
New Implementations and Results for the NAS ParallelBenchmarks 2William Saphir � Rob Van der Wijngaarty Alex Wooz Maurice Yarrowxnpb@nas.nasa.govAbstractWe present new implementations and results for the NAS Parallel Benchmarks 2suite. The suite currently consists of seven programs. Of these LU, SP, BT, MG andFT have previously been released. Here we describe implementations of EP and IS, aswell as a rewritten version of FT that corrects some problems with the original release.Performance results are shown for several architectures: IBM SP Wide Nodes / 66MHz, IBM SP Thin Nodes 2/ 120 MHz, SGI Origin 2000, Hitachi SR 2201, Sun UltraEnterprise 4000, Cray J90, Cray T3D, HP Exemplar-S.1 IntroductionThe NAS Parallel Benchmarks (NPBs)[1, 2] are a widely-recognized suite of benchmarksoriginally designed to compare the performance of highly parallel computers with that oftraditional supercomputers. The NPBs are speci�ed algorithmically, and are implementedmainly by computer vendors, using techniques and optimizations appropriate for theirproducts. Performance results based on these optimized proprietary implementations|referred to as NPB 1|are submitted to NAS by vendors and are reported in a periodicNAS Technical Report[4].In late 1995, NAS announced NPB 2[3], a set of speci�c NPB implementations, basedon Fortran 77 and MPI[5]. These codes are intended to be run with little or no tuning,in contrast with NPB 1 codes, which have been highly optimized for speci�c architectures.NPB 2 targets computers with hierarchical cache-based memories.Unlike the proprietary NPB 1 codes, the source for NPB 2 implementations is freelyavailable. This promotes the collection of data on a wide variety of machines andcon�gurations. Another advantage is that the techniques used in NPB 2 implementationscan be studied for possible use in other codes.Because they have not been optimized by vendors, NPB 2 implementations approximatethe performance a typical user can expect from a portable parallel program on a distributedmemory parallel computer. Together the results presented here provide a well-calibratedcomparison of the real-world performance of several parallel computers. NPB 2 resultscomplement, rather than replace, NPB 1 results.�National Energy Research Scienti�c Computing Center (NERSC), Berkeley, CA. Supported throughDepartment of Energy contract DE-AC03-76SF00098.yMRJ Technology Solutions, Mo�ett Field, CA. Supported through NASA Contract NAS 2-14303.zNASA Ames Research Center, Mo�ett Field, CA.xSterling Software, Palo Alto, CA. Supported through NASA Contract NAS 2-13210.1

2 NPB 2.1, released in February 1996, contained implementations for 5 of the 8 originalNAS benchmarks: the 3 pseudo-applications LU, SP and BT, and the kernels MG and FT.NPB 2.2 adds IS and EP, as well as an improved FT.2 MethodologyNPB 2 presents a number of challenges and opportunities that were not present in NPB 1.NPB 1 implementations represent a best case scenario: they are implemented and carefullyoptimized by vendors; they are timed under ideal conditions in clean environments withthe latest software. NPB 1 results are meaningful and can be compared because everyvendor has had equal opportunity to optimize, and because the pencil-and-paper nature ofthe benchmarks eliminates architectural bias. NPB 1 results, while far more meaningfulthan the \not to be exceeded" peak performance or LINPACK[6] rates, generally representupper limits on what can be achieved for the type of calculations performed by the NPBs.In contrast, NPB 2 implementations are run essentially without tuning1. Because thecodes are not proprietary and sources are readily available and easy to build, anyone witha su�ciently large computer, MPI, and a Fortran compiler can generate NPB 2 results.As with any scienti�c measurement, benchmark results are useless unless reproducible.Therefore great care must be taken to document the speci�c conditions under whichmeasurements were made: compiler options, MPI and compiler versions, system softwareversion, etc. Data quali�ed in this way can provide a well-calibrated measurement of thee�ect of small hardware and software changes, showing the improvement or regression ofsystem performance over time.Most 2 NPB 2 implementations discussed in this paper run a single solver iterationand reset the initial conditions before starting the timed portion of the benchmark. Thiseliminates startup overhead that can severely skew results for short-running benchmarks.It also means that Mop/s rates reported by the code will not be the same as Mop/srates reported by a hardware instruction counter. Care must be taken to reconciledirectly-measured operation counts with the rates reported by the codes themselves. Thisis accomplished by directly measuring the operation count of a zero-iteration run andsubtracting this from the operation count of a complete run. Time reported by thebenchmarks and in this report is wall clock time. CPU time may not be meaningful on atightly-coupled parallel system where time spent blocking for messages is not counted asCPU time.3 Applicability and usefulness of resultsVector versus cache | NPB 2 implementations are designed for cache-basedarchitectures, and use a distributed memory software model, with communication onlythrough MPI. While it is uncommon to run MPI codes on shared memory multiprocessors,we believe NPB 2 results reect their performance, at least to the extent that portableMPI applications are run in shared memory environments. For vector machines such as theCray J90, however, the results do not have an immediate interpretation as typical \real-world" application performance. Instead, they indicate opportunity for vectorization inthese cache-oriented codes.1NPB 2 actually permits two levels of tuning: 0% code modi�cation and 5% code modi�cation. Thisreport contains results only for the 0% case2All for LU, which will not have this feature until NPB 2.3.

