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Abstract: In this review article we discuss three Hypercomputing models: Accelerated

Turing Machine, Relativistic Computer and Quantum Computer based on three new

discoveries: Superluminal particles, slowly rotating black holes and adiabatic quantum

computation, respectively.
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1 Introduction

We discuss three examples of Hypercomputation models and their advancements.

The first example is based on a new theory that advocates the use of superluminal

particles in order to bypass the energy constraint of a physically realizable Accel-

erated Turing Machine (ATM) [1, 2]. The second example refers to contemporary

developments in relativity theory that are based on recent astronomical observations

and discovery of the existence of huge slowly rotating black holes in our universe,

which in return can provide a suitable space-time structure to operate a relativistic

computer [3, 4 and 5]. The third example is based on latest advancements and

research in quantum computing modeling (e.g. The Adiabatic Quantum Computer

and Quantum Morphogenetic Computing) [6, 7, 8, 9, 10, 11, 12 and 13].

Copeland defines the terms Hypercomputation and Hypercomputer as it follows:

“Hypecomputation is the computation of functions or numbers that [. . . ] cannot

be computed with paper and pencil in a finite number of steps by a human clerk
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working effectively. . . A hypercomputer is any information-processing machine, no-

tional or real, that is able to achieve more than the traditional human clerk working

by rote. . . Hypercomputers compute functions or numbers, or more generally solve

problems or carry out tasks, that lie beyond the reach of the Universal Turing Ma-

chine” [1].

Up until the year 2010, Hypercomputation did not have a solid grounding in

the realm of engineering, however this fact has not just changed but even more,

ameliorated with the development of the ‘Infinity Machine’ [7] (Technically, Adia-

batic Quantum Computer; which its commercial version was first released in 2011,

by D-Wave company based in Vancouver, Canada) that can find solutions, in a

matter of days, for optimization problems that require years to solve if executed

on standard; even parallel processing, computer models [7, 8 and 10]. Besides, in

Science, every theory has its exceptions and limitations that bind it to the domain

of its application. In the computing discipline, we should look at where limitations

can be exploited in order to open the doors for new developments and give rise for

possible new theories. For instance, what if the energy consumption to perform an

operation on an Accelerated Turing Machine (ATM) does not grow exponentially

with the number of operations to be executed? [2]. Thus, by just reflecting on the

hypotheses upon which we conclude our results (e.g. a physical realization of an

ATM is impossible) and by expanding the frontiers of the domain of applicability

(e.g. The Machine upon which we implement our attempt), then finding solutions

for unsolvable problems could be possible. It can be thought unreasonable of con-

sidering such efforts and conjectural challenges; like rejecting pre-set hypotheses,

objecting old theories whilst building new theories in the aim to solve problems

that their solutions are already comprehended as unattainable. However, this is

not the case in the scientific practice, which its virtue relies on questioning, explo-

ration and discovery. For instance, let’s consider the proof of Fermat last Theorem.

This theorem took 700 years to be solved. Its solution by Andrew Wiles in 2001

gave rise to new developments in the field of mathematics that make a link between

Galois representations, Modular forms and L-functions; which are distinct areas in

number theory [14]. We note that the solution of Fermat Last Theorem has ever

been deemed to be impossible. The mathematician Kenneth Ribet said that with

the proof of Fermat last theorem “the mathematical landscape has changed. . . You

discover that things that seemed completely impossible are more of a reality” [15].

Moreover, a Super Task is a task, which requires an infinite number of operations

to be performed in a finite amount of time [16]. For instance, imagine a computer

model that can execute an infinite number of statements (translated into logical and

arithmetical operations) in a finite amount of time. This seems to be impossible.

However, one theoretical model; was envisaged in such direction, it is called Accel-

erated Turing Machine (ATM) [1] and described next (Section 2). Furthermore, in

section 3, we will discuss a new insight for physically realizing ATMs using Super-

luminal particles. Then we will tackle new advancements in Relativistic computing
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(Section 4) and Quantum Computing modelling (Section 5) that attempt to execute

super tasks. Section 6 concludes the article with Critics by Martin Davis.

