

The When, Why and Why Not of the BETA Programming Language

Bent Bruun Kristensen
University of Southern Denmark

Campusvej 55
DK-5230 Odense M, Denmark

+45 65 50 35 39
bbk@mmmi.sdu.dk

Ole Lehrmann Madsen
University of Aarhus

Åbogade 34
DK-8200 Århus N, Denmark

+45 89 42 56 70
ole.l.madsen@daimi.au.dk

Birger Møller-Pedersen
University of Oslo
Gaustadalleen 23

NO-0316 Oslo, Norway
+47 22 85 24 37
birger@ifi.uio.no

Abstract
This paper tells the story of the development of BETA: a
programming language with just one abstraction
mechanism, instead of one abstraction mechanism for each
kind of program element (classes, types, procedures,
functions, etc.). The paper explains how this single
abstraction mechanism, the pattern, came about and how it
was designed to be so powerful that it covered the other
mechanisms.

In addition to describing the technical challenge of
capturing all programming elements with just one
abstraction mechanism, the paper also explains how the
language was based upon a modeling approach, so that it
could be used for analysis, design and implementation. It
also illustrates how this modeling approach guided and
settled the design of specific language concepts.

The paper compares the BETA programming language with
other languages and explains how such a minimal language
can still support modeling, even though it does not have
some of the language mechanisms found in other object-
oriented languages.

Finally, the paper tries to convey the organization, working
conditions and social life around the BETA project, which
turned out to be a lifelong activity for Kristen Nygaard, the
authors of this paper, and many others.

Categories and subject descriptors: D.3.2
[PROGRAMMING LANGUAGES]: Language
Classifications – BETA; D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features; K.2
[HISTORY OF COMPUTING] Software; D.1.5
[PROGRAMMING TECHNIQUES]: Object-oriented
Programming; General Terms: Languages; Keywords:
programming languages, object-oriented programming,
object-oriented analysis, object-oriented design, object-
oriented modeling, history of programming.

1. Introduction
This paper is a description of what BETA is, why it became
what it is and why it lacks some of the language constructs
found in other languages. In addition, it is a history of the
design and implementation of BETA, its main uses and its
main influences on later research and language efforts.

BETA is a programming language that has only one
abstraction mechanism, the pattern, covering abstractions
like record types, classes with methods, types with
operations, methods, and functions. Specialization applies
to patterns in general, thus providing a class/subclass
mechanism for class patterns, a subtype mechanism for type
patterns, and a specialization mechanism for methods and
functions. The latter implies that inheritance is supported
for methods – another novel characteristic of BETA. A
pattern may be virtual, providing virtual methods as in
other object-oriented languages. Since a pattern may be
used as a class, virtuality also supports virtual classes (and
types).

This paper is also a contribution to the story of the late
Kristen Nygaard, one the pioneers of computer science, or
informatics as he preferred to call it. Nygaard started the
BETA project as a continuation of his work on SIMULA
and system description. This was the start of a 25-year
period of working with the authors, not only on the design
of the BETA language, but also on many other aspects of
informatics.

The BETA project was started in 1976 and was originally
supposed to be completed in a year or two. For many
reasons, it evolved into an almost lifelong activity
involving Nygaard, the authors of this paper and many
others. The BETA project became an endeavor for
discussing issues related to programming languages,
programming and informatics in general.

The BETA project covers many different kinds of activities
from 1976 until today. We originally tried to write this
paper in historic sequence, and so that it can be read with
little or no prior knowledge of BETA. We have not,
however, organized the paper according to time periods,
since the result included a messy mix of distinct types of

events and aspects, too much overlap, and too little focus
on important aspects. The resulting paper is organized as
follows:

� Section 2 describes the background of the project.
� Section 3 describes the course of the BETA project,

including people, initial research ideas, project
organization and the process as well as personal
interactions.
� Section 4 describes the motivation and development of

the modeling aspects and the conceptual framework of
BETA.
� Section 5 describes parts of the rationale for the BETA

language, the development of the language, and essential
elements of BETA.
� Section 6 describes the implementation of BETA.
� Section 7 describes the impact and further development

of BETA.
Sections 3-6 form the actual story of BETA enclosed by
background (section 2) and impact (section 7). Sections 3-6
describe distinct aspects of BETA. The story of the overall
BETA project in section 3 forms the foundation/context for
the following aspects. This is how it all happened.
Modeling is essential for the design of BETA. This
perspective on design of and programming in object-
oriented languages is presented in section 4. Throughout
the presentation of the various language elements in the
following section the choices are discussed and motivated
by the conceptual framework in section 4. Section 5
presents the major elements of BETA. Because BETA may
be less known, a more comprehensive presentation is
necessary in order to describe its characteristics. However,
the presentation is still, and should be, far from a complete
definition of the language. Finally, the implementation of
BETA, historically mainly following after the language
design, is outlined in section 6.

In order to give a sequential ordering of the various events
and activities, a timeline for the whole project is shown in
the appendix. In the text events shown in the timeline are
printed in Tunga font. For example, text like: “… BETA
Project start …” means that this is an event shown in the
time line.

2. Background
This section describes the background and setting for the
early history of BETA. It includes personal backgrounds
and a description of the important projects leading to the
BETA project.

2.1 People
The BETA project was started in 1976 at the Computer
Science Department, Aarhus University (DAIMI). Bent
Bruun Kristensen and Ole Lehrmann Madsen had been

students at DAIMI since 1969 – Birger Møller-Pedersen
originally started at the University of Copenhagen, but
moved to DAIMI in 1974. Nygaard was Research Director
at the Norwegian Computing Centre (NCC), Oslo, where
the SIMULA languages [32-34, 130] were developed in the
sixties.

In the early seventies, the programming language scene was
strongly influenced by Pascal [161] and structured
programming. SIMULA was a respected language, but not
in widespread use. Algol 60 [129] was used for teaching
introductory programming at DAIMI. Kristensen and
Madsen were supposed to be introduced to SIMULA as the
second programming language in their studies. However,
before that happened Pascal arrived on the scene in 1971,
and most people were fascinated by its elegance and
simplicity as compared to Algol. Pascal immediately
replaced SIMULA as the second language and a few years
later Pascal also replaced Algol as the introductory
language for teaching at DAIMI. A few people, however,
found SIMULA superior to Pascal: the Pascal record and
variant record were poor substitutes for the SIMULA class
and subclass.

Although SIMULA was not in widespread use, it had a
strong influence on the notion of structured programming
and abstract data types. The main features of SIMULA
were described in the famous book by Dahl, Dijkstra and
Hoare on structured programming [29]. Hoare’s
groundbreaking paper Proof of Correctness of Data
Representation [56] introduced the idea of defining abstract
data types using the SIMULA class construct and the
notion of class invariant.

Kristen Nygaard visiting professor at DAIMI. Nygaard
became a guest lecturer at DAIMI in 1973; in 1974/75 he
was a full-time visiting professor, and after that he
continued as a guest lecturer for several years. Among
other things, Nygaard worked with trade unions in Norway
to build up expertise in informatics. At that time there was a
strong interest among many students at DAIMI and other
places in the social impact of computers. Nygaard’s work
with trade unions was very inspiring for these students.
During the ’70s and ’80s a number of similar projects were
carried out in Scandinavia that eventually led to the
formation of the research discipline of system development
with users, later called participatory design. The current
research groups at DAIMI in object-oriented software
systems and human computer interaction are a direct result
of the cooperation with Nygaard. This is, however, another
story that will not be told here. The design of BETA has
been heavily influenced by Nygaard's overall perspective
on informatics including social impact, system description
with users, philosophy, and programming languages. For
this reason the story of BETA cannot be told without
relating it to Nygaard’s other activities.

Morten Kyng was one of the students at DAIMI who was
interested in social aspects of computing. In 1973 he
listened to a talk by Nygaard at the Institute of Psychology
at Aarhus University. After the talk he told Nygaard that he
was at the wrong place and invited him to repeat his talk at
DAIMI. Kyng suggested to DAIMI that Nygaard be invited
as a guest lecturer. The board of DAIMI decided to do so,
since he was considered a good supplement to the many
theoretical disciplines in the curriculum at DAIMI at that
time. Madsen was a student representative on the board; he
was mainly interested in compilers and was thrilled about
Nygaard being a guest lecturer. He thought that DAIMI
would then get a person that knew about the SIMULA
compiler. This turned out not to be the case: compiler
technology was not his field. This was our first indication
that Nygaard had a quite different approach to informatics
and language design from most other researchers.

2.2 The SIMULA languages
Since SIMULA had a major influence on BETA we briefly
mention some of the highlights of SIMULA. A
comprehensive history of the SIMULA languages may be
found in the HOPL-I proceedings [35] and in [107].
SIMULA and object-oriented programming were
developed by Ole-Johan Dahl and Nygaard. Nygaard’s
original field was operations research and he realized early
on that computer simulations would be a useful tool in this
field. He then made an alliance with Dahl, who – as
Nygaard writes in an obituary for Dahl [132] – had an
exceptional talent for programming. This unique
collaboration led to the first SIMULA language, SIMULA
I, which was a simulation language. Dahl and Nygaard
quickly realized that the concepts in SIMULA I could be
applied to programming in general and as a result they
designed SIMULA 67 – later on just called SIMULA.
SIMULA is a general-purpose programming language that
contains Algol as a subset.

Users of today’s object-oriented programming languages
are often surprised that SIMULA contains many of the
concepts that are now available in mainstream object-
oriented languages:

� Class and object: A class defines a template for creating
objects.
� Subclass: Classes may be organized in a classification

hierarchy by means of subclasses.
� Virtual methods: A class may define virtual methods that

can be redefined (sometimes called overridden) in
subclasses.
� Active objects: An object in SIMULA is a coroutine and

corresponds to a thread.
� Action combination: SIMULA has an “inner” construct

for combining the statement-parts of a class and a
subclass.

� Processes and schedulers: It is straightforward in
SIMULA to write new concurrency abstractions
including schedulers.
� Frameworks: SIMULA provided the first object-oriented

framework in form of class Simulation, which provided
SIMULA I’s simulation features.
� Automatic memory management, including garbage

collection.
Most of the above concepts are now available in object-
oriented languages such as C++ [148], Eiffel [125], Java
[46], and C# [51]. An exception is the SIMULA notion of
an active object with its own action sequence, which
strangely enough has not been adopted by many other
languages (one exception is UML). For Dahl and Nygaard
it was essential to be able to model concurrent processes
from the real world.

The ideas of SIMULA have been adopted over a long
period. Before object orientation caught on, SIMULA was
very influential on the development of abstract data types.
Conversely, ideas from abstract data types later led to an
extension of SIMULA with constructs like public, private
and protected – originally proposed by Jakob Palme [137].

2.3 The DELTA system description language
When Nygaard came to DAIMI, he was working on system
description and the design of a new language for system
description based on experience from SIMULA. It turned
out that many users of SIMULA seemed to get more
understanding of their problem domain by having to
develop a model using SIMULA than from the actual
simulation results. Nygaard together with Erik Holbæk-
Hanssen and Petter Håndlykken had thus started a project
on developing a successor to SIMULA with main focus on
system description, rather than programming. This led to a
language called DELTA [60].

DELTA means ‘participate’ in command form in
Norwegian. The name indicates another main goal of the
DELTA language. As mentioned, Nygaard had started to
include users in the design of systems and DELTA was
meant as a language that could also be used to
communicate with users – DELTA (participate!) was meant
as an encouragement for users to participate in the design
process.

The goal of DELTA was to improve the SIMULA
mechanisms for describing real-world systems. In the real
world, activities take place concurrently, but real
concurrency is not supported by SIMULA. To model
concurrency SIMULA had support for so-called quasi-
parallel systems. A simulation program is a so-called
discrete event system where a simulation is driven by
discrete events generated by the objects of the simulation.
All state changes had to be described in a standard
imperative way by remote procedure calls (message calls),

assignments and control structures. DELTA supports the
description of true concurrent objects and uses predicates to
express state changes and continuous changes over time.
The use of predicates and continuous state changes implied
that DELTA could not be executed, but as mentioned the
emphasis was on system description.

DELTA may be characterized as a specification language,
but the emphasis was quite different from most other
specification languages at that time such as algebraic data
types, VDL, etc. These other approaches had a
mathematical focus in contrast to the system description
(modeling) focus of DELTA.

DELTA had a goal similar to that of the object-oriented
analysis and design (OOA/OOD) methodologies (like that
of Coad and Yourdon [25]) that appeared subsequently in
the mid-’80s. The intention was to develop languages and
methodologies for modeling real-world phenomena and
concepts based on object-oriented concepts. Since
SIMULA, modeling has always been an inherent part of
language design in the Scandinavian school of object
orientation. The work on DELTA may be seen as an
attempt to further develop the modeling capabilities of
object-orientation.

The report describing DELTA is a comprehensive
description of the language and issues related to system
description. DELTA has been used in a few projects, but it
is no longer being used or developed.

The system concept developed as part of the DELTA
project had major influence on the modeling perspective of
BETA – in Section 4.1 we describe the DELTA system
concept as interpreted for BETA.

2.4 The Joint Language Project
BETA project start. The BETA project was started in 1976
as part of what was then called the Joint Language Project
(JLP). The JLP was a joint project between researchers at
DAIMI, The Regional Computing Center at the University
of Aarhus (RECAU), the NCC and the University of
Aalborg.

Joint Language Project start. The initiative for the JLP was
taken in the autumn of 1975 by the late Bjarner Svejgaard,
director of RECAU. Svejgaard suggested to Nygaard that it
would be a good idea to define a new programming
language based on the best ideas from SIMULA and
Pascal. Nygaard immediately liked the idea, but he was
more interested in a successor to SIMULA based on the
ideas from DELTA. In the BETA Language Development
report from November 1976 [89] the initial purpose of the
JLP was formulated as twofold:

1. To develop and implement a high-level programming
language as a projection of the DELTA system

description language into the environment of
computing equipment.

2. To provide a common central activity to which a
number of research efforts in various fields of
informatics and at various institutions could be related.

The name GAMMA was used for this programming
language.

JLP was a strange project: on the one hand there were many
interesting discussions of language issues and problems,
while on the other hand there was no direct outcome. At
times we students on the project found it quite frustrating
that there was no apparent progress. We imagine that this
may have been frustrating for the other members of the
project as well. In hindsight we believe that the reason for
this may have been a combination of the very different
backgrounds and interests of people in the team combined
with Nygaard’s lack of interest in project management.
Nygaard’s strengths were his ability to formulate and
pursue ambitious research goals, and his approach to
language design with emphasis on modeling was unique.

Many issues were discussed within the JLP, mainly related
to language implementation and some unresolved questions
about the DELTA language. As a result six subprojects
were defined:

� Distribution and maintenance. This project was to
discuss issues regarding software being deployed to a
large number of computer installations of many different
types. This included questions such as distribution
formats, standardized updating procedures,
documentation, interfaces to operating systems, etc.
� Value types. The distinction between object and value

was important in SIMULA and remained important in
DELTA and BETA. For Nygaard classes were for
defining objects and types for defining values. He found
the use of the class concept for defining abstract data
types a ‘doubtful approach, easily leading to conceptual
confusion’ with regard to objects and values. In this
paper we use the term value type1 when we refer to types
defining values. The purpose of this subproject was to
discuss the definition of value types. We return to value
types in Sections 5.1.1 and 5.8.2.
� Control structures within objects. The purpose of this

subproject was to develop the control structures for
GAMMA.
� Contexts. The term “system classes” was used in

SIMULA to denote classes defining a set of predefined
concepts (classes) for a program. The classes SIMSET
and SIMULATION are examples of such system classes.

1 In other contexts, we use the term type, as is common within

programming languages.

Møller-Pedersen later revised and extended the notion of
system classes and proposed the term “context”. In
today’s terminology, class SIMSET was an example of a
class library providing linked lists and class
SIMULATION was an example of a class framework (or
application framework).
� Representative states. A major problem with concurrent

programs was (and still is) to ensure that interaction
between components results only in meaningful states of
variables – denoted representative states in JLP. At that
time, there was much research in concurrent
programming including synchronization, critical regions,
monitors, and communication. This subproject was to
develop a conceptual approach to this problem, based
upon the concepts of DELTA and work by Lars
Mathiassen and Morten Kyng.
� Implementation language. In the early seventies, it was

common to distinguish between general programming
languages and implementation languages. An
implementation language was often defined as an
extended subset of the corresponding programming
language. The subset was supposed to contain the parts
that could be efficiently implemented – an
implementation language should be as efficient as
possible to support the general language. The extended
part contained low level features to access parts of the
hardware that could not be programmed with the general
programming language. It was decided to define an
implementation language called BETA as the
implementation language for GAMMA. The original
team consisted of Nygaard, Kristensen and Madsen –
Møller-Pedersen joined later in 1976.

As described in Section 3.1 below, the BETA project was
based on an initial research idea. This implied that there
was much more focus on the BETA project than on the
other activities in JLP. For the GAMMA language there
were no initial ideas except designing a new language as a
successor of SIMULA based on experience with DELTA
and some of the best ideas of Pascal. In retrospect,
language projects, like most other projects, should be based
on one or more good ideas – otherwise they easily end up
as nothing more than discussion forums. JLP was a useful
forum for discussion of language ideas, but only the BETA
project survived.

2.5 The BETA name and language levels
The name BETA was derived from a classification of
language levels introduced by Nygaard, introducing a
number of levels among existing and new programming
languages. The classification by such levels would support
the understanding of the nature and purpose of individual
languages. The classification also motivated the existence
of important language levels.

� The δ-level contains languages for system description
and has the DELTA language as an example. A main
characteristic of this level is that languages are non-
executable.

� The γ-level contains general-purpose programming
languages. SIMULA, Algol, Pascal, etc. are all examples
of such languages. The JLP project was supposed to
develop a new language to be called GAMMA.
Languages at this level are by nature executable.

� The β-level contains implementation languages – and
BETA was supposed to be a language at this level.

� The α-level contains assembly languages – it is seen as
the basic “machine” level at which the actual translation
takes place and at which the systems are run.

The level sequence defines the name of the BETA
language, although the letter β was replaced by a spelling of
the Greek letter β. Other names were proposed and
discussed from time to time during the development of
BETA. At some point the notion of beta-software became a
standard term and this created a lot of confusion and jokes
about the BETA language and motivated another name. For
many years the name SCALA was a candidate for a new
name – SCALA could mean SCAndinavian Language, and
in Latin it means ladder and could be interpreted as
meaning something ‘going up’. The name of a language is
important in order to spread the news appropriately, but
names somehow also appear out of the blue and tend to
have lives of their own. BETA was furthermore well
known at that time and it was decided that it did not make
sense to reintroduce BETA under a new name.

3. The BETA project
The original idea for BETA was that it should be an
implementation language for a family of application
languages at the GAMMA level. Quite early2 during the
development of BETA, however, it became apparent that
there was no reason to consider BETA ‘just’ an
implementation language. After the point when BETA was
considered a general programming language, we considered
it (instead of GAMMA) to be the successor of SIMULA.
There were good reasons to consider a successor to
SIMULA; SIMULA contains Algol as a subset, and there
was a need to simplify parts of SIMULA in much the same
way as Pascal is a simplification of Algol. In addition we
thought that the new ideas arriving with BETA would
justify a new language in the SIMULA style.

3.1 Research approach
The approach to language design used for BETA was
naturally highly influenced by the SIMULA tradition. The

2 In late 1978 and early 1979.

SIMULA I language report of 1965 opens with these
sentences:

“The two main objectives of the SIMULA language are:

� To provide a language for a precise and standardised
description of a wide class of phenomena, belonging to
what we may call “discrete event systems”.

� To provide a programming language for an easy
generation of simulation programs for “discrete event
systems”.”

Thus, SIMULA I was considered as a language for system
description as well as for programming. It was therefore
obvious from the beginning that BETA should be used for
system description as well as for programming.

In the ’70s the SIMULA/BETA communities used the term
system description to correspond to the term model
(analysis and design models) used in most methodologies.
We have always found it difficult to distinguish analysis,
design and implementation. This was because we saw
programming as modeling and program executions as
models of relevant parts of the application domain. We
considered analysis, design and implementation as
programming at different abstraction levels.

The original goal for JLP and the GAMMA subproject was
to develop a general purpose programming language as a
successor to SIMULA. From the point in time where BETA
was no longer just considered to be an implementation
language, the research goals for BETA were supplemented
by those for GAMMA. All together, the research approach
was based on the following assumptions and ideas:

� BETA should be a modeling language.
� BETA should be a programming language. The most

important initial idea was to design a language based on
one abstraction mechanism. In addition BETA should
support concurrent programming based on the coroutine
mechanisms of SIMULA.

� BETA should have an efficient implementation.

3.1.1 Modeling and conceptual framework
Creating a model of part of an application domain is always
based on certain conceptual means used by the modeler. In
this way modeling defines the perspective of the
programmer in the programming process. Object-oriented
programming is seen as one perspective on programming
identifying the underlying model of the language and
executions of corresponding programs.

Although it was realized from the beginning of the
SIMULA era (including the time when concepts for record
handling were developed by Hoare [52-54]) that the
class/subclass mechanism was useful for representing
concepts including generalizations and specializations,
there was no explicit formulation of a conceptual

framework for object-oriented programming. The term
object-oriented programming was not in use at that time
and neither were terms such as generalization and
specialization. SIMULA was a programming language like
Algol, Pascal and FORTRAN – it was considered superior
in many aspects, but there was no formulation of an object-
oriented perspective distinguishing SIMULA from
procedural languages.

In the early seventies, the notion of functional
programming arrived, motivated by the many problems
with software development in traditional procedural
languages. One of the strengths of functional programming
was that it was based on a sound mathematical foundation
(perspective). Later Prolog and other logic programming
languages arrived, also based on a mathematical
framework.

We did not see functional or logic programming as the
solution: the whole idea of eliminating state from the
program execution was contrary to our experience of the
benefits of objects. We saw functional/logic programming
and the development of object-oriented programming as
two different attempts to remedy the problems with
variables in traditional programming. In functional/logic
programming mutable variables are eliminated – in object-
oriented programming they are generalized into objects.
We return to this issue in Section 4.2.

For object-oriented programming the problem was that
there was no underlying sound perspective. It became a
goal of the BETA project to formulate such a conceptual
framework for object-oriented programming.

The modeling approach to designing a programming
language provides overall criteria for the elements of the
language. Often a programming language is designed as a
layer on top of the computer; this implies that language
mechanisms often are designed from technical criteria.
BETA was to fulfill both kinds of criteria.

3.1.2 One abstraction mechanism
The original design idea for BETA was to develop a
language with only one abstraction mechanism: the pattern.
The idea was that patterns should unify abstraction
mechanisms such as class, procedure, function, type, and
record. Our ambition was to develop the ultimate
abstraction mechanism that subsumed all other abstraction
mechanisms. In the DELTA report, the term pattern is used
as a common term for class, procedure, etc. According to
Nygaard the term pattern was also used in the final stages
of the SIMULA project. For SIMULA and DELTA there
was, however, no attempt to define a language mechanism
for pattern.

The reason for using the term pattern was the observation
that e.g. class and procedure have some common aspects:
they are templates that may be used to create instances. The

instances of a class are objects and the instances of
procedures are activation records.

Figure 1 Classification of patterns
In the beginning it was assumed that BETA would provide
other abstraction mechanisms as specializations
(subpatterns) of the general pattern concept illustrated in
Figure 1. In other words, BETA was initially envisaged as
containing specialized patterns like class, procedure,
type, etc. A subpattern of class as in

MyClass: class (# ... #)

would then correspond to a class definition in SIMULA. In
a similar way a subpattern of procedure would then
correspond to a procedure declaration. It should be possible
to use a general pattern as a class, procedure, etc. As
mentioned in Section 5.8.5, such specialized patterns were
never introduced.

Given abstraction mechanisms like class, procedure,
function, type and process type, the brute-force approach to
unification would be to merge the elements of the syntax
for all of these into a syntax describing a pattern. The
danger with this approach might be that when a pattern is
used e.g. as a class, only some parts of the syntactic
elements might be meaningful. In addition, if the
unification is no more than the union of class, procedure,
etc., then very little has been gained.

The challenges of defining a general pattern mechanism
may then be stated as follows:

� The pattern mechanism should be the ultimate
abstraction mechanism, subsuming all other known
abstraction mechanisms.

� The unification should be more than just the union of
existing mechanisms.

� All parts of a pattern should be meaningful, no matter
how the pattern is applied.

The design of the pattern mechanism thus implied a heavy
focus on abstraction mechanisms, unification, and
orthogonality. Orthogonality and unification are closely
associated, and sometimes they may be hard to distinguish.

3.1.3 Concurrency
It was from the beginning decided that BETA should be a
concurrent programming language. As mentioned,
SIMULA supported the notion of quasi-parallel system,
which essentially defines a process concept and a
cooperative scheduling mechanism. A SIMULA object is a

coroutine and a quasi-parallel process is defined as an
abstraction (in the form of a class) on top of coroutines.

The support for implementing hierarchical schedulers was
one of the strengths of SIMULA; this was heavily used
when writing simulation packages. Full concurrency was
added to SIMULA in 1995 by the group at Lund University
headed by Boris Magnusson [158].

Conceptually, the SIMULA coroutine mechanism appears
simple and elegant, but certain technical details are quite
complicated. For BETA, the SIMULA coroutine
mechanism was an obvious platform to build upon. The
ambition was to simplify the technical details of coroutines
and add support for full concurrency including
synchronization and communication. In addition it should
be possible to write cooperative as well as pre-emptive
schedulers.

3.1.4 Efficiency
Although SIMULA was used by many communities in
research institutions and private businesses, it had a
relatively small user community. However, it was big
enough for a yearly conference for SIMULA users to take
place.

One of the problems with making SIMULA more widely
used was that it was considered very inefficient. This was
mainly due to automatic memory management and garbage
collection. Computers at that time were quite slow and had
very little memory compared to computers of today. The
DEC 10 at DAIMI had 128Kbyte of memory. This made
efficient memory management quite challenging.

One implication of this was that object orientation was
considered to be quite inefficient by nature. It was therefore
an important issue for BETA to design a language that
could be efficiently implemented. In fact, it was a goal that
it should be possible to write BETA programs with a
completely static memory layout.

Another requirement was that BETA should be usable for
implementing embedded systems. Embedded systems
experts found it provoking that Nygaard would engage in
developing languages for embedded systems – they did not
think he had the qualifications for this. He may not have
had much experience in embedded systems, but he surely
had something to contribute. This is an example of the
controversies that often appeared around Nygaard.

As time has passed, static memory requirements have
become less important. However, this issue may become
important again, for example in pervasive computing based
on small devices.

3.2 Project organization
The process, intention, and organization of the BETA
project appeared to be different from those of many
projects today. The project existed through an informal

cooperation between Nygaard and the authors. During the
project we had obligations as students, professors or
consultants. This implied that the time to be used on the
project had to be found in between other activities.

As mentioned, Kristensen, Møller-Pedersen and Madsen
were students at DAIMI, Århus. In 1974 Kristensen
completed his Masters Thesis on error recovery for LR-
parsers. He was employed as assistant professor at the
University of Ålborg in 1976. Madsen graduated in 1975,
having written a Master’s thesis on compiler-writing
systems, and continued at DAIMI as assistant professor and
later as a PhD student. Møller-Pedersen graduated in 1976
with a Master’s thesis on the notion of context, with
Nygaard as a supervisor. He was then employed by the
NCC, Oslo, in 1976 and joined the BETA project at the
same time. Nygaard was a visiting professor at DAIMI in
1974-75 – after that he returned to the NCC and continued
at DAIMI as a guest lecturer.

Most meetings took place in either Århus or Oslo, and
therefore required a lot of traveling. At that time there was
a ferry between Århus and Oslo. It sailed during the night
and took 16 hours – we remember many pleasant trips on
that ferry – and these trips were a great opportunity to
discuss language issues without being disturbed. Later
when the ferry was closed we had to use other kinds of
transportation that were not as enjoyable.

Funding for traveling and meetings was limited. Research
funding was often applied for, but with little success.
Despite his great contributions to informatics through the
development of the SIMULA languages, Nygaard always
had difficulties in getting funding in Norway. The Mjølner
project described in Section 3.4 is an exception, by
providing major funding for BETA development –
however, Nygaard was not directly involved in applying for
this funding.

The project involved a mixture of heated discussions about
the design of the BETA language and a relaxed, inspiring
social life. It seemed that for Nygaard there was very little
difference between professional work and leisure.

Meetings. The project consisted of a series of more or less
regular meetings with the purpose of discussing language
constructs and modeling concepts. Meetings were planned
in an ad hoc manner. The number of meetings varied over
the years and very little was written or prepared in advance.

Meetings officially took place at NCC or at our universities,
but our private homes, trams/buses, restaurants, ferries, and
taxies were also seen as natural environments in which the
work and discussions could continue – in public places
people had to listen to loud, hectic discussions about
something that must have appeared as complete nonsense to
them. But people were tolerant and seemed to accept this
weird group.

