Testing General Relativity at Cosmological Scales: Effects of Spatial Curvature
 Jason Dossett
 Advisor:Mustapha Ishak

Motivations for Testing GR?

- Cosmic acceleration
- Dark Energy
- Modification to gravity at cosmological scales.
- Extend tests to other gravity theories.
- Are gravity models proposed for quantizing gravity or unifying the four forces correct?

Methods of Distinguishing between GR and Modifications to Gravity

- Looking for inconsistencies between expansion history and growth of structure
- The growth rate of large scale structure is coupled to the expansion history via Einstein's equations. These two effects must be consistent.
- "Trigger parameters", γ. The logarithmic growth rate $f=d \ln \delta / d \ln a$ can be approximated by:

$$
f=\Omega_{m}^{\gamma}
$$

For different gravity models γ has a unique value.

- Gravitational Slip and Modifications to the Growth Eqns.

Growth Equations

Perturbed FLRW Metric.

$$
\begin{aligned}
& d s^{2}=a(\tau)^{2}\left[-(1+2 \psi) d \tau^{2}+(1-2 \phi) \gamma_{i j} d x^{i} d x^{j}\right] \\
& \text { where } \\
& \gamma_{i j}=\delta_{i j}\left[1+\frac{K}{4}\left(x^{2}+y^{2}+z^{2}\right)\right]^{-2} \text { and } \quad K=-\Omega_{k} \mathcal{H}_{0}^{2}
\end{aligned}
$$

Modified Growth Equations

$$
\begin{gathered}
\left(k^{2}-3 K\right) \phi=-4 \pi G a^{2} \sum_{i} \rho_{i} \Delta_{i} Q \\
k^{2}(\psi-R \phi)=-12 \pi G a^{2} \sum_{i} \rho_{i}\left(1+w_{i}\right) \sigma_{i} Q \\
k^{2}(\psi+\phi)=\frac{-8 \pi G a^{2}}{1-3 K / k^{2}} \sum_{i} \rho_{i} \Delta_{i} \mathcal{D}-12 \pi G a^{2} \sum_{i} \rho_{i}\left(1+w_{i}\right) \sigma_{i} Q . \\
\mathcal{D}=Q(1+R) / 2 \\
\quad \text { where } \\
\Delta_{i}=\delta_{i}+3 \mathcal{H} \frac{q_{i}}{k}
\end{gathered}
$$

Evolving the Modified Gravity Parameters: Binning Methods

Both Traditional binning and Hybrid Method evolve in redshift as

$$
\begin{aligned}
& X(k, z)=\frac{1+X_{z_{1}}(k)}{2}+\frac{X_{z_{2}}(k)-X_{z_{1}}(k)}{2} \tanh \frac{z-z_{d i v}}{z_{t w}}+\frac{1-X_{z_{2}}(k)}{2} \tanh \frac{z-z_{T G R}}{z_{t w}}, \\
& \underbrace{\substack{X_{z_{1}}(\mathrm{k}) \\
x_{22}(\mathbf{k})}}_{z_{\text {div }}^{\prime}} \underbrace{2}_{z_{\text {TGR }}} \\
& \text { Scale Dependence }
\end{aligned}
$$

Traditional Binning Method

Hybrid Method

$$
X_{z_{1}}(k)=X_{1} e^{-k / k_{c}}+X_{2}\left(1-e^{-k / k_{c}}\right)
$$

$$
X_{z_{2}}(k)=X_{3} e^{-k / k_{c}}+X_{4}\left(1-e^{-k / k_{c}}\right),
$$

Evolving the Modified Gravity Parameters: Binning Methods

Both Traditional binning and Hybrid Method evolve in redshift as

Evolving the Modified Gravity Parameters: Functional evolution

In this evolution method we assume scale independent evolution. The parameters evolve in terms of the scale factor as:

$$
X(a)=\left(X_{0}-1\right) a^{s}+1
$$

As a function of redshift with $\mathrm{s}=3$

CORRELATIONS WITH CURVATURE PARAMETER Ω_{k}

- What can we predict analytically?
- We would expect the MG parameters to be positively correlated with Ω_{k}

$$
k^{2}(\psi+\phi)=\frac{-8 \pi G a^{2}}{1-3 K / k^{2}} \sum_{i} \rho_{i} \Delta_{i} \mathcal{D}-12 \pi G a^{2} \sum_{i} \rho_{i}\left(1+w_{i}\right) \sigma_{i} Q . \quad K=-\Omega_{k} \mathcal{H}_{0}^{2}
$$

