Exceptional service in the national interest

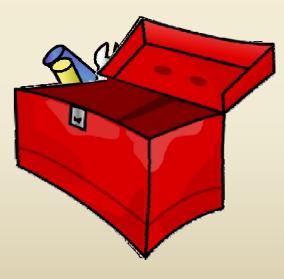
Process Update for the Soil Treatability Study

ETEC STIG; April 5, 2012

Christi D. Leigh, PhD Repository Performance Department, 6212

SAND2012-2515P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

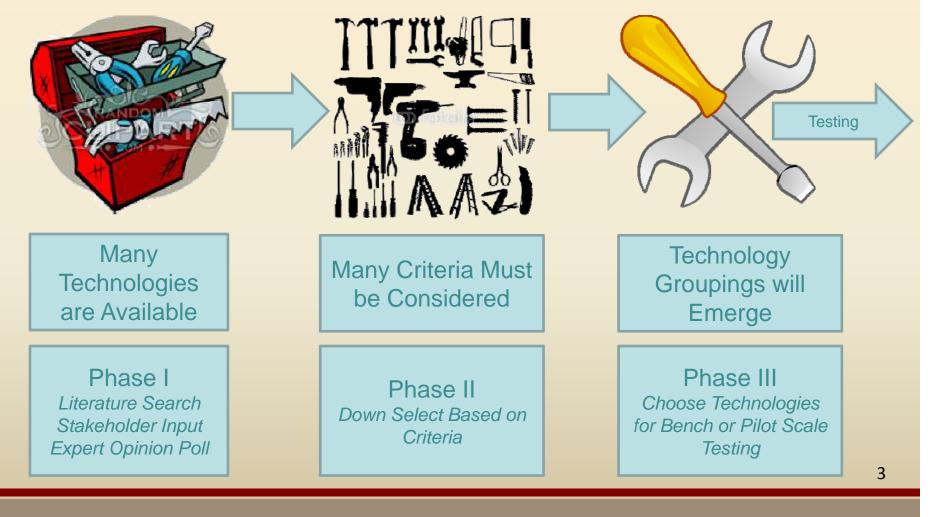


Soil Treatability Study Energy Technology Engineering Center · U.S. Department of Energy

How will we select viable technologies for the ETEC site?

Soil Treatability Study

Soils Remedial Action Implementation Plan



Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

How do we put that toolbox together?

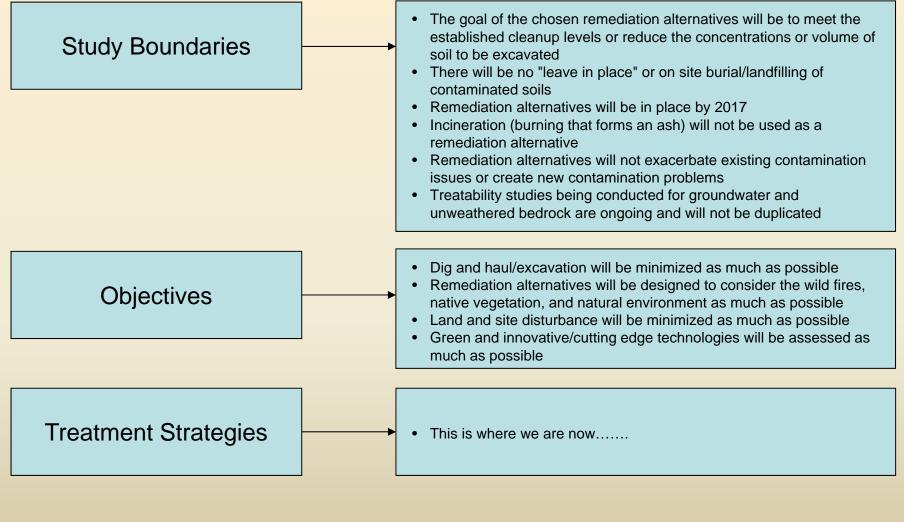
Study Boundaries

The DOE establishes the study boundaries.