In October 1977, Madsen and family decided to stay a
month in Oslo to complete the project – Madsen’s wife,
Marianne was on maternity leave – and they stayed with
Møller-Pedersen and his family. This was an enjoyable
stay, but very little progress was made with respect to
completing BETA – in fact we saw very little of Nygaard
during that month.

Discussions. A meeting would typically take place without
a predefined agenda and without any common view on
what should or could be accomplished throughout the
meeting. The meetings were a mixture of serious
concentrated discussions of ideas, proposals, previous
understanding and existing design and general stuff from
the life of the participants.

State-of-the-art relevant research topics were rarely
subjects for discussion. Nygaard did not consider this
important – at least not for the ongoing discussions and
elaboration of ideas. Such knowledge could be relevant
later, in relation to publication, but was usually not taken
seriously. In some sense Nygaard assumed that we would
take care of this. Also established understanding, for
example, on the background, motivations and the actual
detailed contents of languages like Algol, SIMULA or
DELTA was not considered important. It appeared to be
much better to develop ideas and justify them without
historical knowledge or relationships. The freedom was
overwhelming and the possibilities were exhausting.

The real strengths of Nygaard were his ability to discuss
language issues at a conceptual level and focus on means
for describing real-world systems. Most language designers
come from a computer science background and their
language design is heavily based on what a computer can
do: A programming language is designed as a layer on top
of the computer making it easier to program. Nygaard’s
approach was more of a modeling approach and he was
basically interested in means for describing systems. This
was evident in the design of SIMULA, which was designed
as a simulation language and therefore well suited for
modeling real systems.

Plans. There was no clear management of the project, and
plans and explicit decisions did not really influence the
project. We used a lot of time on planning, but most plans
were never carried out. Deadlines were typically controlled
by the evolution of the project itself and not by a carefully
worked out project plan.

Preparation and writing were in most cases the result of an
individual initiative and responsibility. Nygaard was active
in writing only in the initial phase of the project. Later on
Nygaard’s research portfolio mainly took the form of of
huge stacks of related plastic slides, but typically their
relation became clear only at Nygaard’s presentations. The

progress and revisions of his understanding of the research
were simply captured on excellent slides.

At the beginning of the project it was decided that
Kristensen and Madsen should do PhDs based on the
project. As a consequence of the lack of project
organization, it quickly became clear that this would not
work.

The original plan for the BETA project was that ‘a firm and
complete language definition’ should be ready at the end of
1977 [89]. An important deadline was February 1977 – at
that time a first draft of a language definition should be
available. In 1977 we were far from a complete language
definition and Nygaard did not seem in a hurry to start
writing a language definition report. However, two working
notes were completed in 1976/77. In Section 3.3 and in
Section 5.10, we describe the content of these working
notes and other publications and actual events in the
project.

Social life. Meetings typically lasted whole days including
evenings and nights. In connection with meetings the group
often met in our private homes and had dinner together,
with nice food and wine. The atmosphere was always very
enjoyable but demanding, due to an early-morning start
with meetings and late-evening end. Dinner conversation
was often mixed with debate about current issues of
language design. Our families found the experience
interesting and inspiring, but also often weird. Nygaard
often invited various guests from his network, typically
without our knowing and often announced only in passing.
Guests included Carl Hewitt, Bruce Moon, Larry Tesler,
Jean Vaucher, Stein Krogdahl, Peter Jensen, and many
more. They were all inspiring and the visits were learning
experiences. In addition there were many enjoyable
incidents as when passengers on a bus to the suburb where
Madsen lived watched with surprise and a little fear as
Nygaard (tall and insistent) and Hewitt (all dressed in red
velour and just as insistent) loudly discussed not commonly
understandable concepts on the rear platform of the bus.

Nygaard was an excellent wine connoisseur and arranged
wine-tasting parties on several occasions. We were
“encouraged” to spend our precious travel money on
various selected types of wines, and it was beyond doubt
worth it. Often other guests were invited and had similar
instructions about which wine to bring. At such parties we
would be around 10 people in Nygaard’s flat, sitting around
their big dinner table and talking about life in general. The
wines would be studied in advance in Hugh Johnson’s
“World Atlas of Wine” and some additional descriptions
would be shared. The process was controlled and
conducted by Nygaard at the head of the table.

Crises. The project meetings could be very frustrating since
Nygaard rarely delivered as agreed upon at previous

meetings. This often led to very heated discussions. This
seemed to be something that we inherited from the
SIMULA project. In one incident Kristensen and Madsen
arrived in Oslo at the NCC and during the initial
discussions became quite upset with Nygaard and decided
to leave the project. They took a taxi to the harbor in order
to enter the ferry to Århus. Nygaard, however, followed in
another taxi and convinced them to join him for a beer in
nearby bar – and he succeeded in convincing them to come
back with him.

Crises and jokes were essential elements of meetings and
social gatherings. Crises were often due to different
expectations to the progress of the language development,
unexpected people suddenly brought into the project
meetings, and problems with planning of the meeting days.
Crises were solved, but typically not with the result that the
next similar situation would be tackled differently by
Nygaard. Serious arguments about status and plans were
often solved by a positive view on the situation together
with promises for the future. Jokes formed an essential
means of taking ‘revenge’ and thereby to overcome crises.
Jokes were on Nygaard in order to expose his less
appealing habits, as mentioned above, and were often
simple and stupid, probably due to our irritation and
desperation. Nygaard was an easy target for practical jokes,
because he was always very serious about work, which was
not something you joked about.3 On one occasion in
Nygaard’s office at Department of Informatics at
University of Oslo, the telephone calls that Nygaard had to
answer seemed to never end, even if we complained
strongly about the situation. One time when Nygaard left
the office, we taped the telephone receiver to the base by
means of some transparent tape. When Nygaard returned,
we arranged for a secretary to call him. As usual Nygaard
quickly grabbed the telephone receiver, and he got
completely furious because the whole telephone device was
in his hand. He tried to wrench the telephone receiver off
the base unit, but without success. Nygaard blamed us for
the lost call (which could be very important as were the
approximately 20 calls earlier this morning) and left the
office running to the secretary in order to find out who had
called. He returned disappointed and angry, but possibly
also a bit more understanding of our complaints. At social
events he was on the other hand very entertaining and had a
large repertoire of jokes – however, practical jokes were
not his forte.

3.3 Project events
In this section we mention important events related to the
project process as a supplement to the description in the
previous sections. Events related to the development of the

3 We never found out whether or not this was a characteristic of

Nygaard or of Norwegians in general☺.

conceptual framework, the language and its implementation
are described in the following sections.

Due to the lack of structure in the project organization, it is
difficult to point to specific decisions during the project that
influenced the design of BETA. The ambition for the
project was to strive for the perfect language and it turned
out that this was difficult to achieve through a strict
working plan. Sometimes the design of a new programming
language consists of selecting a set of known language
constructs and the necessary glue for binding them
together. For BETA the goal was to go beyond that. This
implied that no matter what was decided on deadlines, no
decisions were made as long as a satisfactory solution had
not been found. In some situations we clearly were hit by
the well known saying, ‘The best is the enemy of the good’.

The start of the JLP and the start of the BETA project were
clearly important events. There was no explicit decision to
terminate the JLP – it just terminated.

As mentioned, two working notes were completed in
1976/1977. The first one was by Peter Jensen and Nygaard
[66] and was mainly an argument why the NCC should
establish cooperation with other partners in order to
implement the BETA system programming language on
microcomputers.

First language draft. The second working note was the first
publication describing the initial ideas of BETA, called
BETA Language Development – Survey Report, 1,
November 1976 [89]. A revised version was published in
September 1977.

Draft Proposal of BETA. In 1978 a more complete language
description was presented in DRAFT PROPOSAL for
Introduction to the BETA Programming Language as of 1st
August 1978 [90] and a set of examples [91]. A grammar
was included. Here BETA was still mainly considered an
implementation language. The following is stated in the
report: “According to the conventional classification of
programming languages BETA is meant to be a system
programming language. Its intended use is for
programming of operating systems, data base systems,
communication systems and for implementing new and
existing programming languages. … The reason for not
calling it a system programming language is that it is
intended to be more general than often associated with
system programming languages. By general is here meant
that it will contain as few as possible concepts underlying
most programming concepts, but powerful enough to build
up these. The BETA language will thus be a kernel of
concepts upon which more application oriented languages
may be implemented and we do not imagine the language
as presented here used for anything but implementation of
more suitable languages. This will, however, be straight
forward to do by use of a compiler-generator. Using this,

sets of concepts may be defined in terms of BETA and
imbedded in a language. Together with the BETA language
it is the intention to propose and provide a ‘standard super
BETA’.”

As mentioned, BETA developed without any explicit
decision into a full-fledged general programming language.
In this process it was realized that GAMMA and special-
purpose languages could be implemented as class
frameworks in BETA. With regard to class frameworks,
SIMULA again provided the inspiration. SIMULA
provided class Simulation – a class framework for
writing simulation programs. Class Simulation was
considered a definition of a special-purpose language for
simulation – SIMULA actually has special syntax only
meaningful when class Simulation is in use. For BETA it
provided the inspiration for work on special-purpose
languages. The idea was that a special-purpose language
could be defined by means of a syntax definition (in BNF),
a semantic definition in terms of a class framework, and a
syntax-directed transformation from the syntax to a BETA
program using the class framework. This is reflected in the
1978 working note.

First complete language definition. In February 1979 – and
revised in April 1979 – the report BETA Language
Proposal [92] was published. It contained the first attempt
at a complete language definition. Here BETA was no
longer considered just an implementation language: “BETA
is a general block-structured language in the style of Algol,
Simula and Pascal. … Most of the possibilities of Algol-like
sequential languages are present”. BETA was, however,
still considered for use in defining application-oriented
languages – corresponding to what are often called domain-
specific languages today.

The fact that BETA was considered a successor to
SIMULA created some problems at the NCC and the
University of Oslo. The SIMULA communities considered
SIMULA to be THE language, and with good reason.
There were no languages at that time with the qualities of
SIMULA and as of today, the SIMULA concepts are still in
the core of mainstream languages such as C++, Java and
C#.

Many people became angry with Nygaard that he seemed
willing to give up on SIMULA. He did not look at it that
way – he saw his mission as developing new languages and
exploring new ideas. However, it did create difficulties in
our relationship with the SIMULA community. SIMULA
was at that time a commercial product of the NCC. When it
became known that Nygaard was working on a successor
for SIMULA, the NCC had to send out a message to its
customers saying that the NCC had no intentions of
stopping the support of SIMULA.

Around 1980 there was in fact an initiative by the NCC to
launch BETA as a language project based on the model
used for SIMULA. This included planning a call for a
standardization meeting, although no such meeting ever
took place. The plan was that BETA should be frozen by
the end of 1980 and an implementation project should then
be started by the NCC. However, none of this did happen.

A survey of the BETA Programming Language. In 1981 the
report ‘A Survey of the BETA Programming Language’
[93] formed the basis for the first implementation and the
first published paper on BETA two years later [95]. As
mentioned in Section 6.1, the first implementation was
made in 1983.

Several working papers about defining special-purpose
languages were written (e.g. [98]), but no real system was
ever implemented. A related subject was that the grammar
of BETA should be an integrated part of the language. This
led to work on program algebras [96] and
metaprogramming [120] that made it possible to manipulate
BETA programs as data. Some of the inspiration for this
work came during a one-year sabbatical that Madsen spent
at The Center for Study of Languages and Information at
Stanford University in 1984, working with Terry
Winograd, Danny Bobrow and José Meseguer.

POPL paper: Abstraction Mechanisms in the BETA
Programming Language. An important milestone for BETA
was the acceptance of a paper on BETA for POPL in 1983
[95]. We were absolutely thrilled and convinced that BETA
would conquer the world. This did not really happen – we
were quite disappointed with the relatively little interest the
POPL paper created. At the same conference, Peter Wegner
presented a paper called On the Unification of Data and
Program Abstractions in Ada [159]. Wegner’s main
message was that Ada contained a proliferation of
abstraction mechanisms and there was no uniform treatment
of abstraction mechanisms in Ada. Naturally we found
Wegner’s paper to be quite in line with the intentions of
BETA and this was the start of a long cooperation with
Peter Wegner, who helped in promoting BETA.

Hawthorne Workshop. Peter Wegner and Bruce Shriver
(who happened to be a visiting professor at DAIMI at the
same time as Nygaard) invited us to the Hawthorne
workshop on object-oriented programming in 1986. This
was one of the first occasions where researchers in OOP
had the opportunity to meet and it was quite useful for us. It
resulted in the book on Research Directions in Object-
Oriented Programming [145] with two papers on BETA
[100, 111]. Peter Wegner and Bruce Shriver invited us to
publish papers on BETA at the Hawaii International
Conference on System Sciences in 1988.

Sequential parts stable. In late 1986/early 1987 the
sequential parts of the language were stable, and only
minor changes have been made since then.

Multisequential parts stable. A final version of the
multisequential parts (coroutines and concurrency) was
made in late 1990, early 1991.

BETA Book. Peter Wegner also urged us to write a book on
BETA and he was the editor of the BETA book published
by Addison Wesley/ACM Press in 1993 [119].

For a number of years we gave BETA tutorials at
OOPSLA, starting with OOPSLA’89 in New Orleans.
Dave Thomas and others were quite helpful in getting this
arranged – especially at OOPSLA’90/ECOOP’90 in
Ottawa, he provided excellent support.

At OOPSLA’89 we met with Dave Unger and the Self
group; although Self [156] is a prototype-based language
and BETA is a class-based language, we have benefited
from cooperation with the Self group since then. We
believe that Self and BETA are both examples of languages
that attempt to be based on simple ideas and principles.

The Mjølner (Section 3.4) project (1986-1991) and the
founding of Mjølner Informatics Ltd. (1988) were clearly
important for the development of BETA.

Apple and Apollo contracts. During the Mjølner project we
got a contract with Apple Computer Europe, Paris, to
implement BETA for the Macintosh – Larry Taylor was
very helpful in getting this contract. A similar contract was
made with Apollo Computer, coordinated by Søren Bry.

In 1994, BETA was selected to be taught at the University
of Dortmund. Wilfried Ruplin was the key person in
making this happens. A German introduction to
programming using BETA was written by Ernst-Erich
Doberkat and Stefan Diβmann [38]. This was of great use
for the further promotion of BETA as a teaching language.

Dahl & Nygaard receive ACM Turing Award. In 2001 Dahl
and Nygaard received the ACM Turing Award (“for their
role in the invention of object-oriented programming, the
most widely used programming model today”).

Dahl & Nygaard receive the IEEE von Neumann Medal. In
2002 they received the IEEE John von Neumann Medal
(“for the introduction of the concepts underlying object-
oriented programming through the design and
implementation of SIMULA 67”). Dahl was seriously ill at
that time so he was not able to attend formal presentations
of these awards, including giving the usual Turing Award
lecture. Dahl died on June 29, 2002. Nygaard was supposed
to give his Turing Award lecture at OOPSLA 2002 in
Vancouver, October 2002, but unfortunately he died on
August 10, just a few weeks after Dahl. Life is full of
strange coincidences. Madsen was invited to give a lecture

at OOPSLA 2002 instead of Nygaard. The overall theme
for that talk was ‘To program is to understand’, which in
many ways summarizes Nygaard’s approach to
programming. One of Nygaard’s latest public appearances
was his after-dinner talk at ECOOP 2002 in Malaga, where
he gave one of his usual entertaining talks that even the
spouses enjoyed.

3.4 The Mjølner Project
Mjølner Project start. The Mjølner4 Project (1986-1991)
[76] was an important step in the development of BETA.
The objective of the Mjølner project was to increase the
productivity of high-quality software in industrial settings
by designing and implementing object-oriented software
development environments supporting specification,
implementation and maintenance of large production
programs. The project was carried out in cooperation
between Nordic universities and industrial companies with
participants from Denmark, Sweden, Norway and Finland.
In the project three software development environments
were developed:

� Object-oriented SDL and tools: The development of
Object-oriented SDL is described in Section 7.3.

� The Mjølner Orm System: a grammar-based
interactive, integrated, incremental environment for
object-oriented languages. The main use of Orm was to
develop an environment for SIMULA.

� The Mjølner BETA System: a programming
environment for BETA.

Mjølner Book. The approach to programming environments
developed within the Mjølner Project is documented in the
book Object-Oriented Environments – the Mjølner
Approach [76], covering all these three developments.

The development of the Mjølner BETA System was in a
Scandinavian context a large project. The project was a
major reason for the success of BETA. During this project
the language developed in the sense that many details were
clarified. For example, the Ada-like rendezvous for
communication and synchronization was abandoned in
favor of semaphores, pattern variables were introduced, etc.
It was also during the Mjølner project that the fragment
system found its current form – cf. Section 5.8.4.

Most of the implementation techniques for BETA were
developed during the Mjølner project, together with native
compilers for Sun, Macintosh, etc. Section 6 contains a
description of the implementation.

4 In the Nordic myths Mjølner is the name of Thor’s hammer;

Thor is the Nordic god of thunder. Mjølner is the perfect tool: it
grows with the task, always hits the target, and always returns
safely to Thor's hand.

A complete programming environment for BETA was
developed. In addition to compilers there was a large
collection of libraries and application frameworks including
a meta-programming system called Yggdrasil5, a persistent
object store with an object browser, and application
frameworks for GUI programs built on top of Athena,
Motif, Macintosh and Windows. A platform independent
GUI framework with the look and feel of the actual
platform was developed for Macintosh, Windows and
UNIX/Motif.

The environment also included the MjølnerTool, which was
an integration of the following tools: a source code browser
called Ymer, an integrated text- and syntax-directed editor
called Sif, a debugger called Valhalla, an interface builder
called Frigg, and a CASE tool called Freja supporting a
graphical syntax for BETA – see also Section 4.5.

Mjølner Informatics. The Mjølner BETA System led in
1988 to the founding of the company Mjølner Informatics
Ltd., which for many years developed and marketed the
Mjølner BETA System as a commercial product. Sales of
the system never generated a high profit, but it gave
Mjølner Informatics a good image as a business, and this
attracted a lot of other customers. Today the Mjølner BETA
System is no longer a commercial product, but free versions
may be obtained from DAIMI.

It may seem strange from the outside that three
environments were developed in the Mjølner Project. And
it is indeed strange. SDL was, however, heavily used by the
telecommunication industry, and there was no way to
replace it by say BETA – the only way to introduce object
orientation in that industry seemed to be by adding object
orientation to SDL. Although SDL had a graphical syntax,
it also had a textual syntax, and it had a well-defined
execution semantics, so it was more or less a domain-
specific programming language (the domain being
telecommunications) and not a modeling language. Code
generators were available for different (and at that time
specialized) platforms. SDL is still used when code
generation is needed, but for modeling purposes UML has
taken over. UML2.0 includes most of the modeling
mechanisms of SDL, but not the execution semantics.

The BETA team did propose to the people in charge of the
Mjølner Orm development – which focused on SIMULA –
that they join the BETA team, and that we concentrate on
developing an environment for BETA. BETA was designed
as a successor of SIMULA, and we found that it would be
better to just focus on BETA. However, the SIMULA
people were not convinced; it is often said that SIMULA,
like Algol 60, is one of the few languages that is better than

5 Most tools in the Mjølner System had names from Nordic

mythology.

most of its successors – we are not the ones to judge about
this with respect to BETA. The lesson here is perhaps that
in a project like Mjølner more long-term goals would have
been beneficial. If the project had decided to develop one
language including a graphical notation that could replace
SDL, then this language might have had a better chance to
influence the industry than each of OSDL, SIMULA and
BETA.

The motivation for modeling languages like SDL (and later
UML) was that industries wanted to be independent of
(changing) programming languages and run-time
environments. A single language like BETA that claims to
be both a programming language and a modeling language
was therefore not understood. Even Java has not managed
to get such a position. It is also interesting to note that
while the Object Management Group advocates a single
modeling language, covering many programming languages
and platforms, Microsoft advocates a single programming
language (or rather a common language run-time, CLR) on
top of which they want to put whatever domain-specific
modeling language the users in a specific domain require.

4. Modeling and conceptual framework
We believe that the success of object-oriented
programming can be traced back to its roots in simulation.
SIMULA I was designed to describe (model) real-world
systems and simulate these systems on a computer. This
eventually led to the design of SIMULA 67 as a general
programming language. Objects and classes are well suited
for representing phenomena and concepts from the real
world and for programming in general. Smalltalk further
refined the object model and Alan Kay described object-
oriented programming as a view on computation as
simulation [68] (see also the formulation by Tim Budd
[22]). An important aspect of program development is to
understand, describe and communicate about the
application domain and BETA should be well suited for
this. In the BETA book [119] (page 3) this is said in the
following way:

To program is to understand: The development of an
information system is not just a matter of writing a
program that does the job. It is of utmost importance that
development of this program has revealed an in-depth
understanding of the application domain; otherwise, the
information system will probably not fit into the
organization. During the development of such systems it
is important that descriptions of the application domain
are communicated between system specialists and the
organization.

The term “To program is to understand” has been a leading
guideline for the BETA project. This implied that an
essential part of the BETA project was the development of
a conceptual framework for understanding and organizing

knowledge about the real world. The conceptual framework
should define the object-oriented perspective on
programming and provide a semantic foundation for
BETA. Over the years perhaps more time was spent on
discussing the conceptual framework than the actual
language. Issues of this kind are highly philosophical and,
not being philosophers, we could spend a large amount of
time on this without progress.

Since BETA was intended for modeling as well as
programming there was a rule that applied when discussing
candidates for language constructs in BETA: a given
language construct should be motivated from both the
modeling and the programming point of view. We realized
that many programmers did not care about modeling but
were only interested in technical aspects of a given
language – i.e. what you can actually express in the
language. We thus determined that BETA should be usable
as a ‘normal’ programming language without its
capabilities as a modeling language. We were often in the
situation that something seemed useful from a modeling
point of view, but did not benefit the programming part of
the language and vice versa.

We find the conceptual framework for BETA just as
important as the language – in this paper we will not go
into details, but instead refer to chapters 2 and 18 in the
book on BETA [119]. Below we will describe part of the
rationale and elements of the history of the conceptual
framework. In Section 5, where the rationale for the BETA
language is described, we will attempt to describe how the
emphasis on modeling influenced the language.

4.1 Programming as modeling
As mentioned, DELTA was one of the starting points for
the BETA project. For a detailed description of DELTA the
reader is referred to the DELTA report [60]. Here we
briefly summarize the concepts that turned out to be most
important for BETA.

The system to be described was called the referent system.
A referent system exists in what today’s methodologies call
application domain. A description of a system – the system
description – is a text, a set of diagrams or a combination
describing the aspects of the system to be considered.
Given a system description, a system generator may
generate a model system that simulates the considered
aspects of the referent system. These concepts were derived
from the experience of people writing simulation programs
(system descriptions) in SIMULA and running these
simulations (model systems).

Programming was considered a special case of system
description – a program was considered a system
description and a program execution was considered a
model system. Figure 2 illustrates the relationship between
the referent system and the model system.

Figure 2 Modeling
As illustrated in Figure 2, phenomena and (domain-
specific) concepts from the referent system are identified
and represented as (realized) objects and concepts (in the
form of patterns) in the model system (the program
execution). The modeling activity of Figure 2 includes the
making of a system description and having a system
generator generate the model system according to this
description.

4.2 Object-orientation as physical modeling
For BETA it has been essential to make a clear distinction
between the program and the program execution (the model
system). A program is a description in the form of a text,
diagrams or a combination – the program execution is the
dynamic process generated by the computer when
executing the program. At the time when BETA was
developed, many researchers in programming and
programming languages were focusing on the program text.
They worked on the assumption that properties of a
program execution could (and should) be derived from
analysis of the program text, including the use of assertions
and invariants, formal proofs and formal semantics.
Focusing on the (static) program text often made it difficult
to explain the dynamics of a program execution. Especially
for object-oriented programming, grasping the dynamic
structure of objects is helped by considering the program
execution. But considering the program execution is also
important in order to understand mechanisms such as
recursion and block structure.

The discussion of possible elements in the dynamic
structure of a BETA program execution was central during
the design of BETA. This included the structure of
coroutines (as described in Section 5.7 below), stacks of
activation records, nested objects, references between
objects, etc. Many people often felt that we were discussing
implementation, but for us it was the semantics of BETA. It
did cover aspects that normally belonged to
implementation, but the general approach was to identify
elements of the program execution that could explain to the
programmer how a BETA program was executing.

At that time, formal semantics of programming languages
was an important issue and we were often confronted with
the statement that we should concentrate on defining a
formal semantics for BETA. Our answer to that was vague
in the sense that we were perhaps uncertain whether or not
they were right, but on the other hand we had no idea how
to approach a formal semantics for a language we were
currently designing. It seemed to us that the current
semantic models just covered well known language
constructs and we were attempting to identify new
constructs. Also, our mathematical abilities were perhaps
not adequate to mastering the mathematical models used at
that time for defining formal semantics.

Many years later we realized that our approach to
identifying elements of the program execution might be
seen as an attempt to define the semantics of BETA – not in
a formal way, but in a precise and conceptual way.

The focus on the program execution as a model eventually
led to a definition of object-oriented programming based on
the notion of physical model – first published at ECOOP in
’88 [116]:

Object-oriented programming. A program execution is
regarded as a physical model simulating the behavior of
either a real or imaginary part of the world.

The notion of physical is essential here. We considered
(and still do) objects as physical material used to construct
models of the relevant part of the application domain. The
analogy is the use of physical material to construct models
made of cardboard, wood, plastic, wire, plaster, LEGO
bricks or other substances. Work on object-oriented
programming and computerized shared material by Pål
Sørgaard [149] was an essential contribution here.

Webster defines a model in the following way: “In general
a model refers to a small, abstract or actual representation
of a planned or existing entity or system from a particular
viewpoint” [1]. Mathematical models are examples of
abstract representations whereas models of buildings and
bridges made of physical material such as wood, plastic,
and cartoon are examples of actual representations. Models
may be made of existing (real) systems as in physics,
chemistry and biology, or of planned (imaginary) systems
like buildings, and bridges.

We consider object-oriented models6 to be actual (physical)
representations made from objects. An object-oriented
model may be of an existing or planned system, or a

6 The term modeling is perhaps somehow misleading since the

model eventually becomes the real thing – in contrast to models
in science, engineering and architecture. We originally used the
term description, in SIMULA and DELTA terminology, but
changed to modeling when OOA/OOD and UML became
popular.

combination. It may be a reimplementation of a manual
system on a computer. An example may be a manual library
system that is transferred to computers. In most cases,
however, a new (planned) system is developed. In any case,
the objects and patterns of the system (model) represent
phenomena and concepts from the application domain. An
object-oriented model furthermore has the property that it
may be executed and simulate the behavior of the system in
accordance with the computation-is-simulation view
mentioned above.

The application domain relates to the real world in various
ways. Most people would agree that a library system deals
with real world concepts and phenomena such as books and
loans. Even more technical domains like a system
controlling audio/video units and media servers deal with
real-world concepts and phenomena. Some people might
find that a network communication protocol implementing
TCP/IP is not part of the real world, but it definitely
becomes the real world for network professionals, just as an
electronic patient record is the real world for healthcare
professionals. Put in other words: Even though the real
world contains real trees and not so many binary search
trees or other kinds of data structures, the modeling
approach is just as valuable for such classical elements of
(in this case) the implementation domain.

In any case the modeling approach should be the same for
all kinds of application domains – this is also the case for
the conceptual means used to understand and organize
knowledge about the application domain, be it the real
world or a technical domain. In the approach taken by OO
and BETA we apply conceptual means used for organizing
knowledge about the real world, as we think this is useful
for more technical and implementation-oriented domains as
well. In Chapter 5 we describe how the modeling approach
has influenced the design of the BETA language.

From the above definition it should be evident that
phenomena that have the property of being physical
material should be represented as objects. There are,
however, other kinds of phenomena in the real world. This
led to a characterization of the essential qualities of
phenomena in the real world systems of interest for object-
oriented models:

� Substance – the physical material transformed by the
process.
� Measurable properties of the substance.
� Transformations of the substance.
People, vehicles, and medical records are examples of
phenomena with substance, and they may be represented by
objects in a program execution. The age, weight or blood
pressure of a person are examples of measurable properties
of a person and may be represented by values (defined by
value types) and/or functions. Transformations of the

substance may be represented by the concurrent processes
and procedures being executed as part of the program
execution. The understanding of the above qualities had a
profound influence on the semantics of BETA.

