type:				Primary	Primary	Primary	Primary
Lab Name: Collection Date:				TA-Denver 04/22/2008	TA-Knoxville 08/21/2008	TA-Denver 04/22/2008	TA-Knoxville 08/21/2008
Analyte	Method	Result Value	MCL	04/22/2008	00/21/2008	04/22/2008	00/21/2000
1.2.2.4.6.7.9. Hantachlaradihanzafuran	9200	Units	NΙΛ	0.67 U	34 J	0.67 U	0.47.11
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA NA	1.8 U	34 J 66	1.9 U	0.47 U 2 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA NA	1.6 U 1.2 U	3.6 J	1.9 U 1.2 U	0.63 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L		0.62 U	3.6 J 4.4 J	0.61 U	0.83 U
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1.1 U	0.32 U	1.4 U	0.53 U
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.58 U	5.2 J	0.63 U	0.36 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1.3 U	4.4 J	1.5 U	0.69 U
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA	0.91 U	0.25 U	0.97 U	0.39 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1.1 U	0.31 U	1.3 U	0.56 U
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	1.3 U	0.64 U	1.8 U	0.9 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA	1.9 U	0.43 U	2.7 U	1.1 U
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.62 U	0.77 J	0.65 U	0.41 U
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	1.1 U	0.55 J	1.5 U	0.72 U
2,3,7,8-TCDD	8290	pg/L	30	3.8 U	1.2 U	5.1 U	2.9 U
2,3,7,8-TCDD TEQ	8290	pg/L	30	6.99 U	2.8	9.41 U	0.02 J
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA	2.6 U	0.67 U	3.6 U	1.6 U
Octachlorodibenzofuran	8290	pg/L	NA	2.7 U	58	2.7 U	2.4 U
Octachlorodibenzo-p-dioxin	8290	pg/L	NA	15 U	290	16 U	11 U
Aroclor 1016	8082	ug/L	0.5 (total)	0.12 U		0.12 UJ	
Aroclor 1221	8082	ug/L	0.5 (total)	0.21 U		0.21 UJ	
Aroclor 1232	8082	ug/L	0.5 (total)	0.16 U		0.16 UJ	
Aroclor 1242	8082	ug/L	0.5 (total)	0.1 U		0.1 UJ	
Aroclor 1248	8082	ug/L	0.5 (total)	0.088 U		0.09 UJ	
Aroclor 1254	8082	ug/L	0.5 (total)	0.11 U		0.11 UJ	
Aroclor 1260	8082	ug/L	0.5 (total)	0.15 U		0.16 UJ	
4,4'-DDD	8081A	ug/L	NA	0.0074 U		0.0075 U	
4,4'-DDE	8081A	ug/L	NA	0.0072 U		0.0074 U	
4,4'-DDT	8081A	ug/L	NA	0.014 U		0.015 U	
Aldrin	8081A	ug/L	0.002 AAL	0.0057 U		0.0058 U	
alpha-BHC	8081A	ug/L	0.015 AAL	0.0051 U		0.0052 U	
beta-BHC	8081A	ug/L	0.025 AAL	0.0084 U		0.0085 U	
Chlordane	8081A	ug/L	0.1	0.13 U		0.14 U	
Chlorobenzilate	8081A	ug/L	NA	0.041 U		0.042 U	
delta-BHC	8081A	ug/L	NA	0.0056 U		0.0057 U	
Diallate	8081A	ug/L	NA	0.19 U		0.19 U	
Dieldrin	8081A	ug/L	0.002 AAL	0.006 U		0.0062 U	
Endosulfan I	8081A	ug/L	NA	0.0056 U		0.0057 U	
Endosulfan II	8081A	ug/L	NA	0.0067 U		0.0069 U	
Endosulfan sulfate	8081A	ug/L	NA	0.0055 U		0.0056 U	
Endrin	8081A	ug/L	2	0.0076 U		0.0077 U	
Endrin aldehyde	8081A	ug/L	NA	0.0084 U		0.0086 U	
gamma-BHC	8081A	ug/L	0.2	0.0066 U		0.0068 U	
Heptachlor	8081A	ug/L	0.01	0.0074 U		0.0075 U	
Heptachlor epoxide	8081A 8081A	ug/L	0.01 NA	0.0072 U 0.33 U		0.0074 U 0.34 U	
Kepone p,p'-Methoxychlor	8081A	ug/L ug/L	30	0.33 U 0.012 U		0.34 U 0.013 U	
p,p-ivietrioxychioi Toyanhene	8081A 8081Δ	ug/L ug/l	30 3	0.012 0		0.013 U	

ug/L

3

0.35 U

8081A

Toxaphene

0.36 U

Page 3 of 13

PZ-056 PZ-074 RS-08 RS-16 Well Identifier: Sample Port: Geological Unit: Shallow Shallow Shallow Shallow Sample Type: Primary Primary Primary Primary Lab Name: TA-Knoxville TA-Knoxville TA-Denver Lancaster Collection Date: 02/21/2008 02/21/2008 04/22/2008 02/01/2008

Collection Date:				02/21/2008	02/21/2008	04/22/2008	02/01/2008
Analyte	Method	Result Value Units	MCL				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA	1.7 U	2.4 U	0.65 U	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA	3.9 U	5.3 U	1.9 U	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA	2.4 U	3.5 U	1.2 U	
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	1.3 U	1.5 U	0.69 U	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	2.4 U	3.1 U	1.1 U	
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	1.2 U	1.5 U	0.65 U	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	2.9 U	3.6 U	1.3 U	
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA	1.9 U	2.6 U	0.98 U	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	2.4 U	3.1 U	1.1 U	
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	2.4 U	2 U	1.7 U	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA	2.9 U	2.6 U	2.2 U	
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	1.4 U	1.8 U	0.69 U	
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	1.9 U	1.8 U	1.5 U	
2,3,7,8-TCDD	8290	pg/L pg/L	30	7.4 U	7 U	4.4 U	
	8290		30	13 U	13 U	8.05 U	
2,3,7,8-TCDD TEQ 2,3,7,8-Tetrachlorodibenzofuran		pg/L	NA			2.6 U	
	8290	pg/L		5.8 U	4.9 U		
Octachlorodibenzofuran	8290	pg/L	NA	3.4 U	6.2 U	2 U	
Octachlorodibenzo-p-dioxin	8290	pg/L	NA	24 U	14 U	16 U	
Aroclor 1016	8082	ug/L	0.5 (total)			0.12 U	0.096 U
Aroclor 1221	8082	ug/L	0.5 (total)			0.21 U	0.096 U
Aroclor 1232	8082	ug/L	0.5 (total)			0.16 U	0.19 U
Aroclor 1242	8082	ug/L	0.5 (total)			0.1 U	0.096 U
Aroclor 1248	8082	ug/L	0.5 (total)			0.088 U	0.096 U
Aroclor 1254	8082	ug/L	0.5 (total)			0.11 U	0.096 U
Aroclor 1260	8082	ug/L	0.5 (total)			0.15 U	0.096 U
4,4'-DDD	8081A	ug/L	NA			0.0074 U	
4,4'-DDE	8081A	ug/L	NA			0.0072 U	
4,4'-DDT	8081A	ug/L	NA			0.014 U	
Aldrin	8081A	ug/L	0.002 AAL			0.0057 U	
alpha-BHC	8081A	ug/L	0.015 AAL			0.0051 U	
beta-BHC	8081A	ug/L	0.025 AAL			0.0084 U	
Chlorehamilete	8081A	ug/L	0.1			0.13 U	
Chlorobenzilate delta-BHC	8081A 8081A	ug/L	NA NA			0.041 U 0.0056 U	
Diallate	8081A	ug/L	NA NA			0.0056 U 0.19 U	
Dieldrin	8081A	ug/L ug/L	0.002 AAL			0.19 U	
Endosulfan I	8081A	ug/L ug/L	NA			0.0056 U	
Endosulfan II	8081A	ug/L	NA			0.0067 U	
Endosulfan sulfate	8081A	ug/L	NA			0.0055 U	
Endrin	8081A	ug/L	2			0.0033 U 0.0076 U	
Endrin aldehyde	8081A	ug/L	NA			0.0076 U	
gamma-BHC	8081A	ug/L	0.2			0.0066 U	
Heptachlor	8081A	ug/L	0.01			0.0074 U	
Heptachlor epoxide	8081A	ug/L	0.01			0.0072 U	
Kepone	8081A	ug/L	NA			0.33 U	
p,p'-Methoxychlor	8081A	ug/L	30			0.012 U	
Toxaphene	8081A	ug/L	3			0.35 U	

Page 4 of 13

Well Identifier: SH-02 SH-02 SH-02 SH-03 Sample Port: Geological Unit: Shallow Shallow Shallow Shallow Sample Type: Primary Primary Split Primary Lab Name: Lancaster Lancaster TA-Denver Lancaster

Collection Date:				02/05/2008	04/30/2008	04/30/2008	02/05/2008
Collection Bate.		Result		02/00/2000	0-1/00/2000	0-1/00/2000	02/00/2000
Analyte	Method	Value	MCL				
7 may to	momou	Units	02				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L pg/L	NA				
			NA				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L					
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA				
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA				
2,3,7,8-TCDD	8290	pg/L	30				
2,3,7,8-TCDD TEQ	8290	pg/L	30				
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA				
Octachlorodibenzofuran	8290	pg/L	NA				
Octachlorodibenzo-p-dioxin	8290	pg/L	NA				
Aroclor 1016	8082	ug/L	0.5 (total)				
Aroclor 1221	8082	ug/L	0.5 (total)				
Aroclor 1232	8082	ug/L	0.5 (total)				
Aroclor 1242	8082	ug/L	0.5 (total)				
Aroclor 1248	8082	ug/L	0.5 (total)				
Aroclor 1254	8082	ug/L	0.5 (total)				
Aroclor 1260	8082	ug/L	0.5 (total)				
4,4'-DDD	8081A	ug/L ug/L	NA	0.0038 U	0.004 U	0.0074 U	0.0038 U
4,4'-DDE	8081A	ug/L	NA	0.0036 U 0.0047 U	0.004 U	0.0074 U	0.0036 U 0.0047 U
4,4'-DDT	8081A	ug/L	NA	0.0047 U	0.005 U	0.0072 U	0.0047 U
Aldrin	8081A	ug/L	0.002 AAL	0.0037 U	0.004 U	0.0057 U	0.0037 U
alpha-BHC	8081A	ug/L	0.002 AAL	0.0030 U	0.004 U	0.0051 U	0.0036 U
beta-BHC	8081A	ug/L	0.025 AAL	0.0038 U	0.004 U	0.0084 U	0.0055 J
Chlordane	8081A	ug/L	0.023 AAL	0.066 U	0.07 U	0.13 U	0.066 U
Chlorobenzilate	8081A	ug/L	NA			0.041 U	
delta-BHC	8081A	ug/L	NA	0.008 U	0.003 U	0.0056 U	0.0028 U
Diallate	8081A	ug/L	NA			0.19 U	
Dieldrin	8081A	ug/L	0.002 AAL	0.0038 U	0.004 U	0.006 U	0.0038 U
Endosulfan I	8081A	ug/L	NA	0.04 NJ	0.003 U	0.0056 U	0.036 NJ
Endosulfan II	8081A	ug/L	NA	0.0041 J	0.004 U	0.0067 U	0.0038 U
Endosulfan sulfate	8081A	ug/L	NA	0.011 J	0.004 U	0.0055 U	0.005 J
Endrin	8081A	ug/L	2	0.0038 U	0.004 U	0.0076 U	0.0038 U
Endrin aldehyde	8081A	ug/L	NA	0.019 U	0.02 U	0.0084 U	0.019 U
gamma-BHC	8081A	ug/L	0.2	0.013 J	0.002 U	0.0066 U	0.003 NJ
Heptachlor	8081A	ug/L	0.01	0.0037 NJ	0.002 U	0.014 J	0.0028 U
Heptachlor epoxide	8081A	ug/L	0.01	0.0028 U	0.003 U	0.0072 U	0.0028 U
Kepone	8081A	ug/L	NA			0.33 U	
p,p'-Methoxychlor	8081A	ug/L	30	0.028 U	0.03 U	0.012 U	0.028 U
Toxaphene	8081A	ug/L	3	0.95 U	1 U	0.35 U	0.95 U

