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iSUMMARY

The results of a Review and Preliminary Evaluation of Lflng
Horizontal-Axis Rotating-Wing Aeronautical Systems (HARWAS) are
presented.

Among the purely aeronautical applications, near-horizontal axis
as well as horizontal axis devices are considered. The former cover
the radial-lift propeller or "self-propellng" wing; the latter cover
Magnus effect and related systems; cyclopro systems and horizontal-
axis propeller systems. with cyclic pitch. A limited investigation of

0 non-aeronautical applications of HARWAS is also made, which covers
wing-rotor type windmills, cyclogiro windmill tarbines, Magnus effect
ship propulsion and cycloidal ship propulsion.

Approsimaely 1200 references are listed. A series of cross-
index tables Is also included to provide a quick means for.the reader
to determine the content and availability of the references.

An analysis of the various lift systems pertinent to the HARWAS
field ts made with a view to potential air vehicle applications. Over 20
original aeronautical applications are Identified and evaluated in the
lg of recent advances In power plants, transmissions and lightweight
structural techniques. This analysis points out the extraordinary
variety of HANWAS and Identifies promising new aeronautical systems,
especially wing rotor aerial delivery devices the rotating airfoil flap
STOL airplane, and the cyclogiro VTOL or dTOL airplane.

A preliminary performance and design study of two promising
HARWAS concepts is also reported. The two concepts are the STOL
lgstics aircraft using a rotating airfoU flap and the amplified high-
phcy o for application to the composite aircraft mission.
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FOREWORD

This report is the final report prepJtred by the Aertphysics

Company in the performance of Contract W)AAJ02-67-C--004 (Task IF
162204A14231) for the U. S. Army Aviation Materiel Laboratories
(USAAVLAB). It describes a comprehensive review and evaluation
of all known horizontal-axis rotating-wing aeronautical systems
(HARWAS).

The research program was performed during the period from
March 1967 to September 1968. Technical monitoring of the project
for USAAVLABS was by W. E. Sickles.

The report is presented in three parts correspondig to the three
phases of the program.

The first part discusses the bibliographical search; the biblio-
graphy itself ia shown in Appendixes I and I. The second part presents
an analysis of the material discovered during the search. The third
part shows the results of the preliminary performance and design study
of two promising concepts which were Identified in the second part:
the rotating flap STOL aircraft and the V/STOL cyclogiro transport.

In the conclusion, the various aeronautical systems that were
identified are classified in the order of potential interest.

The authors would like to acknowledge the considerable assistance
that they have received during the compilation of this report from the
Stack and Reader Division, Library of Congress, and the staff of he
National Air Museum. Special thanks are generally extended to all of
those interested persons who acknowledged the general inquiry letter.This form letter, which was given wide gdertribution was a ueful tool

in unearthing background information which would not necessarily have
been found in the literature search. Further thanks are due F. Eastman,
H. Focke, H. Platt, and I. Laskowltz for their detailed contributions to
the report background.

The authors gratefully acknowledge the following sources for
the photographs appearing in this report:

1r From Poggendorff's "Annalen der Physik
und Chemie", v. 88, n. 1, 1853.

2 From Reference 9A.

5 National Archives.

6 National Archives.

7 By Douglas Rolfe for Air Progress.
8 By Douglas Rolfe for Air Progress.
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INTRODUCTION

In the growth of aircraft technology, lifting devices that rotate
around a horizontal axis have been proposed and studied on many
occasions, only to be discarded in favor of fixed-wing aircraft or of
the htelicopter rotor. It is the intention of this study to make a pre-
IL, lnary review and classification of all such devices and to evaluate
them in the light of current structural and aerodynamic technology
against requirements for higher performance rotating wing and com-
posite aircraft. As far as is known, such a review has never been
done before.

The project is divided into three phases:

Phase I - BIbliographical Search
Phase H - Ahalysis
Phase I - Preliminary Performance and Design

of Two Promising Concepts

The report is also divided into three parts corresponding to the three
phases. The references and the cross-index tables are presented as
appendixes.

The investigation uncovered a larger amount of material than
was anticipated. It was not possible, therefore, to go into as much
detail for each topic as would be desirable. No attempt was made to
use a consistent and completely defined set of symbols.

Because of the exceptionally large number of picture credits,
these are listed separately in the Foreword.

All devices discussed in this report are referred to as: Lifting
Horizontal-Axis Rotating-Wing Aeronautical Systems (HARWAS).

......



HARWAS BIBLIOGRAPHY

Scope of the Search and Survey

The bibliography search consisted of a detailed review of
periodicals, journals, reports, newspapers, films, patents, and books,
as well as interviews with technical researchers in the field of horizontal-
axis rotating-wing aircraft systems. It has resulted in the biblio-
graphical Collection presented here. The broad and general nature of
this collection is reflected by the inclusion of material not directly of
an aeronautical nature. It is obvious that this additional material
strongly complements the aeronautical background of the other refer-
ences. For example, the theoretical treatment of the cycloidal propeller
and its mechanical arrangement is of direct application to similar
aeronautical problems. Another example of this double utility is the
case of the wing rotor systems where the enhancement of horizontal-axis
windmill performance indicates a means of also improving the wing
rotor as an aircraft lifting system. Other examples of the complemen-
tary usefulness of these allied technical areas may be sensed by an
examination of the cross-index tables.

The search began by looking up the citations in a number of
accumulated references. This process was repeated several times,
with the number of references involved growing to several hundred. It
rapidly became obvious that a more efficient type of search would be
necessary f the search was to be continued. This technique of looking
up the citations in each reference generally went backward in time in
the same problem area.

The contert of the material varies from the complicated theoretical
to the fascinating antique. In a review of this order, it is felt to be
pertinent to include some of the more noteworthy older works. In the
general spectrum of aeronautical development, the present knowledge
on HARWAS might be considered at that evolutionary level the fixed-
wing aircraft was at, say, in 1910. One point that this review may
reveal to engineers and innovators of "advanced" aeronautical systems--
In the words of Mademoiselle Bertin, milliner to Marie Antoinette-- is
that:

"There is nothing new except what is forgotten."

Naturally, other existing broad-area bibliographical coilections
were carefully examined. These would be generally:

Technical Abstract Bulletin (TAB/DDC) Indexes
and Abstracts

Government-Wide Index to Federal Research and
Development Reports (GWI/CFSTI)

Scientific and Technical Aerospace Reports (STAR/
NASA)
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International Aerospace Abstracts (IAS/AIAA)

The collection of the Defense Documentation Center was examined by
means of various bibliographical requests and machine searches.

Secondary and specific bibliographies (for example, References
46B and 47B) were examined for further background. Nearly all of the
books, periodical serial publications, and pre-1950 report material was
examined directly in the stacks of the Library of Congress. This search
has been generally through the engineering technology area and specif-
ically, in the very extensive aeronautics collection.

Besides search by the means of cross-checking other author
references, a very effective means of uncovering fresh references, lost
material, and obscure publications was the mass search by hand, piece
by piece, through pertinent journals and publications. Although such a
task could not be completed altogether, the time spent was rewarded
with many sources of unusual interest.

The earlier material published before 1920 may be of limited
technical value, especially the innumerable patents. Some of this back-
ground information is, however, cited in those instances where the
descriptions or disclosures show a definite understanding of the problem
at hand, an awareness of the aerodynamic forces at play, and the
description of realistic structures and workable mechanisms. Often,
some of the earlier material is included which demonstrates an intriguing
mechanical solution or mechanism which might suggest an evolution of! ideas toward a more modern solution.

The patent literature is a special case of the technical background

and is all too often neglected in surveys such as this. Admittedly, the
patent description is essentially a technico-legal document and nearly
always avoids or purposely overlooks the use of formulas and those
mathematics so essential to the enquiring engineer. Nonetheless, ifone learns the style of reading out the technical essence of a patent

description, the results are often useful. This is particularly so to the
design engineer.

Some general comments on the patent material are in order here
to help toward a better understanding of, and a guide to, their technical
usefulness:

1. One of the main purposes of the patent search was
to intercept, classify, and retrieve any of the earlier material
that demonstrated any applicable realistic technical worth.
With this review of thousands of aeronautical patents it be-
came very difficult, with the very few moments which could
be spent scanning an individual patent, to make a positive
technical assessment of the value of an inventor's idea or
device. One had to be able to literally, at a glance, accept or
reject the patent on the spot.
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2. One must have a general knowledge of the inventor's
intent with his patent and must not be misled by the patent's
drawing presentation (often no more than a technical cartoon)
or the technico-legal language of the body of the patent proper.
The often exaggerated proportions of the material pictured in

-patent description drawings must always be considered as a
means of calling attention to certain novel portions or functions
of the patent. There was always the temptation to dismiss a
perfectly sound techninal invention because of its odd presen-
tation in the drawing. lAteral engineering or shop drawings
hardly ever make acceptable (to the examiner, for example)
patent presentations.

3. Most often the inventor's intent was described in
the preamble of the description or occasionally in the central
explanation of detailed functioning. The patent claims were
seldom of direct technical interest. Often a series of patent
descriptions and patented devices would appear to be repetitive
in their invention. This was often quite exasperating when one
was attempting to make quick "go/no-go" decisions whether
to accept or to reject a particular patent. A closer examination
of the description in this case would nearly always reveal
subtle and often very clever improvements over prior patent
art.

4. One is often at a loss as to how to handle patent
material of the 19th and early 20th centuries (up to about 1910),
especially in matters of the cyclogiro or paddle wheel concepts.
There was such a bulk of it' This search indicated that the
horizontad-axis paddle wheel system is probably the most fre-
quently used concept for aeronautical propulsion and sustenance--
possihly even by number, in excess of the screw or propeller
system. A moment's reflection shows why this is true. If one
reconsiders the background of naval propulsion of this time--the
stern and side wheelers--it was only natural to extend this thinking
to yet unproven aircraft systems. Today, this material may be
considered to be only a technical curiosity. Although the basic
mechanical arrangements are often sound, the aerodynamic
performance, with a very few outstanding exceptions (to be
described), would appear to be about nil. A total review of this
material would have been of benefit orly to a patent examiner
where a search of all prior art is required as standard patent
procedure.

5. There is no question that a patent search of this mag-
nitude was the perfect complement to the search of technical
publications, periodicals, and reports. A researcher would often
not disclose in an open journal that which he would (since he then
has protection) in a patent. The patent, therefore, often supports
the other technical publications. A patent, on the other hand, is
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a very prejudiced document and is useful only for a qualitative
understanding of the function of a particular device.

The search of the patent literature at this level can be shown to be j
a very useful tool. It demonstrates the abundance and availability of
ideas, most of which are in the public domain. One of the continual
temptations of the practicing engineer is to reinvent old ideas and, withenough incentive, to expand upon them. One feature that is unmistakably

i shown in a review such as this is the repeated occurrence of discovery

and rediscovery of identical ideas by investigators who are completely
unaware of the former results of identical or similar ideas, theories, or
tests. It is in this case that a review such as this can serve as a strong
tool to prevent such duplication and can serve, in its stead, as a means
of cross-fertilizing older ideas to produce new advancing ideas. All in
all, the review may well furnish that heuristic background from which
come the technological breakthroughs and state-of-the-art advances.

The patents collected herein, although fairly complete, should
not be regarded as a substitute for a final or professional patent search.

Another source of background information was sought from direct
interviews with some of the authors or inventors. Initial contact withthese interested persons was made through the use of a general inquiry
form letter which was mailed widely to persons and institutions through-
out the world. Response to this letter was moderately favorable, as
it revealed unpublished material and otherwise obscure references.
Some findings from the personal interviews resulting from this letter
have been incorporated in the previous background discussion.

As an aid to the reader, several similar bibliographies have been
included which cover adjacent fields of interest and application. The
cited AGARD VTOL/STOL Bibliographies (Reference 6A and its sup-
plements) may be used for comparative systems evaluation. The
extensive FitzPatrick bibliography (Reference 15F) on natural flight
covers the older references on unsteady aerodynamic prnblems as
possibly encountered in most instances with horizontal-axis rotating-
wing aircraft systems, as well as most citations on insect flight aero-
dynamics. This latter area is of interest to the problem of the cyclogiro.

At the writing of this report most of the nearly 1200 listings have
been verified with the exception of those specifically "not searched" in
the index table. The actual reference, a copy thereof, or a microfilm
version has been actually examined.

It is pertinent to mention at this point that the bibliographies
appearing at the end of reports and articles contain too high a percentage
of errors. This makes the locating of references extremely difficult.
Often the error is repeated through a series of publications, which
indicates either that the bibliographies are copied from other reports
or that very little proofreading or checking of bibliographies is done
by authors.

The reader will make note of the fact that no classified reports
are listed in the bibliography.
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Presentation of Results

Each reference citation is assigred a number to establish its
order and to identify it in the cross-index tables. The references are
generally listed in alphabetical order according to the author's last
name. In very many instances, especially in the periodical literature,
articles of interest have been presented without the credit of a specific
author. More likely than not, this material will discuss a particular
project or the work of a specific inventor or engineer. This 1m terial
is thus entered into the body of the bibliography under the inventor's
name, placed in parentheses, and arranged in an approximate alpha-
betical manner. Many reports were found which did not specify a par-
ticular author, and these too have been entered alphabetically by
corporate issuing agency name or title.

Some of the references, especially those of a report nature, could
be cited as published from more than one publication source. Thus, for
example, a thesis may appear as a laboratory report, a journal article,
or a meeting preprint. In such instances of multiple publication, the
most readily available retrieval source is cited, and the alternate
sources are briefly noted.

In the instance of the translation of foreign material into English
text, the English reference source is given as the primary citation,
with the original foreign language reference noted.

Patents are cited in alphabetical order by the inventor's last name.
Inventors will often patent the same invention in one or more countries.
In cases where this has happened, the United States or British English
language patent is considered to be the primary citation, and the alter-
nate foreign patents are noted.

The slant mark used with some British numbers is preceded by
the last two numbers of the official A.D. (anno Domini) date. Until
about 1913, British patent numbers were repeated annually. In general,
six-digit numbers on British patents do not need the A. D. date for
complete identification. Several of the cited British patents are not to
be found in the collection of patent specifications and drawings but only
in the British patent abstracts. These omitted patents were never
formally issued. In some instances, foreign patents are issued in the
name of a firm, and this name is used because the inventor remains
anonymous.

Explanation and Key to the Index Tables

A series of cross-index tables is included to provide a skeleton
form of reference abstracts and to provide a quick means to determine
the content and availability of references. With these tables it becomes
possible to search out a combination of subject or interests to a number
of specific sources. By scanning the appropriate columns of descriptors,
the scope of a particular reference may be quickly determined.

6

~I



For the fullest understanding and use of the cross-index tables,
the following key to some of the descriptors will serve to broadly
explain their coverage:

1. Cyclogiro or Cycloidal Propulsion. This category
includes and broadly covers aeronautical or marine lift and
propulsion devices in which a multibladed feathering rotor
system is rotated about a specific axis. In aircraft, this
axis is usually horizontal; in marine applications, vertical.
This group may also include devices which also extract
energy from a moving fluid medium (mills or pumps).

2. Wing Rotor. This category includes winged systems
in which a fixed-geometry foil or blade rotates about an axis
to produce thrust and, in the case of mills torque. Thrust
or lift isproducd on these vaned devices b6 Magnus effect.
Most of these devices autorotate in an air stream, and power
may be extracted from the axis shaft. Lift mzwy be enhanced
in the wing rotor system by driving the system above its
natural autorotating condition by an exterior power source.
The wing rotor must be impressed in a moving current to pro-
duce thrust or resultant forces.

3. Magnus Cylinder. This group includes a cylin-
drical rotor device operating much like the wing rotor to pro-
duce thrust or lift by Magnus effect. Unlike the wing rotor,
it must be rotated by power, and, as a cylinder, it cannot
absorb power in itself from a moving current. Like the wing
rotor it also must be impressed in a moving current to pro-
duce lift or thrust.

4. Cross-Flow Fan. This group includes a multibladed
fan or pump device not too unlike certain cyclogiro systems but
with a fixed geometry. Like the cyclogiro system, the cross-
'flow fan will produce static thrust when its shaft is power
driven. As there is a large general description of this fan
system in the engineering literature, the reader is referred to
References 3E and 4E for a review in this area. The cross-flow
fan, or tangential blower as it is sometimes called, may have
a rotor with blades shaped somewhat like those of a forward
curved centrifugal fan impeller. Unlike the common squirrel-
cage fan rotor, both ends of the rotor or impeller are sealed,
and the rotor is fitted into a casing or shroud in which the air
enters at the periphery on one side passes through the rotor,
and leaves on the peripheral face at the other side. Refer-
ences included here describe this fan as iappliba to V/STOL
aircraft only.

5. Other. This group Includes various other systems
which have been suggested, tested, or built in which a winged
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or rotor system rotates about a horizontal axis. Among these,
for example, is the Thrust Wing (German), Helicoplane
(French), or Radial-Lift Concept (Curtiss-Wright), in which
an especially designed VTOL propeller blade and feathering
mechanism may be arranged to directly furnish a substantial
vertical component of lift while the propeller axis oi rotation
is nearly horizontal. Also, miscellaneous devices of interest
are loosely classified in this category.

6. Theoretical Exposition. This category includes
references in which an analysis is presented toward the
understanding of a phenomenon or toward the answer to a
specific problem. The text may be merely a hypothetical
discussion or may be supported by detailed mathematical
and graphical formulations. For a more comprehensive
means of determining the content and method of approach
of the fully theoretical references, it is suggested that the
reader first review related summsries in the interpretative
review and cross-index tables those items called out in:
12 - Review.

7. Performance. This group includes a qualitative
and/or quantitative discussion of performance, range, etc.,
especially that of the complete system.

8. Stability. This group includes a qualitative and/'or
quantitative discussion of stability of a compiete flight system
and its criteria.

9. Control and Maneuverability. This category
discusses in a qualitative and/or quantitative manner, con-trollability, control means, and mechanisms. Maneuverabilityis discussed primarily with reference to marine systems.

11. Phenomenon Demonstration. Discussion and
demonitration of basic HARWAS fundamental flight mechan-
ics such as in the deflection of spinning missiles in flight,
the autorotation of free-falling cards and shapes, the
curved flight of baseballs, the tumbling of aircraft, and the
like are discussed under this heading.

12. Review. A category in which the reference covers
an interpretative, comprehensive background revie.v and
evalaation.

13. Comment of Interest. A usually brief statement orclipping often accompanied by a photograph or drawing describing
a matter of some tecbmnical impotenace. Usually the content ofthe statement does not warrant the full attention of a report

or article, yet it is nt altogether trivial for its background.
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14. Aircraft Sustentation. This category pertains to
an aeronautical system which is concerned primarily with
the production of lift.

15. Aircraft Propulsion. This category pertains to
an aeronautical system which is concerned primarily with
the production of thrust.

When both items 14 and 15 are checked, the system may
usually be considered to be that of a fully controllable
cyclogiro device.

16. Marine Propulsion. This category pertains to a
nautical system concerned solely as a thrust.-producing
device. Below the waterline, this may be a cycloidal pro-
peller; above, it may be a sailng Magnus or w'ng rotor.

17. Complete Aircraft. The system as applied to a
complete flying article as opposed to a test component will
be discussed under this heading.

18. Complete Ship. This group discusses the complete
marine system, including problems of hull hydrodynamics,
interference, and overall performance.