4.3 Relation to other perspectives
In order to arrive at a conceptual understanding of object
orientation, we found it important to understand the
differences between object-orientation and other
perspectives such as procedural, functional, and constraint
programming. We thus contrasted our definition of object
orientation (see e.g. our ECOOP’88 paper [116] and
Chapter 2 in the BETA book [119]) to similar definitions
for other perspectives. In our understanding, the essential
differences between procedural and functional
programming related to the use of mutable variables. In
procedural programming a program manipulates a set of
mutable variables. In pure functional programming there is
no notion of mutable variable. A function computes its
result solely based on its arguments. This also makes it easy
to formulate a sound mathematical foundation for
functional programming. We are aware that our conception
of functional programming may not correspond to other
people’s understanding. In most functional programming
languages you may have mutable variables and by means of
closures you may even define object-oriented programming
language constructs as in CommonLisp. However, if you
make use of mutable variables it is hard to distinguish
functional programming from procedural programming.
Another common characteristic of functional languages is
the strong support for higher functions and types. However,
higher-order functions (and procedures) and types may be
used in procedural as well as object-oriented programming.
Algol and Pascal support a limited form of higher-order
functions and procedures, and generic types are known
from several procedural languages. Eiffel and BETA are
examples of languages supporting generic classes
(corresponding to higher-order types), and for BETA it was
a goal to support higher-order functions and procedures.
When we discuss functional programming in this paper, it
should be understood in its pure form where a function
computes its result solely based on its arguments. This
includes languages using non-mutable variables as in let
x=e1 in e2.

For BETA it was not a goal to define a pure object-oriented
language as it may have been for Smalltalk. On the
contrary, we were interested in integrating the best from all
perspectives into BETA. We thus worked on developing an
understanding of a unified approach that integrated object-
oriented programming with functional, logic and procedural
programming [116]. BETA supports procedural
programming and to some extent functional programming.
We also had discussions with Alan Borning and Bjorn
Freeman-Benson on integrating constraint-oriented
programming into BETA. The idea of using equations

(constraints) to describe the state of objects was very
appealing, but we never managed to identify primitive7
language constructs that could support constraints.
However, a number of frameworks supporting constraints
were developed by students in Aarhus.

4.4 Concepts and abstraction
It was of course evident from the beginning that the
class/subclass constructs of SIMULA were well suited to
representing traditional Aristotelian concepts (for a
description of Aristotelian concepts, see the BETA book)
including hierarchical concepts. The first example of a
subclass hierarchy was a classification of vehicles as shown
in Figure 3.

Abstraction is perhaps the most powerful tool available to
the human intellect for understanding complex phenomena.
An abstraction corresponds to a concept. In the
Scandinavian object-oriented community it was realized in
the late seventies by a number of people, including the
authors and collaborators, that in order to be able to create
models of parts of the real world, it was necessary to
develop an explicit understanding of how concepts and
phenomena relate to object-oriented programming.

Figure 3 Example of a subclass hierarchy
In the late seventies and early eighties the contours of an
explicit conceptual framework started to emerge – there
was an increasing need to be explicit about the conceptual
basis of BETA and object orientation in general. The
ongoing discussions on issues such as multiple inheritance
clearly meant that there was a need for making the
conceptual framework explicit. These discussions
eventually led to an explicit formulation of a conceptual
framework by means of Aristotelian concepts in terms of
intension, extension and designation to be used in object-
oriented modeling. An important milestone in this work
was the Master’s thesis of Jørgen Lindskov Knudsen [71]
and part of the PhD Thesis of Jørgen Lindskov Knudsen
and Kristine Thomsen [78].

7 We do not consider equations to be programming-language

primitives.

Knudsen supplemented the conceptual framework with the
so-called prototypical concepts inspired by Danish
philosopher Sten Folke Larsen [42], who argued that most
everyday concepts are not Aristotelian but fuzzy
(prototypical). An Aristotelian concept is characterized by a
set of defining properties (the intension) that are possessed
by all phenomena covered by the concept (the extension).
For a prototypical concept the intension consists of
examples of properties that the phenomena may have,
together with a collection of typical phenomena covered by
the concept, called prototypes. An Aristotelian concept
structure has well defined boundaries between the
extensions of the concepts, whereas this is not the case for a
prototypical concepts structure. In the latter the boundaries
are blurred/fuzzy. A class is well suited to representing
Aristotelian concepts, but since most everyday concepts are
prototypical, a methodology should allow for prototypical
concepts to be used during analysis. Prototypical concepts
should not be confused with prototype-based languages. A
prototypical concept is still a concept – prototypical objects
are not based on any notion of concept. Prototypical
concepts are described in the BETA book [119], and the
relationship between prototypical concepts and prototype-
based languages is discussed by Madsen [113].

In the seventies there was similar work on modeling going
on in the database and AI communities and some of this
work influenced on the BETA project. This included papers
such as the one by Smith & Smith [147] on database
abstraction.

The realization that everyday concepts were rarely
Aristotelian made it clear that it was necessary to develop a
conceptual framework that was richer than the current
programming language in use. In the early days, there
might have been a tendency to believe that SIMULA and
other object-oriented languages had all mechanisms that
were needed to model the real world – this was of course
naive, since all languages put limitations on the aspects of
the real world that can be naturally modeled. Programmers
have a tendency to develop an understanding of the
application domain in terms of elements of their favorite
programming language. A Pascal programmer models the
real world in terms of Pascal concepts like records and
procedures. We believed that the SIMULA concepts
(including class, and subclass) were superior to other
programming languages with respect to modeling.

The conceptual framework associated with BETA is
deliberately developed to be richer than the language. In
addition to introducing prototypical concepts, the BETA
book discusses different types of classification structures
that may be applied to a given domain, including some that
cannot be directly represented in mainstream programming
languages. The rationale for the richer conceptual
framework is that programmers should understand the

application domain by developing concepts without being
constrained by the programming language. During
implementation it may of course be necessary to map
certain concepts into the programming language. It is,
however, important to be explicit about this. This aspect
was emphasized in a paper on teaching object-oriented
programming [77].

4.5 Graphical syntax for modeling
When object-oriented programming started to become
mainstream in the early eighties, code reuse by means of
inheritance was often seen as the primary advantage of
object-oriented programming. The modeling capabilities
were rarely mentioned. The interest in using object-oriented
concepts for analysis and design that started in the mid-
eighties was a positive change since the modeling
capabilities came more in focus.

One of the disadvantages of OOA/OOD was that many
people apparently associated analysis and design with the
use of graphical languages. There is no doubt that diagrams
with boxes and arrows are useful when designing systems.
In the SIMULA and BETA community, diagrams had of
course also been used heavily, but when a design/model
becomes stable, a textual representation in the form of an
abstract program is often a more compact and
comprehensive representation.

The mainstream modeling methodologies all proposed
graphical languages for OOA/OOD, which led to the UML
effort on designing a standardized graphical language for
OOA/OOD. We felt that this was a major step backwards –
one of the advantages of object-orientation is that the same
languages and concepts can be applied in all phases of the
development process, from analysis through design to
implementation. By introducing a new graphical language,
one reintroduced the problem of different representations of
the model and the code. It seems to be common sense that
most software development is incremental and iterative,
which means that the developer will iterate over analysis,
design and implementation several times. It is also
generally accepted that design will change during
implementation. With different representations of the
model and the code it is time consuming to keep both
diagrams and code in a consistent state.

In the early phases of Mjølner Project it was decided to
introduce a graphical syntax for the abstraction mechanisms
of BETA as an alternative to the textual syntax. The Freja
CASE tool [141, 142] was developed using this syntax. In
addition, Freja was integrated with the text and structure
editor in such a way that the programmer could easily
alternate between a textual and graphical representation of
the code.

When UML became accepted as a common standard
notation, the developers at Mjølner Informatics decided to

replace the graphical syntax defined for BETA by a subset
of UML. Although major parts of BETA had a one-to-one
correspondence with this UML subset, some of the
problems of different representations were reintroduced.

It is often said that a picture says more than a thousand
words. This is true. Nygaard in his presentations often used
a transparency with this statement (and a picture of
Madonna). This was always followed by one saying that a
word often says more than a thousand pictures, illustrated
by a number of drawings of vehicles and the word
‘vehicle’. The point is that we use words to capture
essential concepts and phenomena – as soon as we have
identified a concept and found a word for it, this word is an
efficient means for communication among people. The
same is true in software design. In the initial phase it is
useful to use diagrams to illustrate the design. When the
design stabilizes it is often more efficient to use a textual
representation for communication between the developers.
The graphical representation may still be useful when
introducing new people to the design.

4.6 Additional notes
It was often difficult to convey to other researchers what
we understood by system description and why we
considered it important. As mentioned, there was an
important workshop at the IBM Hawthorne Research
Center in New York in 1986, organized by Peter Wegner
and Bruce Shriver, in which Dahl, Nygaard and Madsen
participated. Here we had long and heated debates with
many researchers – it was difficult to agree on many issues,
most notably the concept of multiple inheritance. We later
realized that for most people at that time the advantage of
object-orientation was from a reuse point of view – a purely
technical argument. For us, coming from the SIMULA
tradition, the modeling aspect was at least as important, but
the difference in perspective was not explicit. Later Steve
Cook [26] made the difference explicit by introducing the
ideas of the ‘Scandinavian School’ and the ‘U.S. School’ of
object-orientation.

At that time the dominant methodology was based on
structured analysis and design followed by implementation
– SA/SD [162]. SIMULA users rarely used SA/SD, but
formulated their designs directly in SIMULA. The work on
DELTA and system description was an attempt to
formulate concepts and languages for analysis and design –
Peter Wegner later said that SIMULA was a language with
a built-in methodology. We did find the method developed
by Michael Jackson [63] more interesting than SA/SD. In
SA/SD there is focus on identifying functionality. In
Jackson’s method a model of the application domain is first
constructed and functionality is then added to this model.
The focus on modeling was in much more agreement with
our understanding of object-orientation.

In the mid-eighties, Yourdon and others converted to object
orientation and published books on object-oriented analysis
and design, e.g. [25]. This was in many ways a good
turning point for object orientation, because many more
people now started to understand and appreciate its
modeling advantages.

In 1989 Madsen was asked to give a three-day course on
OOD for software developers from Danish industry. He
designed a series of lectures based on the abstraction
mechanisms of BETA – including the conceptual
framework. At the end of the first day, most of the
attendees complained that this was not a design course, but
a programming course. The attendees were used to SA/SD
and had difficulties in accepting the smooth transition from
design to implementation in object-oriented languages – it
should be said that Madsen was not trying to be very
explicit about this. There was no tradition for this in the
SIMULA/BETA community – design was programming at
a higher level of abstraction.

It actually helped that, after some heated discussions with
some of the attendees, a person stood up in the back of the
room presenting himself and two others as being from DSB
(the Danish railroad company) – he said that his group was
using SIMULA for software development and they have
been doing design for more than 10 years in the way it had
been presented. He said that it was very difficult for them
to survive in a world of SA/SD where SIMULA was quite
like a stepchild – the only available SIMULA compiler was
for a DEC 10/20 which was no longer in production, and
they therefore had to use the clone produced by a third
party. However, together with the course organizer,
Andreas Munk Madsen, Madsen redesigned the next two
days’ presentations overnight to make more explicit why
this was a course on design.

The huge interest in modeling based on object orientation
in the late eighties was of course positive. The disadvantage
was that now everybody seemed to advocate object
orientation just because it had become mainstream. There
were supporters (or followers) of object-orientation who
started to claim that the world is object-oriented. This is of
course wrong – object orientation is a perspective that one
may use when modeling the world. There are many other
perspectives that may be used to understand phenomena
and concepts of the real world.

5. The Language
In this section we describe the rationale for the most
important parts of BETA. We have attempted to make this
section readable without a prior knowledge of BETA,
although some knowledge of BETA will be an advantage.
The reader may consult the BETA book [119] for an
introduction to BETA.

The BETA language has evolved over many years and
many changes to the semantics and syntax have appeared in
this period. It would be too comprehensive to describe all
of the major versions of BETA in detail. We will thus
describe BETA as of today, with emphasis on the rationale
and discussions leading to the current design and to
intermediate designs. In Section 5.10, we will briefly
describe the various stages in the history of the language.

As mentioned in Section 3.1, most language mechanisms in
BETA are justified from a technical as well as a modeling
point of view. In the following we will attempt to state the
technical as well as the modeling arguments for the
language mechanisms being presented.

5.1 One abstraction mechanism
From the beginning the challenge was to design a
programming language mechanism called a pattern that
would subsume well-known abstraction mechanisms. The
common characteristic of abstraction mechanisms is that
they are templates for generating instances of some kind. In
the mid seventies when the BETA project started, designers
and programmers were not always explicit about whether
or not a given construct defined a template or an instance
and when a given instance was generated. In this section we
describe the background, rationale and final design of the
pattern.

5.1.1 Examples of abstraction mechanisms
When the BETA project was started, research in
programming languages was concerned with a number of
abstraction mechanisms. Below we describe some of the
abstraction mechanisms that were discussed in the
beginning of the BETA project. We will explicitly use a
terminology that distinguishes templates from instances.

Record type. A record type as known from Pascal defines
a list of fields of possibly different types. The following is
an example of a Pascal record type, which is a template for
records:

type Person =
 record name: String; age: integer end;

Instances of Person may be defined as follows:
var P:Person;

Fields of the record P may be read or assigned as follows:
n:= P.name; P.age:= 16

Value type. Value types representing numbers, Boolean
values, etc. have always been important in programming
languages. New abstraction mechanisms for other kinds of
value types were proposed by many people. This included
compound value types like complex number, enumeration
types such as color known from Pascal and numbers with a
unit such as speed. The main characteristic of a value type
is that it defines a set of values that are assignable and

comparable. Value types may to some extent be defined by
means of records and classes, but as mentioned in Section
2.4, we did not think that this was a satisfactory solution.
We return to this in Section 5.8.2.

Procedure/function. A procedure/function may be viewed
as a template for activation records. It is defined by a name,
input arguments, a possible return type, and a sequence of
statements that can be executed. A typical procedure in a
Pascal-like language may look like

integer distance(var p1,p2: Point)
 var dist: real
 begin ...; return dist; end

A procedure call of the form d := distance(x,y)
generates an instance in the form of an activation record for
distance, transmits x and y to the activation record,
executes the statement part and returns a value to be
assigned to d.

The notion of pure function (cf. Section 4.2) was also
considered an abstraction mechanism that should be
covered by the pattern.

Class. A (simple) class in the style of SIMULA has a name,
input arguments, a possible superclass, a set of data fields,
and a set of operations. Operations are procedures or
functions in the Algol style. In today’s object-orientation
terminology the operations are called methods. One of the
uses of class was as a mechanism for defining abstract data
types.

Module. The module concept was among others proposed
as an alternative to the class as a means for defining
abstract data types. One of the problems with module – as
we saw it – was that is was often not explicit from the
language definition whether a module was a template or an
instance. As described in Section 5.8.8, we considered a
module to be an instance rather than a template.

Control abstraction. A control abstraction defines a
control structure. Over the years a large variety of control
structures have been proposed. For BETA it was a goal to
be able to define control abstractions. Control abstractions
were mainly found in languages like CLU that allowed
iterators to be defined on sets of objects.

Process type. A process type defines a template for either a
coroutine or a concurrent process. In some languages,
however, a process declaration defined an instance and not
a template. In SIMULA, any object is in fact a coroutine
and a SIMULA class defines a sequence of statements
much like a procedure. A SIMULA class may in this sense
be considered a (pseudo) process type. For a description of
the SIMULA coroutine mechanism see e.g. Dahl and Hoare
[30]. In Concurrent Pascal the SIMULA class concept was
generalized into a true concurrent process type [17].

The relationship between template and instance for the
above abstraction mechanisms is summarized in the table
below:

Abstraction/template Instance
record type record
value type value

procedure/function activation record
class object

control abstraction control activation
module? module

process type process object

The following observations may further explain the view
on abstraction mechanisms and instances in the early part
of the BETA project:

� Some of terms in the above table were rarely considered
by others at the programming level, but were considered
implementation details. This is the case for activation
record, control activation and process object. As we
discuss elsewhere, we put much focus on the program
execution – the dynamic evolution of objects and actions
being executed – for understanding the meaning of a
program. This was in contrast to most programming-
language schools where the focus was on the program
text.
� The notion of value type might seem trivial and just a

special case of record type. However, as mentioned in
Section 2.4, Nygaard found it doubtful to use the class
concept to define value types – we return to this subject
in Section 5.8.2.
� A record type is obviously a special case of a class in the

sense that a class may ‘just’ define a list of data fields.
The only reason to mention record type as a case here is
that the borderline between record type, value type and
class was not clear to us.
� If one follows Hoare, an object or abstract data type

could only be accessed via its operations. We found it
very heavyweight to insist that classes defining simple
record types should also define accessor functions for its
fields. This issue is further discussed in Section 5.5.

5.1.2 Expected benefits from the unification
As mentioned previously, the pattern should be more than
just the union of the above abstraction mechanisms. Below
we list some language features and associated issues that
should be considered.

� Pattern. The immediate benefit of unifying class,
procedure, etc. is that this ensures a uniform treatment of
all abstraction mechanisms. At the conceptual level,

programmers have a general concept covering all
abstraction mechanisms. This emphasizes the similarities
among class, procedure, etc., with respect to being
abstractions defining templates for instances. From a
technical point of view, it ensures orthogonality among
class, procedure, etc.
� Subpattern. It should be possible to define a pattern as a

subpattern of another pattern. This is needed to support
the notion of subclass. From the point of view of
orthogonality, this means that the notion of subpattern
must also be meaningful for the other abstraction
mechanisms. For example, since a procedure is a kind of
pattern, inheritance for procedures must be defined – and
in a way that makes it useful.
� Virtual pattern. To support virtual procedures, it must

be possible to specify virtual patterns. Again, the concept
of virtual pattern must be meaningful for the other
abstraction mechanisms as well. As a virtual pattern can
be used as a class, the concept of virtual class must be
given a useful meaning. It turned out that the notion of
virtual class (or virtual type) was perhaps one of the most
useful contributions of BETA.
� Nested pattern. Since Algol, SIMULA, and DELTA are

block-structured languages that support nesting of
procedures and classes, it was obvious that BETA should
also be a block-structured language. I.e., it should be
possible to nest patterns arbitrarily.
� Pattern variable. Languages like C contain pointers to

procedures. For BETA, procedure typed variables were
not considered initially, but later suggested by Ole
Agesen, Svend Frølund and Michael H. Olsen in their
Master’s thesis on persistent objects [4]. The uniformity
of BETA implied that we then had classes, procedures,
etc. as first-order values.

In addition to being able to unify the various abstraction
mechanisms, it was also a goal to be able to describe
objects directly without having to define a pattern and
generate an instance. This lead to the notion of singular
objects:

� Singular objects. In Algol and SIMULA it is possible to
have inner blocks. In Pascal it is possible to define a
record variable without defining a record type. For BETA
it was a design goal that singular objects (called
anonymous classes in Java and Scala [133-135]) should
apply for all uses of a pattern. That is, it should be
possible to write a complete BETA program in the form
of singular objects – without defining any patterns at all.

5.1.3 Similarities between object and activation
record
As mentioned in Section 3.1.2, the observation about the
similarities between objects and activation records was one
of the main motivations for unifying e.g. class and

procedure. From the beginning the following similarities
between objects and activation records were observed:

� An object is generated as an instance of a class. An
activation record is generated as part of a procedure
invocation. In both cases input parameters may be
transferred to the object/activation record.
� An object consists of parameters, and data items (fields).

An activation record also consists of parameters and data
items in the form of local variables.
� An object may contain local procedures (methods). In a

block-structured language an activation record may have
local (nested) procedures.
� In a block-structured language, an activation record may

have a pointer to the statically enclosing activation record
(often called the static link or origin). In SIMULA,
classes may be nested, so a SIMULA object may also
have an origin.
� An activation record may have a reference pointing to the

activation record of the calling procedure (often called
the dynamic link or caller). In most object-oriented
languages there is no counterpart to a dynamic link in an
object. In SIMULA this is different since a SIMULA
object is potentially a coroutine.

Figure 4 shows an example of a SIMULA program except
that we use syntax in the style of C++, Java and C#. This
example contains the following elements:

Figure 4 SIMULA-like program
� The class Main with local (nested) classes Person and
Set and a procedure main.
� The class Person with instance variables name and age.
� The class Set with a parameter size, an instance

variable (array) rep for representing the set, a non-virtual
procedure (method) insert, and a virtual procedure
display.
� The procedure main with reference variables Joe and S.

class Main:
{
 class Person:
 { name: text; age: integer; };
 class Set(size: integer):
 { rep: array(size);
 proc insert(e: object): { do ... };
 virtual proc display(): { do ... };
 };
 proc main():
 { Person Joe = new Person();
 Set S
 do S = new Set(99);
 S.insert(Joe);
 S.display()
 };
}

The example has the following characteristics:

� Person, Set and main are nested within class Main.
� Class instances (objects) are created by new Set().
� Procedure instances are created by S.insert(Joe) and
S.display().

Figure 5 shows a snapshot of the execution of the program
in Figure 4 at the point where S.insert(Joe) is executed
at the end of main.

Figure 5 Objects and activation records
� The box named main is the activation record for main. It

has a caller reference, which in this case is null since
main is the first activation of this program. There is also
an object reference (obj) to the enclosing Main object. In
addition it has two data items Joe and S referring to
instances of class Set and class Person
� The boxes named Set and Person are Set and Person

objects respectively. Since the example is SIMULA-like,
both objects have an origin for representing block
structure and a caller representing the coroutine
structure. For both objects origin refer to the enclosing
Main object. The caller is null since Set and Person
have no statement part.
� The box named insert is the activation record for the

call of S.insert(Joe). Caller refers to main. It has
an object reference (obj) to the Set object on which the
method is activated. In addition it has two instance
variables e and inx. The variable e refers to the same
object as Joe.

� The box named Main represents the Main object
enclosing the Set and Person objects and the main
activation record.

From the above presentation it should be clear that there is
a strong structural similarity between an object and an
activation record. The similarity is stronger for SIMULA
than for languages like C++, Java and C#, since SIMULA
has block structure and objects are coroutines. Technically
one may think of a SIMULA class as a procedure where it
is possible to obtain a reference to the activation record –
the activation record is then an instance of the class.

5.1.4 The pattern
From the discussion of the similarities between class and
procedure it follows that the following elements are
candidates for a unified pattern:

� The name of the pattern
� The input parameters
� A possible superpattern
� Local data items
� Local procedures (methods) – virtual as well as non-

virtual
� Local classes – possible nested classes
� A statement part – in the following called a do-part
One difference between a class and procedure is that a
procedure may return a value, which is not the case for a
class. To justify the unification we then had a minor
challenge in defining the meaning of a return value for a
pattern used as a class. We decided that we did not need an
input parameter part for patterns. The rationale for this
decision and the handling of return values are discussed in
Section 5.8.1.

Figure 6 Object layout
In conclusion, we decided that a BETA object should have
the layout shown in Figure 6. Origin represents the static
link for nested procedures and objects and the object
reference for method activations. Note that since a method
is actually nested inside a class, there is no difference
between the origin of a method activation and its object
reference (obj in the above example). For patterns that are

not nested within other patterns, origin may be
eliminated. Caller represents the dynamic link for
activation records and coroutine objects. For patterns
without a do-part, caller may be eliminated.

Figure 7 shows how the example from Figure 4 may be
expressed in BETA. All of the classes and procedures have
been expressed as patterns.

Figure 7 Pattern example
Basically it is a simple syntactic transformation:

� The keywords class and proc are removed.
� The brackets { and } are replaced by (# and #).
� The insert input parameter part (e: Object) is

replaced by a declaration of an object reference variable
(e: ^object) and a specification that e is the input
parameter (enter e[]).
� The symbol ^ in a declaration of a variable specifies that

the variable is a (dynamic) reference – we show below
that variables can also be defined as static.
� The symbol ‘<’ specifies that display is a virtual

pattern.
� The keyword ‘do’ separates the declaration part and the

do-part.
� The symbol & corresponds to new – i.e. &Set generates

an instance of pattern Set.
� The symbol [] in an application of a name, as in Joe[],

signals that the value of Joe[] is a reference to the
object Joe. This is in contrast to Joe, which has the
object Joe as its value.
� Assignment has the form exp -> V, where the value of
exp is assigned to V.
� The parentheses () are removed from procedure

declarations and activations.

� The arrow -> is also used for procedure arguments,
which are treated as assignments. This is the case with
Joe[] -> S.insert, where Joe[] is assigned to the
input parameter e[].
� Instances of a pattern may be created in two ways:
� The constructs &Set[]. The value of &Set[] is a

reference to the new Set instance and corresponds to
the new operator in most object-oriented languages.

� S.display. Here a new display instance is
generated and executed (by executing its do-part).
This corresponds to a procedure instance as shown in
Figure 4.

The general form for a pattern is
P: superP // super pattern
 (# A1; A2;...;An // attribute-part
 enter (V1, V2,...,Vs) // enter-part
 do I1; I2;...;Im // statements
 exit (R1, R2,...,Rt) // exit-part
 #)

� The super-part describes a possible super pattern.
� The attribute-part describes declaration of attributes

including variables and local patterns
� The enter-part describes an optional list of input

parameters.
� The do-part describes an optional list of executable

statements.
� The exit-part describes an optional list of output values.
As is readily seen from this general form for a pattern, a
pattern may define a simple record type (defining only
attributes), it may define a class with methods (in which
case the local patterns are methods), or it may define
procedures/functions, in which case the enter/exit lists work
as input/output parameters.

Figure 8 Decomposition of S.insert(Joe)
As mentioned above, a procedure call may be described as
a generation of an activation record, transfer of arguments,
and execution of the code of the procedure. In Figure 8,
such a decomposition of the call S.insert(Joe) from
Figure 4 is shown:

� A variable ia of type S.insert is declared.
� An instance of S.insert() is assigned to ia.
� The argument e is assigned the value of Joe.
� The statement part of ia is executed.

Main:
 (# Person: (# ... #);
 Set:
 (# insert:
 (# e: ^object
 enter e[] do ... #);
 display:< (# ... #);
 ...
 #);
 main:
 (# Joe: ^Person;
 S: ^Set
 do &Person[] -> Joe[];
 &Set[] -> S[];
 Joe[] -> S.insert;
 S.display
 #);
 #)

ia: S.insert;
ia = new S.insert();
ia.e = Joe;
ia.execute();

In BETA it is possible to write this code directly. This also
implies that the activation record (object) ia may be
executed several times by reapplying ia.execute(). Such
procedure objects were referred to as static procedure
instances and considered similar to FORTRAN subroutines.

Although in a pure version of BETA one could imagine
that all procedure calls would be written as in Figure 8, this
would obviously be too clumsy. From the beginning an
abbreviation corresponding to a normal syntax for
procedure call was introduced.

5.1.5 Subpatterns
With respect to subpatterns a number of issues were
discussed over the years. As with a SIMULA subclass, a
subpattern inherits all attributes of its superpattern. We did
discuss the possibility of cancellation of attributes as in
Eiffel, but found this to be incompatible with a modeling
approach where a subpattern should represent a
specialization of its superpattern. We also had to consider
how to combine the enter-, do- and exit-parts of a
pattern and its superpattern. For the enter- and exit-parts
we decided on simple concatenation as in SIMULA,
although alternatives were discussed, such as allowing an
inner statement (cf. Section 5.6) inside an enter/exit part
to specify where to put the enter/exit part of a given
subpattern. The combination of do-parts is discussed in
Section 5.6. The following is an example of a subpattern:

Student: Person (# ... #)

The pattern Student is defined as a subpattern of Person.
The usual rules regarding name-based subtype
substitutability applies for variables in BETA. As in most
class-based languages, an instance of Student has all the
properties defined in pattern Person.

In SIMULA a subclass can only be defined at the same
block level as that in which its superclass is defined. The
following example where TT is not defined at the same
block level as its superclass T is therefore illegal:

class A: { // block-level 0
 class T: { ... } // block-level 1
 class X: { // block-level 1
 class TT: T { ... } // block-level 2
 }
}

BETA does not have this restriction. The restriction in
SIMULA was because of implementation problems. We
return to this question in Section 6.4.

Multiple inheritance has been an issue since the days of
SIMULA – we return to this issue in Section 5.5.1 and
5.8.12.

5.1.6 Modeling rationale
The rationale for one pattern as described in Section 3.1.2
and above is mainly technical. For a modeling language it

is essential to be able to represent concepts and phenomena
of the application domain. Abstraction mechanisms like
class, procedure and type may represent specialized
concepts from the application domain. It seemed natural to
be able to represent a concept in general. The idea of
having one pattern mechanism generalizing all other
abstraction mechanisms was then considered well
motivated from this point of view also.

Since the primary purpose of patterns was to represent
concepts, it has always been obvious that a subpattern
should represent a specialized concept and thereby be a
specialization of the superpattern. This implies that all
properties of the superpattern are inherited by the
subpattern. The ideal would be to ensure that a subpattern is
always a behavioral specialization of the superpattern, but
for good reasons it is not possible to ensure this by
programming language mechanisms alone. The language
rules were, however, designed to support behavioral
specialization as much as possible.

The notions of type and class are closely associated.
Programming language people with focus on the technical
aspects of a language often use the term ‘type’, and the
purpose of types is to improve the readability of a program,
to make (static) type checking possible and to be able to
generate efficient code. A type may, however, also
represent a concept, and for BETA this was considered the
main purpose of a type. Many researchers (like Pierre
America [8] and William Cook [27]) think that classes and
types should be distinguished – classes should only be used
to construct objects and types should be used to define the
interfaces of objects. We have always found that it was an
unnecessary complication to distinguish between class and
type.