Page 5 of 13

Well Identifier: SH-03 SH-03 SH-04 SH-04 Sample Port: Geological Unit: Shallow Shallow Shallow Shallow Sample Type: Primary Split Primary Primary Lab Name: Lancaster TA-Denver Lancaster Lancaster

Collection Date:				05/02/2008	05/02/2008	02/04/2008	04/23/2008
		Result					
Analyte	Method	Value	MCL				
•		Units					
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA				1 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA				1.7 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA				1.7 U
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				0.69 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				1.2 U
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				0.71 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				1.4 U
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA				0.94 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L pg/L	NA				1.2 U
	8290		NA				1.2 U
1,2,3,7,8-Pentachlorodibenzofuran		pg/L					
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA NA				1.7 U
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				0.71 U
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA				1.4 U
2,3,7,8-TCDD	8290	pg/L	30				4.9 U
2,3,7,8-TCDD TEQ	8290	pg/L	30				8.12 U
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA				3.1 U
Octachlorodibenzofuran	8290	pg/L	NA				2.6 U
Octachlorodibenzo-p-dioxin	8290	pg/L	NA				8.6 U
Aroclor 1016	8082	ug/L	0.5 (total)				0.12 U
Aroclor 1221	8082	ug/L	0.5 (total)				0.21 U
Aroclor 1232	8082	ug/L	0.5 (total)				0.16 U
Aroclor 1242	8082	ug/L	0.5 (total)				0.1 U
Aroclor 1248	8082	ug/L	0.5 (total)				0.088 U
Aroclor 1254	8082	ug/L	0.5 (total)				0.11 U
Aroclor 1260	8082	ug/L	0.5 (total)				0.15 U
4,4'-DDD	8081A	ug/L	ŇΑ	0.0039 U	0.0075 U	0.0039 U	0.0038 U
4,4'-DDE	8081A	ug/L	NA	0.011 J	0.0073 U	0.0048 U	0.0052 J
4,4'-DDT	8081A	ug/L	NA	0.0058 U	0.014 U	0.0058 U	0.0057 U
Aldrin	8081A	ug/L	0.002 AAL	0.0039 U	0.0057 U	0.0039 U	0.0038 U
alpha-BHC	8081A	ug/L	0.015 AAL	0.0034 J	0.0051 U	0.0026 U	0.0026 U
beta-BHC	8081A	ug/L	0.025 AAL	0.0039 U	0.0086 J	0.0071 NJ	0.0038 U
Chlordane	8081A	ug/L	0.1	0.067 U	0.14 U	0.068 U	0.066 U
Chlorobenzilate	8081A	ug/L	NA		0.041 U		
delta-BHC	8081A	ug/L	NA	0.01	0.0056 U	0.0084 J	0.0069 J
Diallate	8081A	ug/L	NA		0.19 U		
Dieldrin	8081A	ug/L	0.002 AAL	0.0039 U	0.0061 U	0.0039 U	0.0038 U
Endosulfan I	8081A	ug/L	NA	0.0029 U	0.0056 U	0.012 J	0.0028 U
Endosulfan II	8081A	ug/L	NA	0.0039 U	0.0068 U	0.0039 U	0.0038 U
Endosulfan sulfate	8081A	ug/L	NA	0.0039 U	0.0055 U	0.0039 U	0.0038 U
Endrin	8081A	ug/L	2	0.0046 J	0.0077 U	0.0039 U	0.0038 U
Endrin aldehyde	8081A	ug/L	NA	0.019 U	0.0085 U	0.019 U	0.019 U
gamma-BHC	8081A	ug/L	0.2	0.0019 U	0.0095 J	0.0055 NJ	0.0019 U
Heptachlor	8081A	ug/L	0.01	0.0029 U	0.0075 U	0.0048 J	0.0093 J
Heptachlor epoxide	8081A	ug/L	0.01	0.0029 U	0.0073 U	0.011	0.0028 U
Kepone	8081A	ug/L	NA	0.000.11	0.34 U	0.000.11	0.000.11
p,p'-Methoxychlor	8081A	ug/L	30	0.029 U	0.013 U	0.029 U	0.028 U
Toxaphene	8081A	ug/L	3	0.96 U	0.36 U	0.97 U	0.95 U

Page 6 of 13

Well Identifier: SH-04 SH-05 SH-05 SH-05 Sample Port: Geological Unit: Shallow Shallow Shallow Shallow Sample Type: Split Primary Primary Split TA-Denver Lab Name: TA-Denver Lancaster Lancaster

Collection Date:				04/23/2008	02/05/2008	05/02/2008	05/02/2008
Concention Bate.		Result		0-1/20/2000	02/00/2000	00/02/2000	00/02/2000
Analyte	Method	Value	MCL				
Analyto	Metriou	Units	IIIOL				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA				
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L pg/L	NA				
2,3,4,7,8-Pentachlorodibenzofuran	8290		NA				
		pg/L					
2,3,7,8-TCDD	8290	pg/L	30				
2,3,7,8-TCDD TEQ	8290	pg/L	30				
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA				
Octachlorodibenzofuran	8290	pg/L	NA				
Octachlorodibenzo-p-dioxin	8290	pg/L	NA				
Aroclor 1016	8082	ug/L	0.5 (total)				
Aroclor 1221	8082	ug/L	0.5 (total)				
Aroclor 1232	8082	ug/L	0.5 (total)				
Aroclor 1242	8082	ug/L	0.5 (total)				
Aroclor 1248	8082	ug/L	0.5 (total)				
Aroclor 1254	8082	ug/L	0.5 (total)				
Aroclor 1260	8082	ug/L	0.5 (total)				
4,4'-DDD	8081A	ug/L	NA	0.013 J	0.0038 U	0.0039 U	0.0075 U
4,4'-DDE	8081A	ug/L	NA	0.023 J	0.0047 U	0.0048 U	0.0074 U
4,4'-DDT	8081A	ug/L	NA	0.014 U	0.0057 U	0.0058 U	0.015 U
Aldrin	8081A	ug/L	0.002 AAL	0.0072 J	0.0038 U	0.0039 U	0.0058 U
alpha-BHC	8081A	ug/L	0.015 AAL	0.0051 U	0.0026 U	0.0026 U	0.0052 U
beta-BHC	8081A	ug/L	0.025 AAL	0.0084 U	0.0038 U	0.0098 J	0.0085 U
Chlordane	8081A	ug/L	0.1	0.13 U	0.066 U	0.068 U	0.14 U
Chlorobenzilate	8081A	ug/L	NA	0.041 U			0.042 U
delta-BHC	8081A	ug/L	NA	0.0056 U	0.0028 U	0.0029 U	0.0057 U
Diallate	8081A	ug/L	NA	0.19 U			0.19 U
Dieldrin	8081A	ug/L	0.002 AAL	0.006 U	0.0038 U	0.0039 U	0.0062 U
Endosulfan I	8081A	ug/L	NA	0.0056 U	0.0043 J	0.0029 U	0.0057 U
Endosulfan II	8081A	ug/L	NA	0.0076 J	0.0038 U	0.0039 U	0.0069 U
Endosulfan sulfate	8081A	ug/L	NA	0.0055 U	0.0038 U	0.0039 U	0.0056 U
Endrin	8081A	ug/L	2	0.0076 U	0.0038 U	0.0039 U	0.0077 U
Endrin aldehyde	8081A	ug/L	NA	0.0084 U	0.019 U	0.019 U	0.0086 U
gamma-BHC	8081A	ug/L	0.2	0.0066 U	0.0019 U	0.0019 U	0.0068 U
Heptachlor	8081A	ug/L	0.01	0.015 J	0.0028 U	0.0029 U	0.0075 U
Heptachlor epoxide	8081A	ug/L	0.01	0.0072 U	0.0028 U	0.0029 U	0.0074 U
Kepone	8081A	ug/L	NA	0.33 U			0.34 U
p,p'-Methoxychlor	8081A	ug/L	30	0.012 U	0.028 U	0.029 U	0.013 U
Toxaphene	8081A	ug/L	3	0.35 U	0.95 U	0.97 U	0.36 U

Page 7 of 13

Well Identifier: SH-08 SH-08 SH-08 SH-09 Sample Port: Shallow Geological Unit: Shallow Shallow Shallow Sample Type: Primary Primary Split Primary Lab Name: Lancaster Lancaster TA-Denver Lancaster

Collection Date:				02/05/2008	05/02/2008	05/02/2008	02/05/2008
Collection Bate.		Result		02/00/2000	00/02/2000	00/02/2000	02/00/2000
Analyte	Method	Value	MCL				
, mary to	momou	Units	02				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA				
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L pg/L	NA				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin			NA				
	8290	pg/L	NA				
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L					
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA				
2,3,7,8-TCDD	8290	pg/L	30				
2,3,7,8-TCDD TEQ	8290	pg/L	30				
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA				
Octachlorodibenzofuran	8290	pg/L	NA				
Octachlorodibenzo-p-dioxin	8290	pg/L	NA				
Aroclor 1016	8082	ug/L	0.5 (total)				
Aroclor 1221	8082	ug/L	0.5 (total)				
Aroclor 1232	8082	ug/L	0.5 (total)				
Aroclor 1242	8082	ug/L	0.5 (total)				
Aroclor 1248	8082	ug/L	0.5 (total)				
Aroclor 1254	8082	ug/L	0.5 (total)				
Aroclor 1260	8082	ug/L	0.5 (total)				
4,4'-DDD	8081A	ug/L	ŇΑ	0.0038 U	0.0048 J	0.0075 U	0.0038 U
4,4'-DDE	8081A	ug/L	NA	0.0048 U	0.0048 U	0.0073 U	0.01 U
4,4'-DDT	8081A	ug/L	NA	0.0057 U	0.0058 U	0.014 U	0.0058 U
Aldrin	8081A	ug/L	0.002 AAL	0.0038 U	0.0055 J	0.0057 U	0.0038 U
alpha-BHC	8081A	ug/L	0.015 AAL	0.0026 U	0.0027 J	0.0051 U	0.005 J
beta-BHC	8081A	ug/L	0.025 AAL	0.0038 U	0.0039 U	0.0084 U	0.033 U
Chlordane	8081A	ug/L	0.1	0.067 U	0.068 U	0.14 U	0.067 U
Chlorobenzilate	8081A	ug/L	NA			0.041 U	
delta-BHC	8081A	ug/L	NA	0.0029 U	0.0029 U	0.0056 U	0.014 U
Diallate	8081A	ug/L	NA			0.19 U	
Dieldrin	8081A	ug/L	0.002 AAL	0.0038 U	0.0039 U	0.0061 U	0.0038 U
Endosulfan I	8081A	ug/L	NA	0.027 NJ	0.0029 U	0.0056 U	0.042 NJ
Endosulfan II	8081A	ug/L	NA	0.0038 U	0.0039 U	0.0068 U	0.0038 U
Endosulfan sulfate	8081A	ug/L	NA	0.0038 U	0.0039 U	0.0055 U	0.0038 U
Endrin	8081A	ug/L	2	0.0038 U	0.0039 U	0.0077 U	0.0038 U
Endrin aldehyde	8081A	ug/L	NA	0.019 U	0.019 U	0.0085 U	0.019 U
gamma-BHC	8081A	ug/L	0.2	0.0024 J	0.0019 U	0.012 J	0.006 U
Heptachlor	8081A	ug/L	0.01	0.0029 U	0.0029 U	0.01 J	0.0029 U
Heptachlor epoxide	8081A	ug/L	0.01	0.0029 U	0.0029 U	0.0073 U	0.0029 U
Kepone	8081A	ug/L	NA			0.34 U	
p,p'-Methoxychlor	8081A	ug/L	30	0.029 U	0.029 U	0.013 U	0.029 U
Toxaphene	8081A	ug/L	3	0.95 U	0.97 U	0.36 U	0.96 U