19. Rotating Flap or Slat. This category pertains to
an autorotating or powered wing rotor or Magnus cylinder
used in conjunction with a fixed aircraft to enhance lift circu-
lation and/or to energize the boundary layer. Such systems
are to be considered as auxiliaxy to the main lifting wing.
They may be located at or near the trailing edge (flap), in or
near the leading edge (slat), or above or below the main wing
sLrface. They may, at times, be retracted or faired into
the structure oL the fixed wing.

20. Convertible Rotor to Wing. These are systems in
which the rotor (wing rotor or cyclogiro) may be stopped and/or
started in flight are discussed under this heading. The blade
of the stopped rotor is then considered to be a fixed lifting wing
of the converted aircraft.

2.. Rotor-Rotor. This is a system peculiar to the wing
rotor or Magnus cylinder in which the horizontally rotating
rotor system is corotated about a vertical gxis or shaft. In
essence the rotor then may be considered to be a replacement
for fixed blades (say. for exzmple, in the case of thrust propel-
ler). This group may" dso apply to decelerators, windmills, etc.

22. Device Other Than Aircraft or Marine System. As
indicated by the following key letters, HARWAS may be applied
to the following devices:
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B - Bomblet
C - Control Device
D - Decelerator
F - Fluid Motor or Meter
K- Kite
W - Windmill

23. Feathering Pitch System. Refer to Figure 92 for
key. This category classifies cyclogiro feathering systems
by blade motion relative to rotor axis of rotation.

24. Rotor Systems per Installation. A rotor system
is considered to be that independent collection of cyclogiro
rotor blades or wing rotor vanes that, together, function as
a singular lifting or thrusting system. Thus, the arrange-
ment for Figure 64 is considered to have one rotor, that of
Figure 68 is considered to have two, and that of Figure 59 is
considered to have four rotor systems.

25. Number of Blades per Rotor. Rotor systems may
have one or more bL des as numbered in index. M stands for
multiple, more than eight. Savonius wing rotor systems are
considered to have two blades per rotor.

26. Blade or Rotor Profile. This category discusses
profile or cross section of rotors, a prominent parameter
in wing rotor studies. Subindexed in the following manner,
they are:

A - Conventional
C - Cylinder
D - Driving or Auxiliary

Vanes System
E - Ellipse
F - Flat Plate
G - Regular Geometric Shape
I - Irregular Geometric

Figure
L - Lenticular
P - Powered, Driven by

External Source
R - Rectangular, May Have

Rounded Edges
S Semicir-ular Halves,

Savonius
X - Cruciform, Three or

Four Points

27. Tip Path Other Than Circular. In cycloidal pro-
pulsion rotors, the blades usually sweep out the surface of
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a cylinder, but, in some (mainly aeronautical) arrangements,
they may describe a cone or other irregular truncated devel-
opments (in an attempt to simulate insect wing motions).

28. Auxiliary to Fixed Wing. Rotor systems are used
to increase lift or drag. Theymay stop, start, convert,
retract, or otherwise supplement aircraft control or perfor-
mance.

30. Flight or Drop Test. The test in which horizontal-
axis rotating-wing aircraft systems are flight-tested or
dropped in wind tunnels (both horizontal or vertical), from
aircraft, balloons, or towers is discussed under this heading.

58. Presentation.

B- Book
P - Patent Description
R - Report
S- Serial Pubhcation
T - Thesis

59. Classified. References under this broad classifi-
cation may be considered to have limited distribution to one
degree or another. They may be generally considered to be
Secret, Confidential, Restricted, Limited, Controlled Access,
or not available for foreikn circulation. This material is to
be found in a supplementary reporL

60. Company Proprietary. Material which is limited
in its distribution and availability, in that it is usually gen-
erated for a particular organization for in-house knowledge
or business falls under this heading. These references may
consist of proposals, laboratory reports, etc.

61. Not Generaly Available. This category refers
to references which are not available to the general public at
the time of this writing for a variety of reasons. Also see
Index Items Nos. 59 and 60.

64. Not Searched. This category is cited where the
zeferences were not examined by the authors because of their
immediate unavailability and the lack of time required to search
for them. The reader may therefore only know of their exis-
tence, sense the content from the title, and hope to have
better access to sources.

Status and Retrieval of References

Nearly all of the books, journals, serial publications, newspapers,
general publications, and reports issued before 1950 are to be found in

11



the collection of the Library of Congress, Washington, D. C. This
material is readily available for examination at that library. A limited
amount of this material (that is, that material which is not specifically
copyrighted) may be copied by the photoduplication service of that
library. Much of this material may also be obtained outside of Wash-
ington, D. C., on a library loan basis.

j An alternate source for some of this earlier material, and for
much of it that has been published since then, is the Technical Informa-
tion Service, American Institute of Aeronautics and Astronautics (AIAA).

Those German World War II aeronautical publications that for-
merly were part of the Defense Documentation Center collection are to
be found in the microfilm collection of the National Air Museum, Wash-
ington, D. C. Those German documents with Department of Commerce
Publication Board'(PB) numbers may also be purchased through the
regular Clearinghouse for Federal Scientific arid Technical Information
(CPS"I.

Those individuals or organizations within the Government or
working on Government contracts, if presenting the proper field oi
interest register and other requirements, can obtain most of the
Government-sponsored reports issued since 1950 from the Defense
Documentation Center (DDC). All of the NACA/NASA reports, memo-
randums, notes, etc., are available, in a similar manner, from the
NASA Scientific and Technical Information Facility.

Domestic and foreign patents may be directly examined in the
search rooms of the U. S. Patent Office, Washington, D. C. Domestic
patents may be purchased by mail, for cash ($. 50) or special coupons,
from the U. S. Patent Office, Washington, D. C. Only the patent
number is required to identify the order. Foreign patents are also
kept in the Patent Office library in bound volumes by number or classi-
fication. Zerox copies may be made ior $ .50 per page only at the main
Patent Office. Domestic patents may be examined in one of the 22 patent
copy libraries around the country. In order to examine patent material
outside Washington, D. C., refer to: "How to Obtain Information From
U. S. Patents" U. S. Department of Commerce, Patent Office, Wash-
ington, D. C. (for sale by the U.S. G.P.O., Washington. D. C., $. 20).
Foreign patents may best be obtained by writing directly to the foreign
patent office in question. The current addresses of these offices and
their patent costs are described in the front portion of each issue of
CQbemta Abstracts1
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ANALYSIS

I. HORIZONTAL-AXIS LIFING DEVICES
A. MAGNUS EFFECT AND RELATED SYSTEMS

1. Wing Rotor (Rotating Airfoil) Decelerators

a. Introduction

Some aerodynamic properties of autorotating or forcibly
rotated cylinders and airfoils were investigated even prior to
the beginning of aviation. It was Maxwell who wrote the earliest
(1853) known paper on the subject (Reference 41M). That en-
tirely nonmathematical paper tried to explain the curious be-
havior of an oblong card which, left to fall freely in the air,
started immediately to rotate about its longitudinal axis while
deviating from the vertical in the horizontal direction perpen-
dicular to the axis of rotation. Steady "terminal" conditions are
soon reached, in which speed, rate of rotation, and path angle
are all constant. This simple experiment revealed at once two
important properties of an "aerofol of large aspect ratio": (1)
ability to autorotate; (2) ability, when rotating in an airstream,
to create an asymmetrical pressure distribution, resulting in
a force normal to both axis of rotation and mainstream velocity.
About the same time, the famous "Magnus effect" on rotating
circular cylinders was discovered, but it was not until the
Kutta-Joukowski theory of aerodynamic lift appeared some 50
years later that a more general understanding of the "lift
through circulation" principle became possible.

Very little has been done to exploit the use of airfoils
rotating about a horizontal and transverse axis for generating
lift in aircraft. The basic reason is that a rotating airfoil as
the main lifting surface of an aircraft can generate high lift, but
this is accompanied by a correspondingly high drag, so that it
will have a lower lift-to-drag ratio than the corresponding fixed-
wing configuration. The configuration is not competitive for
standard aircraft applications.

Such rotating wings have been proposed in recent years
for other aeronautical uses, particularly as "aerodynamic
decelerators", for the air-to-ground precision delivery of cargo
payloads. Such applications will be discussed in detail later in
this section. The main features of the aerodynamics of rotating
airfoils will first be reviewed. Aerophysics Company suggested
in 1964 that devices embodying the use of single airfoils rotatirg
about a horizontal and transverse axis be called "wing rotors".
This name will be used extensively in the discLssion that
follows.

13



b. Pictorial Review

Magnus' original experimental apparatus, by means of
which he established the existence of a side thrust on a rotating
cylinder in an airstream, is shown in Figure 1 (Reference 13M).
Thus, in Figure 2A, a stream of air is continuously discharged
from the radial blower F as long as the crank-wheel E is kept
in rotation. This air impinges upon the rotating cylinder and
the deflection of the airstream will be indicated by the weather-
vaning of the pivoted surfaces a and b. In Figure 2B, the radial
blower discharges air onto the heavy brass cylinder mounted
between bearings a and b. This Magnus cylinder is set into
prolonged rotation by means of the small pulley e and a quickly
pulled and unwinding starter string. The Magnus effect on the
system will now cause the spinning cylinder, along with its
supporting beam y - z, to slowly rotate in a horizontal plane
about the vertical axis c - w. The lower board B - A, which also
carries the blower F, is so arranged with the vertical pivot,
that it will tend to rotate and lag behind the moving Magnus
cylinder, thus demonstrating the continuous side or Magnus
force produced by the rotating cylinder.

The original autorotating wing rotor device with a useful
payload, found in nature, the locust tree seed pod (Robinia
pseudoacacia), is shown in Figure 1.

Figure 1. The Original Autorotating Wing
Rotor Device With Useful Pay) oad
Found in Nature: The Common
Locust Tree (Robinia pseudo-
acacia) Seed Pod.

The first measurements and primitive theory on wing
rotors were made by Ahlborn in 1897; his apparatus and typical
trajectories are shown in Figure 3.

14
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Koppen's wing rotor glider (1903), of which modelswere built, is shown in Figure 4.

Another early wing rotor system, devised by Ames, is
shown in Figures 5 and 6.

Several airplanes using Magnus cylinder lift for their
main sustentatlon have been proposed at various times. Two
such odd configirations are shown in Figures 7 and 8.

Wing rotors have often been used as toy kites.

A serious attempt was made in the thirties in France
by Chappedelaine to develop an airplane with a main wirg
rotating about a horizontal axis. The ?iArogyre", show, in
Figure 9, was built and flown. However, it crashed, and the
project was abandoned. Perfermnnce of the aircraft is shown
in the performance curves of Fir ures 15 and 16 (References16C through 26C).

This project though unsuccessful, is worth more than
a passing mention, because the aircraft was basically sound.
The reason that Chappedelaine used a rotating wing was that
he knew he could obtain a Wgher lift out of a rotating wing,
either autorotating or self-powered, than out of the same wing
operating as a fixed wing. He intended to use this feature for
takeoff and landing only, and to lock the wing for cruise flight.
The "A6rogyre" type aircraft thus would have been a short
takeoff and landing (STOL) airplane with the high cruise efficiency
of the fixed-wing airplane and the additional safety of the auto-
rotational landing.

Modern versions of de "Arogyre" type aircrat have
been proposed in the United States (Foshag, 1947; see Figure 11)
and, very recently, in Germany (Horstenke, one of whose
models is shown in Figure 12).

As a result of work done in Germany at the end of
World War II, recent interest has been expressed in using
rotating airfoils, not as main lift units but as auxiliary high-lift
devices on aircraft wings. Crabtree, in 1957, reviewed the
state of the art (Reference 52C). Fo-lowing work done by
Alvarez-Calderon since that time (References 18A through 24A),
NASA/Ames is currently testing a rotating cylinder flap on a
COIN-type aircraft (Reference 31A). Noncyllndrical rotating
devices can also be considered; two such configurations are
shown in Figure 10.

Most research and development work currently per-
formed in the United States on Magnus rotors and wing rotors
is related to the dynamics and aerodynamics of bomblets. This

1.7
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Figure 4. Early (190) 'Wing Rotor Glider Project Demonstrated
by Koppen as Model (Ref. 52M).

Figure 5. Navy-Assisted Magnus Effect Aircraft by Ames (1910)
Mour'ted Atop Fast Steam Launch (Ref. 26A).
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by Ames (Ref. 25A).
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for STOL Conversion. (Refs. 16C through 26C).
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Figure 11. Eight-Foot Wing Rotor Sailplane (1947) Demonstrating

Good Flight Performance and Stability About All Axes.(Ref. 65F).

Figure 12. Successful Powered Wing Rotor Model by Horstenke
(Refs. 52H Through 59t. The Larger Model
Is Controlled by Radio Command.
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work is concentrated at the Edgewood and Detrick facilities,
as far as the Army is concerned, and at the Air Force Arma-
ment Laboratory, Eglin Air Force Base as far as the Air
Force is concerned. This work is mostly of a classified nature
and will not be discussed further here. It is summarized in the
Proceedings of the Conference on Dynamics and Aerodynamics
of Bomblets, which took place at Eglin Air Force Base, Florida,
September 26-28, 1967.

c. Aerodynamics and Dynamics of Wing Rotors

A conventional airfoil or wing placed in an airstream
will not usually autorotate if its center of pressure and its
chordwise center of gravity approximately coincide. One can,
however, create a strong pitching moment and cause auto-
rotation of any airfoil by moving its center of gravity backward,
sufficiently far from the center of pressure. Similarly, a flat
plate, a modified rectangular shape, or a cylinder with driving
vanes will autorotate; the Magnus smooth cylinder is about the
only one that will not. Actually, there are consi'erable differ-
ences between the wing rotor and the Magnus cy! Ader. The cir-
cular cylinder enforces circulation through viscosity alone and
must be driven to overcome the resisting frictional torque;
the circulatory motion of the air exhibits a complete axial
symmetry and, thus, in steady conditions, should not differ
much from an idealized "linear vortex", so that the usual for-
mula L= tov r (L is the lift, o the density, V the trans-
lational velticity, and r the circhlation) should apply, at least
approximately. In the case of a wing rotor, the velocity field
is more or less unsteady and much more complicated, involving
some significant radial out-and- in flow. In the presence of a
mainstream the mean aerodynamic torque will be positive
(driving) at low rotational speeds and negative (resisting) at
higher rates of rotation, so that the airfoil without an external
drive will autorotate at some intermediate rate. A significant
lift appears in such conditions, but it may be increased several
times if the airfoil is driven by external power so as to acquire
much higher rotational speeds than the autorotational one. At
such speeds, the velocity field outside the cylindrical volume
swept by the airfoil becomes more steady and may approach
the form of a linear vortex field.

The theory of fluid motion associated with a rotating
airfoil presents enormous difficulties. No successful analytical
attempt has been made thus far to determine the aerodynamic
characteristics of the rotating airfoil. An extremely crude
estimate of lift for the two-dimensional. case has been sug-
gested, based on the concept of an Wiealized linear vortex
whose circulation is assumed to be r-lu.

24
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where 1 is the airfoil chord and U is the peripheral velocity.
The lift per unit span is thus:

L Pv -f7rp lUV

whence,

L V V
This formula leads to large values of C The maximum
theoretical value of the lift coefficient, Eor the cylinder, would
correspond to the situation in which the two stagnation stream-
lines, obtained by superimposing the potential Zlow about a
cylinder to the flow with circular streamlines to obtain a flow
with circulation, coincide. This happens when U/V = 2.

Hence,
CLmax = 4 1" = 12.56

A compilation of the state of the art of the aerodynamics
of Magnus cylinders and wing rotors is shown in Figures 13
through 18. To avoid burdening the figures, three tables were
prepared.

Table I lists the references pertinent to the perfor-
mance of powered Magnus cylinders and the physical charac-

teristics of each model. Performance is plotted, in Figures 13
and 14, in the form of CTmx versus U/V and CLMa versus
D  CD is the drag cofficient.

Table 11 correspondingly lists the same information for
powered noncircular rotors. It is used in conjunction with
Figures 15 and 16.
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Figure 13. Aerodynamic Performance of a Collection of Powered

Cylindrical Magnus Rotors at Several Aspect Ratios,
With and Without Tip Plates. See Table I for
Identification of Indicated Magnus Rotor Points.
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Figure 18. Aerodynamic Performance of a Collection of Non-
circular Powered Magnus Rotor Shapes, With and
Without Tip Plates, at Several Aspect Ratios and With
Various Profiles. See Table II for Identification of
Indicated Rotor Points (Cevs. C D).
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Aspect Ratios and With Various Profiles. See Table IL
for Identification of the Indicated Wing Rotor Points.
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TABLE I. KEY TO FIGURES 13 and 14. POWERED MAGNUS
CYLINDER ROTOR TESTS - PERFORMANCE

Curve
Bubble INVESTIGATOR trence AR h/c tc

No. ,.jmber Aivept Tip Plate Thickness REMARKS
Ratio Ratio Ratio

1 Ideal Fluid 00 Circular

F 2 eret 4A-43P 4.7 1 Test for Rotor ShipS | Fjetner 4A-43P 4.7 1.72 Test for Rotor Ship
4 [lettne 4A-43P 4.7 2.00 Test for Rotor Ship

S Busemann 83B3 1.7 1I______________
6 Goettingen 1.7 1.5 _______________7 f 1.7 2
S _______ 1.7 3

_121 ___
10 ___ 12 1.5 5______________7I_ 12 2
12 Busemann 833 12 3
13 Thorn 24T 12.5/26 3
14 19T 8 1
15 ____]23T 5. 7 ______RoughSanded" Surface
16 _______ 23T 5.7 _____Smooth Surface
17 Thorn 19T 4.4 Ends Fair into Hemi-Ellipsoids
18 Reid - NACA 12R 13.3 ____ Across Tunnel Wall
19 Swanson 143S 0m 1 ________________20 Swanson 143S 2 1

21 Schwartzenberg 143 4.522 Mattoi 38M 5.7Plain Cylinder23 Mattoli 38M - Cylinder with Fixed Coaxial Shield
24 Mattoli 38M circular Cylinder with Fixed Coaxial Shield

mr

TABLE II. KEY TO FIGURES 15 and 16. POWERED NONCIRCULAR
ROTOR TESTS - PERFORMANCE

III 
I-

Curve Ren AR h/c t/c
BubbleN INVESTIGATOR umber Aspect Tip Plate Thickness REMARKS

No. "b Ratio Ratio Ratio _

1 Kucchemann 52C-52K 5 0 .167
2 Kuechemann 52C-52K 5 (1) .167 Elliptical Tip Plate - 1/1.83

3 Kuechemann 52C-52K 5 2.5 .167
4 Hoist 48H 5.3 2.5 Tested in Water
5 Hoist 48H 5.3 0 Tested In Water

6 Holst 48H 3 1.5 Tested in Water
7 Chappedelaine 21C 6 % 1 .100 Convertible to Fixed Airfoil-3X
8 Rlabouchinsky 19R (8) 0 Flat Plate Rotating About L. E.