There was also the issue of name or structural equivalence
of types/classes. From a modeling point of view it is rarely
questioned that name equivalence is the right choice.
People in favor of structural equivalence seem to have a
type-checking background. The names and types of
attributes of different classes may coincidentally be the
same, but the intention of the two classes might be quite
different. Boris Magnusson [121] has given as example
class Cowboy and class Figure that both may have a draw
method. The meaning of draw for Cowboy is quite different
from the meaning of draw for Figure. The name
equivalence view is also consistent with the general view of
a concept being defined by its name, intension (attributes)
and extension (its instances).

Another issue that is constantly being discussed is whether
or not a language should be statically or dynamically typed.
From a modeling point of view there was never any doubt
that BETA should be statically typed since the type (class)
annotation of variables is an essential part of the description

of a model. BETA is, however, not completely statically
typed – cf. Section 5.4.4 on co- and contravariance.

5.2 Singular objects
BETA supports singular objects directly and thereby avoids
superfluous classes. The following declaration is an
example of a singular object:

myKitchen: @ Room(# ... #)

The name of the object is myKitchen, and it has Room as a
superpattern. The symbol @ specifies that an object is
declared.8 The object is singular since the object-descriptor
Room(# … #) is given directly instead of a pattern like
Kitchen.

Technically it is convenient to be able to describe an object
without having to first declare a class and then instantiate
an object – it is simply more compact.

With respect to modeling the rationale was as follows:

� When describing (modeling) real-life systems there are
many examples of one-of-a-kind phenomena. The
description of an apartment may contain various kinds of
rooms, and since there are many instances of rooms it is
quite natural to represent rooms as patterns and
subpatterns (or classes and subclasses). An apartment
usually also has a kitchen, and since most apartments
have only one kitchen, the kitchen may be most naturally
described as a singular object. It should be mentioned
that any description (program) is made from a given
perspective for a given purpose. In a description of one
apartment it may be natural to describe the kitchen as a
singular object, but in a more general description that
involves apartments that may have more than one kitchen
it may be more natural to include a kitchen pattern (or
class).
� Development of system descriptions and programs is

often evolutionary in the sense that the description
evolves along with our understanding of the problem
domain. During development it may be convenient to
describe phenomena as singular objects; later in the
process when more understanding is obtained the
description is often refactored into patterns and objects.
Technically it is easy to change the description of a
singular object to a pattern and an instance – in the same
way as a description of a singular phenomenon is easily
generalized to be a description of a concept. For an
elaboration of this see Chapter 18 in the BETA book
[119].

Exploratory programming emphasizes the view of using
objects in the exploratory phase, and it is the whole basis
for prototype-based object-oriented programming as e.g. in

8 This is in contrast to ^, which specifies that a reference to an

object is declared.

Self. However, as discussed by Madsen [113], prototype-
based languages lack the possibility of restructuring objects
into classes and objects when more knowledge of the
domain has been obtained.

5.3 Block structure
Algol allowed nesting of blocks and procedures. SIMULA
in addition allowed general nesting of classes, although
there were some restrictions on the use of nested classes.
For BETA it was quite natural that patterns and singular
objects could be arbitrarily nested. Nesting of patterns
comes almost by itself when there is no distinction between
class and procedure. A pattern corresponding to a class
with methods is defined as a class pattern containing
procedure patterns, and the procedure patterns are nested
inside the class pattern. The pattern Set in Figure 7 is an
example – the patterns display and insert are nested
inside the pattern Set. It is thus quite natural that patterns
may be nested to an arbitrary level – just as procedures may
be nested in Algol, Pascal and SIMULA, and classes may
be nested in SIMULA. With nesting of patterns, nesting of
singular objects comes naturally. A singular object may
contain inner patterns, just as a pattern may contain inner
singular objects.

A major distinction between Smalltalk and the
SIMULA/BETA style of object-oriented programming is
the lack of block-structure in Smalltalk. Since the mid-
eighties, we have been trying to convince the object-
oriented community of the advantages of block-structure,
but with little success. In 1986 a paper with a number of
examples of using block structure was presented at the
Hawthorne Workshop (see Section 3.3) and also submitted
to the first OOPSLA conference, but not accepted. It was
later included in the book published as the result of the
Hawthorne Workshop [111]. C++ (and later C#) does allow
textual nesting of classes, but only to limit the scope of a
given class. In C++ and C# a nested class cannot refer to
variables and methods in the enclosing object. Block
structure was added to Java in one of the first revisions, but
there are a number of restrictions on the use of nested
classes, which means that some of the generality is lost. As
an example, it is possible to have classes nested within
methods (local nested classes), but instances of these
classes may not access nonfinal variables local to the
method.

In Algol and SIMULA, the rationale for block structure
was purely technical in the sense that it was very
convenient to be able to nest procedures, classes and
blocks. Block structure could be used to restrict the scope
and lifetime of a given data item. For some time it was not
at all obvious that block structure could be justified from a
modeling point of view.

The first step towards a modeling justification for block
structure was taken by Liskov and Zilles [109]. Here a

problem with defining classes representing grammars was
presented. One of the elements of a grammar is its symbols.
It is straightforward to define a class Grammar and a class
Symbol. The problem pointed out by Liskov and Zilles was
that the definition of class Symbol in their example was
dependent on a given Grammar, i.e. symbols from an Algol
grammar had different properties from symbols from a
COBOL grammar. With a flat class structure it was
complicated to define a class Symbol that was dependent
on the actual grammar. With block structure it was
straightforward to nest the Symbol class within the
Grammar class.

Another example that helped clarify the modeling
properties of block structure was the so-called prototype
abstraction relation problem as formulated by Brian Smith
[146]. Consider a model of a flight reservation system:

� Each entry in a flight schedule like SK471 describes a
given flight by SAS from Copenhagen to Chicago
leaving every day at 9:40 am with a scheduled flight time
of 8 hours.
� A flight entry like SK471 might naturally be an instance

of a class FlightEntry.
� Corresponding to a given flight entry there will be a

number of actual flights taking place between
Copenhagen and Chicago. One example is the flight on
December 12, 2005 with an actual departure time of 9:45
and an actual flight time of 8 hours and 15 minutes.
These actual flights might be modeled as instances of a
class SK471.
� The dilemma is then that SK471 may be represented as

an instance of class FlightEntry or as a class SK471.
� With nested classes it is straightforward to define a class
FlightEntry with an inner class ActualFlight.
SK471 may then be represented as an instance of
FlightEntry. The SK471 object will then contain a
class ActualFlight that represents actual instances of
flight SK471.

The grammar example and the prototype abstraction
relation problem are discussed in Madsen’s paper on block
structure [111] and in the BETA book [119].

Eventually block structure ended up being conceived as a
means for describing concepts and objects that depend on
and are restricted to the lifetime of an enclosing object. In
the BETA book [119], the term localization is used for this
conceptual means. The modeling view is in fact consistent
with the more technical view of block structure as a
construct for restricting the lifetime of a given data item.

5.4 Virtual patterns
One of the implications of having just one abstraction
mechanism was that we would need a virtual pattern
mechanism in order to support virtual procedures. Since a

pattern may be used as e.g. a class, we needed to assure that
it was meaningful to use a virtual pattern as a class. Algol,
SIMULA and other languages had support for higher-order
procedures and functions and proposals for higher-order
types and classes had started to appear. Quite early in the
BETA project it was noticed that there was a similarity
between a procedure as a parameter and a virtual
procedure. It was thus obvious to consider a unification of
the two concepts. In the following we discuss virtual
patterns used as virtual procedures and as virtual classes.
Then we discuss parameterized classes and higher-order
procedures and functions.

5.4.1 Virtual procedures
Virtual patterns may be used as virtual procedures, as
illustrated by the pattern display in Figure 7. The main
difference from virtual procedures in SIMULA and other
languages is that in BETA a virtual procedure is not
redefined in a subclass, but extended. The reason for this
was a consequence of generalizing virtual procedure to
cover virtual class, as described in the next section.
Consider the example:

Person:
 (# name: @text;
 display:<
 (# do name[]->out.puttext; inner #)
 #)
Employee: Person
 (# salary: @integer;
 display::<(# do salary->out.putint #)
 #)

The display procedure in Employee is combined using
inner with the one in Person yielding the following pattern

display:
 (# do name[] -> out.puttext;
 salary -> out.putint
 #)

For further details, see the BETA book [119]; we return to
this discussion in the sections on virtual class and
specialization of actions.

Wegner and Zdonik [160] characterized the different
notions of class/subclass relationships as name-, signature-,
or behavior-compatible. SIMULA has signature
equivalence since the signature of the method in the super-
and subclass must be the same. This is not the case for
Smalltalk since there are no types associated with the
declaration of arguments. I.e. a method being redefined
must have the same name and number of arguments as the
one from the superclass, but the types may vary. For BETA
it was obvious that at least the SIMULA rule should apply.
The modeling emphasis of BETA implied that from a
semantic point of view a subclass should be a specialization
of the superclass – i.e. behaviorally compatible. This means
that code executed by a redefined method should not break
invariants established by the method in the superclass.

Behavioral equivalence cannot be guaranteed without a
formal proof and therefore cannot be expressed as a
language mechanism. For BETA we used the term
structural compatibility as a stronger form than signature
compatibility. In BETA it is not possible to eliminate code
from the superclass. It is slightly closer to behavioral
equivalence since it is guaranteed that a given sequence of
code is always executed – but of course the effect of this
can be undone in the subclass.

5.4.2 Virtual classes
As mentioned above, it was necessary to consider the
implications of using a virtual pattern as a class. At a first
glance, it was not clear that this would work, as illustrated
by the following example:

Set:
 (# ElmType:< (# key: @integer #);
 newElement:
 (# S: ^ElmType;
 do &ElmType [] -> S[];
 newKey -> S.key;
 #)
 #);

PersonSet:
 Set(# ElmType::< (# name: @Text #)#)

PS: @PersonSet;

The pattern Set has a virtual pattern attribute ElmType,
which is analogous to the virtual pattern attribute display
of Person above. In Person, the pattern display is used
as a procedure, whereas ElmType in Set is used as a class.
In newElement, an instance of ElmType is created using
&ElmType[]. This instance is assigned to the reference S
and the attribute key of S is assigned to in newKey ->
S.key.

In SIMULA a virtual procedure may be redefined in a
subclass. If redefinition is also the semantics for a pattern
used as a class then the ElmType in instances of
PersonSet will be ElmType as defined in PersonSet.
This implies that an execution of &ElmType[] in
PS.newElement will create an instance of ElmType
defined as (# name: @Text #), and with no key
attribute. A subsequent execution of newKey -> S.key will
then break the type checking. This was considered
incompatible with the type rules of SIMULA where at
compile time it is possible to check that a remote access
like newKey -> S.key is always safe.

We quickly realized that if PersonSet.ElmType was a
subclass of Set.ElmType, then the type checking would
not break, i.e. the declaration of PersonSet should be
interpreted as:

PersonSet: Set
 (# ElmType::<
 Set.ElmType(# name: @Text #)
 #)

That is, ElmType in Set is implicitly the superpattern of
ElmType in PersonSet. We introduced the term further
binding for this to distinguish the extension of a virtual
from the traditional redefinition semantics of a virtual.

With redefinition of virtual patterns being replaced by the
notion of extension, it was necessary to consider the
implications of this for virtual patterns used as procedures.
It did not take long to decide that extension was also useful
for virtual patterns used as procedures. A very common
style in object-oriented programming is that most methods
being redefined start by executing the corresponding
method in the superclass using super. With the extension
semantics, one is always guaranteed that this is done.
Furthermore, as discussed below in the section on
specialization of actions, it is possible to execute code
before and after code in the subclass.

As mentioned in Section 5.4.1, we assumed that signature
compatibility from SIMULA should be carried over to
BETA. The extension semantics includes this and in
addition gives the stronger form of structural compatibility.
Again, from a modeling point of view it was pretty obvious
(to us) that this was the right choice.

The disadvantage of extension is less flexibility. With
redefinition you may completely redefine the behavior of a
class. One of the main differences between the U.S. school
and Scandinavian school of object-orientation was that the
U.S. school considered inheritance as a mechanism for
incremental modification or reuse (sometimes called code
sharing) [160]. It was considered important to construct a
new class (a subclass) by inheriting as much as possible
from one or more superclasses and just redefine properties
that differ from those of the superclasses. Belonging to the
Scandinavian school, we found it more important to support
behavioral compatibility between subclasses than pure
reuse.

The only situation we were not satisfied with was the case
where a virtual procedure was defined as a default behavior
and then later replaced by another procedure. This was
quite common in SIMULA. We did consider introducing
default bindings of virtuals, but if a default binding was
specified, then it should not be possible to use information
about the default binding. That is, if a virtual V is declared
as V:< A and AA (a subpattern of A) is specified as the
default binding, then V is only known to be an A. New
attributes declared in AA cannot be accessed in instances of
V. We did never implement this, but this form of default
bindings was later included in SDL 92 (see Section 7.3).

5.4.3 Parameterized classes
It was a goal that virtual patterns should subsume higher-
order parameter mechanisms like name and procedure
parameters and traditional virtual procedures. In addition it
was natural to consider using virtual patterns for defining

parameterized classes. The use of (locally defined) virtual
patterns as described above was a step in the right
direction: the pattern PersonSet may be used to represent
sets of persons by their name, and other attributes like age
and address may also be added to ElmType. We would,
however, like to be able to insert objects of a pattern
Person into a PersonSet. In order to do this we may
define a parameterized class Set in the following way:

Set:
 (# ElmType:< (# #);
 insert:<
 (# x: ^object; e: ^ElmType
 enter x[]
 do &ElmType[] -> e[];
 inner;
 e[] -> add
 #)
 #)

The virtual pattern ElmType constitutes the type parameter
of Set. The pattern add is assumed to store e[] in the
representation of Set. A subclass of Set that may contain
Person objects may be defined in the following way:

PersonSet: Set
 (# ElmType::< (# P: ^Person #) #);
 insert::<(# do x[] -> e.P[] #)
 #)

The virtual pattern ElmType is extended to include a
reference to a Person. The parameter e[] of insert is
stored in e.P[]. This would work, but it is an indirect way
to specify that PersonSet is a set of Person objects.
Instead one would really like to write:

Set:
 (# ElmType:< object;
 insert:<
 (# x: ^ElmType
 enter x[]
 do (* add X[] to the rep. of Set *)
 #)
 #)

PersonSet: Set (# ElmType::< Person #)

Here ElmType is declared as a virtual pattern of type
object. In PersonSet, ElmType is extended to Person,
and in this way, the declaration of PersonSet now clearly
states that it is a set of Person objects. It turned out that it
was quite straightforward to allow this form of semantics
where a virtual in general can be qualified by and bound to
a nonlocal pattern – just as a combination of local and
nonlocal patterns would work. The general rule is that if a
virtual pattern is declared as T:< D then T may be
extended by T::< D1 if D1 is a subpattern of D. T may be
further extended using T::< D2 if D2 is a subpattern of D1.
The PersonSet above may be extended to a set holding
Students, as in

StudentSet:
 PersonSet(# ElmType::< Student #)

A final binding of the form ElmType:: Student may be
used to specify that ElmType can no longer be extended.

Both forms (V:< (# … #) and V:< A) of using virtual
patterns have turned out to useful in practice – examples
may be found in the OOPLSA’89 paper [117], and the
BETA book [119].

5.4.4 Co- and contravariance
For parameterized classes, static typing, subclass
substitutability and co- and contravariance have been
central issues. Most researchers seem to give static typing
the highest priority, leading to – in our mind – limited and
complicated proposals for supporting parameterized
classes. In our 1990 OOPSLA paper [115] the handling of
these issues in BETA was discussed. Subclass
substitutability is of course a must, and covariance was
considered more useful and natural than say contravariance.
This implies that a limited form of run-time type checking
is necessary when using parameterized classes – which in
BETA are supported by patterns with virtual class patterns.

SIMULA, BETA, and other object-oriented languages do
contain run-time type checking for so-called reverse
assignment where a less qualified variable is assigned to a
more qualified variable – like

aVehicle -> aBus

The run-time type checking necessary to handle covariance
is similar to that needed for checking reverse assignment.

With emphasis on modeling it was quite obvious that
covariance was preferred to contravariance, and it was
needed for describing real-life systems. The supporters of
contravariance seem mainly to be people with a static type-
checking approach to programming.

It is often claimed in the literature (see e.g. [20]) that BETA
is not type safe. This is because BETA requires some form
of run-time type checking due to covariance. The compiler,
however, gives a warning at all places where a run-time
type check is inserted. It has often been discussed whether
we should insist on an explicit cast in the program at all
places where this run-time check is inserted. In SIMULA a
reverse assignment may be written as

aBus :- aVehicle

In this case it is not clear from the program that an implicit
cast is inserted by the compiler. SIMULA, however, also
has explicit syntax for specifying that a cast is needed for a
reverse assignment. It is possible to write

aBus:- aVehicle qua Bus

Here it is explicit that a cast is inserted. Introducing such an
explicit syntax in BETA for reverse assignment and
covariant parameters has often been discussed. As an
afterthought, some of us would have preferred doing this
from the beginning, since this would have ‘kept the static

typeziers away’☺. However, whenever we suggested this to
our users, they strongly objected to having to write an
explicit cast. With respect to type safety it does not make
any difference since a type error may still occur at run-time.
We do, however, think that from a language design point of
view it would be the right choice to insist on an explicit
syntax, since it makes it clear that a run-time check is
carried out.

With respect to static typing, it is pointed out in our
OOPSLA’90 paper [115] that although the general use of
virtual class patterns will involve run-time type checking, it
is possible to avoid this by using final bindings and/or part
objects (cf. Section 5.5). This has turned out to be very
common in practice.

5.4.5 Higher-order procedures and functions
In many languages a procedure9 may be parameterized by
procedures. A procedure specified as a parameter is called a
formal procedure. The procedure passed as a parameter is
called the actual procedure. It was an issue from the
beginning of the project that formal procedures should be
covered by the pattern concept – and it was quickly realized
that this could be done by unifying the notions of virtual
procedure and formal procedure.

Consider a procedure fsum parameterized by a formal
procedure f, as in:

real proc fsum(real proc f){ ... }

An invocation of fsum may pass an actual procedure sine
as in:

fsum(sine)

In BETA a formal procedure may be specified using a
virtual procedure pattern as in:

fsum:(# f:< realFunction; ... #)

An invocation then corresponds to specifying a singular
subpattern of fsum and a binding of f to the sine pattern:

fsum(# f:: sine #)

SIMULA inherited call-by-name parameters from Algol.
Value parameters are well suited to pass values around –
this is the case for simple values as well as references. Call-
by-name-parameters, like formal procedures, involve
execution of code. For a call-by-name parameter the actual
parameter is evaluated every time the formal parameter is
executed in the procedure body – this implies that the
context of the procedure invocation must be passed
(implicitly) as an argument. It was a goal to eliminate the
need for call-by-name parameters, and the effect of call by
name can in fact be obtained using virtual patterns.

9 In this section, procedure may be read as procedure and/or

function.

5.4.6 Pattern variables
Virtual patterns partially support higher-order procedures in
the sense that a virtual pattern may be considered a
parameter of a given pattern. Originally BETA had no
means for a pattern to return a pattern as a value. In
general, virtual patterns do not make patterns first class
values in the sense that they may be passed as arguments to
procedures (through the enter part), returned as values
(through the exit part) and be assigned to variables. For
some years we thought that using virtual patterns as
arguments fulfilled most needs to support higher-order
procedures, although it was not as elegant as in functional
languages.

Indirectly, the work of Ole Agesen, Svend Frølund and
Michael H. Olsen on persistent objects for BETA [4, 5]
made it evident that a more dynamic pattern concept was
needed. When a persistent object is loaded, its class
(pattern) may not be part of the program loading the object.
There was thus a need to be able to load its associated
pattern and assign it to some form of pattern variable.
Agesen, Frølund, and Olsen suggested the notion of a
pattern variable, which forms the basis for supporting
patterns as first-class values.

Consider a pattern Person and subpatterns Student and
Employee. A pattern variable P qualified by Person may
be declared in the following way:

P: ## Person

P denotes a pattern that is either Person or some
subpattern of Person. This is quite similar to a reference
R: ^Person where R may refer to an instance of Person
or subpattern of Person. The difference is that R denotes
an object, whereas P denotes a pattern. P may be assigned
a value in the following way:

Student## -> P##

P now denotes the pattern Student and an instantiation of
P will generate an instance of Student. P may be assigned
a new value as in:

Employee## -> P##

P now denotes the pattern Employee and an instantiation
of P will result in an Employee object.

Pattern variables give full support to higher-order
procedures in the sense that patterns may be passed as
arguments to procedures, returned as values and assigned to
variables.

5.5 Part objects
From the very start we distinguished between variables as
references to autonomous objects separate from the
referencing objects, and variables as part objects being
constituents of a larger object. We had many examples
where this distinction was obvious from a modeling point

of view: car objects with part objects body and wheels and
references to a separate owner object, patient objects with
organ part objects and a reference to a physician object,
book objects with part objects (of type Text) representing
the title and a reference to an author object, etc. In most of
these examples there is always a question about
perspective: for the owner, the car is not a car without four
wheel part objects, while a mechanic has no problem with
cars in which the wheels are separate (i.e. not part) objects.

We were not alone in thinking that from a modeling point
of view it is obvious that (physical) objects consist of parts.
At the ECOOP’87 conference Blake and Cook presented a
paper on introducing part objects on top of Smalltalk [12].
In [163] Kasper Østerbye described the proper (and
combined) use of ‘parts, wholes and subclasses’. The
example we used in our paper on part objects [118] was
inspired by an example from Booch [14]: the problem
presented there was to represent (in Smalltalk) buildings
(for the purpose of heating control) as objects consisting of
objects representing the parts of the building. While the
Booch method and notation had no problem in modeling
this, it was not possible in Smalltalk, where only references
were supported.

In our paper we used an apartment with kitchen, bath, etc.
as example:

Apartment:
 (# theKitchen: @Kitchen;
 theBathroom: @Bathroom;
 theBedroom: @Bedroom;
 theFamilyRoom: @FamilyRoom;
 theOwner: ^Person;
 theAddress: @Address;
 ...
 #)

Note the difference between the rooms of the apartment
modeled by part objects (using @) and the owner modeled
by a reference variable (theOwner) to a separate object
(using ^).

Although BETA was designed from a modeling point of
view, it was still a programming language, so we did not
distinguish between parts objects modeling real parts (as
the rooms above) and part objects implementing a property
(theAddress property above) – in BETA terms they are
all part objects.

Another problem with Smalltalk was that it allowed
external access only to methods, while all instance
variables were regarded as private. The example would in
Smalltalk have to have access methods for all rooms, and in
order to get to the properties of these rooms, one would
have to do this via these access methods. In BETA we
allowed access to variables (both part objects and
references) directly, so with the example above it is
possible to e.g. invoke the paint method in theKitchen
as follows:

...; myApartment.theKitchen.paint; ...

Comparing BETA with Java, a reference to an object (like
theOwner variable above) corresponds to a Java reference
variable typed with Person, while a part object is a final
reference variable.

A less important rationale for part objects was that part
objects reflected the way ordinary variables of predefined
value types like Integer, Real, Boolean, etc. were
implemented, and we regarded e.g. Integer, Real and
Boolean as (predefined) patterns.

5.5.1 Inheritance from part objects
In the part object paper we wrote:

‘In addition to the obvious purpose of modeling that
wholes consist of parts, part objects may also be used to
model that the containing object is characterized by
various aspects,10 where these aspects are defined by
other classes.’

This reflects discussions we had, but they never led to
additional language concepts. It does, however, illustrate
the power of combining part objects, block structure and
virtual patterns.

Multiple inheritance by part objects. We explored the
possibility of using part objects to represent various aspects
of a concept. This was partially done in order to provide
alternatives to multiple inheritance (see also Section
5.8.12). In the following we give an example of using part
objects to represent aspects.

Persons and Companies are examples of objects that may
be characterized by aspects such as being addressable and
taxable. The aspect of being addressable may be
represented by the pattern:

Addressable:
 (# street: @StreetName;
 ...
 printLabel:< (# ... #);
 sendMail:< (# ... #)
 #)

Similarly, a taxable aspect may be represented by:
Taxable:
 (# income: @integer;
 ...
 makeTaxReturn: < (# ... #);
 pay:< (# do ... #)
 #)

A pattern Person characterized by being addressable and
taxable may then be described as follows:

10 Here aspect is used as a general term and does not refer to

aspect-oriented programming.

Person:
 (# name: @PersonName;
 myAddr: @Addressable
 (# printLabel::<
 (# do ...;name.print;... #);
 sendMail::< (# ... #)
 #);
 myTaxable: Taxable
 (# makeTaxReturn::<(# ... #);
 pay::< (# ... #)
 #)
 #)

As the descriptor of the myAddr part object has
Addressable as a superpattern, the printLabel and
sendMail virtuals can be extended11. Since these
extensions are nested within pattern Person, an attribute
like Name is visible. This implies that it is possible to
extend printLabel and sendMail to be specific for
Person.

A pattern Company may be defined in a similar way:
Company:
 (# name: @CompanyName;
 logo: @Picture;
 myAddr:@Addressable
 (# printLabel::<
 (# ...;
 name.print;
 logo.print; ...
 #);
 sendMail::< (# ... #)
 #);
 myTaxable: Taxable(# ... #)
 #)

Again, notice that a virtual binding like printLabel may
refer to attributes of the enclosing Company object.

In languages with multiple inheritance, Person may be
defined as inheriting from Addressable and Taxable.
From a modeling point of view we found it doubtful to
define say Person as a subclass of Addressable and
Taxable. From a technical point of view the binding of
virtuals of Addressable and Taxable in Person will all
appear at the same level when using multiple inheritance.
Using part objects these will be grouped logically. A
disadvantage is that these virtuals have to be denoted via
the part object, as in

aPerson.myAddr.printLabel
aCompany.myTaxable.pay

The advantage is that the possibility of name conflicts does
not arise.

5.5.2 References to part objects
Subtype substitutability is a key property of object-oriented
languages: if e.g. Bus is a subclass of Vehicle then a
reference of type Vehicle may refer to instances of class

11 It is not important that extension semantics be used – the same

technique may be used with redefinition of virtuals.

Bus. For an aspect like Addressable there is not a
class/subclass relationship with e.g. class Person. If
multiple inheritance is used to make Person inherit from
Addressable then a reference of type Addressable may
refer to instances of class Person.

In BETA it is possible to obtain a reference to a part object.
This means that a reference of type Addressable may
refer to a part object of type Addressable embedded
within a Person object. If anAddr1 and anAddr2 are of
type Addressable then the statements below will imply
that anAddr1 and anAddr2 will refer the Addressable
part-object of aPerson and aCompany respectively:

aPerson.myAddr[] -> anAddr1[];
aCompany.myAddr[] -> anAddr2[];

The effect of this is that anAddr1 and anAddr2 refer
indirectly to a Person and a Company object, respectively.
This is analogous to a reference of type Vehicle may refer
to an instance of class Bus. It is thus possible to have code
that handles Addressable objects independently of
whether the Addressable objects inherits from
Addressable or have Addressable as a part object:
Suppose that we have defined Company as a subpattern of
Addressable and Person containing an Addressable
part object as shown above. We may then assign to
anAddr1 and anAddr2 as follows (assuming that
andAddr1 and anAddr2 are of type Addressable):

aCompany[] -> anAddr1
aPerson.myAddr[] -> anAddr2[]

Figure 9a shows how anAddr1 may refer to a Company-
object as a subpattern of Addressable. Figure 9b shows
how anAddr2 may refer to an Addressable part object of
a Person object.

(a) (b)
Figure 9 Inheritance from Addressable as super and
as part object
A procedure handling Addressable objects – like calling
PrintLabel – may then be called with anAddr1 or
anAddr2 as its argument.

In many object-oriented languages it is also possible to
make a reverse assignment (sometimes called casting) like

aVehicle[] -> aBus[]

Since it cannot be statically determined if aVehicle
actually refers an instance of class Bus, a run-time type
check is needed.

In order to be able to do a similar thing for part objects, we
proposed in our part-object paper that a part object be given
an extra location field containing a reference to the
containing object. That is the myAddr part of a Person
object is referencing the containing Person object. It is
then possible to make a reverse assignment of the form

anAddr1.location[] -> aPerson[]

As for the normal case of reverse assignment, a run-time
check must be inserted in order to check that andAddr1 is
actually a part of a Person. After publication of the part
object paper, we realized that it would be possible to use
the syntax

anAddr1[] -> aPerson[]

and extend the runtime check to check whether the object
referred by anAddr1 is a subclass of Person or a part
object of Person.

In Figure 9b, the location field of the Addressable part
object is shown. The concept of location was
experimentally implemented, but did not become part of the
released implementations.