3In this report we compare results from eight machines. The IBM SP based on 66 MHzPower 2 (SP-WN) and 120 MHz P2SC nodes (SP-SC), the Hitachi SR2201 based on 150MHz modi�ed PA-RISC processors, and the Cray T3D based on 150 MHz Alpha processorsare distributed memory machines. The Sun UltraEnterprise 4000 server based on 167 MHzUltrasparc-I processors, and the HP Exemplar-S based on the 180 MHz PA-8000 processorare nominally symmetric multiprocessors (although memory is actually distributed), andthe SGI Origin 2000 based on 190 MHz R10000 processors is a distributed shared memorymultiprocessor. The Cray J90 is a shared-memory vector multiprocessor.Because of space limitations, we are unable to describe in detail the ma-chines on which our results were obtained. More information can be found athttp://www.nas.nasa.gov/NAS/NPB/.Mflop/s rates | A new feature of NPB 2 is that we report results in Mop/s (millionoating point operations per second) as well as run time. The Mop/s measure haslittle meaning for NPB 1, since di�erent implementations may have substantially di�erentoperation counts. Since NPB 2 results are based on unmodi�ed code (0% case), theoperation count is approximately the same on any machine. Optimizing compilers maybe able to eliminate some operations, or may add some for certain reasons, so the reportedMop/s rate may not be exactly what would be reported by a hardware instructioncounter, but it is usually within a few percent. For the EP and IS benchmarks, in whichthe bulk of computation is integer arithmetic, Mop/s rates are not meaningful. Thesebenchmarks compute a Mop/s rate, where \op" is random-numbers-generated and keysranked, respectively.The nominal rate is based on a combination of hand counting, Cray and IBM hardwareinstruction counting, SGI \prof" and \pixie" analysis, and extrapolation. The nominaloating point count does not change with number of processors|only with problem size|so extra operations performed because of parallelization are not counted.Comparison with NPB 1 results | When both NPB 2 and NPB 1 results areavailable for the \same" machine, we compare NPB 2 results with NPB 1 results. Thecomparison gives an indication of the di�erence between what an \ordinary programmer"can achieve on a portable program and what an expert or unusually careful non-expert canachieve on an architecture-optimized program. If NPB 1 and NPB 2 timings are close, onemight conclude that it is relatively easy to get NPB-1-level sustained performance out of aparticular machine. Di�erent machines have substantially di�erent results for this metric.Relevance for other codes | The NPB suite is based on computational uiddynamics codes typical of those run on the supercomputers at the NAS facility. We believethat the NPB 2 results are relevant to \the average user, with an average code," with a fewcaveats.First, the NPB 2 implementations do not use numerical libraries. Codes that usevendor-optimized numerical libraries may obtain substantially better performance. Somelibrary routines that could be useful for NPB implementations are FFT routines for theFT benchmark, and banded-(block-)matrix solvers for the SP and BT benchmarks. NPB 2implementations do not use these because there do not exist standardized, vendor-optimizedand widely available versions of the necessary routines (unlike the BLAS routines).Second, most NPB codes use fully implicit algorithms on a single grid that is distributedover several processors. Such algorithms require more communication than explicit methodsor hybrid methods that solve implicitly on a single processor with explicit updates between