9 Riabouchinsky 19R 4 0 Flat Plate Rotating About Mid-Cnord

10 Rlabochinsky 19R 4 0 Cruciform

11 R..id-NACA 12R 13.3 Cruciform Across Tunnel WalJl
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TABLE Il. KEY TO FIGURES 17 and 18. AUTOROTATING
WING ROTOR PERFORMANCE

-=1-- - -
€urve AR h/C t/cBuble INV ESgIGATOR Reference

No. Number Aspect Tip Plate Thickness REM
N Ratio Ratio Ratio I

I Joukovski 23J 1.5 0 Flat Plate
2 23J 3.0

S23J1 6.0 _-

4 Joukovski .371 12

5 Dupleich 35D 2 .01

6 4 .01
7 5 .01
8 6 .01 Flat Plate
9 1.5 .134 Rectangular Prism in Water
10 3 .134
11 6 .334
12 8.57 .134
13 1.42 .333

14 2.85 .333
15 $ 5.71 .333
1-6 DItpleach 35D 8.57 .333 Rectangular Prism in Water
17 Bach 3B 2 0 - Rotor Profile 11
18 ____41.18 '-~

-8 1 1 Ma19nb
20_ __--- IV

21 V
22 _ _

23 _ "Via
24 Vb
25 c

a26 Bch 3B 2 1.18 - Rotor Profile VId
27 ChaPpedela.ne 21C 6 1 .125 Shallow "S" Prolile-IX
28 ChaPpedelaine 21C 6 1 .100 SYismeierical Airfoil-3X
29 Stone 118S 8 0 - Tailless Aircraft Ttimbhng-Model 13
30 VeLeo - fluerta 101) 2 1.50 .28. Profile No. 1
11 1.75 _

32 ...... 2.00 _

33 DeLeo - Huerta 10D Rectangle I 1 Tip Plate No. 10
34 Kukewicz-Ts,ue 37S A 75
35 t?

37 jA 71

A 7238

38 A -- 73- -40- --- .........- _. .. ____ _ 71_

40 3 71

41 C 71

42 -,D 74

43 
D 75

.. .. .. D71
44 ..

45 7
D 73

46
47 Kuklewircz-Tssu- 37S 2 Rectangle .28 Profile No. P Tip Plate No. 51

48 Burur 8613 8.0 Mod. Rectangle With Driving Vanes49 Drnk 86B 4.0 Mod. Rectangle
50 Yelniren 3Y 5.0 _.5_Mod. Rectangle
51 .Yelnren 3Y y 5.0_ 1.5 I Triangle

El ' Y e ~ ntg r e n 3 Y 5 . 0 1 1 . 5 
C ) t i n d e r V / tt h D r i v i n g V a n e s

,,erson 131 _2_0 Diamond - Double We -e
b 131 1e0Wege

551 131 1.0
56 vherson 9 131 0.5 Diamond - Double Wedge



Table III lists the characteristics of all unclassified
data relating to autorotating wing rotors. Performance is
plotted in Figures 17 and 18.

Figure 17 shows that the maximum theoretical perfor-
mance of an autorotating wing rotor, CL ,x = 12. 56 at
U/V = 2, is far from being found in pract'ice. The best CLmax
is found (case 12) for U/V = 0.95 and is CL = 2.5. The
maximum U/V found in tests is U/V = 1. 75, an1 the corres-
ponding CLmax is 2.2. As can be seen from Figures 17 and
18, a systemaic correlation of test data for wing rotors in
autorotation is not possible at the present time. One has a
feeling that higher CLmax than have been actually measured
are possible with new shapes.

It was first noticed by Trancon in 1909 (Reference 39T)
that the addition of large circular tip plates to a flat plate air-
foil model would greatly enhance glide performance. All models
of Figures 17 and 18 have tip plates. It would seem that a
rotating airfoil without end plates acts as a curious sort of
centrifugal pump which sucks secondary air in at the tips and
ejects it radially in the midspan region. The process may be
efficiently checked by the end plates.

It may also be noted that shapes with considerable thick-
ness ratios, from the standpoint of fixed-wing airfoils, can have
very good aerodynamic characteristics (maximum lift coefficient
or lift-drag ratio) when used as rotating airfoils. They can
thus be used as aerial delivery containers, the payload being
contained within the shape.

It has been known since Maxwell (Reference 41M) that
wing rotors are dynamically stable; i. e., Maxwell's oblong card
would always stabilize in steady autorotation about an axis
parallel to the longest dimension. However, only in the last
four years have the dynamic equations of a special type of wing
rotor, the "bomblet", been written and solved. Recent develop-
ments in this area were reported at the Conference on Dynamics
and Aerodynamics of Bomblets, held at the Air Force Arma-
ment Laboratory, Eglin Air Force Base, Florida, on 26-28
September 1967. Significant work was done by Zipfel at Fort
Detrick, Stilley at Honeywell, Brunk at Alpha Research, and
Nicolaides at Notre Dame University. Their work is either
classified or contains distribution restrictions and therefore is
not discussed in detail here. Suffice it to say that the dynamics
of wing rotors are understood analytically and that criteria for
dynamic stability of specific configurations are available.

Boehler and Foshag demonstrated in 1964, by means
of flight tests of models, that wing rotors could be made to be
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controllable. Means of controlling wing rotors are sum-
marized in Reference 52B.

The prur:, cii:.: % .ig rotors can thus be summarized
by saying that, as free gLing bodies, they are lifting devices
that possess a high maximum lift coefficient (CL z 3), high
lift-drag ratio (L/D = 4), good dynamic stability, and good
controllability.

d. Application of Wing Rotors to Aerial Precision Delivery
Missions

The previously cited characteristics of isolated wing
rotor devices (high lifting and glide performance, good
stability, and good controllability) make them natural candidates
for aerial delivery mission s, for example, as precision drop
gliders. Some typical applications are as follows:

Long Range - delivery of personnel rescue kit; for
example, in a package carried externally
by the OV-10A COIN aircraft, as shown
in Figure 19

- pilotless convertible glider cruising as
a fixed wing and landing as a wing rotor,
as shown in Figure 20

- delivery of cargo in remote areas, the
rotor being stacked in the cargo hold of
an aircraft, such as the C-130 Hercules.
A design study shows that the C-130 cargo
hold could contain 17, 820 pounds of wing-
rotor-deliverable fuel. The concept is
shown applied to the C-119 aircraft in
Figure 2;

Short Range - delivery of supplies over the battlefield
or to counlerguerillas, using the cargo
hold of the C-130 aircraft as above

- underslung delivery of supplies with wing
rotor towed behind a helicopter. The
concept is illustrpted in Figure 22

- ordnance applications: delivery of
clustered bomblets autorotating in shallow
glde for maximum dispersion

e. Gliding Performance of a Wing Rotor

The gliding performance of a wing rotor depends upon
three parameters: the lift-drag ratio, LID; the maximum lift
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coefficient, CLmax; and the wing loading, W/S. The gliding
equations are well known, as follows (W is the gross weight, e
the glide angle, and Vz the vertical sink velocity):

L = W cos E

D = W sine = Vsine
L/D = cotan e

= W/s
0Vmph = /.00256CLmax(Cos E + sin )

LID

This performance isplotted in Figure 23 as V versus L/D for
various values of W/S and various values of -L.

With the values of CLmax and L/D known to be feasible
today, it can be seen that acce'ptable values of Vz, for example,
Vz = 20 ft/sec, can be achieved with wing loadings of 15 to 20
pounds per square foot, resulting in acceptable payloads. One
problem with the internally contained payload is the dissipation
of the angular momentum of the payload following impact. This
may be minimized by using the proper flare-out technique.

A comparison of the glide performance of a typical wing
rotor with that of competitive systems is illustrated in Figure 24.
It can be seen that the wing rotor compares favorably with such
systems.

2. Rotating Airfoil Convertible to Fixed Wing (RACW)

The idea of allowing a fixed-wing airfoil to autorotate or to be
power driven about its midchord spanwise axis has intrigued
innumerable inventors and engineers alike for a long time. The
flight of aircraft with the continually aatorotating wing rotors is
possible if one is willing to pay the price of the high resulting drag.
The drag penalty in cruise is removed in the concept in which the
wing is fully rotated in Magnus effect fashion during takeoff and
landing and braked to a fixed-wing position for cruise flight.

The previously mentioned Chappedelaine "Ae'rogyrell (Figure 9)
has been the only full-size RACW convertible aircraft built. The
characteristics of this unique project are described here:

Powerplant: Renault 90 HP (100 HP Max.)
Transmission: The wings could be driven through a

clutch engagement of the powerplant.
Wings (Rotors): Two rotors (or one wing)

Total area - 129 Sq. Ft.
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Span - 13. 1 Ft. (each panel)
Max. chord - 5.25 Ft.
End plate diameter - 4.9 Ft.
Wing spread - 29.8 Ft.

Wing (Fixed: Area- 64.5 Sq. Ft.
Fuselage: Originally from a Caudron airplane

Overall - 25. Ft.
Weight: Gross - 1540 Lbs.

Performance based on model wind tunnel tests were estimated to be:

Aerogyre (Autorotating (Powered
Item (Fixed Wing) Wing) Wing)

Cruising Speed
(MPH)

Landing Speed
(MPH) 40.3 21.7 17.4

Landing Run (Ft.) 490 148 162

Structural failure of this craft in flight brought the project to
an end. Other than the following comments (Reference 50L), the
flight tests were inconclusive:

- The mechanical device for disengaging the wings
was imperfect, and consideration should have
been given to the deflections produced in flight.

- The rotor RPM was too low, inducing vibrations
in the structure. These vibrations did not show
up in wind tunnel tests because the RPM was
seven times greater than in full-scale tests.

- The means for increasing the RPM consists of
increasing the aspect ratio of wings and then using
several wings adequately located.

The RACW concept is only a STOL vehicle. There is insufficient
evidence for a complete evaluation, but the complexity of rotating
the wing hardly seems worth the STOL performance advantage.

3. Rotating High-Lift Devices on Wings

The demands of flight speed range flexibility of modern aircraft
would appear to have taxed the flap designer's resources to the
limit. It has become not too far from the usual to incorporate on
a single craft tracked and mechanically complex flap installations
with multiple slots, spoilers, tabs, and vortex generators. Figure
25 shows one such example. While nothing but praise is due the
designers of such an arrangement, the question may be well asked
if there is not a simpler way. To this end we will examine here
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several proposals and some background material on alternate flap
systems of a possibly simpler design.

The rotating flap and slat devices to be described are basically
STOL high-lift systems. These devices may be considered to be
part of a VTOL arrangement only when they are used in a deflected
slipstream system in conjunction with a thrust propeller slipstream.
The rotating and activating elements may be located in or at the
fixed wiag's leading edge, aft, either in the wing or externally near
the upper surface, or in or near the trailing edge. Certain arrange-
ments place the rotating element in the leading edge of a deflected
flap. These elements may be either cylindrical or airfoil-shaped,
and they function to energize the boundary layer of the wing's upper
surface and/or to act as a means of mechanically enhancing the
wing's natural circulation. All of the cylindrical rotor elements
naturally require external power, but the airfoil systems may or
may not be powered. In some proposed applications, airfoil or
vaned rotors arranged in conjunction with the main fixed wing may
be driven as impellers in a manner to cause an energized transverse
flow of air over the wing or flap. Other near-rotating flap devices
are the cross-flow fan flap and the Schmidt orbiting flap. These
will be discussed briefly. It may be mentioned that proposals and
patents continue to describe the full chord a.,rfoil endless circulating
belt system (References 44H, 1N, etc.).

The use of the rotating cylinder as a boundary-layer energizer
has been suggested for several non-aeronautical uses. Two of these
arrangements would be the use of the cylinders at the entry of a very
wide divergent angle diffuser and at the trailing edge of high-speed
bluff bodies (vehicles).

The following discussion is organized following a classification
of the flap by its type and its location with respect to the wing. Note
that the main objective of the rotating flap and slat system is gen-
erally to produce high CL's. Other arrangements are described
for glide path control (negative CL 's and/or large CD'S) and low-
speed flight lateral control.

a. Rotating Cylinder Leading-Edge Slat (RCLE)

With the announcement of Flettner's rotor ship and the
popularization of the Magnus effect in the 1920's (Reference 31F),
the technical community and innumerable inventors initially pro-
posed the use of the full rotating cylinder for aircraft sustenta-
tion (Reference 22F). The published three-dimensional Flettner
rotor (Curve 3 on Figure 14) indicated the high drag penalty
associated with the high C Ls of the rotating cylinder. The
first step taken to reduce the drag, with the hope of still keep-
ing the high lift coefficients, was to fair in the trailing area aft
of the cylinder. The first test in this direction was by Reid at
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NACA (Reference 12R). The results, shown. in Figure 26, yield
maximum lift coefficients in excess of 2.

The final and most conclusive tests of this era were
carried out at the N. V. Instituut Voor Aero en Hydro-Dynamiek
of Amsterdam through a series of four reports (Reference 49W
through 52W) by Wolff. Results of these tests are summarized
in part in Figure 26. Again, these tests were conducted at low
Reynolds numbers and are useful only on a comparative basis.
The curves of Figure 26 show this rotating flap system with the
cylinder stopped and in rotation for two profiles. The effect
of rotation is roughly to triple the lift coefficient.

More recently (1963), a study was made of incorporating
rotating cylinders of various surface textures in the leading and
trailing edges of a hydrofoil. Results of these tests (Reference
66B) by Brooks are also shown in Figure 26. The resulting
hydrofoil system was intended for an undersea vehicle control
device. The poor performance may be due to the test aspect
ratio ( < 1). With an expenditure of about 1/10 HP to rotate
the leading cylinder, only slightly more than 1 pound of lift was
developed at 35 F. P. S. forward speed. This is equivalent to
the lift developed by the hydrofoil without a rotating cylinder
when placed at less than 1/20 angle of attack. Two-dimensional
tests were conducted at NASA/Ames of a NACA 23018 airfoil
incorporating both leading-edge and rotating-cylinder flaps
(Reference 18A).

A renewed interest in the leading-edge systems was
shown by Alvarez-Calderon (Reference 20A); his proposed con-
figurations are described in Figure 27. Several ingenious
means are shown for uncovering the leading-edge rotating
cylinder for V/STOL application. Note that the leading-edge
cylinder may double as the cross shafting for the interconnected
multipropeller V/STOL airplane.

One must come to the conclusion that until more system-
atic and higher Reynolds number tests are made, the rotating
cylinder leading-edge slat system does not evidence significant
performance potential for STOL application, in comparison with
other arrangements discussed later.

b. Rotating Cylinder in Wing (RCIW)

Several investigators have studied the arrangement
of locating the cylindrical rotor element in the thicker section
of the wing profile, thas providing a stationary airfoil entry to
the rotor. Wind tunnel tests were carried out to this end by
Frey (Reference 59F), but these may be considered to be in-
conclusive due to the very low Reynolds numbers and general
irregularities. Wolff and Koning (Reference 51W) also
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Figure 26. Measured Lift Coefficients Plotted Against
Angles of Attack for a Collection of Combination
Fixed Wing and Rotating Cylinder Slat System.
Cylinder in the Leading Edge.
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wind-tunnel-tested such a system with a fixed leading-edge
fairing (Figure 26). R. Thompson built an electric-powered
model capable of tethered STOL (kite) flight (Figure 28 and
References 50L and 29T). Such systems do not appear to have
merit as STOL devices.

c. Rotating Cylinder at the Trailing Edge (RCTE)

The rotating cylinder system located at the trailing
edge may be considered to act as a circulation-augmenting
device. Tests have been conducted by Longo (Reference 19J)
and, more systematically, by Regenscheit (Reference 10R).
Although both tests were run at low Reynolds numbers, their
performance with and without a rotor is comparatively inter-
esting because of the use of a reference-fixed airfoil. Partial
results of the tests are shown in Figures 29 and 30. It is
interesting to note that the Longo trailing-edge cylinder was
rotated by an integral and auxiliary lenticular-shaped auto-
rotating driving rotor. The Regenscheit tests were carried out
with a broader range of rotor test positions. More recent, and
also shown in Figure 29, is the Brooks rotating cylinder hydro-
foil. Its performance, though quite superior to the similar
arrangement in the leading edge, does not compare well with
the other referenced RCTE arrangements.

Except when used as a control device, in which case
the trailing-edge rotor would continually rotate, the adaptation
of the cylinder to the trailing edge would require it to be re-
tracted in some manner during cruise flight. Such an arrange-
ment is suggested by the Tino patent (Reference 33T) and is
shown in Figure 31.

The optimistic results of an analytical treatment for
the rotating cylinder at a wing's trailing edge by Schmidt and
Reichstein are shown in Figure 30 (Reference 42S). This
simple theory may serve as an approximate me thod for locating
the rotor axis with respect to the fixed wing.

Figure 29 also includes a comparison of the trailing-
edge cylinder ?,irfoil with that of one configuration of the NASA/
Ames rotating airfoil flap (Reference 8D).

d. Rotating Cylinder in Flap (RCIF)

The RCIF is uniquely the invention of Alvarez-Calderon,
whose patent coverage (References 19A, 20A, 21A, 23A, and
24A) on this system is quite comprehensive. Basically, the
rotating cylinder is located in the flap's leading edge and is
uncovered and put into rotation upon the flap's deflection. The
RCIF is fundamentally a boundary-layer energizing system;
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Figure 27. Various Leading-Edge Rotating Slat Systems as
Applied to Tilt-Wing V/STOL. Also Shown as Cross
Shaft Interconnecting Power System (Ref. 20A).

Figure 28. Typical Rotating Cylinder In Wing (RCIW) Arrange-
ment by Thompson (Ref. 29 T).
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i. e., the rotor is to be considered as providing the means of
energizing the boundary layer at the flap "knee" to insure the
negotiation of curvature and the penetration against adverse
pressure gradients existing for the flow at the deflected flap.
As such, the RCIF may keep the wing's upper surface flow
effectively attached when the flap is positioned through angles
greater than 600 from the horizontal (Figure 32). Such an
arrangement suggests an ideal system for the deflected-
slipstream V/STOL application. To this end, semifree flight
model and wind tunnel tests were made by Alvarez-Calderon at
Stanford University (Reference 22A) to determine the potential
and performance of the RCIF.

The results of these initial tests led to the prototype
installation of an RCIF in a small aircraft (Reference 22A) and
to studies of the adaptability of the system to the Ryan VZ-3RY
and Fairchild M-224I flying deflected-slipstream test-beds.
More significantly, large-scale two- and three-dimensional
tests have recently been performed in the NASA/Ames wind
tunnel, at Reynolds numbers of 2. 1 to 2.9 million. These
tests provide realistic information for deflected-slipstream
VTOL and STOL aircraft (Figures 33, 34, 35, and 36).

It was initially suggested (Reference 18A) that it might
be possible to aerodynamically balance the RCIF over a wide
range of flap deflections and to transmit all flap loads through
its hinge axis located at the aircraft center of gravity. It was
felt that flap forces, regardless of magnitude or direction,
could thus be eliminated. In a deflected-slipstream configuration,
such an arrangement would be very attractive in minimizing the
usual large pitch-down moment. Though this has not worked
out exactly in practice, this approach has shown a significant
reduction in pitching moment. Figure 37 shows such a change
taking place, especially for flap hinge axis position 2, and also
a reduction when compared to the fixed deflection flap.

Powering and driving the RCIF rotor present some
points for further discussion. The power required may be
treated as a part of the overall drag picture and is not included,
as such, in any of the published data. It is interesting to dis-
cover that the torque reaction of the rotor-driving source would
be resolved as a part of a pitch-down moment either on a free-
flying model rig or on the NASA/Ames wind tunnel balance. It
should be noted that this driving torque is included as a very
small component of the overall pitching moment of the NASA/
Ames tests.