2 Accelerated Turing Machines (ATM)

One theoretical model that can achieve a Super Task is called Accelerated Turing

Machine (ATM) [1]. An ATM executes a single operation in the half amount of

time taken to execute the previous operation [1]. This can be explained with the

following mathematical formula:

ET (t) =
ET (t− 1)

2
(1)

Where ET means Execution Time and t is the time step; which can be defined

in any unit of time (e.g. milliseconds, seconds, minutes. . . )

With initial conditions: ET(0) = 1.

In the scenario of executing a super task, the Total Execution Time (TET) of

the task; which requires t to go to infinity, is the limit of this sequence at infinity

and can be written as follows:

TET =
t∑

i=0

ET (i)

TET = ET (0) + ET (1) + ET (2) + ET (3) + ......

TET = 1 +
1

2
+

1

4
+

1

8
+ ......

TET ∼= 2 (2)

Since the limit of this sequence converges to 2, then the time steps required to

execute a super task; that requires an infinite number of operations, converges to

two time units. In this mode of operation, an ATM will execute an infinite number

of operations in a finite amount of time. This can be considered as a model of

a Hypercomputer in a pure theoretical sense [1]. Next, we will study a possible

physical realisation of this theoretical ATM.

3 ATM using Superluminal Particles

In this section, we will first discuss why ATM was considered not to be physically

realizable, and then we will discuss how it can be physically realizable by considering

the use of the recent theory of Superluminal Particles [2].

According to Takaaki Musha [2], ATM is considered not to be physically realiz-

able “because the energy to perform the computation will be exponentially increased

when the computational step is accelerated” [2]. This is based on the energy-time

uncertainty relation [17, 18] given next:
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∆H∆T ∼ h̄ (3)

Where, ∆H is “the standard of energy, ∆T is a time interval” [17] and h̄ is the

planck constant h divided by 2π.

In order to realize hypercomputation in the means of an ATM, Musha [2] suggests

the use of superluminal particles instead of subliminal particles (e.g. Photons) to

escape the uncertainty of energy-time relation (equation 3). Musha bases his work on

the energy consumption of the reversible computer (e.g. Richard Feynman model),

which is a quantum computer. He refers to Lloyd influential paper on the physical

limits of computation [19] by showing that the quantum system; based on the study

of its energy consumption per computational step as given by Feynman, requires an

infinite amount of time to complete infinite steps of computation when the system

uses subluminal particles, as photons [2]. Hence, Musha proceeds by studying the

uncertainty principle based on superluminal particles. Superluminal means traveling

faster that light. By the means of quantum tunneling, where photons tunnels a

material or a barrier, it was shown that a photon could travel faster than light when

it tunnels a specific barrier or material. This means that the speed of photons can

by pass the celerity of light (c) when they are inside a specific barrier or material. In

this regard, Musha quotes the studies of [20] and the experiments of [21, 22 and 23]

which proves superluminal behavior based on quantum tunneling. Musha reaches a

new uncertainty relation of energy-time for superluminal particles, which is:

∆H∆T ∼ h̄

β.(β − 1)
(4)

Where, β = v
c

c is the celerity of light and v is the speed of the particle after it has been

measured (Note that the speed of the particle is equal to c before the measurement).

Last, Musha derives the equation of the total computational time required by a

quantum system based on a Feynman model that uses superluminal particles when

the system performs a number of computational steps. He finds out that the total

computational time converges while the number of computational steps that the

system executes tends to infinity. This means, “an accelerated Turing machine can

be realized by utilizing superluminal particles instead of subliminal particles for the

Feynman’s model of computation” [2].