5.6 Specialization of actions
From the very beginning we had the approach that
specialization should apply to all aspects of a pattern, i.e. it
should also be possible to specialize the behavior part of a
pattern, not only types of attributes and local patterns. The
inspiration was the inner mechanism of SIMULA. A class
in SIMULA has an action part, and the inner mechanism
allows the combination of the action parts of superclass and
subclass. However, we had to generalize the SIMULA
inner. In SIMULA, inner was simply a means for
syntactically splitting the class body in two. The body of a
subclass was defined to be a (textual) concatenation of the
pre-inner body part of the superclass, the body part of the
subclass, and the post-inner body part of the superclass. In
BETA we rather defined inner as a special imperative that –
when executed by the superpattern code – implied an
execution of the subpattern do-part. This implied that an
inner may appear at any place where a statement may
appear, be executed several times (e.g. in a loop) and that
an action part may contain more than one inner.

5.6.1 Inner also for method patterns
The fact that inner was defined for patterns in general and
not only for classes as in SIMULA implied that it was
useful also for patterns that defined methods. It was thereby

possible to define the general behavior of e.g. the method
pattern Open of class File, with bookkeeping behavior
before and after inner, use this general Open as a
superpattern for OpenRead and OpenWrite, adding
behavior needed for these, and finally have user-defined
method patterns specializing OpenRead and OpenWrite
for specific types of files.

Independently of this, Jean Vaucher had developed the
same idea but applied to procedures in SIMULA [157].

5.6.2 Control structures and iterators
As mentioned in Section 5.1.1, it was a goal for BETA that
it should be possible to define control structures by means
of patterns. A simple example of the use of inner for
defining control structures is the following pattern:

cycle: (# do inner; restart cycle #)

Given two file objects F and G, the following code simply
copies F to G:

L: cycle(#
 do (if F.eos then (* end-of-stream *)
 leave L
 if);
 F.get -> G.put
 #);

This is done by giving the copying code as the main do-part
of an object being a specialization of cycle. The copying
code will be executed for each execution of inner in the
superpattern cycle.

The perhaps most striking example of the use of inner for
defining control structure abstractions is the ability to
define iterators on collection objects. If mySet is an
instance of a pattern Set then the elements of the mySet
may be iterated over by

mySet.scan(# do current.display #)

The variable current is defined in scan and refers to the
current element of the set. The superpattern mySet.scan is
an example of a remote pattern used as a superpattern. This
is an example of another generalization of SIMULA.

Someone12 has suggested that a data abstraction should
define its associated control structures. By using patterns
and inner it is possible in BETA to define control structures
associated with any given data structure. Other languages
had this kind of mechanism as built-in mechanisms for
built-in data structures, while we could define this for any
kind of user-defined data structure. At this time in the
development there were languages with all kinds of fancy
control structures (variations over while and for
statements). We refrained from doing this, as it was

12 We think this was suggested by Hoare, but have been unable to

find a reference.

possible to define these by a combination of inner and
virtual patterns.

The basic built-in control structures are leave and
restart, which are restricted forms of the goto statement,
and the conditional if statement. We were much influenced
by the strong focus on structured programming in the
seventies. Dijkstra published his influential paper on ‘goto
considered harmful’ [36]. Leave and restart have the
property that they can only jump to labels that are visible in
the enclosing scope, i.e. continue execution either at the
end of the current block or at the beginning at an enclosing
“block”. In addition the corresponding control graphs have
the property of being reducible. In another influential paper
on guarded commands [37], Dijkstra suggested
nondeterministic if and while statements. In addition, there
was no else clause since Dijkstra argued that the
programmer should explicitly list all possible cases. We
found his argument quite convincing and as a consequence
the BETA if-statement was originally nondeterministic and
had no else clause. However, any reasonable
implementation of an if statement would test the various
cases in some fixed order and our experience is that the
programmer quickly relies on this – this means that the
program may be executed differently if a different compiler
is used. It is of course important to distinguish the language
definition from a concrete implementation, but in this case
it just seems to add another source of errors. In addition it is
quite inconvenient in practice not to have an else clause.
We thus changed the if statement to be deterministic and
added an else clause.

In principle we could have relied on leave/restart
statements and if statements, but also a for statement was
added. It is, however, quite simple to define a for
statement as an abstraction using the existing basic control
structures. However, the syntax for using control
abstractions was not elegant – in fact Jørgen Lindskov
Knudsen once said that it was clumsy. Today we may
agree, and e.g. Smalltalk has a much more elegant syntax
with respect to these matters. In the beginning of the BETA
project we assumed that there would be (as an elegant and
natural way to overcome these kinds of inconveniences) a
distinction between basic BETA and standard BETA where
the latter was an extension of basic BETA with special
syntax for common abstractions. This distinction was
inspired by SIMULA, which has special syntax for some
abstractions defined in class Simulation.

Furthermore, we considered special syntax for while and
repeat as in Pascal, but this was never included. The for
statement may be seen as reminiscent of such special
syntax.

5.6.3 Modeling
The phenomena of a given application domain include
physical material (represented by objects), measurable

properties (represented by values of attributes) and
transformations (represented by actions) of properties of the
physical material – cf. Section 4.2. The traditional
class/subclass mechanisms were useful for representing
classification hierarchies on physical material. From a
modeling point of view it was just as necessary to represent
classification hierarchies of actions. This guided the design
of using the inner mechanism to combine action parts and
thereby be able to represent a classification hierarchy of
methods and/or concurrent processes. The paper
Classification of Actions or Inheritance Also for Methods
[101] is an account of this.

5.7 Dynamic structure
From the beginning it was quite clear that BETA should be
a concurrent object-oriented programming language. This
was motivated from a technical as well as a modeling point
of view. In the seventies there was lot of research activity
in concurrent programming. Most of the literature on
concurrency was quite technical and we spent a lot of time
analyzing the different forms of concurrency in computer
systems and languages. This led to the following
classification of concurrency:

� Hidden concurrency is where concurrent execution of
the code is an optimization made by a compiler – e.g.
concurrent execution of independent parts of an
expression.
� Exploited concurrency is where concurrency is used

explicitly by a programmer to implement an efficient
algorithm – concurrent sorting algorithms are examples
of this.
� Inherent concurrency is where the program executes in

an environment with concurrent nodes – typically a
distributed system with several nodes.

We felt that it was necessary to clarify such conceptual
issues in order to design programming language
mechanisms. With the emphasis on modeling it was quite
clear that inherent concurrency should be the primary target
of concurrency in BETA.

The quasi-parallel system concept of SIMULA was the
starting point for designing the dynamic structure of BETA
systems. As mentioned in Section 3.1.3, quasi-parallel
systems in SIMULA are based on coroutines, but the
SIMULA coroutine mechanism did not support full
concurrency and is furthermore quite complex.
Conceptually, the SIMULA coroutine mechanism appears
simple and elegant, but certain technical details are quite
complicated. The coroutine system described by Dahl and
Hoare in their famous book on structured programming
[29] is a simplified version of the SIMULA coroutine
system.

SIMULA did not have mechanisms for communication and
synchronization, but several research results within

concurrent programming languages were published in the
seventies. Concurrent Pascal [17] was a major milestone
with regard to programming languages for concurrent
programming. Concurrent Pascal was built upon the
SIMULA class concept, but the class concept was
specialized into three variants, class, process and monitor.
This was sort of the opposite of the BETA goal of
unification of concepts. In addition Concurrent Pascal did
not have subclasses and virtual procedures. The monitor
construct suggested by Brinch-Hansen and Hoare [57] has
proved its usability in practice, and was an obvious
candidate for inclusion in BETA. However, a number of
problems with the monitor concept were recognized and
several papers on alternative mechanisms were published
by Brinch-Hansen and others [18].

Another important research milestone was CSP [58] where
communication and synchronization was handled by input
and output commands. Nondeterministic guarded
commands were used for selecting input from other
processes. We were very much influenced by CSP and later
Ada [2] with respect to the design of communication and
synchronization in BETA. In Ada communication and
synchronization were based on the rendezvous mechanism,
which is similar to input/output commands except that
procedure calls are used instead of output commands.

5.7.1 The first version
From the beginning, a BETA system was considered a
collection of coroutines possibly executing in parallel. Each
coroutine is organized as a stack of objects corresponding
to the stack of activation records. A coroutine is thus a
simple form of thread. In the nonconcurrent situation, at
most one coroutine is executing at a given point in time.
Since activation records in BETA are subsumed by objects,
the activation records may be instances of patterns or
singular objects.

The SIMULA coroutine mechanism was quite well
understood and the main work of designing coroutines for
BETA was to simplify the SIMULA mechanism. SIMULA
has symmetric as well as asymmetric coroutines [30]. In
BETA there are only asymmetric coroutines – a symmetric
coroutine system can be defined as an abstraction. In BETA
it is furthermore possible to transfer parameters when a
coroutine is called.

Conceptually it was pretty straightforward to imagine
BETA coroutines executing concurrently. It was much
harder to design mechanisms for communication and
synchronization and this part went through several
iterations.

The first published approach to communication and
synchronization in BETA was based on the CSP/Ada
rendezvous mechanism, mainly in the Ada style since
procedure calls were used for communication. From a

modeling point of view this seemed a good choice since the
rendezvous mechanism allowed direct communication
between concurrent processes. With monitors all
communication was indirect – of course, this may also be
justified from a modeling point of view. However, since
monitors could be simulated using processes and
rendezvous we found that we had a solution that could
support both forms of communication between processes.

In CSP and Ada input and output commands are not
symmetric: input-commands (accept statements) may be
used only in a guarded command. The possibility of
allowing output commands as guards in CSP is mentioned
by Hoare [58]. For BETA we considered it essential to
allow a symmetric use of input and output commands in
guarded commands. We also found guarded commands
inexpedient for modeling a process engaged in
(nondeterministic) communication with two or more
processes. Below we give an example of this.

The following example is typical of the programming style
used with guarded commands:

� Consider a process Q engaged in communication with
two other processes P1 and P2.
� Q is engaged in the following sequential process with P1

Q1: cycle{P1.get(V1); S1; P1.put(e1); S2}

Q gets a value from P1, does some processing, sends a
value to P1 and does some further processing. Note that
rendezvous semantics is assumed for method
invocations. This means that Q1 may have to wait at e.g.
P1.get(V1) until P1 accepts the call.

� Q is also engaged in the following sequential process with
P2:
Q2:cycle{ P2.put(e2); S3; P2.get(V2); S4 }

� Q1 and Q2 may access variables in Q. A solution where
Q1 and Q2 are executed concurrently as in:
Q: { ... do (Q1 || Q2) }

where || means concurrency will therefore not work
unless access to variables in Q is synchronized. And this
is not what we want – in general we want to support
cooperative scheduling at the language level.

� The two sequential processes have to be interleaved in
some way to guarantee mutual access to variables in Q. It
is not acceptable to wait for P1 if P2 is ready to
communicate or vice versa. For instance, when waiting
for P1.get one will have to place a guard that in
addition accepts P2.put or P2.get. It is, however,
difficult to retain the sequentiality between P1.get and
P1.put and between P2.put and P2.get. Robin Milner

proposed the following solution using Boolean
variables13:

Q:
{... do
 if
 B1 and P1.get(V1) then S1;B1:= false
 not B1 and P1.put(e1) then S2;B1:= true
 B2 and P2.put(e2) then S3;B2:= false
 not B2 and P2.get(V2) then S4;B2:= true
 fi
}

From a programming as well as a modeling point of view,
we found this programming style problematic since the two
sequential processes Q1 and Q2 are implicit. We did think
that this was a step backward since Q1 and Q2 were much
better implemented as coroutines. One might consider
executing Q1 and Q2 in parallel but this would imply that
Q1 and Q2 must synchronize access to shared data. This
would add overhead and extra code to this example.

Eventually we arrived at the notion of alternation, which
allows an active object to execute two or more coroutines
while at most one at a time is actually executing. The above
example would then look like

Q:
{...
 Q1: alternatingTask
 {cycle{ P1.get(V1);S1;P1.put(e1);S2}
 Q2: alternatingTask
 {cycle{ P2.put(e2);S3;P2.get(V2);S4}
do (Q1 | Q2)
}

The statement (Q1 | Q2) implies that Q1 and Q2 are
executed in alternation. Execution of Q1 and Q2 may
interleave at the communication points. At a given point in
time Q1 may be waiting at say P1.put(e1) and Q2 at
P2.get(V2). If P1 is ready to communicate, then Q1 may
be resumed. If on the other hand P2 is ready before P1 then
Q2 may be resumed.

The statement (Q1 | Q2) is similar to (Q1 || Q2) – the
former means alternation (interleaved execution at well
defined points) and the latter means concurrent execution.
Note, that the example is not expressed in BETA, whose
syntax is slightly more complicated.

The version of BETA based on CSP/Ada-like rendezvous
and with support for alternation is described in our paper
entitled Multisequential Execution in the BETA
Programming Language [97] (also published in [145]).

5.7.2 The final version
We were happy with the generalized rendezvous
mechanism – it seemed simple and general, But when we

13 The syntax is CSP/Ada-like,

started using and implementing it, we discovered a number
of problems:

� Although the rendezvous mechanism can be used to
simulate monitors it turned out to be pretty awkward in
practice. As mentioned above the monitor is one of the
few concurrency abstractions that have proved to be
useful in practice.
� It turned out to be inherently complicated to implement

symmetric guarded commands – at least we were not able
to come up with a satisfactory solution. In [70] an
implementation was proposed, but it was quite
complicated.

In addition we realized that the technique for defining a
monitor abstraction as presented by Jean Vaucher [157]
could also be used to define a rendezvous abstraction,
alternation and several other types of concurrency
abstractions including semi-coroutines in the style of
SIMULA, and alternation. In late 1990 and early 1991, a
major revision of the mechanisms for communication and
synchronization was made. As of today, BETA has the
following mechanisms:

� The basic primitive for synchronization in BETA is the
semaphore.
� Higher-order concurrency abstractions such as monitor,

and Ada-like rendezvous, and a number of other
concurrency abstractions are defined by means of
patterns in the Mjølner BETA libraries. The generality of
the pattern concept, the inner mechanism and virtual
patterns are essential for doing this. Wolfgang Kreutzer
and Kasper Østerbye [80, 165] also defined their own
concurrency abstractions.
� In BETA it is possible to define cooperative as well as

preemptive (hierarchical) schedulers in the style of
SIMULA. Although there were other languages that
allowed implementation of schedulers, they were in our
opinion pretty ad hoc and not as elegant and general as in
SIMULA. At that time and even today, there does not
seem to be just one way of scheduling processes.

For details about coroutines, concurrency, synchronization,
and scheduling see the BETA book [119].

5.7.3 Modeling
From a modeling perspective there was obviously a need
for full concurrency. The real world consists of active
agents carrying out actions concurrently.

In DELTA it is possible to specify concurrent objects, but
since DELTA is for system description and not
programming, the DELTA concepts were not transferable
to a programming language. To understand concurrency
from a technical as well as a modeling point of view, we
engaged in a number of studies of models for concurrency
especially based on Petri nets. One result of this was the

language Epsilon [65], which was a subset of DELTA
formalized by a Petri net model.

For coroutines it was not obvious that they could be
justified from a modeling perspective. The notion of
alternation was derived in order to have a conceptual
understanding of coroutines from a modeling point of view.
An agent in a travel agency may be engaged in several
(alternating) activities like ‘tour planning’, ‘customer
service’ and ‘invoicing’. At a given point in time the agent
will be carrying out at most one of these activities.

As for coroutines, the notion of scheduling was not
immediately obvious from a modeling point of view. This,
however, led to the notion of an ensemble as described in
Section 5.8.7 below.

5.8 Other issues
Here we discuss some of the other language elements that
were considered for BETA. This includes language
constructs that were discussed but not included in BETA.

5.8.1 Parameters and return values
In block-structured languages like Algol, the parameters of
a procedure define an implicit block level:

foo(a,b,c: integer) { x,y,z: real do ... }

Here the parameters a,b,c corresponds to a block level
and the local variables x,y,z are at an inner block level.
For BETA the goal was that the implicit block level defined
by the parameters should be explicit. A procedure pattern
like foo should then be defined as follows:

foo:
 (# a,b,c: integer
 do (# x,y,z: integer do ... #)
 #)

The parameters are defined as data items at the outermost
level, and the local variables are defined in a singular object
in the do part.

With respect to return values, the initial design was to
follow the Algol style and define a return value for a
procedure – which in fact is still the style used in most
mainstream languages. In most languages a procedure may
also return values using call-by-reference and/or call-by-
name parameters. However, many researchers considered it
bad style to write a procedure that returns values through
both its parameters and its return value. This style was (and
still is), however, often used if a procedure needs to return
more than one value. For BETA (as mentioned elsewhere),
call-by-name was not an issue since it was subsumed by
virtual patterns. As mentioned below, we did find that call-
by-reference parameters would blur the distinction between
values and objects. There were language proposals
suggesting call-by-return as an alternative to call-by-
reference. The advantage of call-by-return was that the
actual parameter did not change during the execution of the

procedure, but was first changed when the procedure
terminated. We did find a need to be able to return more
than one value from a procedure and in some languages
(like Ada) a variable could be marked as in, out or inout
corresponding to call-by-value, -return or both. Finally,
there was also a discussion on whether or not arguments
should be passed by position or by the name of the
parameter. In the first version of BETA all data items at the
outermost level could be used as arguments and/or return
values, and the name of a data item was used to pass
arguments and return values. The pattern foo above might
then be invoked as follows:

foo(put a:=e1, b:=e2) (get v:=b, w:=c)

We later found this too verbose, and position-based
parameters were introduced in the form of enter/exit lists.
The pattern foo would then be declared as follows:

foo: (# a,b,c: integer
 enter (a,b) do (# ... #)
 exit (b,c)
 #)

and invoked as follows:
(e1,e2) -> foo -> (v,w)

In this example, enter corresponds to defining a,b as in
parameters and exit corresponds to defining b,c as out
parameters, i.e. b was in fact an inout parameter.

There were a number of intermediate steps before the
enter/exit parts were introduced in their present form. One
step was replacing the traditional syntax for calling a
procedure with the above (and current) postfix notation. In
a traditional syntax the above call would look like:

(v,w) := foo(e1,e2)

If e1 and e2 also were calls to functions, a traditional call
might look like:

(v,w):= foo(bar(f1,f2),fisk(g1,g2))

We did not find this to be the best syntax with respect to
readability – in addition, we would like to write code as
close as possible to the order of execution. This then led to
the postfix notation where the above call will be written as

((f1,f2)->bar,(g1,g2)->fisk)->foo->(v,w)

We found this more readable, but others may of course
disagree.

The enter/exit part may be used to define value types. In
this case, the exit part defines the value of the object and
the enter part defines assignment (or enforcement) of a new
value on the object. The following example shows the
definition of a complex number:

complex:
 (# x,y: @ real enter(x,y) exit(x,y)#)

Complex variables may be defined as follows:

C1,C2: @complex

They may be assigned and compared: In C1 -> C2, the
exit part of C1 is assigned to the enter part of C2. In C1
= C2 the exit part of C1 is compared to the exitpart of C2.

As part of defining a value type we would also like code to
be associated with the value and assignment. For this
reason, the enter/exit-part is actually a list of evaluations
that may contain code to be executed. For purely illustrative
purposes the following definition of complex keeps track of
the number of times of the value is read or assigned:

complex:
 (# x,y: @real; n,m: @integer
 enter (# enter(x,y) do n+1 -> n #)
 exit (# do m+1 -> m exit (m,y) #)
 #)

Complex may also have a do-part, which is executed
whenever enter or exit is executed. If C1 is a complex
object with a do-part then

� In C1 -> E, the do, and exit part of C1 is executed
� In E -> C1, the enter- and do part of C1 is executed
� In E -> C1 -> F, the enter, do and exit parts of C1

are executed.
The do part is thus executed whenever an object is
accessed, the enter part when it is assigned and the exit
part when the value is fetched.

One problem with the above definitions of complex is that
the representation of the value is exposed. It is possible to
assign simple values and decompose the exit part, as in

(3.14,1.11) -> C1 -> (q,w)

To prevent this, it was once part of the language that one
could restrict the type of values that could be assigned/read:

complex:
 (# x,y: @real
 from complex enter(x,y)
 to complex exit(x,y)
 #)

In general any pattern could be written after from/to, but
there was never any use of this generality and since we
never became really happy with using enter/exit to define
value types, the from/to-parts were abandoned.

The SIMULA assignment operators := and :- were taken
over for BETA. In the beginning => was used for
assignment of values and @> for assignment of references.
However, since enter/exit-lists and lists in general may
contain a mixture of values and references, we either had to
introduce a third assignment operator to be used for such a
mixture, or use one operator. Eventually -> was selected.
The distinction between value and object is thus no longer
explicit in the assignment operator. Instead, this is
expressed by means of []. An expression X[] denotes the

reference to the object referred by X. An expression X
denotes the value of the object.

5.8.2 Value concept
The distinction between object and value has been
important for the design of BETA. This is yet another
example of the influence of SIMULA as exemplified
through the operators := and :-. In the previous section,
we have described how enter/exit may be used to define
value types. In this section we discuss some of the design
considerations regarding the value concept.

As mentioned, the SIMULA class construct was a major
inspiration for the notion of abstract data types developed
in the seventies. For Nygaard a data type was an abstraction
for defining values, and he found that the use of the class
concept for this purpose might create conceptual confusion.
In SIMULA, Dahl and Nygaard tried to introduce a concept
of value types at a very late stage, but some of the main
partners developing the SIMULA compilers refused to
accept a major change at that late point of the project. The
notion of value type was further discussed in the DELTA
project and, as mentioned in Section 2.4, was one of the
subprojects defined in JLP. Naturally the concept of value
types was carried over to the BETA project.

One may ask why it should be necessary to distinguish
value types from classes – why are values not just instances
of classes? The distinction between object and value is not
explicit in mainstream object-oriented languages. In
Smalltalk values are immutable objects. In C++, Java and
C# values are not objects, but there does not seem to be a
conceptual distinction between object and value – the
distinction seems mainly to be motivated by efficiency
considerations.

From a modeling point of view, it is quite important to be
able to distinguish between values and objects. As
mentioned in Section 4, values represent measurable
properties of objects. In 1982 MacLennan [110] formulated
the distinction in the following way:

… values are abstractions, and hence atemporal,
unchangeable, and non-instantiated. We have shown that
objects correspond to real world entities, and hence exist
in time, are changeable, have state, and are instantiated,
and can be created, destroyed and shared. These concepts
are implicit in most programming languages, but are not
well delimited.

One implication of the distinction between value and object
was that support for references to values as known from
Algol 68 and C was ruled out from the beginning. A
variable in BETA either holds a value or a reference to an
object.

Another implication was that a value conceptually cannot
be an instance of a type. Consider an enumeration type:

color = (red, green, blue)

Color is the type and red, green, and blue are its values.
Most people would think of red, green and blue as
instances of color. For BETA we ended up concluding
that it is more natural to consider red, green and blue as
subpatterns of color. The instances of say green are then
all green objects. In Smalltalk True and False are
subclasses of Boolean, but they are also objects. Numbers
in Smalltalk are, however, considered instances of the
respective number classes. For BETA we considered
numbers to be subpatterns and not instances. Here we are in
agreement with Hoare [55] that a value, like four, is an
abstraction over all collections of four objects.

Language support for a value concept was a constant
obstacle in the design of BETA. The enter/exit-part of a
pattern, the unification of assignment and method
invocation to some extent support the representation of a
value concept. For Nygaard this was not enough and he
constantly returned to the subject. Value type became an
example of a concept that is well motivated from a
modeling perspective, but it turned out to difficult to invent
language mechanisms that added something new from a
technical point of view.

5.8.3 Protection of attributes
There has been a lot of discussion of mechanisms for
protecting the representation of objects. As mentioned, the
introduction of abstract data types (where a data type was
defined by means of its operations) and Hoare’s paper on
using the SIMULA class construct led to the introduction of
private and protected constructs in SIMULA. Variants of
private and protected are still the most common
mechanism used in mainstream object-oriented languages
like C++, Java and C#. In Smalltalk the rule is that all
variables are private and all methods are public.

We found the private/protected constructs too ad hoc and
the Smalltalk approach too restricted. Several proposals for
BETA were discussed at that time, but none was found to
be adequate.

5.8.4 Modularization
The concept of interface modules and implementation
modules as found in Modula was considered a candidate for
modularization in BETA. From a modeling point of view
we needed a mechanism that would make it possible to
separate the representative parts of a program – i.e. the part
that represented phenomena and concepts from the
application domain – from the pure implementation details.
Interface modules and implementation modules were steps
in the right direction.

However, we found that we needed more than just
procedure signatures in interface modules, and we also
found the concept of interface and implementation modules
in conflict with the ‘one-pattern concept’. In our view,

modules were a mechanism that was used for two purposes:
modularizing the program text and as objects encapsulating
declarations of types, variables and procedures. In Section
5.8.8 we describe how the object aspect of a module may
be interpreted as a BETA object.

For modularization of the program text we designed a
mechanism based on the BETA grammar. In principle any
sentential form – a correct sequence of terminal and
nonterminal symbols from the BETA grammar – can be a
module. This led to the definition of the fragment system,
which is used for modularization of BETA programs. This
includes separation of interface and implementation parts
and separation of machine-dependent and independent
parts. For details of the fragment system, see the BETA
book [119].

5.8.5 Local language restriction
From the beginning of the project it was assumed that a
pattern should be able to define a so-called local language
restriction part. The idea was that it should be possible to
restrict the use of a pattern and/or restrict the constructs that
might be used in subpatterns of the pattern. This should be
used when defining special purpose patterns for supporting
class, procedure, function, type, etc. For subpatterns of e.g.
a function pattern the use of global mutable data items and
assignment should be excluded. Local language restriction
was, however, never implemented as part of BETA, but
remained a constant issue for discussion.

A number of special-purpose patterns were, however,
introduced for defining external interfaces. These patterns
are defined in an ad hoc manner, which may indicate that
the idea of local language restriction should perhaps have
been given higher priority.

5.8.6 Exception handling
Exception handling was not an issue when the BETA
project started, but later it was an issue we had to consider.
We did not like the dynamic approach to exception
handling pioneered by Goodenough [45] and also criticized
by Hoare [59]. As an alternative we adapted the notion of
static exception handling as developed by Jørgen Lindskov
Knudsen [72]. Knudsen has showed how virtual patterns
may be used to support many aspects of exception handling
and this style is being used in the Mjølner libraries and
frameworks. The BETA static approach proved effective
for exception handling in almost all cases, including large
frameworks, runtime faults, etc. However, Knudsen [75]
later concluded that there are cases (mostly related to third-
party software) where static exception handling is not
sufficient. In these cases there is a need either to have the
compiler check the exception handling rules (as in e.g.
CLU) or to introduce a dynamic exception handling
concept in addition to the static one. In his paper he
describes such a design and illustrates the strengths of
combining both static and dynamic exception handling.

5.8.7 Ensemble
The relationship between the execution platform (hardware,
and operating system) and user programs has been a major
issue during the BETA project. As BETA was intended for
systems programming, it was essential to be able to control
the resources of the underlying platform such as processors,
memory and external devices. An important issue was to be
able to write schedulers.

The concept of ensemble was discussed for several years,
and Dag Belsnes was an essential member of the team
during that period. Various aspects of the work on
ensembles have been described by the BETA team [93],
Dag Belsnes [11], the BETA team [99], and Nygaard [131].
The first account of BETA’s ensemble concept is in the
thesis of Øystein Haugen [49].

A metaphor in the form of a theatre ensemble was
developed to provide a conceptual/modeling understanding
of an execution platform. A platform is viewed as an
ensemble that is able to perform (execute) a play (program)
giving rise to a performance (program execution). The
ensemble has a set of requisites (resources) available in
order to perform the play. Among the resources are a set of
actors (processors). An actor is able to perform one or more
roles (execute one or more objects) in the play. The casting
of roles between actors (scheduling) is handled by the
ensemble.

The interface to a given execution platform is described in
terms of a BETA program including objects representing
the resources of the platform. If a given platform has say
four processors, the corresponding BETA program has four
active objects representing the processors.

In addition to developing a conceptual understanding of an
execution platform, the intention was to develop new
language constructs. We think that we succeeded with the
notion of ensemble as a concept. With respect to language
constructs many proposals were made, but none of these
turned out to be useful by adding new technical possibilities
to the language. It turned out that the notions of active
object and coroutine were sufficient to support the interface
to processors and scheduling.

The ensemble concept did have some influence on the
language. The Mjølner System includes an ensemble
framework defining the interface to the execution platform.
For most BETA implementations, one active object is
representing the processor. A framework defines a basic
scheduler, but users may easily define their own schedulers.
An experimental implementation was made for a SPARC
multiprocessor – here an active object was associated with
each processor and a joint scheduler using these processors
was defined as a framework.

Dynamic exchange of BETA systems. It was also a goal to
be able to write a BETA program that could load and

execute other BETA programs. In an unpublished working
note [99], we described a mechanism for ‘Dynamic
exchange of BETA systems’, which in some way
corresponds to class loading in Java. Bjorn Freeman-
Benson, Ole Agesen and Svend Frølund later implemented
dynamic loaders for BETA.

Memory management was another issue we would have
liked to support at the BETA level, but we did not manage
to come up with a satisfactory solution.