VENTURA COUNTY, CALIFORNIA

Page 8 of 13

Well Identifier: SH-09 SH-09 HAR-07 HAR-07 Sample Port: Geological Unit: Shallow Shallow Chatsworth Chatsworth Sample Type: Primary Split Primary Primary Lab Name: Lancaster **TA-Denver** TA-Denver TA-Knoxville Collection Date: 05/02/2008 05/02/2008 04/23/2008 08/27/2008 Result Analyte Method Value MCL Units 1,2,3,4,6,7,8-Heptachlorodibenzofuran 8290 pg/L NA 0.78 U 0.61 U ___ ___ NA 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin 8290 pg/L ___ ---1.5 U 1.2 U 1,2,3,4,7,8,9-Heptachlorodibenzofuran 8290 pg/L NA ___ ___ 2 J 0.9 U 8290 NA 0.91 U 0.53 U 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L 1.2.3.4.7.8-Hexachlorodibenzo-p-dioxin 8290 NA 1.5 U 0.9 U pg/L ___ ---1,2,3,6,7,8-Hexachlorodibenzofuran 8290 NA 0.86 U 0.48 U pg/L NA 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin 8290 1.7 U 1.1 U pg/L 1,2,3,7,8,9-Hexachlorodibenzofuran 8290 pg/L NA ___ ___ 1.2 U 0.58 U 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin 8290 NA 1.5 U 0.93 U pg/L 1,2,3,7,8-Pentachlorodibenzofuran 8290 pg/L NA 1.5 U 1.1 U 1,2,3,7,8-Pentachlorodibenzo-p-dioxin 8290 NA 1.9 U 1.2 U pg/L 2,3,4,6,7,8-Hexachlorodibenzofuran 8290 pg/L NA 0.86 U 0.54 U ------2,3,4,7,8-Pentachlorodibenzofuran 8290 pg/L NA ---1.2 U 0.88 U 2,3,7,8-TCDD 8290 pg/L 30 ---4.1 U 3.7 U 2,3,7,8-TCDD TEQ 8290 30 0.02 J 5.9 U pg/L 2.3.7.8-Tetrachlorodibenzofuran 8290 pg/L NA 2.4 U 2 U ------NA Octachlorodibenzofuran 8290 5.8 J 1.3 U pg/L 1.4 U NA Octachlorodibenzo-p-dioxin 8290 9.7 U pg/L Aroclor 1016 8082 ug/L 0.5 (total) ___ 0.12 U 8082 0.5 (total) 0.21 U Aroclor 1221 ug/L Aroclor 1232 8082 ug/L 0.5 (total) 0.16 U Aroclor 1242 8082 0.5 (total) 0.1 U ug/L ---------0.088 U 8082 Aroclor 1248 ug/L 0.5 (total) ------8082 Aroclor 1254 ug/L 0.5 (total) 0.11 U ---Aroclor 1260 8082 ug/L 0.5 (total) 0.15 U ---4,4'-DDD 8081A ug/L NA 0.0078 U 0.0075 U 0.0074 U 4,4'-DDE 8081A ug/L NA 0.0097 U 0.0073 U 0.0072 U ---4,4'-DDT 0.014 U 0.014 U 8081A ug/L NA 0.012 U ---0.0057 U 0.0057 U 0.002 AAL Aldrin 8081A ug/L 0.0078 U --alpha-BHC 8081A ug/L 0.015 AAL 0.0053 U 0.0051 U 0.0051 U --beta-BHC 8081A 0.025 AAL 0.0078 U 0.0084 U 0.0084 U ug/L ---Chlordane 8081A ug/L 0.1 0.14 U 0.14 U 0.13 U Chlorobenzilate 8081A ug/L NA 0.041 U 0.041 U 0.0056 U delta-BHC 8081A ug/L NA 0.0058 U 0.0056 U Diallate 8081A ug/L NA 0.19 U 0.19 U Dieldrin 8081A ug/L 0.002 AAL 0.0078 U 0.0061 U 0.006 U Endosulfan I 8081A ug/L NA 0.0058 U 0.0056 U 0.0056 U Endosulfan II 8081A ug/L NA 0.0078 U 0.0068 U 0.0067 U 0.0055 U Endosulfan sulfate 8081A ug/L NA 0.0078 U 0.0055 U ---0.0077 U 0.0076 U 0.0078 U **Endrin** 8081A ug/L 2 ---Endrin aldehyde 8081A NA 0.039 U 0.0085 U 0.0084 U ug/L gamma-BHC 8081A 0.2 0.0039 U 0.013 J 0.0066 U ug/L Heptachlor 8081A ug/L 0.01 0.0058 U 0.0075 U 0.0074 U Heptachlor epoxide 8081A ug/L 0.01 0.0058 U 0.0073 U 0.0072 U Kepone 8081A ug/L NA 0.34 U 0.33 U 8081A 30 0.058 U 0.013 U 0.012 U p,p'-Methoxychlor ug/L

8081A

ug/L

3

1.9 U

0.36 U

Toxaphene

0.35 U

Page 9 of 13

HAR-16 HAR-16 Well Identifier: HAR-07 HAR-16 Sample Port: Geological Unit: Chatsworth Chatsworth Chatsworth Chatsworth Sample Type: Duplicate Primary Primary Duplicate Lab Name: TA-Knoxville TA-Denver TA-Knoxville TA-Knoxville Collection Date: 08/27/2008 04/23/2008 09/04/2008 09/04/2008

Collection Date:				08/27/2008	04/23/2008	09/04/2008	09/04/2008
Analyte	Method	Result Value Units	MCL				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA	0.55 U	0.55 U	0.83 U	0.75 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA	0.86 U	0.81 U	1.5 U	1.5 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA	0.79 U	0.94 U	1.1 U	0.98 U
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.43 U	0.51 U	0.62 U	0.61 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.75 U	0.9 U	1.1 U	0.8 U
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.39 U	0.49 U	0.63 U	0.62 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.81 U	1 U	1.2 U	0.92 U
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA	0.48 U	0.68 U	0.69 U	0.66 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.73 U	0.89 U	1.1 U	0.8 U
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	0.93 U	0.96 U	1.4 U	1 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA	0.99 U	1.2 U	1.6 U	1.4 U
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L pg/L	NA	0.41 U	0.52 U	0.64 U	0.62 U
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L pg/L	NA	0.77 U	0.32 U	1.1 U	0.89 U
	8290		30	3.4 U	3.2 U	2.9 U	2.7 U
2,3,7,8-TCDD		pg/L		5.4 U	0.0012 J		
2,3,7,8-TCDD TEQ	8290	pg/L	30			5.7 U	5.1 U
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA	1.9 U	1.8 U	2.3 U	1.8 U
Octachlorodibenzofuran	8290	pg/L	NA	1.3 U	4 J	1.4 U	1.5 U
Octachlorodibenzo-p-dioxin	8290	pg/L	NA	0.97 U	6.3 U	1.1 U	1.8 U
Aroclor 1016	8082	ug/L	0.5 (total)		0.12 U		
Aroclor 1221	8082	ug/L	0.5 (total)		0.21 U		
Aroclor 1232	8082	ug/L	0.5 (total)		0.16 U		
Aroclor 1242	8082	ug/L	0.5 (total)		0.1 U		
Aroclor 1248	8082	ug/L	0.5 (total)		0.088 U		
Aroclor 1254	8082	ug/L	0.5 (total)		0.11 U		
Aroclor 1260	8082	ug/L	0.5 (total)		0.15 U		
4,4'-DDD	8081A	ug/L	NA		0.0074 U		
4,4'-DDE	8081A	ug/L	NA		0.0072 U		
4,4'-DDT	8081A	ug/L	NA		0.014 U		
Aldrin	8081A	ug/L	0.002 AAL		0.0057 U		
alpha-BHC	8081A	ug/L	0.015 AAL		0.0051 U		
beta-BHC	8081A	ug/L	0.025 AAL		0.0084 U		
Chlordane	8081A	ug/L	0.1		0.13 U		
Chlorobenzilate	8081A	ug/L	NA		0.041 U		
delta-BHC	8081A	ug/L	NA		0.0056 U		
Diallate	8081A	ug/L	NA 0.000.441		0.19 U		
Dieldrin Factorities I	8081A	ug/L	0.002 AAL		0.006 U		
Endosulfan I	8081A	ug/L	NA		0.0056 U		
Endosulfan II	8081A	ug/L	NA		0.0067 U		
Endosulfan sulfate	8081A	ug/L	NA		0.0055 U		
Endrin	8081A 8081A	ug/L	2 NA		0.0076 U 0.0084 U		
Endrin aldehyde	8081A	ug/L			0.0064 U		
gamma-BHC Hentachlor	8081A 8081A	ug/L ug/L	0.2 0.01		0.0066 U 0.0074 U		
Heptachlor Heptachlor epoxide	8081A	ug/∟ ug/L	0.01		0.0074 U 0.0072 U		
Kepone	8081A	ug/∟ ug/L	NA		0.0072 U		
p,p'-Methoxychlor	8081A	ug/L ug/L	30		0.33 U 0.012 U		
Toxaphene	8081A	ug/L ug/L	3		0.012 U		
голарнопо	00017	ug/L	<u> </u>		0.00 0		

Page 10 of 13

Well Identifier:	HAR-17	HAR-17	HAR-17	RD-18
Sample Port:				
Geological Unit:	Chatsworth	Chatsworth	Chatsworth	Chatsworth
Sample Type:	Primary	Primary	Duplicate	Primary
Lab Name:	TA-Denver	TA-Knoxville	TA-Knoxville	TA-Knoxville
Collection Date:	04/23/2008	09/04/2008	09/04/2008	02/27/2008

Lab Name:				I A-Denver	I A-Knoxville	I A-Knoxville	I A-Knoxville
Collection Date:				04/23/2008	09/04/2008	09/04/2008	02/27/2008
Analysia	Mathad	Result Value	MCI				
Analyte	Method	Units	MCL				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA	0.75 U	0.85 U	1.1 U	2 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA	1.5 U	1.8 U	2 U	3.8 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA	1.3 U	1.1 U	1.4 U	2.6 U
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.65 U	0.69 U	0.95 U	1.1 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1 U	0.92 U	1.1 U	1.7 U
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.64 U	0.63 U	0.86 U	1 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1.3 U	1.1 U	1.3 U	2 U
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA	0.86 U	0.7 U	0.97 U	1.7 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	1.1 U	0.94 U	1.1 U	1.7 U
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	1.3 U	1.2 U	1.6 U	1.7 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA	1.5 U	1.6 U	1.7 U	2.2 U
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L pg/L	NA	0.63 U	0.65 U	0.88 U	1.2 U
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L pg/L	NA	1 U	1 U	1.3 U	1.5 U
2,3,7,8-TCDD	8290	pg/L pg/L	30	4.1 U	3.2 U	4.1 U	5.7 U
2,3,7,8-TCDD TEQ	8290		30	0.0009 J	6.0 U	7.2 U	9.9 U
		pg/L	NA	2.4 U	2.2 U	2.3 U	3.3 U
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L		_			
Octachlorodibenzofuran	8290	pg/L	NA	3.1 J	1.9 U	2.3 U	3.8 U
Octachlorodibenzo-p-dioxin	8290	pg/L	NA	5.4 U	1.6 U	1.9 U	8.3 U
Aroclor 1016	8082	ug/L	0.5 (total)	0.12 U			
Aroclor 1221	8082	ug/L	0.5 (total)	0.21 U			
Aroclor 1232	8082	ug/L	0.5 (total)	0.17 U			
Aroclor 1242	8082	ug/L	0.5 (total)	0.1 U			
Aroclor 1248	8082	ug/L	0.5 (total)	0.092 U			
Aroclor 1254	8082	ug/L	0.5 (total)	0.11 U			
Aroclor 1260	8082	ug/L	0.5 (total)	0.16 U			
4,4'-DDD	8081A	ug/L	NA	0.0077 U			
4,4'-DDE	8081A	ug/L	NA	0.0075 U			
4,4'-DDT	8081A	ug/L	NA	0.015 U			
Aldrin	8081A	ug/L	0.002 AAL	0.0059 U			
alpha-BHC	8081A	ug/L	0.015 AAL	0.0053 U			
beta-BHC	8081A	ug/L	0.025 AAL	0.0087 U			
Chlorabaneilata	8081A	ug/L	0.1	0.14 U			
Chlorobenzilate	8081A	ug/L	NA	0.042 U			
delta-BHC Diallate	8081A 8081A	ug/L	NA NA	0.0058 U 0.19 U			
Dieldrin	8081A	ug/L ug/L	0.002 AAL	0.19 U 0.0063 U			
Endosulfan I	8081A	ug/L ug/L	NA	0.0058 U			
Endosulfan II	8081A	ug/L	NA	0.0030 U			
Endosulfan sulfate	8081A	ug/L	NA	0.007 U			
Endrin	8081A	ug/L	2	0.0079 U			
Endrin aldehyde	8081A	ug/L	NA	0.0075 U			
gamma-BHC	8081A	ug/L	0.2	0.0069 U			
Heptachlor	8081A	ug/L	0.01	0.0077 U			
Heptachlor epoxide	8081A	ug/L	0.01	0.0075 U			
Kepone	8081A	ug/L	NA	0.35 U			
p,p'-Methoxychlor	8081A	ug/L	30	0.013 U			

