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Abstract 
This paper tells the story of the development of BETA: a 
programming language with just one abstraction 
mechanism, instead of one abstraction mechanism for each 
kind of program element (classes, types, procedures, 
functions, etc.). The paper explains how this single 
abstraction mechanism, the pattern, came about and how it 
was designed to be so powerful that it covered the other 
mechanisms. 

In addition to describing the technical challenge of 
capturing all programming elements with just one 
abstraction mechanism, the paper also explains how the 
language was based upon a modeling approach, so that it 
could be used for analysis, design and implementation. It 
also illustrates how this modeling approach guided and 
settled the design of specific language concepts. 

The paper compares the BETA programming language with 
other languages and explains how such a minimal language 
can still support modeling, even though it does not have 
some of the language mechanisms found in other object-
oriented languages. 

Finally, the paper tries to convey the organization, working 
conditions and social life around the BETA project, which 
turned out to be a lifelong activity for Kristen Nygaard, the 
authors of this paper, and many others. 

Categories and subject descriptors: D.3.2 
[PROGRAMMING LANGUAGES]: Language 
Classifications – BETA; D.3.3 [PROGRAMMING 
LANGUAGES]: Language Constructs and Features; K.2 
[HISTORY OF COMPUTING] Software; D.1.5 
[PROGRAMMING TECHNIQUES]: Object-oriented 
Programming; General Terms: Languages; Keywords: 
programming languages, object-oriented programming, 
object-oriented analysis, object-oriented design, object-
oriented modeling, history of programming. 

 
 

1. Introduction 
This paper is a description of what BETA is, why it became 
what it is and why it lacks some of the language constructs 
found in other languages. In addition, it is a history of the 
design and implementation of BETA, its main uses and its 
main influences on later research and language efforts. 

BETA is a programming language that has only one 
abstraction mechanism, the pattern, covering abstractions 
like record types, classes with methods, types with 
operations, methods, and functions. Specialization applies 
to patterns in general, thus providing a class/subclass 
mechanism for class patterns, a subtype mechanism for type 
patterns, and a specialization mechanism for methods and 
functions. The latter implies that inheritance is supported 
for methods – another novel characteristic of BETA. A 
pattern may be virtual, providing virtual methods as in 
other object-oriented languages. Since a pattern may be 
used as a class, virtuality also supports virtual classes (and 
types). 

This paper is also a contribution to the story of the late 
Kristen Nygaard, one the pioneers of computer science, or 
informatics as he preferred to call it. Nygaard started the 
BETA project as a continuation of his work on SIMULA 
and system description. This was the start of a 25-year 
period of working with the authors, not only on the design 
of the BETA language, but also on many other aspects of 
informatics. 

The BETA project was started in 1976 and was originally 
supposed to be completed in a year or two. For many 
reasons, it evolved into an almost lifelong activity 
involving Nygaard, the authors of this paper and many 
others. The BETA project became an endeavor for 
discussing issues related to programming languages, 
programming and informatics in general. 

The BETA project covers many different kinds of activities 
from 1976 until today. We originally tried to write this 
paper in historic sequence, and so that it can be read with 
little or no prior knowledge of BETA. We have not, 
however, organized the paper according to time periods, 
since the result included a messy mix of distinct types of 



 

events and aspects, too much overlap, and too little focus 
on important aspects. The resulting paper is organized as 
follows: 

� Section 2 describes the background of the project. 
� Section 3 describes the course of the BETA project, 

including people, initial research ideas, project 
organization and the process as well as personal 
interactions.  
� Section 4 describes the motivation and development of 

the modeling aspects and the conceptual framework of 
BETA.  
� Section 5 describes parts of the rationale for the BETA 

language, the development of the language, and essential 
elements of BETA.  
� Section 6 describes the implementation of BETA.  
� Section 7 describes the impact and further development 

of BETA. 
Sections 3-6 form the actual story of BETA enclosed by 
background (section 2) and impact (section 7). Sections 3-6 
describe distinct aspects of BETA. The story of the overall 
BETA project in section 3 forms the foundation/context for 
the following aspects. This is how it all happened. 
Modeling is essential for the design of BETA. This 
perspective on design of and programming in object-
oriented languages is presented in section 4. Throughout 
the presentation of the various language elements in the 
following section the choices are discussed and motivated 
by the conceptual framework in section 4. Section 5 
presents the major elements of BETA. Because BETA may 
be less known, a more comprehensive presentation is 
necessary in order to describe its characteristics. However, 
the presentation is still, and should be, far from a complete 
definition of the language. Finally, the implementation of 
BETA, historically mainly following after the language 
design, is outlined in section 6.  

In order to give a sequential ordering of the various events 
and activities, a timeline for the whole project is shown in 
the appendix. In the text events shown in the timeline are 
printed in Tunga font. For example, text like: “… BETA 
Project start …” means that this is an event shown in the 
time line. 

2. Background 
This section describes the background and setting for the 
early history of BETA. It includes personal backgrounds 
and a description of the important projects leading to the 
BETA project. 

2.1 People 
The BETA project was started in 1976 at the Computer 
Science Department, Aarhus University (DAIMI). Bent 
Bruun Kristensen and Ole Lehrmann Madsen had been 

students at DAIMI since 1969 – Birger Møller-Pedersen 
originally started at the University of Copenhagen, but 
moved to DAIMI in 1974. Nygaard was Research Director 
at the Norwegian Computing Centre (NCC), Oslo, where 
the SIMULA languages [32-34, 130] were developed in the 
sixties. 

In the early seventies, the programming language scene was 
strongly influenced by Pascal [161] and structured 
programming. SIMULA was a respected language, but not 
in widespread use. Algol 60 [129] was used for teaching 
introductory programming at DAIMI. Kristensen and 
Madsen were supposed to be introduced to SIMULA as the 
second programming language in their studies. However, 
before that happened Pascal arrived on the scene in 1971, 
and most people were fascinated by its elegance and 
simplicity as compared to Algol. Pascal immediately 
replaced SIMULA as the second language and a few years 
later Pascal also replaced Algol as the introductory 
language for teaching at DAIMI. A few people, however, 
found SIMULA superior to Pascal: the Pascal record and 
variant record were poor substitutes for the SIMULA class 
and subclass. 

Although SIMULA was not in widespread use, it had a 
strong influence on the notion of structured programming 
and abstract data types. The main features of SIMULA 
were described in the famous book by Dahl, Dijkstra and 
Hoare on structured programming [29]. Hoare’s 
groundbreaking paper Proof of Correctness of Data 
Representation [56] introduced the idea of defining abstract 
data types using the SIMULA class construct and the 
notion of class invariant. 

Kristen Nygaard visiting professor at DAIMI. Nygaard 
became a guest lecturer at DAIMI in 1973; in 1974/75 he 
was a full-time visiting professor, and after that he 
continued as a guest lecturer for several years. Among 
other things, Nygaard worked with trade unions in Norway 
to build up expertise in informatics. At that time there was a 
strong interest among many students at DAIMI and other 
places in the social impact of computers. Nygaard’s work 
with trade unions was very inspiring for these students. 
During the ’70s and ’80s a number of similar projects were 
carried out in Scandinavia that eventually led to the 
formation of the research discipline of system development 
with users, later called participatory design. The current 
research groups at DAIMI in object-oriented software 
systems and human computer interaction are a direct result 
of the cooperation with Nygaard. This is, however, another 
story that will not be told here. The design of BETA has 
been heavily influenced by Nygaard's overall perspective 
on informatics including social impact, system description 
with users, philosophy, and programming languages. For 
this reason the story of BETA cannot be told without 
relating it to Nygaard’s other activities. 



 

Morten Kyng was one of the students at DAIMI who was 
interested in social aspects of computing. In 1973 he 
listened to a talk by Nygaard at the Institute of Psychology 
at Aarhus University. After the talk he told Nygaard that he 
was at the wrong place and invited him to repeat his talk at 
DAIMI. Kyng suggested to DAIMI that Nygaard be invited 
as a guest lecturer. The board of DAIMI decided to do so, 
since he was considered a good supplement to the many 
theoretical disciplines in the curriculum at DAIMI at that 
time. Madsen was a student representative on the board; he 
was mainly interested in compilers and was thrilled about 
Nygaard being a guest lecturer. He thought that DAIMI 
would then get a person that knew about the SIMULA 
compiler. This turned out not to be the case: compiler 
technology was not his field. This was our first indication 
that Nygaard had a quite different approach to informatics 
and language design from most other researchers. 

2.2 The SIMULA languages 
Since SIMULA had a major influence on BETA we briefly 
mention some of the highlights of SIMULA. A 
comprehensive history of the SIMULA languages may be 
found in the HOPL-I proceedings [35] and in [107]. 
SIMULA and object-oriented programming were 
developed by Ole-Johan Dahl and Nygaard. Nygaard’s 
original field was operations research and he realized early 
on that computer simulations would be a useful tool in this 
field. He then made an alliance with Dahl, who – as 
Nygaard writes in an obituary for Dahl [132] – had an 
exceptional talent for programming. This unique 
collaboration led to the first SIMULA language, SIMULA 
I, which was a simulation language. Dahl and Nygaard 
quickly realized that the concepts in SIMULA I could be 
applied to programming in general and as a result they 
designed SIMULA 67 – later on just called SIMULA. 
SIMULA is a general-purpose programming language that 
contains Algol as a subset. 

Users of today’s object-oriented programming languages 
are often surprised that SIMULA contains many of the 
concepts that are now available in mainstream object-
oriented languages: 

� Class and object: A class defines a template for creating 
objects. 
� Subclass: Classes may be organized in a classification 

hierarchy by means of subclasses. 
� Virtual methods: A class may define virtual methods that 

can be redefined  (sometimes called overridden) in 
subclasses. 
� Active objects: An object in SIMULA is a coroutine and 

corresponds to a thread. 
� Action combination: SIMULA has an “inner” construct 

for combining the statement-parts of a class and a 
subclass. 

� Processes and schedulers: It is straightforward in 
SIMULA to write new concurrency abstractions 
including schedulers.  
� Frameworks: SIMULA provided the first object-oriented 

framework in form of class Simulation, which provided 
SIMULA I’s simulation features. 
� Automatic memory management, including garbage 

collection. 
Most of the above concepts are now available in object-
oriented languages such as C++ [148], Eiffel [125], Java 
[46], and C# [51]. An exception is the SIMULA notion of 
an active object with its own action sequence, which 
strangely enough has not been adopted by many other 
languages (one exception is UML). For Dahl and Nygaard 
it was essential to be able to model concurrent processes 
from the real world.  

The ideas of SIMULA have been adopted over a long 
period. Before object orientation caught on, SIMULA was 
very influential on the development of abstract data types. 
Conversely, ideas from abstract data types later led to an 
extension of SIMULA with constructs like public, private 
and protected – originally proposed by Jakob Palme [137]. 

2.3 The DELTA system description language 
When Nygaard came to DAIMI, he was working on system 
description and the design of a new language for system 
description based on experience from SIMULA. It turned 
out that many users of SIMULA seemed to get more 
understanding of their problem domain by having to 
develop a model using SIMULA than from the actual 
simulation results. Nygaard together with Erik Holbæk-
Hanssen and Petter Håndlykken had thus started a project 
on developing a successor to SIMULA with main focus on 
system description, rather than programming. This led to a 
language called DELTA [60].   

DELTA means ‘participate’ in command form in 
Norwegian. The name indicates another main goal of the 
DELTA language. As mentioned, Nygaard had started to 
include users in the design of systems and DELTA was 
meant as a language that could also be used to 
communicate with users – DELTA (participate!) was meant 
as an encouragement for users to participate in the design 
process. 

The goal of DELTA was to improve the SIMULA 
mechanisms for describing real-world systems. In the real 
world, activities take place concurrently, but real 
concurrency is not supported by SIMULA. To model 
concurrency SIMULA had support for so-called quasi-
parallel systems. A simulation program is a so-called 
discrete event system where a simulation is driven by 
discrete events generated by the objects of the simulation. 
All state changes had to be described in a standard 
imperative way by remote procedure calls (message calls), 



 

assignments and control structures. DELTA supports the 
description of true concurrent objects and uses predicates to 
express state changes and continuous changes over time. 
The use of predicates and continuous state changes implied 
that DELTA could not be executed, but as mentioned the 
emphasis was on system description. 

DELTA may be characterized as a specification language, 
but the emphasis was quite different from most other 
specification languages at that time such as algebraic data 
types, VDL, etc. These other approaches had a 
mathematical focus in contrast to the system description 
(modeling) focus of DELTA. 

DELTA had a goal similar to that of the object-oriented 
analysis and design (OOA/OOD) methodologies (like that 
of Coad and Yourdon [25]) that appeared subsequently in 
the mid-’80s. The intention was to develop languages and 
methodologies for modeling real-world phenomena and 
concepts based on object-oriented concepts. Since 
SIMULA, modeling has always been an inherent part of 
language design in the Scandinavian school of object 
orientation. The work on DELTA may be seen as an 
attempt to further develop the modeling capabilities of 
object-orientation. 

The report describing DELTA is a comprehensive 
description of the language and issues related to system 
description. DELTA has been used in a few projects, but it 
is no longer being used or developed.  

The system concept developed as part of the DELTA 
project had major influence on the modeling perspective of 
BETA – in Section 4.1 we describe the DELTA system 
concept as interpreted for BETA. 

2.4 The Joint Language Project 
BETA project start. The BETA project was started in 1976 
as part of what was then called the Joint Language Project 
(JLP). The JLP was a joint project between researchers at 
DAIMI, The Regional Computing Center at the University 
of Aarhus (RECAU), the NCC and the University of 
Aalborg.  

Joint Language Project start. The initiative for the JLP was 
taken in the autumn of 1975 by the late Bjarner Svejgaard, 
director of RECAU. Svejgaard suggested to Nygaard that it 
would be a good idea to define a new programming 
language based on the best ideas from SIMULA and 
Pascal. Nygaard immediately liked the idea, but he was 
more interested in a successor to SIMULA based on the 
ideas from DELTA. In the BETA Language Development 
report from November 1976 [89] the initial purpose of the 
JLP was formulated as twofold: 

1. To develop and implement a high-level programming 
language as a projection of the DELTA system 

description language into the environment of 
computing equipment. 

2. To provide a common central activity to which a 
number of research efforts in various fields of 
informatics and at various institutions could be related. 

The name GAMMA was used for this programming 
language. 

JLP was a strange project: on the one hand there were many 
interesting discussions of language issues and problems, 
while on the other hand there was no direct outcome. At 
times we students on the project found it quite frustrating 
that there was no apparent progress. We imagine that this 
may have been frustrating for the other members of the 
project as well. In hindsight we believe that the reason for 
this may have been a combination of the very different 
backgrounds and interests of people in the team combined 
with Nygaard’s lack of interest in project management. 
Nygaard’s strengths were his ability to formulate and 
pursue ambitious research goals, and his approach to 
language design with emphasis on modeling was unique. 

Many issues were discussed within the JLP, mainly related 
to language implementation and some unresolved questions 
about the DELTA language. As a result six subprojects 
were defined: 

� Distribution and maintenance. This project was to 
discuss issues regarding software being deployed to a 
large number of computer installations of many different 
types. This included questions such as distribution 
formats, standardized updating procedures, 
documentation, interfaces to operating systems, etc.  
� Value types. The distinction between object and value 

was important in SIMULA and remained important in 
DELTA and BETA. For Nygaard classes were for 
defining objects and types for defining values. He found 
the use of the class concept for defining abstract data 
types a ‘doubtful approach, easily leading to conceptual 
confusion’ with regard to objects and values. In this 
paper we use the term value type1 when we refer to types 
defining values. The purpose of this subproject was to 
discuss the definition of value types. We return to value 
types in Sections 5.1.1 and 5.8.2. 
� Control structures within objects. The purpose of this 

subproject was to develop the control structures for 
GAMMA.  
� Contexts. The term “system classes” was used in 

SIMULA to denote classes defining a set of predefined 
concepts (classes) for a program. The classes SIMSET 
and SIMULATION are examples of such system classes. 

                                                                 
1 In other contexts, we use the term type, as is common within 

programming languages. 



 

Møller-Pedersen later revised and extended the notion of 
system classes and proposed the term “context”. In 
today’s terminology, class SIMSET was an example of a 
class library providing linked lists and class 
SIMULATION was an example of a class framework (or 
application framework). 
� Representative states. A major problem with concurrent 

programs was (and still is) to ensure that interaction 
between components results only in meaningful states of 
variables – denoted representative states in JLP. At that 
time, there was much research in concurrent 
programming including synchronization, critical regions, 
monitors, and communication. This subproject was to 
develop a conceptual approach to this problem, based 
upon the concepts of DELTA and work by Lars 
Mathiassen and Morten Kyng. 
� Implementation language. In the early seventies, it was 

common to distinguish between general programming 
languages and implementation languages. An 
implementation language was often defined as an 
extended subset of the corresponding programming 
language. The subset was supposed to contain the parts 
that could be efficiently implemented – an 
implementation language should be as efficient as 
possible to support the general language. The extended 
part contained low level features to access parts of the 
hardware that could not be programmed with the general 
programming language. It was decided to define an 
implementation language called BETA as the 
implementation language for GAMMA. The original 
team consisted of Nygaard, Kristensen and Madsen – 
Møller-Pedersen joined later in 1976. 

As described in Section 3.1 below, the BETA project was 
based on an initial research idea. This implied that there 
was much more focus on the BETA project than on the 
other activities in JLP. For the GAMMA language there 
were no initial ideas except designing a new language as a 
successor of SIMULA based on experience with DELTA 
and some of the best ideas of Pascal. In retrospect, 
language projects, like most other projects, should be based 
on one or more good ideas – otherwise they easily end up 
as nothing more than discussion forums. JLP was a useful 
forum for discussion of language ideas, but only the BETA 
project survived. 

2.5 The BETA name and language levels 
The name BETA was derived from a classification of 
language levels introduced by Nygaard, introducing a 
number of levels among existing and new programming 
languages. The classification by such levels would support 
the understanding of the nature and purpose of individual 
languages. The classification also motivated the existence 
of important language levels.  

� The δ-level contains languages for system description 
and has the DELTA language as an example. A main 
characteristic of this level is that languages are non-
executable. 

� The γ-level contains general-purpose programming 
languages. SIMULA, Algol, Pascal, etc. are all examples 
of such languages. The JLP project was supposed to 
develop a new language to be called GAMMA. 
Languages at this level are by nature executable. 

� The β-level contains implementation languages – and 
BETA was supposed to be a language at this level. 

� The α-level contains assembly languages – it is seen as 
the basic “machine” level at which the actual translation 
takes place and at which the systems are run.  

The level sequence defines the name of the BETA 
language, although the letter β was replaced by a spelling of 
the Greek letter β. Other names were proposed and 
discussed from time to time during the development of 
BETA. At some point the notion of beta-software became a 
standard term and this created a lot of confusion and jokes 
about the BETA language and motivated another name. For 
many years the name SCALA was a candidate for a new 
name – SCALA could mean SCAndinavian Language, and 
in Latin it means ladder and could be interpreted as 
meaning something ‘going up’. The name of a language is 
important in order to spread the news appropriately, but 
names somehow also appear out of the blue and tend to 
have lives of their own. BETA was furthermore well 
known at that time and it was decided that it did not make 
sense to reintroduce BETA under a new name. 

3. The BETA project 
The original idea for BETA was that it should be an 
implementation language for a family of application 
languages at the GAMMA level. Quite early2 during the 
development of BETA, however, it became apparent that 
there was no reason to consider BETA ‘just’ an 
implementation language. After the point when BETA was 
considered a general programming language, we considered 
it (instead of GAMMA) to be the successor of SIMULA. 
There were good reasons to consider a successor to 
SIMULA; SIMULA contains Algol as a subset, and there 
was a need to simplify parts of SIMULA in much the same 
way as Pascal is a simplification of Algol. In addition we 
thought that the new ideas arriving with BETA would 
justify a new language in the SIMULA style. 

3.1 Research approach 
The approach to language design used for BETA was 
naturally highly influenced by the SIMULA tradition. The 

                                                                 
2 In late 1978 and early 1979. 



 

SIMULA I language report of 1965 opens with these 
sentences: 

“The two main objectives of the SIMULA language are: 

� To provide a language for a precise and standardised 
description of a wide class of phenomena, belonging to 
what we may call “discrete event systems”. 

� To provide a programming language for an easy 
generation of simulation programs for “discrete event 
systems”.” 

Thus, SIMULA I was considered as a language for system 
description as well as for programming. It was therefore 
obvious from the beginning that BETA should be used for 
system description as well as for programming. 

In the ’70s the SIMULA/BETA communities used the term 
system description to correspond to the term model 
(analysis and design models) used in most methodologies. 
We have always found it difficult to distinguish analysis, 
design and implementation. This was because we saw 
programming as modeling and program executions as 
models of relevant parts of the application domain. We 
considered analysis, design and implementation as 
programming at different abstraction levels. 

The original goal for JLP and the GAMMA subproject was 
to develop a general purpose programming language as a 
successor to SIMULA. From the point in time where BETA 
was no longer just considered to be an implementation 
language, the research goals for BETA were supplemented 
by those for GAMMA. All together, the research approach 
was based on the following assumptions and ideas: 

� BETA should be a modeling language.  
� BETA should be a programming language. The most 

important initial idea was to design a language based on 
one abstraction mechanism. In addition BETA should 
support concurrent programming based on the coroutine 
mechanisms of SIMULA. 

� BETA should have an efficient implementation. 

3.1.1 Modeling and conceptual framework 
Creating a model of part of an application domain is always 
based on certain conceptual means used by the modeler. In 
this way modeling defines the perspective of the 
programmer in the programming process. Object-oriented 
programming is seen as one perspective on programming 
identifying the underlying model of the language and 
executions of corresponding programs.  

Although it was realized from the beginning of the 
SIMULA era (including the time when concepts for record 
handling were developed by Hoare [52-54]) that the 
class/subclass mechanism was useful for representing 
concepts including generalizations and specializations, 
there was no explicit formulation of a conceptual 

framework for object-oriented programming. The term 
object-oriented programming was not in use at that time 
and neither were terms such as generalization and 
specialization. SIMULA was a programming language like 
Algol, Pascal and FORTRAN – it was considered superior 
in many aspects, but there was no formulation of an object-
oriented perspective distinguishing SIMULA from 
procedural languages. 

In the early seventies, the notion of functional 
programming arrived, motivated by the many problems 
with software development in traditional procedural 
languages. One of the strengths of functional programming 
was that it was based on a sound mathematical foundation 
(perspective). Later Prolog and other logic programming 
languages arrived, also based on a mathematical 
framework. 

We did not see functional or logic programming as the 
solution: the whole idea of eliminating state from the 
program execution was contrary to our experience of the 
benefits of objects. We saw functional/logic programming 
and the development of object-oriented programming as 
two different attempts to remedy the problems with 
variables in traditional programming. In functional/logic 
programming mutable variables are eliminated – in object-
oriented programming they are generalized into objects. 
We return to this issue in Section 4.2. 

For object-oriented programming the problem was that 
there was no underlying sound perspective. It became a 
goal of the BETA project to formulate such a conceptual 
framework for object-oriented programming. 

The modeling approach to designing a programming 
language provides overall criteria for the elements of the 
language. Often a programming language is designed as a 
layer on top of the computer; this implies that language 
mechanisms often are designed from technical criteria. 
BETA was to fulfill both kinds of criteria. 

3.1.2 One abstraction mechanism 
The original design idea for BETA was to develop a 
language with only one abstraction mechanism: the pattern. 
The idea was that patterns should unify abstraction 
mechanisms such as class, procedure, function, type, and 
record. Our ambition was to develop the ultimate 
abstraction mechanism that subsumed all other abstraction 
mechanisms. In the DELTA report, the term pattern is used 
as a common term for class, procedure, etc. According to 
Nygaard the term pattern was also used in the final stages 
of the SIMULA project. For SIMULA and DELTA there 
was, however, no attempt to define a language mechanism 
for pattern. 

The reason for using the term pattern was the observation 
that e.g. class and procedure have some common aspects: 
they are templates that may be used to create instances. The 



 

instances of a class are objects and the instances of 
procedures are activation records.  

 

Figure 1 Classification of patterns 
In the beginning it was assumed that BETA would provide 
other abstraction mechanisms as specializations 
(subpatterns) of the general pattern concept illustrated in 
Figure 1. In other words, BETA was initially envisaged as 
containing specialized patterns like class, procedure, 
type, etc. A subpattern of class as in 

MyClass: class (# ... #) 

would then correspond to a class definition in SIMULA. In 
a similar way a subpattern of procedure would then 
correspond to a procedure declaration. It should be possible 
to use a general pattern as a class, procedure, etc. As 
mentioned in Section 5.8.5, such specialized patterns were 
never introduced. 

Given abstraction mechanisms like class, procedure, 
function, type and process type, the brute-force approach to 
unification would be to merge the elements of the syntax 
for all of these into a syntax describing a pattern. The 
danger with this approach might be that when a pattern is 
used e.g. as a class, only some parts of the syntactic 
elements might be meaningful. In addition, if the 
unification is no more than the union of class, procedure, 
etc., then very little has been gained.  

The challenges of defining a general pattern mechanism 
may then be stated as follows: 

� The pattern mechanism should be the ultimate 
abstraction mechanism, subsuming all other known 
abstraction mechanisms. 

� The unification should be more than just the union of 
existing mechanisms. 

� All parts of a pattern should be meaningful, no matter 
how the pattern is applied. 

The design of the pattern mechanism thus implied a heavy 
focus on abstraction mechanisms, unification, and 
orthogonality. Orthogonality and unification are closely 
associated, and sometimes they may be hard to distinguish.  

3.1.3 Concurrency 
It was from the beginning decided that BETA should be a 
concurrent programming language. As mentioned, 
SIMULA supported the notion of quasi-parallel system, 
which essentially defines a process concept and a 
cooperative scheduling mechanism. A SIMULA object is a 

coroutine and a quasi-parallel process is defined as an 
abstraction (in the form of a class) on top of coroutines.  

The support for implementing hierarchical schedulers was 
one of the strengths of SIMULA; this was heavily used 
when writing simulation packages. Full concurrency was 
added to SIMULA in 1995 by the group at Lund University 
headed by Boris Magnusson [158]. 