A summary of some results of the NASA/Ames full-scale
tests is presented in Figure 33. These tests are described as
follows:
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"Wind-tunnel tests were made of a model
of a twin turbo-propeller airplane with rotating
cylinder flaps. The model had a straight un-
tapered wing of aspect ratio 3.57 equipped
with end plates. Cylinder rotation provided a
lift coefficient increment of 2.0 and a maximum
lift coefficient of 4.0 with 600 flap deflection
and zero propeller thrust. A maximum lift
coefficient of 9. 1 was obtained with a thrust
coefficient of 4. The cylinder rotational speed
required for the test was varied with flap
deflection and was independent of angle of attack
and slipstream velocity. For a flap deflection
of 600 and a free-stream velocity of 40 knots,
the cylinder power required was approximately
0. 7 horsepower per foot of cylinder length."

Some conclusions drawn from this particular configuration have

been:

"This study has shown that the rotating
cylinder flap can be an effective and efficient
high lift device in the operating regions investi-
gated. Cylinder rotational speed required is a
direct function of airspeed and an inverse function
of airfoil thickness (cylinder diameter limitation).
The power required is proportional to the
cube of the velocity; therefore, the mechanical
requirements for rotating cylinder flaps will
rapidly become more stringent if airspeed is
increased, and detailed design efforts will be
required to establish the feasibility of the device
when used on aircraft with high approach speeds.
However, the power requirements are less than
for a comparable blowing flap BLC system.
Proper choice of hinge line about which the ro-
tating cylinder flap pivots can result in substan-
tially lower pitching moments and flap hinge
moments than those for a conventional mechanical
flap. i

Full-size four-propeller deflected-slipstream model
tests continue at this time (Figure 38). Provisional results
have indicated a greater lift performance enhancement due to
the comparatively larger ratio of flap chord to propeller dia-
meter.

In conclusion, the RCIF high-lift device appears to be
extremely promising.
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Figure 38. Deflected-Slipstream V/STOL Full-Size
Model in Ames Wind Tunnel.
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A typical application to a VTOL aircraft is shown in
Figure 39.

e. Rotating Airfoil in Wing (RAW)

Various proposals have described the use of a rotating
airfoil device, fairing or retracting into the upper surface of
a fixed airfoil. It may be shown in a very preliminary fashion
that the location of the rotating element in this area of the wing
is far from being the optimum position for a circulation-
enhancing device, but it could have some beneficial effect on
energizing a weak boundary layer.

f. Rotating Airfoil Slat (RAS)

Auxiliary rotor devices of an airfoil, cruciform, or
multivaned shape, located immediately in the leading edge of a
fixed airfoil, are considered in this category (Figure 40). Such
a rotor may be considered to be of the boundary-layer energizing
type. Although such arrangements continue to be suggested
from time to time, no practical tests have even been reported.
It is interesting to note that a patent filed by F. W. T. Taylor
(Reference 12T) as early as 1909 clearly shows an under-
standing of the installation of an autorotating leading-edge air-
foil system for lift "enhancement" and longitudinal control.
Like some subsequent arrangements, an installed vaned rotor
may be driven over the full wing semispan in the manner of a
transverse-flow fan (Reference 35M) and thus perform a means
of direct blowing for a BLC system.

g.- Rotating Airfoil Flap (RAF)

Encouraging analyses and tests have demonstrated that
an auxiliary airfoil rotating near or at the trailing edge of a
fixed main airfoil is a definite and attractive means of obtaining
high lift coefficients and dramatic lateral and glide path aircraft
control.

Fortunately, several investigators have tested this flap
system (Figure 41). Initially, the phenomenen of a driven flat
plate rotating behind a fixed surface was investigated in the
wind tunnel by Riabouchinski in 1909 (Figure 42); it was
subsequently tested in 1926 and reported in 1940 (References
27R and 28R). The arrangement of these experiments is shown
in Figure 42, and the meager results are shown in Figure 41.
The Brothers Longo in Italy extensively patented a convertible
RAF system as early as 1925 (Reference 60L), and the results
of their comparative wind tunnel results were published by Jona
(Reference 19J). These tests were conducted with one basic
23% thick fixed wing, utilizing several lenticular-shaped,
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Figure 39. Proposed Application of Alvarez-Calderon's
Rotating Cylinder Flap (RCIF) to a VTOL Airplane.

Figure 40. Lippisch Patent (Ref. 56L) Describing Rotating
Airfoil Slat (RAS) Device and Boundary
Layer Energizer.
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trailing, fixed, and autorotating flaps and several wind-rotated
cylinders--at various angles of attack and at several tunnel
speeds. The selection of that test airfoil is inappropriate for
modern applications.

The most useful background information for the applica-
tion of the RAF was generated during World War H by Holst
(Reference 48H) and KU4chemann (Reference 51K) and later re-
viewed by Crabtree (Reference 52C) and Neumark (Reference
20N). The wind tunnel tests by K*uchemann are relatively com-
prehensive aild were carried out in a Reynolds nuinbe; range
from 60 x 100 (flap in autorotation) down to . 14 x 10° (flap
operating at U/V = 4).

These tests were carried out on a 30- x 80-cm fixed
wing located between two large stationaty elliptical tip plates.
The rotating flap was an airfoil with a chord 25% of the fixed-
wing chord, with a profile not too unlike that of the main wing.
Two smaller circular tip plates were rotated with the flap
element. The axis of the flap was tested in three positions,
below and in the vicinity of the fixed-wing trailing edge. Para-
meters varied in these tests were: rotating flap position, angle
of incidence, tunnel speed peripheral speed of RAF (autorota-
tion, powered and stopped5, direction of rotation. Lift, drag,
and moment coefficients were determined. Some of these
results are presented in Figures 41, 43, 44, and 45.

The arrangement of the RAF in these tests suggests
adaptation of the flap in an external manner, as was often done
in a wide variety of aircraft types by Junkers. If this is done,
it is well to review the past experience of NACA/Langley inthe wind... .t . ' --

the wind Lun.lk and full-slze flight tests of this external
adjustable flap (NACA Reports 541, 573, 679; NACA TN 524,
604).

It would now become possible to combine these two
separate devices, the RAF and the external flap, and to put
them to practical use. Such a study, using the existing
DeHavilland DHC-4 "Caribou" STOL aircraft, is later
described on page 219. If one considers the installation sim-
plicity of such a flap arrangement, as is shown, for example,
on the Boeing XL-15 aircraft (Figure 46), then this adaptation
to an existing design may not present too Liany problems.

It is suggested that the main fixed wing should be
constructed continuously and that the external flaps also be
rigged to serve as ailerons. The external flap would be
supported to the trailing edge of the fixed wing through a
series of hangers extending to the 50% chord or spin axis of
the airfoil flap. These hangers would partially contain the
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drive shaft, axle housing, angle gearing, clutching, and flap
angle locking mechanisms.

With a suitable flak' thus installed, the following flight
regimes and corresponding flap operations may be considered:

1. As a fixed wing - cruise. Airfoil flap is
locked at its best cruise position. Flap area
may be considered to be a part of the total
fixed-wing area (Figure 41).

2. Flap deflected at various angles - cperating
as an external fixed flap for trim flight con-
trol or os a safety power-off backup system
(Figure 41).

3. Flap rotated 900 to airstream and fixed as
a (dive) brake or glide path control device.

4. Airfoil flap unlocked in free autorotation
about its axl3. Lift and drag now in excess
of that of the fixed airfoil (Figure 41). As
a safety backup, no shaft power required.

5. Airfoil flap unlocked and in powered rotation.
Power may be practically applied to the flap
axle at its junction in the support hangers,
or the axle may be conveniently extended
directly into the side of the fuselage. Lift
and drag can be modulated by increases in
power and peripheral speed of the airfoil
flap. Note that the torque reaction required
to drive the powered RAF appears, in part,
as a component of the pitch-down moment
on the aircraft.

6. Figure 41 shows that reverse rotation of
the RAF produces negWative lift coefficients.
Thus, by rotating the flap backward, one
may produce a negative lift. This may be
employed as a glide path control system.

7. The RAF should be capable of being uniformly
braked from the rotatoaala state to the
fixed-flap condition.

The flexibility of the RAF arranged in this manner isattractive. Before exploring the i.-tfects of flap in rotation, let
us review the characteristics which 7'ave been determined for
the fixed external flap.

Consideration of the f.ternal air-oil ilap as a high-lift
device indicates that it may be general-ly applied to improve
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V/STOL aircraft performance. Previous investigatiotis by
NACA/Langley have shown that this device is capable of
developing ligh lift coefficients and that it gives lower drag
at these coefficients than ordinary flaps. Thus, it may be
more favorable to such items of performance as takeoff and
landing. At low lift coefficients, the external flap gives very
nearly as low values of profile drag as a good plain airfoil
of comparable thickness. Stability problems associated with
large negative pitching moments occurring at high lift coefficisnts
may be slightly greater than in the case of ordinary and split
flaps. If the maximum lift coefficient of the wing with the
external airfoil flap is referenced to the chord of the fixed wing,
as is customary for other types of flaps, the resulting values
would be about the same as those for single-slotted flaps. Gen-
erally, the full-span external flap has not been used extensively
in this country. Some question arises as to the icing hazard
between the flap and the wing.

Returning to the Kichemann RAF data of Figures 41,
43, 44, and 45, initial testing sought to determine the optimum
position of the RAF to obtain CLmax (Figure 43). It is inter-
esting to note that the determine optimum position 2 also
satisfies the simple theories of KUchemann and Neumark and
is also within the "optimum" position of the fixed external flap.
The collapse of the lift curve of position 2 beyond U/V = 4
may be due to the fact that the test Reynolds number (. 14 x 106)
at this U/V is causing an early transition to turbulence. Note
that in these tests the Reynolds number varied from each U/V
value as the flap peripheral speed (U) was held constant while
the tunnel speed (V) was varied. It would be of interest to
repeat a similar experiment in which the test Reynolds number
could be raised to that of full-size aircraft landing and takeoff
velocity and the U/V parameter could be held constant by vary-
ing the RPM of the rotating flap.

Several preliminary analytical attempts have been made
to establish the theory of a wing with rotating flap (References
42S, 52C, 19N, and 20N). The theoretical attempts have been
to represent a two-dimensional flat plate together with a
straight line vortex at the axis of rotation of the flap. Thin
airfoil theory can be developed for this ideal case, permitting
solution by the potential flow method of conformal transforma-
tion. It may be noted that this is not too unlike the case of the
two-dimensional jet flap airfoil, where the jet may be repre-
sented by a continuous distribution of vorticity in contrast with
the axially concentrated vortex of the RAF theory.

A practical conclusion of Neumark's paper (Reference
20N) indicates a way to determine the contribution of the airfoil
flap lift to the fixed-wing lift in the form of an incremental lift
coefficient:
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where
0 L1 SF= incremental lift coefficient

(referenced to fixed-wing chord)

E = gap parameter, in which
d2 = 1/2 L (1 +E )

L = chord of airfoil flap

C = chord of fixed wing

13 = angle between horizontal (x) and
reference line passing through
wing trailing edge and flap axis

U = peripheral velocity of flap

V = free-stream velocity

As a practical check, assume a wing chord to 0ap
chord ratio (LC) = 1/4 and the axis location angle [ = 52
This corresponds roughly to the "optimum" theoreticd locus
of Neumark (Reference 20N, Figure 6). The incremental lift
coefficient is determined for a range of values and added to the
measured data of KUichemanr. (Reference 51K), and the re-
sulking theoretically adjusted curve is shown in Figure 43 for
the "optimum" position 2. The agreement between the
measured and the adjusted curves of flap position 2 is sur-
prisingly good.

It would be of further interest to determine the influ-
ence of slipstream effects and combined propeller thrust
coefficients on enhancing the lift potential of the RAF.

Recent technological advances in the operational use
of lightweight, high-speed drives and shafting supported over
long lengths would be useful for adaptation of the rotating flap
system to aircraft. Further, extensive operational experience
by Junkers with the external flap is useful in understanding
the problems of support structure, icing, etc. Some questions
not yet answered might be the effect of the gyroscope couple of
rotation flaps on structure and flight control and wake and buf-
feting problems created by the trailing-edge rotating airfoil flap.
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h. Rotating Airfoil in Flap Leading Edge (RAIF)

The arrangement of a rotating airfoil in the leading edge
of an adjustable fixed flap, as in the RCIF, is not a new sugges-
tion. The patents of Henter and Kaser (Figure 47), filed inGermany in 1929, clearly indicate the application of a deflected
slipstream over an RAF (Reference 28 H) or a rotating airfoil
ahead of, and adjacent to, a fixed flap (Reference 29H). The
patent by Lake (Reference 22L) describes various adaptationsof the RAIF to aircraft (Figure 48). This patent is of interest
because it clearly suggests means of airfoil flap installation,
drive, colLctive and differential control, and electromagnetic
braking. The patent is also unusual in that it provides brief dataon the power required to rotate the RAIF and the lift developed
(Figure 41). The use of intermediate folding, rotating, flap
tip plates is also suggested to prevent spanwise flow of air.
The flap is also capable of autorotation. A more recent patentby Brunk (Reference 84B) describes a similar RAIF system in
which-, as the fixed flap is deflected, it uncovers fully autorota-
ting airfoils in its leading edge. Like the RCIF, the arrange-
ments are to be considered to be boundary-layer energizers toencourage flow attachment over a sharply deflected fixed flap.The Brunk system (Figure 10) suggests the use of two of the
better bomblet or windmill sections. It should be noted that
this system could benefit from improvements and adaptation inpast and current bomblet profile studies. Note again that the
autorotation system is self-contained, requiring no shaft power.
Like the RAF system, the only preliminary flap power estimates
that are available are those determined by Wiese (Reference
56W), and these are applicable only for an isolated lenticular
rotor. The RAIF holds interest in that the retraction and stow-
age of the flap rotor could be more compact and simpler than
that required for a comparable cylinder rotor. The RAIF should
be capable of puwer-off autorotation.

i. Rotating Flap Systems in Ground Effect

The effect of the ground on general V/STOL performanceis indicated in Figure 49, which shows the power required for
a tilt-wing airplane, in and out of ground effect, as a function oftakeoff speed. This shows that the airplane requires consider-
ably more speed to produce a given lift with a given power inground effect than out of ground effect. This indicates a greatertakeoff speed and distance required within ground effect than
outside it. For the deflected-slipstream RCIF NASA/Ames
aircraft (Reference 57W), test data show the deterioration oflift performance in ground effect (Figure 50). This adverse
ground effect is probably due to a collection of difficulties aris-
ing when the high-velocity deflected slipstream flows forward
upon striking the ground circulation. The power-on charac-
teristics (Tc' = 4) are most affected by the ground.
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Figure 47. Rotating Airfoil Flap in Leading-Edge High-Lift RAS
System by Henter and Kaser (Refs. 28H and 29H).

4.'S

Figure 48. Powered Rotating Airfoil in ConjunctionWith Multiple

Flap by Lake (Ref. 22 L).
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No direct data exist on the influence of the ground on the
Magnus effect or the circulation enhancement of the RAF arrange-
ment. Experimental and analytical studies have been made on
the attraction of flow with circulation toward a boundary or the
ground (Reference 72R). This attraction or loss of lift, called
the Raimondi effect, does not necessarily need forward speed to
become effective. Data are shown here (Figure 51) for the
attraction, force between a rotating cylinder or between a rotating
flap plate, and a ground board. This phenomenon may be ex-
pected to cause a decay in lift of Magnus effect systems when
operating in ground effect. Further applicable analytical tech-
niques are available for the study of the influence of ground effect
on wing performance. These techniques have been cataloged
and summarized in David Taylor Model Basin Report 2179,
March 1966.

j. Rotating Flaps for Lateral Control

Taylor, Holst, and Neumark have suggested the use of
small auxiliary wing rotors or rotating flaps as a means to obtain
aircraft longitudinal or lateral control.

The results of the 1967 NASA full-size wind tunnel and
flight test of the external flap system (Figure 37) indicate that
when the full-span external flap is used also as an aileron, the
rolling action is good; but the resulting adverse yaw is unde-
sirable, and the stick forces (without boost) required to operate
them increase too rapidly with speed.

It is suggested that, in a practical application of the RAF,
the flap be split into an outboard and an inboard section. The
inboard RAF would be driven at its highest and/or optimum
RPM, while the powered rotation of the outboard portion (now
considered as ailerons) would be driven through a differential
and variable RPM system. Modulation of these outboard rotation
aileron systems might be trimmed to provide very large and
controllable low-speed roll forces. Here the problem is to
program the control system of the outboard rotation ailerons to
provide the proper roll characteristics without introducing the
adverse yaw forces that were found in the full-span arrange-
ment of the NASA flight tests.

The rotating cylinder and airfoil slat suggestions are
not without interest as roll-producing or quasi-aileron devices.

a In the use of very thin high-speed wings, it is desirable to
minimize elastic wing deflections originating from the trailing-
edge aileron. In a thin wing, these deflections tend to act in
a direction opposite to that of the desired roll motion and may
produce undesirable aeroelastic problems. It is suggested
that a controlled RCS or RAS in the wing leading edge may
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produce the desired roll couple and also deflect the elastic
wing in the desired direction.

4. Orbiting Flap and Undulating Propeller

Schmidt (References 41S, 43S, and 54S) has evolved a unique
trailing-edge rotating flap which capitalized, in part, on the Knoller-
Betz or Katzmayr effect. Essentially, it is a system of thrust
augmentation, drag reduction, or thrust production depending upon
the configuration of the orbiting airfoil and/or fixed airfoil(s). The
basic arrangement is shown in Figure 52, in which a leading airfoil
or "undulator" is orbited ahead of an aft stationary airfoil or
"deundulator". The combined sysem experiences an overall thrust
as a result of the undulator's rotation.

Further, if the undulator and deundulator are submersed in the
airstream of a propeller or jet, the effect on the system is an over-
all drag reduction or, effectively, a thrust augmentation (Figure 54).
Figure 53 also indicates how further variations in the geometry and
mechanical motion can be made to obtain not only thrust augmenta-
tion but also lift. The number of parameters needed to be manipu-
lated to seek an optimum performance are innumerable. Schmidt
has carried out many tests on several special configurations; the
results of one arrangement are presented as a lift and drag polar in
Figure 54. Note that:

CL = angle of attack of main forward body
(note range from 00 to 250)

E = angle of incidence (constant) of un-
dulator in orbit with respect to main
body reference

/3 = angle of incidence of deundulator

with respect to mpAn body reference

U = peripheral speed of undulator

V = wind speed

n = RPM of undulator

The results, as explained in Reference 54S, are the wind
tunnel results on an air and land vehicle (Figure 55). Note the very
thick forward stationary airfoil body, the trailing and orbiting un-
dulator, and the final stationary elevator-like deundulator.

Other innumerable adaptations of the orbiting airfoil flap have
been suggested. One system proposed by Scbmidt is the adaptation
of the undulator airfoil as a thrust device and conventional flap.
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Figure 51. Attractive Force of Various Wing Rotor
and Cylinder Devices Rotating in Proximity
to a Ground Board (Ref. 72R).
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Figure 52. Basic Arrangement of Orbiting Flap
Undulator and Deundulator.
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Figure 53. Schematic Arrangement of Orbiting Flap. Lower Drawing
Indicates Various Geometries Possible by Varying Angles,
Spacing, and Rotation.
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Figure 54. Wind Tunnel Results by Schmidt on Air Vehicle of Figure
55. Curves Are Aerodynamic Polars With Undulator in
Rotation and Stopped. Note Thrust at U/V = 2.75,
S=0° (Ref. 54S).
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This arrangement, as applied to a sailplane (Figure 56), for ex-
ample, strongly resembles the RAF. Schmidt suggests the use of
the tailplane as a possible ieundulator for this system. This, of
course, must take into acL,.unt tail buffeting problems and the like.
This would further suggest an intriguing mechanical combination
of the external, rotating, and orbiting flap for flight control and
propulsion augmentation.

