PHYSICAL BLOWING AGENTS

FOR PU / PIR FOAMS – A SHORT HISTORY

PHYSICAL BLOWING AGENTS

More than you wanted to know!

Topics

- Jargon
- Types of Blowing Agents
- How they work
- Requirements
- Nomenclature
- History
- Blowing Agent choices
- Thermal Conductivity
- The Future Blends

JARGON

- HC : Hydrocarbon
- CFC : Chloro Fluoro Carbon
- HCFC : Hydro Chloro Fluoro Carbon
- HFC : Hydro Fluoro Carbon
- ODP : Ozone Depletion Potential
- GWP : Global Warming Potential
- VOC : Volatile Organic Compound

Types of Blowing Agents

Chemical

 Give off Gas with Chemical Rxn or Decomposition → CO₂ or N₂

Physical

- Boiling Point at or near RT
- Expand with heat

How Physical BAs Work

- Low Boiling Liquid
 - Soluble in Raws
 - Insoluble in Foam
- Heat Foam Exotherm
 - SURFACTANT & CATALYSTS
- POOF! FOAM

BA Requirements

- What makes a good BA?
 - Low Boiling Liquid [> RT]
 - Efficient Cost Structure
 - Molecular Weight Low to Moderate
 - Solubility
 - in PU ingredients
 - None in PU polymer
 - Zero ODP, Zero GWP, non-VOC
 - Flammability Low to None
 - Good Thermal Properties

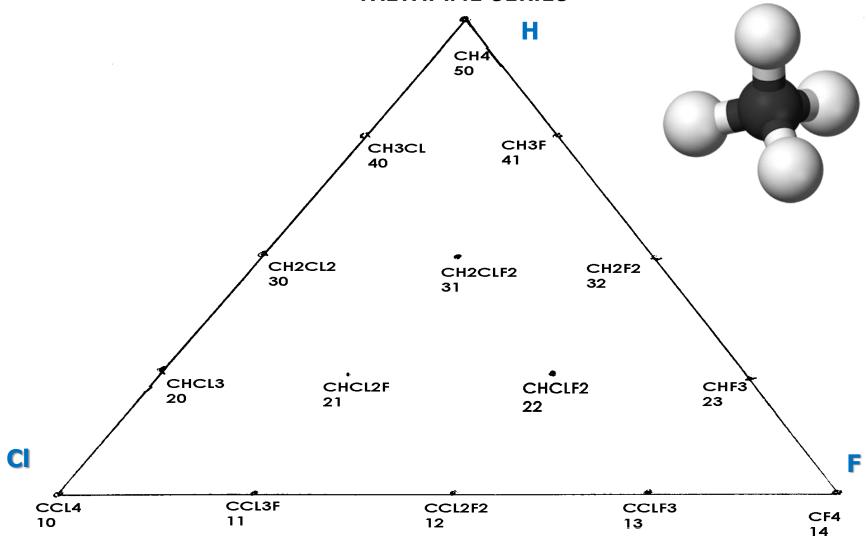
Nomenclature – DuPont System

■ Cn-1 Hn+1 Fn

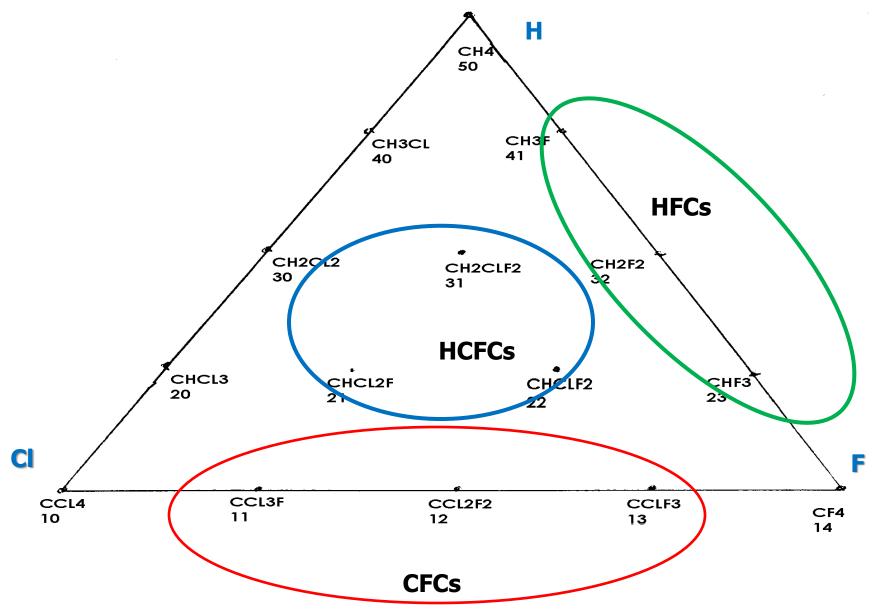
CFC-11 : TrichloroFluoroMethane - CCl₃F F