Conceptually, the SIMULA coroutine mechanism appears 
simple and elegant, but certain technical details are quite 
complicated. For BETA, the SIMULA coroutine 
mechanism was an obvious platform to build upon. The 
ambition was to simplify the technical details of coroutines 
and add support for full concurrency including 
synchronization and communication. In addition it should 
be possible to write cooperative as well as pre-emptive 
schedulers. 

3.1.4 Efficiency 
Although SIMULA was used by many communities in 
research institutions and private businesses, it had a 
relatively small user community. However, it was big 
enough for a yearly conference for SIMULA users to take 
place.  

One of the problems with making SIMULA more widely 
used was that it was considered very inefficient. This was 
mainly due to automatic memory management and garbage 
collection. Computers at that time were quite slow and had 
very little memory compared to computers of today. The 
DEC 10 at DAIMI had 128Kbyte of memory. This made 
efficient memory management quite challenging. 

One implication of this was that object orientation was 
considered to be quite inefficient by nature. It was therefore 
an important issue for BETA to design a language that 
could be efficiently implemented. In fact, it was a goal that 
it should be possible to write BETA programs with a 
completely static memory layout.  

Another requirement was that BETA should be usable for 
implementing embedded systems. Embedded systems 
experts found it provoking that Nygaard would engage in 
developing languages for embedded systems – they did not 
think he had the qualifications for this. He may not have 
had much experience in embedded systems, but he surely 
had something to contribute. This is an example of the 
controversies that often appeared around Nygaard. 

As time has passed, static memory requirements have 
become less important. However, this issue may become 
important again, for example in pervasive computing based 
on small devices.  

3.2 Project organization 
The process, intention, and organization of the BETA 
project appeared to be different from those of many 
projects today. The project existed through an informal 



 

cooperation between Nygaard and the authors. During the 
project we had obligations as students, professors or 
consultants. This implied that the time to be used on the 
project had to be found in between other activities.  

As mentioned, Kristensen, Møller-Pedersen and Madsen 
were students at DAIMI, Århus. In 1974 Kristensen 
completed his Masters Thesis on error recovery for LR-
parsers. He was employed as assistant professor at the 
University of Ålborg in 1976. Madsen graduated in 1975, 
having written a Master’s thesis on compiler-writing 
systems, and continued at DAIMI as assistant professor and 
later as a PhD student. Møller-Pedersen graduated in 1976 
with a Master’s thesis on the notion of context, with 
Nygaard as a supervisor. He was then employed by the 
NCC, Oslo, in 1976 and joined the BETA project at the 
same time. Nygaard was a visiting professor at DAIMI in 
1974-75 – after that he returned to the NCC and continued 
at DAIMI as a guest lecturer.  

Most meetings took place in either Århus or Oslo, and 
therefore required a lot of traveling. At that time there was 
a ferry between Århus and Oslo. It sailed during the night 
and took 16 hours – we remember many pleasant trips on 
that ferry – and these trips were a great opportunity to 
discuss language issues without being disturbed. Later 
when the ferry was closed we had to use other kinds of 
transportation that were not as enjoyable. 

Funding for traveling and meetings was limited. Research 
funding was often applied for, but with little success. 
Despite his great contributions to informatics through the 
development of the SIMULA languages, Nygaard always 
had difficulties in getting funding in Norway. The Mjølner 
project described in Section 3.4 is an exception, by 
providing major funding for BETA development – 
however, Nygaard was not directly involved in applying for 
this funding. 

The project involved a mixture of heated discussions about 
the design of the BETA language and a relaxed, inspiring 
social life. It seemed that for Nygaard there was very little 
difference between professional work and leisure.  

Meetings. The project consisted of a series of more or less 
regular meetings with the purpose of discussing language 
constructs and modeling concepts. Meetings were planned 
in an ad hoc manner. The number of meetings varied over 
the years and very little was written or prepared in advance.  

Meetings officially took place at NCC or at our universities, 
but our private homes, trams/buses, restaurants, ferries, and 
taxies were also seen as natural environments in which the 
work and discussions could continue – in public places 
people had to listen to loud, hectic discussions about 
something that must have appeared as complete nonsense to 
them. But people were tolerant and seemed to accept this 
weird group. 

In October 1977, Madsen and family decided to stay a 
month in Oslo to complete the project – Madsen’s wife, 
Marianne was on maternity leave – and they stayed with 
Møller-Pedersen and his family. This was an enjoyable 
stay, but very little progress was made with respect to 
completing BETA – in fact we saw very little of Nygaard 
during that month. 

Discussions. A meeting would typically take place without 
a predefined agenda and without any common view on 
what should or could be accomplished throughout the 
meeting. The meetings were a mixture of serious 
concentrated discussions of ideas, proposals, previous 
understanding and existing design and general stuff from 
the life of the participants. 

State-of-the-art relevant research topics were rarely 
subjects for discussion. Nygaard did not consider this 
important – at least not for the ongoing discussions and 
elaboration of ideas. Such knowledge could be relevant 
later, in relation to publication, but was usually not taken 
seriously. In some sense Nygaard assumed that we would 
take care of this. Also established understanding, for 
example, on the background, motivations and the actual 
detailed contents of languages like Algol, SIMULA or 
DELTA was not considered important. It appeared to be 
much better to develop ideas and justify them without 
historical knowledge or relationships. The freedom was 
overwhelming and the possibilities were exhausting. 

The real strengths of Nygaard were his ability to discuss 
language issues at a conceptual level and focus on means 
for describing real-world systems. Most language designers 
come from a computer science background and their 
language design is heavily based on what a computer can 
do: A programming language is designed as a layer on top 
of the computer making it easier to program. Nygaard’s 
approach was more of a modeling approach and he was 
basically interested in means for describing systems. This 
was evident in the design of SIMULA, which was designed 
as a simulation language and therefore well suited for 
modeling real systems. 

Plans. There was no clear management of the project, and 
plans and explicit decisions did not really influence the 
project. We used a lot of time on planning, but most plans 
were never carried out. Deadlines were typically controlled 
by the evolution of the project itself and not by a carefully 
worked out project plan.  

Preparation and writing were in most cases the result of an 
individual initiative and responsibility. Nygaard was active 
in writing only in the initial phase of the project. Later on 
Nygaard’s research portfolio mainly took the form of of 
huge stacks of related plastic slides, but typically their 
relation became clear only at Nygaard’s presentations. The 



 

progress and revisions of his understanding of the research 
were simply captured on excellent slides. 

At the beginning of the project it was decided that 
Kristensen and Madsen should do PhDs based on the 
project. As a consequence of the lack of project 
organization, it quickly became clear that this would not 
work. 

The original plan for the BETA project was that ‘a firm and 
complete language definition’ should be ready at the end of 
1977 [89]. An important deadline was February 1977 – at 
that time a first draft of a language definition should be 
available. In 1977 we were far from a complete language 
definition and Nygaard did not seem in a hurry to start 
writing a language definition report. However, two working 
notes were completed in 1976/77. In Section 3.3 and in 
Section 5.10, we describe the content of these working 
notes and other publications and actual events in the 
project. 

Social life. Meetings typically lasted whole days including 
evenings and nights. In connection with meetings the group 
often met in our private homes and had dinner together, 
with nice food and wine. The atmosphere was always very 
enjoyable but demanding, due to an early-morning start 
with meetings and late-evening end. Dinner conversation 
was often mixed with debate about current issues of 
language design. Our families found the experience 
interesting and inspiring, but also often weird. Nygaard 
often invited various guests from his network, typically 
without our knowing and often announced only in passing. 
Guests included Carl Hewitt, Bruce Moon, Larry Tesler, 
Jean Vaucher, Stein Krogdahl, Peter Jensen, and many 
more. They were all inspiring and the visits were learning 
experiences. In addition there were many enjoyable 
incidents as when passengers on a bus to the suburb where 
Madsen lived watched with surprise and a little fear as 
Nygaard (tall and insistent) and Hewitt (all dressed in red 
velour and just as insistent) loudly discussed not commonly 
understandable concepts on the rear platform of the bus. 

Nygaard was an excellent wine connoisseur and arranged 
wine-tasting parties on several occasions. We were 
“encouraged” to spend our precious travel money on 
various selected types of wines, and it was beyond doubt 
worth it. Often other guests were invited and had similar 
instructions about which wine to bring. At such parties we 
would be around 10 people in Nygaard’s flat, sitting around 
their big dinner table and talking about life in general. The 
wines would be studied in advance in Hugh Johnson’s 
“World Atlas of Wine” and some additional descriptions 
would be shared. The process was controlled and 
conducted by Nygaard at the head of the table.  

Crises. The project meetings could be very frustrating since 
Nygaard rarely delivered as agreed upon at previous 

meetings. This often led to very heated discussions. This 
seemed to be something that we inherited from the 
SIMULA project. In one incident Kristensen and Madsen 
arrived in Oslo at the NCC and during the initial 
discussions became quite upset with Nygaard and decided 
to leave the project. They took a taxi to the harbor in order 
to enter the ferry to Århus. Nygaard, however, followed in 
another taxi and convinced them to join him for a beer in 
nearby bar – and he succeeded in convincing them to come 
back with him. 

Crises and jokes were essential elements of meetings and 
social gatherings. Crises were often due to different 
expectations to the progress of the language development, 
unexpected people suddenly brought into the project 
meetings, and problems with planning of the meeting days. 
Crises were solved, but typically not with the result that the 
next similar situation would be tackled differently by 
Nygaard. Serious arguments about status and plans were 
often solved by a positive view on the situation together 
with promises for the future. Jokes formed an essential 
means of taking ‘revenge’ and thereby to overcome crises. 
Jokes were on Nygaard in order to expose his less 
appealing habits, as mentioned above, and were often 
simple and stupid, probably due to our irritation and 
desperation. Nygaard was an easy target for practical jokes, 
because he was always very serious about work, which was 
not something you joked about.3 On one occasion in 
Nygaard’s office at Department of Informatics at 
University of Oslo, the telephone calls that Nygaard had to 
answer seemed to never end, even if we complained 
strongly about the situation. One time when Nygaard left 
the office, we taped the telephone receiver to the base by 
means of some transparent tape. When Nygaard returned, 
we arranged for a secretary to call him. As usual Nygaard 
quickly grabbed the telephone receiver, and he got 
completely furious because the whole telephone device was 
in his hand. He tried to wrench the telephone receiver off 
the base unit, but without success. Nygaard blamed us for 
the lost call (which could be very important as were the 
approximately 20 calls earlier this morning) and left the 
office running to the secretary in order to find out who had 
called. He returned disappointed and angry, but possibly 
also a bit more understanding of our complaints. At social 
events he was on the other hand very entertaining and had a 
large repertoire of jokes – however, practical jokes were 
not his forte. 

3.3 Project events 
In this section we mention important events related to the 
project process as a supplement to the description in the 
previous sections. Events related to the development of the 
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Nygaard or of Norwegians in general☺. 



 

conceptual framework, the language and its implementation 
are described in the following sections. 

Due to the lack of structure in the project organization, it is 
difficult to point to specific decisions during the project that 
influenced the design of BETA. The ambition for the 
project was to strive for the perfect language and it turned 
out that this was difficult to achieve through a strict 
working plan. Sometimes the design of a new programming 
language consists of selecting a set of known language 
constructs and the necessary glue for binding them 
together. For BETA the goal was to go beyond that. This 
implied that no matter what was decided on deadlines, no 
decisions were made as long as a satisfactory solution had 
not been found. In some situations we clearly were hit by 
the well known saying, ‘The best is the enemy of the good’. 

The start of the JLP and the start of the BETA project were 
clearly important events. There was no explicit decision to 
terminate the JLP – it just terminated.  

As mentioned, two working notes were completed in 
1976/1977. The first one was by Peter Jensen and Nygaard 
[66] and was mainly an argument why the NCC should 
establish cooperation with other partners in order to 
implement the BETA system programming language on 
microcomputers.  

First language draft. The second working note was the first 
publication describing the initial ideas of BETA, called 
BETA Language Development – Survey Report, 1, 
November 1976 [89]. A revised version was published in 
September 1977.  

Draft Proposal of BETA. In 1978 a more complete language 
description was presented in DRAFT PROPOSAL for 
Introduction to the BETA Programming Language as of 1st 
August 1978 [90] and a set of examples [91]. A grammar 
was included. Here BETA was still mainly considered an 
implementation language. The following is stated in the 
report: “According to the conventional classification of 
programming languages BETA is meant to be a system 
programming language. Its intended use is for 
programming of operating systems, data base systems, 
communication systems and for implementing new and 
existing programming languages. … The reason for not 
calling it a system programming language is that it is 
intended to be more general than often associated with 
system programming languages. By general is here meant 
that it will contain as few as possible concepts underlying 
most programming concepts, but powerful enough to build 
up these. The BETA language will thus be a kernel of 
concepts upon which more application oriented languages 
may be implemented and we do not imagine the language 
as presented here used for anything but implementation of 
more suitable languages. This will, however, be straight 
forward to do by use of a compiler-generator. Using this, 

sets of concepts may be defined in terms of BETA and 
imbedded in a language. Together with the BETA language 
it is the intention to propose and provide a ‘standard super 
BETA’.” 

As mentioned, BETA developed without any explicit 
decision into a full-fledged general programming language. 
In this process it was realized that GAMMA and special-
purpose languages could be implemented as class 
frameworks in BETA. With regard to class frameworks, 
SIMULA again provided the inspiration. SIMULA 
provided class Simulation – a class framework for 
writing simulation programs. Class Simulation was 
considered a definition of a special-purpose language for 
simulation – SIMULA actually has special syntax only 
meaningful when class Simulation is in use. For BETA it 
provided the inspiration for work on special-purpose 
languages. The idea was that a special-purpose language 
could be defined by means of a syntax definition (in BNF), 
a semantic definition in terms of a class framework, and a 
syntax-directed transformation from the syntax to a BETA 
program using the class framework. This is reflected in the 
1978 working note. 

First complete language definition. In February 1979 – and 
revised in April 1979 – the report BETA Language 
Proposal [92] was published. It contained the first attempt 
at a complete language definition. Here BETA was no 
longer considered just an implementation language: “BETA 
is a general block-structured language in the style of Algol, 
Simula and Pascal. … Most of the possibilities of Algol-like 
sequential languages are present”. BETA was, however, 
still considered for use in defining application-oriented 
languages – corresponding to what are often called domain-
specific languages today. 

The fact that BETA was considered a successor to 
SIMULA created some problems at the NCC and the 
University of Oslo. The SIMULA communities considered 
SIMULA to be THE language, and with good reason. 
There were no languages at that time with the qualities of 
SIMULA and as of today, the SIMULA concepts are still in 
the core of mainstream languages such as C++, Java and 
C#.  

Many people became angry with Nygaard that he seemed 
willing to give up on SIMULA. He did not look at it that 
way – he saw his mission as developing new languages and 
exploring new ideas. However, it did create difficulties in 
our relationship with the SIMULA community. SIMULA 
was at that time a commercial product of the NCC. When it 
became known that Nygaard was working on a successor 
for SIMULA, the NCC had to send out a message to its 
customers saying that the NCC had no intentions of 
stopping the support of SIMULA. 



 

Around 1980 there was in fact an initiative by the NCC to 
launch BETA as a language project based on the model 
used for SIMULA. This included planning a call for a 
standardization meeting, although no such meeting ever 
took place. The plan was that BETA should be frozen by 
the end of 1980 and an implementation project should then 
be started by the NCC. However, none of this did happen. 

A survey of the BETA Programming Language. In 1981 the 
report ‘A Survey of the BETA Programming Language’ 
[93] formed the basis for the first implementation and the 
first published paper on BETA two years later [95]. As 
mentioned in Section 6.1, the first implementation was 
made in 1983. 

Several working papers about defining special-purpose 
languages were written (e.g. [98]), but no real system was 
ever implemented. A related subject was that the grammar 
of BETA should be an integrated part of the language. This 
led to work on program algebras [96] and 
metaprogramming [120] that made it possible to manipulate 
BETA programs as data. Some of the inspiration for this 
work came during a one-year sabbatical that Madsen spent 
at The Center for Study of Languages and Information at 
Stanford University in 1984, working with Terry 
Winograd, Danny Bobrow and José Meseguer. 

POPL paper: Abstraction Mechanisms in the BETA 
Programming Language. An important milestone for BETA 
was the acceptance of a paper on BETA for POPL in 1983 
[95]. We were absolutely thrilled and convinced that BETA 
would conquer the world. This did not really happen – we 
were quite disappointed with the relatively little interest the 
POPL paper created. At the same conference, Peter Wegner 
presented a paper called On the Unification of Data and 
Program Abstractions in Ada [159]. Wegner’s main 
message was that Ada contained a proliferation of 
abstraction mechanisms and there was no uniform treatment 
of abstraction mechanisms in Ada. Naturally we found 
Wegner’s paper to be quite in line with the intentions of 
BETA and this was the start of a long cooperation with 
Peter Wegner, who helped in promoting BETA.  

Hawthorne Workshop. Peter Wegner and Bruce Shriver 
(who happened to be a visiting professor at DAIMI at the 
same time as Nygaard) invited us to the Hawthorne 
workshop on object-oriented programming in 1986. This 
was one of the first occasions where researchers in OOP 
had the opportunity to meet and it was quite useful for us. It 
resulted in the book on Research Directions in Object-
Oriented Programming [145] with two papers on BETA 
[100, 111]. Peter Wegner and Bruce Shriver invited us to 
publish papers on BETA at the Hawaii International 
Conference on System Sciences in 1988. 

Sequential parts stable. In late 1986/early 1987 the 
sequential parts of the language were stable, and only 
minor changes have been made since then. 

Multisequential parts stable. A final version of the 
multisequential parts (coroutines and concurrency) was 
made in late 1990, early 1991. 

BETA Book. Peter Wegner also urged us to write a book on 
BETA and he was the editor of the BETA book published 
by Addison Wesley/ACM Press in 1993 [119].  

For a number of years we gave BETA tutorials at 
OOPSLA, starting with OOPSLA’89 in New Orleans. 
Dave Thomas and others were quite helpful in getting this 
arranged – especially at OOPSLA’90/ECOOP’90 in 
Ottawa, he provided excellent support.  

At OOPSLA’89 we met with Dave Unger and the Self 
group; although Self [156] is a prototype-based language 
and BETA is a class-based language, we have benefited 
from cooperation with the Self group since then. We 
believe that Self and BETA are both examples of languages 
that attempt to be based on simple ideas and principles.  

The Mjølner (Section 3.4) project (1986-1991) and the 
founding of Mjølner Informatics Ltd. (1988) were clearly 
important for the development of BETA.  

Apple and Apollo contracts. During the Mjølner project we 
got a contract with Apple Computer Europe, Paris, to 
implement BETA for the Macintosh – Larry Taylor was 
very helpful in getting this contract. A similar contract was 
made with Apollo Computer, coordinated by Søren Bry. 

In 1994, BETA was selected to be taught at the University 
of Dortmund. Wilfried Ruplin was the key person in 
making this happens. A German introduction to 
programming using BETA was written by Ernst-Erich 
Doberkat and Stefan Diβmann [38]. This was of great use 
for the further promotion of BETA as a teaching language. 

Dahl & Nygaard receive ACM Turing Award. In 2001 Dahl 
and Nygaard received the ACM Turing Award (“for their 
role in the invention of object-oriented programming, the 
most widely used programming model today”).  

Dahl & Nygaard receive the IEEE von Neumann Medal. In 
2002 they received the IEEE John von Neumann Medal 
(“for the introduction of the concepts underlying object-
oriented programming through the design and 
implementation of SIMULA 67”). Dahl was seriously ill at 
that time so he was not able to attend formal presentations 
of these awards, including giving the usual Turing Award 
lecture. Dahl died on June 29, 2002. Nygaard was supposed 
to give his Turing Award lecture at OOPSLA 2002 in 
Vancouver, October 2002, but unfortunately he died on 
August 10, just a few weeks after Dahl. Life is full of 
strange coincidences. Madsen was invited to give a lecture 



 

at OOPSLA 2002 instead of Nygaard. The overall theme 
for that talk was ‘To program is to understand’, which in 
many ways summarizes Nygaard’s approach to 
programming. One of Nygaard’s latest public appearances 
was his after-dinner talk at ECOOP 2002 in Malaga, where 
he gave one of his usual entertaining talks that even the 
spouses enjoyed. 

3.4 The Mjølner Project 
Mjølner Project start. The Mjølner4 Project (1986-1991) 
[76] was an important step in the development of BETA. 
The objective of the Mjølner project was to increase the 
productivity of high-quality software in industrial settings 
by designing and implementing object-oriented software 
development environments supporting specification, 
implementation and maintenance of large production 
programs. The project was carried out in cooperation 
between Nordic universities and industrial companies with 
participants from Denmark, Sweden, Norway and Finland. 
In the project three software development environments 
were developed: 

� Object-oriented SDL and tools: The development of 
Object-oriented SDL is described in Section 7.3. 

� The Mjølner Orm System: a grammar-based 
interactive, integrated, incremental environment for 
object-oriented languages. The main use of Orm was to 
develop an environment for SIMULA. 

� The Mjølner BETA System: a programming 
environment for BETA.  

Mjølner Book. The approach to programming environments 
developed within the Mjølner Project is documented in the 
book Object-Oriented Environments – the Mjølner 
Approach [76], covering all these three developments. 

The development of the Mjølner BETA System was in a 
Scandinavian context a large project. The project was a 
major reason for the success of BETA. During this project 
the language developed in the sense that many details were 
clarified. For example, the Ada-like rendezvous for 
communication and synchronization was abandoned in 
favor of semaphores, pattern variables were introduced, etc. 
It was also during the Mjølner project that the fragment 
system found its current form – cf. Section 5.8.4. 

Most of the implementation techniques for BETA were 
developed during the Mjølner project, together with native 
compilers for Sun, Macintosh, etc. Section 6 contains a 
description of the implementation. 
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Thor is the Nordic god of thunder. Mjølner is the perfect tool: it 
grows with the task, always hits the target, and always returns 
safely to Thor's hand. 

A complete programming environment for BETA was 
developed. In addition to compilers there was a large 
collection of libraries and application frameworks including 
a meta-programming system called Yggdrasil5, a persistent 
object store with an object browser, and application 
frameworks for GUI programs built on top of Athena, 
Motif, Macintosh and Windows. A platform independent 
GUI framework with the look and feel of the actual 
platform was developed for Macintosh, Windows and 
UNIX/Motif. 

The environment also included the MjølnerTool, which was 
an integration of the following tools: a source code browser 
called Ymer, an integrated text- and syntax-directed editor 
called Sif, a debugger called Valhalla, an interface builder 
called Frigg, and a CASE tool called Freja supporting a 
graphical syntax for BETA – see also Section 4.5. 

Mjølner Informatics. The Mjølner BETA System led in 
1988 to the founding of the company Mjølner Informatics 
Ltd., which for many years developed and marketed the 
Mjølner BETA System as a commercial product. Sales of 
the system never generated a high profit, but it gave 
Mjølner Informatics a good image as a business, and this 
attracted a lot of other customers. Today the Mjølner BETA 
System is no longer a commercial product, but free versions 
may be obtained from DAIMI.  

It may seem strange from the outside that three 
environments were developed in the Mjølner Project. And 
it is indeed strange. SDL was, however, heavily used by the 
telecommunication industry, and there was no way to 
replace it by say BETA – the only way to introduce object 
orientation in that industry seemed to be by adding object 
orientation to SDL. Although SDL had a graphical syntax, 
it also had a textual syntax, and it had a well-defined 
execution semantics, so it was more or less a domain-
specific programming language (the domain being 
telecommunications) and not a modeling language. Code 
generators were available for different (and at that time 
specialized) platforms. SDL is still used when code 
generation is needed, but for modeling purposes UML has 
taken over. UML2.0 includes most of the modeling 
mechanisms of SDL, but not the execution semantics.  

The BETA team did propose to the people in charge of the 
Mjølner Orm development – which focused on SIMULA – 
that they join the BETA team, and that we concentrate on 
developing an environment for BETA. BETA was designed 
as a successor of SIMULA, and we found that it would be 
better to just focus on BETA. However, the SIMULA 
people were not convinced; it is often said that SIMULA, 
like Algol 60, is one of the few languages that is better than 
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most of its successors – we are not the ones to judge about 
this with respect to BETA. The lesson here is perhaps that 
in a project like Mjølner more long-term goals would have 
been beneficial. If the project had decided to develop one 
language including a graphical notation that could replace 
SDL, then this language might have had a better chance to 
influence the industry than each of OSDL, SIMULA and 
BETA. 

The motivation for modeling languages like SDL (and later 
UML) was that industries wanted to be independent of 
(changing) programming languages and run-time 
environments. A single language like BETA that claims to 
be both a programming language and a modeling language 
was therefore not understood. Even Java has not managed 
to get such a position. It is also interesting to note that 
while the Object Management Group advocates a single 
modeling language, covering many programming languages 
and platforms, Microsoft advocates a single programming 
language (or rather a common language run-time, CLR) on 
top of which they want to put whatever domain-specific 
modeling language the users in a specific domain require. 

4. Modeling and conceptual framework 
We believe that the success of object-oriented 
programming can be traced back to its roots in simulation. 
SIMULA I was designed to describe (model) real-world 
systems and simulate these systems on a computer. This 
eventually led to the design of SIMULA 67 as a general 
programming language. Objects and classes are well suited 
for representing phenomena and concepts from the real 
world and for programming in general. Smalltalk further 
refined the object model and Alan Kay described object-
oriented programming as a view on computation as 
simulation [68] (see also the formulation by Tim Budd 
[22]). An important aspect of program development is to 
understand, describe and communicate about the 
application domain and BETA should be well suited for 
this. In the BETA book [119] (page 3) this is said in the 
following way: 

To program is to understand: The development of an 
information system is not just a matter of writing a 
program that does the job. It is of utmost importance that 
development of this program has revealed an in-depth 
understanding of the application domain; otherwise, the 
information system will probably not fit into the 
organization. During the development of such systems it 
is important that descriptions of the application domain 
are communicated between system specialists and the 
organization. 

The term “To program is to understand” has been a leading 
guideline for the BETA project. This implied that an 
essential part of the BETA project was the development of 
a conceptual framework for understanding and organizing 

knowledge about the real world. The conceptual framework 
should define the object-oriented perspective on 
programming and provide a semantic foundation for 
BETA. Over the years perhaps more time was spent on 
discussing the conceptual framework than the actual 
language. Issues of this kind are highly philosophical and, 
not being philosophers, we could spend a large amount of 
time on this without progress. 