The background for the orbiting flap is summarized from

Reference 54S:

"The Knoller-Betz effect has given rise to investiga-
tions of a flapping wing with rear-wing. Already in the
1940's, the efficiency of a flapping wing at higher fre-
quencies could be proved to be doubled by the presence
of a rigid wing behind it. Model experiments in air and
water confbmed this theoretical knowledge. Because of
the unavoidaAe movement to and fro of masses in the
case of a flapping wing, considerably restricting the fre-
quency of flapping, a rotating "undulator" has been
developed which, in conjunction with the rigid rear wing,
constitutes the novel "undulating propeller". This new
propulsion mechanism is proved by experiments on the
rotating arm and by experiments with the mo del of a ship
also to produce a static thrust. Wind tunnel experiments
have rendered good efficiencies. They especially have
shown that the undulating propeller is able to produce
good thrust, and to increase the lift considerably, even
in the case of operation behind a thick wing, and have
given the first polar diagrams [Figure 54J for it. The
undulating propeller prevents separation of flow, even
at very high angles of incidence. Finally, examples of
application for the undulating propeller are given. As this
propeller rendered most favourable values of lift also
behind a very thick wing, the chord of which was twice
its span, there is some hope that the "flying car" will be
realized.'

5. Cross-Flow or Transverse-Flow Fan and Flap

In 1891, Mortier patented in France a type of fan which entrains
and discharges air along its entire axial length. Referring to Fig-
ure 57, taken from the original U.S. Patent (No. 507445), air enters
the inlet at L, passes through the inlet face and the blading of the
fan at a-b, crosses the center portion and axis area, is pressurized
through the outlet blading c-d, and is diffused to its service at K.
The intriguing fact of this fan is that the volume flow that it can
handle is limited only by practical considerations of the rotor length.
The flow inlet and exhaust are usually rectangular. Although patent
coverage is extensive, the technical and analytical evolution of the
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Figure 55. Aerodynamic Body of Orbiting Flap Test. Note Main
Body Airfoil Ahead of Undulator and Deundulator.

Figure 56. Suggestion by Schmidt (Ref. 53S) for Aircraft
Drag Reduction or Auxiliary Propulsion.

VVal
Figure 57. Basic Cross-Flow Fan by Mortier,

1891 (U.S. Patent, No. 507445).
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transverse fan is just beginning to be understood. A survey of this

particular system ha been published by Eck (Reference 4E). Many

parameters affect the performance of this fan system. The geometry

of the outside stationary housing is found to be critical. Slight
changes in the shaping of this shroud can give a very wide variety
of pressure, flow, efficiency, and power selections.

The adaptation of crude linear cross fans to aircraft has been
patented from time to time (References 35M, 36M, etc.). The fan

is usually located spanwise in conjunction with a fixed wing and
directs its exhaust over the wing surface in some manner to increase
or control wing performance.

Only very recently has an intelligent attempt been made to
combine the cross-flow fan with various arrangements of BLC, jet
flap, and propulsive-wing aircraft systems. The combination of fan
and aircraft systems has been given recent exhaustive patent cover-
age by Laing (References 12L through 21L). Two examples of this
are presented here. Figure 58 shows a STOL propulsive-wing system
which featLres a jet flap arrangement. In the cruise and thrust mode,
the spaawise fans are deflecting flow essentially aftward and are also
helping to maintain an attached boundary layer by the upper wing sur-
face inlet suction area. In the STOL mode, the fan deflects consid-
erable flow downward with the use of direct blowing and aft flap inlet
suction. The wing is displaced upward and forward in such a man-
ner as to help alleviate the pitch-down movement usually associated
with the jet flap when operating in this manner. Going one step
further, Laing also proposed to use the shrouded full-span cross-flow
fan as a pure VTOL, as seen in Figure 58. Although it is believed
that wind tunnel tests are being carried out to determine the feasi-
bility of these basic ideas, no data have been published to date. At
first glance, the cross-flow fan may offer certain attractive features,
as it would eliminate the blower and the duct losses in a jet flap
arrangement. Question has arisen as to the ability to make the fan
rotors structurally sound, lightweight, and aerodynamically efficient.

B. CYCLOGIRO SYSTEMS

1. General Description

The cyclogiro aircraft which will be discussed in this section
result from the application of the cycloidal propulsion principle to
wings rotating in air about a horizontal axis while absorbing power.
Another important application of the cycloidal propulsion principle
is the cycloidal propeller, which is used for the propulsion and
steering of ships; in the latter case, the blades operate in water
and usually revolve around a vertical axis. The latter case will be
discussed on pages 204 to 208.

A typical cyclogiro aircraft rotating-wing system is shown in
Figure 59. The rotor consists of several blades rotating uniformly

80



-4-

0.4

042c

0 
0 P4

r~~C 1- C~
i-i)

0

'o

P4 0

00

-I4

411C



F

Il

'lp

t . -

Figure 59. U.S. Army Air Forces, Wright Field Fighter Cyclogiro
Project (1943-1945). Wt., 3900 Lbs.; LOA, 25 Ft.;
Rotor Dia., 5 Ft.; HP Instal., 490. See Refs. 3CHand31H.
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about a horizontal axis usually perpendicular to the direction
of flight. The angle of the individual blades to the tangent of the
circle of the blade's path is varied by a double-cam arrangement
so designed that the periodic oscillation of the blades about their
span axis may be changed both in amplitude and in phase angles.
The net force on the rotor may thus be varied in magnitude and
direction by movements of the cam. In particular, cyclogiro air-
craft are capable of hovering flight. In forward flight, lift and
propulsion are integrated.

2. Pictorial Review

The original "Aerial Carriage" man-powered cyclogiro was
proposed by William Congreve in 1828 and is shown in Figure 60.

Another antique cyclogiro aircraft, proposed by Herard in the
1880's, is shown in Figure 61.

In the 1920's, still in the pioneering age of aviatio,., many efforts
at building cyclogiros were started: Nemeth (the machine shown in
Figure 62 is believed to be his design; moving pictures of that
machine do exist); McWorter (Figure 63); in France, Pichou and
Moineau (Figure 64).

Dr. Klemin, at New York University, became interested in
cyclogiros and tested both Platt's (Figure 65) and Laskowitz's designs
(Figure 66).

In Europe, in the 1930's two engineers attracted major atten-
tion: Rohrbach in Germany (Figures 67 through 69) and Straindgren
in France (Figures 70 through 72). Strandgren's basic paper was
translated as NACA TM 727 (Reference 130S).

At the same time, NACA started investigating at Langley Field,
Virginia, the fundamental claims of the cyclogiro as a VTOL or a
STOL. This work was done by the same Wheatley who was respon-
sible for the fundamental investigations of the autogiro and of the
helicopter. Wheatley was responsible both for wind tunnel tests
Figure 73 and Reference 28W) and for a theoretical approach
Reference 25W). His work was not continued at NACA after the

outbreak of World War II.

The towering figure in cycloidal propulsion and cyclogiros in
the United States was Professor F. K. Kirsten of the University
of Washington (Reference 28K). Kirsten (References 17K through
31K) became interested in cycloidal propulsion in the 1920's (Figure
74), built the wind tunnel model shovn in Figure 75 in the early
1930's, and was responsible for a school of thought to develop at
the University of Washington which resulted in the work done during
World War II for the U. S. Army Air Forces. Kirsten's
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Figure GO. First Concept of the Cyclogiro by Sir William
Congreve, 1828 (Ref. 44C). The Feathering
System Is That of the Valved Pusher Arrangement.

84



VAIP

Figure 61. Antique Cyclogiro System by Herard in the
1880's. This Feathering Arrangement is Typical
of Class 6 Type (Fig. 92).
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Figure 64. Moineau Low Pitch Cyclogiro Project of the 1920's in
Whi'(:h Direction of Flight 'Is Along Axis of Rotation. 1/10th-
Size Model Test in Wind Tunnel. See Refs. 54M Through 57M.
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Figure 66. Laskowitz Three-Blade Low-Pitch Cyclogiro Rotor
in the New York University Wind Tunnel. Rotor
Dia. 3 Ft., Span 2 Ft. See Ref. 32L.

Figu-re 67. Rohrbach Project "B" Cyclogiro, Three Views (1934).
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Figure 68. Comprehensive View of the 1934 Rohrbach Cyclogiro.
Although Extensively Studied, Outcome of This Project
Is Not Known. See Refs. 58R, 59R, and 79S. From Ref. 55R.
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Figure 73. NACA (1934) Low-Pitch Cyclogiro Model in the Langley
20-ootWin Tunel B-ootDiameter, 8-Foot Span.
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Figure 74. 15-Foot-DiameterKirsten-University of Washington
Pi-Pitch Cyclogiro Wheel. Designed and Constructed
During 1922. Number of Blades Variable up to 24.
See Ref. 24K.
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Figure 75. Kirs ten -University of Washington Pi-Pitch Cyclo-
giro Model in Wind Tunnel. Built Before 1934 and
Tested in a Variety of Configurations With'and
Without Tail Rotor. SeeFig. 102 forComparative

Tunnel Installations. Also See Ref. 27K.
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high-pitch cyclogiro wind tunnel model rotor is shown in Figures 76
and 77. The corresponding overall design is shown in Figure 78.

The U. S. Army Air Forces, during World War II, recognized
the potential advantages of the cyclogiro aircraft (Reference 4H, for
example) and supported work with Kirsten and Eastman. The result
was a proposed fighter, shown in Figure 59.

Several investigators have recognized the advantages of the
cyclogiro in low-speed flight and the corresponding disadvantage of
a relatively high drag at high speed, and they have proposed to stop
the rotors in high speed; this approach is shown in Figure 79, in a
Wiessler 1950 patent. This is not necessarily the best approach, as
Kirsten claimed on his high-pitch model that it was not desirable to
stop the rotor at high speed, but only to slow it down.

In the 1960's, there has been no known active effort on cyclo-
giros, except "or one inventor: Dave Cook. Cook was able to do
limited static testing at Boeing-Wichita around 1959 (Figure 80). His
latest proposed design is shown in Figure 81. Like Moineau (Figure
64), Cook chooses to have the axis of the rotor in the direction of
flight.

3. Configuration

The cyclogiro rotor applied to an aircraft rotates about a hoi-
zontal axis. Despite the recurrent patent and proposal suggestions
to the contrary, the arrangement of the rotor axis perpendicular to
the fuselage in a spanwise direction appears to be the most adaptable
and natural geometry. Those cyclogiro rotor arrangements with
the rotor and blade axis parallel to the fuselage and general direction
of flight introduce the very large aerodynamic problem of an additional
spanwise airflow compoi'ent due to forward-flight speed, and the pro-
blem of providing an independent forward propulsion. The only ob-
vious advantage to such an arrangement would possibly be structural;
that is, the rotor could be supported at both its root and its tip as
suggested by Moineau (Figure 64). The discussions that follow will
consider only the spanwise orientation of the cyclogiro rotor axis.

The rotor blades will also be considered to be revolving in a
parallel manner about the rotor axis, and thus the longitudinal axes
of the blades sweep out the surface of a right cylinde-' in hover.
There are many suggestions for configurations in wl eh the blade
describes a conical surface the vertex of the cone being located at
the fuselage and the inboard end of the rotor system. Such an
arrangement, as suggested by Richard (References 30R 32R, 33R)
and by Piskorsch (Figure 82, References 16P through 16P), would
allow the rotor blade roots, feathering system, and transmission
to be collected and unified at the focus of the rotor cone (Figure 83).
The conical rotor system is not without aerodynamic interest, and
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Figure 76. University of Washington Amplified High-Pitch
Cyclogiro Wind Tunnel Rotor. Dia. = 3 Ft.

,''I

FIRM
Figure 77. University of Washington Amplified High-Pitch

i ICyclogiro Wind Tunnel Rotor Blade. See Ref. 8B.
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Figure 79. Wiessler Patent (1950) for a Convertible andCompound Cyclogiro in Which the Rotor May Be Stoppedin Flight. Patent Further Describes Conversion ofTurbine Means To Produce Shaft Power or Jet
Thrust. See Ref. 31W.
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Figure 80. Cook "Cyclodyne" Project (1958-1968) Pictorial'Pre'se-
tation and Vibration Test Arrangement of Three -BladedWind Tunnel Model. Rotor Dia. 4 Ft., Span 4 Ft.

102



2) 
C.

coa)

Itt 
0)

CI gL3 I 
[

g 
- 0)

Al a- 2 t.T '

0 
IU m

103)



Figure 82. Cyclogiro With Conical
Rotor. See Ref. 19P.

0a

Figure 83. Conical Rotor Cyclogiro Reflecting
Compactness See Ref. 15B.
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it would be premature to discount its merits, especially when one
considers the evolutionary flight excellence of insects, which do
quite well with exactly this form of cyclogiro geometry.

The number of rotor systems per aircraft installation is
dependent upon several considerations. Rotor torque compensation,
though not as serious a problem as in the helicopter, must be
reckoned with. The method suggested most often for torque com-
pensation is to place the aircraft center of gravity sufficiently below
the rotor axis so that the reaction couple between the rotor lift and
aircraft weight (Figure 84) will cause the craft to seek an offset
equilibrium trim position. The trim will pitch the aircraft either
nosedown ori -up depending upon the direction of rotation of the
rotor. At first glance, it seems that the nosedown arrangeu.ent (A)
would be desirable, as this also directs the rotor rotation in a
suitable "Magnus effect" direction. Stability considerations might
favor scheme (B), as the advancing blade of the rotor at forward
speed would be passing over and through the upper rotor quadrant.
Other aerodynamic drag forces on the rotor, upper structure, and
fuselage, as well as trim forces originating in a horizontal stabilizer,
may modify this general discussion.

Other means of torque balance have been tested by having the
opposite concentric pair of rotor systems rotate in opposite direc-
tions; that is, the port rotor would rotate counter to the starboard
rotor. Such is the case of the University of Washington cyclogiro of
Figure 78. Such an arrangement allows the rotor system to be made
more integral with the fuselage.

A third suggested means of absorbing the rotor torque is in the
use of a fore and aft pair of rotors rotating in opposite directions
(Figure 84C). This configuration is analogous to the tandem heli-
copter. This arrangement also offers the advantage of increasing
the overall total rotor disc (cylinder) area by keeping the rotor span
short and distributing the area over four rotors. There is a sug-
gestion from marine cycloidal propeller practice that the gap area
between the fore and aft rotors may partially contribute to the
overall momentum "disc" area (see page 138 and Reference 30K).

4. Kinematic Discussion of Cycloidal and Trochoidal Motion

!n forward flight. the path followed by the !or itudinal axis of
any single cyclogiro rotor-'blade closely approximates a cycloid
or a trochoid. It is therefore useful to review first the kinematics
of cycloidal and trochoidal motion.
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Aand B - Single Rotor, CocretRton.

C - Tand-m Fore and Aft Rotors, Oposite Rotation,

Figure 84. Cyclogiro Rotor Torque Compensation Methods.
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Consider (Figure 85) a circle of radius b rolling without
slipping along a straight line. Any point P on the circumference
of the circle describes a cycloid. Any point on a radius of the
rolling circle, at a distance b from the center, describes P, tro-
choid. If e -- b, it is a curtete trochoid, also sometimes inforrectly
referred to as a "curtate cycloid"; if e -e b, it is a prolate trochoid,
also labelled a "prolate cycloid". When e = 0, this corresponds
to the center of the rolling circle, the trajectory of which is
obviously a straight line.

The equation of the trochoid may be established in a straight-
forward manner and is given, for example, in Marks' Handbook.
Taking the origin of coordinates, as shown in Figure 85, at the
upper !point on the trochoid, defining a system of rectangular
coordinates Ox, Oy as shown, and calling U1 the angle by which
the generating circle has turned from the iditial position, the para-
metric representation of the trochoid is

x = bq*+ e sin4

y = b + e cos

Values of are shown on the trajectories of Figure 85. The tan-
gent at any point is given by

dy _ e sin sin
dx b+ ecos - be+ cosej

To understand the passage from the geometrical problem of
the trochoid to the aerodynamic problem of the cyclogiro rotor,
consider the sketch of Figure 86. ' hough it represents the special
case of a cycloidal propeller with thrust in the x direction only, it
will suffice for the time being. The general case in which both
thrust and lift (in the y direction) are considered will be presented
later.

The same point P, shown in Figure 85, re-,olves in Figure 86
in a circular orbit having a radius e and a center at 0. This
corresponds to the relative motion of the cyclogiro rotor with
respect to the aircraft's fuselage. The coordinate system is shown
in the same direction as in Figure 85 (Ox positive to the left). The
orbit of P moves through a fluid with a velocity V directed in the
negative direction along the x axis. i.e., toward the right. The
velocity V corresponds to that of the rolling circle of Figure 85.
Thus, the trajectory of point P in space is a cycloid or a trochold.
The case shown in Figure 86 corresponds to a curtate trochoid.
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For a conventional axial propeller, pitch is defined as the linear
advanci along the axis of rotation in one revolution, and pitch ratio
is defined as the ratio of the pitch to the propeller diameter. This
definition is extended to the cycloidal propeller or rotor. The pitch
ratio is thus defined as the ratio of the advance per revolution (of
point P) at zero slip to the diameter 2e of the orbit. Calling the
pitch ratio p, one has

p = ,T b_ .
e

For a curtate trochoidal trajectory, p - Ir. This is called low-pitch
motion. For a cycloidal trajectory, p = 7r . This is called pi-pitch
motion. For a prolate trochoidal trajectory, p, >7r. This is called
high-pitch motion.

The definition of the advance ratio (j) of a cyclogiro rotor is
also similar to the corresponding definition for an axial propeller.
It is the ratio of the speed of advance V of the orbit to the circum-
ferential speed of point P. The velocity V should be based on local
air; therefore, it may not be exactly equal to the forward velocity of
the aircraft. A slipstream correction factor may be required.
However, for normal flight conditions, the velocity V is assumed
to be steady and uniform throughout the rotor cylinder.

If n is the speed of rotation of the rotor, in revolutions per
second, the circumferential speed of point P is 7rnD, where D = 2e.

Hence, V

IrnD

When a cyclogiro blade such as that shown in Figure 86 rotates
about 0 in a circular orbit which itself translateswith a velocity V,
aerodynamic forces originate on the blade, and these forces have a
resultant which usually is not zero. Two special cases are when the
resultant is horizontal, in which case the rotor acts as a thrusting
device, and when the resultant is vertical, in which case the rotor
is a lifting device. In the general case, the cyclogiro rotor has both
a lifting and a thrusting component, the magnitude of which depends
upon the prescribed rocking motion of the blade about its feathering
axis P.