Currel

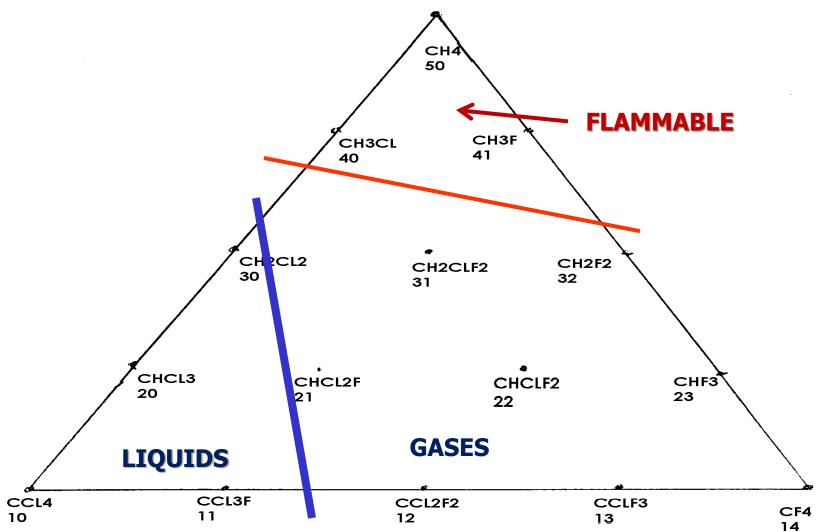
- C = 1 1-1 0
- H = 0 0+1 1
- F = 1 1 1


Nomenclature – DuPont System

- Cn-1 Hn+1 Fn
- CFC-11 : TrichloroFluoroMethane CCl₃F F


Cinic

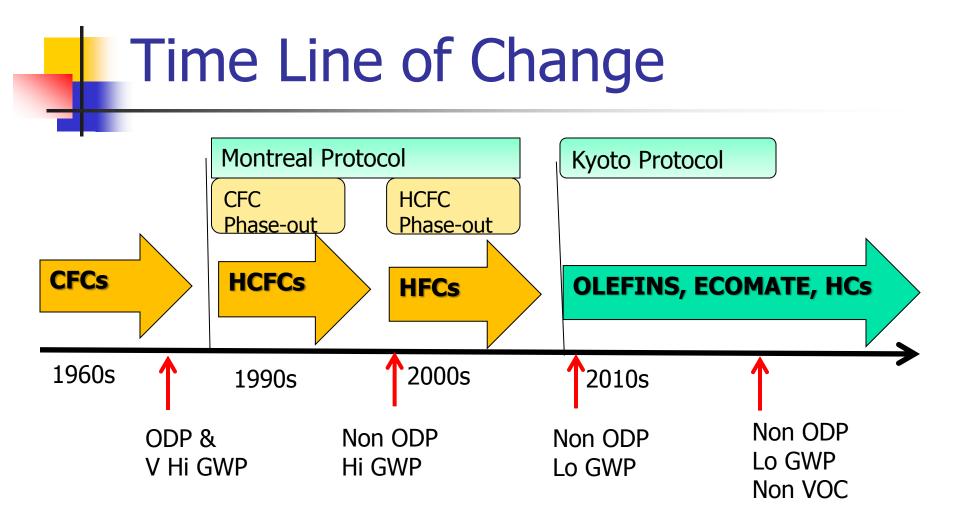
- C = 1 1-1 0
- H = 0 0+1 1
- F = 1 1 1
- HCFC-22 : ChloroDifluoroMethane CHCIF2
 - C = 1 1-1 0
 - H = 1 1+1 2
 - F = 2 2 2


METHANE SERIES

METHANE SERIES



METHANE SERIES


134 eh?