4 Relativistic Computers

In the context of hypercomputation and the time required for a computer to fulfill

an infinite number of operations in a finite amount of time, Copeland states Hogarth

who says “there is no reason why a computer user must remain beside the computer”

[1]. This elaborates the idea of relativistic computing where a computer executing

a task can travel in spacetime and transmits the answer of its computation to a
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user. In this regard, for a specific spacetime that is considered to be a relativistic

spacetime, “the infinite lifespan of the computing machine can be surveyed by the

user in a finite amount of time” [1].

New discoveries in relativity theory, black hole physics and cosmology suggests

that the possibility of a relativistic computer is scientifically adequate and can be

physically realizable in our existing universe [3]. To study and explain the novel rel-

ativistic computer model, we will refer to the work of Andreka et al. [3]; who claim:

“In our specific physical universe there seem to exist regions of spacetime support-

ing potential non-Turing computations” [3]. In comparison to quantum computing

that tackles the complexity barriers of the theory of computation, the relativistic

computing paradigm tackles and challenges the physical Church Turing thesis itself.

The physical Church Turing thesis says that a physical Turing machine can simulate

any algorithmic function. The physical Turing machine is a mere physical device,

which was accentuated on the worldview of Newtonian physics where the notion of

time is considered to be absolute [3]. This is not the case in the context of relativity

theory where time is relative to its observers. This means, “Various observers at

various points of spacetime in different states of motion might experience time rad-

ically differently. Therefore, we might be able to speed up the time of one observer,

say C (Cecil, for ‘computer’), relatively to the other observer, say P (Peter, for

‘programmer’). Thus P may observe C computing very fast” [3]. The experiments

of [24, 25] study the spacetime structure of huge slowly rotating black holes. The

confirmation of the existence of these black holes is based on recent astronomical

observations [4, 5]. Note that such black holes are called slow-Kerr black holes in

the literature.

Black holes are regions of spacetime that exhibit a very high gravitational field.

The following example illustrates the idea of speeding up computation: Consider an

extremely very high tower that exists on earth. Also, consider two atomic clocks,

one running on the top of the tower and the other on the bottom. According to the

Gravitational Time Dilation (GTD) theorem of relativity theory, the clock on the

top will run faster than the clock on the bottom because gravity affects time. As

much as gravity is strong, the time is slow. The clock on the bottom will run slower

than the clock on the top because gravity makes time run slower. So, P can send

his computer C to the top to gain execution time from this speed time effect [3].

Furthermore, if “we want to increase this speed-up effect to the infinity. Therefore,

instead of the Earth, we use a huge black hole” [3]. Andreka considers the slow-Kerr

black holes (i.e. huge slowly rotating black holes) that have two event horizons of

bubble like surfaces. These two event horizons are the inner event horizon and the

outer event horizon as illustrated in the following drawing next (Fig. 1).

Respectively, the earth is the slowly rotating balck hole, the programmer P on

the bottom of the tower is considered to be on the inner event horizon and the

computer C on the outer event horizon. “If we could suspend the lower observer

P on the event horizon itself then from the point of view of C, P’s clocks would
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Fig. 1 Depiction of a slowly rotating black hole showing its outer event horizon and its
inner event horizon. Because the black hole is rotating, then the inner event horizon exerts
a centrifugal force on P in the Newtonian sense, which in return can suspend the motion
of P. This is a main characteristic of slowly rotating black holes (i.e. having two event
horizons in contrast to Schwarzschild black holes which have only one event horizon that
could crush P). Excerpt from [3] with permission from the authors.

freeze, therefore from the point of view of P, C’s clocks (and computers!) would

run infinitely fast, hence we would have the desired infinite speed-up upon which

we could then start our plan for breaking the Turing barrier” [3]. An appropriate

geodesic can be chosen for P so it enters the black hole and bypass the inner horizon.

Once inside the inner horizon, P can remain in constant distance to C; that is moving

on the outer horizon, due to the centrifugal force of the rotating black hole that is

exerted on P. Now, any information sent by C to P can “reach P before P meets the

inner horizon” [3] as seen in Fig. 2.