VENTURA COUNTY, CALIFORNIA

Page 11 of 13

Well Identifier: RD-19 RD-20 RD-20 RD-20 Sample Port: Geological Unit: Chatsworth Chatsworth Chatsworth Chatsworth Sample Type: Primary Primary Primary Primary Lab Name: Lancaster TA-Knoxville TA-Knoxville TA-Knoxville

Collection Date:				08/11/2008	02/07/2008	04/30/2008	08/18/2008
		Result					
Analyte	Method	Value	MCL				
•		Units					
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA		0.47 U	0.58 U	0.54 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA		0.55 U	0.88 U	0.9 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA		0.42 U	0.73 U	0.71 U
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA		0.24 U	0.41 U	0.41 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA		0.37 U	0.7 U	0.68 U
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA		0.24 U	0.39 U	0.39 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA		0.42 U	0.78 U	0.79 U
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA		0.33 U	0.52 U	0.41 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA		0.37 U	0.69 U	0.69 U
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L pg/L	NA		0.35 U	0.48 U	0.77 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L pg/L	NA		0.33 U 0.49 U	0.46 U	0.77 U
2,3,4,6,7,8-Hexachlorodibenzofuran	8290		NA		0.49 U 0.26 U	0.63 U 0.41 U	0.41 U
		pg/L					
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA		0.29 U	0.41 U	0.6 U
2,3,7,8-TCDD	8290	pg/L	30		0.87 U	1.6 U	2.3 U
2,3,7,8-TCDD TEQ	8290	pg/L	30		1.8 U	0.0007 J	3.9 U
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L	NA		0.61 U	1.2 U	1.3 U
Octachlorodibenzofuran	8290	pg/L	NA		2 U	3.3 U	2.3 U
Octachlorodibenzo-p-dioxin	8290	pg/L	NA		2.2 U	2.2 J	3.3 U
Aroclor 1016	8082	ug/L	0.5 (total)	0.097 U			
Aroclor 1221	8082	ug/L	0.5 (total)	0.097 U			
Aroclor 1232	8082	ug/L	0.5 (total)	0.19 U			
Aroclor 1242	8082	ug/L	0.5 (total)	0.097 U			
Aroclor 1248	8082	ug/L	0.5 (total)	0.097 U			
Aroclor 1254	8082	ug/L	0.5 (total)	0.097 U			
Aroclor 1260	8082	ug/L	0.5 (total)	0.097 U			
4,4'-DDD	8081A	ug/L	NA				
4,4'-DDE	8081A	ug/L	NA				
4,4'-DDT	8081A	ug/L	NA				
Aldrin	8081A	ug/L	0.002 AAL				
alpha-BHC	8081A	ug/L	0.015 AAL				
beta-BHC	8081A	ug/L	0.025 AAL				
Chlordane	8081A	ug/L	0.1				
Chlorobenzilate	8081A	ug/L	NA				
delta-BHC	8081A	ug/L	NA				
Diallate	8081A	ug/L	NA				
Dieldrin	8081A	ug/L	0.002 AAL				
Endosulfan I	8081A	ug/L	NA				
Endosulfan II	8081A	ug/L	NA				
Endosulfan sulfate	8081A	ug/L	NA				
Endrin	8081A	ug/L	2				
Endrin aldehyde	8081A	ug/L	NA 0.2				
gamma-BHC	8081A	ug/L	0.2				
Heptachlor	8081A 8081A	ug/L	0.01 0.01				
Heptachlor epoxide Kepone	8081A 8081A	ug/L ug/L	NA				
p,p'-Methoxychlor	8081A	ug/∟ ug/L	30				
Toxaphene	8081A	ug/L ug/L	30				
ι υλαρτίστιο	0001A	ug/L	J				

TABLE XIII
SUMMARY OF ANALYSES FOR DIOXINS/FURANS,
CHLORINATED PESTICIDES, AND POLYCHLORINATED BIPHENYLS, 2008
SANTA SUSANA FIELD LABORATORY
VENTURA COUNTY, CALIFORNIA

Well Identifier:	RD-20	RD-86
Sample Port:		
Geological Unit:	Chatsworth	Chatsworth
Sample Type:	Primary	Primary
Lab Name:	TA-Knoxville	Lancaster
Collection Date:	11/11/2008	05/05/2008

Collection Date:				11/11/2008	05/05/2008
Analyte	Method	Result Value Units	MCL		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	8290	pg/L	NA	0.62 U	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	8290	pg/L	NA	1.1 U	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8290	pg/L	NA	0.94 U	
1,2,3,4,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.58 U	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.74 U	
1,2,3,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.53 U	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.84 U	
1,2,3,7,8,9-Hexachlorodibenzofuran	8290	pg/L	NA	0.76 U	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	8290	pg/L	NA	0.74 U	
1,2,3,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	0.69 U	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	8290	pg/L	NA	0.77 U	
2,3,4,6,7,8-Hexachlorodibenzofuran	8290	pg/L	NA	0.59 U	
2,3,4,7,8-Pentachlorodibenzofuran	8290	pg/L	NA	0.62 U	
2,3,7,8-TCDD	8290	pg/L	30	2 U	
2,3,7,8-TCDD TEQ	8290	pg/L pg/L	30	3.61 U	
2,3,7,8-Tetrachlorodibenzofuran	8290	pg/L pg/L	NA	1.3 U	
Octachlorodibenzofuran	8290	pg/L pg/L	NA	1.4 U	
Octachlorodibenzo-p-dioxin	8290	pg/L pg/L	NA	2.8 U	
Aroclor 1016	8082		0.5 (total)	2.0 0	0.095 U
Aroclor 1016 Aroclor 1221		ug/L			0.095 U
	8082	ug/L	0.5 (total)		
Arcelor 1232	8082	ug/L	0.5 (total)		0.19 U
Aroclar 1242	8082	ug/L	0.5 (total)		0.095 U
Aroclor 1248	8082	ug/L	0.5 (total)		0.095 U
Aroclor 1254	8082	ug/L	0.5 (total)		0.095 U
Aroclor 1260	8082	ug/L	0.5 (total)		0.095 U
4,4'-DDD	8081A	ug/L	NA		
4,4'-DDE 4,4'-DDT	8081A 8081A	ug/L	NA NA		
Aldrin	8081A	ug/L	0.002 AAL		
alpha-BHC	8081A	ug/L ug/L	0.002 AAL 0.015 AAL		
beta-BHC	8081A	ug/L	0.015 AAL		
Chlordane	8081A	ug/L	0.023 7772		
Chlorobenzilate	8081A	ug/L	NA		
delta-BHC	8081A	ug/L	NA		
Diallate	8081A	ug/L	NA		
Dieldrin	8081A	ug/L	0.002 AAL		
Endosulfan I	8081A	ug/L	NA		
Endosulfan II	8081A	ug/L	NA		
Endosulfan sulfate	8081A	ug/L	NA		
Endrin	8081A	ug/L	2		
Endrin aldehyde	8081A	ug/L	NA		
gamma-BHC	8081A	ug/L	0.2		
Heptachlor	8081A	ug/L	0.01		
Heptachlor epoxide	8081A	ug/L	0.01		
Kepone	8081A	ug/L	NA		
p,p'-Methoxychlor	8081A	ug/L	30		
Toxaphene	8081A	ug/L	3		

1. Lancaster = Lancaster Laboratories of Lancaster, Pennsylvania.

TA-Denver = TestAmerica of Arvada, Colorado.
 TA-Knoxville = TestAmerica of Knoxville, Tennessee.

4. Dioxin and furan samples were analyzed by EPA method 8290 by TestAmerica - Knoxville.
Pesticide and Polychlorinated biphenyls (PCB) samples were analyzed by EPA methods 8081A and 8082, respectively, by TestAmerica - Denver during the second quarter and by Lancaster Laboratories during the first and third quarters.

5. Chatsworth = Chatsworth Formation wells.
 6. Shallow = Shallow wells and piezometers.

7. pg/L = Picograms per liter.
8. ug/L = Micrograms per liter.

9. J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL), or concentration estimated due to analytical quality control deficiencies (see Appendix D for details).

10. NJ = The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration (see Appendix D for details).

11. U = Not detected.

12. AAL = Archived Advisory Levels.

13. MCL = Maximum Contaminant Level, California primary drinking water standard.

14. NA = Not available; no MCL promulgated.

15. NL = Advisory California Notification Level for unregulated chemical contaminants.

16 AALs, MCLs, and NLs are from the California Department of Public Health (2007a, 2007b, 2008).

17. 1,2,3,4,6,7,8-Heptachlorodibenzofuran = 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin = 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-Heptachlorodibenzofuran = 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-Hexachlorodibenzofuran 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin = 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-Hexachlorodibenzofuran = 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin = 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-Hexachlorodibenzofuran 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin 1,2,3,7,8,9-HxCDD 1,2,3,7,8-Pentachlorodibenzofuran 1,2,3,7,8-PeCDF 1,2,3,7,8-Pentachlorodibenzo-p-dioxin 1,2,3,7,8-PeCDD 2,3,4,6,7,8-Hexachlorodibenzofuran 2,3,4,6,7,8-HxCDF 2,3,4,7,8-Pentachlorodibenzofuran 2,3,4,7,8-PeCDF 2,3,7,8-Tetrachlorodibenzo-p-dioxin = 2,3,7,8-TCDD2,3,7,8-Tetrachlorodibenzo-p-dioxin toxic equivalency 2,3,7,8-TCDD TEQ 2,3,7,8-Tetrachlorodibenzofuran = 2,3,7,8-TCDF 1,2,3,4,6,7,8,9-Octachlorodibenzofuran OCDF 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin OCDD

2,3,7,8-TCDD TEQ = Toxicity equivalent

18. 2,3,7,8-TCDD TEQs were calculated using 2005 toxic equivalency factors (van den Berg et al., 2006).