- HFC-134a
 - Cn-1 Hn+1 Fn
 - C=2, H=2, F=4
 - Therefore C2H2F4
 - CHF₂ CHF₂ **134**
 - CH₂F CF₃ **134a**
 - The highest symmetry gets the lowest name!

HISTORY

- First Blowing Agent Water
- Organic solvents Flammability
 - Chlorinated Solvents Hi BPts, Solvency
- Dupont Refrigerants
 - R11BPt>RTPOUR
 - R12, R22 BPt<RT FROTH</p>

Blowing Agent - Environmental Characteristics

 ecomate is an attractive long term environmental option

	ODP	GWP	VOC
CFC 11	1	4000	0
	*	4000	U
HCFC 141b	0.1	630	0
HCFC 22	0.05	1700	0
HCFC 124	0.02	480	0
HCFC 142b	0.06	2000	0
HFC 134a	0	1300	0
HFC 245fa	0	790	0
Cyclopentane	0	11	YES
ecomate	0	0	0

HISTORY

- CFCs ChloroFluoroCarbons
 - R11 : CCl₃F R12 : CCl₂F₂
 - BANNED FROM SALE IN US 1998
- HCFCs HydroChloroFluoroCarbons
 - R141b : CH3CCl2F
 - BANNED FROM SALE IN US 2004, USE 2005
- HFCs HydroFluoroCarbons
 - R134a, R245fa
- HFOs HydroFluoroOlefins pending
 - 1336mzz-Z 1233zd-E

- HCs HydroCarbons
 - Back on scene
 - PENTANES nC5, iC5, cC5
- WATER
 - Used in Packaging, & Foams > 4 pcf
 - Co-Blow w Others for Cost
- Ecomate
 - New kid on Block

Ecomate [METHYL FORMATE]

H^CO^{CH3} C₂H₄O₂

✓ BP 32 °C

- LAMBDA = 10.7 @25°C
- \checkmark GWP = 0 ODP = 0
- MW = 60

Cost Efficiency

Blowing Agent	\$/lb *	Mol Wt	Factor	\$/mole
HCFC-141b	**	117	1.00	Ref
HCFC-22	**	86.5	0.74	-25%
HFC-245fa	****	134	1.15	+350%
HFC-134a	***	102	0.87	+70%
cC5	**	70	0.60	-45%
nC5	*	72	0.62	-70%
ecomate®	*	60	0.51	-65%

Understanding Insulation

 Thermal Conductivity – the ability to resist heat/cold transfer or flow.

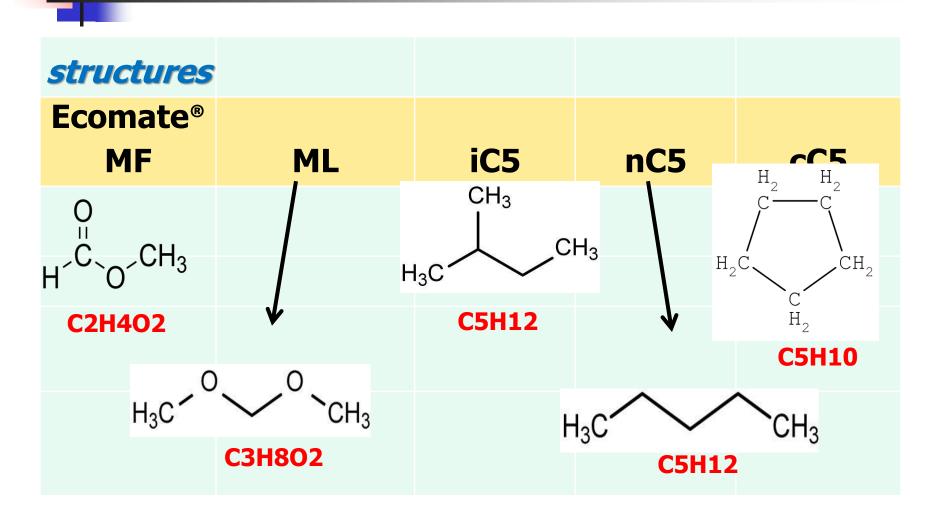
Expressed as:

- <u>K-factor</u> [BTU-in/ft²hrF], or
- Lambda [mW/mºK]
- It is independent of thickness

The lower the K-Factor, the better the insulation.