Fig. 2 Showing z as the axis of the rotating black hole and t as time. The world lines of C
and P are shown as well as the inner and outer event horizons separated by τ . A photon
that is sent by C to P arrives to P before P reaches the inner event horizon. Excerpt from
[3] with Permission from the authors.

As seen in Fig.2, “the time measured by P is finite . . . while the time measured

by C is infinite” [3].

The approach of considering slowly rotating black holes is interesting and pro-

vides advancement in the theory of a relativistic computer. Its major importance is

that a slowly rotating black hole has two event horizons, which is different than a

simple black hole like a Schwarzschild black hole that have only one event horizon.

By considering only one event horizon, we don’t have a centrifugal effect, thus P

cannot slows down. Therefore, the gravitational force of the black hole will crush
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P [3]. Furthermore, we have to note that the advantage of choosing slowly rotating

black holes compared to simple black holes is that P will slow down by just using

the gravitational force of the inner horizon without the need of brute force like using

a rocket to slow down its fall or maintain its altitude [3].

5 Quantum Computing

In this section, we first introduce Quantum Computing as a possible model of Hy-

percomputation and then discuss its latest advancements in this regard.

According to Kieu [26], “It is argued that computability, and thus the limits of

Mathematics, ought to be determined not solely by Mathematics itself but also by

physical principles” [26]. In his paper, Kieu studies a quantum algorithm to solve the

10th Hilbert problem of finding the existence of solutions of Diophantine equations.

Kieu’s argument suggests that the realization of a quantum algorithm could impact

the standards of the Church-Turing thesis and will modify its effectiveness in terms

of computability. He further argues that the proof of the realization is constrained

to physical limitations not logical argument [26]. To give insight on the plausibility

of quantum computing that could be advanced from this quantum algorithm he

quotes Godel in [27] who says: “... On the other hand, on the basis of what has

been proved so far, it remains possible that there may exist (and even be empirically

discoverable) a theorem-proving machine which in fact is equivalent to mathematical

intuition, but cannot be proved to be so, nor even be proved to yield only correct

theorems of finitary number theory.” Kieu suggests that quantum computation is

that possibility.

Richard Feynman [6] was the first person who questioned the plausibility of build-

ing physical computing devices that could operate on quantum rules and follow the

principles of quantum mechanics based on the laws of quantum physics rather than

classical physics. With Feynman, a contemporary era of the theory of computation

is born that resembles the modern era of computing that was born with Alan Turing

influential work on the theory of computation in the mid thirties.

Computers nowadays are an elaboration of the Turing machine. The latter

process information in the form of bits. This means that a bit (i.e. an entity that

takes the value of either 0 or 1) is the single unit of information that can be processed

within a computer. Furthermore, an elementary operation of a computer processes

a single bit at a time step. In contrast, in a quantum computer, information is

encoded in qubits. A qubit is a single unit of information that encapsulates the

state of a bit by being 0 or 1; moreover it can take another value that is 0 and 1

superposed! This fact is due to the superposition principle of quantum mechanics,

which considers that an electron (i.e. a particle) can be in any state unless it is

measured, thus it can be in a superposition of states. So, under quantum rules the

single unit of information in a quantum computer can be 1, or 0, or 1 and 0 at

the same time. As David Deutsch explains in his book “The Fabric of Reality”, a
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quantum bit is the dual existence of a bit, where each of its states exists in different

universes [28]. An illustration of a bit and a qubit is given in Fig. 3 next.

Fig. 3 This shows an illustration of a classical bit vs. a quantum bit and the potential of
using quantum bits to perform computation. On the left, data units take the form of a bit
that is processed in a classical computer as an entity having a single state; which is either
0 or 1. On the right, data units take the form of a quantum bit (i.e. qubit) that can be
0, 1 or 0 and 1 at the same time due to the principle of quantum superposition. A data
unit exhibiting multiple states allows concurrent operations that lead fast data processing,
which is achieved using a quantum computer model. Illustration re-sketched from [7].