Figure 86 exemplifies low-pitch curtate trochoidal motion for
a purely thrusting rotor. The general case, in which both lift and
thrust resultant forces exist, is shown in Figure 87. Note that, in
Figure 87, the orbital motion is counterclockwise, while it was
chosen clockwise for Figure 86, to agree with the direction of
rotation of Figure 85. Both Figures 86 and 87 will be used to ex-
plain rocking motion.
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If only a thrust force is desired, the blade orientation is easy
to determine, as shown in Figure 88. The upper sketch corresponds
to the curtate cycloidal propeller blade setting. Six positions of the
blade are shown, both as seen from the fuselage or as seen in their
spatial motion. All lines normal to the blade chord at the rotational
axis of the blades meet in a common point within the orbit, a dis-
tance b from the propeller center. The blades in this configuration
oscillate but do not rotate about their axes. However, with respect
to the vehicle to which the propeller is attached, the blades make a
full revolution, though at variable speed, while the propeller makes
one revolution at constant speed. By tracing a blade on its path
through a cycle, it is observed that the leading edge always remains
the leading edge. By moving the point of ,onvergence of the normals
to the blade chords along the vertical axis A symmetry inside the
orbit circle, the propeller can operate along any cartate cycloidal
path.

The middle sketch of Figure 88 shows that, for pure cycloidal
motion of a thrusting propeller, the blade chord must always be
normal to a line passing through point 4 and the rotative axis of the
blade. The leading edge of the blade becomes the trailing edge every
other propeller revolution. The condition of tangency of the blade
is easily achieved by giving the blade a rotation about its center axis
of one-half the rotational speed of the blade orbit.

The lower sketch of Figure 88 shows the blade settings for pro-
late cycloidal propellers. All lines normal to the blade chords con-
verge in a point on the axis of symmetry o the blade orbit of
radius e, at a distance b from its center. It can be noted that the
blades make one full revolution, though at variable speed, while the
propeller makes one revolution at constant speed. However, the
blades oscillate only with respect to the vehicle to which the propeller
is attached.

A cyclogiro rotor, of which the cycloidal propeller discussed
above is a special case, may thus be defined as a mechanism, the
blade chords of which are tangent to a cycloidal or trochoidal curve
at zero slip in all positions of their orbital travel.

Cyclogiro rotor usefulness would be greatly enhanced if the
rotors could be designed so that a complete pitch-ratio variation of
from 0 to oo could be obtined by a simple mechanism, or by any
mechanism at all. It has been shown that low pitch or pi-pitch is
desirable for hover and low-speed flight and that high pitch is essen-
tial for high-speed aircraft flight. As will be seen later, Eastman
and Heuver have proposed mechanisms that cover certain ranges of
both low pitch and high pitch and that can convert from one to the
other in flight. However, there are two factors that militate against
the universal pitch system: (1) for the pure cycloid, a blade profile
with leading and trailing edge symmetrical about the 50-percent
station, is an absolute requirement, whereas for the curtate
and prolate cycloid, a streamlined blade seems to be
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desirable for good efficiency; (2) the high acceleration forces
required for both the curtate and prolate ranges in the close proxi-
mity where b/e approaches unity prevent a close approach to the
pure cycloid. Only the ranges of pitch ratios from 0 to 0.8 7" and
from 1.2 7r to oo can be covered by safe mechanical means.

From an observation of Figures 86 and 88, it is concluded that
thrust control of a cyclogiro rotor is achieved by blade pitch
changes, obtained themselves by moving, by the proper mechanical
linkage, point S of Figures 86 and 88 up and down.

It is interesting to compare the pitch-change mechanisms for
the conventional propeller and for the cycloidal propeller. The pitch
changes in cycloidal propellers are brought about by mechanically
varying the eccentricity of the blade control mechanisms. The
entire cycloidal blade--from its tip to the base--is thereby realigned
to follow a new cycloidal path. The mechanisms of variable-pitch
screws also turn the entire blade--from tip to base--so that each
blade element receives the same amount of angular displacement.
However, since every blade element of the screw follows a different
helix, the angular displacement of each blade element should be dif-
ferent for every pitch adjustment and should vary from zero at the
propeller center to a maximum at the tip. Such a variation of angle
would be possible if the blade could be mechanically distorted by
twisting, but not by turning it about its base. The mechanical
difficulties of creating a blade twist are quite apparent. If the
variable-pitch screw is designed for a certain fixed pitch and this
pitch is increased by turning the blade in its socket, the blade load-
ing shifts toward the blade tip for low-pitch screws and a small
angular turn of the blades. For high-pitch propellers and large
angles of blade turn, the converse is true; namely, the blade loadingshifts toward the propeller center. Hence, the accommodation of
the variable-pitch screw from normal pitch to a different pitch
setting is accomplished at the expense of efficiency. The problem
is particularly severe for a convertible aircraft of the tilt-rotor type,
as is well known. Here, the cyclogiro rotor presents an enormousconceptual advantage.

5. Analysis of Cyclogiro Blade-Rocking Motion

The purpose of the rocking motion is to keep the blades pro-
perly aligned with the airstream throughout their wave-shaped paths.
The type of rocking motion that permits the blade to maintain constant
angle of attack along a chosen path is called idLmotim. For
practical reasons i. e., to reduce blade accelerations in the critical
portions of the orbit, it may be expedient to digress from ideal
motion Into what is referred to as "amplified motion". Both ideal
and amplified motion will be discussed here.

Consider the blade angle diagram of Figure 87. However,
the diagram of Figure 86, though covering a more restrictive
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case, is equivalent and could be used.

The angle of inclination of the blade path, q. can be calculated
from the velocity triangle, in the upper left corner of Figure 87:

tan(-V + 7rnD cos2 - - p ) = 7rnD sin

or sin'I

taneO =P + Cos

P = tan -1 sin
j + cos

The variation of Op with (ideal motion), for various values of
the advance ratio J, is plotted as the solid lines of Figure 89.

When j > 1 (shown as 1/j < 1 on Figure 89), the curves oscillate
about the zero axis; but when j < 1, they oscillate about a 45-degree
axis. The type of oscillation is identical in the two cases, since
e determined for a given value of 1/j is equal to - determined
Fog the same value of j (this is proved by Kirsten in Refeifence 30K).
In other words, a line tangent to the blade path rocks about the rotor
path if j > 1, but it rocks in an identical manner about the rotor
structure of j < 1. The sudden transition from one type of rocking
motion to the other leads to the sharp distinction between a high-pitch
cyclogiro and a low-pitch cyclogiro. It al~o follows from the geo-
metrical definition of the trochoid, in Figure 85. The high-pitch
machine is suitable for high advance ratios because its blades rock
relative to the fuselage, but the low-pitch machine is limited to low
advance ratios because its blades rock relative to the rotor structure,
as seen previously.

A study of Figure 89 shows that, as j decreases from infinity
and approaches the tranf-'tion value, j = 1, the maximum value of
e1 becomes larger and occurs later in the cycle. In the limit, the
mmum is 90 degrees, and it occurs when D = 1800. At this
point, e9 suddenly changes 180 degrees in either the positive or
the negative direction, depending upon whether or not the transition
is made. Since to turn the blades 180 degrees instantly is impossible,
ideal motion becomes impossible as the transition is approached.
Nevertheless, as stated before, the p1-pitch propeller meets the
requirement of ideal motion when j = 1.

Apparently, ideal motion is impossible when j is slightly less
or slightly greater than one. However, since blade "effectiveness",
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i. e., the lifting ability of the blade, approaches zero at the same time
that the angular acceleration becomes excessive, a distorted ideal
or "amplified" motion can be substituted without appreciably affect-
ing rotor characteristics. The reduction in effectiveness arises
from the variation of the blade resulta t velocity v throughout the
orfit. Blade lift is proportional to Vb 2 and there re vb / mean
Vbm can be taken as a measure of blade effectiveness. Eastman, in
Reference 2E, shows that the effectiveness is given by the equation

Vb21 + 2icos
mean (vbZ)  =1 + j2

Tw dashed ciqrves in Figure 89 are drawn through points of equal
vb /mean (Vbz), and the number on each curve indicates the value of
the effectiveness ratio, between 0. 1 and 1. 5. It can be seen that
greatest blade effectiveness occurs at small values of q and becomes
very small around iJ = 1800. With this information, a blade motion
may be selected whidh conforms closely with the blade path through-
out the effective part of the orbit, but which is distorted to reduce
angular acceleration throughout the part where even a stalled blade
will have little influence.

Blade angular velocity and angular acceleration can be plotted
also as a function of qJaad j. However, their values will depend
upon the type of blade-rocking motion.

Kirsten, in Reference 30K, calculates both for the configuration
of Figure 86, i. e., the pure thrusting propeller. Eastman, in
Reference 2E, notes that a simple swinging block linkage, in com-
mon use for quick-return mechanisms, will produce ideal motion.
It consists of a block sliding in a slotted bar as it is moved by a
crank of radius e. The axis of the crank is displaced a distance b

Slider Block Track Slider Block

Pivot Location Fixed
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from the axis of the slotted bar. For this mechanism, one can
define an ideal blade-rocking motion parameter, such as m = b/e.
When b > e, the slotted bar oscillates exactly as required for ideal
high-pitch motion. Similarly, b < e corresponds to ideal low-pitch
motion. For b = e, the mechanism is inoperative.

The rocking motion, being an ideal motion, is described by
tan- 1 sin 4f In

tan' m + coswjm

The angle 4P is shown in Figure 87.

The angular , elocity and acceleration of the blade corresponding
to the above motion are given by Kirsten and Eastman as

d) _21Tn 1 + m cosl/mdt m 2

S1+ 2m cos lM +m

d j> _(27rn) 2  (1-m 2  sin 1m

dt 2  (1 + 2m cos ' m + m 2) 2

These equations are obtained by straightforward differentiation
of the equation for 4> .

Angular velocity and acceleration are plotted in Figure 90.
Consider first the angular velocity curves. The parameter against
which they are plotted is the rocking motion parameter. This para-
meter replaces the advance ratio of Figure 89. As in Figure 89,
there is a correspondence between a value of m corresponding to
low-pitch motion and the corresponding value 1/m that gives high-
pitch motion. Actually, the two curves are symmetrical with
respect to the line d~i/dt = 0. 5. From the earlier definition ofthe pitch ratio, it is equal to "7r times the rocking parameter.

An examination of the angular velocity and acceleration curves
(Figure 90) reveals the large magnitude of the accelerations, for
ideal motion, for m near 1, and for large values of .• Thesecurves, plus the effectiveness curves of Figure 89, serve as a guideto the design of amplified-pitch mechanisms.

The limitation imposed by angular acceleration is best illus-trated by comparing the maximum acceleration for ideal motionwith that for harmonic motion having the same amplitude. The

equations show that the maximum for ideal motion is essentially
the same as for harmonic motion when m is either very small or
very large, but that the acceleration increases more and more
rapidly as m approaches unity. The acceleration is nearly four

1
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times that for harmonic motion whern m or I/m becomes 0.8. This
acceleration is considered to be a practical maxumum value for m
or 1/r. Eastman (Reference 2E) suggests a maximum value of 0.6.

The traasition from low-pitch to high-pitch motion cannot be
made by changing at once from m = 0.6 to 1/m = 0. 6, because this
would require an instantaneous change in the angular velocity of the
blades. However, a distorted ideal motion can conform to the blade
path for j = 1 throughout the effective part of the orbit without in-
troducing excessive angular acceleration in the ineffective part.
Since the blade angle for high-pitch motion will be identical to that
for the low-pitch motion throughout the effective part of the orbit,
transition is possible. Such a mechanism is shown schematically in
Figure 78. This subject will be brought up again later.

Distortion of ideal blade motion introduces an orbital variation
in pitch which corresponds in a sense to the radial variation defining
the pitch distribution of a screw propeller. Following screw-propeller
terminology, a reference blade angle, /?, will be used. It is the
angle through which the blade turns reloive to the rotor structure,
while *m increases from 0 to 90 degrees. As for the screw, tan
_ is the advance ratio at which the blade angle of attack becomes
.iro at the reference position. For pure harmonic rocking motion,

is the amplitude in the low-pitch range for which the rocking is
iative to .'e Y:r %r structure, but it is 90 degrees minus the ampli-
tude in the 1u6- zh range for whic!j the rocling is relative to the
reference axis. For ideal motion, = tan- m.

Preferred rocking motion will approach ideal motion throughout
the effective part of the orbit, but to relieve inertia stresses it will
approach constant angular acceleration throughout the ineffective
part. Amplified idea, motion is a step in this direction, and it is
easily obtained with gears or other means. Wird tunnel tests using
this motion were made by Baker (Reference 8B). Using 44>b for the
rocking angle of the blade and using k for the amplification factor,
amplified high-pitch motion is described by

=k4 d4b k d , d2 (Pb = d2

4 dt dt dt2 d

and

p 90 -tan

Since the mechanism must rock the blades, but not turn them
through a complete revolution, m must be greater than unity.

Amplified low-pitch blade motion can be obtained by applying
the same rocking motion relative to the rotor structure. In this case,
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r1n
b=lm. dc kd') d2  k ___

d--it- 2"Wn dt a ' dt2  - dt2

and

ktan-IL

Again, m must be greater than unity.

For smooth transition, the two motions must have the same
angular velocity as well as the same angular positions. This will
be satisfied at m = 0, for k = 1. 33. Therefore, smooth transition
is possible at thi point in the orbit.

The amplified motion defined by ) p can be approximated with
the ideal motion mechanism by using an equivalent" value of m,
say, m . Then, = tan - sin I

Ob = tm' + cosVm

Obviously, there will be a different value of m' for every position
of the rotor. However, a value of m', where . - 900, gives a
close approximation to the actual motion. For this condition,

tan- 1 1 a Ktan-1 1/m

Letting V = K tan- 1 1/m, then

M' = cot 4'

With K= 1.5 and m = 4, one finds m' = 2.6.

The curves in Figure 91 illustrate the amount of discrepancy
for two different values of m when the amplification factor is 1. 5.
The difference is quite pronounced when the equivalent m becomes
less than unity. However, the wide variation occurs in the most
ineffective part of the orbit. By computing the equivalent m at a
larger rotor angle, better agreement could be obtained at the larger
rotor angles but the curves (of K = 1. 5) would show much less
coincidence at the smaller rotor angles in the most effective region.

The total rotor force is unsteady, owing to orbital variations in
blade velocity and in angle of attack. If it is assumed that there are
three blades per rotor, that ideal motion is used, and that the velocity
through the rotor is uniform, the computed pulsation in ifft reaches
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a maximum of about 5 percent at low advance ratios and decreases
to zero as the advance ratio approaches infinity. Actually, the
maximum will not be attained, because low advance ratios wiu be
employed only for near-hovering flight in which the pulsation will
be subdued by prominent induced velocity. Nevertheless, Black has
shown (Reference 39B) that the pulsation can be reduced or eliminated
by proper choice of the blade-rocking motion. This may lead to a
slightly modified ideal motion which will produce steady lift under
normal flying conditions.

Preferred blade motion may be outlined as follows: Between
cruising and maximum forward speed, high advance ratios will be
used, and the only advantageous modification of ideal motion is that
which will produce steady lift. Any other modifications will produce
objectionable variations in blade load, and increased power losses.
At near-hovering speed, on the other hand, low advance ratios will
be used, and the blade velocity will be so low that aerodynamic loads
cannot become excessive. In addition, a moderate increase in para-
site power will be inconsequential, compared with the high slipstream
loss, which is unavoidable at low speed. In this range, therefore,
preferrea rocking motion will be determined as much by the merits
of the mechanism as by the slope of the blade path. The latter will
be influenced by the nonuniform flow through the rotor. Nevertheless,
even at low advance ratios, ideal motion establishes the pattern
which should serve as a guide toward establishing the ultimate blade
motion.

6. Classification and Further Discussion of Cyclogiro Systems

A complete classification of cyclogiro systems into eight
classes was prepared in connection with the cross-index tables of
Appendix H and is shown in Figure 92. The classification rests upon
a distinction between the various types of blade-rocking motion.
There are eight classes; each cyclogiro reference of the bibliography
of Appendix I is identified with one of the eight classes, as shown in
item 23 of the cross-index table. No attempt is made to tully
describe, in Figure 92, the feathering motion corresponding to each
rotor class. Rather, additional discussion of these classes will
be given below using additional figures.

It will be noted first that the blade feathering motions discussed
in the previous paragraph, e. g., low pitch, pi-pitch, and high-pitch
systems, cover only the first three classes. Actually, most of the
early proposed cyclogiro systems (before 1920) belong to classes
4 through 8 and use "pusher" feathering systems. It is anticipated
that arty future cyclogiro aircraft woa1 d utilize the "full-feathering"
systera; i. e., one in which the pitch ratio of the rotor blades can
be changed at will as a function of the flight condition. Because of
its importance, this system will be discussed separately on pages
128 to 131.
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-Some additional details on the mechanical arrangements of the
rotors of the different classes are given below:

Class 1: Low-pitch and amplified low-pitch systems

This has been the most exhaustively studied
arrangement, witnessed by the number of references
in the bibliography. Blade-feathering motion is in-
variably sought from a simple offset crank or excentric
relative to the rotor axis, which feathers the blade
through radial push rods. Such was the arrangement
of the early NACA tests (Figure 73 and Reference 28W).
The use of these linkages produces a blade motion which
conforms closely with the ideal low-pitch motion when
the amplitude is small, but which becomes progres-
sively less satisfactory when the amplitude is increased
to accommodate larger advance ratios. In addition, as
shown in the previous paragraph (Figures 89 and 90),
as the pitch ratio and advance ratios increase, blade
accelerations can become excessive.

In 1935, Wheatley concluded from the NACA
cyclogiro tests done on a low-pitch system (Reference
28W) that "the probable performance of the cyclogiro
is very poor for normal power loadings". His indict-
ment of the cyclogiro was really that oi the low-pitch
system at high advance ratios. These limitations of
the low-pitch system were first rec ,gnized by Rohrbach
in 1938 (Reference 58R). It is recognized today, as a
result of the work done at the University of Washington,
that the low-pitch system is well suited- -actually is the
best--at hover and lowadvance ratios.

, A schematic demonstration of the operation of
a typical low-pitch system is shown on the left side of
Figure 93. (It was conceptrlly shown in Figures 86 antd
88.)

The rationale for the amplified low-pitch system
was given in a previous paragraph. A practical way to
achieve amplified low pitch, according to Kirsten, is
shown in Figure 94.

Class 2: P1i-pitch systems

The pi-pitch system was defined in a previous
paragraph. It was shown that, by using a doubly sym-
metric airfoil profile, the need to rotate the airfoil
instantaneously by 1800 at = 1800 was alleviated.
A schematic diagram of a pi-pitch mechanism is shown
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To Introduce Pitch Amplification Into Basic Blade
Motion (Ref. 30K).
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in Figure 95. The relative simplicity of this arrange-
ment makes it attractive. However, the doubly sym-
metric airfoil has fewer good aerodynamic characteristics
than the cambered airfoil which is best adapted to low-
or high-pitch systems. Also, the pi-pitch system has
a good aerodynamic efficiency only at moderate advance
ratios. Altogether, the pi-pitch system does not adapt
well to aeronautical applications.
Class 3: High-pitch systems

A schematic demonstrating the operation of a
typical high-pitch system is shown on the right side of
Figure 93 (it was conceptually shown in Figure 88). In
the limit, when the pitch ratio becomes infinity, the
high-pitch cyclogiro rotor takes on a fixed-wing config-
uration. It stands to reason, therefore, that the high-
pitch system is well suited for high-speed aircraft con-
figurations. The advantage of the high-pitch cyclogiro
over the fixed-wing airplane, independent of the VTOL
argument, comes from the fact that in the cyclogiro,
lift and thrust functions are integrated.