TABLE XIV
SUMMARY OF ANALYSES FOR HYDRAZINES AND SURFACTANTS
Page 1 of 4

RCRA FACILITY INVESTIGATION, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

ug/L

mg/L

0.3

0.035 UJ

Monomethylhydrazine

Surfactants

Well Identifier:		PZ-041	PZ-041	PZ-108	PZ-108	PZ-108	PZ-108	PZ-121
Geological Unit:		Shallow						
Sample Type:		Primary						
Lab Name:		Lancaster	Lancaster	Truesdail	Truesdail	Truesdail	Truesdail	Truesdail
Collection Date:		05/13/2008	09/10/2008	02/20/2008	05/13/2008	08/20/2008	11/12/2008	02/20/2008
	Result							
Analyte	Value							
	Units							
1,1-Dimethylhydrazine	ug/L			0.32 U	0.315 U	0.32 U	0.32 U	0.32 U
Hydrazine	ug/L			0.15 U				

0.56 U

0.561 U

0.56 U

0.56 U

0.56 U

TABLE XIVSUMMARY OF ANALYSES FOR HYDRAZINES AND SURFACTANTS

RCRA FACILITY INVESTIGATION, 2008 BOEING SANTA SUSANA FIELD LABORATORY

Well Identifier:		PZ-121	PZ-121	PZ-121	PZ-122	PZ-122	RD-13	RD-13
Geological Unit:		Shallow	Shallow	Shallow	Shallow	Shallow	Chatsworth	Chatsworth
Sample Type:		Primary						
Lab Name:		Truesdail						
Collection Date:		05/13/2008	08/20/2008	11/12/2008	08/20/2008	11/12/2008	02/20/2008	05/13/2008
Analyte	Result Value Units							
1,1-Dimethylhydrazine	ug/L	0.315 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.315 U
Hydrazine	ug/L	0.15 U						
Monomethylhydrazine	ug/L	0.561 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.561 U
Surfactants	mg/L							

TABLE XIV
Page 3 of 4

SUMMARY OF ANALYSES FOR HYDRAZINES AND SURFACTANTS RCRA FACILITY INVESTIGATION, 2008 BOEING SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Well Identifier:		RD-13	RD-13
Geological Unit:		Chatsworth	Chatsworth
Sample Type:		Primary	Primary
Lab Name:		Truesdail	Truesdail
Collection Date:		09/03/2008	11/12/2008
	Result		
Analyte	Value		
	Units		
1,1-Dimethylhydrazine	ug/L	0.32 U	0.32 U
Hydrazine	ug/L	0.15 U	0.15 U
Monomethylhydrazine	ug/L	0.56 U	0.56 U
Surfactants	mg/L		

TABLE XIV

NOTES AND ABBREVIATIONS

- 1. Lancaster = Lancaster Laboratories of Lancaster, Pennsylvania.
- 2. Truesdail = Truesdail Laboratories, Inc. of Tustin, California.
- 3. Shallow = Shallow wells and piezometers.
- 4. Chatsworth = Chatsworth Formation wells.
- 5. mg/L = Milligrams per liter.
- 6. ug/L = Micrograms per liter.
- 7. U = Not detected.
- 8. UJ = Not detected. Estimated detection limit as a result of analytical quality control deficiencies (see Appendix D for details).
- 9. Hydrazines were analyzed using EPA method 8315M.
- 10. Surfactants were analyzed using EPA method 425.1.

Page 1 of 9

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Alfa ASU	WS-06	01/01/08	1932.72	NA		0	, <u>,</u>	
		01/29/08	1932.72	340.10	1592.62	0		
		03/01/08	1932.72	NA		0	0	
		04/01/08	1932.72	NA		0		
		04/24/08	1932.72	337.70	1595.02	0		
		06/01/08	1932.72	NA		0	0	
		07/01/08	1932.72	NA		0		
		07/31/08	1932.72	336.33	1596.39	0		
		09/01/08	1932.72	NA		0	0	
		10/01/08	1932.72	NA		0	-	
		10/23/08	1932.72	335.71	1597.01	0		
		12/01/08	1932.72	NA		0	0	
Bravo ASU	ES-21	01/01/08	1769.62	NA		0		
Biavorico	20 21	01/31/08	1769.62	24.43	1745.19	0		
		03/01/08	1769.62	NA		0	0	
		04/01/08	1769.62	NA		0	Ü	
		04/25/08	1769.62	23.36	1746.26	0		
		06/01/08	1769.62	NA		0	0	
		07/01/08	1769.62	NA		0	· ·	
		07/31/08	1769.62	26.25	1743.37	0		
		09/01/08	1769.62	NA		0	0	
		10/01/08	1769.62	NA		0	· ·	
		10/23/08	1769.62	28.45	1741.17	0		
		12/01/08	1769.62	NA		0	0	
	ES-22	01/01/08	1770.93	NA		0		
	20 22	01/31/08	1770.93	26.03	1744.90	0		
		03/01/08	1770.93	NA		0	0	
		04/01/08	1770.93	NA		0	· ·	
		04/25/08	1770.93	24.57	1746.36	0		
		06/01/08	1770.93	NA		0	0	
		07/01/08	1770.93	NA		0	-	
		07/31/08	1770.93	27.09	1743.84	0		
		09/01/08	1770.93	NA		0	0	
		10/01/08	1770.93	NA		0		
		10/23/08	1770.93	29.55	1741.38	0		
		12/01/08	1770.93	NA		0	0	
	RD-04	01/01/08	1883.85	NA		0		
		01/30/08	1883.85	289.03	1594.82	0		
		03/01/08	1883.85	NA		0	0	
		04/01/08	1883.85	NA		0	-	
		04/24/08	1883.85	287.11	1596.74	0		
		06/01/08	1883.85	NA		0	0	
		07/01/08	1883.85	NA		0		
		07/31/08	1883.85	285.30	1598.55	0		
		09/01/08	1883.85	NA		0	0	
		10/01/08	1883.85	NA		0		
		10/23/08	1883.85	284.58	1599.27	0		
		12/01/08	1883.85	NA		0	0	

Page 2 of 9

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
Bravo ASU	RD-09	01/01/08	1768.20	NA		0		
(cont.)		01/31/08	1768.20	25.08	1743.12	0		
		03/01/08	1768.20	NA		0	0	
		04/01/08	1768.20	NA		0		
		04/25/08	1768.20	23.81	1744.39	0		
		06/01/08	1768.20	NA		0	0	
		07/01/08	1768.20	NA		0		
		08/11/08	1768.20	27.14	1741.06	0		
		09/01/08	1768.20	NA		0	0	
		10/01/08	1768.20	NA		0		
		10/27/08	1768.20	29.19	1739.01	0		
		12/01/08	1768.20	NA		0	0	
	WS-09	01/01/08	1883.99	NA		0		
		01/30/08	1883.99	288.19	1595.80	0		
		03/01/08	1883.99	NA		0	0	
		04/01/08	1883.99	NA		0		
		04/24/08	1883.99	286.31	1597.68	0		
		06/01/08	1883.99	NA		0	0	
		07/01/08	1883.99	NA		0		
		07/31/08	1883.99	284.34	1599.65	0		
		09/01/08	1883.99	NA		0	0	
		10/01/08	1883.99	NA		0		
		10/23/08	1883.99	283.91	1600.08	0		
		12/01/08	1883.99	NA		0	0	
Delta ASU	HAR-07	01/01/08	1728.38	NA		0		
		01/30/08	1728.38	46.84	1681.54	0		
		03/01/08	1728.38	NA		0	0	
		04/01/08	1728.38	NA		0	-	
		04/21/08	1728.38	58.52	1669.86	0		
		06/01/08	1728.38	NA		0	0	
		07/01/08	1728.38	NA		0		
		08/04/08	1728.38	67.74	1660.64	0		
		09/01/08	1728.38	NA		0	0	
		10/01/08	1728.38	NA		0		
		10/24/08	1728.38	72.35	1656.03	0		
		12/01/08	1728.38	NA		0	0	
	WS-09A	01/01/08	1647.61	NA		0		
		01/29/08	1647.61	13.45	1634.16	0		
		03/01/08	1647.61	NA		0	0	
		04/01/08	1647.61	NA		0	Ü	
		04/24/08	1647.61	22.81	1624.80	0		
		06/01/08	1647.61	NA		0	0	
		07/01/08	1647.61	NA		0	J	
		07/29/08	1647.61	24.42	1623.19	0		
		09/01/08	1647.61	24.42 NA	1023.19	0	0	
		10/01/08	1647.61	NA		0	0	
		10/21/08	1647.61	24.79	1622.82			
						0	0	
		12/01/08	1647.61	NA		0	0	

Page 3 of 9

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
STL-IV ASU	ECL FD	01/01/08	1525.00	NA		0	, , , , , , , , , , , , , , , , , , ,	
		01/30/08	1525.00	4.17	1518.92	0		
		03/01/08	1525.00	NA		0	0	
		04/01/08	1525.00	NA		0		
		04/24/08	1525.00	6.08	1518.92	0		
		06/01/08	1525.00	NA		0	0	
		07/01/08	1525.00	NA		0		
		07/31/08	1525.00	Dry		0		
		09/01/08	1525.00	NA		0	0	
		10/01/08	1525.00	NA		0	-	
		10/27/08	1525.00	Dry		0		
		12/01/08	1525.00	NA		0	0	
	ECL Sump	01/01/08	1511.00	NA		0		
	LOL Gamp	01/30/08	1511.00	3.17	1503.28	0		
		03/01/08	1511.00	NA		0	0	
		04/01/08	1511.00	NA		0	Ü	
		04/24/08	1511.00	7.72	1503.28	0		
		06/01/08	1511.00	NA		0	0	
		07/01/08	1511.00	NA		0	O	
		07/31/08	1511.00	9.09	1501.91	0		
		09/01/08	1511.00	NA		0	0	
		10/01/08	1511.00	NA		0	O	
		10/27/08	1511.00	Dry		0	0	
	FO 44	12/01/08	1511.00	NA		0	0	
	ES-14	01/01/08	1728.69	NA		0		
		01/29/08	1728.69	Dry		0	•	
		03/01/08	1728.69	NA		0	0	
		04/01/08	1728.69	NA 10.00	4700.00	0		
		04/24/08	1728.69	19.00	1709.69	0	•	
		06/01/08	1728.69	NA		0	0	
		07/01/08	1728.69	NA		0		
		08/01/08	1728.69	21.96	1706.73	0		
		09/01/08	1728.69	NA		0	0	
		10/01/08	1728.69	NA		0		
		10/22/08	1728.69	Dry		0		
		12/01/08	1728.69	NA		0	0	
	ES-17	01/01/08	1739.31	NA		0		
		01/29/08	1739.31	19.67	1719.64	0		
		03/01/08	1739.31	NA		0	0	
		04/01/08	1739.31	NA		0		
		04/24/08	1739.31	14.43	1724.88	0		
		06/01/08	1739.31	NA		0	0	
		07/01/08	1739.31	NA		0		
		08/01/08	1739.31	20.30	1719.01	0		
		09/01/08	1739.31	NA		0	0	
		10/01/08	1739.31	NA		0		
		10/22/08	1739.31	26.06	1713.25	0		
		12/01/08	1739.31	NA		0	0	

Page 4 of 9

		Water Level	Measuring	Depth to	Water Level	Average	Average	
Treatment	Extraction	Measurement	Point	Water	Elevation	Monthly	Quarterly	Footnotes
System	Well	Date	Elevation	(feet)	(ft, MSL)	Flow Rate	Flow Rate	
OT: 11/ 4 O : 1			(ft, MSL)			(gpm)	(gpm)	
STL-IV ASU	ES-23	01/01/08	1760.73	NA		0		
(cont.)		01/30/08	1760.73	7.41	1753.32	0		
		03/01/08	1760.73	NA		0	0	
		04/01/08	1760.73	NA		0		
		04/24/08	1760.73	9.35	1751.38	0		
		06/01/08	1760.73	NA		0	0	
		07/01/08	1760.73	NA		0		
		07/31/08	1760.73	11.01	1749.72	0		
		09/01/08	1760.73	NA		0	0	
		10/01/08	1760.73	NA		0		
		10/22/08	1760.73	12.07	1748.66	0		
		12/01/08	1760.73	NA		0	0	
	ES-24	01/01/08	1728.67	NA		0		
		01/29/08	1728.67	25.38	1703.29	0		
		03/01/08	1728.67	NA		0	0	
		04/01/08	1728.67	NA		0		
		04/24/08	1728.67	21.81	1706.86	0		
		06/01/08	1728.67	NA		0	0	
		07/01/08	1728.67	NA		0		
		08/01/08	1728.67	24.95	1703.72	0		
		09/01/08	1728.67	NA		0	0	
		10/01/08	1728.67	NA		0		
		10/24/08	1728.67	Dry		0		
		12/01/08	1728.67	NA		0	0	
	ES-26	01/01/08	1748.01	NA		0		
		01/29/08	1748.01	16.04	1731.97	0		
		03/01/08	1748.01	NA		0	0	
		04/01/08	1748.01	NA		0		
		04/24/08	1748.01	12.13	1735.88	0		
		06/01/08	1748.01	NA		0	0	
		07/01/08	1748.01	NA		0		
		08/01/08	1748.01	18.47	1729.54	0		
		09/01/08	1748.01	NA		0	0	
		10/01/08	1748.01	NA		0		
		10/22/08	1748.01	24.45	1723.56	0		
		12/01/08	1748.01	NA		0	0	
	ES-27	01/01/08	1740.67	NA		0		
		01/29/08	1740.67	23.66	1717.01	0		
		03/01/08	1740.67	NA		0	0	
		04/01/08	1740.67	NA		0		
		04/24/08	1740.67	14.94	1725.73	0		
		06/01/08	1740.67	NA		0	0	
		07/01/08	1740.67	NA		0		
		08/01/08	1740.67	NA		0		
		09/04/08	1740.67	13.87	1726.80	0	0	
		10/01/08	1740.67	NA		0		
		10/22/08	1740.67	27.59	1713.08	0		
		12/01/08	1740.67	NA		0	0	
-		12/01/00	1740.07	INA		U	U	