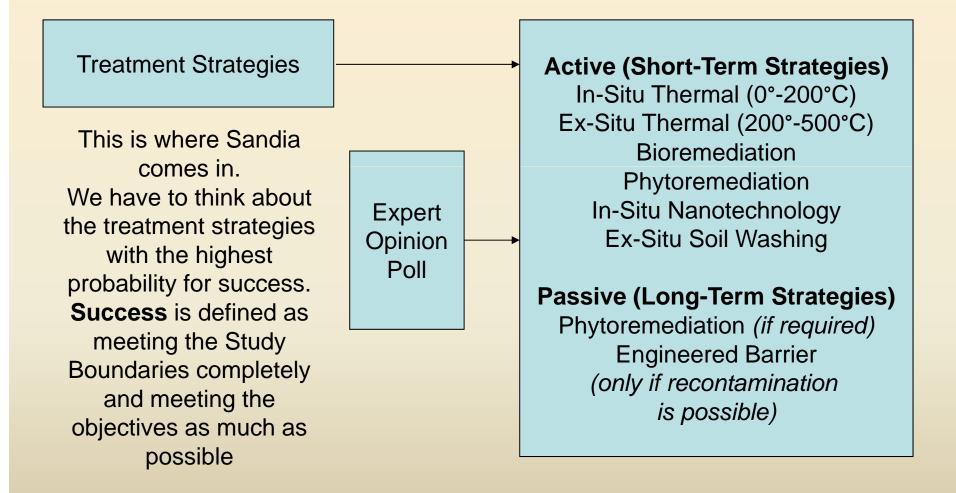
These are outlined based on consideration of the AOC.

- The goal of the chosen remediation alternatives will be to meet the established cleanup levels or reduce the contaminant concentrations/volume of soil to be excavated
- There will be no "leave in place" or on site burial/landfilling of contaminated soils
- Remediation alternatives will be in place by 2017
- Incineration (burning that forms an ash) will not be used as a remediation alternative
- Remediation alternatives will not exacerbate existing contamination issues or create new contamination problems
- Treatability studies being conducted for groundwater and unweathered bedrock are ongoing and will not be duplicated

Objectives


The objectives are consistent with the AOC and are a reflection of the expressed concerns of the STIG.

- Dig and haul/excavation will be minimized as much as possible
- Remediation alternatives will be designed to consider the wild fires, native vegetation, and natural environment as much as possible
- Land and site disturbance will be minimized as much as possible
- Green and innovative/cutting edge technologies will be assessed as much as possible


Energy Technology Engineering Center • U.S. Department of Energy

Energy Technology Engineering Center • U.S. Department of Energy

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Active Strategies

In-Situ Heat (0-200°C)	Ex-Situ High Heat (200-500°C)	Bioremediation	Phytoremediation	In-Situ <u>Nano</u>	Ex-Situ Soil <u>Washing</u>
Dioxins NDMA PAHs PCBs PCTs Pesticides/ Herbicides SVOCs TPHs VOCs	Dioxins Hg NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides SVOCs TPHs	Dioxins PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides SVOCs TPHs VOCs	Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs	Dioxins NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides SVOCs TPHs VOCs	Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs
	VOCs		TPHs VOCs		TPHs VOCs

ACRONYMS -

Hg = Mercury NDMA = *N*-Nitrosodimethylamine PAHs = Polyaromatic hydrocarbons PCBs = Polychlorinated biphenyls PCTs = Polychlorinated triphenyls Rads = Radioactive elements SVOCs = Semivolatile organic compounds TPH = Total petroleum hydrocarbons VOCs = Volatile organic compounds