- Use current data to explore correlations.
- WMAP 7 year temperature and polarization spectra
- Union 2 Supernovae Data
- BAO from Two-Degree Field, SDSS-DR7, and WiggleZ
- Matter Power Spectrum (MPK) from SDSS-DR7
- ISW-galaxy cross-correlations (SDSS-LRG, 2MASS, NVSS)
- Refined HST COSMOS 3D weak lensing tomography.

Correlations with curvature PARAMETER Ω_{k} CONT'D

Traditional Binning

- Can assuming a flat universe when the universe is actually curved affect MG parameter constraints?
- Generate simulated higher precision data to see.

Effect of curvature on MG PARAMETER CONSTRAINTS

Effect of curvature on MG PARAMETER CONSTRAINTS CONT'D

$\Omega_{k}=0.05$

$\Omega_{k}=-0.1$

Effect of curvature on MG PARAMETER CONSTRAINTS CONT'D

Traditional Binning Evolution	Hybrid Evolution	Functional Form Evolution

Conclusions

- Curvature is positively correlated with the MG parameters Q and D.
- Ignoring curvature can cause an apparent deviation from GR.
- Negatively curved models deviate more significantly than do positively curved models.
- Must include Ω_{k} in parameter analysis along with MG and other cosmological parameters when using future data.

AcKnowledgments

- DOE Office of Science Graduate Fellowship.
- DOE Grant DE-FG02-10ER41310.
- Part of the calculations for this work were performed on Cosmology Computer Cluster funded by Hoblitzelle Foundation.

Bibliography

J. Dossett, M. Ishak, and J. Moldenhauer, Phys. Rev. D.84, 123001 (2011), arXiv:1109.4583
J. Dossett, J. Moldenhauer, and M. Ishak, Phys. Rev. D.84, 023012, (2011), arXiv:1103.1195.
R. Bean and M. Tangmatitham, Phys. Rev. D.81, 083534 (2010), arXiv:1002.4197.
G. Zhao et. al. Phys. Rev. D.81, 103510 (2010), airXiv:1003.0001.
S. Daniel and E. Linder Phys. Rev. D.82, 103523 (2010), arXiv:1008.0397.
C. Blake et al. Accepted for publication in Mon. Not. R. Astron. Soc.(2011), arXiv:1108.2635.
B. A. Reid et al. Mon. Not. R. Astron. Soc.Volume 404, 60 (2010), arXiv:0907.1659.
W. J. Percival et al. Mon. Not. R. Astron. Soc.Volume 401, 2148 (2010), arXiv:0907.1660.
J.Dunkley, E.Komatsu, D.L.Larson, and M.R.Nolta The WMAP Team likelihood http://lambda.gsfc.nasa.gov/; D. Larson et al., Astrophys. J. Suppl. Ser. 192, 16 (2011), arXiv:1001.4635; N. Jarosik et al., Astrophys. J. Suppl. Ser. 192, 14 (2011), arXiv:1001.4744; E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011), arXiv:1001.4538.
R. Àmanullah et al., Astrophys. J. 716, 712 (2010), arXiv:1004.1711.
S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, and N. Bahcall, Phys. Rev. D.78, 043519 (2008), arXiv:0801.0642.
C. Hirata, S. Ho, N.Padmanabhan, U. Seljak, and N. Bahcall, Phys. Rev. D.78, 043520 (2008), arXiv:0801.0644.
T. Schrabback et al., Astron. Astrophys. 516, A63 (2010), arXiv:0911.0053.
A. Lewis and S. Bridle, Phys. Rev. D.66, 103511 (2002). http://cosmologist.info/cosmomc/.
A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538, 473 (2000); http://camb.info.

ISITGR

- ISiTGR is publicly available at:
http://www.utdallas.edu/~jdossett/isitgr
- J. Dossett, M. Ishak, and J. Moldenhauer, Phys. Rev. D 84, 123001 (2011), arXiv:1109.4583
- J. Dossett, M. Ishak, Phys. Rev. D 86, 103008, (2012), arXiv:1205.2422