Page 5 of 9

		M/	Measuring	D 41.4	M/-411	Average	Average	
Treatment	Extraction	Water Level	Point	Depth to	Water Level	Monthly	Quarterly	F44
System	Well	Measurement	Elevation	Water	Elevation	Flow Rate	Flow Rate	Footnotes
		Date	(ft, MSL)	(feet)	(ft, MSL)	(gpm)	(gpm)	
STL-IV ASU	ES-30	01/01/08	1759.51	NA		0		
(cont.)		01/30/08	1759.51	8.60	1750.91	0		
		03/01/08	1759.51	NA		0	0	
		04/01/08	1759.51	NA		0		
		04/24/08	1759.51	9.43	1750.08	0		
		06/01/08	1759.51	NA		0	0	
		07/01/08	1759.51	NA		0		
		07/30/08	1759.51	9.87	1749.64	0		
		09/01/08	1759.51	NA		0	0	
		10/01/08	1759.51	NA		0		
		10/22/08	1759.51	11.93	1747.58	0		
		12/01/08	1759.51	NA		0	0	
	ES-32	01/01/08	1740.65	NA		0		
		01/29/08	1740.65	20.83	1719.82	0		
		03/01/08	1740.65	NA		0	0	
		04/01/08	1740.65	NA		0		
		04/24/08	1740.65	15.67	1724.98	0		
		06/01/08	1740.65	NA		0	0	
		07/01/08	1740.65	NA		0		
		08/01/08	1740.65	19.64	1721.01	0		
		09/01/08	1740.65	NA		0	0	
		10/01/08	1740.65	NA		0		
		10/22/08	1740.65	Dry		0		
		12/01/08	1740.65	NA		0	0	
	HAR-17	01/01/08	1711.59	NA		0		
		01/29/08	1711.59	19.83	1691.76	0		
		03/01/08	1711.59	NA		0	0	
		04/01/08	1711.59	NA		0		
		04/22/08	1711.59	15.88	1695.71	0		
		06/01/08	1711.59	NA		0	0	
		07/01/08	1711.59	NA		0		
		08/01/08	1711.59	21.10	1690.49	0		
		09/01/08	1711.59	NA		0	0	
		10/01/08	1711.59	NA		0		
		10/24/08	1711.59	26.17	1685.42	0		
		12/01/08	1711.59	NA		0	0	
	HAR-18	01/01/08	1749.41	NA		0		
		01/29/08	1749.41	26.97	1722.44	0		
		03/01/08	1749.41	NA		0	0	
		04/01/08	1749.41	NA		0		
		04/24/08	1749.41	20.33	1729.08	0		
		06/01/08	1749.41	NA		0	0	
		07/01/08	1749.41	NA		0		
		08/01/08	1749.41	22.30	1727.11	0		
		09/01/08	1749.41	NA		0	0	
		10/01/08	1749.41	NA		0		
		10/22/08	1749.41	25.75	1723.66	0		
		12/01/08	1749.41	NA		0	0	
		12/31/00		. 4/ 1			<u> </u>	-

Page 6 of 9

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
WS-05	ES-01	01/01/08	1782.20	NA		0		
UV/H2O2		01/31/08	1782.20	19.60	1762.60	0		
		03/01/08	1782.20	NA		0	0	
		04/01/08	1782.20	NA		0		
		04/25/08	1782.20	17.28	1764.92	0		
		06/01/08	1782.20	NA		0	0	
		07/01/08	1782.20	NA		0		
		07/29/08	1782.20	19.20	1763.00	0		
		09/01/08	1782.20	NA		0	0	
		10/01/08	1782.20	NA		0		
		10/27/08	1782.20	21.23	1760.97	0		
		12/01/08	1782.20	NA		0	0	
	ES-03	01/01/08	1783.39	NA		0		
		01/30/08	1783.39	22.80	1760.59	0		
		03/01/08	1783.39	NA		0	0	
		04/01/08	1783.39	NA		0		
		04/25/08	1783.39	18.36	1765.03	0		
		06/01/08	1783.39	NA		0	0	
		07/01/08	1783.39	NA		0		
		07/29/08	1783.39	20.39	1763.00	0		
		09/01/08	1783.39	NA		0	0	
		10/01/08	1783.39	NA		0		
		10/21/08	1783.39	22.69	1760.70	0		
		12/01/08	1783.39	NA		0	0	
	ES-04	01/01/08	1817.24	NA		0		
		01/30/08	1817.24	14.21	1803.03	0		
		03/01/08	1817.24	NA		0	0	
		04/01/08	1817.24	NA		0		
		04/25/08	1817.24	7.73	1809.51	0		
		06/01/08	1817.24	NA		0	0	
		07/01/08	1817.24	NA		0		
		07/29/08	1817.24	13.14	1804.10	0		
		09/01/08	1817.24	NA		0	0	
		10/01/08	1817.24	NA		0		
		10/21/08	1817.24	Dry		0		
		12/01/08	1817.24	NÁ		0	0	
	ES-05	01/01/08	1818.13	NA		0		
		01/31/08	1818.13	6.19	1811.94	0		
		03/01/08	1818.13	NA		0	0	
		04/01/08	1818.13	NA		0	J	
		04/24/08	1818.13	7.33	1810.80	0		
		06/01/08	1818.13	NA		0	0	
		07/01/08	1818.13	NA		0	· ·	
		07/29/08	1818.13	12.65	1805.48	0		
		09/01/08	1818.13	NA		0	0	
		10/01/08	1818.13	NA		0	Ü	
		10/21/08	1818.13	Dry		0		
		10/21/00	1010.10	Diy		U		

Page 7 of 9

Treatment System	Extraction Well	Water Level Measurement Date	Measuring Point Elevation (ft, MSL)	Depth to Water (feet)	Water Level Elevation (ft, MSL)	Average Monthly Flow Rate (gpm)	Average Quarterly Flow Rate (gpm)	Footnotes
WS-05	ES-06	01/01/08	1825.41	NA		0	(5) /	
UV/H2O2		01/30/08	1825.41	15.76	1809.65	0		
(cont.)		03/01/08	1825.41	NA		0	0	
,		04/01/08	1825.41	NA		0		
		04/24/08	1825.41	11.17	1814.24	0		
		06/01/08	1825.41	NA		0	0	
		07/01/08	1825.41	NA		0		
		07/29/08	1825.41	16.43	1808.98	0		
		09/01/08	1825.41	NA		0	0	
		10/01/08	1825.41	NA		0		
		10/21/08	1825.41	22.40	1803.01	0		
		12/01/08	1825.41	NA		0	0	
	ES-07	01/01/08	1826.53	NA		0		
	_0 0.	01/30/08	1826.53	22.41	1804.12	0		
		03/01/08	1826.53	NA		0	0	
		04/01/08	1826.53	NA		0	Ü	
		04/24/08	1826.53	22.80	1803.73	0		
		06/01/08	1826.53	NA		0	0	
		07/01/08	1826.53	NA		0	Ü	
		07/29/08	1826.53	Dry		0		
		09/01/08	1826.53	NA		0	0	
		10/01/08	1826.53	NA		0	Ü	
		10/21/08	1826.53	Dry		0		
		12/01/08	1826.53	=		0	0	
	ES-11	01/01/08	1835.07	NA NA		0	0	
	E3-11	01/30/08	1835.07	17.72	 1817.35	0		
		03/01/08	1835.07	NA	1017.33	0	0	
		04/01/08	1835.07	NA		0	U	
		04/24/08	1835.07	25.41	1809.66	0		
		06/01/08	1835.07	23.41 NA	1009.00	0	0	
		07/01/08	1835.07	NA		0	U	
		07/29/08 09/01/08	1835.07 1835.07	Dry NA		0 0	0	
							U	
		10/01/08	1835.07	NA		0		
		10/21/08	1835.07	Dry		0		
	1145.04	12/01/08	1835.07	NA		0	0	
	HAR-04	01/01/08	1873.40	NA 17.40	4050.00	0		
		01/30/08	1873.40	17.40	1856.00	0		
		03/01/08	1873.40	NA		0	0	
		04/01/08	1873.40	NA		0		
		04/24/08	1873.40	18.02	1855.38	0	6	
		06/01/08	1873.40	NA		0	0	
		07/01/08	1873.40	NA		0		
		07/30/08	1873.40	20.46	1852.94	0	_	
		09/01/08	1873.40	NA		0	0	
		10/01/08	1873.40	NA		0		
		10/21/08	1873.40	22.05	1851.35	0		
		12/01/08	1873.40	NA		0	0	

Page 8 of 9

VENTURA COUNTY, CALIFORNIA Measuring **Average Average Water Level** Water Level Depth to Treatment **Extraction Point** Monthly Quarterly Measurement Water Elevation **Footnotes** System Well Elevation Flow Rate Flow Rate Date (feet) (ft, MSL) (ft, MSL) (gpm) (gpm) NA WS-05 HAR-16 01/01/08 1872.31 0 UV/H2O2 01/30/08 55.35 1816.96 0 1872.31 NA 0 0 (cont.) 03/01/08 1872.31 ---04/01/08 1872.31 NA ---0 04/22/08 1872.31 54.48 1817.83 0 0 06/01/08 1872.31 NA 0 07/01/08 1872.31 NA 0 0 07/30/08 1872.31 55.53 1816.78 0 09/01/08 1872.31 NA 0 NA ---0 10/01/08 1872.31 56.73 10/21/08 1872.31 1815.58 0 12/01/08 1872.31 NA 0 0 RD-01 01/01/08 1935.89 NA ---0 01/29/08 202.10 0 1935.89 1733.79 03/01/08 1935.89 NA 0 0 NA 0 04/01/08 1935.89 ---04/28/08 1935.89 203.02 1732.87 0 NA 0 0 06/01/08 1935.89 0 07/01/08 1935.89 NA 08/01/08 1935.89 202.51 1733.38 0 0 09/01/08 1935.89 NA 0 ---10/01/08 1935.89 NA ---0 10/27/08 1935.89 203.02 1732.87 0 0 0 12/01/08 1935.89 NA **RD-02** 01/01/08 1873.92 NA 0 01/30/08 1873.92 161.55 1712.37 0 0 03/01/08 1873.92 NA 0 04/01/08 1873.92 NA 0 04/28/08 1873.92 159.15 0 1714.77 06/01/08 1873.92 NA 0 0 07/01/08 1873.92 NA ---0 08/04/08 1873.92 157.68 1716.24 0 0 0 09/01/08 1873.92 NA ---10/01/08 1873.92 NA ---0 10/24/08 1873.92 157.86 1716.06 0 0 0 12/01/08 1873.92 NA ---WS-05 01/01/08 1830.20 NA ---0 01/30/08 1830.20 236.78 1593.42 0 0 03/01/08 1830.20 NA 0 04/01/08 1830.20 NA 0

04/24/08

06/01/08

07/01/08

08/04/08

09/01/08

10/01/08

10/29/08

12/01/08

1830.20

1830.20

1830.20

1830.20

1830.20

1830.20

1830.20

1830.20

234.19

NA

NA

233.10

NA

NA

232.76

NA

0

0

0

0

0

0

0

0

0

0

1596.01

1597.10

1597.44

1. NA = Not available. Well was not monitored or transducer was inoperable.

Water level measurement at inactive wells was discontinued in June 2004.