Since BETA was intended for modeling as well as 
programming there was a rule that applied when discussing 
candidates for language constructs in BETA: a given 
language construct should be motivated from both the 
modeling and the programming point of view. We realized 
that many programmers did not care about modeling but 
were only interested in technical aspects of a given 
language – i.e. what you can actually express in the 
language. We thus determined that BETA should be usable 
as a ‘normal’ programming language without its 
capabilities as a modeling language. We were often in the 
situation that something seemed useful from a modeling 
point of view, but did not benefit the programming part of 
the language and vice versa.  

We find the conceptual framework for BETA just as 
important as the language – in this paper we will not go 
into details, but instead refer to chapters 2 and 18 in the 
book on BETA [119]. Below we will describe part of the 
rationale and elements of the history of the conceptual 
framework. In Section 5, where the rationale for the BETA 
language is described, we will attempt to describe how the 
emphasis on modeling influenced the language. 

4.1 Programming as modeling 
As mentioned, DELTA was one of the starting points for 
the BETA project. For a detailed description of DELTA the 
reader is referred to the DELTA report [60]. Here we 
briefly summarize the concepts that turned out to be most 
important for BETA. 

The system to be described was called the referent system. 
A referent system exists in what today’s methodologies call 
application domain. A description of a system – the system 
description – is a text, a set of diagrams or a combination 
describing the aspects of the system to be considered. 
Given a system description, a system generator may 
generate a model system that simulates the considered 
aspects of the referent system. These concepts were derived 
from the experience of people writing simulation programs 
(system descriptions) in SIMULA and running these 
simulations (model systems). 

Programming was considered a special case of system 
description – a program was considered a system 
description and a program execution was considered a 
model system. Figure 2 illustrates the relationship between 
the referent system and the model system. 



 

 

Figure 2 Modeling 
As illustrated in Figure 2, phenomena and (domain-
specific) concepts from the referent system are identified 
and represented as (realized) objects and concepts (in the 
form of patterns) in the model system (the program 
execution). The modeling activity of Figure 2 includes the 
making of a system description and having a system 
generator generate the model system according to this 
description.  

4.2 Object-orientation as physical modeling 
For BETA it has been essential to make a clear distinction 
between the program and the program execution (the model 
system). A program is a description in the form of a text, 
diagrams or a combination – the program execution is the 
dynamic process generated by the computer when 
executing the program. At the time when BETA was 
developed, many researchers in programming and 
programming languages were focusing on the program text. 
They worked on the assumption that properties of a 
program execution could (and should) be derived from 
analysis of the program text, including the use of assertions 
and invariants, formal proofs and formal semantics. 
Focusing on the (static) program text often made it difficult 
to explain the dynamics of a program execution. Especially 
for object-oriented programming, grasping the dynamic 
structure of objects is helped by considering the program 
execution. But considering the program execution is also 
important in order to understand mechanisms such as 
recursion and block structure. 

The discussion of possible elements in the dynamic 
structure of a BETA program execution was central during 
the design of BETA. This included the structure of 
coroutines (as described in Section 5.7 below), stacks of 
activation records, nested objects, references between 
objects, etc. Many people often felt that we were discussing 
implementation, but for us it was the semantics of BETA. It 
did cover aspects that normally belonged to 
implementation, but the general approach was to identify 
elements of the program execution that could explain to the 
programmer how a BETA program was executing. 

At that time, formal semantics of programming languages 
was an important issue and we were often confronted with 
the statement that we should concentrate on defining a 
formal semantics for BETA. Our answer to that was vague 
in the sense that we were perhaps uncertain whether or not 
they were right, but on the other hand we had no idea how 
to approach a formal semantics for a language we were 
currently designing. It seemed to us that the current 
semantic models just covered well known language 
constructs and we were attempting to identify new 
constructs. Also, our mathematical abilities were perhaps 
not adequate to mastering the mathematical models used at 
that time for defining formal semantics. 

Many years later we realized that our approach to 
identifying elements of the program execution might be 
seen as an attempt to define the semantics of BETA – not in 
a formal way, but in a precise and conceptual way. 

The focus on the program execution as a model eventually 
led to a definition of object-oriented programming based on 
the notion of physical model – first published at ECOOP in 
’88 [116]: 

Object-oriented programming. A program execution is 
regarded as a physical model simulating the behavior of 
either a real or imaginary part of the world. 

The notion of physical is essential here. We considered 
(and still do) objects as physical material used to construct 
models of the relevant part of the application domain. The 
analogy is the use of physical material to construct models 
made of cardboard, wood, plastic, wire, plaster, LEGO 
bricks or other substances. Work on object-oriented 
programming and computerized shared material by Pål 
Sørgaard [149] was an essential contribution here. 

Webster defines a model in the following way: “In general 
a model refers to a small, abstract or actual representation 
of a planned or existing entity or system from a particular 
viewpoint” [1]. Mathematical models are examples of 
abstract representations whereas models of buildings and 
bridges made of physical material such as wood, plastic, 
and cartoon are examples of actual representations. Models 
may be made of existing (real) systems as in physics, 
chemistry and biology, or of planned (imaginary) systems 
like buildings, and bridges. 

We consider object-oriented models6 to be actual (physical) 
representations made from objects. An object-oriented 
model may be of an existing or planned system, or a 
                                                                 
6 The term modeling is perhaps somehow misleading since the 

model eventually becomes the real thing – in contrast to models 
in science, engineering and architecture. We originally used the 
term description, in SIMULA and DELTA terminology, but 
changed to modeling when OOA/OOD and UML became 
popular. 



 

combination. It may be a reimplementation of a manual 
system on a computer. An example may be a manual library 
system that is transferred to computers. In most cases, 
however, a new (planned) system is developed. In any case, 
the objects and patterns of the system (model) represent 
phenomena and concepts from the application domain. An 
object-oriented model furthermore has the property that it 
may be executed and simulate the behavior of the system in 
accordance with the computation-is-simulation view 
mentioned above. 

The application domain relates to the real world in various 
ways. Most people would agree that a library system deals 
with real world concepts and phenomena such as books and 
loans. Even more technical domains like a system 
controlling audio/video units and media servers deal with 
real-world concepts and phenomena. Some people might 
find that a network communication protocol implementing 
TCP/IP is not part of the real world, but it definitely 
becomes the real world for network professionals, just as an 
electronic patient record is the real world for healthcare 
professionals. Put in other words: Even though the real 
world contains real trees and not so many binary search 
trees or other kinds of data structures, the modeling 
approach is just as valuable for such classical elements of 
(in this case) the implementation domain. 

In any case the modeling approach should be the same for 
all kinds of application domains – this is also the case for 
the conceptual means used to understand and organize 
knowledge about the application domain, be it the real 
world or a technical domain. In the approach taken by OO 
and BETA we apply conceptual means used for organizing 
knowledge about the real world, as we think this is useful 
for more technical and implementation-oriented domains as 
well. In Chapter 5 we describe how the modeling approach 
has influenced the design of the BETA language. 

From the above definition it should be evident that 
phenomena that have the property of being physical 
material should be represented as objects. There are, 
however, other kinds of phenomena in the real world. This 
led to a characterization of the essential qualities of 
phenomena in the real world systems of interest for object-
oriented models: 

� Substance – the physical material transformed by the 
process. 
� Measurable properties of the substance. 
� Transformations of the substance. 
People, vehicles, and medical records are examples of 
phenomena with substance, and they may be represented by 
objects in a program execution. The age, weight or blood 
pressure of a person are examples of measurable properties 
of a person and may be represented by values (defined by 
value types) and/or functions. Transformations of the 

substance may be represented by the concurrent processes 
and procedures being executed as part of the program 
execution. The understanding of the above qualities had a 
profound influence on the semantics of BETA. 

4.3 Relation to other perspectives 
In order to arrive at a conceptual understanding of object 
orientation, we found it important to understand the 
differences between object-orientation and other 
perspectives such as procedural, functional, and constraint 
programming. We thus contrasted our definition of object 
orientation (see e.g. our ECOOP’88 paper [116] and 
Chapter 2 in the BETA book [119]) to similar definitions 
for other perspectives. In our understanding, the essential 
differences between procedural and functional 
programming related to the use of mutable variables. In 
procedural programming a program manipulates a set of 
mutable variables. In pure functional programming there is 
no notion of mutable variable. A function computes its 
result solely based on its arguments. This also makes it easy 
to formulate a sound mathematical foundation for 
functional programming. We are aware that our conception 
of functional programming may not correspond to other 
people’s understanding. In most functional programming 
languages you may have mutable variables and by means of 
closures you may even define object-oriented programming 
language constructs as in CommonLisp. However, if you 
make use of mutable variables it is hard to distinguish 
functional programming from procedural programming. 
Another common characteristic of functional languages is 
the strong support for higher functions and types. However, 
higher-order functions (and procedures) and types may be 
used in procedural as well as object-oriented programming. 
Algol and Pascal support a limited form of higher-order 
functions and procedures, and generic types are known 
from several procedural languages. Eiffel and BETA are 
examples of languages supporting generic classes 
(corresponding to higher-order types), and for BETA it was 
a goal to support higher-order functions and procedures. 
When we discuss functional programming in this paper, it 
should be understood in its pure form where a function 
computes its result solely based on its arguments. This 
includes languages using non-mutable variables as in let 
x=e1 in e2. 

For BETA it was not a goal to define a pure object-oriented 
language as it may have been for Smalltalk. On the 
contrary, we were interested in integrating the best from all 
perspectives into BETA. We thus worked on developing an 
understanding of a unified approach that integrated object-
oriented programming with functional, logic and procedural 
programming [116]. BETA supports procedural 
programming and to some extent functional programming. 
We also had discussions with Alan Borning and Bjorn 
Freeman-Benson on integrating constraint-oriented 
programming into BETA. The idea of using equations 



 

(constraints) to describe the state of objects was very 
appealing, but we never managed to identify primitive7 
language constructs that could support constraints. 
However, a number of frameworks supporting constraints 
were developed by students in Aarhus. 

4.4 Concepts and abstraction 
It was of course evident from the beginning that the 
class/subclass constructs of SIMULA were well suited to 
representing traditional Aristotelian concepts (for a 
description of Aristotelian concepts, see the BETA book) 
including hierarchical concepts. The first example of a 
subclass hierarchy was a classification of vehicles as shown 
in Figure 3. 

Abstraction is perhaps the most powerful tool available to 
the human intellect for understanding complex phenomena. 
An abstraction corresponds to a concept. In the 
Scandinavian object-oriented community it was realized in 
the late seventies by a number of people, including the 
authors and collaborators, that in order to be able to create 
models of parts of the real world, it was necessary to 
develop an explicit understanding of how concepts and 
phenomena relate to object-oriented programming. 

 

Figure 3 Example of a subclass hierarchy 
In the late seventies and early eighties the contours of an 
explicit conceptual framework started to emerge – there 
was an increasing need to be explicit about the conceptual 
basis of BETA and object orientation in general. The 
ongoing discussions on issues such as multiple inheritance 
clearly meant that there was a need for making the 
conceptual framework explicit. These discussions 
eventually led to an explicit formulation of a conceptual 
framework by means of Aristotelian concepts in terms of 
intension, extension and designation to be used in object-
oriented modeling. An important milestone in this work 
was the Master’s thesis of Jørgen Lindskov Knudsen [71] 
and part of the PhD Thesis of Jørgen Lindskov Knudsen 
and Kristine Thomsen [78].  

                                                                 
7 We do not consider equations to be programming-language 

primitives. 

Knudsen supplemented the conceptual framework with the 
so-called prototypical concepts inspired by Danish 
philosopher Sten Folke Larsen [42], who argued that most 
everyday concepts are not Aristotelian but fuzzy 
(prototypical). An Aristotelian concept is characterized by a 
set of defining properties (the intension) that are possessed 
by all phenomena covered by the concept (the extension). 
For a prototypical concept the intension consists of 
examples of properties that the phenomena may have, 
together with a collection of typical phenomena covered by 
the concept, called prototypes. An Aristotelian concept 
structure has well defined boundaries between the 
extensions of the concepts, whereas this is not the case for a 
prototypical concepts structure. In the latter the boundaries 
are blurred/fuzzy. A class is well suited to representing 
Aristotelian concepts, but since most everyday concepts are 
prototypical, a methodology should allow for prototypical 
concepts to be used during analysis. Prototypical concepts 
should not be confused with prototype-based languages. A 
prototypical concept is still a concept – prototypical objects 
are not based on any notion of concept. Prototypical 
concepts are described in the BETA book [119], and the 
relationship between prototypical concepts and prototype-
based languages is discussed by Madsen [113]. 

In the seventies there was similar work on modeling going 
on in the database and AI communities and some of this 
work influenced on the BETA project. This included papers 
such as the one by Smith & Smith [147] on database 
abstraction.  

The realization that everyday concepts were rarely 
Aristotelian made it clear that it was necessary to develop a 
conceptual framework that was richer than the current 
programming language in use. In the early days, there 
might have been a tendency to believe that SIMULA and 
other object-oriented languages had all mechanisms that 
were needed to model the real world – this was of course 
naive, since all languages put limitations on the aspects of 
the real world that can be naturally modeled. Programmers 
have a tendency to develop an understanding of the 
application domain in terms of elements of their favorite 
programming language. A Pascal programmer models the 
real world in terms of Pascal concepts like records and 
procedures. We believed that the SIMULA concepts 
(including class, and subclass) were superior to other 
programming languages with respect to modeling. 

The conceptual framework associated with BETA is 
deliberately developed to be richer than the language. In 
addition to introducing prototypical concepts, the BETA 
book discusses different types of classification structures 
that may be applied to a given domain, including some that 
cannot be directly represented in mainstream programming 
languages. The rationale for the richer conceptual 
framework is that programmers should understand the 



 

application domain by developing concepts without being 
constrained by the programming language. During 
implementation it may of course be necessary to map 
certain concepts into the programming language. It is, 
however, important to be explicit about this. This aspect 
was emphasized in a paper on teaching object-oriented 
programming [77]. 

4.5 Graphical syntax for modeling 
When object-oriented programming started to become 
mainstream in the early eighties, code reuse by means of 
inheritance was often seen as the primary advantage of 
object-oriented programming. The modeling capabilities 
were rarely mentioned. The interest in using object-oriented 
concepts for analysis and design that started in the mid-
eighties was a positive change since the modeling 
capabilities came more in focus. 

One of the disadvantages of OOA/OOD was that many 
people apparently associated analysis and design with the 
use of graphical languages. There is no doubt that diagrams 
with boxes and arrows are useful when designing systems. 
In the SIMULA and BETA community, diagrams had of 
course also been used heavily, but when a design/model 
becomes stable, a textual representation in the form of an 
abstract program is often a more compact and 
comprehensive representation.  

The mainstream modeling methodologies all proposed 
graphical languages for OOA/OOD, which led to the UML 
effort on designing a standardized graphical language for 
OOA/OOD. We felt that this was a major step backwards – 
one of the advantages of object-orientation is that the same 
languages and concepts can be applied in all phases of the 
development process, from analysis through design to 
implementation. By introducing a new graphical language, 
one reintroduced the problem of different representations of 
the model and the code. It seems to be common sense that 
most software development is incremental and iterative, 
which means that the developer will iterate over analysis, 
design and implementation several times. It is also 
generally accepted that design will change during 
implementation. With different representations of the 
model and the code it is time consuming to keep both 
diagrams and code in a consistent state. 

In the early phases of Mjølner Project it was decided to 
introduce a graphical syntax for the abstraction mechanisms 
of BETA as an alternative to the textual syntax. The Freja 
CASE tool [141, 142] was developed using this syntax. In 
addition, Freja was integrated with the text and structure 
editor in such a way that the programmer could easily 
alternate between a textual and graphical representation of 
the code.  

When UML became accepted as a common standard 
notation, the developers at Mjølner Informatics decided to 

replace the graphical syntax defined for BETA by a subset 
of UML. Although major parts of BETA had a one-to-one 
correspondence with this UML subset, some of the 
problems of different representations were reintroduced. 

It is often said that a picture says more than a thousand 
words. This is true. Nygaard in his presentations often used 
a transparency with this statement (and a picture of 
Madonna). This was always followed by one saying that a 
word often says more than a thousand pictures, illustrated 
by a number of drawings of vehicles and the word 
‘vehicle’. The point is that we use words to capture 
essential concepts and phenomena – as soon as we have 
identified a concept and found a word for it, this word is an 
efficient means for communication among people. The 
same is true in software design. In the initial phase it is 
useful to use diagrams to illustrate the design. When the 
design stabilizes it is often more efficient to use a textual 
representation for communication between the developers. 
The graphical representation may still be useful when 
introducing new people to the design. 

4.6 Additional notes 
It was often difficult to convey to other researchers what 
we understood by system description and why we 
considered it important. As mentioned, there was an 
important workshop at the IBM Hawthorne Research 
Center in New York in 1986, organized by Peter Wegner 
and Bruce Shriver, in which Dahl, Nygaard and Madsen 
participated. Here we had long and heated debates with 
many researchers – it was difficult to agree on many issues, 
most notably the concept of multiple inheritance. We later 
realized that for most people at that time the advantage of 
object-orientation was from a reuse point of view – a purely 
technical argument. For us, coming from the SIMULA 
tradition, the modeling aspect was at least as important, but 
the difference in perspective was not explicit. Later Steve 
Cook [26] made the difference explicit by introducing the 
ideas of the ‘Scandinavian School’ and the ‘U.S. School’ of 
object-orientation. 

At that time the dominant methodology was based on 
structured analysis and design followed by implementation 
– SA/SD [162]. SIMULA users rarely used SA/SD, but 
formulated their designs directly in SIMULA. The work on 
DELTA and system description was an attempt to 
formulate concepts and languages for analysis and design – 
Peter Wegner later said that SIMULA was a language with 
a built-in methodology. We did find the method developed 
by Michael Jackson [63] more interesting than SA/SD. In 
SA/SD there is focus on identifying functionality. In 
Jackson’s method a model of the application domain is first 
constructed and functionality is then added to this model. 
The focus on modeling was in much more agreement with 
our understanding of object-orientation. 



 

In the mid-eighties, Yourdon and others converted to object 
orientation and published books on object-oriented analysis 
and design, e.g. [25]. This was in many ways a good 
turning point for object orientation, because many more 
people now started to understand and appreciate its 
modeling advantages.  

In 1989 Madsen was asked to give a three-day course on 
OOD for software developers from Danish industry. He 
designed a series of lectures based on the abstraction 
mechanisms of BETA – including the conceptual 
framework. At the end of the first day, most of the 
attendees complained that this was not a design course, but 
a programming course. The attendees were used to SA/SD 
and had difficulties in accepting the smooth transition from 
design to implementation in object-oriented languages – it 
should be said that Madsen was not trying to be very 
explicit about this. There was no tradition for this in the 
SIMULA/BETA community – design was programming at 
a higher level of abstraction.  

It actually helped that, after some heated discussions with 
some of the attendees, a person stood up in the back of the 
room presenting himself and two others as being from DSB 
(the Danish railroad company) – he said that his group was 
using SIMULA for software development and they have 
been doing design for more than 10 years in the way it had 
been presented. He said that it was very difficult for them 
to survive in a world of SA/SD where SIMULA was quite 
like a stepchild – the only available SIMULA compiler was 
for a DEC 10/20 which was no longer in production, and 
they therefore had to use the clone produced by a third 
party. However, together with the course organizer, 
Andreas Munk Madsen, Madsen redesigned the next two 
days’ presentations overnight to make more explicit why 
this was a course on design. 

The huge interest in modeling based on object orientation 
in the late eighties was of course positive. The disadvantage 
was that now everybody seemed to advocate object 
orientation just because it had become mainstream. There 
were supporters (or followers) of object-orientation who 
started to claim that the world is object-oriented. This is of 
course wrong – object orientation is a perspective that one 
may use when modeling the world. There are many other 
perspectives that may be used to understand phenomena 
and concepts of the real world. 

5. The Language 
In this section we describe the rationale for the most 
important parts of BETA. We have attempted to make this 
section readable without a prior knowledge of BETA, 
although some knowledge of BETA will be an advantage. 
The reader may consult the BETA book [119] for an 
introduction to BETA. 

The BETA language has evolved over many years and 
many changes to the semantics and syntax have appeared in 
this period. It would be too comprehensive to describe all 
of the major versions of BETA in detail. We will thus 
describe BETA as of today, with emphasis on the rationale 
and discussions leading to the current design and to 
intermediate designs. In Section 5.10, we will briefly 
describe the various stages in the history of the language. 

As mentioned in Section 3.1, most language mechanisms in 
BETA are justified from a technical as well as a modeling 
point of view. In the following we will attempt to state the 
technical as well as the modeling arguments for the 
language mechanisms being presented. 

5.1 One abstraction mechanism 
From the beginning the challenge was to design a 
programming language mechanism called a pattern that 
would subsume well-known abstraction mechanisms. The 
common characteristic of abstraction mechanisms is that 
they are templates for generating instances of some kind. In 
the mid seventies when the BETA project started, designers 
and programmers were not always explicit about whether 
or not a given construct defined a template or an instance 
and when a given instance was generated. In this section we 
describe the background, rationale and final design of the 
pattern. 

5.1.1 Examples of abstraction mechanisms 
When the BETA project was started, research in 
programming languages was concerned with a number of 
abstraction mechanisms. Below we describe some of the 
abstraction mechanisms that were discussed in the 
beginning of the BETA project. We will explicitly use a 
terminology that distinguishes templates from instances. 

Record type. A record type as known from Pascal defines 
a list of fields of possibly different types. The following is 
an example of a Pascal record type, which is a template for 
records: 

type Person =  
  record name: String; age: integer end; 

Instances of Person may be defined as follows: 
var P:Person; 

Fields of the record P may be read or assigned as follows: 
n:= P.name; P.age:= 16 

Value type. Value types representing numbers, Boolean 
values, etc. have always been important in programming 
languages. New abstraction mechanisms for other kinds of 
value types were proposed by many people. This included 
compound value types like complex number, enumeration 
types such as color known from Pascal and numbers with a 
unit such as speed. The main characteristic of a value type 
is that it defines a set of values that are assignable and 



 

comparable. Value types may to some extent be defined by 
means of records and classes, but as mentioned in Section 
2.4, we did not think that this was a satisfactory solution. 
We return to this in Section 5.8.2.  

Procedure/function. A procedure/function may be viewed 
as a template for activation records. It is defined by a name, 
input arguments, a possible return type, and a sequence of 
statements that can be executed. A typical procedure in a 
Pascal-like language may look like 

integer distance(var p1,p2: Point)  
   var dist: real  
   begin ...; return dist; end 

A procedure call of the form d := distance(x,y) 
generates an instance in the form of an activation record for 
distance, transmits x and y to the activation record, 
executes the statement part and returns a value to be 
assigned to d. 

The notion of pure function (cf. Section 4.2) was also 
considered an abstraction mechanism that should be 
covered by the pattern. 

Class. A (simple) class in the style of SIMULA has a name, 
input arguments, a possible superclass, a set of data fields, 
and a set of operations. Operations are procedures or 
functions in the Algol style. In today’s object-orientation 
terminology the operations are called methods. One of the 
uses of class was as a mechanism for defining abstract data 
types.  

Module. The module concept was among others proposed 
as an alternative to the class as a means for defining 
abstract data types. One of the problems with module – as 
we saw it – was that is was often not explicit from the 
language definition whether a module was a template or an 
instance. As described in Section 5.8.8, we considered a 
module to be an instance rather than a template. 

Control abstraction. A control abstraction defines a 
control structure. Over the years a large variety of control 
structures have been proposed. For BETA it was a goal to 
be able to define control abstractions. Control abstractions 
were mainly found in languages like CLU that allowed 
iterators to be defined on sets of objects.  

Process type. A process type defines a template for either a 
coroutine or a concurrent process. In some languages, 
however, a process declaration defined an instance and not 
a template. In SIMULA, any object is in fact a coroutine 
and a SIMULA class defines a sequence of statements 
much like a procedure. A SIMULA class may in this sense 
be considered a (pseudo) process type. For a description of 
the SIMULA coroutine mechanism see e.g. Dahl and Hoare 
[30]. In Concurrent Pascal the SIMULA class concept was 
generalized into a true concurrent process type [17].  

The relationship between template and instance for the 
above abstraction mechanisms is summarized in the table 
below:  

Abstraction/template Instance 
record type record 
value type value 

procedure/function activation record 
class object 

control abstraction control activation 
module? module 

process type process object 
 

The following observations may further explain the view 
on abstraction mechanisms and instances in the early part 
of the BETA project: 

� Some of terms in the above table were rarely considered 
by others at the programming level, but were considered 
implementation details. This is the case for activation 
record, control activation and process object. As we 
discuss elsewhere, we put much focus on the program 
execution – the dynamic evolution of objects and actions 
being executed – for understanding the meaning of a 
program. This was in contrast to most programming-
language schools where the focus was on the program 
text.  
� The notion of value type might seem trivial and just a 

special case of record type. However, as mentioned in 
Section 2.4, Nygaard found it doubtful to use the class 
concept to define value types – we return to this subject 
in Section 5.8.2. 
� A record type is obviously a special case of a class in the 

sense that a class may ‘just’ define a list of data fields. 
The only reason to mention record type as a case here is 
that the borderline between record type, value type and 
class was not clear to us.  
� If one follows Hoare, an object or abstract data type 

could only be accessed via its operations. We found it 
very heavyweight to insist that classes defining simple 
record types should also define accessor functions for its 
fields. This issue is further discussed in Section 5.5. 

5.1.2 Expected benefits from the unification 
As mentioned previously, the pattern should be more than 
just the union of the above abstraction mechanisms. Below 
we list some language features and associated issues that 
should be considered. 