The rationale for the amplified high-pitch
system was also discussed previously. Amplified high
pitch is useless for operation of an aircraft at high
speeds, but it may be useful for low-speed operation.
An amplified high-pitch system makes possible a broader
speed range than the pure high-speed system, which has
a very poor aerodynamic efficiency at low speeds or inhover.

Classes 4 Through 7: Pusher feathering systems

The basic idea is a variation of the familiar
paddle wheel: in the hover situation, for example, the
descending blade ( 4= 900) adjusts its position so as
to create a maximum resistance or "push" (CD > 1),
while the opposite ascending blade ( qj= 2700) is set at
the angle of minimum resistance (CDmin). The net
effect is an acceleration of the system in a direction
opposite to that of the "push". The blades travellin
the remaining quadrants of the orbit ( jt= 00 and 1800)
usually remain in the position correspofiding to CDmin.
Horizontal thrust is obtained by inclining the lift vec-
tor by varying the feathering mechanism. Lift and
thrust magnitudes were also changed in these older con-
figurations by changing the rotor RPM.

Although such systems may be mechanically
simple and are capable of producing lift as demonstrated
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by Pichou (Reference 13P), the fact that the effective
blade is influencing only the local air and not the air
through the entire swept cylinder demonstrates the
lack of aerodynamic refinement. A corollary is ex-
cessive power requirements. Such systems can be
defended for hovering flight, but their highspeed
potential is nonexistent.

There may be an exception to this generaliza-
tion in the form of a convertible "pusher" to fixed-
wing cyclogiro arrangements. A patent by Wilcox
(Reference 33W) shows a very straightforward system
for changing from a hovering "pusher" cyclogiro to a
multiplane fixed-wing high-speed aircraft. The sim-
plicity of such an arrangement may offset the limitation
on the aircraft's hovering capability.

Class 8: Miscellaneous systems

An unusual system was proposed by Hill and
Nicholas (Reference 36H), the "jet ilap cyclogiro".
They proposed that the cyclogiro wheel be rotated by
a reaction jet at the trailing edge of the blades and that
the lift of the blades, assumed fixed (nonfeathering),
be modulated by "jet flap" action. This in turn suggests
rotor control by fluidics rather than by mechanical
means. This particular proposal compounds the diffi-
culties inherent to the jet flap phenomenon to those
proper to the cyclogiro. Other indescribable cyclogiro
systems are also to be found in this category.

7. Full-Feathering Universal Pitch Systems

It has been shown in the preceding discussions that each cyclo-
giro pitch regime operates efficiently only within a specific and
related rotor advance ratio range; that is, the low-pitch system is
very effective at low forward speeds and at hover, while, conversely,
the high-pitch system excels at high forward speeds but suffers in
the near-hover condition. Thus, in order to evolve a completely
efficient full-flight-range high-speed cyclogiro, a system must be
determined that will allow the rotor blade feathering motion to operate
at its best efficiency regardless of its advance or pitch ratio. The
full-feathering VTOL cyclogiro thus will be able to operate at nearly
any pitch ratio between zero and infinity. The background, kine-
matics, aerodynamics, and mechanism required to obtain this
system will be briefly discussed here.

The initial "discovery" of the need for a full-feathering universal
pitch cyclogiro mechanism was explained and detailed by Rohrbach
in a remarkable patent first filed in Germany in 1932 (Reference 58R).
Although often described to the contrary, The Rohrbach Project "B"
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cyclogiro (Figures 67 through 69) was probably intended to make
use of the full-feathering system as reflected in the patent (Reference
58R). The yet-to-be-understood mechanical requirements for a full-
feathering mechanism, the political difficulties of the time (1932-
1935), and the reorganization of the Rohrbach Company (Reference
48R) probably were responsible for lack of completion of this
advanced IrTOL system. In his patent, Rohrbach discusses the
simple and inadequate feathering mechanisms proposed for the low-
pitch cyclogiros of his and previous times.

He then demonstrates the need for the efficient universal pitch

feathering arrangement and describes a mechanism and control to
obtain such a system. What is of further interest is that the patent
anticipates the need for the blades to translate through the regime
of low-pitch high blade accelerations to pi-pitch and thence through
the area of high-pitch blade accelerations. The patent also antici-
pates the need for a means to relieve the blade accelerations in the
vicinity of pi-pitch. The means was later to be called by Eastman
"pitch amplification".

The patent describes pitch amplification in this manner:

'With a ratio of U/V = 1 (pi-pitch), the wing (blade)
has to prform a sudden turn in the lower apex of the
circle of revolution (orbit angle iJ= 1800). Because
of the smallness of the aerodynamfcal forces which are
occuring in the lower portion of the circle of revolution,
with a ratio of U/V = nearly one, this 1800 turn of the
revolving wings could be performed much more gradually
(lower and constant blade accelerations about its fea-
thering axis) while a good deal of the lower part of the
circle of revolution is transversed without noticeable
aerodynamical loss."

The critical problem of the full-feathering system is to obtain
the smooth passage of the rotor blade across the pi-pitch area.
Eastman (Reference 2E) was able to demonstrate the quasi-mechanical
and structural means to perform this transition and to insure efficient
aerodynamic performance at the same time.

To understand kinematically how this is done, consider Figure
96. It is, in effect, a repetition of Figure 89, in which the x-x axis
has been given the slope of 1/2 in order to place the curve of p =71"
(a straight line) at right angles to the y-y axis. Thus, the 9 vs.

s curves for the low- and high-pitch systems become geometrically
s~fmmetrical about the p = IT line. This fact will become signifi-
cant in the design of the full-feathering cyclogiro control mechanism.

In Figure 96, the dot-dash curves show amplified low- and high-
pitch blade motions for the pitch ratios of 7r x. 7 and I" /. 7,
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Figure 96. Modification of Figure 89 to Demonstrate Change-Over From
Low- to High-Pitch Regime Through Pitch Amplification.
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respectively. The appropriate blade motions are obtained by mul-

tiplying all ordinates by a constant of such a magnitude that the
resultant curves are tangent to the p = I" line at the point where
0 - 0 or at the top of the rotor orbit. Thus, the angular velocity
d /dt when e = 0 is exactly the same for p = .7 and for p = 1/. 7.
Cnsequently if a mechanism can be designed to switch the pitch
ratio from . i 7r (low pitch) to 7rT/. 7 (high pitch) at the exact
moment when the blade passes through the e = 0 top position, no
shock would result upon the rotor blade or mechanism. Thus, for
a multiblade rotor system, the blade could be switched successively
from the low-pitch to the high-pitch range. By this means, a
smoothly progressive aerodynamic performance is produced which
would be the equivalent of the performance of the p1-pitch system
when half of the number of blades are operating in the low-pitch
range and the other half in the high-pitch range. It may be shown
(Reference 30K) by this arrangement that the critical blade accelera-
tions may be less than those developed by the isolated amplified-
pitch system.

A full-feathering rotor system is described in some detail by
Kirsten (Reference 30K). This system involves a system of clutches
and differentials at each rotor blade root plus several eccentric
devices required to obtain the desired pitch motion. In the schematic
of the full-feathering cyclogiro (Figure 78), Kirsten indicates the
"rocking mechanism" only in the schematic of the universal pitch
mechanism (view A-A, item "e"), and it is in this specific area of
the rocking mechanism that the full-feathering system is open to
criticism.

Although the aerodynamic performance potential of the full-
feathering cyclogiro is unquestionable a simpler and less delicate
mechanism must be evolved which will safely produce universal pitch
feathering. Such a system remains to be developed.

8. Aerodynamic Analysis of Cyclcgiro Rotors

Background

Simplified aerodynamic analyses of cyclogiro rotors are
straightforward enough that they appeared in the early 1930ts.
Analyses by Strandgren (Reference 130S) and Wheatley (Reference
25W) appeared simultaneously in 1933. Heuver and Hage presented
a more refined analysis in Reference 30H (1943). The most recent
analysis available today is that of Eastman (Reference 2E), last
revised in 1951. Actually, the Heuver and Eastman analyses are
quite similar and serve as a basis for the discussion which follows.
These analyses are not by far as rigorous as they might be since
unsteady E ffects are ignored, uniformity of the induced velocity com-
ponents is assumed, and two-dimensional airfoil characteristics
are used, with no really adequate provisions for stall. Much work
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thus remains to be done to produce a satisfactory aerodynamic
analysis of the cyclogiro rotor.

Aerodynamic Characteristics Based on Local Air, for
Forward Flight

The angular relationships and velocity triangle for a blade
element are shown in Figure 87, which shows a blade element sec-
tion by a vertical plane parallel to the direction of flight. Conditions
are assumed to be uniform in the spanwise direction. The velocity
V is not the aircraft forward speed, but it is the local velocity at
the rotor cylinder, assumed to be uniform throughout the cylinder.
V will be related to the forward velocity in the developments that
follow.

From Figure 87, local rotor blade angle of attack Cb is given
byb by b = a1i + ep - b

p )

where

a = the rotor angle of attack based on local air.
The magnitude of a1 determines the amount of
lift (in the vertical direction of the rotor). Thus,
CL is also the angle between the local air flight
path and the rotor axis of symmetry. If a 1 = 0,
the cyclogiro has no lift; it has only thrust. CL 1 is
controlled by the pilot.

p = the inclination of the blade path to the local-air
flight path. Its expression was given on page 114
as

tan sin
j+ cos

j = the advance ratio, j V where V is the local,
not the forward-flight 'nD velocity.

(I) = the blade angle introduced by the rocking mechanism.

ib = the incidence angle determined by the orientation
of the blade on the control shaft.

Cl)b = 4- ib defines the amplitude of the rocking motion.
This angle is determined graphically or analytically
from the pitch-change mechanism characteristics.
A typical graphical plot is given in Reference 30H.
A typical analytical determination is given in Refer-
30H. For the mechanism shown on page 116, one has
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tan (P sin(i+ a~)
m + Cos(*i'+a"1

When both a1 and ib are zero, the rotor has no lift and exerts
pure thrust. One has then

(L bt = tan-1  sin -, tan-1 ,sin

t - tan"1  (m- j) sin1
1 + mj + (m + j) cosqr

This periodic variation governs the thrust, as a. 1governs lift. It
can be measured by the thrust angle of attack, obtained by letting

900 in the above equation.
CL tan- 1 m -j m- j

1 + mj 1 + mj

To obtain any desired thrust action, the pilot controls the blade-
rocking motion, which is defined by m. This in turn controls the
value of ,T'

When m > j, O. T is positive and the rotor exerts thrust.

When m < j, L T is negative, and the rotor. generates power
by windmill action. In either case, the action can b¢ visualized by
ob erving the direction of the blade-lift vector at = 900 and

- 2700 on one of the paths in Figure 85. When C T is positive,
both vectors have a forward component, and their vertical compo-
nents produce a retarding torque. When a .T is negative, however,
both vectors have a rearward component and they produce a driving
torque.

In general, rotor forces may be computed by resoluteion of the
* blade loads into three components, as shown in the upper left-hand

corner of Figure 87. The three forces--L', normal to the local-air
flight path; T', parallel to the path; and F', tangential to the orbit--
are instantaneous values of the desired rotor forces and must be
averaged over one complete cycle to provide mean values. Actually,
the blade angle of attack a is calculated at twelve points equally
spaced around the orbit, andthe corresponding instantaneous values
of the three rotor coefficients are computed.

Symbols and coefficients are used as follows:
Blade Lift Normal to Blade Path: Lb = C S 1/2 pVb2
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lift (in the vertical direcion of the rotor). Thus,
C is also the angle between the local air flight
path and the rotor axis of symmetry. If a11 = 0,
the cyclogiro has no lift; it has only thrust. CL 1 is
controlled by the pilot.

0 = the inclination of the blade path to the local-air
flight path. Its expression was given on page 114
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CIP = the blade angle introduced by the rocking mechanism.

ib = the incidence angle determined by the orientation

of the blade on the control shaft.

Ib = - ib defines the amplitude of the rocking motion.
This angle is determined graphically or analytically
from the pitch-change mechanism characteristics.
A typical graphical plot is given in Reference 30H.
A typical analytical determination is given in Refer-
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tan sin(* a,
tan4 + m Cos(* +CL1)

When both C]a1 and !b are zero, the rotor has no lift and exerts
pure thrust. One has then

Cbt tan' 1  sin tan- sin-
m j cos1

bt -=- tan'- (m- j) sin

1+ m j + (m + j) cosl/

This periodic variation governs the thrust, as a. 1 governs lift. It
can be measured by the thrust angle of attack, obtained by letting

= 900 in the above equation.

ta-1
CL uT I + mj 1 + mj

To obtain any desired thrust action, the pilot controls the blade-
rocking motion, which is defined by m. This in turn controls the
value of LT"

When m> j, CL T is positive and the rotor exerts thrust.

When m ( j, C, I. is negative, and the rotor generates power
by windmill action. In either case, the action can b visualized by
ob erving the direction of the blade-lift vector at ;11 =900 and

= e270 on one of the paths in Figure 85. When °L T is positive,
boh vectors have a forward component, and their vertical compo-
nents produce a retarding torque. When CL T is negative, however,
both vectors have a rearward component and they produce a driving
torque.

In general, rotor forces may be computed by resolution of the
blade loads into three components, as shown in the upper left-hand
corner of Figure 87. The three forces--L', normal to the local-air
flight path; Tt, parallel to the path; and F', tangential to the orbit--
are instantaneous values of the desired rotor forces and must be
averaged over one complete cycle to provide mean values. Actually,
the blade angle of attack a is calculated aL twelve points equally
spaced around the orbit, andthe corresponding instantaneous values
of the three rotor coefficients are computed.

Symbols and coefficients are used as follows-

Blade Lift Normal to Blade Path: Lb V PVb
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Blade Drag Parallel to Blade Path: Db = CD S 1/2 V, 2

Mean Lift Normal to Local-Air Flight Path: L1 = CT S 1/2 PV2

IT
Main Tangential Force: F = CF S 1/2 pV2

Power Input: F V/j P = (CF/j) S 1/2 PIT3

Effective Power: T1V = CT S 1/2 PV3

Parasite Power, P-T 1 V, = (CFIj - CT ) S1/2pV3

S is the total blade area.

The instantaneous values are defined as follows:

L' CLI S 1/2PV Lb cos + Dbsin9p

CL' C Lb (Vb/V) 2 Cos ep + c (Vb/V)2 sin ep

T'= CT S 1/2 pV2 = Lb sin ep - Db cosTv p
CT = CLb (VV) 2 si CDb (Vb/V) 2 cos

F C F, S1/2PV2 = Lb sin (*$- ep) + Dp cos(*-ep)

CF = CI0 (Vb/V)2 sin (i *- ep) + CI (Vb,/V) ' cos ( * -(p)

Blade interference is disregarded. Blade coefficients are those
for any chosen airfoil, for a chosen aspect ratio; for example 6
(as in Reference 30H) or 10 (as in Reference 2E). The ratio (Vb/V) 2

is calculated from the equation

(T) 2 1 (1 + 2j cos * + j)j2 ,

The rotor coefficients CL and CT are the arithmetic averages
of the instantaneous values calculated as described above.

The aerodynamic performance of the rc or can be presented in
the form of lift-thrust polars (CL against CT curves), which are
comparable with constant RPM polars for a conventional wing-and-
powered-nacelle combination. It is of interest to note the very
large thrust which can be obtained without rocking the blades;

134

m,.1..



i. e., with m = oo. In this case, the propelling action is essen-
tially the same as for a flapping and oscillating airfoil, analyzed by
Garrick in NACA TR No. 567.

Figure 107 shows a good efficiency of the cyclogiro rotor,
when used as a propeller exerting thrust, but not lift. An additional
advantage of the cyclogiro over the equivalent screw-propelled wing
must be noted. Screw-propeller efficiency is based on a useful
thrust which includes that required to overcome wing drag. In con-
trast, the efficiency shown for the cyclogiro rotor is based on net
thrust, so that the power to overcome the drag of the lifting surfacescontributes to the propulsion losses instead of being recognized as
useful thrust action. If blade drag is added to the net thrust, accord-
ing to the 12-point average, the maximum efficiency will be at least
98 percent. In keeping with this figure, Garrick has shown in NACA
TR No. 567 that for an infinite wing in pure flapping motion, the
efficiency approaches 100 percent.

The approach to 100 percent propulsive efficiency can be ex-
plained as follows. In horizontal flight, propulsion results from
the gliding action of the descending blade. The torque applied to the
rotor simply shifts some of the weight from the ascending to the
descending blade. Consequently, the only power loss attributable
to propulsion results from a slight increase in overall blade drag.
The increase, caused by higher lade velocity as compared with for-
ward velocity, vanishes as j approaches infinity, but that due to
concentration of lift on the descending blade remains.

Forward- Flight Theory Based on the "4-Point Average"

Eastman, in Reference 2E, after developing the "12-point
average" thenry, rem rks that one gets a clearer physical picture
by not attempting to follow the blades through 12 positions, but by
looking at things gllobally and assuming that the effect of blade action
is to uniformly deflect and accelerate the air passing through the
rotor. He found that rotor coefficients, based on the local velocity
V, can be expressed mathematically and with reasonable accuracy
by averaging the four instantaneous coefficients existing at the
quarter-turn points.

Expressions for rotor lift, thrust, and tangential force co-
efficients are obtained by adding the expressions for their instan-
taneous values at the quarter-turn points and dividing by four. At
the position 4, = 1800, the blade velocity reverses when j < 1.
As a result, the coefficients below may have different expressions
for low and for high pitch. These expressions are given below,
together with the equations of Table IV.

1
CLI- d 1 G ib + M 1 '
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C1 d CLb 2j 2; +L G CI~ 0 d 2. 2j -  CT +  HC

C =dC b  2C 2 b ,

where

CI =L ( dCLb/d b) (1b

Cb =z CDb + (dCDb/da 2b) a 2b

The parasite power coefficient is given by
2/2

dC Db (1 i 2 2- =EC + L'" ( + / O1
CF/j CT Db 0 d b 2j 3  CLT

dCn/dCL2 represents only the variation in blade profile drag,
the rel aonslp of induced drag effect being considered separately.

This is usually so small that the second turn on the right-hand
side of the above equation can usually be disregarded. Eastman
shows that, should greater accuracy be required, one can use

CF/j - CT= Kp CDb o
b0

where

1 dCDb [ ) 2 21
Kp = E [+ -- Db d(CT 2 +G Db + BCL2

Eastman compared, in Reference 2E, the results of the "12-
point average" and of the "4-point average" methods. He found
fairly good agreement, except when the coefficients were large. The
discrepancy was due to blade stalling, which is accounted for in the
12-point method and not in the 4-point method.

Induced Velocity Effects

In the foregoing study, the assumed uniform flow through
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the rotor cylinder provided the reference velocity V. Both the
direction and the magnitude of this local velocity must be determined
before the theory can be applied to an actual cyclogiro.

When the rotor is producing lift without thrust, it acts like a
multiplane. This suggests that the area of the equivalent airstream,
which is assumed to be deflected by lift action, may be that shown
in the sketch below. This assumption was used by Wheatley (Refer-
ence 25W), and it is justified by tests of the high-pitch models.