Energy Technology Engineering Center • U.S. Department of Energy

Active/Passive Strategies

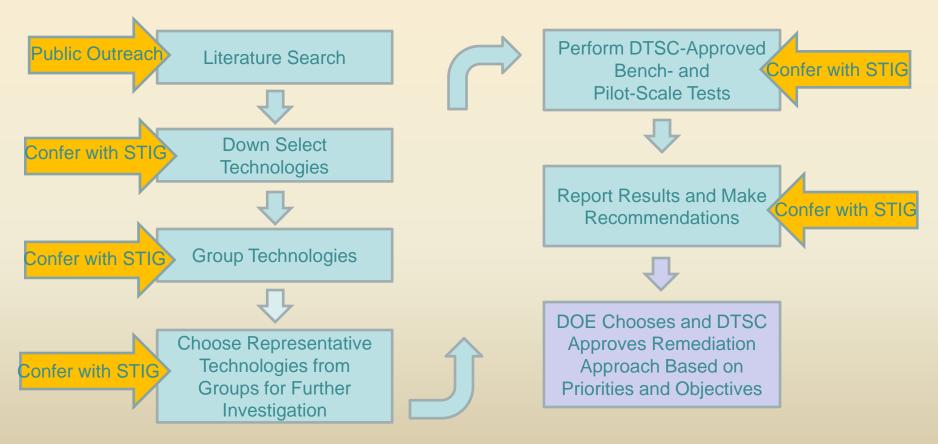
Active	In-Situ Heat <u>(0-200°C)</u>	Ex-Situ High Heat <u>(200-500°C)</u>	Bio- <u>remediation</u>	Phyto- remediation	In-Situ <u>Nano</u>	Ex-Situ Soil <u>Washing</u>
	Phyto- remediation	Engineered <u>Barrier</u>	Phyto- remediation	Phyto- remediation	Phyto/Bio- remediation	Engineered <u>Barrier</u>
Passive	Dioxins Hg PAHs PCBs PCTs Pesticides/ Herbicides SVOCs TPHs VOCs	Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs TPHs VOCs	Dioxins PAHs PCBs PCTs Pesticides/ Herbicides SVOCs TPHs VOCs	Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs TPHs VOCs	End products from Active Strategy	Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs TPHs VOCs
ACRONYMS -Hg = MercuryPCBs = Polychlorinated biphenylsSVOCs = Semivolatile organic compoundsNDMA = N-NitrosodimethylaminePCTs = Polychlorinated triphenylsTPH = Total petroleum hydrocarbonsPAHs = Polyaromatic hydrocarbonsRads = Radioactive elementsVOCs = Volatile organic compounds						

		Summary of Strategies							
Contaminant Types Contaminants		In-Situ Heat (0°C-200°C) ¹	Ex-Situ Heat (200°C-500°C)	Biostimulation/ Bioaugmentation	Phytoremediation/ Phytodegradation	In-Situ Nanotechnology	Ex-Situ Soil Washing ²		
Dioxins	Dioxins	< 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		
Metals	As				Ferns		Solvent Solution		
	Cd				Indian Mustard	The metals could be remediated	Solvent Solution		
	Cr				Indian Mustard, Sunflower	The metals could be remediated	Solvent Solution		
	Cu				Indian Mustard	to a more stable, less hazardous, and less mobile state, but would	Solvent Solution		
	Hg		> 400°C			not be removed	Solvent Solution		
	Pb				Indian Mustard, Sunflower		Solvent Solution		
NDMA	NDMA	< 200°C	> 200°C	Dechlorinating Biota	Willows, Poplars, and Paulownia	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		
PAHs	PAHs	< 200°C	> 300°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		
PCBs	PCBs	Partial remediation < 200°C	> 300°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS [™]	Solvent Solution		
PCTs	PCTs	Partial remediation < 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		
Perchlorate	Perchlorate		> 200°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		
Pesticides/ Herbicides	Pesticides/ Herbicides	< 200°C - Type Dependent	> 200°C - Type dependent	Dechlorinating Biota - Type Dependent	Ryegrass, Fescue, Bermuda grass and Yellow Clover + Dechlorinating Biota - Type dependent	nZVI; BNPs; SOMS; SAMMSTM - Type dependent	Type dependent		
Rads	Co-60				Indian Mustard		Solvent Solution		
	Cs-137				Kochia, Sunflower and Indian Mustard		Solvent Solution		
	Sr-90				Kochia		Solvent Solution		
	U-238				Kochia		Solvent Solution		
SVOCs	SVOCs	< 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS [™]	Solvent Solution		
TPHs	TPHs	< 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; Fenton Oxidation	Type dependent		
VOCs	PCE	< 200°C	> 200°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		
	TCE	< 200°C	> 200°C	Dechlorinating Biota	Poplar or Mulberry Trees	nZVI; BNPs; SOMS; SAMMS TM	Solvent Solution		

Not Applicable

¹ - Provided temperatures for In-Situ Heat are high to account for efficiency and expediency of the remediation cycle; the strategy could be applied at lower temperatures

² - Soil washing applicability is highly dependent on the soil characteristics, which have not been considered for this summary


Bench- and Pilot-Scale Testing

- Bench-Scale Testing
 - Generally conducted in a laboratory under very controlled conditions.
 - Used as a general "proof-of-principle" test.
 - Considered for technologies that have not been fielded or that are being considered for use in an application that is unproven.
- Pilot-Scale Testing
 - Will be conducted on the ETEC site.
 - Used as specific "proof-of-principle" test.
 - Considered for technologies that have been fielded in conditions similar (site characteristics and contaminants) to those at ETEC.

The process includes public involvement at each stage