� Pattern. The immediate benefit of unifying class, 
procedure, etc. is that this ensures a uniform treatment of 
all abstraction mechanisms. At the conceptual level, 



 

programmers have a general concept covering all 
abstraction mechanisms. This emphasizes the similarities 
among class, procedure, etc., with respect to being 
abstractions defining templates for instances. From a 
technical point of view, it ensures orthogonality among 
class, procedure, etc.  
� Subpattern. It should be possible to define a pattern as a 

subpattern of another pattern. This is needed to support 
the notion of subclass. From the point of view of 
orthogonality, this means that the notion of subpattern 
must also be meaningful for the other abstraction 
mechanisms. For example, since a procedure is a kind of 
pattern, inheritance for procedures must be defined – and 
in a way that makes it useful. 
� Virtual pattern. To support virtual procedures, it must 

be possible to specify virtual patterns. Again, the concept 
of virtual pattern must be meaningful for the other 
abstraction mechanisms as well. As a virtual pattern can 
be used as a class, the concept of virtual class must be 
given a useful meaning. It turned out that the notion of 
virtual class (or virtual type) was perhaps one of the most 
useful contributions of BETA. 
� Nested pattern. Since Algol, SIMULA, and DELTA are 

block-structured languages that support nesting of 
procedures and classes, it was obvious that BETA should 
also be a block-structured language. I.e., it should be 
possible to nest patterns arbitrarily. 
� Pattern variable. Languages like C contain pointers to 

procedures. For BETA, procedure typed variables were 
not considered initially, but later suggested by Ole 
Agesen, Svend Frølund and Michael H. Olsen in their 
Master’s thesis on persistent objects [4]. The uniformity 
of BETA implied that we then had classes, procedures, 
etc. as first-order values.  

In addition to being able to unify the various abstraction 
mechanisms, it was also a goal to be able to describe 
objects directly without having to define a pattern and 
generate an instance. This lead to the notion of singular 
objects: 

� Singular objects. In Algol and SIMULA it is possible to 
have inner blocks. In Pascal it is possible to define a 
record variable without defining a record type. For BETA 
it was a design goal that singular objects (called 
anonymous classes in Java and Scala [133-135]) should 
apply for all uses of a pattern. That is, it should be 
possible to write a complete BETA program in the form 
of singular objects – without defining any patterns at all. 

5.1.3 Similarities between object and activation 
record 
As mentioned in Section 3.1.2, the observation about the 
similarities between objects and activation records was one 
of the main motivations for unifying e.g. class and 

procedure. From the beginning the following similarities 
between objects and activation records were observed: 

� An object is generated as an instance of a class. An 
activation record is generated as part of a procedure 
invocation. In both cases input parameters may be 
transferred to the object/activation record.  
� An object consists of parameters, and data items (fields). 

An activation record also consists of parameters and data 
items in the form of local variables.  
� An object may contain local procedures (methods). In a 

block-structured language an activation record may have 
local (nested) procedures. 
� In a block-structured language, an activation record may 

have a pointer to the statically enclosing activation record 
(often called the static link or origin). In SIMULA, 
classes may be nested, so a SIMULA object may also 
have an origin. 
� An activation record may have a reference pointing to the 

activation record of the calling procedure (often called 
the dynamic link or caller). In most object-oriented 
languages there is no counterpart to a dynamic link in an 
object. In SIMULA this is different since a SIMULA 
object is potentially a coroutine.  

Figure 4 shows an example of a SIMULA program except 
that we use syntax in the style of C++, Java and C#.  This 
example contains the following elements: 

 

Figure 4 SIMULA-like program 
� The class Main with local (nested) classes Person and 
Set and a procedure main. 
� The class Person with instance variables name and age.  
� The class Set with a parameter size, an instance 

variable (array) rep for representing the set, a non-virtual 
procedure (method) insert, and a virtual procedure 
display. 
� The procedure main with reference variables Joe and S. 

class Main: 
{  
  class Person:  
    { name: text; age: integer; }; 
  class Set(size: integer):  
    { rep: array(size); 
      proc insert(e: object): { do ... }; 
      virtual proc display(): { do ... }; 
    }; 
  proc main():  
    { Person Joe = new Person(); 
      Set S  
    do S = new Set(99); 
       S.insert(Joe); 
       S.display() 
    }; 
} 



 

The example has the following characteristics: 

� Person, Set and main are nested within class Main. 
� Class instances (objects) are created by new Set().  
� Procedure instances are created by S.insert(Joe) and 
S.display().  

Figure 5 shows a snapshot of the execution of the program 
in Figure 4 at the point where S.insert(Joe) is executed 
at the end of main. 

 

Figure 5 Objects and activation records  
� The box named main is the activation record for main. It 

has a caller reference, which in this case is null since 
main is the first activation of this program. There is also 
an object reference (obj) to the enclosing Main object. In 
addition it has two data items Joe and S referring to 
instances of class Set and class Person 
� The boxes named Set and Person are Set and Person 

objects respectively. Since the example is SIMULA-like, 
both objects have an origin for representing block 
structure and a caller representing the coroutine 
structure. For both objects origin refer to the enclosing 
Main object. The caller is null since Set and Person 
have no statement part. 
� The box named insert is the activation record for the 

call of S.insert(Joe). Caller refers to main. It has 
an object reference (obj) to the Set object on which the 
method is activated. In addition it has two instance 
variables e and inx. The variable e refers to the same 
object as Joe. 

� The box named Main represents the Main object 
enclosing the Set and Person objects and the main 
activation record. 

From the above presentation it should be clear that there is 
a strong structural similarity between an object and an 
activation record. The similarity is stronger for SIMULA 
than for languages like C++, Java and C#, since SIMULA 
has block structure and objects are coroutines. Technically 
one may think of a SIMULA class as a procedure where it 
is possible to obtain a reference to the activation record – 
the activation record is then an instance of the class.  

5.1.4 The pattern  
From the discussion of the similarities between class and 
procedure it follows that the following elements are 
candidates for a unified pattern: 

� The name of the pattern 
� The input parameters 
� A possible superpattern 
� Local data items 
� Local procedures (methods) – virtual as well as non-

virtual 
� Local classes – possible nested classes 
� A statement part – in the following called a do-part 
One difference between a class and procedure is that a 
procedure may return a value, which is not the case for a 
class. To justify the unification we then had a minor 
challenge in defining the meaning of a return value for a 
pattern used as a class. We decided that we did not need an 
input parameter part for patterns. The rationale for this 
decision and the handling of return values are discussed in 
Section 5.8.1.  

 

Figure 6 Object layout 
In conclusion, we decided that a BETA object should have 
the layout shown in Figure 6. Origin represents the static 
link for nested procedures and objects and the object 
reference for method activations. Note that since a method 
is actually nested inside a class, there is no difference 
between the origin of a method activation and its object 
reference (obj in the above example). For patterns that are 



 

not nested within other patterns, origin may be 
eliminated. Caller represents the dynamic link for 
activation records and coroutine objects. For patterns 
without a do-part, caller may be eliminated. 

Figure 7 shows how the example from Figure 4 may be 
expressed in BETA. All of the classes and procedures have 
been expressed as patterns.  

 

Figure 7 Pattern example 
Basically it is a simple syntactic transformation: 

� The keywords class and proc are removed. 
� The brackets { and } are replaced by (# and #). 
� The insert input parameter part (e: Object) is 

replaced by a declaration of an object reference variable 
(e: ^object) and a specification that e is the input 
parameter (enter e[]). 
� The symbol ^ in a declaration of a variable specifies that 

the variable is a (dynamic) reference – we show below 
that variables can also be defined as static.  
� The symbol ‘<’ specifies that display is a virtual 

pattern. 
� The keyword ‘do’ separates the declaration part and the 

do-part. 
� The symbol & corresponds to new – i.e. &Set generates 

an instance of pattern Set. 
� The symbol [] in an application of a name, as in Joe[], 

signals that the value of Joe[] is a reference to the 
object Joe. This is in contrast to Joe, which has the 
object Joe as its value. 
� Assignment has the form exp -> V, where the value of 
exp is assigned to V. 
� The parentheses () are removed from procedure 

declarations and activations. 

� The arrow -> is also used for procedure arguments, 
which are treated as assignments. This is the case with 
Joe[] -> S.insert, where Joe[] is assigned to the 
input parameter e[]. 
� Instances of a pattern may be created in two ways: 
� The constructs &Set[]. The value of &Set[] is a 

reference to the new Set instance and corresponds to 
the new operator in most object-oriented languages. 

� S.display. Here a new display instance is 
generated and executed (by executing its do-part). 
This corresponds to a procedure instance as shown in 
Figure 4. 

The general form for a pattern is 
P: superP                // super pattern 
   (# A1; A2;...;An      // attribute-part 
   enter (V1, V2,...,Vs) // enter-part 
   do I1; I2;...;Im      // statements 
   exit (R1, R2,...,Rt)  // exit-part 
   #) 

� The super-part describes a possible super pattern. 
� The attribute-part describes declaration of attributes 

including variables and local patterns 
� The enter-part describes an optional list of input 

parameters. 
� The do-part describes an optional list of executable 

statements. 
� The exit-part describes an optional list of output values. 
As is readily seen from this general form for a pattern, a 
pattern may define a simple record type (defining only 
attributes), it may define a class with methods (in which 
case the local patterns are methods), or it may define 
procedures/functions, in which case the enter/exit lists work 
as input/output parameters. 

 

Figure 8 Decomposition of S.insert(Joe) 
As mentioned above, a procedure call may be described as 
a generation of an activation record, transfer of arguments, 
and execution of the code of the procedure. In Figure 8, 
such a decomposition of the call S.insert(Joe) from 
Figure 4 is shown: 

� A variable ia of type S.insert is declared. 
� An instance of S.insert() is assigned to ia. 
� The argument e is assigned the value of Joe. 
� The statement part of ia is executed. 

Main: 
  (# Person: (# ... #); 
     Set:  
       (# insert:  
           (# e: ^object  
           enter e[] do ... #); 
          display:< (# ... #); 
          ... 
       #); 
     main:  
       (# Joe: ^Person; 
          S: ^Set 
       do &Person[] -> Joe[]; 
          &Set[] -> S[]; 
          Joe[] -> S.insert; 
          S.display 
       #); 
  #) 

ia: S.insert; 
ia = new S.insert(); 
ia.e = Joe; 
ia.execute(); 



 

In BETA it is possible to write this code directly. This also 
implies that the activation record (object) ia may be 
executed several times by reapplying ia.execute(). Such 
procedure objects were referred to as static procedure 
instances and considered similar to FORTRAN subroutines. 

Although in a pure version of BETA one could imagine 
that all procedure calls would be written as in Figure 8, this 
would obviously be too clumsy. From the beginning an 
abbreviation corresponding to a normal syntax for 
procedure call was introduced. 

5.1.5 Subpatterns 
With respect to subpatterns a number of issues were 
discussed over the years. As with a SIMULA subclass, a 
subpattern inherits all attributes of its superpattern. We did 
discuss the possibility of cancellation of attributes as in 
Eiffel, but found this to be incompatible with a modeling 
approach where a subpattern should represent a 
specialization of its superpattern. We also had to consider 
how to combine the enter-, do- and exit-parts of a 
pattern and its superpattern. For the enter- and exit-parts 
we decided on simple concatenation as in SIMULA, 
although alternatives were discussed, such as allowing an 
inner statement (cf. Section 5.6) inside an enter/exit part 
to specify where to put the enter/exit part of a given 
subpattern. The combination of do-parts is discussed in 
Section 5.6. The following is an example of a subpattern: 

Student: Person (# ... #) 

The pattern Student is defined as a subpattern of Person. 
The usual rules regarding name-based subtype 
substitutability applies for variables in BETA. As in most 
class-based languages, an instance of Student has all the 
properties defined in pattern Person.  

In SIMULA a subclass can only be defined at the same 
block level as that in which its superclass is defined. The 
following example where TT is not defined at the same 
block level as its superclass T is therefore illegal: 

class A: {                // block-level 0 
   class T: { ... }       // block-level 1 
   class X: {             // block-level 1 
      class TT: T { ... } // block-level 2 
   } 
}  

BETA does not have this restriction. The restriction in 
SIMULA was because of implementation problems. We 
return to this question in Section 6.4.   

Multiple inheritance has been an issue since the days of 
SIMULA – we return to this issue in Section 5.5.1 and 
5.8.12. 

5.1.6 Modeling rationale 
The rationale for one pattern as described in Section 3.1.2 
and above is mainly technical. For a modeling language it 

is essential to be able to represent concepts and phenomena 
of the application domain. Abstraction mechanisms like 
class, procedure and type may represent specialized 
concepts from the application domain. It seemed natural to 
be able to represent a concept in general. The idea of 
having one pattern mechanism generalizing all other 
abstraction mechanisms was then considered well 
motivated from this point of view also. 

Since the primary purpose of patterns was to represent 
concepts, it has always been obvious that a subpattern 
should represent a specialized concept and thereby be a 
specialization of the superpattern. This implies that all 
properties of the superpattern are inherited by the 
subpattern. The ideal would be to ensure that a subpattern is 
always a behavioral specialization of the superpattern, but 
for good reasons it is not possible to ensure this by 
programming language mechanisms alone. The language 
rules were, however, designed to support behavioral 
specialization as much as possible. 

The notions of type and class are closely associated. 
Programming language people with focus on the technical 
aspects of a language often use the term ‘type’, and the 
purpose of types is to improve the readability of a program, 
to make (static) type checking possible and to be able to 
generate efficient code. A type may, however, also 
represent a concept, and for BETA this was considered the 
main purpose of a type. Many researchers (like Pierre 
America [8] and William Cook [27]) think that classes and 
types should be distinguished – classes should only be used 
to construct objects and types should be used to define the 
interfaces of objects. We have always found that it was an 
unnecessary complication to distinguish between class and 
type.  

There was also the issue of name or structural equivalence 
of types/classes. From a modeling point of view it is rarely 
questioned that name equivalence is the right choice. 
People in favor of structural equivalence seem to have a 
type-checking background. The names and types of 
attributes of different classes may coincidentally be the 
same, but the intention of the two classes might be quite 
different. Boris Magnusson [121] has given as example 
class Cowboy and class Figure that both may have a draw 
method. The meaning of draw for Cowboy is quite different 
from the meaning of draw for Figure. The name 
equivalence view is also consistent with the general view of 
a concept being defined by its name, intension (attributes) 
and extension (its instances).  

Another issue that is constantly being discussed is whether 
or not a language should be statically or dynamically typed. 
From a modeling point of view there was never any doubt 
that BETA should be statically typed since the type (class) 
annotation of variables is an essential part of the description 



 

of a model. BETA is, however, not completely statically 
typed – cf. Section 5.4.4 on co- and contravariance. 

5.2 Singular objects 
BETA supports singular objects directly and thereby avoids 
superfluous classes. The following declaration is an 
example of a singular object: 

myKitchen: @ Room(# ... #) 

The name of the object is myKitchen, and it has Room as a 
superpattern. The symbol @ specifies that an object is 
declared.8 The object is singular since the object-descriptor 
Room(# … #) is given directly instead of a pattern like 
Kitchen. 

Technically it is convenient to be able to describe an object 
without having to first declare a class and then instantiate 
an object – it is simply more compact.  

With respect to modeling the rationale was as follows: 

� When describing (modeling) real-life systems there are 
many examples of one-of-a-kind phenomena. The 
description of an apartment may contain various kinds of 
rooms, and since there are many instances of rooms it is 
quite natural to represent rooms as patterns and 
subpatterns (or classes and subclasses). An apartment 
usually also has a kitchen, and since most apartments 
have only one kitchen, the kitchen may be most naturally 
described as a singular object. It should be mentioned 
that any description (program) is made from a given 
perspective for a given purpose. In a description of one 
apartment it may be natural to describe the kitchen as a 
singular object, but in a more general description that 
involves apartments that may have more than one kitchen 
it may be more natural to include a kitchen pattern (or 
class).  
� Development of system descriptions and programs is 

often evolutionary in the sense that the description 
evolves along with our understanding of the problem 
domain. During development it may be convenient to 
describe phenomena as singular objects; later in the 
process when more understanding is obtained the 
description is often refactored into patterns and objects. 
Technically it is easy to change the description of a 
singular object to a pattern and an instance – in the same 
way as a description of a singular phenomenon is easily 
generalized to be a description of a concept. For an 
elaboration of this see Chapter 18 in the BETA book 
[119]. 

Exploratory programming emphasizes the view of using 
objects in the exploratory phase, and it is the whole basis 
for prototype-based object-oriented programming as e.g. in 
                                                                 
8 This is in contrast to ^, which specifies that a reference to an 

object is declared. 

Self. However, as discussed by Madsen [113], prototype-
based languages lack the possibility of restructuring objects 
into classes and objects when more knowledge of the 
domain has been obtained. 

5.3 Block structure 
Algol allowed nesting of blocks and procedures. SIMULA 
in addition allowed general nesting of classes, although 
there were some restrictions on the use of nested classes. 
For BETA it was quite natural that patterns and singular 
objects could be arbitrarily nested. Nesting of patterns 
comes almost by itself when there is no distinction between 
class and procedure. A pattern corresponding to a class 
with methods is defined as a class pattern containing 
procedure patterns, and the procedure patterns are nested 
inside the class pattern. The pattern Set in Figure 7 is an 
example – the patterns display and insert are nested 
inside the pattern Set. It is thus quite natural that patterns 
may be nested to an arbitrary level – just as procedures may 
be nested in Algol, Pascal and SIMULA, and classes may 
be nested in SIMULA. With nesting of patterns, nesting of 
singular objects comes naturally. A singular object may 
contain inner patterns, just as a pattern may contain inner 
singular objects.  

A major distinction between Smalltalk and the 
SIMULA/BETA style of object-oriented programming is 
the lack of block-structure in Smalltalk. Since the mid-
eighties, we have been trying to convince the object-
oriented community of the advantages of block-structure, 
but with little success. In 1986 a paper with a number of 
examples of using block structure was presented at the 
Hawthorne Workshop (see Section 3.3) and also submitted 
to the first OOPSLA conference, but not accepted. It was 
later included in the book published as the result of the 
Hawthorne Workshop [111]. C++ (and later C#) does allow 
textual nesting of classes, but only to limit the scope of a 
given class. In C++ and C# a nested class cannot refer to 
variables and methods in the enclosing object. Block 
structure was added to Java in one of the first revisions, but 
there are a number of restrictions on the use of nested 
classes, which means that some of the generality is lost. As 
an example, it is possible to have classes nested within 
methods (local nested classes), but instances of these 
classes may not access nonfinal variables local to the 
method.  

In Algol and SIMULA, the rationale for block structure 
was purely technical in the sense that it was very 
convenient to be able to nest procedures, classes and 
blocks. Block structure could be used to restrict the scope 
and lifetime of a given data item. For some time it was not 
at all obvious that block structure could be justified from a 
modeling point of view.  

The first step towards a modeling justification for block 
structure was taken by Liskov and Zilles [109]. Here a 



 

problem with defining classes representing grammars was 
presented. One of the elements of a grammar is its symbols. 
It is straightforward to define a class Grammar and a class 
Symbol. The problem pointed out by Liskov and Zilles was 
that the definition of class Symbol in their example was 
dependent on a given Grammar, i.e. symbols from an Algol 
grammar had different properties from symbols from a 
COBOL grammar. With a flat class structure it was 
complicated to define a class Symbol that was dependent 
on the actual grammar. With block structure it was 
straightforward to nest the Symbol class within the 
Grammar class. 

Another example that helped clarify the modeling 
properties of block structure was the so-called prototype 
abstraction relation problem as formulated by Brian Smith 
[146]. Consider a model of a flight reservation system: 

� Each entry in a flight schedule like SK471 describes a 
given flight by SAS from Copenhagen to Chicago 
leaving every day at 9:40 am with a scheduled flight time 
of 8 hours. 
� A flight entry like SK471 might naturally be an instance 

of a class FlightEntry. 
� Corresponding to a given flight entry there will be a 

number of actual flights taking place between 
Copenhagen and Chicago. One example is the flight on 
December 12, 2005 with an actual departure time of 9:45 
and an actual flight time of 8 hours and 15 minutes. 
These actual flights might be modeled as instances of a 
class SK471.  
� The dilemma is then that SK471 may be represented as 

an instance of class FlightEntry or as a class SK471. 
� With nested classes it is straightforward to define a class 
FlightEntry with an inner class ActualFlight. 
SK471 may then be represented as an instance of 
FlightEntry. The SK471 object will then contain a 
class ActualFlight that represents actual instances of 
flight SK471. 

The grammar example and the prototype abstraction 
relation problem are discussed in Madsen’s paper on block 
structure [111] and in the BETA book [119].  

Eventually block structure ended up being conceived as a 
means for describing concepts and objects that depend on 
and are restricted to the lifetime of an enclosing object. In 
the BETA book [119], the term localization is used for this 
conceptual means. The modeling view is in fact consistent 
with the more technical view of block structure as a 
construct for restricting the lifetime of a given data item. 

5.4 Virtual patterns 
One of the implications of having just one abstraction 
mechanism was that we would need a virtual pattern 
mechanism in order to support virtual procedures. Since a 

pattern may be used as e.g. a class, we needed to assure that 
it was meaningful to use a virtual pattern as a class. Algol, 
SIMULA and other languages had support for higher-order 
procedures and functions and proposals for higher-order 
types and classes had started to appear. Quite early in the 
BETA project it was noticed that there was a similarity 
between a procedure as a parameter and a virtual 
procedure. It was thus obvious to consider a unification of 
the two concepts. In the following we discuss virtual 
patterns used as virtual procedures and as virtual classes. 
Then we discuss parameterized classes and higher-order 
procedures and functions.  

5.4.1 Virtual procedures 
Virtual patterns may be used as virtual procedures, as 
illustrated by the pattern display in Figure 7. The main 
difference from virtual procedures in SIMULA and other 
languages is that in BETA a virtual procedure is not 
redefined in a subclass, but extended. The reason for this 
was a consequence of generalizing virtual procedure to 
cover virtual class, as described in the next section. 
Consider the example: 

Person: 
  (# name: @text; 
     display:<  
       (# do name[]->out.puttext; inner #) 
  #) 
Employee: Person 
  (# salary: @integer; 
     display::<(# do salary->out.putint #) 
  #) 

The display procedure in Employee is combined using 
inner with the one in Person yielding the following pattern 

display:  
  (# do name[] -> out.puttext;  
        salary -> out.putint  
  #) 

For further details, see the BETA book [119]; we return to 
this discussion in the sections on virtual class and 
specialization of actions. 

Wegner and Zdonik [160] characterized the different 
notions of class/subclass relationships as name-, signature-, 
or behavior-compatible. SIMULA has signature 
equivalence since the signature of the method in the super- 
and subclass must be the same. This is not the case for 
Smalltalk since there are no types associated with the 
declaration of arguments. I.e. a method being redefined 
must have the same name and number of arguments as the 
one from the superclass, but the types may vary. For BETA 
it was obvious that at least the SIMULA rule should apply. 
The modeling emphasis of BETA implied that from a 
semantic point of view a subclass should be a specialization 
of the superclass – i.e. behaviorally compatible. This means 
that code executed by a redefined method should not break 
invariants established by the method in the superclass. 



 

Behavioral equivalence cannot be guaranteed without a 
formal proof and therefore cannot be expressed as a 
language mechanism. For BETA we used the term 
structural compatibility as a stronger form than signature 
compatibility. In BETA it is not possible to eliminate code 
from the superclass. It is slightly closer to behavioral 
equivalence since it is guaranteed that a given sequence of 
code is always executed – but of course the effect of this 
can be undone in the subclass. 

5.4.2 Virtual classes 
As mentioned above, it was necessary to consider the 
implications of using a virtual pattern as a class. At a first 
glance, it was not clear that this would work, as illustrated 
by the following example: 

Set: 
  (# ElmType:< (# key: @integer #); 
     newElement: 
       (# S: ^ElmType; 
       do &ElmType [] -> S[]; 
          newKey -> S.key; 
        #) 
  #); 
 
PersonSet:  
  Set(# ElmType::< (# name: @Text #)#) 
 
PS: @PersonSet; 

The pattern Set has a virtual pattern attribute ElmType, 
which is analogous to the virtual pattern attribute display 
of Person above. In Person, the pattern display is used 
as a procedure, whereas ElmType in Set is used as a class. 
In newElement, an instance of ElmType is created using 
&ElmType[]. This instance is assigned to the reference S 
and the attribute key of S is assigned to in newKey -> 
S.key.  

In SIMULA a virtual procedure may be redefined in a 
subclass. If redefinition is also the semantics for a pattern 
used as a class then the ElmType in instances of 
PersonSet will be ElmType as defined in PersonSet. 
This implies that an execution of &ElmType[] in 
PS.newElement will create an instance of ElmType 
defined as (# name: @Text #), and with no key 
attribute. A subsequent execution of newKey -> S.key will 
then break the type checking. This was considered 
incompatible with the type rules of SIMULA where at 
compile time it is possible to check that a remote access 
like newKey -> S.key is always safe. 

We quickly realized that if PersonSet.ElmType was a 
subclass of Set.ElmType, then the type checking would 
not break, i.e. the declaration of PersonSet should be 
interpreted as:  

PersonSet: Set 
  (# ElmType::< 
       Set.ElmType(# name: @Text #)  
  #) 

That is, ElmType in Set is implicitly the superpattern of 
ElmType in PersonSet. We introduced the term further 
binding for this to distinguish the extension of a virtual 
from the traditional redefinition semantics of a virtual. 

With redefinition of virtual patterns being replaced by the 
notion of extension, it was necessary to consider the 
implications of this for virtual patterns used as procedures. 
It did not take long to decide that extension was also useful 
for virtual patterns used as procedures. A very common 
style in object-oriented programming is that most methods 
being redefined start by executing the corresponding 
method in the superclass using super. With the extension 
semantics, one is always guaranteed that this is done. 
Furthermore, as discussed below in the section on 
specialization of actions, it is possible to execute code 
before and after code in the subclass. 

As mentioned in Section 5.4.1, we assumed that signature 
compatibility from SIMULA should be carried over to 
BETA. The extension semantics includes this and in 
addition gives the stronger form of structural compatibility. 
Again, from a modeling point of view it was pretty obvious 
(to us) that this was the right choice. 

The disadvantage of extension is less flexibility. With 
redefinition you may completely redefine the behavior of a 
class. One of the main differences between the U.S. school 
and Scandinavian school of object-orientation was that the 
U.S. school considered inheritance as a mechanism for 
incremental modification or reuse (sometimes called code 
sharing) [160]. It was considered important to construct a 
new class (a subclass) by inheriting as much as possible 
from one or more superclasses and just redefine properties 
that differ from those of the superclasses. Belonging to the 
Scandinavian school, we found it more important to support 
behavioral compatibility between subclasses than pure 
reuse. 