INSULATION

THERMAL PROPERTIES


Each Generation was poorer than the last

Physical	Thermal Conductivity						
Blowing Agent	Gas Lambda	Avg Foam K-Factor					
CFC-11	8	0.11					
HCFC- 141b	10	0.14					
HFC-245fa	12	0.145					

Each Generation was more Costly !

Current & Past BAs

BLOWING AGT	GAS LAMBDA				
CFC-11	8				
HCFC-141b	10				
HFC-134a	13				
HFC-365mfc	10.6				
HFC-245fa	12				
ECOMATE	10.7				
WATER [CO ₂]	16				
HC-nC5	15				
HC-iC5	14				
HC-cC5	12				

phys	ical						
BA	MF	ML	iC5	nC5	cC5	UNITS	
MW	60	76.1	72	72	70	g/mol	Lowest MW – less needed

physical							
BA	MF	ML	iC5	nC5	cC5	UNITS	
MW	60	76.1	72	72	70	g/mol	Lowest MW – less needed
BP	32	42.3	28	36	49	⁰ C	BP — same as 141b

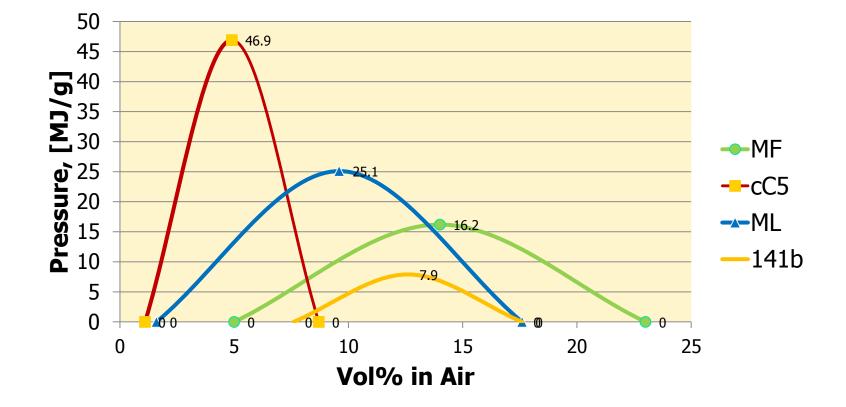
physical							
BA	MF	ML	iC5	nC5	cC5	UNITS	
MW	60	76.1	72	72	70	g/mol	Lowest MW – less needed
BP	32	42.3	28	36	49	°C	BP — same as 141b
λ _{gas} , at 20 [°] C	10.7	11-14	14	14	11	mW/m⁰K	Lowest Lambda – more efficient

physical							
BA	MF	ML	iC5	nC5	cC5	UNITS	
MW	60	76.1	72	72	70	g/mol	Lowest MW – less needed
BP	32	42.3	28	36	49	°C	BP – same as 141b
λ _{gas} , at 20 [°] C	10.7	11-14	14	14	11	mW/m⁰K	Lowest Lambda – more efficient
SpGr	0.98	0.86	0.62	0.63	0.75	g/l	Higher – Like water

environmental							
BA (MF)		ML	iC5	nC5	cC5	UNITS	
ODP	0	0	0	0	0		
GWP	<1.5	<1.5	11	11	11	CO ₂ =1	Negligible GWP
MIR [Smog]	0.06	0.94	1.45	1.31	2.39	ETHANE= 0.28	No SMOG

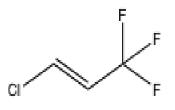
Ecomate – more Environmentally Friendly!

flammab	bility						
BA	MF	ML	iC5	nC5	cC5	UNITS	
FLASH Pt	-19	-18	-51	-49	-37	°C	LESS HAZARD

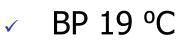

flammal	bility						
BA	MF	ML	iC5	nC5	cC5	UNITS	
FLASH Pt	-19	-18	-51	-49	-37	⁰ C	LESS HAZARD
LFL	5	1.6	1.4	1.5	1.1	vol%	LESS HAZARD

flammal	bility						
BA	MF	ML	iC5	nC5	cC5	UNITS	
FLASH Pt	-19	-18	-51	-49	-37	⁰ C	LESS HAZARD
LFL	5	1.6	1.4	1.5	1.1	vol%	LESS HAZARD
% Oxygen	53.3	42.1	0	0	0	Wt%	LESS HAZARD