5.8.8 Modules as objects
In the seventies the use of the class construct as a basis for
defining abstract data types was often criticized since it
implied an asymmetry between arguments of certain
operations on a data type. Consider the following definition
of a complex number:

class Complex:
 { real x,y;
 complex add(complex C) { ... }
 ...
 }

Complex A,B,C;
A:= B.add(C);

The asymmetry in the call B.add(C) between the
arguments B and C was considered by many a disadvantage
of using classes to define abstract data types. As an
alternative a module-like concept was proposed by Koster
[79]:

module ComplexDef: {
 type Complex = record real x,y end
 Complex add(Complex C1,C2) {... }
 ...
}

Complex A,B,C;
A := add(B,C);

As can be seen, this allows symmetric treatment of the
arguments of add.

Depending on the language it was sometimes necessary to
qualify the types and operation with the name of the
module as in

ComplexDef.Complex A,B,C;
A := ComplexDef.add(A,B);

Languages like Ada, CLU and Modula are examples of
languages that used a module concept for defining abstract
data types.

For BETA, a module was subsumed by the notion of
singular object. The reason for this was that a module
cannot be instantiated – there is only one instance of a
module and its local types and operations can be
instantiated. A complex module may be defined in BETA
as follows:

ComplexDef: @
 (# Complex:
 (# X,Y: @real enter(X,Y) exit
(X,Y)#)
 add: (# ... #);
 ...
 #)

A,B,C: @ComplexDef.Complex;
(A,B) -> ComplexDef.add -> (B,C)

For CLU it was not clear to us whether the cluster concept
was an abstraction or an object.

5.8.9 Constructors
The concept of constructors was often discussed in the
project, but unfortunately a constructor mechanism was
never included in BETA.

The idea of constructors for data types in general was
introduced by Hoare (the idea was mentioned on page 55
top in [52] and the word constructor appears in [55]) and
was obviously a good idea since it assured proper
initialization of the objects. In SIMULA initialization of
objects was handled by the do part of the object. As
mentioned, all SIMULA objects are coroutines – when an
object is generated it is immediately attached to the
generating object and will thus start to execute its do part
until it suspends execution. The convention in SIMULA
was that initialization was provided by the code up to the
first detach.

The SIMULA mechanism was not considered usable in
BETA. In BETA an object is not necessarily a coroutine as
in SIMULA. For BETA we wanted to support the notion of
static procedure instance. This is illustrated by the example
in Figure 8. The instance ia may be considered a static
procedure instance and executed several times. We thought
that it would not be meaningful to execute ia when it is
generated. The do part of insert describes whatever
insert should do and not its initialization.

We did consider having constructors in the style of C++,
but we did not really like the idea of defining the
constructor at the same level as the instance attributes (data
items and procedures). We found constructors to be of the
same kind as static procedures and static data items. As
discussed elsewhere, we found static attributes superfluous
in a block-structured language.

We liked the Smalltalk idea of a class object defining
attributes like new to be global for a given class. Again, as
described elsewhere, this should be expressed by means of
block structure.

Unfortunately, the issue of constructors ended up as an
example in which the search for a perfect solution ended up
blocking a good solution – like C++ constructors.

5.8.10 Static (class) variables and methods
Static variables and methods were never an issue. In a
block-structured language variables and methods global to
a class naturally belong to an enclosing object. Static
variables and methods play the roles of class variables and
class methods in Smalltalk, and Madsen’s paper on block
structure [111] discusses how to model metaclasses and
thereby class variables and class methods by means of
block structure.

A further benefit of block structure is that one may have as
many objects of the enclosing class as required
(representing different sets of objects of the nested class),
while static variables give rise to only one variable for all
objects.

5.8.11 Abstract classes and interfaces
One implication of the one-pattern idea was that it was
never an issue whether or not to have explicit support for
abstract classes (or interfaces as found in Java). An abstract
class was considered an abstraction mechanism on the line
with class, procedure, type, etc.

If abstract class was to be included in BETA it would be
similar to a possible support for class and procedure
defined as patterns. I.e. one might imagine that BETA
could have support for defining a pattern AbstractClass
(or Interface).

For class and procedure we never really felt a need for
defining special patterns. Since a pattern with only local
patterns containing just their signature may be considered
an abstract pattern, there was never a motivation to have
explicit syntactic support for abstract patterns.

5.8.12 Multiple inheritance
BETA does not have multiple inheritance. In fact we did
not like to use the term ‘inheritance’, but rather used
‘specialization’. This was deliberate: specialization is a
relationship between a general pattern (representing a
general concept) and patterns representing more special
concepts, and with our conceptual framework as
background this was most appealing. The specialized
patterns should then have all properties of the more general
pattern, and virtual properties could only be extended, not
redefined. Inheritance should rather be a relationship
between objects, as in everyday language. Specialized real-
world phenomena cannot of course in general be
substituted in the sense that they behave identically. But
specialization implies substitutability in the following
sense: a description (including program pieces) assuming
certain properties of a general class of phenomena (like
vehicles) should be valid no matter what kind of
specialization (like car, bus or truck) of vehicle is
substituted in the description (program piece). The
description (program code) is safe in the sense that all
properties are available but typically differ.

During the BETA project there was an ongoing discussion
on multiple inheritance within object-oriented
programming. Although one may easily recognize the need
for multiple classifications of phenomena, the multiple
inheritance mechanisms of existing languages were often
justified from a pure code-reuse point of view: it was
possible to inherit some of the properties of the
superclasses but not all. Often there was no conceptual
relation between a class and its multiple superclasses.

Language mechanisms for handling name conflicts between
properties inherited from multiple superpatterns were a
subject that created much interest. In one kind of approach
they were handled by letting the order of superclasses
define the visibility of conflicting names. From a modeling
point of view it does not make sense for the order of the
superclasses to be significant. In other approaches name
conflicts should be resolved in the program text by
qualifying an ambiguous name by the name of the
superclass where it was declared. Name conflicts in general
and as related to BETA were discussed by Jørgen Lindskov
Knudsen [73]. He showed that no unifying name resolution
rule can be devised since name conflicts can originate from
different conceptual structures. The paper shows that there
are essentially three necessary name-resolution rules and
that these can coexist in one language, giving rise to great
expressive power.

For BETA we would in addition have the complexity
implied by inner, e.g. in which sequence should the
superpattern actions be executed? There was a proposal that
the order of execution should be nondeterministic. Kristine
Thomsen [150] elaborated and generalized these ideas.

The heavy use of multiple inheritance for code sharing, and
the lack of a need for multiple inheritance in real-world
examples implied that we did not think that there was a
strong requirement for supporting multiple inheritance.
This was perhaps too extreme, but in order to include
multiple inheritance the technical as well as modeling
problems should be solved in a satisfactory way. We did
not feel that we were able to do that.

In practice, many of the examples of multiple inheritance
may be implemented using the technique with part objects
as described in Section 5.5.1.

5.8.13 Mixins and method combination
In the beginning mixins, as known from Flavors [23], were
never really considered for inclusion in BETA – i.e.
covered by the pattern concept. The reason was that we
considered mixins to be associated with multiple
inheritance, and the concept of mixins seemed to be even
further promoting multiple inheritance as a mechanism for
code sharing. The semantics of multiple inheritance in
Flavors, Loops [13] and Common Lisp [69] where the
order of the superclasses was essential did not seem to fit

well with a language intended for modeling. Perhaps the
emphasis on code sharing in these Lisp-based languages
did not make us realize that a mixin can be used to define
an aspect of a concept, as discussed in Section 5.5.1.

We found the support for method combination in these
languages interesting. Before and after methods are an
alternative – and perhaps more general – to the inner
mechanism. Method combination is an interesting and
important issue. Thomsen proposed a generalization of
inner for combination of concurrent actions [151]. Bracha
and Cook proposed a mixin concept supporting super as
well as inner [15].

5.9 Syntax
It is often claimed that BETA syntax is awkward. It is
noteworthy that these claims most often come from people
not using BETA. Students attending BETA courses and
programmers using BETA readily got used to it and
appreciated its consistency. We could of course say that
‘syntax was not a big issue for us’ and ‘the semantics is the
important issue’, but the fact is we had many discussions on
syntax and that there is a reason why the syntax became the
way it is.

First of all, we had the idea of starting with the desired
properties of program executions and then making syntax
that managed to express these properties. The terms object
and object descriptor are simple examples of this.

Assignment: As we generalized assignment and procedure
call into execution of objects, and as it was desired to have
sequences of object executions, there was obviously a need
to have a syntax that reflected what really was going on.
The general form therefore became

ex1 -> ex2 -> ... -> exn

where each of the exi is an object execution. Execution
involved assignment to the enter part, execution of the do
part and assignment from the exit part.

Because references to objects could either be assigned to
other references or be used in order to have the denoted
object executed, we made the distinction syntactically:

ref1[] -> ref2[] ->...-> refn[]
 (* reference assignment *)

ref1 -> ref2 ->...-> refn
 (* object executions *)

The two forms could of course be mixed, so if the enter part
of the object denoted by ref2 required a reference as input,
then that would be expressed by

ref1[] -> ref2

Naming: We devised the following consistent syntax for
naming things and telling what they were:

<name> ‘:’ <kind> <object descriptor>

By <kind> is meant pattern, part object, reference
variable, etc. For part object the symbol @ is used to specify
the kind and for reference variable ^ is used. For a pattern
it was decided to use no symbol. So

P: super(# ... #)

simply was the syntax for a pattern. A possible super
pattern was indicated by a name preceding the main part of
the object descriptor and not (as in SIMULA) preceding the
pattern name. Objects had two kinds and therefore different
syntax: @ for a part object and ^ for a reference (to a
separate object):

P:(# anA: @A;
 aRefToA: ^A;
 ...
 #)

Whenever a descriptor was needed (in order to tell e.g.
what the properties of part object are) we allowed either an
identifier (of a pattern) or a whole object descriptor:

P:(#
 anA1: @A;
 (* pattern-defined part object *)

 anA2: @(# ...#);
 (* singular part object *)

 aSpecialA: @A(# ...#);
 ...
#)

The last part object above has an object descriptor that
specializes A. This was made possible by the above syntax
where a super pattern is indicated by a name preceding the
main part of the object descriptor.

Parentheses: There are two reasons for using (# ... #)
instead of {...}. The first was that we imagined that there
would be more than object descriptors that needed
parentheses. At one point in time there were discussions
about (@ ... @) meaning description of part objects and
(= ... =) meaning description of values. This was never
introduced, but later we introduced () to mean begin
end of more than just object descriptors, e.g.

(for ... repeat ... for)
(if ... if)

We felt that his was obviously nicer than e.g.
for ... repeat ... endfor
if ... endif

found in other languages at that time. Although we did not
introduce e.g. (@ ... @), we still reserved the # to mean
descriptor, so that (# ... #) could be read ‘begin
descriptor ... descriptor end’. The syntax for pattern
variables uses # in order to announce that these are
variables denoting descriptors.

5.10 Language evolution
In this section we briefly comment on how the language
has evolved since 1976. Some of the events discussed
below are also mentioned in Section 3.3.

The first account of BETA was the 1976 working note
(First language draft [89]). At this stage the BETA project
had mainly been concerned with discussing general
concepts and sketching language ideas. A large part of the
working note was devoted to a discussion of the DELTA
concepts and their relation to BETA. The language itself
was quite immature, but a first proposal for a pattern
mechanism was presented. The report did not contain any
complete program examples – an indication of the very
early stage of the language.

The report includes a long analytical discussion of issues
related to concurrency – this includes representative states
and an interrupt concept. We had very little experience in
issues related to concurrent programming. Various
generalizations of the SIMULA coroutine mechanism were
discussed. A lot of stacks were drawn and there were
primitives like ATTACH X TO Y that could be used to
combine arbitrary stacks. A few other language constructs
were sketched, but not in an operational form – they were
abandoned in future versions of BETA.

The syntax was quite verbose due to a heavy use of
keywords. Parameters were passed by name and not by
position. Objects had general enter/exit lists. The parameter
mechanism made it possible to pass parameters and get
return values to/from coroutines – something that is not
possible in SIMULA.

The unification of name and procedure parameters and
virtual procedures was mentioned but not described in the
1976 report. Virtual patterns were mentioned, and it was
said that they would be as in SIMULA/DELTA).

The 1978 working note (Draft Proposal of BETA [90])
included a complete syntax, and the contour of the
language started to emerge. Virtual patterns were used for
method patterns, for typing functions and for typing
elements of local arrays, that is virtual classes were in fact
there. The syntax was very verbose with keywords, and
very different from the final syntax, and the examples were
sketchy.

The 1979 working note (First complete language definition
[92]) included a complete definition of the language based
on attribute grammars. In addition there were several
examples.

With respect to language concepts, the 1981 working note
(A survey of the BETA Programming Language) was quite
similar to the 1979 working note, but there were major
changes to the syntax. Most keywords were changed to
special symbols: begin and end were replaced by (#, and

#); virtual and bind were replaced by :< and ::<; if
and endif were replaced by (if and if); etc.

As mentioned previously, the POPL’83 paper on BETA
(POPL: Abstraction Mechanisms [95]) was an important
milestone. The POPL paper described the abstraction
mechanisms of BETA. All the basic elements of BETA
were in place including pattern, subpattern, block structure,
virtual patterns and enter/exit. The syntax was almost as in
the final version. The main difference was the use of a
pattern keyword and different assignment operators like
=> and @> corresponding to := and :- in SIMULA. It was
stated that the application area of BETA was embedded and
distributed systems. The distinction between basic BETA
and standard BETA with an extension of basic BETA with
special syntax for a number of commonly used patterns was
also stated. The POPL’83 paper contains a proposal for a
generalization of the virtual pattern concept. The idea was
that any syntactic category of the BETA grammar could be
used as a virtual definition. The idea of generalized virtuals
was, however, never further explored.

The POPL paper was accompanied with a paper describing
the dynamic parts – coroutines, concurrency and
communication. Communication and synchronization was
based on CSP- and Ada-like rendezvous. We never
managed to get the concurrency paper accepted at an
international conference although we made several attempts
– eventually the paper was published in Sigplan Notices
[97] in 1985.

A combined version of the POPL paper and the
concurrency paper was later (1987) included in the book
that was published as a result of the Hawthorne workshop
in 1986 [145]. However, the syntax was revised to that used
in the final version of BETA.

Syntax Directed Program Modularization. A paper on
syntax-directed program modularization was published at a
conference in 1983 in Stresa [94] describing a proposal to
program modularization based on the grammar (cf. Section
5.8.4). These principles for program modularization were
further developed in the Mjølner project.

In the March 1986 revision of Dynamic Exchange of BETA
Systems, the syntax was still not the final one although it
differs from that of the POPL 83 paper.

From late 1986/early 1987, the sequential parts of BETA
were stable in the sense that only a few changes were made.
Pattern variables were added, the if statement was made
deterministic, an else clause was added, and a few other
minor details were changed.

During the Mjølner project, the rendezvous mechanism was
replaced by the semaphore as a basic primitive for
synchronization. In 1975 Jean Vaucher [157] had already
shown how inner combined with prefixed procedures can

be used to define a monitor abstraction. This was
immediately possible in BETA too. It also turned out that
the pattern is well suited to build other higher-level
concurrency abstractions, including Ada-like rendezvous
and futures.

Many of the later papers on BETA were elaborations of the
implications of the one-pattern approach. The simplicity of
the pattern mechanism makes BETA simple to present, but
the implications turned out to be difficult to convey. In
many of the papers we therefore decided to use a keyword-
based syntax and not the compact BETA syntax. Often
redundant keywords like class and proc were introduced
to distinguish between patterns used as classes and
procedures. Some of the most important papers are the
following:

� Classification of Actions – or Inheritance Also for Methods,
presented at ECOOP’87 [101] and described how to use
patterns and inner to define a hierarchy of methods and
processes.
� What Object-Oriented Programming May Be and What It

Does Not Have to Be, presented at ECOOP’88 [116].
Here we for the first time gave our definition of object-
oriented programming and compared it with other
perspectives on programming.
� Virtual Classes – a Powerful mechanism in Object-

oriented Programming, which was presented at
OOPSLA’89 [117]. The idea of virtual patterns was
presented in the POPL’83 paper [95], but here the
implications were presented in greater detail.
� Strong Typing of Object-Oriented Programming Revisited,

presented at OOPSLA 90. The goal of this paper was to
argue for our choice of covariance at the expense of run-
time type checks.

The 1993 book on BETA [119] is the most comprehensive
description of the language and the associated conceptual
framework.

6. Implementations of BETA
During the first period of the BETA project, no attempts
were made to implement a compiler. The reasons for this
were mainly lack of resources: The implementation of
SIMULA had been a major effort requiring a lot of
resources. A number of large companies were involved in
funding the SIMULA implementations, and we had nothing
like this.

The SIMULA compilers were implemented in low-level
languages – one of the compilers was even written in
machine code. Implementation of the garbage collector,
especially, had been a major task. In the beginning of the
BETA project, we assumed that we would have to find
funding for implementing BETA. We were thus working

from the assumption that we would have to establish a
consortium of interested organizations.

There were other reasons than lack of funding. Nygaard
was not a compiler person, Møller-Pedersen was employed
by the NCC and could only use a limited amount of his
time on BETA, and Kristensen and Madsen had to qualify
for tenure.

In the early eighties an attempt was made to implement
BETA by transforming a BETA program into a SIMULA
program. The rationale for this was that we could then use
the SIMULA compilers and run-time system for BETA.
This project never succeeded – 90% of BETA was easy to
map into SIMULA, but certain parts turned out to be too
complicated.

During the BETA project, however, Kristensen and
Madsen did substantial research on compiler technology
and after some years realized that we had perhaps
overestimated the job of implementing BETA.

6.1 The first implementation
The first implementation. In 1983 Madsen implemented the
first BETA compiler in SIMULA. The first version
generated code to an interpreter written in Pascal. The
second version generated machine code for a DEC-10.

SUN Compiler. In 1985 this compiler was ported to a SUN
workstation based on the Motorola 68020 microprocessor.
This was an interesting exercise in bootstrapping. The SUN
compiler was implemented using the DEC compiler, i.e.
machine code was generated on the DEC-10 and
transferred to the SUN for debugging. Since the turnaround
time for each iteration was long, we manually corrected
errors directly in the machine code on the SUN in order to
catch as many errors as possible in each iteration.
Afterwards such errors were fixed in the compiler. It was
quite time-consuming and complicated to debug such
machine code on the SUN.

The final step was to bootstrap the compiler itself. The
DEC-10 was a slow machine and the BETA compiler was
not very efficient. Using the compiler to compile itself was
therefore a slow process. In addition, the DEC-10 was
becoming more and more unstable – and it was decided that
it should be closed down. The DEC-10 would not stay
running for a whole compilation of the compiler. This
meant that it was necessary to dump the state of the
compiler at various stages and be able to restart it from
such a dump in order to complete a full compilation of the
compiler.

This was a complicated and time-consuming process and at
one point Madsen did not believe that he would succeed.
However, after three attempts, the bootstrapping succeeded
and from then on the compiler was running on the SUN.
This was a great experience.

The compiler implemented most parts of BETA – however,
a garbage collector was not included. At that time we did
not think that we had the qualifications to implement a
garbage collector – we really needed some of the
experienced people from the NCC.

6.2 The Mjølner implementations
The Mjølner Project provided the necessary time and
resources to implement efficient working compilers for
BETA. In the project it was decided to use the existing
BETA compiler to implement the new compilers. Without a
garbage collector this was not easy – a simple memory
management scheme was added such that it was possible to
mark the heap and subsequently release the heap until that
mark. This was of course pretty unsafe, but we managed to
implement the new compilers and the first versions of the
MjølnerTool.

Knut Barra from the NCC wrote the first garbage collector
[10] for BETA (as part of the SCALA project) and in 1987
a full workable implementation of BETA was available.

Macintosh Compiler. In the beginning of the Mjølner
Project the SUN compiler was ported to a Macintosh. The
Macintosh compiler was a special event. When we started
working with Nygaard he did not use computers and he had
not done any programming since the early sixties. When
the Macintosh arrived we talked him getting a Mac and he
quickly became a super user. It was therefore a great
pleasure for us to be able to deliver the first Mac compiler
to him on his 60th birthday in 1986.

Later in the Mjølner Project the compiler was ported to a
number of machines, including Apollo and HP
workstations. Nokia was a partner in the Mjølner Project.
We ported BETA to an Intel-based telephone switch and
implemented a remote debugger for BETA programs
running on the switch on an Apollo workstation. This was a
major improvement compared to the very long
development cycles that were used by NOKIA for
developing software for the switch.

The NOKIA compiler was later used as a basis for porting
BETA to Intel-based computers running Windows or
Linux. It took some time before these compilers were
available since for many years the memory management on
the Intel processors was based on segments, which were
difficult to handle for a language with general references.

As of today there are or have been native BETA compilers
for SUN, Apollo, HP, SGI, Windows, Linux and
Macintosh.

6.3 The JVM, CLR, and Smalltalk VM
compilers
In 2003 Peter Andersen and Madsen engaged in a project
on language interoperability inspired by Microsoft
.NET/CLR, which was announced as a platform supporting

language interoperability – in contrast to the Java/JVM
platform. The goal of the project was to pursue to what
extent CLR supported language interoperability. Another
goal was to investigate to what extent this was supported by
the JVM [9].

We managed to implement BETA on both JVM and CLR –
i.e. full BETA compilers are running on top of JVM and
CLR. The main difficulty was to make all the necessary
type information from BETA available in the byte codes.
Since BETA in many ways is more general than Java and
C#, there are elements of BETA that do not map efficiently
to these platforms. The most notorious example of this is
coroutines, which are implemented on top of the thread
mechanisms.

We are currently engaged in implementing BETA on a VM
based on Smalltalk and intended for supporting pervasive
computing – this VM is based on the Esmertec OSVM
system and is being further developed in the PalCom
project. One of the interesting features of this VM is that it
has direct support for BETA-style coroutines.

6.4 Implementation aspects
We will touch only briefly on implementation aspects of
BETA, since a complete description would take up a lot of
space. The implementation is inspired by the SIMULA
implementations [31, 122] and described by Madsen in the
book about the Mjølner Project [112]. The generality of
BETA implied that many people thought that it would be
quite complicated (if not impossible) to make a reasonably
efficient BETA implementation. Here are some of the
major issues:

� Virtual patterns. The most difficult part of BETA to
implement was virtual patterns. There are two aspects of
virtual patterns: semantic analysis and run-time
organization. The run-time organization was quite
straightforward using a dispatch table. Semantic analysis
appeared quite complicated – the problem was given the
use of a virtual pattern to find the binding of the virtual
that was visible at the point of use. The first attempt to
write a semantic analyzer was made in a student project
that failed, and for some time we were a bit pessimistic
about whether or not we would succeed. It was not the
virtual pattern concept by itself that was the real problem,
but the combination with block structure. However, a
(simple) solution was found and later documented by
Madsen in a paper at OOPSLA’99: Semantic Analysis of
Virtual Patterns [114].
� Pattern. The generality of the pattern concept imposed

some immediate challenges for an efficient
implementation. For a pattern (or singular object) used as
a class, there should be code segments (routines)
corresponding to generation (allocation and initialization
of data items), enter, do and exit. For a pattern used as a

procedure there should just be one code segment. We
originally assumed that the compiler could detect the use
of a given pattern and generate code corresponding to the
use. However, with separate compilation of pattern
libraries, this is not possible. We ended up with a
reasonable approach, but the code is not as efficient as it
can be with separate constructs for class and procedure.
In practice this has not been considered a problem. With
modern just-in-time and adaptive compilation techniques,
it should be straightforward to generate code for a pattern
depending on its use.
� Block-structure and subpatterns. The relaxation of the

SIMULA restriction that a subclass may be defined only
at the same block level as its superclass gave rise to some
discussion of whether or not this would have negative
implications for an efficient implementation of block
structure as described by Stein Krogdahl [106]. Since
Algol, a variable in a block-structured language has been
addressed by a pair, [block-level, offset]. By allowing
subpatterns at arbitrary block levels, a variable is no
longer identified by a unique block level: let X be
declared in pattern P, let A and B be different subpatterns
of P, and let A and B be at different block levels; then X
in A is not at the same block level as X in B. We instead
adapted the approach proposed by Wirth for Pascal to
address a data-item by following the static link (origin)
from the use of a data item to its declaration. This implied
that an object has an origin-reference for each subclass
that is not defined on the same block level as its
superclass. For details see Madsen’s implementation
article [112].
� The dynamic structure. The implementation of the

dynamic structure has been a subject for much
discussion. Due to coroutines, SIMULA objects and
activation-records are allocated on the heap. A similar
scheme was adapted in the first BETA implementations,
i.e. the machine stack was not used. Many people found
this too inefficient and the implementation was later
changed to use the machine stack. We do not know
whether this makes a significant difference or not, since
no systematic comparison of the two different techniques
has been made. We do know that the heap-based
implementation is significantly simpler than that using
the machine stack. Whenever BETA has been ported to a
new platform, stack handling has been the most time-
consuming part to port. The generalization of inner
implied that an object will need a caller-reference
corresponding to each subclass with a non-empty do-part.
For the heap-base implementations, these caller-
references are stored in the object. For the stack-based
implementations, the caller references are stored on the
machine stack and thus not explicitly in the objects. We
have also considered using the native stacks on modern
operating systems, but these are too heavyweight for

coroutines – a program may allocate thousands of
coroutines, which is beyond the capacity of these
systems.
� External interfaces. No matter how nice, simple and

safe a language you design, you will have to be able to
interface to software implemented in other (unsafe)
languages. For BETA a large number of external
interfaces were made including C, COM, database
systems, Java, and C#. This introduced major
complications in the compiler since it was most often
done on a by-need basis – often with little time for a
proper design. In order to support various data types and
parameters, BETA was polluted with patterns supporting
e.g. pointers to simple data types like integers and C-
structs. The handling of external calls further complicated
the dynamic implementation since a coroutine stack may
contain activations from external calls. If a callback is
made from the external code, BETA activations may
appear on top of the external stack. Perhaps the worst
implication of this is that all BETA applications suffer
from libraries and frameworks calling external code. The
GUI-frameworks are examples of this: if they were used
wrongly by the BETA programmer, the code was very
difficult to debug. The lesson here is that external
interfaces should be carefully designed and the
implementation should encapsulate all external code in
such a way that it cannot harm the BETA code – even
though this may harm efficiency.
� Garbage collection. Over the years the Mjølner team

became more and more experienced in writing garbage
collectors and a number of different garbage collectors
have been implemented varying from mark-sweep to
generation-based scavenging. The first implementation of
the Train algorithm was implemented for BETA by Jacob
Seligmann and Steffen Grarup [144].

7. Impact
7.1 Teaching
BETA has been used for teaching object-oriented
programming at a number of universities. The most
important places we are aware of are as follows:

� BETA courses in Aarhus.
At DAIMI, BETA was an integral part of the curriculum
at both the undergraduate and graduate level.

The Institute of Information Studies, Aarhus University
is an interesting case, since this is a department in the
Faculty of Humanities. Students within humanities
traditionally have difficulties in learning programming.
BETA was used for more than a decade and selected
because of its clean and simple concepts, its modeling
capabilities and its associated conceptual framework.

 First draft of BETA book. A first draft of the BETA
book [102] was made available (in the late eighties) to
these students, and several versions of the BETA book
[119] were tested here before the final version was
printed. Originally all examples in the book were typical
computer science examples such as stack, queue, etc.
Such examples are not motivating for students within the
humanities, and all the examples were changed to be
about real world phenomena such as bank accounts,
flight schedules, etc. Kim Halskov Madsen was very
helpful in this process. Preprints of the BETA book were
for many years distributed at OOPSLA and ECOOP by
Mjølner Informatics and for many people these red
books were their first encounter with BETA.

� BETA courses in Oslo. At the University of Oslo there
were courses on specification of systems by means of
SDL and BETA in 1988 and 1993 (by Møller-Pedersen
and Dag Belsnes) and on object-oriented programming in
BETA in 1994 and 1995 (by Møller-Pedersen, Nygaard
and Ole Smørdal).
� BETA courses in Aalborg. At Department of Computer

Science, University of Aalborg courses on object-
oriented programming in BETA were given by
Kristensen in 1995 and 1996.
� BETA courses in Dortmund. As mentioned, BETA was

used for introductory programming at the University of
Dortmund, Germany. Here the lecturers wrote a book in
German on programming in BETA [38].

We believe that teaching of programming should be based
on a programming language that reflects the current state of
the art and is simple and general. Many schools use
mainstream programming languages used in industry. Our
experience is that it is easier to teach a state-of-the-art
language than a standard industrial language. Students
familiar with the state of the art can easily learn whatever
industrial language they need to use in practice. The other
way around is much more difficult. For BETA it was for
many years necessary to argue that it was well suited for
teaching. With the arrival of Java this changed, and Java
took over at all places where BETA was used.