The only situation we were not satisfied with was the case 
where a virtual procedure was defined as a default behavior 
and then later replaced by another procedure. This was 
quite common in SIMULA. We did consider introducing 
default bindings of virtuals, but if a default binding was 
specified, then it should not be possible to use information 
about the default binding. That is, if a virtual V is declared 
as V:< A and AA (a subpattern of A) is specified as the 
default binding, then V is only known to be an A. New 
attributes declared in AA cannot be accessed in instances of 
V. We did never implement this, but this form of default 
bindings was later included in SDL 92 (see Section 7.3). 

5.4.3 Parameterized classes 
It was a goal that virtual patterns should subsume higher-
order parameter mechanisms like name and procedure 
parameters and traditional virtual procedures. In addition it 
was natural to consider using virtual patterns for defining 



 

parameterized classes. The use of (locally defined) virtual 
patterns as described above was a step in the right 
direction: the pattern PersonSet may be used to represent 
sets of persons by their name, and other attributes like age 
and address may also be added to ElmType. We would, 
however, like to be able to insert objects of a pattern 
Person into a PersonSet. In order to do this we may 
define a parameterized class Set in the following way: 

Set: 
  (# ElmType:< (# #); 
     insert:< 
       (# x: ^object; e: ^ElmType 
       enter x[] 
       do &ElmType[] -> e[]; 
          inner; 
          e[] -> add  
       #) 
  #) 

The virtual pattern ElmType constitutes the type parameter 
of Set. The pattern add is assumed to store e[] in the 
representation of Set. A subclass of Set that may contain 
Person objects may be defined in the following way: 

PersonSet: Set 
  (# ElmType::< (# P: ^Person #) #); 
     insert::<(# do x[] -> e.P[] #) 
  #) 

The virtual pattern ElmType is extended to include a 
reference to a Person. The parameter e[] of insert is 
stored in e.P[]. This would work, but it is an indirect way 
to specify that PersonSet is a set of Person objects. 
Instead one would really like to write: 

Set: 
  (# ElmType:< object; 
     insert:< 
       (# x: ^ElmType 
       enter x[] 
       do (* add X[] to the rep. of Set *) 
       #) 
   #) 
 
PersonSet: Set (# ElmType::< Person #) 

Here ElmType is declared as a virtual pattern of type 
object. In PersonSet, ElmType is extended to Person, 
and in this way, the declaration of PersonSet now clearly 
states that it is a set of Person objects. It turned out that it 
was quite straightforward to allow this form of semantics 
where a virtual in general can be qualified by and bound to 
a nonlocal pattern – just as a combination of local and 
nonlocal patterns would work. The general rule is that if a 
virtual pattern is declared as T:< D then T may be 
extended by T::< D1 if D1 is a subpattern of D.  T may be 
further extended using T::< D2 if D2 is a subpattern of D1. 
The PersonSet above may be extended to a set holding 
Students, as in 

StudentSet:  
  PersonSet(# ElmType::< Student #) 

A final binding of the form ElmType:: Student may be 
used to specify that ElmType can no longer be extended. 

Both forms (V:< (# … #) and V:< A) of using virtual 
patterns have turned out to useful in practice – examples 
may be found in the OOPLSA’89 paper [117], and the 
BETA book [119]. 

5.4.4 Co- and contravariance 
For parameterized classes, static typing, subclass 
substitutability and co- and contravariance have been 
central issues. Most researchers seem to give static typing 
the highest priority, leading to – in our mind – limited and 
complicated proposals for supporting parameterized 
classes. In our 1990 OOPSLA paper [115] the handling of 
these issues in BETA was discussed. Subclass 
substitutability is of course a must, and covariance was 
considered more useful and natural than say contravariance. 
This implies that a limited form of run-time type checking 
is necessary when using parameterized classes – which in 
BETA are supported by patterns with virtual class patterns. 

SIMULA, BETA, and other object-oriented languages do 
contain run-time type checking for so-called reverse 
assignment where a less qualified variable is assigned to a 
more qualified variable – like  

aVehicle -> aBus 

The run-time type checking necessary to handle covariance 
is similar to that needed for checking reverse assignment. 

With emphasis on modeling it was quite obvious that 
covariance was preferred to contravariance, and it was 
needed for describing real-life systems. The supporters of 
contravariance seem mainly to be people with a static type-
checking approach to programming. 

It is often claimed in the literature (see e.g. [20]) that BETA 
is not type safe. This is because BETA requires some form 
of run-time type checking due to covariance. The compiler, 
however, gives a warning at all places where a run-time 
type check is inserted. It has often been discussed whether 
we should insist on an explicit cast in the program at all 
places where this run-time check is inserted. In SIMULA a 
reverse assignment may be written as  

aBus :- aVehicle 

In this case it is not clear from the program that an implicit 
cast is inserted by the compiler. SIMULA, however, also 
has explicit syntax for specifying that a cast is needed for a 
reverse assignment. It is possible to write  

aBus:- aVehicle qua Bus 

Here it is explicit that a cast is inserted. Introducing such an 
explicit syntax in BETA for reverse assignment and 
covariant parameters has often been discussed. As an 
afterthought, some of us would have preferred doing this 
from the beginning, since this would have ‘kept the static 



 

typeziers away’☺. However, whenever we suggested this to 
our users, they strongly objected to having to write an 
explicit cast. With respect to type safety it does not make 
any difference since a type error may still occur at run-time. 
We do, however, think that from a language design point of 
view it would be the right choice to insist on an explicit 
syntax, since it makes it clear that a run-time check is 
carried out. 

With respect to static typing, it is pointed out in our 
OOPSLA’90 paper [115] that although the general use of 
virtual class patterns will involve run-time type checking, it 
is possible to avoid this by using final bindings and/or part 
objects (cf. Section 5.5). This has turned out to be very 
common in practice. 

5.4.5 Higher-order procedures and functions 
In many languages a procedure9 may be parameterized by 
procedures. A procedure specified as a parameter is called a 
formal procedure. The procedure passed as a parameter is 
called the actual procedure. It was an issue from the 
beginning of the project that formal procedures should be 
covered by the pattern concept – and it was quickly realized 
that this could be done by unifying the notions of virtual 
procedure and formal procedure. 

Consider a procedure fsum parameterized by a formal 
procedure f, as in: 

real proc fsum(real proc f){ ... } 

An invocation of fsum may pass an actual procedure sine 
as in: 

fsum(sine) 

In BETA a formal procedure may be specified using a 
virtual procedure pattern as in: 

fsum:(# f:< realFunction; ... #) 

An invocation then corresponds to specifying a singular 
subpattern of fsum and a binding of f to the sine pattern: 

fsum(# f:: sine #) 

SIMULA inherited call-by-name parameters from Algol. 
Value parameters are well suited to pass values around – 
this is the case for simple values as well as references. Call-
by-name-parameters, like formal procedures, involve 
execution of code. For a call-by-name parameter the actual 
parameter is evaluated every time the formal parameter is 
executed in the procedure body – this implies that the 
context of the procedure invocation must be passed 
(implicitly) as an argument. It was a goal to eliminate the 
need for call-by-name parameters, and the effect of call by 
name can in fact be obtained using virtual patterns. 

                                                                 
9 In this section, procedure may be read as procedure and/or 

function. 

5.4.6 Pattern variables 
Virtual patterns partially support higher-order procedures in 
the sense that a virtual pattern may be considered a 
parameter of a given pattern. Originally BETA had no 
means for a pattern to return a pattern as a value. In 
general, virtual patterns do not make patterns first class 
values in the sense that they may be passed as arguments to 
procedures (through the enter part), returned as values 
(through the exit part) and be assigned to variables. For 
some years we thought that using virtual patterns as 
arguments fulfilled most needs to support higher-order 
procedures, although it was not as elegant as in functional 
languages. 

Indirectly, the work of Ole Agesen, Svend Frølund and 
Michael H. Olsen on persistent objects for BETA [4, 5] 
made it evident that a more dynamic pattern concept was 
needed. When a persistent object is loaded, its class 
(pattern) may not be part of the program loading the object. 
There was thus a need to be able to load its associated 
pattern and assign it to some form of pattern variable. 
Agesen, Frølund, and Olsen suggested the notion of a 
pattern variable, which forms the basis for supporting 
patterns as first-class values.  

Consider a pattern Person and subpatterns Student and 
Employee. A pattern variable P qualified by Person may 
be declared in the following way: 

P: ## Person 

P denotes a pattern that is either Person or some 
subpattern of Person. This is quite similar to a reference 
R: ^Person where R may refer to an instance of Person 
or subpattern of Person. The difference is that R denotes 
an object, whereas P denotes a pattern. P may be assigned 
a value in the following way: 

Student## -> P## 

P now denotes the pattern Student and an instantiation of 
P will generate an instance of Student. P may be assigned 
a new value as in: 

Employee## -> P## 

P now denotes the pattern Employee and an instantiation 
of P will result in an Employee object. 

Pattern variables give full support to higher-order 
procedures in the sense that patterns may be passed as 
arguments to procedures, returned as values and assigned to 
variables. 

5.5 Part objects 
From the very start we distinguished between variables as 
references to autonomous objects separate from the 
referencing objects, and variables as part objects being 
constituents of a larger object. We had many examples 
where this distinction was obvious from a modeling point 



 

of view: car objects with part objects body and wheels and 
references to a separate owner object, patient objects with 
organ part objects and a reference to a physician object, 
book objects with part objects (of type Text) representing 
the title and a reference to an author object, etc. In most of 
these examples there is always a question about 
perspective: for the owner, the car is not a car without four 
wheel part objects, while a mechanic has no problem with 
cars in which the wheels are separate (i.e. not part) objects. 

We were not alone in thinking that from a modeling point 
of view it is obvious that (physical) objects consist of parts. 
At the ECOOP’87 conference Blake and Cook presented a 
paper on introducing part objects on top of Smalltalk [12]. 
In [163] Kasper Østerbye described the proper (and 
combined) use of ‘parts, wholes and subclasses’. The 
example we used in our paper on part objects [118] was 
inspired by an example from Booch [14]: the problem 
presented there was to represent (in Smalltalk) buildings 
(for the purpose of heating control) as objects consisting of 
objects representing the parts of the building. While the 
Booch method and notation had no problem in modeling 
this, it was not possible in Smalltalk, where only references 
were supported.  

In our paper we used an apartment with kitchen, bath, etc. 
as example: 

Apartment:  
   (# theKitchen: @Kitchen; 
      theBathroom: @Bathroom; 
      theBedroom: @Bedroom; 
      theFamilyRoom: @FamilyRoom; 
      theOwner: ^Person; 
      theAddress: @Address; 
      ... 
   #) 

Note the difference between the rooms of the apartment 
modeled by part objects (using @) and the owner modeled 
by a reference variable (theOwner) to a separate object 
(using ^). 

Although BETA was designed from a modeling point of 
view, it was still a programming language, so we did not 
distinguish between parts objects modeling real parts (as 
the rooms above) and part objects implementing a property 
(theAddress property above) – in BETA terms they are 
all part objects. 

Another problem with Smalltalk was that it allowed 
external access only to methods, while all instance 
variables were regarded as private. The example would in 
Smalltalk have to have access methods for all rooms, and in 
order to get to the properties of these rooms, one would 
have to do this via these access methods. In BETA we 
allowed access to variables (both part objects and 
references) directly, so with the example above it is 
possible to e.g. invoke the paint method in theKitchen 
as follows: 

...; myApartment.theKitchen.paint; ... 

Comparing BETA with Java, a reference to an object (like 
theOwner variable above) corresponds to a Java reference 
variable typed with Person, while a part object is a final 
reference variable. 

A less important rationale for part objects was that part 
objects reflected the way ordinary variables of predefined 
value types like Integer, Real, Boolean, etc. were 
implemented, and we regarded e.g. Integer, Real and 
Boolean as (predefined) patterns. 

5.5.1 Inheritance from part objects 
In the part object paper we wrote: 

‘In addition to the obvious purpose of modeling that 
wholes consist of parts, part objects may also be used to 
model that the containing object is characterized by 
various aspects,10 where these aspects are defined by 
other classes.’ 

This reflects discussions we had, but they never led to 
additional language concepts. It does, however, illustrate 
the power of combining part objects, block structure and 
virtual patterns.  

Multiple inheritance by part objects. We explored the 
possibility of using part objects to represent various aspects 
of a concept. This was partially done in order to provide 
alternatives to multiple inheritance (see also Section 
5.8.12). In the following we give an example of using part 
objects to represent aspects. 

Persons and Companies are examples of objects that may 
be characterized by aspects such as being addressable and 
taxable. The aspect of being addressable may be 
represented by the pattern: 

Addressable: 
  (# street: @StreetName;  
     ... 
     printLabel:< (# ... #); 
     sendMail:< (# ... #) 
  #) 

Similarly, a taxable aspect may be represented by: 
Taxable: 
  (# income: @integer; 
     ... 
     makeTaxReturn: < (# ... #); 
     pay:< (# do ... #) 
  #) 

A pattern Person characterized by being addressable and 
taxable may then be described as follows: 

 

  
                                                                 
10 Here aspect is used as a general term and does not refer to 

aspect-oriented programming. 



 

Person:  
  (# name: @PersonName; 
     myAddr: @Addressable 
       (# printLabel::< 
            (# do ...;name.print;... #); 
          sendMail::< (# ... #) 
       #); 
     myTaxable: Taxable 
       (# makeTaxReturn::<(# ... #); 
          pay::< (# ... #) 
       #) 
  #) 

As the descriptor of the myAddr part object has 
Addressable as a superpattern, the printLabel and 
sendMail virtuals can be extended11. Since these 
extensions are nested within pattern Person, an attribute 
like Name is visible. This implies that it is possible to 
extend printLabel and sendMail to be specific for 
Person. 

A pattern Company may be defined in a similar way: 
Company:  
  (# name: @CompanyName;  
     logo: @Picture; 
     myAddr:@Addressable 
       (# printLabel::<  
            (# ...;  
               name.print;  
               logo.print; ... 
            #); 
          sendMail::< (# ... #) 
    #); 
     myTaxable: Taxable(# ... #) 
  #) 

Again, notice that a virtual binding like printLabel may 
refer to attributes of the enclosing Company object. 

In languages with multiple inheritance, Person may be 
defined as inheriting from Addressable and Taxable. 
From a modeling point of view we found it doubtful to 
define say Person as a subclass of Addressable and 
Taxable. From a technical point of view the binding of 
virtuals of Addressable and Taxable in Person will all 
appear at the same level when using multiple inheritance. 
Using part objects these will be grouped logically. A 
disadvantage is that these virtuals have to be denoted via 
the part object, as in 

aPerson.myAddr.printLabel 
aCompany.myTaxable.pay 

The advantage is that the possibility of name conflicts does 
not arise.  

5.5.2 References to part objects 
Subtype substitutability is a key property of object-oriented 
languages: if e.g. Bus is a subclass of Vehicle then a 
reference of type Vehicle may refer to instances of class 
                                                                 
11 It is not important that extension semantics be used – the same 

technique may be used with redefinition of virtuals. 

Bus. For an aspect like Addressable there is not a 
class/subclass relationship with e.g. class Person. If 
multiple inheritance is used to make Person inherit from 
Addressable then a reference of type Addressable may 
refer to instances of class Person.  

In BETA it is possible to obtain a reference to a part object. 
This means that a reference of type Addressable may 
refer to a part object of type Addressable embedded 
within a Person object. If anAddr1 and anAddr2 are of 
type Addressable then the statements below will imply 
that anAddr1 and anAddr2 will refer the Addressable 
part-object of aPerson and aCompany respectively: 

aPerson.myAddr[] -> anAddr1[]; 
aCompany.myAddr[] -> anAddr2[]; 

The effect of this is that anAddr1 and anAddr2 refer 
indirectly to a Person and a Company object, respectively. 
This is analogous to a reference of type Vehicle may refer 
to an instance of class Bus. It is thus possible to have code 
that handles Addressable objects independently of 
whether the Addressable objects inherits from 
Addressable or have Addressable as a part object: 
Suppose that we have defined Company as a subpattern of 
Addressable and Person containing an Addressable 
part object as shown above. We may then assign to 
anAddr1 and anAddr2 as follows (assuming that 
andAddr1 and anAddr2 are of type Addressable): 

aCompany[] -> anAddr1 
aPerson.myAddr[] -> anAddr2[] 

Figure 9a shows how anAddr1 may refer to a Company-
object as a subpattern of Addressable. Figure 9b shows 
how anAddr2 may refer to an Addressable part object of 
a Person object. 

 

(a)    (b) 
Figure 9 Inheritance from Addressable as super and 
as part object 
A procedure handling Addressable objects – like calling 
PrintLabel – may then be called with anAddr1 or 
anAddr2 as its argument. 



 

In many object-oriented languages it is also possible to 
make a reverse assignment (sometimes called casting) like  

aVehicle[] -> aBus[]  

Since it cannot be statically determined if aVehicle 
actually refers an instance of class Bus, a run-time type 
check is needed.  

In order to be able to do a similar thing for part objects, we 
proposed in our part-object paper that a part object be given 
an extra location field containing a reference to the 
containing object. That is the myAddr part of a Person 
object is referencing the containing Person object. It is 
then possible to make a reverse assignment of the form 

anAddr1.location[] -> aPerson[] 

As for the normal case of reverse assignment, a run-time 
check must be inserted in order to check that andAddr1 is 
actually a part of a Person. After publication of the part 
object paper, we realized that it would be possible to use 
the syntax  

anAddr1[] -> aPerson[]  

and extend the runtime check to check whether the object 
referred by anAddr1 is a subclass of Person or a part 
object of Person. 

In Figure 9b, the location field of the Addressable part 
object is shown. The concept of location was 
experimentally implemented, but did not become part of the 
released implementations. 

5.6 Specialization of actions 
From the very beginning we had the approach that 
specialization should apply to all aspects of a pattern, i.e. it 
should also be possible to specialize the behavior part of a 
pattern, not only types of attributes and local patterns. The 
inspiration was the inner mechanism of SIMULA. A class 
in SIMULA has an action part, and the inner mechanism 
allows the combination of the action parts of superclass and 
subclass. However, we had to generalize the SIMULA 
inner. In SIMULA, inner was simply a means for 
syntactically splitting the class body in two. The body of a 
subclass was defined to be a (textual) concatenation of the 
pre-inner body part of the superclass, the body part of the 
subclass, and the post-inner body part of the superclass. In 
BETA we rather defined inner as a special imperative that – 
when executed by the superpattern code – implied an 
execution of the subpattern do-part. This implied that an 
inner may appear at any place where a statement may 
appear, be executed several times (e.g. in a loop) and that 
an action part may contain more than one inner.  

5.6.1 Inner also for method patterns 
The fact that inner was defined for patterns in general and 
not only for classes as in SIMULA implied that it was 
useful also for patterns that defined methods. It was thereby 

possible to define the general behavior of e.g. the method 
pattern Open of class File, with bookkeeping behavior 
before and after inner, use this general Open as a 
superpattern for OpenRead and OpenWrite, adding 
behavior needed for these, and finally have user-defined 
method patterns specializing OpenRead and OpenWrite 
for specific types of files. 

Independently of this, Jean Vaucher had developed the 
same idea but applied to procedures in SIMULA [157]. 

5.6.2 Control structures and iterators 
As mentioned in Section 5.1.1, it was a goal for BETA that 
it should be possible to define control structures by means 
of patterns. A simple example of the use of inner for 
defining control structures is the following pattern: 

cycle: (# do inner; restart cycle #) 

Given two file objects F and G, the following code simply 
copies F to G: 

L: cycle(#  
     do (if F.eos then (* end-of-stream *) 
            leave L 
        if); 
        F.get -> G.put 
     #); 

This is done by giving the copying code as the main do-part 
of an object being a specialization of cycle. The copying 
code will be executed for each execution of inner in the 
superpattern cycle. 

The perhaps most striking example of the use of inner for 
defining control structure abstractions is the ability to 
define iterators on collection objects. If mySet is an 
instance of a pattern Set then the elements of the mySet 
may be iterated over by  

mySet.scan(# do current.display #) 

The variable current is defined in scan and refers to the 
current element of the set. The superpattern mySet.scan is 
an example of a remote pattern used as a superpattern. This 
is an example of another generalization of SIMULA. 

Someone12 has suggested that a data abstraction should 
define its associated control structures. By using patterns 
and inner it is possible in BETA to define control structures 
associated with any given data structure. Other languages 
had this kind of mechanism as built-in mechanisms for 
built-in data structures, while we could define this for any 
kind of user-defined data structure. At this time in the 
development there were languages with all kinds of fancy 
control structures (variations over while and for 
statements). We refrained from doing this, as it was 

                                                                 
12 We think this was suggested by Hoare, but have been unable to 

find a reference. 



 

possible to define these by a combination of inner and 
virtual patterns. 

The basic built-in control structures are leave and 
restart, which are restricted forms of the goto statement, 
and the conditional if statement. We were much influenced 
by the strong focus on structured programming in the 
seventies. Dijkstra published his influential paper on ‘goto 
considered harmful’ [36]. Leave and restart have the 
property that they can only jump to labels that are visible in 
the enclosing scope, i.e. continue execution either at the 
end of the current block or at the beginning at an enclosing 
“block”. In addition the corresponding control graphs have 
the property of being reducible. In another influential paper 
on guarded commands [37], Dijkstra suggested 
nondeterministic if and while statements. In addition, there 
was no else clause since Dijkstra argued that the 
programmer should explicitly list all possible cases. We 
found his argument quite convincing and as a consequence 
the BETA if-statement was originally nondeterministic and 
had no else clause. However, any reasonable 
implementation of an if statement would test the various 
cases in some fixed order and our experience is that the 
programmer quickly relies on this – this means that the 
program may be executed differently if a different compiler 
is used. It is of course important to distinguish the language 
definition from a concrete implementation, but in this case 
it just seems to add another source of errors. In addition it is 
quite inconvenient in practice not to have an else clause. 
We thus changed the if statement to be deterministic and 
added an else clause. 

In principle we could have relied on leave/restart 
statements and if statements, but also a for statement was 
added. It is, however, quite simple to define a for 
statement as an abstraction using the existing basic control 
structures. However, the syntax for using control 
abstractions was not elegant – in fact Jørgen Lindskov 
Knudsen once said that it was clumsy. Today we may 
agree, and e.g. Smalltalk has a much more elegant syntax 
with respect to these matters. In the beginning of the BETA 
project we assumed that there would be (as an elegant and 
natural way to overcome these kinds of inconveniences) a 
distinction between basic BETA and standard BETA where 
the latter was an extension of basic BETA with special 
syntax for common abstractions. This distinction was 
inspired by SIMULA, which has special syntax for some 
abstractions defined in class Simulation. 

Furthermore, we considered special syntax for while and 
repeat as in Pascal, but this was never included. The for 
statement may be seen as reminiscent of such special 
syntax.  

5.6.3 Modeling 
The phenomena of a given application domain include 
physical material (represented by objects), measurable 

properties (represented by values of attributes) and 
transformations (represented by actions) of properties of the 
physical material – cf. Section 4.2. The traditional 
class/subclass mechanisms were useful for representing 
classification hierarchies on physical material. From a 
modeling point of view it was just as necessary to represent 
classification hierarchies of actions. This guided the design 
of using the inner mechanism to combine action parts and 
thereby be able to represent a classification hierarchy of 
methods and/or concurrent processes. The paper 
Classification of Actions or Inheritance Also for Methods 
[101] is an account of this. 

5.7 Dynamic structure 
From the beginning it was quite clear that BETA should be 
a concurrent object-oriented programming language. This 
was motivated from a technical as well as a modeling point 
of view. In the seventies there was lot of research activity 
in concurrent programming. Most of the literature on 
concurrency was quite technical and we spent a lot of time 
analyzing the different forms of concurrency in computer 
systems and languages. This led to the following 
classification of concurrency: 

� Hidden concurrency is where concurrent execution of 
the code is an optimization made by a compiler – e.g. 
concurrent execution of independent parts of an 
expression. 
� Exploited concurrency is where concurrency is used 

explicitly by a programmer to implement an efficient 
algorithm – concurrent sorting algorithms are examples 
of this. 
� Inherent concurrency is where the program executes in 

an environment with concurrent nodes – typically a 
distributed system with several nodes. 

We felt that it was necessary to clarify such conceptual 
issues in order to design programming language 
mechanisms. With the emphasis on modeling it was quite 
clear that inherent concurrency should be the primary target 
of concurrency in BETA. 

The quasi-parallel system concept of SIMULA was the 
starting point for designing the dynamic structure of BETA 
systems. As mentioned in Section 3.1.3, quasi-parallel 
systems in SIMULA are based on coroutines, but the 
SIMULA coroutine mechanism did not support full 
concurrency and is furthermore quite complex. 
Conceptually, the SIMULA coroutine mechanism appears 
simple and elegant, but certain technical details are quite 
complicated. The coroutine system described by Dahl and 
Hoare in their famous book on structured programming 
[29] is a simplified version of the SIMULA coroutine 
system. 

SIMULA did not have mechanisms for communication and 
synchronization, but several research results within 



 

concurrent programming languages were published in the 
seventies. Concurrent Pascal [17] was a major milestone 
with regard to programming languages for concurrent 
programming. Concurrent Pascal was built upon the 
SIMULA class concept, but the class concept was 
specialized into three variants, class, process and monitor. 
This was sort of the opposite of the BETA goal of 
unification of concepts. In addition Concurrent Pascal did 
not have subclasses and virtual procedures. The monitor 
construct suggested by Brinch-Hansen and Hoare [57] has 
proved its usability in practice, and was an obvious 
candidate for inclusion in BETA. However, a number of 
problems with the monitor concept were recognized and 
several papers on alternative mechanisms were published 
by Brinch-Hansen and others [18].  

Another important research milestone was CSP [58] where 
communication and synchronization was handled by input 
and output commands. Nondeterministic guarded 
commands were used for selecting input from other 
processes. We were very much influenced by CSP and later 
Ada [2] with respect to the design of communication and 
synchronization in BETA. In Ada communication and 
synchronization were based on the rendezvous mechanism, 
which is similar to input/output commands except that 
procedure calls are used instead of output commands.  