flammability							
BA	MF	ML	iC5	nC5	cC5	UNITS	
FLASH Pt	-19	-18	-51	-49	-37	°C	LESS HAZARD
LFL	5	1.6	1.4	1.5	1.1	vol%	LESS HAZARD
% Oxygen	53.3	42.1	0	0	0	Wt%	LESS HAZARD
Electrical	1.92						Water = 4.3 x 10 ⁶
Conductivity	x 10 ⁹	?	<1	<1	<1	pS/m	LESS HAZARD


flammability							
BA	MF	ML	iC5	nC5	cC5	UNITS	
FLASH Pt	-19	-18	-51	-49	-37	°C	LESS HAZARD
LFL	5	1.6	1.4	1.5	1.1	vol%	LESS HAZARD
% Oxygen	53.3	42.1	0	0	0	Wt%	LESS HAZARD
Electrical	1.02						Water = 4.3 x 10 ⁶
Conductivity	1.92 x 10 ⁹	?	<1	<1	<1	pS/m	LESS HAZARD
Heat of							
COMBUSTION	16.2	25.1	46.7	49.7	46.9	MJ/g	LESS HAZARD

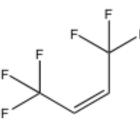
Relative Pressures on Burning



HFOs - Future Stars ?

HFCO 1233zd-E [Honeywell Solstice LBA] \checkmark

- LAMBDA = ? @25°C \checkmark
- \checkmark


MW **130**

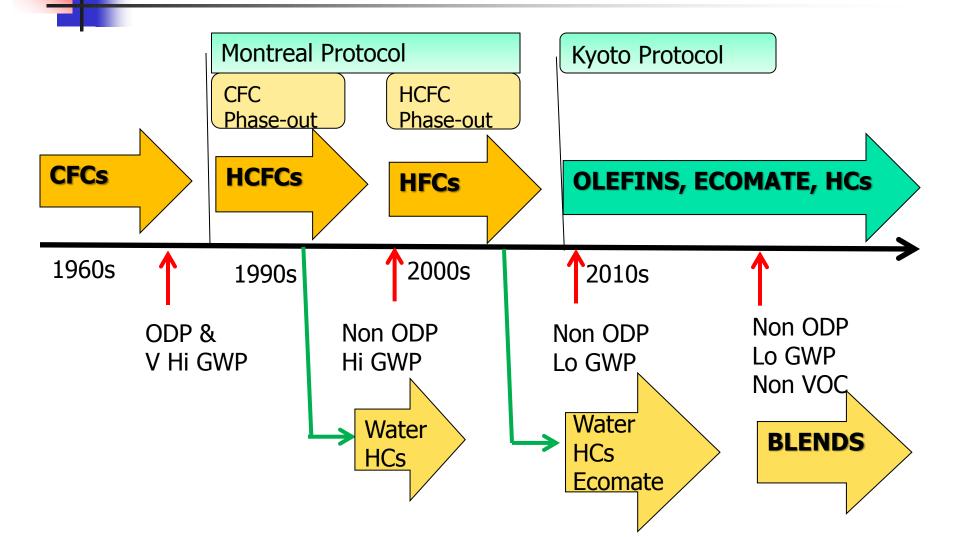
 \checkmark

GWP = <7

HFOs - Future Stars ?

HFO 1336mzz-Z [*DuPont's FEA1100*]

cis-1,1,1,4,4,4-hexafluoro-2-butene


 $C_4H_2F_6$

✓ BP 33 °C

- ✓ LAMBDA = 9.7 @25°C
- ✓ GWP = 9.4

MW = 164

The Future - BLENDS

Why Blend?

- To Reduce Costs
- To Improve Properties
 - Physical
 - . Thermal
 - · Performance
- To Find Synergies