4processors. Compared to codes using these other algorithms, the NPB suite provides amore stringent test of interprocessor communication, and may show poorer scalability.Counteracting this is the fact that the NPB 2 codes use good parallel algorithms thatminimize communication.Third, NPB problems are idealized versions of real-world problems. They are moreregular than typical real-world problems (making load balancing easier) and boundaryconditions and physics have been somewhat simpli�ed. The e�ects on performance arecomplicated. For instance, load-imbalance from boundary calculations is probably smallerthan in engineering applications, but having fewer operations per grid point per time step(because of simpler physics) gives a higher communication to computation ratio and lowercache reuse.For these reasons and others, performance of real-world codes may or may not be similarto NPB performance. The main use of NPB is, instead, to compare the performance ofdi�erent computers on the general class of codes represented by the NPBs.4 Code descriptionsThe NPB 2 implementations of LU, SP, BT and MG have been discussed elsewhere[3].Here we describe the new implementations of EP and IS, and the reimplementation of FT.EP | The NPB 2 implementation of the EP (Embarrassingly Parallel) benchmark hasits origins in the NAS-provided reference code from 1991. The current implementation canrun on any number of processors. Each processor independently generates pseudorandomnumbers (PNs) in batches of 217 and uses these to compute pairs of normally-distributednumbers. The rounded norms of these pairs are tallied before the next batch is created andprocessed. No communication is needed until the very end, when the tallies of all processorsare combined. Performance of the code, which is reported as the number of PNs producedper second, is governed by the PN generator (see below). The calculation also contains asigni�cant number of logarithm and square root operations.IS | The NPB 2 implementation of the IS kernel benchmark is based on a bucket sort.The number of keys ranked, number of processors used, and number of buckets employedare all presumed to be powers of two. This simpli�es the coding e�ort and leads to acompact program. The number of buckets is a tuning parameter. On the systems tested,best performance was obtained when the number of buckets was half that which gives bestload balancing. Communication costs are dominated by an MPI Alltoallv, wherein eachprocessor sends to all others those keys which fall in the key range of the recipient.FT | The FT implementation in the NPB 2.0 release was found to have some problemswith scaling and performance. In NPB 2.2, it is replaced by a new version, describedhere. All FT results reported in this paper and previously reported by NAS are for thisnew version. The computational core of the benchmark is a 3-D Fast Fourier Transform(FFT) on a grid whose dimensions are n1�n2�n3 points. On one processor, the 3D FFT isperformed with three successive 1D FFTs. For a number of processorsm withm � n3, eachprocessor owns a number of contiguous x{y planes. The 1D FFTs in the x and y directionsare performed in-processor, after which the data is transposed (using MPI Alltoall) sothat the z-direction FFT can be performed in-processor. For m > n3, a two-dimensionaldecomposition is used, leaving only the x-direction in-processor. Two transposes areperformed in order to do the y- and z-direction FFTs. The new implementation of FTalso contains performance improvements in the calculation of the time evolution. The

5basic 1D FFT routine is essentially unchanged in the new implementation.Pseudorandom Number generation | In FT and EP the generation of randomnumbers is timed, so that it is important that this operation be e�cient. It is essentially aninteger calculation that can be done by machines that support 64-bit integer arithmetic, butit should be possible to run the code on other machines as well. Accordingly, this releaseof the benchmarks includes several di�erent modules for random number generation. The�rst, randi8, uses 8-byte integer arithmetic. It relies on overow bits being discarded andworks on most 64-bit machines. The second, randi8 safe uses bit manipulations on 64-bitintegers and guarantees that there is no overow. The third, randdp, uses 64-bit oatingpoint arithmetic to simulate the integer operations. The fourth, randdpvec, is similar, butallows vectorization.5 ResultsNPB 2 data can be used to examine a number of performance issues. Here we highlight afew of the more interesting results, using a representative sample from the complete set ofNPB 2 results available at http://www.nas.nasa.gov/NAS/NPB/NPB2Results/.Performance per processor | Figure 1 shows the per-processor performance of BT