5.7.1 The first version 
From the beginning, a BETA system was considered a 
collection of coroutines possibly executing in parallel. Each 
coroutine is organized as a stack of objects corresponding 
to the stack of activation records. A coroutine is thus a 
simple form of thread. In the nonconcurrent situation, at 
most one coroutine is executing at a given point in time. 
Since activation records in BETA are subsumed by objects, 
the activation records may be instances of patterns or 
singular objects. 

The SIMULA coroutine mechanism was quite well 
understood and the main work of designing coroutines for 
BETA was to simplify the SIMULA mechanism. SIMULA 
has symmetric as well as asymmetric coroutines [30]. In 
BETA there are only asymmetric coroutines – a symmetric 
coroutine system can be defined as an abstraction. In BETA 
it is furthermore possible to transfer parameters when a 
coroutine is called.  

Conceptually it was pretty straightforward to imagine 
BETA coroutines executing concurrently. It was much 
harder to design mechanisms for communication and 
synchronization and this part went through several 
iterations.  

The first published approach to communication and 
synchronization in BETA was based on the CSP/Ada 
rendezvous mechanism, mainly in the Ada style since 
procedure calls were used for communication. From a 

modeling point of view this seemed a good choice since the 
rendezvous mechanism allowed direct communication 
between concurrent processes. With monitors all 
communication was indirect – of course, this may also be 
justified from a modeling point of view. However, since 
monitors could be simulated using processes and 
rendezvous we found that we had a solution that could 
support both forms of communication between processes.  

In CSP and Ada input and output commands are not 
symmetric: input-commands (accept statements) may be 
used only in a guarded command. The possibility of 
allowing output commands as guards in CSP is mentioned 
by Hoare [58]. For BETA we considered it essential to 
allow a symmetric use of input  and output commands in 
guarded commands. We also found guarded commands 
inexpedient for modeling a process engaged in 
(nondeterministic) communication with two or more 
processes. Below we give an example of this. 

The following example is typical of the programming style 
used with guarded commands: 

� Consider a process Q engaged in communication with 
two other processes P1 and P2.  
� Q is engaged in the following sequential process with P1 

Q1: cycle{P1.get(V1); S1; P1.put(e1); S2} 

Q gets a value from P1, does some processing, sends a 
value to P1 and does some further processing. Note that 
rendezvous semantics is assumed for method 
invocations. This means that Q1 may have to wait at e.g. 
P1.get(V1) until P1 accepts the call. 

� Q is also engaged in the following sequential process with 
P2: 
Q2:cycle{ P2.put(e2); S3; P2.get(V2); S4 } 

� Q1 and Q2 may access variables in Q. A solution where 
Q1 and Q2 are executed concurrently as in: 
Q: { ... do (Q1 || Q2) } 

where || means concurrency will therefore not work 
unless access to variables in Q is synchronized. And this 
is not what we want – in general we want to support 
cooperative scheduling at the language level. 

� The two sequential processes have to be interleaved in 
some way to guarantee mutual access to variables in Q. It 
is not acceptable to wait for P1 if P2 is ready to 
communicate or vice versa. For instance, when waiting 
for P1.get one will have to place a guard that in 
addition accepts P2.put or P2.get. It is, however, 
difficult to retain the sequentiality between P1.get and 
P1.put and between P2.put and P2.get. Robin Milner 



 

proposed the following solution using Boolean 
variables13: 

 
Q:  
{... do  
 if 
  B1     and P1.get(V1) then S1;B1:= false 
  not B1 and P1.put(e1) then S2;B1:= true 
  B2     and P2.put(e2) then S3;B2:= false 
  not B2 and P2.get(V2) then S4;B2:= true 
 fi 
} 

From a programming as well as a modeling point of view, 
we found this programming style problematic since the two 
sequential processes Q1 and Q2 are implicit. We did think 
that this was a step backward since Q1 and Q2 were much 
better implemented as coroutines. One might consider 
executing Q1 and Q2 in parallel but this would imply that 
Q1 and Q2 must synchronize access to shared data. This 
would add overhead and extra code to this example.  

Eventually we arrived at the notion of alternation, which 
allows an active object to execute two or more coroutines 
while at most one at a time is actually executing. The above 
example would then look like 

Q:  
{... 
 Q1: alternatingTask 
     {cycle{ P1.get(V1);S1;P1.put(e1);S2} 
 Q2: alternatingTask 
     {cycle{ P2.put(e2);S3;P2.get(V2);S4} 
do (Q1 | Q2) 
} 

The statement (Q1 | Q2) implies that Q1 and Q2 are 
executed in alternation. Execution of Q1 and Q2 may 
interleave at the communication points. At a given point in 
time Q1 may be waiting at say P1.put(e1) and Q2 at 
P2.get(V2). If P1 is ready to communicate, then Q1 may 
be resumed. If on the other hand P2 is ready before P1 then 
Q2 may be resumed.  

The statement (Q1 | Q2) is similar to (Q1 || Q2) – the 
former means alternation (interleaved execution at well 
defined points) and the latter means concurrent execution. 
Note, that the example is not expressed in BETA, whose 
syntax is slightly more complicated. 

The version of BETA based on CSP/Ada-like rendezvous 
and with support for alternation is described in our paper 
entitled Multisequential Execution in the BETA 
Programming Language [97] (also published in [145]). 

5.7.2 The final version 
We were happy with the generalized rendezvous 
mechanism – it seemed simple and general, But when we 
                                                                 
13 The syntax is CSP/Ada-like, 

started using and implementing it, we discovered a number 
of problems: 

� Although the rendezvous mechanism can be used to 
simulate monitors it turned out to be pretty awkward in 
practice. As mentioned above the monitor is one of the 
few concurrency abstractions that have proved to be 
useful in practice.  
� It turned out to be inherently complicated to implement 

symmetric guarded commands – at least we were not able 
to come up with a satisfactory solution. In [70] an 
implementation was proposed, but it was quite 
complicated. 

In addition we realized that the technique for defining a 
monitor abstraction as presented by Jean Vaucher [157] 
could also be used to define a rendezvous abstraction, 
alternation and several other types of concurrency 
abstractions including semi-coroutines in the style of 
SIMULA, and alternation. In late 1990 and early 1991, a 
major revision of the mechanisms for communication and 
synchronization was made. As of today, BETA has the 
following mechanisms: 

� The basic primitive for synchronization in BETA is the 
semaphore.  
� Higher-order concurrency abstractions such as monitor, 

and Ada-like rendezvous, and a number of other 
concurrency abstractions are defined by means of 
patterns in the Mjølner BETA libraries. The generality of 
the pattern concept, the inner mechanism and virtual 
patterns are essential for doing this. Wolfgang Kreutzer 
and Kasper Østerbye [80, 165] also defined their own 
concurrency abstractions. 
� In BETA it is possible to define cooperative as well as 

preemptive (hierarchical) schedulers in the style of 
SIMULA. Although there were other languages that 
allowed implementation of schedulers, they were in our 
opinion pretty ad hoc and not as elegant and general as in 
SIMULA. At that time and even today, there does not 
seem to be just one way of scheduling processes.  

For details about coroutines, concurrency, synchronization, 
and scheduling see the BETA book [119]. 

5.7.3 Modeling 
From a modeling perspective there was obviously a need 
for full concurrency. The real world consists of active 
agents carrying out actions concurrently.  

In DELTA it is possible to specify concurrent objects, but 
since DELTA is for system description and not 
programming, the DELTA concepts were not transferable 
to a programming language. To understand concurrency 
from a technical as well as a modeling point of view, we 
engaged in a number of studies of models for concurrency 
especially based on Petri nets. One result of this was the 



 

language Epsilon [65], which was a subset of DELTA 
formalized by a Petri net model. 

For coroutines it was not obvious that they could be 
justified from a modeling perspective. The notion of 
alternation was derived in order to have a conceptual 
understanding of coroutines from a modeling point of view. 
An agent in a travel agency may be engaged in several 
(alternating) activities like ‘tour planning’, ‘customer 
service’ and ‘invoicing’. At a given point in time the agent 
will be carrying out at most one of these activities.  

As for coroutines, the notion of scheduling was not 
immediately obvious from a modeling point of view. This, 
however, led to the notion of an ensemble as described in 
Section 5.8.7 below. 

5.8 Other issues 
Here we discuss some of the other language elements that 
were considered for BETA. This includes language 
constructs that were discussed but not included in BETA. 

5.8.1 Parameters and return values 
In block-structured languages like Algol, the parameters of 
a procedure define an implicit block level: 

foo(a,b,c: integer) { x,y,z: real do ... } 

Here the parameters a,b,c corresponds to a block level 
and the local variables x,y,z are at an inner block level. 
For BETA the goal was that the implicit block level defined 
by the parameters should be explicit. A procedure pattern 
like foo should then be defined as follows: 

foo:  
  (# a,b,c: integer  
  do (#  x,y,z: integer do ... #)  
  #) 

The parameters are defined as data items at the outermost 
level, and the local variables are defined in a singular object 
in the do part. 

With respect to return values, the initial design was to 
follow the Algol style and define a return value for a 
procedure – which in fact is still the style used in most 
mainstream languages. In most languages a procedure may 
also return values using call-by-reference and/or call-by-
name parameters. However, many researchers considered it 
bad style to write a procedure that returns values through 
both its parameters and its return value. This style was (and 
still is), however, often used if a procedure needs to return 
more than one value. For BETA (as mentioned elsewhere), 
call-by-name was not an issue since it was subsumed by 
virtual patterns. As mentioned below, we did find that call-
by-reference parameters would blur the distinction between 
values and objects. There were language proposals 
suggesting call-by-return as an alternative to call-by-
reference. The advantage of call-by-return was that the 
actual parameter did not change during the execution of the 

procedure, but was first changed when the procedure 
terminated. We did find a need to be able to return more 
than one value from a procedure and in some languages 
(like Ada) a variable could be marked as in, out or inout 
corresponding to call-by-value, -return or both. Finally, 
there was also a discussion on whether or not arguments 
should be passed by position or by the name of the 
parameter. In the first version of BETA all data items at the 
outermost level could be used as arguments and/or return 
values, and the name of a data item was used to pass 
arguments and return values. The pattern foo above might 
then be invoked as follows: 

foo(put a:=e1, b:=e2) (get v:=b, w:=c) 

We later found this too verbose, and position-based 
parameters were introduced in the form of enter/exit lists. 
The pattern foo would then be declared as follows: 

foo: (# a,b,c: integer  
     enter (a,b) do (# ... #)  
     exit (b,c) 
     #) 

and invoked as follows: 
(e1,e2) -> foo -> (v,w) 

In this example, enter corresponds to defining a,b as in 
parameters and exit corresponds to defining b,c as out 
parameters, i.e. b was in fact an inout parameter. 

There were a number of intermediate steps before the 
enter/exit parts were introduced in their present form. One 
step was replacing the traditional syntax for calling a 
procedure with the above (and current) postfix notation. In 
a traditional syntax the above call would look like: 

(v,w) := foo(e1,e2) 

If e1 and e2 also were calls to functions, a traditional call 
might look like: 

(v,w):= foo(bar(f1,f2),fisk(g1,g2)) 

We did not find this to be the best syntax with respect to 
readability – in addition, we would like to write code as 
close as possible to the order of execution. This then led to 
the postfix notation where the above call will be written as 

((f1,f2)->bar,(g1,g2)->fisk)->foo->(v,w) 

We found this more readable, but others may of course 
disagree. 

The enter/exit part may be used to define value types. In 
this case, the exit part defines the value of the object and 
the enter part defines assignment (or enforcement) of a new 
value on the object. The following example shows the 
definition of a complex number: 

complex:  
 (# x,y: @ real enter(x,y) exit(x,y)#) 

Complex variables may be defined as follows: 



 

C1,C2: @complex 

They may be assigned and compared: In C1 -> C2, the 
exit part of C1 is assigned to the enter part of C2. In C1 
= C2 the exit part of C1 is compared to the exitpart of C2. 

As part of defining a value type we would also like code to 
be associated with the value and assignment. For this 
reason, the enter/exit-part is actually a list of evaluations 
that may contain code to be executed. For purely illustrative 
purposes the following definition of complex keeps track of 
the number of times of the value is read or assigned: 

complex: 
  (# x,y: @real; n,m: @integer  
  enter (# enter(x,y) do n+1 -> n #) 
  exit (# do m+1 -> m exit (m,y) #) 
  #) 

Complex may also have a do-part, which is executed 
whenever enter or exit is executed. If C1 is a complex 
object with a do-part then 

� In C1 -> E, the do, and exit part of C1 is executed 
� In E -> C1, the enter- and do part of C1 is executed 
� In E -> C1 -> F, the enter, do and exit parts of C1 

are executed. 
The do part is thus executed whenever an object is 
accessed, the enter part when it is assigned and the exit 
part when the value is fetched. 

One problem with the above definitions of complex is that 
the representation of the value is exposed. It is possible to 
assign simple values and decompose the exit part, as in 

(3.14,1.11) -> C1 -> (q,w) 

To prevent this, it was once part of the language that one 
could restrict the type of values that could be assigned/read: 

complex:  
  (# x,y: @real  
  from complex enter(x,y)  
  to complex exit(x,y)  
  #) 

In general any pattern could be written after from/to, but 
there was never any use of this generality and since we 
never became really happy with using enter/exit to define 
value types, the from/to-parts were abandoned. 

The SIMULA assignment operators := and :- were taken 
over for BETA. In the beginning => was used for 
assignment of values and @> for assignment of references. 
However, since enter/exit-lists and lists in general may 
contain a mixture of values and references, we either had to 
introduce a third assignment operator to be used for such a 
mixture, or use one operator. Eventually -> was selected. 
The distinction between value and object is thus no longer 
explicit in the assignment operator. Instead, this is 
expressed by means of []. An expression X[] denotes the 

reference to the object referred by X. An expression X 
denotes the value of the object. 

5.8.2 Value concept 
The distinction between object and value has been 
important for the design of BETA. This is yet another 
example of the influence of SIMULA as exemplified 
through the operators := and :-. In the previous section, 
we have described how enter/exit may be used to define 
value types. In this section we discuss some of the design 
considerations regarding the value concept. 

As mentioned, the SIMULA class construct was a major 
inspiration for the notion of abstract data types developed 
in the seventies. For Nygaard a data type was an abstraction 
for defining values, and he found that the use of the class 
concept for this purpose might create conceptual confusion. 
In SIMULA, Dahl and Nygaard tried to introduce a concept 
of value types at a very late stage, but some of the main 
partners developing the SIMULA compilers refused to 
accept a major change at that late point of the project. The 
notion of value type was further discussed in the DELTA 
project and, as mentioned in Section 2.4, was one of the 
subprojects defined in JLP. Naturally the concept of value 
types was carried over to the BETA project. 

One may ask why it should be necessary to distinguish 
value types from classes – why are values not just instances 
of classes? The distinction between object and value is not 
explicit in mainstream object-oriented languages. In 
Smalltalk values are immutable objects. In C++, Java and 
C# values are not objects, but there does not seem to be a 
conceptual distinction between object and value – the 
distinction seems mainly to be motivated by efficiency 
considerations. 

From a modeling point of view, it is quite important to be 
able to distinguish between values and objects. As 
mentioned in Section 4, values represent measurable 
properties of objects. In 1982 MacLennan [110] formulated 
the distinction in the following way: 

… values are abstractions, and hence atemporal, 
unchangeable, and non-instantiated. We have shown that 
objects correspond to real world entities, and hence exist 
in time, are changeable, have state, and are instantiated, 
and can be created, destroyed and shared. These concepts 
are implicit in most programming languages, but are not 
well delimited. 

One implication of the distinction between value and object 
was that support for references to values as known from 
Algol 68 and C was ruled out from the beginning. A 
variable in BETA either holds a value or a reference to an 
object.  

Another implication was that a value conceptually cannot 
be an instance of a type. Consider an enumeration type:  



 

color = (red, green, blue) 

Color is the type and red, green, and blue are its values. 
Most people would think of red, green and blue as 
instances of color. For BETA we ended up concluding 
that it is more natural to consider red, green and blue as 
subpatterns of color. The instances of say green are then 
all green objects. In Smalltalk True and False are 
subclasses of Boolean, but they are also objects. Numbers 
in Smalltalk are, however, considered instances of the 
respective number classes. For BETA we considered 
numbers to be subpatterns and not instances. Here we are in 
agreement with Hoare [55] that a value, like four, is an 
abstraction over all collections of four objects.  

Language support for a value concept was a constant 
obstacle in the design of BETA. The enter/exit-part of a 
pattern, the unification of assignment and method 
invocation to some extent support the representation of a 
value concept. For Nygaard this was not enough and he 
constantly returned to the subject. Value type became an 
example of a concept that is well motivated from a 
modeling perspective, but it turned out to difficult to invent 
language mechanisms that added something new from a 
technical point of view.  

5.8.3 Protection of attributes 
There has been a lot of discussion of mechanisms for 
protecting the representation of objects. As mentioned, the 
introduction of abstract data types (where a data type was 
defined by means of its operations) and Hoare’s paper on 
using the SIMULA class construct led to the introduction of 
private and protected constructs in SIMULA. Variants of 
private and protected are still the most common 
mechanism used in mainstream object-oriented languages 
like C++, Java and C#. In Smalltalk the rule is that all 
variables are private and all methods are public. 

We found the private/protected constructs too ad hoc and 
the Smalltalk approach too restricted. Several proposals for 
BETA were discussed at that time, but none was found to 
be adequate. 

5.8.4 Modularization 
The concept of interface modules and implementation 
modules as found in Modula was considered a candidate for 
modularization in BETA. From a modeling point of view 
we needed a mechanism that would make it possible to 
separate the representative parts of a program – i.e. the part 
that represented phenomena and concepts from the 
application domain – from the pure implementation details. 
Interface modules and implementation modules were steps 
in the right direction.  

However, we found that we needed more than just 
procedure signatures in interface modules, and we also 
found the concept of interface and implementation modules 
in conflict with the ‘one-pattern concept’. In our view, 

modules were a mechanism that was used for two purposes: 
modularizing the program text and as objects encapsulating 
declarations of types, variables and procedures. In Section 
5.8.8 we describe how the object aspect of a module may 
be interpreted as a BETA object. 

For modularization of the program text we designed a 
mechanism based on the BETA grammar. In principle any 
sentential form – a correct sequence of terminal and 
nonterminal symbols from the BETA grammar – can be a 
module. This led to the definition of the fragment system, 
which is used for modularization of BETA programs. This 
includes separation of interface and implementation parts 
and separation of machine-dependent and independent 
parts. For details of the fragment system, see the BETA 
book [119]. 

5.8.5 Local language restriction 
From the beginning of the project it was assumed that a 
pattern should be able to define a so-called local language 
restriction part. The idea was that it should be possible to 
restrict the use of a pattern and/or restrict the constructs that 
might be used in subpatterns of the pattern. This should be 
used when defining special purpose patterns for supporting 
class, procedure, function, type, etc. For subpatterns of e.g. 
a function pattern the use of global mutable data items and 
assignment should be excluded. Local language restriction 
was, however, never implemented as part of BETA, but 
remained a constant issue for discussion. 

A number of special-purpose patterns were, however, 
introduced for defining external interfaces. These patterns 
are defined in an ad hoc manner, which may indicate that 
the idea of local language restriction should perhaps have 
been given higher priority. 

5.8.6 Exception handling 
Exception handling was not an issue when the BETA 
project started, but later it was an issue we had to consider. 
We did not like the dynamic approach to exception 
handling pioneered by Goodenough [45] and also criticized 
by Hoare [59]. As an alternative we adapted the notion of 
static exception handling as developed by Jørgen Lindskov 
Knudsen [72]. Knudsen has showed how virtual patterns 
may be used to support many aspects of exception handling 
and this style is being used in the Mjølner libraries and 
frameworks. The BETA static approach proved effective 
for exception handling in almost all cases, including large 
frameworks, runtime faults, etc. However, Knudsen [75] 
later concluded that there are cases (mostly related to third-
party software) where static exception handling is not 
sufficient. In these cases there is a need either to have the 
compiler check the exception handling rules (as in e.g. 
CLU) or to introduce a dynamic exception handling 
concept in addition to the static one. In his paper he 
describes such a design and illustrates the strengths of 
combining both static and dynamic exception handling. 



 

5.8.7 Ensemble 
The relationship between the execution platform (hardware, 
and operating system) and user programs has been a major 
issue during the BETA project. As BETA was intended for 
systems programming, it was essential to be able to control 
the resources of the underlying platform such as processors, 
memory and external devices. An important issue was to be 
able to write schedulers.  

The concept of ensemble was discussed for several years, 
and Dag Belsnes was an essential member of the team 
during that period. Various aspects of the work on 
ensembles have been described by the BETA team [93], 
Dag Belsnes [11], the BETA team [99], and Nygaard [131]. 
The first account of BETA’s ensemble concept is in the 
thesis of Øystein Haugen [49]. 

A metaphor in the form of a theatre ensemble was 
developed to provide a conceptual/modeling understanding 
of an execution platform. A platform is viewed as an 
ensemble that is able to perform (execute) a play (program) 
giving rise to a performance (program execution). The 
ensemble has a set of requisites (resources) available in 
order to perform the play. Among the resources are a set of 
actors (processors). An actor is able to perform one or more 
roles (execute one or more objects) in the play. The casting 
of roles between actors (scheduling) is handled by the 
ensemble. 

The interface to a given execution platform is described in 
terms of a BETA program including objects representing 
the resources of the platform. If a given platform has say 
four processors, the corresponding BETA program has four 
active objects representing the processors.  

In addition to developing a conceptual understanding of an 
execution platform, the intention was to develop new 
language constructs. We think that we succeeded with the 
notion of ensemble as a concept. With respect to language 
constructs many proposals were made, but none of these 
turned out to be useful by adding new technical possibilities 
to the language. It turned out that the notions of active 
object and coroutine were sufficient to support the interface 
to processors and scheduling. 

The ensemble concept did have some influence on the 
language. The Mjølner System includes an ensemble 
framework defining the interface to the execution platform. 
For most BETA implementations, one active object is 
representing the processor. A framework defines a basic 
scheduler, but users may easily define their own schedulers. 
An experimental implementation was made for a SPARC 
multiprocessor – here an active object was associated with 
each processor and a joint scheduler using these processors 
was defined as a framework.  

Dynamic exchange of BETA systems. It was also a goal to 
be able to write a BETA program that could load and 

execute other BETA programs. In an unpublished working 
note [99], we described a mechanism for ‘Dynamic 
exchange of BETA systems’, which in some way 
corresponds to class loading in Java. Bjorn Freeman-
Benson, Ole Agesen and Svend Frølund later implemented 
dynamic loaders for BETA. 

Memory management was another issue we would have 
liked to support at the BETA level, but we did not manage 
to come up with a satisfactory solution. 

5.8.8 Modules as objects 
In the seventies the use of the class construct as a basis for 
defining abstract data types was often criticized since it 
implied an asymmetry between arguments of certain 
operations on a data type. Consider the following definition 
of a complex number: 

class Complex:  
  { real x,y; 
    complex add(complex C) { ... } 
    ... 
  } 
 
Complex A,B,C; 
A:= B.add(C); 

The asymmetry in the call B.add(C) between the 
arguments B and C was considered by many a disadvantage 
of using classes to define abstract data types. As an 
alternative a module-like concept was proposed by Koster 
[79]: 

module ComplexDef: { 
  type Complex = record real x,y end 
  Complex add(Complex C1,C2) {... } 
  ... 
} 
 
Complex A,B,C; 
A := add(B,C); 

As can be seen, this allows symmetric treatment of the 
arguments of add.  

Depending on the language it was sometimes necessary to 
qualify the types and operation with the name of the 
module as in 

ComplexDef.Complex A,B,C; 
A := ComplexDef.add(A,B); 

Languages like Ada, CLU and Modula are examples of 
languages that used a module concept for defining abstract 
data types. 

For BETA, a module was subsumed by the notion of 
singular object. The reason for this was that a module 
cannot be instantiated – there is only one instance of a 
module and its local types and operations can be 
instantiated. A complex module may be defined in BETA 
as follows: 

 



 

ComplexDef: @ 
 (# Complex:  
      (# X,Y: @real enter(X,Y) exit 
(X,Y)#) 
    add: (# ... #); 
    ... 
 #) 
 
A,B,C: @ComplexDef.Complex; 
(A,B) -> ComplexDef.add -> (B,C) 

For CLU it was not clear to us whether the cluster concept 
was an abstraction or an object. 

5.8.9 Constructors 
The concept of constructors was often discussed in the 
project, but unfortunately a constructor mechanism was 
never included in BETA. 

The idea of constructors for data types in general was 
introduced by Hoare (the idea was mentioned on page 55 
top in [52] and the word constructor appears in [55]) and 
was obviously a good idea since it assured proper 
initialization of the objects. In SIMULA initialization of 
objects was handled by the do part of the object. As 
mentioned, all SIMULA objects are coroutines – when an 
object is generated it is immediately attached to the 
generating object and will thus start to execute its do part 
until it suspends execution. The convention in SIMULA 
was that initialization was provided by the code up to the 
first detach.  

The SIMULA mechanism was not considered usable in 
BETA. In BETA an object is not necessarily a coroutine as 
in SIMULA. For BETA we wanted to support the notion of 
static procedure instance. This is illustrated by the example 
in Figure 8. The instance ia may be considered a static 
procedure instance and executed several times. We thought 
that it would not be meaningful to execute ia when it is 
generated. The do part of insert describes whatever 
insert should do and not its initialization.  

We did consider having constructors in the style of C++, 
but we did not really like the idea of defining the 
constructor at the same level as the instance attributes (data 
items and procedures). We found constructors to be of the 
same kind as static procedures and static data items. As 
discussed elsewhere, we found static attributes superfluous 
in a block-structured language. 

We liked the Smalltalk idea of a class object defining 
attributes like new to be global for a given class. Again, as 
described elsewhere, this should be expressed by means of 
block structure.  

Unfortunately, the issue of constructors ended up as an 
example in which the search for a perfect solution ended up 
blocking a good solution – like C++ constructors. 

5.8.10 Static (class) variables and methods 
Static variables and methods were never an issue. In a 
block-structured language variables and methods global to 
a class naturally belong to an enclosing object. Static 
variables and methods play the roles of class variables and 
class methods in Smalltalk, and Madsen’s paper on block 
structure [111] discusses how to model metaclasses and 
thereby class variables and class methods by means of 
block structure. 