The latest advancement in quantum computing is a quantum physical computer

called the D-wave machine [7]. In the common sense, this quantum computer is

called the Infinity Machine [7] and it is now suggested as a significant reference for

the engineering community [8]. This device (namely D-Wave two) is the latest of

its kind that instruments a physical realization of a quantum-computing machine,

which is able to perform tasks (e.g. Solving optimization problems) that defeat the

performance of a classical computer. Moreover, it outperforms the super scale of

ultimate parallel computation. This quantum computer is being implemented in

Vancouver, Canada. In other words, it physically exists in a computer company

called D-Wave and it operates in a cooling room on a temperature of −459.60 F,

inside the firm. It is a device of 10 ft High and its central processing unit is called

the niobium chip.

How D-wave quantum computer work?

D-wave quantum computer is able to solve optimization problems and is based on

Quantum Tunneling. Quantum tunneling is the phenomenon in which a particle can

cross a barrier with a specific probability. Since solving an optimization problem

is thought like finding the lowest points in a mountains landscape, then think of

the particles as tunneling through the mountains which is in contrast with classical

mechanics where a particle could either bounce back of a hill or get crushed inside the

mountain. The valleys found by the tunneling particles are considered as candidate

solutions. Quantum Annealing and Adiabatic Quantum Computation, described

next, are methods that can be applied to the tunneling phenomenon in order to find

the best candidate solution (i.e. the lowest valley).

In Quantum Annealing (QA), we try to minimize an Energy function which is

represented by a Hamiltonian h. Furthermore, we add to h a local Hamiltonian

hL(t) which starts very large and reduces to 0 after n time steps. In other words,
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the total Hamiltonian is:

H (t) = h+ hL(t)

As we can see, H is time dependent. And,

H(0) ≈ hL(0)

Also, hL(t) reduces to 0 after n time steps, so:

hL(n) ≈ 0

Finally, we have:

H(n) ≈ h

This means, at the end of the annealing time, the energy function that we want to

optimize, and which we represented by h, is recuperated.

Adiabatic Quantum Computation [9] uses a similar process to Quantum An-

nealing, but instead of using a time dependent local Hamiltonian, we use a time

independent one hL and we rewrite the total Hamiltonian as the following:

H (t) =
t

n
h+ (1− t

n
)hL

Similarly, we have:

H (0) = hL

And,

H (n) = h

D-wave one implements such adiabatic process where qubits are set into “a state

of quantum superposition, in which they’re free to explore all [. . . ] computational

possibilities simultaneously, then you allow them to settle back into a classical state

and become regular 1′s and 0′s again. The qubits naturally seek out the lowest pos-

sible energy state consistent with the requirements you specified in your algorithm

back at the very beginning” [7]. In this regard, one can request the lowest value of

a search space by considering it as the lowest energy state; thereafter the qubits will

harvest all the search space and respond at the same time. Thus, the lowest point

value is retrieved.

Quantum entanglement and superposition provide the system global information

of the quantum process and its environment [11]. Similar to a conceptual Turing

machine that has the whole infinite tape contents at its disposal in a specific mo-

ment in time, in contrast to the classical Turing machine which processes the tape

square by square in step by step. This makes the system non-local, in other words

not restricted to the locality principle as in a classical Turing machine [11]. In

[11], Licata suggests that in order to benefit from the essential features of Quantum

mechanics, which are quantum entanglement and superposition, in the design of a

quantum-hyper-computing machine, we have to drop out the traditional universality
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characteristic of the machine. Thus, we should focus on “specific problem-oriented

computation and based on its physical implementation” [11]. Such approach is re-

ferred as the “geometry of effective physical process. . . where computation is strongly

linked to the very physical nature of the system and its global configuration, and

the ‘algorithm’ is the evolution of the system itself in controlled experimental con-

ditions” [11, 12]. An interesting point to mention is that the notion of programming

is redefined and takes a whole new perspective because programming is now related

to the geometry of the physical implementation [11, 12]. Last but not least, if an

adequate configuration of an adiabatic quantum computer could be worked out,

then it could “find the factors of a number that is the product of two large primes”

[7] in a single night, which would take years for a conventional computer to solve;

this will have enormous outcomes in exploiting nowadays encryption. Furthermore,

D-wave one was able to find the lowest-energy configuration of a folded protein [10],

which is a challenging problem in computational biophysics. This was “the first

experimental and largest quantum annealing experiment related to an optimization

problem in the physical sciences” [10 (Supplementary material)].