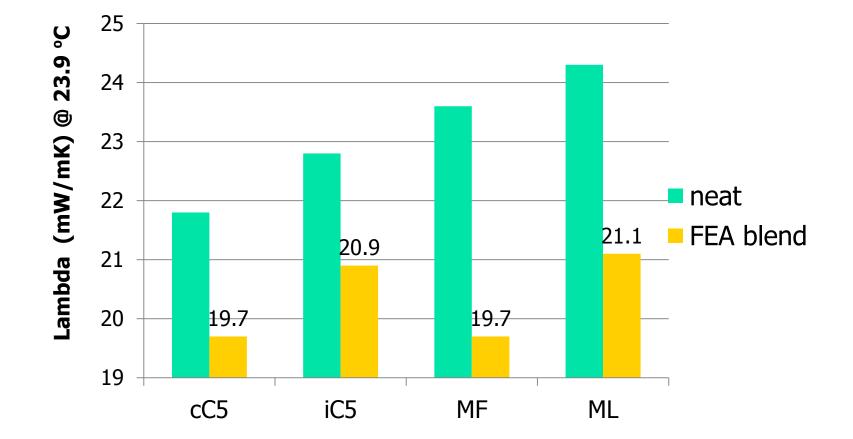
Past Blends

- Blends have always been "the norm"
- CFCs
 - Liquid CFC-11
 - Blends –w Froth CFC-12 allowed low temp applications
 - Lower thermals With H₂O
- HCFCs
 - 141b used more water to reduce solubility, shrinkage

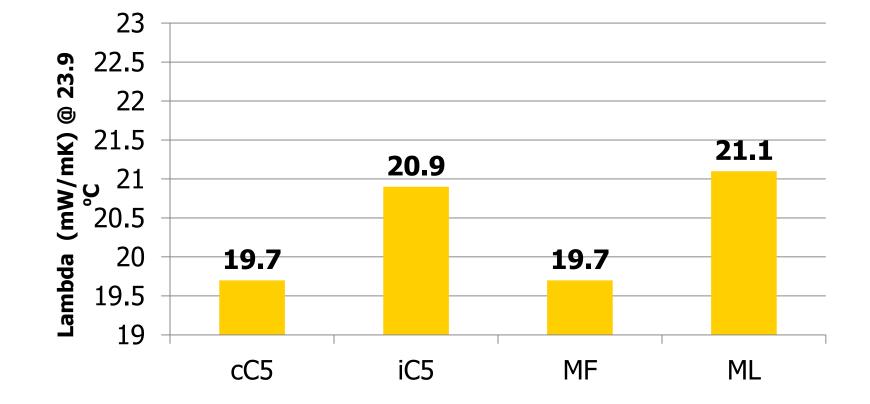
Past Blends

HFCs

- Use still more water to mitigate higher costs
- 365mfc used HFC-227ea blends to reduce flammability
- HCs
 - Only in controlled environments
 - nC5
 - With iC5 to improve reaction profile, reduce catalysts
 - With cC5 to improve thermals

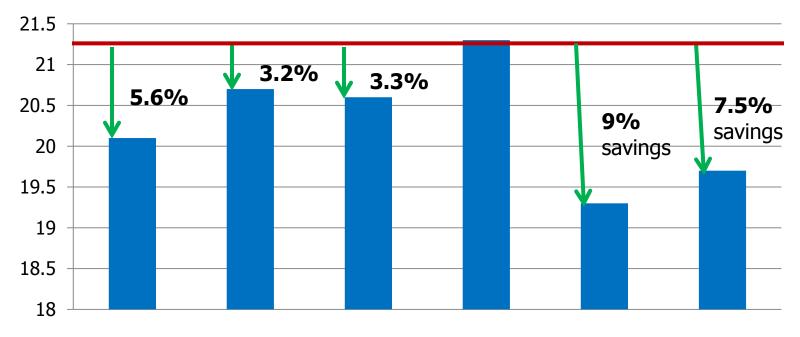

Future Blends

HFOs


✓ HFO 1336mzz-Z [*DuPont's FEA1100*] \rightarrow blends

- Optimize Properties
- Improve Economics
 - Working with
 - HCs
 - Ecomate
 - Methylal
 - Water

Effect of FEA-1100 Blends DuPont Data



Effect of FEA-1100 Blends DuPont data

Benefit of Blends -Refrigeration Foams

Ecomate Blends show Synergy !

Conclusions

BA BLENDS have long been with us

- To improve physical properties:
 - Flow
 - Adhesion
 - Thermal Conductivity
 - Solubility
 - Flammability
- To improve economics

BLENDS – the new Paradigm

Because there is no "perfect" product

- HFOs will be blended also
- Blends w Ecomate will be BEST Choice!

Ecomate <u>BLENDS</u> can be:

- More Thermally Efficient
- More Environmentally Benign
- Less Flammable
- More Economical
- Because <u>neat</u> ecomate already has these properties!

Thank You for your time! ecomate® BY FOAM SUPPLIES, INC.