A further benefit of block structure is that one may have as 
many objects of the enclosing class as required 
(representing different sets of objects of the nested class), 
while static variables give rise to only one variable for all 
objects.  

5.8.11 Abstract classes and interfaces 
One implication of the one-pattern idea was that it was 
never an issue whether or not to have explicit support for 
abstract classes (or interfaces as found in Java). An abstract 
class was considered an abstraction mechanism on the line 
with class, procedure, type, etc. 

If abstract class was to be included in BETA it would be 
similar to a possible support for class and procedure 
defined as patterns. I.e. one might imagine that BETA 
could have support for defining a pattern AbstractClass 
(or Interface).  

For class and procedure we never really felt a need for 
defining special patterns. Since a pattern with only local 
patterns containing just their signature may be considered 
an abstract pattern, there was never a motivation to have 
explicit syntactic support for abstract patterns. 

5.8.12 Multiple inheritance 
BETA does not have multiple inheritance. In fact we did 
not like to use the term ‘inheritance’, but rather used 
‘specialization’. This was deliberate: specialization is a 
relationship between a general pattern (representing a 
general concept) and patterns representing more special 
concepts, and with our conceptual framework as 
background this was most appealing. The specialized 
patterns should then have all properties of the more general 
pattern, and virtual properties could only be extended, not 
redefined. Inheritance should rather be a relationship 
between objects, as in everyday language. Specialized real-
world phenomena cannot of course in general be 
substituted in the sense that they behave identically. But 
specialization implies substitutability in the following 
sense: a description (including program pieces) assuming 
certain properties of a general class of phenomena (like 
vehicles) should be valid no matter what kind of 
specialization (like car, bus or truck) of vehicle is 
substituted in the description (program piece). The 
description (program code) is safe in the sense that all 
properties are available but typically differ. 



 

During the BETA project there was an ongoing discussion 
on multiple inheritance within object-oriented 
programming. Although one may easily recognize the need 
for multiple classifications of phenomena, the multiple 
inheritance mechanisms of existing languages were often 
justified from a pure code-reuse point of view: it was 
possible to inherit some of the properties of the 
superclasses but not all. Often there was no conceptual 
relation between a class and its multiple superclasses. 

Language mechanisms for handling name conflicts between 
properties inherited from multiple superpatterns were a 
subject that created much interest. In one kind of approach 
they were handled by letting the order of superclasses 
define the visibility of conflicting names. From a modeling 
point of view it does not make sense for the order of the 
superclasses to be significant. In other approaches name 
conflicts should be resolved in the program text by 
qualifying an ambiguous name by the name of the 
superclass where it was declared. Name conflicts in general 
and as related to BETA were discussed by Jørgen Lindskov 
Knudsen [73]. He showed that no unifying name resolution 
rule can be devised since name conflicts can originate from 
different conceptual structures. The paper shows that there 
are essentially three necessary name-resolution rules and 
that these can coexist in one language, giving rise to great 
expressive power. 

For BETA we would in addition have the complexity 
implied by inner, e.g. in which sequence should the 
superpattern actions be executed? There was a proposal that 
the order of execution should be nondeterministic. Kristine 
Thomsen [150] elaborated and generalized these ideas. 

The heavy use of multiple inheritance for code sharing, and 
the lack of a need for multiple inheritance in real-world 
examples implied that we did not think that there was a 
strong requirement for supporting multiple inheritance. 
This was perhaps too extreme, but in order to include 
multiple inheritance the technical as well as modeling 
problems should be solved in a satisfactory way. We did 
not feel that we were able to do that. 

In practice, many of the examples of multiple inheritance 
may be implemented using the technique with part objects 
as described in Section 5.5.1. 

5.8.13 Mixins and method combination 
In the beginning mixins, as known from Flavors [23], were 
never really considered for inclusion in BETA – i.e. 
covered by the pattern concept. The reason was that we 
considered mixins to be associated with multiple 
inheritance, and the concept of mixins seemed to be even 
further promoting multiple inheritance as a mechanism for 
code sharing. The semantics of multiple inheritance in 
Flavors, Loops [13] and Common Lisp [69] where the 
order of the superclasses was essential did not seem to fit 

well with a language intended for modeling. Perhaps the 
emphasis on code sharing in these Lisp-based languages 
did not make us realize that a mixin can be used to define 
an aspect of a concept, as discussed in Section 5.5.1. 

We found the support for method combination in these 
languages interesting. Before and after methods are an 
alternative – and perhaps more general – to the inner 
mechanism. Method combination is an interesting and 
important issue. Thomsen proposed a generalization of 
inner for combination of concurrent actions [151]. Bracha 
and Cook proposed a mixin concept supporting super as 
well as inner [15]. 

5.9 Syntax 
It is often claimed that BETA syntax is awkward. It is 
noteworthy that these claims most often come from people 
not using BETA. Students attending BETA courses and 
programmers using BETA readily got used to it and 
appreciated its consistency. We could of course say that 
‘syntax was not a big issue for us’ and ‘the semantics is the 
important issue’, but the fact is we had many discussions on 
syntax and that there is a reason why the syntax became the 
way it is.  

First of all, we had the idea of starting with the desired 
properties of program executions and then making syntax 
that managed to express these properties. The terms object 
and object descriptor are simple examples of this.  

Assignment: As we generalized assignment and procedure 
call into execution of objects, and as it was desired to have 
sequences of object executions, there was obviously a need 
to have a syntax that reflected what really was going on. 
The general form therefore became 

ex1 -> ex2 -> ... -> exn 

where each of the exi is an object execution. Execution 
involved assignment to the enter part, execution of the do 
part and assignment from the exit part. 

Because references to objects could either be assigned to 
other references or be used in order to have the denoted 
object executed, we made the distinction syntactically: 

ref1[] -> ref2[] ->...-> refn[]  
 (* reference assignment *) 
 
ref1 -> ref2 ->...-> refn  
 (* object executions *) 

The two forms could of course be mixed, so if the enter part 
of the object denoted by ref2 required a reference as input, 
then that would be expressed by  

ref1[] -> ref2 

Naming: We devised the following consistent syntax for 
naming things and telling what they were: 

<name> ‘:’ <kind> <object descriptor> 



 

By <kind> is meant pattern, part object, reference 
variable, etc. For part object the symbol @ is used to specify 
the kind and for reference variable ^ is used. For a pattern 
it was decided to use no symbol. So  

P: super(# ... #) 

simply was the syntax for a pattern. A possible super 
pattern was indicated by a name preceding the main part of 
the object descriptor and not (as in SIMULA) preceding the 
pattern name. Objects had two kinds and therefore different 
syntax: @ for a part object and ^ for a reference (to a 
separate object): 

P:(# anA: @A; 
     aRefToA: ^A; 
     ...  
  #) 

Whenever a descriptor was needed (in order to tell e.g. 
what the properties of part object are) we allowed either an 
identifier (of a pattern) or a whole object descriptor: 

P:(#  
  anA1: @A;  
    (* pattern-defined part object *) 
 
  anA2: @(# ...#);  
    (* singular part object *) 
 
  aSpecialA: @A(# ...#); 
  ...  
#) 

The last part object above has an object descriptor that 
specializes A. This was made possible by the above syntax 
where a super pattern is indicated by a name preceding the 
main part of the object descriptor. 

Parentheses: There are two reasons for using (# ... #) 
instead of {...}. The first was that we imagined that there 
would be more than object descriptors that needed 
parentheses. At one point in time there were discussions 
about (@ ... @) meaning description of part objects and 
(= ... =) meaning description of values. This was never 
introduced, but later we introduced ( ) to mean begin 
end of more than just object descriptors, e.g. 

(for ... repeat ... for) 
(if ... if) 

We felt that his was obviously nicer than e.g.  
for ... repeat ... endfor 
if ... endif 

found in other languages at that time. Although we did not 
introduce e.g.  (@ ... @), we still reserved the # to mean 
descriptor, so that (# ... #) could be read ‘begin 
descriptor ... descriptor end’. The syntax for pattern 
variables uses # in order to announce that these are 
variables denoting descriptors. 

5.10 Language evolution 
In this section we briefly comment on how the language 
has evolved since 1976. Some of the events discussed 
below are also mentioned in Section 3.3. 

The first account of BETA was the 1976 working note 
(First language draft [89]). At this stage the BETA project 
had mainly been concerned with discussing general 
concepts and sketching language ideas. A large part of the 
working note was devoted to a discussion of the DELTA 
concepts and their relation to BETA. The language itself 
was quite immature, but a first proposal for a pattern 
mechanism was presented. The report did not contain any 
complete program examples – an indication of the very 
early stage of the language. 

The report includes a long analytical discussion of issues 
related to concurrency – this includes representative states 
and an interrupt concept. We had very little experience in 
issues related to concurrent programming. Various 
generalizations of the SIMULA coroutine mechanism were 
discussed. A lot of stacks were drawn and there were 
primitives like ATTACH X TO Y that could be used to 
combine arbitrary stacks. A few other language constructs 
were sketched, but not in an operational form – they were 
abandoned in future versions of BETA.  

The syntax was quite verbose due to a heavy use of 
keywords. Parameters were passed by name and not by 
position. Objects had general enter/exit lists. The parameter 
mechanism made it possible to pass parameters and get 
return values to/from coroutines – something that is not 
possible in SIMULA. 

The unification of name and procedure parameters and 
virtual procedures was mentioned but not described in the 
1976 report. Virtual patterns were mentioned, and it was 
said that they would be as in SIMULA/DELTA). 

The 1978 working note (Draft Proposal of BETA [90]) 
included a complete syntax, and the contour of the 
language started to emerge. Virtual patterns were used for 
method patterns, for typing functions and for typing 
elements of local arrays, that is virtual classes were in fact 
there. The syntax was very verbose with keywords, and 
very different from the final syntax, and the examples were 
sketchy. 

The 1979 working note (First complete language definition 
[92]) included a complete definition of the language based 
on attribute grammars. In addition there were several 
examples. 

With respect to language concepts, the 1981 working note 
(A survey of the BETA Programming Language) was quite 
similar to the 1979 working note, but there were major 
changes to the syntax. Most keywords were changed to 
special symbols: begin and end were replaced by (#, and 



 

#); virtual and bind were replaced by :< and ::<; if 
and endif were replaced by (if and if); etc. 

As mentioned previously, the POPL’83 paper on BETA 
(POPL: Abstraction Mechanisms [95]) was an important 
milestone. The POPL paper described the abstraction 
mechanisms of BETA. All the basic elements of BETA 
were in place including pattern, subpattern, block structure, 
virtual patterns and enter/exit. The syntax was almost as in 
the final version. The main difference was the use of a 
pattern keyword and different assignment operators like 
=> and @> corresponding to := and :- in SIMULA. It was 
stated that the application area of BETA was embedded and 
distributed systems. The distinction between basic BETA 
and standard BETA with an extension of basic BETA with 
special syntax for a number of commonly used patterns was 
also stated. The POPL’83 paper contains a proposal for a 
generalization of the virtual pattern concept. The idea was 
that any syntactic category of the BETA grammar could be 
used as a virtual definition. The idea of generalized virtuals 
was, however, never further explored.  

The POPL paper was accompanied with a paper describing 
the dynamic parts – coroutines, concurrency and 
communication. Communication and synchronization was 
based on CSP- and Ada-like rendezvous. We never 
managed to get the concurrency paper accepted at an 
international conference although we made several attempts 
– eventually the paper was published in Sigplan Notices 
[97] in 1985.  

A combined version of the POPL paper and the 
concurrency paper was later (1987) included in the book 
that was published as a result of the Hawthorne workshop 
in 1986 [145]. However, the syntax was revised to that used 
in the final version of BETA.  

Syntax Directed Program Modularization. A paper on 
syntax-directed program modularization was published at a 
conference in 1983 in Stresa [94] describing a proposal to 
program modularization based on the grammar (cf. Section 
5.8.4). These principles for program modularization were 
further developed in the Mjølner project. 

In the March 1986 revision of Dynamic Exchange of BETA 
Systems, the syntax was still not the final one although it 
differs from that of the POPL 83 paper.  

From late 1986/early 1987, the sequential parts of BETA 
were stable in the sense that only a few changes were made. 
Pattern variables were added, the if statement was made 
deterministic, an else clause was added, and a few other 
minor details were changed.  

During the Mjølner project, the rendezvous mechanism was 
replaced by the semaphore as a basic primitive for 
synchronization. In 1975 Jean Vaucher [157] had already 
shown how inner combined with prefixed procedures can 

be used to define a monitor abstraction. This was 
immediately possible in BETA too. It also turned out that 
the pattern is well suited to build other higher-level 
concurrency abstractions, including Ada-like rendezvous 
and futures. 

Many of the later papers on BETA were elaborations of the 
implications of the one-pattern approach. The simplicity of 
the pattern mechanism makes BETA simple to present, but 
the implications turned out to be difficult to convey. In 
many of the papers we therefore decided to use a keyword-
based syntax and not the compact BETA syntax. Often 
redundant keywords like class and proc were introduced 
to distinguish between patterns used as classes and 
procedures. Some of the most important papers are the 
following: 

� Classification of Actions – or Inheritance Also for Methods, 
presented at ECOOP’87 [101] and described how to use 
patterns and inner to define a hierarchy of methods and 
processes.  
� What Object-Oriented Programming May Be and What It 

Does Not Have to Be, presented at ECOOP’88 [116]. 
Here we for the first time gave our definition of object-
oriented programming and compared it with other 
perspectives on programming. 
� Virtual Classes – a Powerful mechanism in Object-

oriented Programming, which was presented at 
OOPSLA’89 [117]. The idea of virtual patterns was 
presented in the POPL’83 paper [95], but here the 
implications were presented in greater detail. 
� Strong Typing of Object-Oriented Programming Revisited, 

presented at OOPSLA 90. The goal of this paper was to 
argue for our choice of covariance at the expense of run-
time type checks. 

The 1993 book on BETA [119] is the most comprehensive 
description of the language and the associated conceptual 
framework. 

6. Implementations of BETA 
During the first period of the BETA project, no attempts 
were made to implement a compiler. The reasons for this 
were mainly lack of resources: The implementation of 
SIMULA had been a major effort requiring a lot of 
resources. A number of large companies were involved in 
funding the SIMULA implementations, and we had nothing 
like this. 

The SIMULA compilers were implemented in low-level 
languages – one of the compilers was even written in 
machine code. Implementation of the garbage collector, 
especially, had been a major task. In the beginning of the 
BETA project, we assumed that we would have to find 
funding for implementing BETA. We were thus working 



 

from the assumption that we would have to establish a 
consortium of interested organizations. 

There were other reasons than lack of funding. Nygaard 
was not a compiler person, Møller-Pedersen was employed 
by the NCC and could only use a limited amount of his 
time on BETA, and Kristensen and Madsen had to qualify 
for tenure. 

In the early eighties an attempt was made to implement 
BETA by transforming a BETA program into a SIMULA 
program. The rationale for this was that we could then use 
the SIMULA compilers and run-time system for BETA. 
This project never succeeded – 90% of BETA was easy to 
map into SIMULA, but certain parts turned out to be too 
complicated. 

During the BETA project, however, Kristensen and 
Madsen did substantial research on compiler technology 
and after some years realized that we had perhaps 
overestimated the job of implementing BETA. 

6.1 The first implementation 
The first implementation. In 1983 Madsen implemented the 
first BETA compiler in SIMULA. The first version 
generated code to an interpreter written in Pascal. The 
second version generated machine code for a DEC-10. 

SUN Compiler. In 1985 this compiler was ported to a SUN 
workstation based on the Motorola 68020 microprocessor. 
This was an interesting exercise in bootstrapping. The SUN 
compiler was implemented using the DEC compiler, i.e. 
machine code was generated on the DEC-10 and 
transferred to the SUN for debugging. Since the turnaround 
time for each iteration was long, we manually corrected 
errors directly in the machine code on the SUN in order to 
catch as many errors as possible in each iteration. 
Afterwards such errors were fixed in the compiler. It was 
quite time-consuming and complicated to debug such 
machine code on the SUN. 

The final step was to bootstrap the compiler itself. The 
DEC-10 was a slow machine and the BETA compiler was 
not very efficient. Using the compiler to compile itself was 
therefore a slow process. In addition, the DEC-10 was 
becoming more and more unstable – and it was decided that 
it should be closed down. The DEC-10 would not stay 
running for a whole compilation of the compiler. This 
meant that it was necessary to dump the state of the 
compiler at various stages and be able to restart it from 
such a dump in order to complete a full compilation of the 
compiler.  

This was a complicated and time-consuming process and at 
one point Madsen did not believe that he would succeed. 
However, after three attempts, the bootstrapping succeeded 
and from then on the compiler was running on the SUN. 
This was a great experience. 

The compiler implemented most parts of BETA – however, 
a garbage collector was not included. At that time we did 
not think that we had the qualifications to implement a 
garbage collector – we really needed some of the 
experienced people from the NCC. 

6.2 The Mjølner implementations 
The Mjølner Project provided the necessary time and 
resources to implement efficient working compilers for 
BETA. In the project it was decided to use the existing 
BETA compiler to implement the new compilers. Without a 
garbage collector this was not easy – a simple memory 
management scheme was added such that it was possible to 
mark the heap and subsequently release the heap until that 
mark. This was of course pretty unsafe, but we managed to 
implement the new compilers and the first versions of the 
MjølnerTool. 

Knut Barra from the NCC wrote the first garbage collector 
[10] for BETA (as part of the SCALA project) and in 1987 
a full workable implementation of BETA was available. 

Macintosh Compiler. In the beginning of the Mjølner 
Project the SUN compiler was ported to a Macintosh. The 
Macintosh compiler was a special event. When we started 
working with Nygaard he did not use computers and he had 
not done any programming since the early sixties. When 
the Macintosh arrived we talked him getting a Mac and he 
quickly became a super user. It was therefore a great 
pleasure for us to be able to deliver the first Mac compiler 
to him on his 60th birthday in 1986. 

Later in the Mjølner Project the compiler was ported to a 
number of machines, including Apollo and HP 
workstations. Nokia was a partner in the Mjølner Project. 
We ported BETA to an Intel-based telephone switch and 
implemented a remote debugger for BETA programs 
running on the switch on an Apollo workstation. This was a 
major improvement compared to the very long 
development cycles that were used by NOKIA for 
developing software for the switch.  

The NOKIA compiler was later used as a basis for porting 
BETA to Intel-based computers running Windows or 
Linux. It took some time before these compilers were 
available since for many years the memory management on 
the Intel processors was based on segments, which were 
difficult to handle for a language with general references. 

As of today there are or have been native BETA compilers 
for SUN, Apollo, HP, SGI, Windows, Linux and 
Macintosh. 

6.3 The JVM, CLR, and Smalltalk VM 
compilers 
In 2003 Peter Andersen and Madsen engaged in a project 
on language interoperability inspired by Microsoft 
.NET/CLR, which was announced as a platform supporting 



 

language interoperability – in contrast to the Java/JVM 
platform. The goal of the project was to pursue to what 
extent CLR supported language interoperability. Another 
goal was to investigate to what extent this was supported by 
the JVM [9]. 

We managed to implement BETA on both JVM and CLR – 
i.e. full BETA compilers are running on top of JVM and 
CLR. The main difficulty was to make all the necessary 
type information from BETA available in the byte codes. 
Since BETA in many ways is more general than Java and 
C#, there are elements of BETA that do not map efficiently 
to these platforms. The most notorious example of this is 
coroutines, which are implemented on top of the thread 
mechanisms.  

We are currently engaged in implementing BETA on a VM 
based on Smalltalk and intended for supporting pervasive 
computing – this VM is based on the Esmertec OSVM 
system and is being further developed in the PalCom 
project. One of the interesting features of this VM is that it 
has direct support for BETA-style coroutines. 

6.4 Implementation aspects 
We will touch only briefly on implementation aspects of 
BETA, since a complete description would take up a lot of 
space. The implementation is inspired by the SIMULA 
implementations [31, 122] and described by Madsen in the 
book about the Mjølner Project [112]. The generality of 
BETA implied that many people thought that it would be 
quite complicated (if not impossible) to make a reasonably 
efficient BETA implementation. Here are some of the 
major issues: 

� Virtual patterns. The most difficult part of BETA to 
implement was virtual patterns. There are two aspects of 
virtual patterns: semantic analysis and run-time 
organization. The run-time organization was quite 
straightforward using a dispatch table. Semantic analysis 
appeared quite complicated – the problem was given the 
use of a virtual pattern to find the binding of the virtual 
that was visible at the point of use. The first attempt to 
write a semantic analyzer was made in a student project 
that failed, and for some time we were a bit pessimistic 
about whether or not we would succeed. It was not the 
virtual pattern concept by itself that was the real problem, 
but the combination with block structure. However, a 
(simple) solution was found and later documented by 
Madsen in a paper at OOPSLA’99: Semantic Analysis of 
Virtual Patterns [114]. 
� Pattern. The generality of the pattern concept imposed 

some immediate challenges for an efficient 
implementation. For a pattern (or singular object) used as 
a class, there should be code segments (routines) 
corresponding to generation (allocation and initialization 
of data items), enter, do and exit. For a pattern used as a 

procedure there should just be one code segment. We 
originally assumed that the compiler could detect the use 
of a given pattern and generate code corresponding to the 
use. However, with separate compilation of pattern 
libraries, this is not possible. We ended up with a 
reasonable approach, but the code is not as efficient as it 
can be with separate constructs for class and procedure. 
In practice this has not been considered a problem. With 
modern just-in-time and adaptive compilation techniques, 
it should be straightforward to generate code for a pattern 
depending on its use.  
� Block-structure and subpatterns. The relaxation of the 

SIMULA restriction that a subclass may be defined only 
at the same block level as its superclass gave rise to some 
discussion of whether or not this would have negative 
implications for an efficient implementation of block 
structure as described by Stein Krogdahl [106]. Since 
Algol, a variable in a block-structured language has been 
addressed by a pair, [block-level, offset]. By allowing 
subpatterns at arbitrary block levels, a variable is no 
longer identified by a unique block level: let X be 
declared in pattern P, let A and B be different subpatterns 
of P, and let A and B be at different block levels; then X 
in A is not at the same block level as X in B. We instead 
adapted the approach proposed by Wirth for Pascal to 
address a data-item by following the static link (origin) 
from the use of a data item to its declaration. This implied 
that an object has an origin-reference for each subclass 
that is not defined on the same block level as its 
superclass. For details see Madsen’s implementation 
article [112]. 
� The dynamic structure. The implementation of the 

dynamic structure has been a subject for much 
discussion. Due to coroutines, SIMULA objects and 
activation-records are allocated on the heap. A similar 
scheme was adapted in the first BETA implementations, 
i.e. the machine stack was not used. Many people found 
this too inefficient and the implementation was later 
changed to use the machine stack. We do not know 
whether this makes a significant difference or not, since 
no systematic comparison of the two different techniques 
has been made. We do know that the heap-based 
implementation is significantly simpler than that using 
the machine stack. Whenever BETA has been ported to a 
new platform, stack handling has been the most time-
consuming part to port. The generalization of inner 
implied that an object will need a caller-reference 
corresponding to each subclass with a non-empty do-part. 
For the heap-base implementations, these caller-
references are stored in the object. For the stack-based 
implementations, the caller references are stored on the 
machine stack and thus not explicitly in the objects. We 
have also considered using the native stacks on modern 
operating systems, but these are too heavyweight for 



 

coroutines – a program may allocate thousands of 
coroutines, which is beyond the capacity of these 
systems.  
� External interfaces. No matter how nice, simple and 

safe a language you design, you will have to be able to 
interface to software implemented in other (unsafe) 
languages. For BETA a large number of external 
interfaces were made including C, COM, database 
systems, Java, and C#. This introduced major 
complications in the compiler since it was most often 
done on a by-need basis – often with little time for a 
proper design. In order to support various data types and 
parameters, BETA was polluted with patterns supporting 
e.g. pointers to simple data types like integers and C-
structs. The handling of external calls further complicated 
the dynamic implementation since a coroutine stack may 
contain activations from external calls. If a callback is 
made from the external code, BETA activations may 
appear on top of the external stack. Perhaps the worst 
implication of this is that all BETA applications suffer 
from libraries and frameworks calling external code. The 
GUI-frameworks are examples of this: if they were used 
wrongly by the BETA programmer, the code was very 
difficult to debug. The lesson here is that external 
interfaces should be carefully designed and the 
implementation should encapsulate all external code in 
such a way that it cannot harm the BETA code – even 
though this may harm efficiency.   
� Garbage collection. Over the years the Mjølner team 

became more and more experienced in writing garbage 
collectors and a number of different garbage collectors 
have been implemented varying from mark-sweep to 
generation-based scavenging. The first implementation of 
the Train algorithm was implemented for BETA by Jacob 
Seligmann and Steffen Grarup [144]. 

7. Impact 
7.1 Teaching 
BETA has been used for teaching object-oriented 
programming at a number of universities. The most 
important places we are aware of are as follows: 

� BETA courses in Aarhus.  
At DAIMI, BETA was an integral part of the curriculum 
at both the undergraduate and graduate level. 

The Institute of Information Studies, Aarhus University 
is an interesting case, since this is a department in the 
Faculty of Humanities. Students within humanities 
traditionally have difficulties in learning programming. 
BETA was used for more than a decade and selected 
because of its clean and simple concepts, its modeling 
capabilities and its associated conceptual framework.  

 First draft of BETA book. A first draft of the BETA 
book [102] was made available (in the late eighties) to 
these students, and several versions of the BETA book 
[119] were tested here before the final version was 
printed. Originally all examples in the book were typical 
computer science examples such as stack, queue, etc. 
Such examples are not motivating for students within the 
humanities, and all the examples were changed to be 
about real world phenomena such as bank accounts, 
flight schedules, etc. Kim Halskov Madsen was very 
helpful in this process. Preprints of the BETA book were 
for many years distributed at OOPSLA and ECOOP by 
Mjølner Informatics and for many people these red 
books were their first encounter with BETA.  