2. MSL = Mean sea level.

3. (---) = No data available/not applicable.

4. ASU = Air stripping unit.

5. UV/H2O2 = Ultraviolet light/ peroxidation.

6. Several extraction wells were inactive due to ongoing Shallow Zone Groundwater Investigation (Ogden, 2000), the Chatsworth Formation Operable Unit Investigation (Montgomery Watson, 2000b), and damage due to the September 2005 Topanga fire.

SUMMARY OF GROUNDWATER EXTRACTIONS FOR PERMITTED GROUNDWATER REMEDIATION FACILITIES, 2008 BOEING SANTA SUSANA FIELD LABORATORY

VENTURA COUNTY, CALIFORNIA

		Gallons x 1,000													
Remediation S		Jan	Feb	Mar	April	May	June	Jul	Aug	Sep	Oct	Nov	Dec	Total Annual	Total Pumpage to Date
Extraction We	` '													Pumpage	
Delta ASU	WS-09A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	HAR-07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Alfa ASU	WS-06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Bravo ASU	WS-09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	RD-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	RD-09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WS-5 Area	WS-05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
UV/H ₂ O ₂	ES-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	HAR-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	HAR-16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	RD-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	RD-02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
STL-IV ASU	ES-14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ES-32	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	HAR-17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	HAR-18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ECL-Sump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	ECL-FD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total System		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,761,800.7

Notes and Abbreviations:

^{1.} ASU = Air stripping unit

^{2.} $UV/H_2O_2 = Ultraviolet light/peroxidation$

Remediation system monitoring conducted by EnviroSolve Corporation. Pumpage data and cumulative pumpage provided by EnviroSolve Corporation. Extraction wells were inactive during the year and will remain inactive while the new treatment system is constructed.

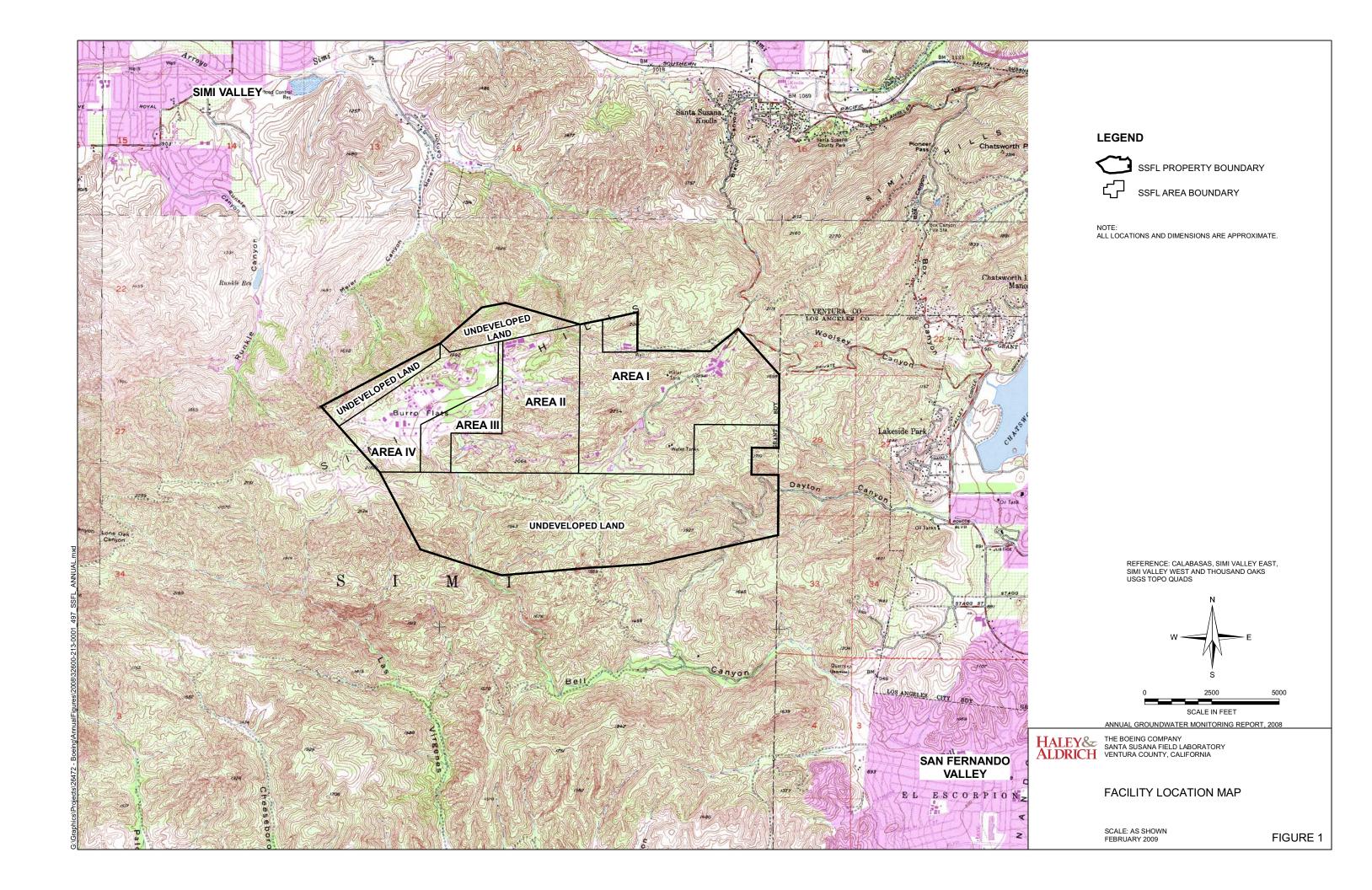
TABLE XVII Page 1 of 5

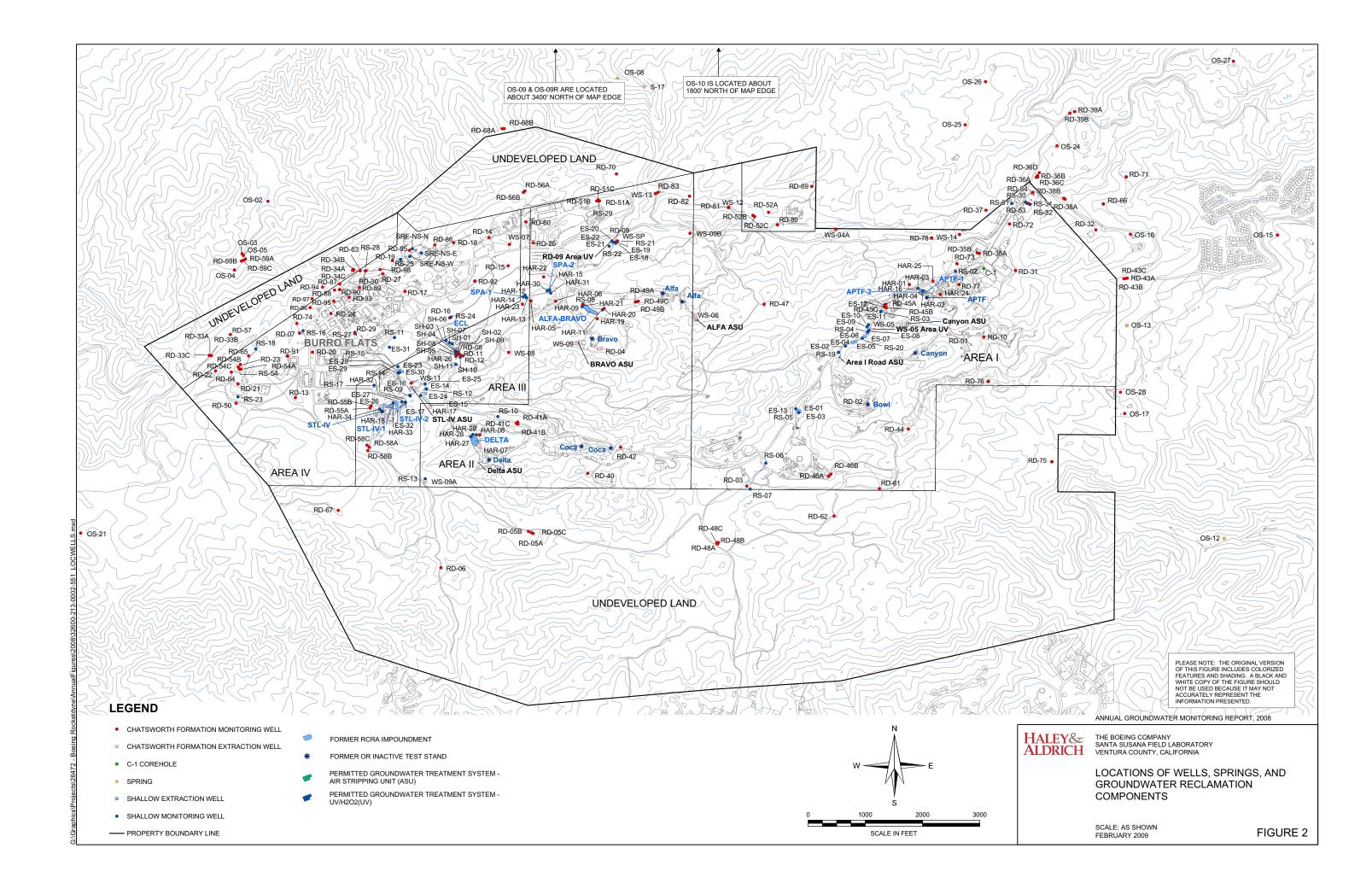
				1,2-DC	CE (ug/L)		VOCs R	emoved
Sample Loca	ntion	Date	TCE	oi o	1 4 4 4 4 4	Perchlorate	By Quarter	To Date
Sample Loca		Monitored	(ug/L)	cis	trans	(ug/L)	(lbs)	(lbs)
Delta ASU	Influent	01/01/08						1418.2
		02/01/08						1418.2
		03/01/08					0.0	1418.2
		04/01/08						1418.2
		05/01/08						1418.2
		06/01/08			Not Operatin	g	0.0	1418.2
		07/01/08						1418.2
		08/01/08						1418.2
		09/01/08					0.0	1418.2
		10/01/08						1418.2
		11/01/08						1418.2
		12/01/08					0.0	1418.2
	Primary	01/01/08						
	Effluent	02/01/08						
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08			Not Operatin	g		
		07/01/08						
		08/01/08						
		09/01/08						
		10/01/08						
		11/01/08						
		12/01/08						
	Secondary	01/01/08						
	Effluent	02/01/08						
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08			Not Operatin	g		
		07/01/08						
		08/01/08						
		09/01/08						
		10/01/08						
		11/01/08						
		12/01/08						
Alfa ASU	Influent	01/01/08						456.4
		02/01/08						456.4
		03/01/08					0.0	456.4
		04/01/08						456.4
		05/01/08			Not Operatin	g		456.4
		06/01/08					0.0	456.4
		07/01/08						456.4
		08/01/08						456.4
		09/01/08					0.0	456.4