7.2 Research
In general BETA is well cited in the research literature.
Perhaps the most influential part of BETA with respect to
research is the concept of virtual class based on the use of
virtual patterns as classes: Thorup [152], Bruce [19],
Thorup [153], Mezini [126], and Odersky [134]. Other
aspects of BETA such as inner, singular objects, block
structure, and the pattern mechanism, have also been cited
by many authors, e.g. Goldberg [44], and Igarashi and
Pierce [62]. In 1994, Bill Joy designed a language without
subclasses based on the ideas of inheritance from part
objects as described in Section 5.5.1 [67]. Also in 1994,
Bill Joy gave a talk in a SUN world-wide video conference

where he mentioned BETA as the most likely alternative to
C++.

When we designed BETA we did not have deep enough
knowledge of formal type theory to be able to establish the
precise relations. In 1988/89 Madsen and others at DAIMI
started discussions with Jens Palsberg and Michael
Schwartzbach on applying type theory to object-oriented
languages. Initially the hypothesis of Palsberg and
Schwartzbach was that standard type theory could be
applied, but they also realized that subtype substitutability
and covariance were nontrivial challenges. This led to a
series of papers on type theory and object-oriented
languages [138] and a well-known book [140]. The main
impact for BETA was that we learned that concepts like co-
and contravariance were useful for characterizing virtual
patterns in BETA. We had a hard time – and still have –
relating to concepts such as universal and existential
qualifiers, but more recent work has shed some light on this
issue. Researchers with interests in such matters might
think that virtual patterns are essentially existential types,
but this view is too simplistic. One crucial difference,
pointed out by Erik Ernst and explored in his work on
family polymorphism [40], is that virtual classes rely on a
simple kind of dependent types to allow more flexible
usage: The unknown type, when bound by an existential
quantifier, must be prevented from leaking out, whereas
virtual classes can be used in a much larger scope, because
the enclosing object can be used as a first-class package.

Schwartzbach and Madsen discussed making a complete
formal specification of BETA’s type system. Schwartzbach
concluded at that time that the combination of block
structure and virtual patterns made it very hard and we
never succeeded. Igarashi and Pierce [61] and the authors
mentioned below have over the years provided elements of
formalization, including virtual classes and block structure.

Palsberg and Schwartzbach also did a lot of interesting
work on type inference [139]. Two students of
Schwartzbach implemented a system that could eliminate
most (all) of the run-time checks in BETA and also detect
the use of a given pattern and thereby optimize the code
generation. The technique assumed a closed world, which
made it less usable in a situation with precompiled libraries
and frameworks. The work on type inference was later
refined by Ole Agesen for Self [6, 7].

In 1997, Kresten Krab Throrup [152] published a paper on
how to integrate virtual classes with Java. This was the
starting point for a number of papers on virtual classes. In
addition to Thorup, the work of Erik Ernst [39, 40], and
Mads Torgersen [154] has been very decisive for interest in
virtual classes. Several other researchers have elaborated on
or been inspired by the virtual class concept, including
work by Bruce, Odersky and Wadler [19] and Igarashi and
Pierce [61]. Ernst has pointed out that some authors use the

term virtual type whereas he prefers (and we agree) the
term virtual class. A virtual type may (only) be used to
annotate variables whereas a virtual class may be used to
create instances.

Erik Ernst has developed the language gbeta, which is a
further generalization of the abstraction mechanisms of
BETA. gbeta among others includes a type-safe dynamic
inheritance mechanism [39]. gbeta also supports the use of
virtual patterns as superpatterns. BETA did have a
semantics for virtual patterns as superpatterns, and virtual
super patterns were implemented in the first BETA
compiler. They were, however, abandoned in later versions,
since we never found a satisfactory efficient
implementation. In gbeta the restrictions on virtual
superpatterns are removed. In BETA it is possible to
express a simple kind of dependent types by means of
block-structure and virtual classes. This was identified and
generalized by Ernst as the concept of family
polymorphism [40]. The connection to existential types
mentioned above builds on this notion of dependent types.

In order to have full static type checking, Torgersen has
suggested forbidding invocation of methods with
parameters that have a non-final virtual type [154]. For
classes with such methods, a concrete subclass with all
virtual types declared final must then be defined in order to
invoke these methods.

The Scala language has abstract type members, which are
closely related to virtual classes. Finally, the language
Caesar [126] supports the notion of gbeta virtual classes in
a Java context with some simplifications and restrictions.

At POPL’2006 [41], Erik Ernst, Klaus Ostermann, and
William R. Cook presented a virtual class calculus that
captures the essence of virtual classes. We think this is an
important milestone because it is the first formal calculus
with a type system and a soundness proof which directly
and faithfully models virtual classes.

Ellen Agerbo and Aino Cornils [3] used virtual classes and
part objects to describe some of the design patterns in The
Gang of Four book [43].

In 1996, Søren Brandt and Jørgen Lindskov Knudsen made
a proposal for generalizing the BETA type system [16].
The proposal generalizes the type system in two directions:
first, by allowing type expressions that do not uniquely
denote a class, but instead denote a closely related set of
classes, and second, by allowing types that cannot be
interpreted as predicates on classes, but must be more
generally interpreted as predicates on objects. The resulting
increase in expressive power serves to further narrow the
gap between statically and dynamically typed languages,
adding among other things more general generics,
immutable references, and attributes with types not known
until runtime.

Knudsen has made use of the BETA fragment system to
support aspect-oriented programming [74].

Goldberg, Findler and Flatt [44] developed a language with
both super and inner, arguing that programmers need both
kinds of method combination. They also present a formal
semantics for the new language, and they describe an
implementation for MzScheme.

GOODS. Nygaard was the leader of General Object-
Oriented Distributed Systems (GOODS), a three-year
Norwegian Research Council-supported project starting in
1997. The aim of the project was to enrich object-oriented
languages and system development methods by new basic
concepts that make it possible to describe the relation
between layered and/or distributed programs and the
machine executing these programs. BETA was used as the
foundation for the project and language mechanisms in
BETA were studied, especially supporting the theatre
ensemble metaphor. The GOODS team also included
Haakon Bryhni, Dag Solberg and Ole Smørdal.

STAGE. The GOODS project continued in the STAGE
Project (STAGing Environments) project at the NCC,
aiming at establishing a commercial implementation of the
GOODS idea. The STAGE team also included Dag
Belsnes, Jon Skretting, and Kasper Østerbye. The project
pursued the idea of the theater metaphor – cf. Section 5.8.7.

The Devise project. In 1990 three research groups at
DAIMI decided to work together on research in tools,
techniques, methods and theories for experimental system
development. The groups were Coloured Petri Nets (headed
by Kurt Jensen), systems work (HCI) (headed by Morten
Kyng) and object-oriented programming (headed by
Madsen). The rationale was that in order to make progress
in system development, supplementary competences were
needed. The implications for BETA were:

BETA was used as a common language for development of
tools. One major example is the CPN Tool [28] for editing,
simulating and analyzing Coloured Petri Nets. A unique
characteristic of CPN Tools is that they were one of the
first tools to use so-called post-WIMP interaction
techniques, including tool glasses, marking menus, and
bimanual interaction (using two mice). CPN Tools is in
widespread use. Another major tool was a Dexter-based
hypermedia [48], [47], [143]. A unique characteristic of this
tool was the use of anchors that makes it possible to link
between positions in different pages without modifying the
pages. The hypermedia tool was the basis for a start-up
company, Hypergenic Ltd.

BETA has played an important role in work on a
multidisciplinary approach to experimental system
development. Over the years the group developed
techniques for people within programming, system
development, participatory design, HCI and ethnography to

work together on software development projects, often
using BETA and the Mjølner System. The object-oriented
conceptual framework turned out to be a common
framework and the graphical syntax of BETA supported by
the Mjølner Tool turned out to be a useful means for
communication between system developers and (expert)
users [24].

From the beginning it was a goal to integrate Petri nets and
object-oriented programming languages. The motivation
was that in the early days of the BETA project Petri nets
had a major influence on our conception of concurrency.
Jensen, Kyng and Madsen started working together in
formalizing DELTA using Petri nets. Jensen continued
working with Petri nets and the group at DAIMI is well
known internationally. Numerous suggestions for
integrating object-orientation and Petri nets were
investigated, but no real breakthrough was obtained. There
are many suggestions in the literature for integrating Petri
nets and object orientation, [108, 123].

The Devise group has continued to work together and now
forms the basis of the Center for Pervasive Computing in
Aarhus.

Conceptual Modeling and Programming. Design of
programming languages could be based on human
conceptualization in a more general sense. The approach
was to include alternative kinds of concepts and selected
ingredients of these concepts into programming languages
in order to support modeling. The approach is described in
[64, 104] and explored further in [124]. Object orientation
could be seen as a specialized use of this approach, where
the focus mainly is on “things” and their modeling in terms
of classes and objects. The intention was that certain
additional kinds of general (but not application area
specific) concepts would enrich programming languages.
The purpose was to limit the gap between understanding,
designing and programming also in order to reduce the
amount of software. The advantage of the approach is that
because humans already use various alternative kinds of
concepts, the modeling process is efficient and the model
becomes understandable. The challenge was that any given
potential kind of concept had to be understood and
interpreted, and did not immediately comply with the
typical understanding of programming languages. Each
candidate concept should therefore be adjusted to fit with
and slightly modify the expectations and possibilities at the
programming level including implementation techniques.
Candidate concepts include:

� Activities [81, 82, 103] are abstractions over
collaborations of objects.
� Complex associations [83] are abstractions over complex

relationships between structured objects.

� Roles [84, 105] are abstractions over the use of roles for
objects as special relationships between objects.
� Relations [164, 166] are abstractions over relationships

between objects.
� Subjective behavior [85] means abstraction over different

views on objects from external and internal perspectives.
� Associations [86-88] are abstractions over collaboration,

and include both structural and interaction aspects by
integrating activity and role concepts.

7.3 Impact on language development
Object-oriented SDL. In 1986 Elektrisk Bureau (later
ABB) asked Dag Belsnes and Møller-Pedersen to develop
an object-oriented specification language. At the start the
idea was to make this from scratch, but the project soon
turned into an extension ([127], [128]) of the specification
language SDL standardized by ITU – the International
Telecommunication Union. BETA had an impact in the
sense that concurrent processes of SDL became the
candidate objects, in addition to the data objects that were
also part of SDL. Users of SDL were primarily using
processes, and as BETA had concurrent objects (and
thereby patterns/subpatterns of these), it was obvious to do
the same with SDL. The underlying model of SDL is that
of a SDL system consisting of sets of nonsynchronized
communicating processes, where the behavior of each
process is described by a state machine. Introducing object
orientation to this model implied the introduction of process
types (in addition to sets of processes) and process subtypes
defining specialization of state machine behavior. The inner
concept was generalized to virtual transitions, i.e.
transitions of a process type that may be redefined in
process subtypes. In addition, the notion of virtual
procedures was introduced, enabling parts of transitions to
be redefined. In addition to constraints on virtual
procedures, SDL also introduced default bindings. Virtual
types (corresponding to virtual inner classes) were
introduced, with constraints, both in terms of a supertype
(as in BETA) and by means of a signature. In [21] it is
demonstrated how this may be used to define frameworks;
the same idea is pursued in [167]. Finally, types were
extended with context parameters, a kind of generalized
generic parameters, where also the constraints on the type
parameters followed the BETA style of constraining. All of
these extensions were standardized in the 1992 version of
SDL [136].

Java. We do not claim that BETA had a major impact on
Java, but as a curiosum we could mention that the two first
commercial licenses of the Mjølner BETA System were
acquired by James Gosling and Bill Joy.

Madsen was a visiting scientist a SUN Labs in 1994-95
when Java appeared on the scene – he was involved in

discussions on whether or not virtual types could be added
to Java. However, this was never done.

Java includes final bindings and singular objects – called
anonymous classes. Nested classes were later added to Java
and called inner classes. As we understand, final bindings,
anonymous classes and nested classes were inspired by
BETA.

The recently added Wildcard mechanism [155] was
developed by a research group at DAIMI based on research
by Mads Torgersen, Kresten Krab Thorup, Erik Ernst and
others and may be traced back to virtual patterns.

UML2.0. Shortly after Møller-Pedersen joined Ericsson in
1998, a number of UML users (including Ericsson) asked
for a new and improved version of UML. On behalf of
Ericsson Møller-Pedersen joined this work within OMG.
The influence on UML2.0 was indirectly via SDL, i.e. the
same kinds of concepts as in SDL were introduced in
UML2.0 [50]. As an interesting observation, UML1.x had
already classes with their own behavior, like in SIMULA
and BETA, while (as mentioned above) most object
programming languages do not have this. UML1.x also had
nested classes, so the only new thing in UML2.0 is that
they can be redefinable (i.e. virtual classes).

8. Conclusion
The BETA project has been an almost lifelong enterprise
involving the authors, the late Kristen Nygaard and many
other people. The approach to language design and
informatics has been unusual compared to most other
language projects we are aware of. The main reason is
perhaps the emphasis on modeling, the working style, and
the unusual organization of the project.

The project was supposed to be organized in a well-defined
manner based on partners, contracts/grants and a firm
working plan with milestones including a language
specification in 1997. Since we did not succeeded in
obtaining this, the project continued for many years as an
informal collaboration among the team members. If we had
delivered a language specification in 1997 it would have
been quite different from what BETA is today and probably
less interesting. A project with firm deadlines and a firm
budget might not have achieved the same result. Instead we
were able to continue to invent, discuss, and reject ideas
over many iterations. We could keep parts open where we
did not have satisfactory solutions. It was never too late to
come up with a complete new idea. We could continue to
strive for the perfect language.

From 1986 when the Mjølner projects started, there was an
organization around BETA – although Mjølner was not
supposed to develop the BETA language. We had to
finalize the language and make decisions for the parts that

were not complete and even make decisions we were not
happy about.

The “one abstraction mechanism” idea was an important
driving factor, but it may not have been unusual to base a
language project on one or more initial ideas. In fact, one
should never engage in language design without overall
major ideas. Languages based on the current state of art
may be well engineered but will not add to the state of the
art. Such languages may be highly influential on praxis and
we have seen many examples of that.

As time has passed, many new ideas for improving BETA
have been proposed and new challenges have appeared. But
for many years we found that most of the proposals would
not make a real difference for the users of BETA. The work
on updating the language, the documentation and software
was simply not worth the effort. The time has, however,
arrived for a new language in the SIMULA/BETA style,
but the one or two real breaking ideas perhaps remain to be
seen.

Nygaard’s system description (modeling) approach was an
unusual approach to language design. Designing a
programming language from a system description
perspective is certainly different from basing it on whatever
a computer can do or on a mathematical foundation.

Another unusual characteristic of the project was that we
did not follow mainstream research in programming
languages. As mentioned, Nygaard was not interested in the
state of the art but left it to us. The advantage of this
approach was that we were free to formulate new visions
and not just focus on the next publication. Today most
researchers seem mainly to focus on publishing minor
improvements and solutions to state-of-the-art ideas. This
does not create new big inventions.

The BETA project heavily influenced the participants and
their relationships. We established lifelong valuable and
appreciated personal and professional relationships. Being
young and inexperienced researchers learning from
working together with such an experienced person as
Nygaard, many of our research attitudes were established
during the project. The most valuable has been not to take
established solutions for given, but rather question them,
try to go for more general solutions, and to have alternative,
ambitious, and long-reaching objectives.

Below we comment on the original research goals of the
project.

One abstraction mechanism. We succeeded in developing
the pattern as an abstraction mechanism subsuming most
other abstraction mechanisms. Originally this was a
theoretical challenge and we think that the pattern
mechanism has proved its relevance and importance from a
research perspective. The pattern mechanism has also

proved to be useful in teaching and practical programming.
As a teaching tool it is beneficial to teach students the
pattern mechanism as part of their first programming
language, but probably only with success if the approach is
supported strongly by the learning environment. Still, in
order to appreciate the beauty of the pattern mechanism ,the
student has also to be familiar with the culture of the
programming-language world including notions such as
record, procedure, etc. Such cultural variations need to be
appreciated before the unified, more abstract notion is
relevant and appealing. For the skilled programmer who
has already used several different programming languages,
the presentation of the pattern mechanism seems to be a
very fruitful experience. Such programmers typically learn
yet another abstract level of programming and this
knowledge is valuable through the daily life with the usual
ordinary programming languages. Programmers with the
opportunity to use the pattern for a longer period for real
system development appreciate the freedom and
powerfulness it supports.

The idea of one pattern replacing all other abstraction
mechanisms worked out well in practice. The unification
clearly implied a simplification of the language, just as the
extra benefits as mentioned in Section 5.1.2 clearly paid
off. We occasionally hear people complain that they find it
to be a disadvantage that they cannot see from a pattern
declaration whether it is a class or method.

Virtual patterns turned out to be a major strength of BETA
– the use of virtual patterns as virtual classes/types has in
addition provided the basis for further research by many
others.

Singular objects, block structure, etc. have also proved their
value in practice and are heavily used by all BETA
programmers. These mechanisms are also starting to arrive
in other languages.

The enter-exit mechanism is of course used for defining
parameters and return values for methods – in addition, it is
used for defining value types. Many people make heavy use
of enter/exit for overloading assignment and/or reading the
value of an object. Although the enter/exit-mechanism has
turned out to be quite useful in practice, it does have some
drawbacks. The name of an argument has to be declared
twice – once with a type and then in the enter/exit-part –
this is similar to Algol and SIMULA but is, however
inconvenient for simple parameters. In addition, the
implementation of enter/exit in its full generality turned out
to be quite complex.

A constructor mechanism is perhaps the most profound
language element that is missing in BETA.

Coroutines and concurrency. We think that BETA has
further demonstrated the usefulness of the SIMULA
coroutine mechanism to support concurrency and

scheduling. The coroutine mechanism together with the
semaphore turned out to fulfill the original goals. The
implementation was simple and straightforward, and it has
showed its usefulness in practice.

In addition, the abstraction mechanisms of BETA have
proved their usefulness in defining higher-order abstraction
mechanisms. The BETA libraries contain several examples
of high-level concurrency abstractions. Few people in
practice, however, define their own concurrency
abstractions. Most concurrency abstractions have been
defined by the authors and implementers of BETA.

In general concurrency and the ability to define
concurrency abstractions are not as heavily used as we
think they should be. This may it may be due to the fact that
concurrency has not been an integrated part of most object-
oriented languages. Java has concurrency but as a fixed
synchronization mechanism in the form of monitor – there
are no means for defining other concurrency abstractions
including schedulers. We think that it should be an
integrated part of the design of frameworks and
components also to define the associated concurrency
abstractions including schedulers.

We also think that SIMULA/BETA style coroutines are yet
to be discovered by other language designers.

Efficiency. The original goal of proving that an object-
oriented programming language could be efficiently
implemented turned out to be less important. Several
successors to SIMULA starting with C++ proved this. In
addition, a number of efficient implementation techniques
and more efficient microprocessors have implied that lack
of efficiency is hardly an issue anymore.

Modeling. The modeling approach succeeded in the sense
that a comprehensive conceptual framework has been
developed. The conceptual framework consists of a
collection of conceptual means for understanding and
organizing knowledge about the real world. It is
furthermore described how these means are related to
programming language constructs. But just as important, it
is emphasized that some conceptual means are not
supported by BETA and other programming languages. As
mentioned previously, we think that it is necessary for
software developers to be aware of a richer conceptual
framework than that supported by a given language.
Otherwise the programming language easily limits the
ability of the programmer to understand the application
domain. A conceptual framework that is richer than current
programming languages can be used to define requirements
for new programming languages. This leads to the other
point where we think that the modeling approach has
succeeded.

We have demonstrated that language constructs and indeed
a whole language can be based on a modeling approach. As

we hope we have demonstrated in this paper, almost all
constructs in BETA are motivated by their ability to model
properties of the application domain. They also had to have
properties from a technical point of view and to be
sufficiently primitive in order to be efficiently
implemented. The art of designing a programming language
is to balance the support of conceptual means and selection
of primitives that may be efficiently implemented. We did
e.g. not include dynamic classification and equations since
we did not find that we could implement such constructs
efficiently.

The goal for BETA was to design a language that could be
used for modeling as well as programming. For many years
the programming language community was not interested
in modeling, and when object-orientation started to become
popular, the main focus was on extensibility and reuse of
code. This changed when the methodology schools started
to become interested in object-oriented analysis and design.
The approach to modeling in these schools was, however,
different from ours. Most work on modeling aimed at
designing special modeling languages based on a graphical
syntax. As mentioned in Section 4, this reintroduced some
of the problems of code generation and reverse engineering
known from SA/SD. For BETA it was important to stress
that the same language can be used for modeling as well as
for programming and that syntax is independent of this.
This was stressed by the fact that we designed both a
textual and a graphical syntax for BETA. The attempts in
recent years to design executable modeling languages in
our opinion emphasizes that it was not a good idea to have
separate modeling and programming languages.

There is no doubt that object orientation has become the
mainstream programming paradigm. There are hundreds (or
thousands) of books introducing object-oriented
programming and methodologies based on object
orientation. The negative side of this is that the modeling
aspect that originated with SIMULA seems to be
disappearing. Very few schools and books are explicit
about modeling. It is usually restricted to a few remarks in
the introduction; the rest of the book is then concerned with
technical aspects of a programming language or UML or
traditional software methodology.

We think that some of the advantages of object orientation
have disappeared in its success and that there might be a
need for proper reintroduction of the original concepts.
OOA and OOD are in most schools nothing more than just
programming at a high level of abstraction corresponding
to the application domain. In order to put more content into
this, there is room for making more use of the parts of the
conceptual framework of BETA that go beyond what is
supported by current programming languages. This would
improve the quality of the analysis and design phases. We
also think that future languages should be designed for

modeling as well as programming. Turning a modeling
language into a programming language (or vice versa) may
not be the best approach.

9. Acknowledgments
The Joint Language Project included at least: Bjarner
Svejgaard, Leif Nielsen, Erik Bugge, Morten Kyng,
Benedict Løfstedt, Jens Ulrik Mouritsen, Peter Jensen,
Nygaard, Kristensen, and Madsen.

In addition to Nygaard and the authors, a large number of
people have been involved in the development of BETA
and the Mjølner BETA System including colleagues and
students at Aarhus University, The Norwegian Computing
Center, Oslo University, Aalborg University, and Mjølner
Informatics A/S. In particular, the contributions of Dag
Belsnes and Jørgen Lindskov Knudsen are acknowledged.

Development of the Mjølner BETA System in the Nordic
Mjølner Project has been supported by the Nordic Fund for
Technology and Research. Participants in the Mjølner
Project came from Lund University, Telesoft, EB
Technology, The Norwegian Computing Center, Telenokia,
Sysware ApS, Aalborg University and Aarhus University.
The main implementers of the Mjølner BETA System were
Peter Andersen, Lars Bak, Søren Brandt, Jørgen Lindskov
Knudsen, Henry Michael Lassen, Ole Lehrmann Madsen,
Kim Jensen Møller, Claus Nørgaard, and Elmer Sandvad.
In addition, Peter von der Ahe, Knut Barra, Bjorn Freeman-
Benson, Karen Borup, Michael Christensen, Steffen
Grarup, Morten Grouleff, Mads Brøgger Enevoldsen, Søren
Smidt Hansen, Morten Elmer Jørgensen, Kim Falck
Jørgensen, Karsten Strandgaard Jørgensen, Stephan
Korsholm, Manmathan Muthukumarapillai, Peter Ryberg
Jensen, Jørgen Nørgaard, Claus H. Pedersen, Jacob
Seligmann, Lennert Sloth, Tommy Thorn, Per Fack and
Peter Ørbæk have participated in various parts of the
implementation.

In addition to the people mentioned above, we have had the
pleasure of being engaged in research in object-orientation
including issues related to BETA with a large number of
people including Boris Magnusson, Görel Hedin, Erik
Ernst, Henrik Bærbak Christensen, Mads Torgersen,
Kresten Krab Thorup, Kasper Østerbye, Aino Cornils,
Kristine S. Thomsen, Christian Damm, Klaus Marius
Hansen, Michael Thomsen, Jawahar Malhotra, Preben
Mogensen, Kaj Grønbæk, Randy Trigg, Dave Ungar,
Randy Smith, Urs Hölzle, Mario Wolczko, Ole Agesen,
Svend Frølund, Michael H. Olsen, and Alexandre Valente
Sousa.

The writing of this paper has happened during a period of
nearly two years. We would like to thank the HOPL-III
Program Committee for their strong support and numerous
suggestions. Our shepherds Julia Lawall and Doug Lea
have been of great help and commented on everything

including content, structure and our English language style.
The external reviewers, Andrew Black, Gilad Bracha, Ole
Agesen, and Koen Classen, have also provided us with
detailed and helpful comments. Finally, we have received
suggestions and comments from Peter Andersen, Jørgen
Lindskov Knudsen, Stein Krogdahl, and Kasper Østerbye.
We are grateful to Susanne Brøndberg who helped correct
our English and to Katrina Avery for the final copy editing.

The development of BETA has been supported by the
Danish Research Council, The Royal Norwegian Council
for Scientific and Industrial Research, The European
Commission, The Nordic Fund for Technology and
Research, Apple Computer, Apollo, Hewlett Packard, Sun
Microsystems, Microsoft Denmark, and Microsoft
Research Cambridge.

As said in Section 3, the BETA project have had a major
influence on our personal life and our families have been
deeply involved in the social interaction around the project.
We thank from the Kristensen family: Lis, Unna, and Eline;
from the Madsen family: Marianne, Christian, and Anne
Sofie; from the Møller-Pedersen family: Kirsten, Kamilla,
and Kristine; and Johanna Nygaard. When the project
started Christian had just been born – by now we are all
grandparents.

10. References
[1] Webster's New World Compact School and Office

Dictionary: Prentice Hall Press, 1982.
[2] Ada: Ada Reference Manual. Proposed Standard

Document: United States Department of Defense, 1980.
[3] Agerbo, E. and Cornils, A.: How to Preserve the

Benefits of Design Patterns, OOPSLA'98 – ACM
SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
Vancouver, British Columbia, Canada, 1998, Sigplan
Notices ACM Press.

[4] Agesen, O., Frølund, S., and Olsen, M. H.: Persistent
and Shared Objects in BETA, Master thesis, Computer
Science Department, Aarhus University, Aarhus 1989.

[5] Agesen, O., Frølund, S., and Olsen, M. H.: Persistent
Object Concepts, in Object-Oriented Environments—
The Mjølner Approach, Knudsen, J. L., Löfgren, M.,
Madsen, O. L., and Magnusson, B., Eds.: Prentice Hall,
1994.

[6] Agesen, O., Palsberg, J., and Schwartzbach, M. I.: Type
Inference of SELF, ECOOP'93 – European Conference
on Object-Oriented Programming, Kaiserslautern, 1993,
Lecture Notes in Computer Science vol. 707, Springer.

[7] Agesen, O. and Ungar, D.: Sifting Out the Gold,
OOPSLA'94 – Object-Oriented Programming Systems,
Languages and Applications, Portland, Oregon, 1994,
Sigplan Notices vol. 29, ACM Press.

[8] America, P.: Inheritance and Subtyping in a Parallel
Object-Oriented Language, ECOOP'87 – European
Conference on Object-Oriented Programming, 1987,
Lecture Notes in Computer Science vol. 276, Springer
Verlag.

[9] Andersen, P. and Madsen, O. L.: Implementing BETA
on Java Virtual Machine and .NET—an Exercise in
Language Interoperability, unpublished manuscript,
2003.

[10] Barra, K.: Mark/sweep Compaction for Substantially
Nested Beta Objects, Norwegian Computing Center,
Oslo, DTEK/03/88, 1988.

[11] Belsnes, D.: Description and Execution of Distributed
Systems, Norwegian Computing Center, Oslo, Report
No 717, 1982.

[12] Blake, E. and Cook, S.: On Including Part Hierarchies
in Object-Oriented Languages, with an Implementation
in Smalltalk, ECOOP'87 – European Conference on
Object-Oriented Programming, Paris, 1987, Lecture
Notes in Computer Science vol. 276, Springer Verlag.

[13] Bobrow, D. G. and Stefik, M.: The LOOPS Manual,
Palo Alto AC: Xerox Corporation, 1986.

[14] Booch, G.: Object-Oriented Analysis and Design with
Applications. Redwood City: Benjamin/Cummings,
1991.

[15] Bracha, G. and Cook, W.: Mixin-based Inheritance,
Joint OOPSLA/ECOOP'90 – Conference on Object-
Oriented Programming: Systems, Languages, and
Applications & European Conference on Object-
Oriented Programming, Ottawa, Canada, 1990, Sigplan
Notices vol. 25, ACM Press

[16] Brandt, S. and Knudsen, J. L.: Generalising the BETA
Type System, ECOOP'96 – Tenth European Conference
on Object-Oriented Programming Linz , Austria, 1996,
Springer Verlag.

[17] Brinch-Hansen, P.: The Programming Language
Concurrent Pascal, IEEE Transactions on Software
Engineering, vol. SE-1(2), 1975.

[18] Brinch-Hansen, P.: The Origin of Concurrent
Programming: From Semaphores to Remote Procedure
Calls: Springer, 2002.

[19] Bruce, K., Odersky, M., and Wadler, P.: A Statically
Safe Alternative to Virtual Types, ECOOP'98 –
European Conference on Object-Oriented Programming,
Brussels, 1998, Lecture Notes in Computer Science vol.
1445, Springer Verlag.