� BETA courses in Oslo. At the University of Oslo there 
were courses on specification of systems by means of 
SDL and BETA in 1988 and 1993 (by Møller-Pedersen 
and Dag Belsnes) and on object-oriented programming in 
BETA in 1994 and 1995 (by Møller-Pedersen, Nygaard 
and Ole Smørdal). 
� BETA courses in Aalborg. At Department of Computer 

Science, University of Aalborg courses on object-
oriented programming in BETA were given by 
Kristensen in 1995 and 1996. 
� BETA courses in Dortmund. As mentioned, BETA was 

used for introductory programming at the University of 
Dortmund, Germany. Here the lecturers wrote a book in 
German on programming in BETA [38]. 

We believe that teaching of programming should be based 
on a programming language that reflects the current state of 
the art and is simple and general. Many schools use 
mainstream programming languages used in industry. Our 
experience is that it is easier to teach a state-of-the-art 
language than a standard industrial language. Students 
familiar with the state of the art can easily learn whatever 
industrial language they need to use in practice. The other 
way around is much more difficult. For BETA it was for 
many years necessary to argue that it was well suited for 
teaching. With the arrival of Java this changed, and Java 
took over at all places where BETA was used.  

7.2 Research 
In general BETA is well cited in the research literature. 
Perhaps the most influential part of BETA with respect to 
research is the concept of virtual class based on the use of 
virtual patterns as classes: Thorup [152], Bruce [19], 
Thorup [153], Mezini [126], and Odersky [134]. Other 
aspects of BETA such as inner, singular objects, block 
structure, and the pattern mechanism, have also been cited 
by many authors, e.g. Goldberg [44], and Igarashi and 
Pierce [62]. In 1994, Bill Joy designed a language without 
subclasses based on the ideas of inheritance from part 
objects as described in Section 5.5.1 [67]. Also in 1994, 
Bill Joy gave a talk in a SUN world-wide video conference 



 

where he mentioned BETA as the most likely alternative to 
C++.  

When we designed BETA we did not have deep enough 
knowledge of formal type theory to be able to establish the 
precise relations. In 1988/89 Madsen and others at DAIMI 
started discussions with Jens Palsberg and Michael 
Schwartzbach on applying type theory to object-oriented 
languages. Initially the hypothesis of Palsberg and 
Schwartzbach was that standard type theory could be 
applied, but they also realized that subtype substitutability 
and covariance were nontrivial challenges. This led to a 
series of papers on type theory and object-oriented 
languages [138] and a well-known book [140]. The main 
impact for BETA was that we learned that concepts like co- 
and contravariance were useful for characterizing virtual 
patterns in BETA.  We had a hard time – and still have – 
relating to concepts such as universal and existential 
qualifiers, but more recent work has shed some light on this 
issue. Researchers with interests in such matters might 
think that virtual patterns are essentially existential types, 
but this view is too simplistic. One crucial difference, 
pointed out by Erik Ernst and explored in his work on 
family polymorphism [40], is that virtual classes rely on a 
simple kind of dependent types to allow more flexible 
usage: The unknown type, when bound by an existential 
quantifier, must be prevented from leaking out, whereas 
virtual classes can be used in a much larger scope, because 
the enclosing object can be used as a first-class package. 

Schwartzbach and Madsen discussed making a complete 
formal specification of BETA’s type system. Schwartzbach 
concluded at that time that the combination of block 
structure and virtual patterns made it very hard and we 
never succeeded. Igarashi and Pierce [61] and the authors 
mentioned below have over the years provided elements of 
formalization, including virtual classes and block structure. 

Palsberg and Schwartzbach also did a lot of interesting 
work on type inference [139]. Two students of 
Schwartzbach implemented a system that could eliminate 
most (all) of the run-time checks in BETA and also detect 
the use of a given pattern and thereby optimize the code 
generation. The technique assumed a closed world, which 
made it less usable in a situation with precompiled libraries 
and frameworks. The work on type inference was later 
refined by Ole Agesen for Self [6, 7]. 

In 1997, Kresten Krab Throrup [152] published a paper on 
how to integrate virtual classes with Java. This was the 
starting point for a number of papers on virtual classes. In 
addition to Thorup, the work of Erik Ernst [39, 40], and 
Mads Torgersen [154] has been very decisive for interest in 
virtual classes. Several other researchers have elaborated on 
or been inspired by the virtual class concept, including 
work by Bruce, Odersky and Wadler [19] and Igarashi and 
Pierce [61]. Ernst has pointed out that some authors use the 

term virtual type whereas he prefers (and we agree) the 
term virtual class. A virtual type may (only) be used to 
annotate variables whereas a virtual class may be used to 
create instances.  

Erik Ernst has developed the language gbeta, which is a 
further generalization of the abstraction mechanisms of 
BETA. gbeta among others includes a type-safe dynamic 
inheritance mechanism [39]. gbeta also supports the use of 
virtual patterns as superpatterns. BETA did have a 
semantics for virtual patterns as superpatterns, and virtual 
super patterns were implemented in the first BETA 
compiler. They were, however, abandoned in later versions, 
since we never found a satisfactory efficient 
implementation. In gbeta the restrictions on virtual 
superpatterns are removed. In BETA it is possible to 
express a simple kind of dependent types by means of 
block-structure and virtual classes. This was identified and 
generalized by Ernst as the concept of family 
polymorphism [40]. The connection to existential types 
mentioned above builds on this notion of dependent types. 

In order to have full static type checking, Torgersen has 
suggested forbidding invocation of methods with 
parameters that have a non-final virtual type [154]. For 
classes with such methods, a concrete subclass with all 
virtual types declared final must then be defined in order to 
invoke these methods.  

The Scala language has abstract type members, which are 
closely related to virtual classes. Finally, the language 
Caesar [126] supports the notion of gbeta virtual classes in 
a Java context with some simplifications and restrictions.  

At POPL’2006 [41], Erik Ernst, Klaus Ostermann, and 
William R. Cook presented a virtual class calculus that 
captures the essence of virtual classes. We think this is an 
important milestone because it is the first formal calculus 
with a type system and a soundness proof which directly 
and faithfully models virtual classes. 

Ellen Agerbo and Aino Cornils [3] used virtual classes and 
part objects to describe some of the design patterns in The 
Gang of Four book [43]. 

In 1996, Søren Brandt and Jørgen Lindskov Knudsen made 
a proposal for generalizing the BETA type system [16]. 
The proposal generalizes the type system in two directions: 
first, by allowing type expressions that do not uniquely 
denote a class, but instead denote a closely related set of 
classes, and second, by allowing types that cannot be 
interpreted as predicates on classes, but must be more 
generally interpreted as predicates on objects. The resulting 
increase in expressive power serves to further narrow the 
gap between statically and dynamically typed languages, 
adding among other things more general generics, 
immutable references, and attributes with types not known 
until runtime. 



 

Knudsen has made use of the BETA fragment system to 
support aspect-oriented programming [74]. 

Goldberg, Findler and Flatt [44] developed a language with 
both super and inner, arguing that programmers need both 
kinds of method combination. They also present a formal 
semantics for the new language, and they describe an 
implementation for MzScheme. 

GOODS. Nygaard was the leader of General Object-
Oriented Distributed Systems (GOODS), a three-year 
Norwegian Research Council-supported project starting in 
1997. The aim of the project was to enrich object-oriented 
languages and system development methods by new basic 
concepts that make it possible to describe the relation 
between layered and/or distributed programs and the 
machine executing these programs. BETA was used as the 
foundation for the project and language mechanisms in 
BETA were studied, especially supporting the theatre 
ensemble metaphor. The GOODS team also included 
Haakon Bryhni, Dag Solberg and Ole Smørdal. 

STAGE. The GOODS project continued in the STAGE 
Project (STAGing Environments) project at the NCC, 
aiming at establishing a commercial implementation of the 
GOODS idea. The STAGE team also included Dag 
Belsnes, Jon Skretting, and Kasper Østerbye. The project 
pursued the idea of the theater metaphor – cf. Section 5.8.7. 

The Devise project. In 1990 three research groups at 
DAIMI decided to work together on research in tools, 
techniques, methods and theories for experimental system 
development. The groups were Coloured Petri Nets (headed 
by Kurt Jensen), systems work (HCI) (headed by Morten 
Kyng) and object-oriented programming (headed by 
Madsen). The rationale was that in order to make progress 
in system development, supplementary competences were 
needed. The implications for BETA were: 

BETA was used as a common language for development of 
tools. One major example is the CPN Tool [28] for editing, 
simulating and analyzing Coloured Petri Nets. A unique 
characteristic of CPN Tools is that they were one of the 
first tools to use so-called post-WIMP interaction 
techniques, including tool glasses, marking menus, and 
bimanual interaction (using two mice). CPN Tools is in 
widespread use. Another major tool was a Dexter-based 
hypermedia [48], [47], [143]. A unique characteristic of this 
tool was the use of anchors that makes it possible to link 
between positions in different pages without modifying the 
pages. The hypermedia tool was the basis for a start-up 
company, Hypergenic Ltd. 

BETA has played an important role in work on a 
multidisciplinary approach to experimental system 
development. Over the years the group developed 
techniques for people within programming, system 
development, participatory design, HCI and ethnography to 

work together on software development projects, often 
using BETA and the Mjølner System. The object-oriented 
conceptual framework turned out to be a common 
framework and the graphical syntax of BETA supported by 
the Mjølner Tool turned out to be a useful means for 
communication between system developers and (expert) 
users [24]. 

From the beginning it was a goal to integrate Petri nets and 
object-oriented programming languages. The motivation 
was that in the early days of the BETA project Petri nets 
had a major influence on our conception of concurrency. 
Jensen, Kyng and Madsen started working together in 
formalizing DELTA using Petri nets. Jensen continued 
working with Petri nets and the group at DAIMI is well 
known internationally. Numerous suggestions for 
integrating object-orientation and Petri nets were 
investigated, but no real breakthrough was obtained. There 
are many suggestions in the literature for integrating Petri 
nets and object orientation, [108, 123]. 

The Devise group has continued to work together and now 
forms the basis of the Center for Pervasive Computing in 
Aarhus. 

Conceptual Modeling and Programming. Design of 
programming languages could be based on human 
conceptualization in a more general sense. The approach 
was to include alternative kinds of concepts and selected 
ingredients of these concepts into programming languages 
in order to support modeling. The approach is described in 
[64, 104] and explored further in [124]. Object orientation 
could be seen as a specialized use of this approach, where 
the focus mainly is on “things” and their modeling in terms 
of classes and objects. The intention was that certain 
additional kinds of general (but not application area 
specific) concepts would enrich programming languages. 
The purpose was to limit the gap between understanding, 
designing and programming also in order to reduce the 
amount of software. The advantage of the approach is that 
because humans already use various alternative kinds of 
concepts, the modeling process is efficient and the model 
becomes understandable. The challenge was that any given 
potential kind of concept had to be understood and 
interpreted, and did not immediately comply with the 
typical understanding of programming languages. Each 
candidate concept should therefore be adjusted to fit with 
and slightly modify the expectations and possibilities at the 
programming level including implementation techniques. 
Candidate concepts include: 

� Activities [81, 82, 103] are abstractions over 
collaborations of objects. 
� Complex associations [83] are abstractions over complex 

relationships between structured objects. 



 

� Roles [84, 105] are abstractions over the use of roles for 
objects as special relationships between objects. 
� Relations [164, 166] are abstractions over relationships 

between objects. 
� Subjective behavior [85] means abstraction over different 

views on objects from external and internal perspectives.  
� Associations [86-88] are abstractions over collaboration, 

and include both structural and interaction aspects by 
integrating activity and role concepts. 

7.3 Impact on language development 
Object-oriented SDL. In 1986 Elektrisk Bureau (later 
ABB) asked Dag Belsnes and Møller-Pedersen to develop 
an object-oriented specification language. At the start the 
idea was to make this from scratch, but the project soon 
turned into an extension ([127], [128]) of the specification 
language SDL standardized by ITU – the International 
Telecommunication Union. BETA had an impact in the 
sense that concurrent processes of SDL became the 
candidate objects, in addition to the data objects that were 
also part of SDL. Users of SDL were primarily using 
processes, and as BETA had concurrent objects (and 
thereby patterns/subpatterns of these), it was obvious to do 
the same with SDL. The underlying model of SDL is that 
of a SDL system consisting of sets of nonsynchronized 
communicating processes, where the behavior of each 
process is described by a state machine. Introducing object 
orientation to this model implied the introduction of process 
types (in addition to sets of processes) and process subtypes 
defining specialization of state machine behavior. The inner 
concept was generalized to virtual transitions, i.e. 
transitions of a process type that may be redefined in 
process subtypes. In addition, the notion of virtual 
procedures was introduced, enabling parts of transitions to 
be redefined. In addition to constraints on virtual 
procedures, SDL also introduced default bindings. Virtual 
types (corresponding to virtual inner classes) were 
introduced, with constraints, both in terms of a supertype 
(as in BETA) and by means of a signature. In [21] it is 
demonstrated how this may be used to define frameworks; 
the same idea is pursued in [167]. Finally, types were 
extended with context parameters, a kind of generalized 
generic parameters, where also the constraints on the type 
parameters followed the BETA style of constraining. All of 
these extensions were standardized in the 1992 version of 
SDL [136]. 

Java. We do not claim that BETA had a major impact on 
Java, but as a curiosum we could mention that the two first 
commercial licenses of the Mjølner BETA System were 
acquired by James Gosling and Bill Joy.  

Madsen was a visiting scientist a SUN Labs in 1994-95 
when Java appeared on the scene – he was involved in 

discussions on whether or not virtual types could be added 
to Java. However, this was never done.  

Java includes final bindings and singular objects – called 
anonymous classes. Nested classes were later added to Java 
and called inner classes. As we understand, final bindings, 
anonymous classes and nested classes were inspired by 
BETA. 

The recently added Wildcard mechanism [155] was 
developed by a research group at DAIMI based on research 
by Mads Torgersen, Kresten Krab Thorup, Erik Ernst and 
others and may be traced back to virtual patterns. 

UML2.0. Shortly after Møller-Pedersen joined Ericsson in 
1998, a number of UML users (including Ericsson) asked 
for a new and improved version of UML. On behalf of 
Ericsson Møller-Pedersen joined this work within OMG. 
The influence on UML2.0 was indirectly via SDL, i.e. the 
same kinds of concepts as in SDL were introduced in 
UML2.0 [50]. As an interesting observation, UML1.x had 
already classes with their own behavior, like in SIMULA 
and BETA, while (as mentioned above) most object 
programming languages do not have this. UML1.x also had 
nested classes, so the only new thing in UML2.0 is that 
they can be redefinable (i.e. virtual classes). 

8. Conclusion 
The BETA project has been an almost lifelong enterprise 
involving the authors, the late Kristen Nygaard and many 
other people. The approach to language design and 
informatics has been unusual compared to most other 
language projects we are aware of. The main reason is 
perhaps the emphasis on modeling, the working style, and 
the unusual organization of the project.  

The project was supposed to be organized in a well-defined 
manner based on partners, contracts/grants and a firm 
working plan with milestones including a language 
specification in 1997. Since we did not succeeded in 
obtaining this, the project continued for many years as an 
informal collaboration among the team members. If we had 
delivered a language specification in 1997 it would have 
been quite different from what BETA is today and probably 
less interesting. A project with firm deadlines and a firm 
budget might not have achieved the same result. Instead we 
were able to continue to invent, discuss, and reject ideas 
over many iterations. We could keep parts open where we 
did not have satisfactory solutions. It was never too late to 
come up with a complete new idea. We could continue to 
strive for the perfect language. 

From 1986 when the Mjølner projects started, there was an 
organization around BETA – although Mjølner was not 
supposed to develop the BETA language. We had to 
finalize the language and make decisions for the parts that 



 

were not complete and even make decisions we were not 
happy about. 

The “one abstraction mechanism” idea was an important 
driving factor, but it may not have been unusual to base a 
language project on one or more initial ideas. In fact, one 
should never engage in language design without overall 
major ideas. Languages based on the current state of art 
may be well engineered but will not add to the state of the 
art. Such languages may be highly influential on praxis and 
we have seen many examples of that. 

As time has passed, many new ideas for improving BETA 
have been proposed and new challenges have appeared. But 
for many years we found that most of the proposals would 
not make a real difference for the users of BETA. The work 
on updating the language, the documentation and software 
was simply not worth the effort. The time has, however, 
arrived for a new language in the SIMULA/BETA style, 
but the one or two real breaking ideas perhaps remain to be 
seen. 

Nygaard’s system description (modeling) approach was an 
unusual approach to language design. Designing a 
programming language from a system description 
perspective is certainly different from basing it on whatever 
a computer can do or on a mathematical foundation. 

Another unusual characteristic of the project was that we 
did not follow mainstream research in programming 
languages. As mentioned, Nygaard was not interested in the 
state of the art but left it to us. The advantage of this 
approach was that we were free to formulate new visions 
and not just focus on the next publication. Today most 
researchers seem mainly to focus on publishing minor 
improvements and solutions to state-of-the-art ideas. This 
does not create new big inventions. 

The BETA project heavily influenced the participants and 
their relationships. We established lifelong valuable and 
appreciated personal and professional relationships. Being 
young and inexperienced researchers learning from 
working together with such an experienced person as 
Nygaard, many of our research attitudes were established 
during the project. The most valuable has been not to take 
established solutions for given, but rather question them, 
try to go for more general solutions, and to have alternative, 
ambitious, and long-reaching objectives. 

Below we comment on the original research goals of the 
project. 

One abstraction mechanism. We succeeded in developing 
the pattern as an abstraction mechanism subsuming most 
other abstraction mechanisms. Originally this was a 
theoretical challenge and we think that the pattern 
mechanism has proved its relevance and importance from a 
research perspective. The pattern mechanism has also 

proved to be useful in teaching and practical programming. 
As a teaching tool it is beneficial to teach students the 
pattern mechanism as part of their first programming 
language, but probably only with success if the approach is 
supported strongly by the learning environment. Still, in 
order to appreciate the beauty of the pattern mechanism ,the 
student has also to be familiar with the culture of the 
programming-language world including notions such as 
record, procedure, etc. Such cultural variations need to be 
appreciated before the unified, more abstract notion is 
relevant and appealing. For the skilled programmer who 
has already used several different programming languages, 
the presentation of the pattern mechanism seems to be a 
very fruitful experience. Such programmers typically learn 
yet another abstract level of programming and this 
knowledge is valuable through the daily life with the usual 
ordinary programming languages. Programmers with the 
opportunity to use the pattern for a longer period for real 
system development appreciate the freedom and 
powerfulness it supports.  

The idea of one pattern replacing all other abstraction 
mechanisms worked out well in practice. The unification 
clearly implied a simplification of the language, just as the 
extra benefits as mentioned in Section 5.1.2 clearly paid 
off. We occasionally hear people complain that they find it 
to be a disadvantage that they cannot see from a pattern 
declaration whether it is a class or method. 

Virtual patterns turned out to be a major strength of BETA 
– the use of virtual patterns as virtual classes/types has in 
addition provided the basis for further research by many 
others. 

Singular objects, block structure, etc. have also proved their 
value in practice and are heavily used by all BETA 
programmers. These mechanisms are also starting to arrive 
in other languages. 

The enter-exit mechanism is of course used for defining 
parameters and return values for methods – in addition, it is 
used for defining value types. Many people make heavy use 
of enter/exit for overloading assignment and/or reading the 
value of an object. Although the enter/exit-mechanism has 
turned out to be quite useful in practice, it does have some 
drawbacks. The name of an argument has to be declared 
twice – once with a type and then in the enter/exit-part – 
this is similar to Algol and SIMULA but is, however 
inconvenient for simple parameters. In addition, the 
implementation of enter/exit in its full generality turned out 
to be quite complex.  

A constructor mechanism is perhaps the most profound 
language element that is missing in BETA. 

Coroutines and concurrency. We think that BETA has 
further demonstrated the usefulness of the SIMULA 
coroutine mechanism to support concurrency and 



 

scheduling. The coroutine mechanism together with the 
semaphore turned out to fulfill the original goals. The 
implementation was simple and straightforward, and it has 
showed its usefulness in practice.  

In addition, the abstraction mechanisms of BETA have 
proved their usefulness in defining higher-order abstraction 
mechanisms. The BETA libraries contain several examples 
of high-level concurrency abstractions. Few people in 
practice, however, define their own concurrency 
abstractions. Most concurrency abstractions have been 
defined by the authors and implementers of BETA. 

In general concurrency and the ability to define 
concurrency abstractions are not as heavily used as we 
think they should be. This may it may be due to the fact that 
concurrency has not been an integrated part of most object-
oriented languages. Java has concurrency but as a fixed 
synchronization mechanism in the form of monitor – there 
are no means for defining other concurrency abstractions 
including schedulers. We think that it should be an 
integrated part of the design of frameworks and 
components also to define the associated concurrency 
abstractions including schedulers.  

We also think that SIMULA/BETA style coroutines are yet 
to be discovered by other language designers. 

Efficiency. The original goal of proving that an object-
oriented programming language could be efficiently 
implemented turned out to be less important. Several 
successors to SIMULA starting with C++ proved this. In 
addition, a number of efficient implementation techniques 
and more efficient microprocessors have implied that lack 
of efficiency is hardly an issue anymore. 

Modeling. The modeling approach succeeded in the sense 
that a comprehensive conceptual framework has been 
developed. The conceptual framework consists of a 
collection of conceptual means for understanding and 
organizing knowledge about the real world. It is 
furthermore described how these means are related to 
programming language constructs. But just as important, it 
is emphasized that some conceptual means are not 
supported by BETA and other programming languages. As 
mentioned previously, we think that it is necessary for 
software developers to be aware of a richer conceptual 
framework than that supported by a given language. 
Otherwise the programming language easily limits the 
ability of the programmer to understand the application 
domain. A conceptual framework that is richer than current 
programming languages can be used to define requirements 
for new programming languages. This leads to the other 
point where we think that the modeling approach has 
succeeded. 

We have demonstrated that language constructs and indeed 
a whole language can be based on a modeling approach. As 

we hope we have demonstrated in this paper, almost all 
constructs in BETA are motivated by their ability to model 
properties of the application domain. They also had to have 
properties from a technical point of view and to be 
sufficiently primitive in order to be efficiently 
implemented. The art of designing a programming language 
is to balance the support of conceptual means and selection 
of primitives that may be efficiently implemented. We did 
e.g. not include dynamic classification and equations since 
we did not find that we could implement such constructs 
efficiently.  

The goal for BETA was to design a language that could be 
used for modeling as well as programming. For many years 
the programming language community was not interested 
in modeling, and when object-orientation started to become 
popular, the main focus was on extensibility and reuse of 
code. This changed when the methodology schools started 
to become interested in object-oriented analysis and design. 
The approach to modeling in these schools was, however, 
different from ours. Most work on modeling aimed at 
designing special modeling languages based on a graphical 
syntax. As mentioned in Section 4, this reintroduced some 
of the problems of code generation and reverse engineering 
known from SA/SD. For BETA it was important to stress 
that the same language can be used for modeling as well as 
for programming and that syntax is independent of this. 
This was stressed by the fact that we designed both a 
textual and a graphical syntax for BETA. The attempts in 
recent years to design executable modeling languages in 
our opinion emphasizes that it was not a good idea to have 
separate modeling and programming languages.  

There is no doubt that object orientation has become the 
mainstream programming paradigm. There are hundreds (or 
thousands) of books introducing object-oriented 
programming and methodologies based on object 
orientation. The negative side of this is that the modeling 
aspect that originated with SIMULA seems to be 
disappearing. Very few schools and books are explicit 
about modeling. It is usually restricted to a few remarks in 
the introduction; the rest of the book is then concerned with 
technical aspects of a programming language or UML or 
traditional software methodology. 

We think that some of the advantages of object orientation 
have disappeared in its success and that there might be a 
need for proper reintroduction of the original concepts. 
OOA and OOD are in most schools nothing more than just 
programming at a high level of abstraction corresponding 
to the application domain. In order to put more content into 
this, there is room for making more use of the parts of the 
conceptual framework of BETA that go beyond what is 
supported by current programming languages. This would 
improve the quality of the analysis and design phases. We 
also think that future languages should be designed for 



 

modeling as well as programming. Turning a modeling 
language into a programming language (or vice versa) may 
not be the best approach. 
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Appendix: Time line 
Below is a time line showing when events in the BETA project took place. After each event, the number of the section 
describing the event is shown. In some electronic versions of this paper there may be links to these sections as well as the 
part of the text describing the events. 

 
Kristen Nygaard visiting professor at DAIMI [2.1] 1974  

 |  
Joint Language Project start [2.4] 1975  

 |  
BETA project start [3] 1976  

First language draft [3.2] |  
 1977  
 |  
 1978 Draft Proposal of BETA [3.3] 
 |  

First complete language definition [3.3] 1979  
 |  
 1980  
 |  
 1981 A survey of the BETA Programming Language [3.2] 
 |  
 1982 Syntax Directed Program Modularization [5.10] 
 |  

The first implementation [6.1] 1983 POPL paper: Abstraction Mechanisms … [3.3] 
 |  
 1984  
 |  

SUN Compiler [6.1] 1985 Multisequential Execution … [5.7.1] 
Hawthorne Workshop [3.3] |  

Mjølner Project start [3.4] 1986 Dynamic exchange of BETA systems [5.8.7] 
Sequential parts stable [3.3] |  

Macintosh Compiler [6.2] 1987 Research Directions in Object-Oriented Programming [3.3] 
 | ECOOP: Classification of Actions ... [5.10] 

Apple and Apollo contracts [3.3] 1988 ECOOP: What Object-Oriented Programming May Be … [5.10] 
First draft of BETA book [7.1] |  
BETA courses in Aarhus [7.1] 1989 OOPSLA: Virtual Classes … [5.10] 

 |  
Multisequential parts stable [3.3] 1990 ECOOP/OOPSLA: Strong Typing of 

 |                                Object-Oriented Languages ... [5.10] 
 1991  
 | TOOLS: Multiple inheritance by part objects [5.5] 
 1992  
 | BETA Book [3.3] 
 1993  

BETA courses in Dortmund [7.1] | Mjølner Book [3.4] 
 1994  

BETA courses in Oslo [7.1] |  
 1995  

BETA courses in Aalborg [7.1] |  
 1996  

 |  
 1997  
 |  
 1998  
 |  
 1999 OOPSLA: Semantic Analysis of Virtual Patterns [6.4] 
 |  

 2000  
 |  

Dahl & Nygaard receive ACM Turing Award [3.3] 2001  
 |  

Dahl & Nygaard receive the IEEE von Neumann Medal [3.3] 2002  

 