TABLE XVII Page 2 of 5

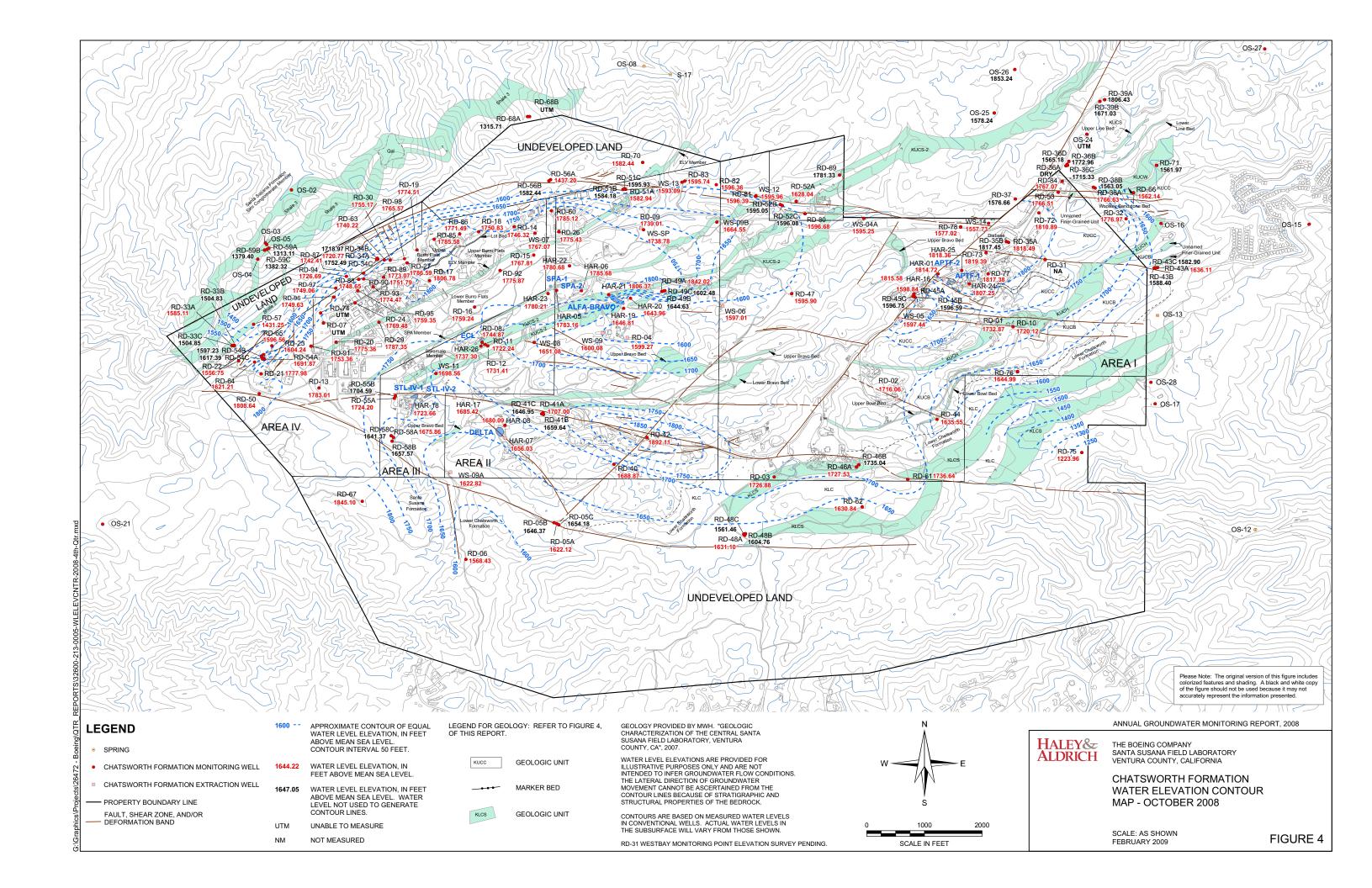
				1,2-DC	E (ug/L)		VOCs Re	emoved
Sample Loca	ation	Date Monitored	TCE (ug/L)	cis	trans	Perchlorate (ug/L)	By Quarter (lbs)	To Date (lbs)
Alfa ASU	Influent	10/01/08					, ,	456.4
(cont.)		11/01/08			Not Operatin	g	[456.4
		12/01/08					0.0	456.4
	Primary	01/01/08					:	
	Effluent	02/01/08			Not Operatin	g		
		03/01/08					ļ	
		04/01/08						
		05/01/08						
		06/01/08						
		07/01/08						
		08/01/08			Not Operatin	g		
		09/01/08						
		10/01/08					l į	
		11/01/08						
		12/01/08					į	
	Secondary	01/01/08					ļ	
	Effluent	02/01/08					<u> </u>	
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08			Not Operatin	g	ļ	
		07/01/08					<u> </u>	
		08/01/08						
		09/01/08					İ	
		10/01/08						
		11/01/08						
		12/01/08					İ	
Bravo ASU	Influent	01/01/08					ļ	123.7
		02/01/08					į	123.7
		03/01/08					0.0	123.7
		04/01/08					ļ <u>ļ</u>	123.7
		05/01/08						123.7
		06/01/08			Not Operatin	g	0.0	123.7
		07/01/08					ļ ;	123.7
		08/01/08						123.7
		09/01/08					0.0	123.7
		10/01/08						123.7
		11/01/08					00	123.7
	Drimer:	12/01/08					0.0	123.7
	Primary	01/01/08						
	Effluent	02/01/08			Not One t'	~		
		03/01/08			Not Operatin	g		
		04/01/08						
		05/01/08						
	1	06/01/08					<u> </u>	

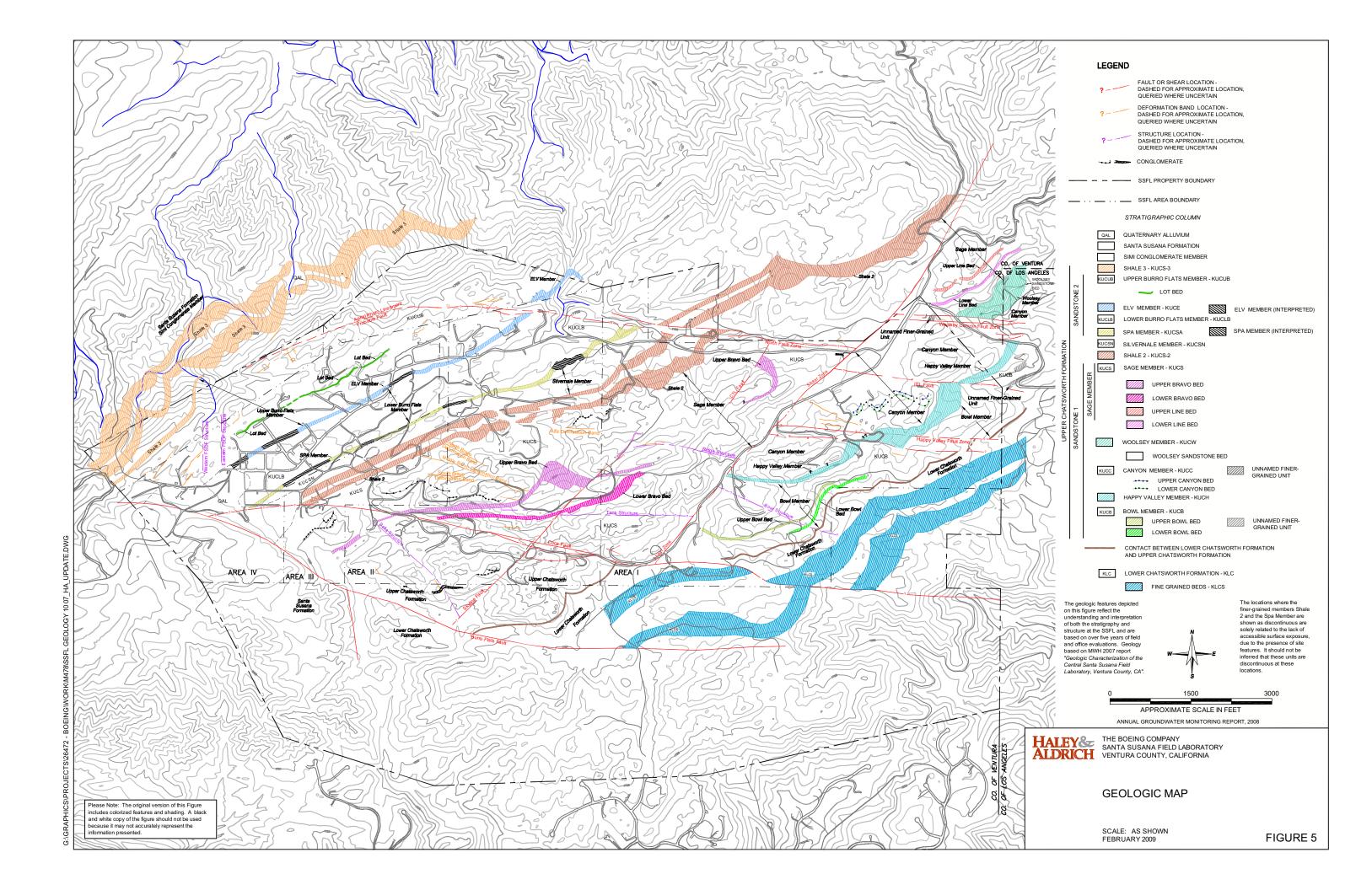
TABLE XVII Page 3 of 5


				1,2-D0	CE (ug/L)		VOCs R	emoved
Sample Loca	ation	Date	TCE	cis	trans	Perchlorate	By Quarter	
_		Monitored	(ug/L)	010	liulio	(ug/L)	(lbs)	(lbs)
Bravo ASU	Primary	07/01/08						
(cont.)	Effluent	08/01/08						
		09/01/08						
		10/01/08			Not Operatin	g		
		11/01/08						
		12/01/08						
	Secondary	01/01/08						
	Effluent	02/01/08						
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08						
		07/01/08			Not Operatin	g		
		08/01/08						
		09/01/08						
		10/01/08						
		11/01/08						
WO 05	1.0	12/01/08						
WS-05	Influent	01/01/08						230.5
UV/H ₂ O ₂		02/01/08					0.0	230.5
	03/01/08					0.0	230.5	
		04/01/08						230.5
		05/01/08			N (0)		0.0	230.5
		06/01/08			Not Operatin	g	0.0	230.5
		07/01/08						230.5
		08/01/08					0.0	230.5
		09/01/08					0.0	230.5
		10/01/08						230.5
		11/01/08 12/01/08					0.0	230.5
	Effluent	01/01/08					0.0	230.5
	Emdent	02/01/08						
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08			Not Operatin	a		
		07/01/08			Not Operatin	9		
		08/01/08						
		09/01/08						
		10/01/08						
		11/01/08						
		12/01/08						
STL-IV	Influent	01/01/08						80.7
ASU	Timoont Timoont	02/01/08			Not Operatin	a		80.7
		03/01/08			operation	ਬ	0.0	80.7


TABLE XVII Page 4 of 5

				1,2-DC	E (ug/L)		VOCs R	emoved
Sample Lo	cation	Date	TCE	cis	trono	Perchlorate	By Quarter	To Date
		Monitored	(ug/L)	CIS	trans	(ug/L)	(lbs)	(lbs)
STL-IV	Influent	04/01/08						80.7
ASU		05/01/08					ĺ	80.7
(cont.)		06/01/08					0.0	80.7
		07/01/08						80.7
		08/01/08		ļ	Not Operatin	g		80.7
		09/01/08					0.0	80.7
		10/01/08					ļ	80.7
		11/01/08					į	80.7
		12/01/08					0.0	80.7
	Primary	01/01/08						
	Effluent	02/01/08						
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08		ļ	Not Operatin	g		
		07/01/08						
		08/01/08						
		09/01/08						
		10/01/08						
		11/01/08						
		12/01/08						
	Secondary	01/01/08					ĺ	
	Effluent	02/01/08					ĺ	
		03/01/08						
		04/01/08						
		05/01/08						
		06/01/08			Not Operatin	g		
		07/01/08						
		08/01/08						
		09/01/08						
		10/01/08					ĺ	
		11/01/08						
		12/01/08						


TABLE XVII Page 5 of 5


- 1. ASU = Air-stripping unit.
- 2. TCE = Trichloroethene or trichloroethylene.
- 3. 1,2-DCE = 1,2-Dichloroethene or 1,2-dichloroethylene.
- 4. VOCs = Volatile Organic Compounds.
- 5. ug/L = Micrograms per liter.
- 6. lbs = Pounds.
- 7. UV/H_2O_2 = Ultraviolet light/peroxidation.
- 8. --- = Not analyzed.
- 9. Extraction wells and treatment systems were inactive during the year. The new treatment system is scheduled to be constructed in 2009.