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256

M
flo

p/
s/

pr
oc

es
so

r

Number of processors

IBM SP(Wide Nodes)
IBM SP(P2SC 120MHz)

Cray T3D
SGI Origin 2000
Hitachi SR2201
HP Exemplar-SFig. 1. Per-processor Performance for BT Class Bclass A on all machines. It shows a large disparity in per-processor performance between thesix machines. The SP-SC is the clear leader, obtaining as much as 105 Mop/s/processor.The midrange is occupied by the Origin, Exemplar and SP-WN machines. Hitachi andT3D perform poorest, with between 15 and 30 Mop/s/processor. This ranking is fairlyconsistent across the NPBs, although the Origin approaches SP-SC performance on severalof the other benchmarks.We partly attribute the dominance of the SP-SC to its high memory bandwidth. Theother machines (except SP-WN, which has a slower clock than SP-SC) have signi�cantlypoorer memory bandwidth relative to peak performance.We also note that performance of the SP-WN, SP-SC and Exemplar fall o� rapidlywith number of processors. The inter-node communication performance of the SP systems

6is relatively poor compared to their oating point performance. Fairly level lines for Hitachiand the T3D up to 256 processors indicate good relative network performance. 3Total performance | Figure 2 shows total machine performance for LU class B. The

10

100

1000

10000

1 2 4 8 16 32 64 128 256

M
flo

p/
s

Number of processors

IBM SP(Wide Nodes)
IBM SP(P2SC 120MHz)
SUN Ultra Enterprise 4000
Cray T3D
CRAY J90 MPI SMP
SGI Origin 2000
Hitachi SR2201
HP Exemplar-S

Fig. 2. Total Machine Performance for LU Class Binformation content is similar to that in Figure 1, except that it is easier to judge totalmachine performance. Among the machines for which we have results, the Hitachi has thehighest performance, even though its performance per node is fairly poor. Good scalabilityand large system size make up for that.Efficiency | Figure 3 shows the machine e�ciency on MG class B. E�ciency is total

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy
 (

%
 o

f p
ea

k)

Number of processors

IBM SP(Wide Nodes)
IBM SP(P2SC 120MHz)

SUN Ultra Enterprise 4000
Cray T3D

CRAY J90 MPI SMP
SGI Origin 2000
Hitachi SR2201
HP Exemplar-S

Fig. 3. Machine E�ciency for MG Class B3The jagedness of the T3D line is an artifact of power-of-two processor allocation on the T3D, and doesnot reect network performance.

7Mop/s divided by the peak Mop/s, expressed as a percentage.The most interesting point of this graph is that it shows that the SP-SC and Originobtain their high per-node performance not only through a high peak performance, but byalso attaining a relatively large fraction of it. This result emphasizes the inappropriatenessof relying on peak performance to judge the capabilities of RISC-based machines. Noticethat vector machines (such as the Cray J90) typically attain a much higher percentage ofpeak performance on appropriate, well-written codes than do cache-based machines.Comparison of NPB 2 and NPB 1 performance | It can be insightful to compareNPB 2 and NPB 1 results. While NPB 2 results can be reported in Mop/s/processor,NPB 1 implementations may have di�erent operation counts. Instead of Mop/s/processor,we plot a the ratio of NPB 2 run time to the NPB 1 run time. Because NPB 1 and NPB 2data are not always available on the same numbers of processors, we calculate a ratio basedon a curve �t to the NPB 2 results. Figure 4 shows the NPB 2 to NPB 1 run time ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32 64 128

R
at

io
 o

f N
P

B
 2

 to
 N

P
B

 1
 r

un
tim

e

Number of processors

Origin
BT
LU
FT
IS

IBM SP
(Wide Nodes)