We have to note that Adiabatic Quantum Computation and Kieu Quantum

Algorithm that we mentioned in the beginning of this section are examples of the

“geometry of effective physical process” [12] approach that we discussed. For further

investigation of this approach and its latest advancement, we refer the reader to

[13] where the mathematical foundation of “Quantum Morphogenetic Computing”

is presented as a general framework, which derives a non-Euclidean geometry of

information from the probabilistic features of quantum phenomena (Superposition

and Entanglement).

6 Conclusion

In 1999, Jack Copeland along with Diane ProudFoot [29] brought legacy to Alan

Turing; by explaining and illustrating two well elaborated and forgotten ideas, which

this brilliant scientist came up with, theorized and conceptualized. First, building

artificial neural networks (e.g. an ‘Unorganized Machine’ which Alan Turing had

suggested as a model of the unorganized neurons in an infant cortex that can be

organized by suitable interfering training). Second, building a ‘super computer’

framework or a ‘Hyper Machine’ (e.g. The O-Machine; which is an augmented

version of a Universal Turing Machine (UTM), theorized by Alan Turing as a UTM

accompanied with a black box called the Oracle. The Oracle’s function is to assist

the UTM in deciding if a number is computable or not). Hypothetically, a Hyper

Machine, if implemented, could bypass the limitations of the Turing Machine (i.e.

The physical barrier of the Church-Turing Thesis).

Finally, when we discuss Hypercomputation, we should obviously mention the

critic of Martin Davis towards the topic [30]. Martin Davis is skeptic about Hyper-

computation research; he says that studying Hypercomputation is just a substitution
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of studying how to compute the non-computable. He claims that since we are finite

human beings, who have a finite life span and who have access to finite data then

it is impossible that we will be able to see the outcome of an infinite output that

is computed by a Hypercomputer and to compare it with a Turing Machine, thus

“no possible experiment could certify that a device is truly going beyond the Turing

computable” [30]. Also, Martin Davis claims that if a device is to be considered as

a Hypercomputer then it should be based on a physical theory that is absolutely

correct. But, since any physical theory gives just an approximation to reality then

it is impossible to have – to build - such a physical system that can have an absolute

precision to infinity [30]. Furthermore, he says that Kieu’s algorithm will not be able

to find positive integer solutions for all Diophantine equations. Kieu responds to

Martin Davis and other critics by saying that they just misunderstood his approach

towards solving Hilbert’s 10th problem using the Quantum Adiabatic Theorem. Kieu

says, “the noncomputability of Hilbert’s tenth problem is the fact that we ask for a

single finite procedure which can be applied to all the elements of sets of countably

many Diophantine equations” [31]. But, he agrees that “that there is no single finite

recursive algorithm for all Diophantine equations, but for each given equation we

have to find a recursive algorithm anew each time” [31]. In fact, this is the essence

of adiabatic quantum computing approach and the “geometry of effective physical

process” [11, 12] approach, which are problem specific.

This review article highlighted on the advancements of three interesting exam-

ples of Hypercomputing models or Hyper Machines; Accelerated Turing Machines

using Superluminal particles, Relativistic Computing based on recent discoveries

in relativity theory and Quantum Computing using adiabatic quantum computer

modeling and Quantum Morphogenetic Computing. The three examples were cho-

sen because they are centered on new insights in quantum physics and relativity

theory.
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