[20] Bruce, K. and Vanderwaart, J. C.: Semantics-Driven
Language Design: Statically Type-safe Virtual Types in
Object-Oriented Languages, Fifteenth Conference on
the Mathematical Foundations of Programming
Semantics, 1998.

[21] Bræk, R. and Møller-Pedersen, B.: Frameworks by
Means of Virtual Types—Exemplified by SDL, IFIP TC6
WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and
Communication Protocols (FORTE XI) and Protocol
Specification, Testing and Verification (PSTV XVIII),
1998.

[22] Budd, T.: An Introduction to Object-Oriented
Programming, third edition: Addison Wesley, 2002.

[23] Cannon, H.: Flavors: A Non-Hierarchical Approach to
Object-Oriented Programming, Symbolics Inc., 1982.

[24] Christensen, M., Crabtree, A., Damm, C. H., Hansen, K.
M., Madsen, O. L., Marqvardsen, P., Mogensen, P.,
Sandvad, E., Sloth, L., and Thomsen, M.: The M.A.D
Experience: Multi-Perspective Application Development

in Evolutionary Prototyping, ECOOP'98 – European
Conference on Object-Oriented Programming, Brussels,
1998, Lecture Notes in Computer Science vol. 1445,
Springer Verlag.

[25] Coad, P. and Yourdon, E.: Object-Oriented Analysis.
Englewood Cliffs, N.J: Prentice-Hall, 1991.

[26] Cook, S.: Impressions of ECOOP'88, Journal of Object-
Oriented Programming, vol. 1, 1988.

[27] Cook, W.: Peek Objects, ECOOP'2006 – European
Conference on Object-Oriented Programming, Nantes,
France, 2006, Lecture Notes in Computer Science vol.
4067, Springer Verlag.

[28] CPNTOOLS: Computer Tool for Coloured Petri Nets.
[29] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R.:

Structured Programming: Academic Press, 1972.
[30] Dahl, O.-J. and Hoare, C. A. R.: Hierarchical Program

Structures, in Structured Programming: Academic
Press, 1972.

[31] Dahl, O.-J. and Myhrhaug, B.: SIMULA 67
Implementation Guide, Norwegian Computing Center,
Oslo, NCC Publ. No. S-9, 1969.

[32] Dahl, O.-J., Myhrhaug, B., and Nygaard, K.: SIMULA
67 Common Base Language (Editions 1968, 1970, 1972,
1984), Norwegian Computing Center, Oslo, 1968.

[33] Dahl, O.-J. and Nygaard, K.: SIMULA—a Language for
Programming and Description of Discrete Event
Systems, Norwegian Computing Center, Oslo, 1965.

[34] Dahl, O.-J. and Nygaard, K.: SIMULA: an ALGOL-
based Simulation Language, Communications of the
ACM, vol. 9, pp. 671–678, 1966.

[35] Dahl, O.-J. and Nygaard, K.: The Development of the
SIMULA Languages, ACM SIGPLAN History of
Programming Languages Conference, 1978.

[36] Dijkstra, E. W.: Go To Considered Harmful, Letter to
Communications of the ACM, vol. 11 pp. 147–148,
1968.

[37] Dijkstra, E. W.: Guarded Commands, Nondeterminacy
and the Formal Derivation of Programs,
Communications of the ACM, vol. 18, pp. 453–457,
1975.

[38] Doberkat, E.-E. and Diβmann, S.: Einführung in die
objektorienterte Programmierung mit BETA: Addison
Wesley Longman Verlag GmbH, 1996.

[39] Ernst, E.: Dynamic Inheritance in a Statically Typed
Language, Nordic Journal of Computing, vol. 6, pp. 72–
92, 1999.

[40] Ernst, E.: Family Polymorphism, ECOOP'01 – European
Conference on Object-Oriented Programming,
Budapest, Hungary, 2001, Lecture Notes in Computer
Science vol. 2072, Springer Verlag.

[41] Ernst, E., Ostermann, K., and Cook, W. R.: A Virtual
Class Calculus, The 33rd Annual ACM SIGPLAN –
SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, 2006.

[42] Folke Larsen, S.: Egocentrisk tale, begrebsudvikling og
semantisk udvikling., Nordisk Psykologi, vol. 32(1),
1980.

[43] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.:
Design Patterns: Elements of Reusable Object-Oriented
Software: Addison-Wesley, 1995.

[44] Goldberg, D. S., Findler, R. B., and Flatt, M.: Super and
Inner—Together at Last!, OOPSLA'04 – Object-
Oriented Programming, Systems Languages and
Applications, Vancouver, British Columbia, Canada.,
2004, SIGPLAN Notices vol. 39, ACM.

[45] Goodenough, J. B.: Exception Handling: Issues and a
Proposed Notation, Communications of the ACM, vol.
18, pp. 683—696, 1975.

[46] Gosling, J., Joy, B., and Steele, G.: The Java (TM)
Language Specification: Addison-Wesley, 1999.

[47] Grønbæk, K. and Trigg, R. H.: Design Issues for a
Dexter-based Hypermedia System, Communications of
the ACM, vol. 37, pp. 40–49, 1994.

[48] Halasz, F. and Schwartz, M.: The Dexter Hypertext
Reference Model, Communications of the ACM, vol.
37, pp. 30–39, 1994.

[49] Haugen, Ø.: Hierarkibegreber i Programmering og
Systembeskrivelse (Hierarchy Concepts in
Programming and System Description), Master thesis,
Department of Informatics, University of Oslo, Oslo
1980.

[50] Haugen, Ø., Møller-Pedersen, B., and Weigert, T.:
Structural Modeling with UML 2.0, in UML for Real,
Lavagno, L., Martin, G., and Selic, B., Eds.: Kluwer
Academic Publishers, 2003.

[51] Hejlsberg, A., Wiltamuth, S., and Golde, P.: The C#
Programming Language: Addison-Wesley, 2003.

[52] Hoare, C. A. R.: Record Handling, ALGOL Bulletin,
1965.

[53] Hoare, C. A. R.: Further Thoughts on Record Handling,
ALGOL Bulletin, 1966.

[54] Hoare, C. A. R.: Record Handling—Lecture Notes,
NATO Summer School September 1966, in
Programming Languages, Genuys, Ed.: Academic Press
1968, 1966.

[55] Hoare, C. A. R.: Notes on Data Structuring, in
Structured Programming. London: Academic Press,
1972.

[56] Hoare, C. A. R.: Proof of Correctness of Data
Representations, Acta Informatica, vol. 1, 1972.

[57] Hoare, C. A. R.: Monitors: An Operating Systems
Structuring Concept, Communications of the ACM,
1975.

[58] Hoare, C. A. R.: Communicating Sequential Processes,
Communications of the ACM, vol. 21, 1978.

[59] Hoare, C. A. R.: Turing Award 1980 Lecture: "The
Emperor's Old Clothes", Communications of the ACM,
vol. 24, pp. 75–83, 1981.

[60] Holbæk-Hanssen, E., Håndlykken, P., and Nygaard, K.:
System Description and the DELTA Language,
Norwegian Computing Center, Oslo, Report No 523,
1973.

[61] Igarashi, A. and Pierce, B. C.: Foundations for Virtual
Types, The Sixth International Workshop on
Foundations of Object-Oriented Languages – FOOL 6,
San Antonio, Texas, 1999.

[62] Igarashi, A. and Pierce, B. C.: On Inner classes,
Information and Computation, vol. 177, 2002. A special
issue with papers from the 7th International Workshop
on Foundations of Object-Oriented Languages
(FOOL7). An earlier version appeared in Proceedings of

ECOOP2000 – 14th European Conference on Object-
Oriented Programming, Springer LNCS 1850, pages
129–153, June, 2000.

[63] Jackson, M.: System Development: Prentice-Hall, 1983.
[64] Jacobsen, E. E.: Concepts and Language Mechanisms in

Software Modelling, PhD thesis, University of Southern
Denmark, 2000.

[65] Jensen, K., Kyng, M., and Madsen, O. L.: A Petri Net
Definition of a System Description Language, in
Semantics of Concurrent Computations, Evian, Kahn,
G., Ed.: Springer Verlag, 1979.

[66] Jensen, P. and Nygaard, K.: The BETA Project,
Norwegian Computing Center, Oslo, Publication No
558, 1976.

[67] Joy, B.: Personal Communication. Sun Microsystems,
1994.

[68] Kay, A.: Microelectronics and the Personal Computer,
Scientific America, vol. 237(3), pp. 230–244, 1977.

[69] Keene, S. E.: Object-Oriented Programming in
COMMON Lisp—a Programmer's Guide to CLOS:
Reading MA: Addison Wesley 1989.

[70] Knudsen, J. L.: Implementing BETA Communication, a
Proposal, unpublished manuscript, 1981.

[71] Knudsen, J. L.: Aspects of Programming Languages:
Concepts, Models and Design, thesis, Department of
Computer Science, University of Aarhus, Aarhus 1982.

[72] Knudsen, J. L.: Exception Handling—A Static
Approach, Software Practice and Experience, 1984.

[73] Knudsen, J. L.: Name Collision in Multiple
Classification Hierarchies, ECOOP'88 – 2nd European
Conference on Object-Oriented Programming, Oslo,
1988, Lecture Notes in Computer Science vol. 322,
Springer Verlag.

[74] Knudsen, J. L.: Aspect-Oriented Programming in BETA
Using the Fragment System, Workshop on Object-
Oriented Technology, 1999, Lecture Notes In Computer
Science vol. 1743.

[75] Knudsen, J. L.: Fault Tolerance and Exception
Handling in BETA, in Advances in Exception Handling
Techniques, vol. 2022, Lecture Notes in Computer
Science, Romanovsky, A., Dony, C., Knudsen, J. L., and
Tripathi, A., Eds.: Springer Verlag, 2001.

[76] Knudsen, J. L., Löfgren, M., Madsen, O. L., and
Magnusson, B.: Object-Oriented Environments—The
Mjølner Approach: Prentice Hall, 1993.

[77] Knudsen, J. L. and Madsen, O. L.: Teaching Object-
Oriented Programming is more than Teaching Object-
Oriented Programming Languages, ECOOP'88 –
European Conference on Object Oriented Programming,
Oslo, 1988, Lecture Notes in Computer Science vol.
322, Springer Verlag.

[78] Knudsen, J. L. and Thomsen, K. S.: A Conceptual
Framework for Programming Languages, Master thesis,
Computer Science Department, Aarhus University,
Aarhus 1985.

[79] Koster, C. H. A.: Visibility and Types, SIGPLAN 1976
Conference on Data, Salt Lake City, Utah, USA, 1976.

[80] Kreutzer, W. and Østerbye, K.: BetaSIM—a Framework
for Discrete Event Modelling and Simulation,
Simulation Practice and Theory, vol. 6, pp. 573–599,
1998.

[81] Kristensen, B. B.: Transverse Activities: Abstractions in
Object-Oriented Programming, International
Symposium on Object Technologies for Advanced
Software (ISOTAS'93), Kanazawa, Japan, 1993.

[82] Kristensen, B. B.: Transverse Classes & Objects in
Object-Oriented Analysis, Design and Implementation,
Journal of Object-Oriented Programming, 1993.

[83] Kristensen, B. B.: Complex Associations: Abstractions
in Object-Oriented Modeling, OOPSLA'94 – Object-
Oriented Programming Systems, Languages and
Applications, Portland, Oregon, 1994, Sigplan Notices
vol. 29(10), ACM Press.

[84] Kristensen, B. B.: Object-Oriented Modeling with Roles,
2nd International Conference on Object-Oriented
Information Systems (OOIS'95), Dublin, Ireland, 1995.

[85] Kristensen, B. B.: Subjective Behavior, International
Journal of Computer Systems Science and Engineering,
vol. 16, pp. 13–24, 2001.

[86] Kristensen, B. B.: Associative Modeling and
Programming, 8th International Conference on Object-
Oriented Information Systems (OOIS'2002),
Montpellier, France, 2002.

[87] Kristensen, B. B.: Associations: Abstractions over
Collaboration, IEEE International Conference on
Systems, Man & Cybernetics, Washington D. C., 2003.

[88] Kristensen, B. B.: Associative Programming and
Modeling: Abstractions over Collaboration, 1st
International Conference on Software and Data
Technologies, Setúbal, Portugal, 2006.

[89] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: BETA Language Development, Survey
Report, 1. November 1976, Norwegian Computing
Center, Oslo, Report No 559, 1977.

[90] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: DRAFT PROPSAL for Introduction to
The BETA Programming Language as of 1st August
1978, Norwegian Computing Center, Oslo, Report No
620, 1978.

[91] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: BETA Examples (Corresponding to
the BETA Language Proposal as of August 1979),
DAIMI IR-15, 1979.

[92] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: BETA Language Proposal as of April
1979, Norwegian Computing Center, Oslo, NCC Report
No 635, 1979.

[93] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: A Survey of the BETA Programming
Language, Norwegian Computing Center, Oslo, Report
No 698, 1981.

[94] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Syntax Directed Program
Modularization, European Conference on Integrated
Interactive Computing Systems, ECICS 82, Stresa,
Italy, 1982, North-Holland.

[95] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Abstraction Mechanisms in the BETA
Programming Language, Tenth ACM Symposium on
Principles of Programming Languages, Austin, Texas,
1983.

[96] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: An Algebra for Program Fragments,
ACM SIGPLAN Symposium on Programming
Languages and Programming Environments, Seattle,
Washington, 1985.

[97] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Multisequential Execution in the
BETA Programming Language, Sigplan Notices, vol.
20, 1985.

[98] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Specification and Implementation of
Specialized Languages, unpublished manuscript, 1985.

[99] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Dynamic Exchange of BETA Systems,
unpublished manuscript, 1986.

[100] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: The BETA Programming Language, in
Research Directions in Object Oriented Programming,
Shriver, B. D. and Wegner, P., Eds.: MIT Press, 1987.

[101] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Classification of Actions or
Inheritance Also for Methods, ECOOP'87 – European
Conference on Object-Oriented Programming, Paris,
1987, Lecture Notes in Computer Science vol. 276,
Springer Verlag.

[102] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B.,
and Nygaard, K.: Object-Oriented Programming in the
BETA Programming Language—Draft, 1989.

[103] Kristensen, B. B. and May, D. C. M.: Activities:
Abstractions for Collective Behavior, ECOOP'96 –
European Conference on Object-Oriented Programming,
Linz, 1996, Lecture Notes in Computer Science vol.
1098, Springer Verlag.

[104] Kristensen, B. B. and Østerbye, K.: Conceptual
Modeling and Programming Languages SIGPLAN
Notices, vol. 29, 1994.

[105] Kristensen, B. B. and Østerbye, K.: Roles: Conceptual
Abstraction Theory and Practical Language Issues,
Theory and Practice of Object Systems (TAPOS), 1996,
vol. 2(3).

[106] Krogdahl, S.: On the Implementation of BETA,
Norwegian Computing Center, Oslo, 1979.

[107] Krogdahl, S.: The Birth of Simula, IFIP WG9.7 First
Working Conference on the History of Nordic
Computing (HiNC1), Trondheim, 2003, Springer.

[108] Lakos, C.: The Object Orientation of Object Petri Nets,
First international workshop on Object-Oriented
Programming and Models of Concurrency—16th
International Conference on Application and Theory of
Petri Nets, 1995.

[109] Liskov, B. H. and Zilles, S. N.: Programming with
Abstract Data Types, ACM Sigplan Notices, vol. 9,
1974.

[110] MacLennan, B. J.: Values and Objects in Programming
Languages, SIGPLAN Notices, vol. 17, 1982.

[111] Madsen, O. L.: Block Structure and Object Oriented
Languages, in Research Directions in Object Oriented
Programming, Shriver, B. D. and Wegner, P., Eds.: MIT
Press, 1987.

[112] Madsen, O. L.: The implementation of BETA, in Object-
Oriented Environments—The Mjølner Approach:
Prentice Hall, 1993.

[113] Madsen, O. L.: Open Issues in Object-Oriented
Programming, Software Practice & Experience, vol. 25,
1995.

[114] Madsen, O. L.: Semantic Analysis of Virtual Classes
and Nested Classes, OOPSLA'99 – Object-Oriented
Programming, Systems Languages and Applications,
Denver, Colorado, 1999, Sigplan Notices vol. 34, ACM
Press.

[115] Madsen, O. L., Magnusson, B., and Møller-Pedersen,
B.: Strong Typing of Object-Oriented Languages
Revisited, Joint OOPSLA/ECOOP'90 – Conference on
Object-Oriented Programming, Systems, Languages,
and Applications & European Conference on Object-
Oriented Programming, Ottawa, Canada, 1990, Sigplan
Notices vol. 25, ACM Press

[116] Madsen, O. L. and Møller-Pedersen, B.: What Object-
Oriented Programming May Be—and What It Does Not
Have to Be, ECOOP'88 – European Conference on
Object-Oriented Programming, Oslo, Norway, 1988,
Lecture Notes in Computer Science vol. 322, Springer
Verlag.

[117] Madsen, O. L. and Møller-Pedersen, B.: Virtual
Classes—A Powerful Mechanism in Object-Oriented
Programming, OOPSLA'89 – Object-Oriented
Programming, Systems Languages and Applications,
New Orleans, Louisiana, 1989, Sigplan Notices vol. 24,
ACM Press.

[118] Madsen, O. L. and Møller-Pedersen, B.: Part Objects
and Their Location, TOOLS'92: Technology of Object-
Oriented Languages and Systems, Dortmund, 1992,
Prentice Hall.

[119] Madsen, O. L., Møller-Pedersen, B., and Nygaard, K.:
Object-Oriented Programming in the BETA
Programming Language: Addison Wesley, 1993.

[120] Madsen, O. L. and Nørgaard, C.: An Object-Oriented
Metaprogramming System, Hawaii International
Conference on System Sciences, Hawaii, 1988, CRC
Press.

[121] Magnusson, B.: Code Reuse Considered Harmful, JOOP
– Journal of Object-Oriented Programming, vol. 4,
1991.

[122] Magnusson, B.: Simula Runtime System Overview, in
Object-Oriented Environments—The Mjølner Approach:
Prentice Hall, 1993.

[123] Maier, C. and Moldt, D.: Object Coloured Petri Nets–A
Formal Technique for Object Oriented Modelling, in
Concurrent Object-Oriented Programming and Petri
Nets: Advances in Petri Nets, vol. 2001/2001, Lecture
Notes in Computer Science: Springer, 2001.

[124] May, D. C.-M., Kristensen, B. B., and Nowack, P.:
Conceptual Abstraction in Modeling with Physical and
Informational Material, in Applications of Virtual
Inhabited 3D Worlds, Qvortrup, L., Ed.: Springer Press,
2004.

[125] Meyer, B.: Eiffel: The Language: Prentice Hall, 1992.
[126] Mezini, M. and Ostermann, K.: Conquering Aspects

with Caesar, AOSD'03, Boston, USA, 2003.

[127] Møller-Pedersen, B., Belsnes, D., and Dahle, H. P.:
Rationale and Tutorial on OSDL: An Object-Oriented
Extension of SDL, SDL Forum'87 – State of the Art and
future Trends, 1987, North-Holland.

[128] Møller-Pedersen, B., Belsnes, D., and Dahle, H. P.:
Rationale and Tutorial on OSDL: An Object-Oriented
Extension of SDL, Computer Networks, vol. 13, 1987.

[129] Naur, P.: Revised Report on The Algorithmic Language
ALGOL 60, Communications of the ACM, vol. 6, 1963.

[130] Nygaard, K.: System Description by SIMULA—an
Introduction, Norwegian Computing Center, Oslo, S-35,
1970.

[131] Nygaard, K.: GOODS to Appear on the Stage,
ECOOP'97 – European Conference on Object-Oriented
Programming, Jyväskylä, Finnland, 1997, Lecture Notes
in Computer Science vol. 1241, Springer Verlag.

[132] Nygaard, K.: Ole-Johan Dahl, in Journal of Object
Technology, vol. 1, 2002.

[133] Odersky, M.: The Scala Experiment—Can We Provide
Better Language Support for Component Systems?,
Symposium on Principles of Programming Languages
(POPL), Charleston, South Carolina, 2006.

[134] Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth,
S., Micheloud, S., Mihaylov, N., Schinz, M., Stenman,
E., and Zenger, M.: An Overview of the Scala
Programming Language, Ecole Polytechnique Fédérale
de Lausanne, 1015 Lausanne, SwitzerlandIC/2004/64,
2004.

[135] Odersky, M. and Zenger, M.: Scalable Component
Abstractions, OOPSLA 2005 – Object-Oriented
Programming, Systems Languages and Applications,
San Diego, CA, USA, 2005, Sigplan Notices ACM
Press.

[136] Olsen, A., Færgemand, O., Møller-Pedersen, B., Reed,
R., and Smith, J. R. W.: Systems Engineering Using
SDL-92: North-Holland, 1994.

[137] Palme, J.: New Feature for Module Protection in
SIMULA, Sigplan Notices, vol. 11, 1976.

[138] Palsberg, J. and Schwartzbach, M. I.: Type Substitution
for Object-Oriented Programming, Joint
OOPSLA/ECOOP'90 – Conference on Object-Oriented
Programming: Systems, Languages, and Applications &
European Conference on Object-Oriented Programming,
Ottawa, Canada, 1990, ACM SIGPLAN Notices vol. 25,
ACM Press New York.

[139] Palsberg, J. and Schwartzbach, M. I.: Object-Oriented
Type Inference, OOPSLA'91 – Conference on Object-
Oriented Programming: Systems, Languages, and
Applications, Phoenix, Arizona, 1991, SIGPLAN
Notices vol. 26, ACM Press.

[140] Palsberg, J. and Schwartzbach, M. I.: Object-Oriented
Type-Systems: John Wiley & Sons, 1994.

[141] Sandvad, E.: Object-Oriented Development—
Integrating Analysis, Design and Implementation,
Computer Science Department, University of Aarhus,
Aarhus, DAIMI PB-302, 1990.

[142] Sandvad, E.: An Object-Oriented CASE Tool, in Object-
Oriented Environments—The Mjølner Approach,
Knudsen, J. L., Löfgren, M., Madsen, O. L., and
Magnusson, B., Eds.: Prentice Hall, 1994.

[143] Sandvad, E., Grønbæk, K., Sloth, L., and Knudsen, J.
L.: A Metro Map Metaphor for Guided Tours on the
Web: the Webvise Guided Tour System, The Tenth
International World Wide Web Conference, Hong
Kong, 2001.

[144] Seligmann, J. and Grarup, S.: Incremental Mature
Garbage Collection Using the Train Algorithm,
ECOOP'95 – European Conference on Object-Oriented
Programming, Aarhus, Denmark, 1995, Lecture Notes
in Computer Science vol. 952, Springer Verlag.

[145] Shriver, B. D. and Wegner, P.: Research Directions in
Object Oriented Programming: MIT Press, 1987.

[146] Smith, B.: Personal Communication, Madsen, O. L., Ed.
Stanford, 1984.

[147] Smith, J. M. and Smith, D. C. P.: Database Abstraction:
Aggregation and Generalization, ACM TODS, vol.
2(2), 1977.

[148] Stroustrup, B.: The C++ Programming Language, 2000.
[149] Sørgaard, P.: Object-Oriented Programming and

Computerised Shared Material, ECOOP'88 – European
Conference on Object-Oriented Programming, Oslo,
Norway, 1988, Lecture Notes in Computer Science vol.
322, Springer Verlag.

[150] Thomsen, K. S.: Multiple Inheritance, a Structuring
Mechanism for Data, Processes and Procedures, Master
thesis, Department of Computer Science, Aarhus
University, Aarhus 1986.

[151] Thomsen, K. S.: Inheritance on Processes, Exemplified
on Distributed Termination Detection, International
Journal of Parallel Programming, vol. 16(1), pp. 17–52,
1987.

[152] Thorup, K. K.: Genericity in Java with Virtual Types,
ECOOP'97 – European Conference on Object-Oriented
Programming, Jyväskylä, Finland, 1997, Lecture Notes
in Computer Science vol. 1241, Springer Verlag.

[153] Thorup, K. K. and Torgersen, M.: Unifying Genericity—
Combining the Benefits of Virtual Types and
Parameterized Classes, ECOOP'99 – European
Conference on Object-Oriented Programming, Lisbon,
Portugal, 1999, Lecture Notes In Computer Science vol.
1628, Springer Verlag.

[154] Torgersen, M.: Virtual Types are Statically Safe, 5th
Workshop on Foundations of Object-Oriented
Languages, San Diego, CA, USA, 1998.

[155] Torgersen, M., Hansen, C. P., Ernst, E., von der Ahé, P.,
Bracha, G., and Gafter, N.: Adding Wildcards to the
Java Programming Language, SAC, Nicosia, Cyprus,
2004, ACM Press.

[156] Ungar, D. and Smith, R. B.: Self: The Power of
Simplicity, OOPSLA'87 – Object-Oriented
Programming Systems, Languages and Applications,
Orlando, Florida, USA, 1987, Sigplan Notices vol. 22,
ACM Press.

[157] Vaucher, J.: Prefixed Procedures: A Structuring
Concept for Operations, IN-FOR, vol. 13, 1975.

[158] Vaucher, J. and Magnusson, B.: SIMULA Frameworks:
the Early Years, in Object-Oriented Application
Frameworks, Fayad, M. and Johnsson, R., Eds.: Wiley,
1999.

[159] Wegner, P.: On the Unification of Data and Program
Abstraction in Ada, Tenth ACM Symposium on
Principles of Programming Languages, Austin, Texas,
1983, ACM Press.

[160] Wegner, P. and Zdonick, S.: Inheritance as an
Incremental Modification Mechanism or What Like is
and Isn’t Like, ECOOP'88 – European Conference on
Object-Oriented Programming, Oslo, Norway, 1988,
Lecture Notes in Computer Science vol. 322, Springer
Verlag.

[161] Wirth, N.: The Programming Language Pascal, Acta
Informatica, vol. 1, 1971.

[162] Yourdon, E. and Constantine, L. L.: Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design: Yourdon Press Computing Series,
1979.

[163] Østerbye, K.: Parts, Wholes, and Subclasses, 1990
European Simulation Multi-conference, 1990.

[164] Østerbye, K.: Associations as a Language Construct,
TOOLS'99, Nancy, 1999.

[165] Østerbye, K. and Kreutzer, W.: Synchronization
Abstraction in the BETA Programming Language,
Computer Languages, vol. 25 pp. 165–187, 1999.

[166] Østerbye, K. and Olsson, J.: Scattered Associations in
Object-Oriented Modeling, NWPER'98, Nordic
Workshop on Programming Environment Research,
Bergen, Norway, 1998, Informatics report 152,
Department of Informatics, University of Bergen.

[167] Østerbye, K. and Quistgaard, T.: Framework Design
Using Inner Classes—Can Languages Cope?, Library
Centric Software Design Workshop '05 in connection
with OOPSLA 2005, San Diego, 2005.

Appendix: Time line
Below is a time line showing when events in the BETA project took place. After each event, the number of the section
describing the event is shown. In some electronic versions of this paper there may be links to these sections as well as the
part of the text describing the events.

Kristen Nygaard visiting professor at DAIMI [2.1] 1974

 |
Joint Language Project start [2.4] 1975

 |
BETA project start [3] 1976

First language draft [3.2] |
 1977
 |
 1978 Draft Proposal of BETA [3.3]
 |

First complete language definition [3.3] 1979
 |
 1980
 |
 1981 A survey of the BETA Programming Language [3.2]
 |
 1982 Syntax Directed Program Modularization [5.10]
 |

The first implementation [6.1] 1983 POPL paper: Abstraction Mechanisms … [3.3]
 |
 1984
 |

SUN Compiler [6.1] 1985 Multisequential Execution … [5.7.1]
Hawthorne Workshop [3.3] |

Mjølner Project start [3.4] 1986 Dynamic exchange of BETA systems [5.8.7]
Sequential parts stable [3.3] |

Macintosh Compiler [6.2] 1987 Research Directions in Object-Oriented Programming [3.3]
 | ECOOP: Classification of Actions ... [5.10]

Apple and Apollo contracts [3.3] 1988 ECOOP: What Object-Oriented Programming May Be … [5.10]
First draft of BETA book [7.1] |
BETA courses in Aarhus [7.1] 1989 OOPSLA: Virtual Classes … [5.10]

 |
Multisequential parts stable [3.3] 1990 ECOOP/OOPSLA: Strong Typing of

 | Object-Oriented Languages ... [5.10]
 1991
 | TOOLS: Multiple inheritance by part objects [5.5]
 1992
 | BETA Book [3.3]
 1993

BETA courses in Dortmund [7.1] | Mjølner Book [3.4]
 1994

BETA courses in Oslo [7.1] |
 1995

BETA courses in Aalborg [7.1] |
 1996

 |
 1997
 |
 1998
 |
 1999 OOPSLA: Semantic Analysis of Virtual Patterns [6.4]
 |

 2000
 |

Dahl & Nygaard receive ACM Turing Award [3.3] 2001
 |

Dahl & Nygaard receive the IEEE von Neumann Medal [3.3] 2002