BT
LU
FT
IS

Fig. 4. NPB 2/1 run time ratio for Origin and SP-WNfor the BT, LU, FT and IS benchmarks on the Origin and SP-WN. Higher numbers meanthat NPB 1 performs better relative to NPB 2. Positive slopes show NPB 1 scaling better,and negative slopes show NPB 2 scaling better.Interpreting NPB 1 performance as the \peak achievable" performance on a particularmachine, and NPB 2 performance as \normal" performance of a portable code, the datasuggest that the SP-WN design makes it relatively easy to obtain a high percentage ofpeak performance. On the Origin they suggest that is much harder to achieve goodperformance, but careful architecture-speci�c tuning can improve the situation considerably.A confounding factor is that the NPB 1 Origin implementations use a shared memory modelwith automatic compiler parallelization.It is also clear from Figure 4 that NPB 2 codes scale about as well as the IBMimplementations on the SP-WN, but that NPB 2 codes scale much better than Cray/SGIimplementations on the Origin.

86 Analysis/ConclusionsNPB 2 results show that there has been a recent improvement of the quality of RISCprocessors for scienti�c computing. Whereas actual attainable performance used to beabout 10% of the peak speed of the processor, the IBM RS/6000 and SGI R10000 routinelyobtain more than 20% of peak speed.The combined results of NPB 1 and NPB 2 provide insight in the attainable performanceof modern computer architectures on signi�cant scienti�c applications, both by the general,careful user, and the expert vendor programmer. The di�erent benchmarks in the NPB2 suite stress di�erent aspects of the hardware and software in the computer system.For example, IS and FT require e�cient implementation of the all-to-all communicationroutines, and need large network bandwidth to accommodate large data transfers. SP haspoor data reuse, unlike BT and LU which spend a major fraction of their execution timeinverting dense 5� 5 matrices, so it requires high memory bandwidth. BT and LU, on theother hand, stress instruction cache and register use, due to the sizeable loops in whichmost of the work is performed. Potential buyers can now rate machines on these di�erentperformance aspects in an objective fashion using the �xed-source-code format of NPB 2.The current release of the benchmark codes, NPB 2.2, targets distributed-memorymachine models with explicit message-passing communications. This design does not fullytest shared-memory or vector architectures. We plan to address these limitations in futurework.AcknowledgmentsThe NAS parallel systems group was very helpful in many stages of collecting the NPB 2results. Lou Zechtzer, Archie Deguzman, James Jones, and Mary Hultquist went beyondthe call of duty to help out when there were problems or special requests. We thank BarbaraHorner-Miller for providing access to the JPL CRI T3D machine and allowing us to greatlyexceed our CPU quota. The Sun numbers were obtained on the COMPS cluster at NERSC.References[1] Bailey, D. H., et al.: The NAS Parallel Benchmarks, International Journal of SupercomputerApplications, Vol. 5, No. 3, (Fall 1991), pp. 63-73.[2] Bailey, D. H.; Barton, J.T.; Lasinski, T. A.; and Simon, H. D., eds: \The NAS ParallelBenchmarks," NASA Technical Memorandum 103863, NASA Ames Research Center, Mo�ettField, CA, 94035-1000, July 1993 http://www.nas.nasa.gov/NAS/NPB/.[3] Bailey, D. H.; Harris, T.; Saphir, W.; van der Wijngaart, R.; Woo, A.; and Yarrow, M., \TheNAS Parallel Benchmarks 2.0,"NASA Technical Report NAS-95-020, NASA Ames ResearchCenter, Mo�ett Field, CA, 94035-1000, December 1995 http://www.nas.nasa.gov/NAS/NPB/.[4] Bailey, D. H.; and Saini, S., \The NAS Parallel Benchmarks Results 12-95,"NASA TechnicalReport NAS-95-021, NASA Ames Research Center, Mo�ett Field, CA, 94035-1000, December1995 http://www.nas.nasa.gov/NAS/NPB/.[5] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 1.1,July, 1995, http://www.mcs.anl.gov/mpi/mpi-report-1.1/mpi-report.html.[6] Dongarra, J. J.: The LINPACK Benchmark: An Explanation. SuperComputing, Spring 1988,pp. 10-14.