LocaD cal p -Flight Path
Ar Air

.bo_ b
2 2

CROSS SECTION OF THE VELOCITY THROUGH
DEFLECTED FLOW ROTOR CYLINDER

On the other hand, pi-pitch model tests seem to indicate that
the area becomes smaller when the advance ratio approaches unity.
There are also indications that the fuselage width may add to the
equivalent span. Thus,

7r bo 2 /4 < AL < boD + 7r bo2 /4

The area of the equivalent uniform flow, which is accelerated by
thrust action, is much larger than that for an equivalent screw-
propelled wing. Wheatley (Reference 25W) used the projected area
of the rotor cylinder, and experimental evidence seems to justify
this assumption. Thus,

AT  b oD
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The combined eq!!ivalent flow pattern may be described as
follows. An air stream having an area AL and a velocity U is
deflected by the force L1 through an angle C. Following accepted
wing theory, the air is assumed to be deflected through half of this
angle when it reaches the rotol. Therefore, E /2 determines the
direction of the local air. If is the rotor angle of attack measured
to the reference axis (angle beteen m - m and x - x in Figure 78),
Q is related to a 1 (page 110), rotor angle of attack relative to

local air, by

M = C. 1+ (/2

Superimposed upon the deflected flow is a region of area AT, which
is accelerated by the force T1. Following accepted propeller theory,
the assumed total change in velocity is 2 aU, half of which is attained
when the air reaches the rotor. Therefore,

V = U(1+a)

In the sketch below, the forces T and L are the true thrust
and lift, acting parallel and perpendicular to the flight path 0 - 0.
Db is the residual drag. The forces Tj and Li act parallel and
p~rpendicular, respectively, to the locail-air flight path x - x. They
will be expressed in terms of new coefficients, Cx and CN, which
are based on the true forward velocity U.

L
Ll
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The momentun theory for lift gives the relation between C and sin
(E /2); that for thrust gives the relation between Cx and tie slip-
stream factor, a.

L1 = (PAL U) 2U sin E/2

- L1 4 AL sin
N S1/2 pu S si 2

TL = PAT U (1+ a) (2aU)

__T _ AT 2
S1/2pU 2  =

1/2 -1 + + Cx S

AT_

From the sketch above

CN = CL Cos 2 T sin2 '2
Cx  CT co

= C + CL sin 2x T 2 L2

Hence, by straightforward substitution

CL (4 AL/S)

V/L + (CT + 4 LS
CL2 + CT (CT + 4 AL/S)

Cx = L

VCL2 + (CT + 4 AL/S)2

The effective power, T1V, may be expressed in terms of Cx, since

T1 = CxS1/2 pU2  and V = U(I+ a)
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T V 1/2C, (C/ + xS/AT) s 1/2 PU3

The equations for CN, Cx, and T1 V establish the relation
among lift, thrust, and effective power. The relation is important,
because it determines cyclogiro performance when induced velo-
city effects predominate, as in near-hovering flight.

The gliding condition may be approximated by letting Cx = 0,
because this means that only rotor parasite power will be supplied by
the engine. In this case,

CL2 + CT2 + 4 AL/S CT = 0

The slope of thi flight path is obtained from

tanO = C/CL

The procedure for the complete cyclogiro performance calcula-
tions is as follows. For assumed values of j, al , and m, one cal-
culates first local-air lift, thrust, and parasite power coefficients.
Then the conversion to free-stream coefficients C9, Cx, and Cpp
(CP is the parasite power coefficient: C -- P /qU) may be made
affer the velocity ratio, V/U, is known. This ratio, equal to 1 + a,
is obtained by substituting

Cx  C CT1 (1 + a) 2

into the equation
cx  4 (a+ a2)

ST
Hence,

l+a = 1-S/4 ACT

For convenience, the other relations used to complete the
analysis are listed below:

Cx = C T (1 + a) 2

C CT(1 +a)'
N = lCN = CL (1+a)2

Cpp = C cD (1 + )
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Cp =Cpp + CT1 (1+ a)

'e/ 2  sin 1 (CNS/4 AL)

CT x Co- i
2 2

CL  Cx sin -L + CN Cos
2 N 2 N 2

SCl CCCOCDI P p-CT
=CL + 1 2

V/l rnD = j/(l+a)

The coefficient CDe is called the extended-drag coefficient,
because it represents a drag which, when multiplied by U, gives
the entire power which does not contribute to the net thrust. In
addition to parasite drag and induced drag, it includes an equivalent
drag which accounts for propulsion losses. Its components may
be separated as follows:

CD Cpp + CT(+ a) 3  CT=Cpp+ Cx(l+a) - T

or CDe Kp CDb (1+ a) 3 + (C x CT)+aCx

0
The first term accounts for parasite power. The second term

accounts for induced drag, and, when E is small, it may be approxi-
mated by the familiar expression SCL 2/4 AL. The last term
accounts for slipstream power. Parasite power may be separated
into three parts, by observing the components of the Kp equation

dC r -7 + ~2 + B Ck
SDbo dCLb [

The first term, E, accounts for the effect of minimum blade
profile drag. The second term accounts for the increase in profile
drag with C and is in two parts: that due to thrust action and
that due to R action.

When the rotor is autorotating with the torque equal to zero,
CDC is truly comparable with wing drag. Neglecting the slight
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retarding influence of blade profile drag, a = 0 and CT1 + GCDbo =
0. As a res-jt, the drag coefficient of a cyclogiro rotor is expressed,
in the above equation, in the conventional manner. The first two
terms are profile drag; the lasi term is induced drag and must be
replaced by Cx - CT when E is large.

CD = E CDbo + B CL 2 dCDb/dCLo2 + CL2 S/4AL

The efficiency of a cyclogiro rotor used for propulsion alone is
TU or simply Gt./Cp. Therefore,

CT

C x + Kp CDbo (1 + a)3 + a Cx

As has beer, pointed out, the propulsive efficiency of a cyclo-
giro must inciude blade drag as part of the useful. thrust, if it is to
be compared with the propulsive efficiency of a screw-propeller
airplane. The 12-point average method indicated that this efficiency
might be as high as 98 percent. Now it is possible to be more
specific. The additional useful thrust is that which would be re-
quired to overcome the drag of the blades if they were used in the
conventional manner, thereby providing lift but not thrust. This is
the drag which exists when m = oc and j = a* . Therefore,

CT + C~bo + CL 2  d , + (Cx-CT)

Equivalent efficiency = Dbo L dClb 2

Cp

This efficiency increases as the lift action increases, but its
conservative zero lift value will be used for simplicity.

SCT + co - e (CT + Ct

C n 
Ip T

Representative values of rare as follows. Let S/AT =I,
m= oo , 'and CT = 0.04. Then 7? m 0.97. Representing a steep
climb by using m =2 and CT = 0.2 gives 7) 3 0.92.

Aerodynamic Characteristics in Hover

In the hovering condition, rotor force coefficients become infinite,

143



and a separate use of the momentum theory determines the value

Of V, CTI, and P.

The momentum area being assumed to be AT = boD, one has

W = pAT V (2V)

Hence,

V

Also,

C W 4 4Ar/S
T1 S 1/2 pV

and

P Pp + WV

- KP C~, S 3 /2 1/2
P Dbo (--) + W 1 w

" AT 2p AT

9. The Wright Field World War II Cyclogiro Project

It would seem that Heuver, who had been associated with Dr.
Kirsten at the University of Washington in the 1930's, promoted
interest in the cyclogiro at Wright Field at the beginning of World
War 11. As a result, analyses and preliminary design studies were
performed and wind tunnel tests sponsored at the University of
Washington. This effort was stopped, like many others, following
the end of World War II.

The culmination of the Wright Field effort was the design of a
fighter aircraft, designed on the same basis as the Bell XP-77.
An artist conception of the cyclogiro aircraft is shown in Figure 59.
Its general characteristics (taken from Reference 30H) are as
follows:

Rotor
High-Pitch System
Range 1. 25-20 Pi Pitch
3 Blades per Rotor
Tandem Sets of Rotor
Counterrotation of Fore a d Aft Rotor Systems
Total Blade Area = 90 ft.Z
Area of One Blade = 7.5 ft. 2
Span of One Blade = 6 it.
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Rotor Span = 15.5 ft.
Blade Taper = 7.3Blade Section: NACA 0012 Series

Fuselage
Length - 25 ft.
Width - 3.5 ft.
Height - 6 ft.

Engine
Type W770-9

Normal - 465 HP @ 12, 000 ft.
Military- 450 lP 27,000 ft.

515 HP 12,000 ftI
500 HP @ 27, 000 ft.

A weight estimate is chown in Table V.

Estimated performance, calculated in accordance with the
12-point average method, discussed in the previous paragraph, is
shown in Figure 97.

A performance comparison (estimated) with the Bell XP-77
airplane is as follows:

XP-77 Cyclogiro
High Speed at Sea Level 327 MPH 340 MPH I
High Speed at 27,000 Feet 420 MPH 428 MPH
Max. Rate of Climb, Sea

Level 3,050 ft/min 2,900 ft/min
Max. Rate of Climb,

27,000 Feet 2; 020 ft/min 2,000 ft/min
Speed Range (V max/V min) 4.5 8. 5
Gross Weight 3, 700 lbs 3,900 lbs

The cyclogiro and the XP-77 have the same engine, same arma-
ment, and approximately the same gross weight.

It will be noted that the above cyclogiro was not designed for
hovering flight. However, its speed range is substantially in excess
of that of the fixed-wing fighter.

The Wright Field conclusions (Reference 30H, 1943) were as
follows:

1. The aerodynamic efficiency of the cycloidal propeller
(rotor propulsion-lift device) appears to be superior to
that of the conventional screw propeller and wing system.
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TABLE V. WEIGHT ESTIMATE, WRIGHT FIELD CYCLOGIROTABLE V.FIGHTER (Reference 30H)

Design Gross Weight 
3,900 lbs

Weight Empty

R.otor Group
12 Blades 28212 Bindles 92

Rotor Structures 258
2Rotor Mechanisms 140

275

Body Group

Alighting Gear

Main Landing Gear 202
Auxiliary Landing 9

Gear 90

Powerplant Group (Less
Pror eller)

Engine (As Installed) 835
Engine Accessories 47

Powerplant Controls 5

Starting System 22

Lubricating System 10

Fuel System 75

Fixed- Equipment Group 523
(Less Surface Controls) 523

Instruments 39

Electrical 105 A

communicating 144

Armament Provisions 183

Furnishings 37
Service Pickup 15

Useful Load

One Crewman Plus Chute 180

...56 Gallons Gasoline 336

4.6 Gallons Oil 
35

Two 50-Caliber Guns 135

50 Caliber- 400 Rounds Ammunition 125

One 20-mm. Camera 135

20-ram. Ammunition (100 Rounds) 62

Gun Sights (N-7) 3
Gun Camera (ANN-4) 3
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2. For conventional fighter power loadings, hovering

flight can be attained only at low wing loadings, due to
the limitations of the pitch-change mechanism.

3. The following advantages and disadvantages ascompared wl',h conventional fighters of the same powerand useful load can be identified:

a. Advantages

I() possibility of greater speed range
2.) possibility of high rate of roll and lower

radius of turn
(3) somewhat improved visibility from the

cockpit
(4) appears to be conveniently adaptable to

nose armament installation
(5) lower external noise level due to cycloidal

propellers instead of screw type

b. Disadvantages

S1~ increased structural problems
increased flutter and vibration problems
possibility of stability and control

difficulties
(4) increased mechanical problems

4. In the design studied, due to the inrherent size of the
fuselage, it appears to be feasible to use more power than
that shown in the preceding analysis with little increase in
airplane drag. Hence, increased performance should be
attained, giving higher speeds, higher rates of climb,
and possible hovering flight.

Further analyses of the cyclogiro fighter design by the Wright
Field Propeller Laboratory were reported in July 1944 (Reference
39B). The report noted the following:

1. It appears that large oscillatory aerodynamic forces
and torques are present in the rotor system discussed
above.

2. Oscillatory forces and torques can be eliminated by
revision of blade angle changing mechanisms or by entire
redesign so that blade angles will conform to those re-
quired by the theoretical analysis.

3. Experimentally determined rotor efficiencies that
compare favorably with values for conventional
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airplane propeller and wing systems have been ob-
tained in recent tests.

4. The stresses, as calculated for maximum applied
load factor pullout from a terminal velocity dive in a
fighter aircraft, are approximately twice the allowable
stresses for the assumed type of construction (1943-
1945 hollow steel type of construction of propellers).

5. Mechanical and vibrational difficulties and stress
considerations appear to indicate that this type of air-
craft would not have been suitable for use as a fighter.
It is believed, however, that this type of alrcraft would
be feasible for use where flight velocity and load factors
were not so great.

6. This type of aircraft is capable of hovering flight.

7. Further tests of existing rotor mechanisms are
necessary to ascertain the degree of oscillatory forces
and torques and the magnitude of the stresses encountered.

As a result of the conclusions of Reference 39B additional work
was performed by Eastman at the University of Washington under
the auspices of the Army Air Forces. This work was concentrated
on the solution of the problems noted above; i. e., the development
of more satisfactory cyclogiro control mechanisms and the correla-
tion of theoretical analyses with test results (results of wind tunnel
tests were the only ones available). Much of the earlier discussion
of this chapter was borrowed from Reference 39B. Eastman made
his own preliminary design, which is shown in Figure 78. Calcu-
lated performance (not reproduced in this report) confirmed the
Wright Field results; i. e., higher maximum speed, higher rate of
climb, and higher speed range for the cyclogiro than for either the
airplane of similar characteristics or the helicopter.

Eastman's conclusions (from Reference 39B) regarding the
major features of the cyclogiro are still essentially valid at this
time. These conclusions are reproduced here:

"Although the theory is somewhat inaccurate when
the rotor force is extremely large, model tests covering
three different ranges of blade-rocking motion verify
the theoretical trends. As a result, the theory predicts
the general characteristics of a full-feathering cyclogiro
rotor with certainty, and makes reasonably reliable
quantitative predictions for specific applications.

"A freely autorotating cyclogiro rotor acts like a
multiplane. When its blade rocking motion is adjusted
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so that it autorotates slowly at high forward speeds, the
advance ratio becomes so high that its characteristics
will be essentially the same as those of a multiplane
using the same blades and the same blade spacing. The
autorotating speed will be fully controllable if a full-
feathering mechanism can be perfected. The resulting
effect upon rotor characteristics can be compared with
that of an unlimited and fully controllable anti-stall device
on a wing. If the slight retarding influence of mechanical
friction is disregarded, the only apparent limitation on
lift coefficient arises from the limitation on downwash
angle. The stall is avoided by increasing the autorotating
speed. As a result, rotor profile drag becomes larger,
but it can be reduced to thaE of the equivalent multiplane,when high lift coefficient is no longer needed.

"If power is applied gradually so that rotor rpm is
steadily increased beyond the autorotating speed, the
drag will diminish gradually until it becomes zero.
Thereafter, thrust is exerted, which will increase as
long as power input is increased. If propulsive efficiency
is important, the rocking motion should be changed
gradually to avoid blade stalling.

"When the thrust required is negligible, so that the
propelling action is used primarily to overcome the drag
of the lifting surfaces, a very high advance ratio can be
used, and the equivalent propulsive efficiency can exceed
98 per cent. In practice this figure will be reduced
slightly by mechanical friction.

"The efZiciency based on net thrust, as for example
when the rotor replaces a screw propeller on a lighter-
than-air craft or on a marine vessel, can be higher than
that of a screw. In such applications, howeve, a more
prominent reduction in power required will result from
the use of rotor lift action to replace an existing control
surface for steering or maneuvering, or for auxiliary
sustentation.

"When rotor rpm is gradually reduced below that for
autorotation, the drag increases and power is generated
by windmill action. Neither the drag nor the power will
increase indefinitely. The drag reaches a maximum when
the air passing through the rotor is retarded to about half
of its original speed; the power reaches a maximum when
th6 air is retarded to about two-thirds of its original
speed. To obtain these maximums, the stall is avoided
by the use of low advance ratios, and the blade-rocking
motion must be adjusted accordingly.
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"Within the limits of power available, any combina-
tion of lift and thrust can be obtained by adjustment in
inclination of the reference axis and in amplitude of
the blade-rocking motion. In every case, the optimum
rotor rpm, as determined by minimum parasite losses,
is only slightly higher than that necessary to avoid blade
stalling. When stalling does occur, it starts at one or
more points on the orbit and its gradual progress pre-
vents any sudden change in rotor force.

"A full-feathering cyclogiro offers distinct aero-
dynamic advantages over the screw-propelled airplane.
Its span probably will be shorter than that of the air-
plane, for structural reasons. Nevertheless, its greater
slipstream area and the ability to use its lifting surfaces
for propulsion should result in higher rate of climb and
higher maximum speed with the same power loading.
In addition, it should be able to hover, and it should be
extremely maneuverable regardless of the flight attitude.
Its control will be positive and instantaneous, and since
it is provided by the rotor mechanism, no need exists
for additional control devices.

"According to the theory, full-feathering motion
requires a transition from high-pitch motion, which rocks
the blades relative to the reference axis, to low-pitch
motion, which turns the blades through a complete revolu-
tion for every revolution of the rotor. This introduces
a difficult amplified high-pitch motion. The use of this
substitute motion will have little influence on the perfor-
mance of the cyclogiro when it is climbing or when it is
in level flight. It may be a handicap, however, in power-
off maneuvers at very low forward speed.

"The structural problem is not as serious as might
be expected, because rotor rpm will be low when forward
speed is high. The problem can be further relieved by
reducing the number of blades per rotor, so that a smaller
blade aspect ratio will result for the same span. The
theoretical blade-rocking motion will give reasonably
steady lift if three blades are used per rotor, but the use
of two blades per rotor may require a special rocking
motion to avoid objectionable pulsations. The advantage
arising from the use of fewer blades leads to conjecture
regarding the employment of only one bla,4e per rotor.
Certainly this final step can be taken in gliding
flight, for which rotor rpm normally will be zero,
and for which a slow rotation will serve to reduce
the gliding argle. In powered flight, it may be pos-
sible to compensate for the pulsations in the lift of a
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single moving wing. A study of this possibility
should be made, recognizing that the use of a conical,
rather than a cylindrical swept surface, may lead
to a machine having the advantages of a cyclogiro
without sacrificing any of those of the airplane.?

10. Cyclogiro Test Data

Hover

Test data show incontrovertible evidence that cyclogiro,
rotors are capable of hover flight. They further indicate that
conventional screw momentum theory is applicable, if one uses
as the area of the accelerated flow the projected area of the
rotor cylinder AT defined previously. A comparison of cyclo-
giro and helicopter shows that the momentum area of the cyclo-
giro in hover is likely to be significantly lower than that of the
corresponding helicopter (two to three times). This means a
higher power loading in hover for the cyclogiro than for the
helicopter. For a composite aircraft application (VTOL with
maximum speed greater than 300 knots), a high power loading
is required for the high-speed condition; therefore, a high
power loading in hover is not likely to be detrimental from the
standpoint of installed power. From the standpoint of environ-
mental effects (downwash velocity), this is another matter.
The cyclogiro is not likely to be competitive ,or a "disc" loading
of 10 lbs/ft2 ; a disc loading around 30 lbs/ft' seems to be more
appropriate.

The static thrust of several old low-pitch cyclogiros is
plotted in Figure 98 in the form of CT against Cp, where

CT = T
PW2 R3 b

C = P
C 3 R4 b

T = cyclogiro rotor thrust
P = air density
W = cyclogiro rotor angular velocity

R = cyclogiro blade axis distance to center of rotation
b = cyclogiro rotal span
P = power required
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The data of Figure 98 are replotted in Figure 99 in the
familiar form of the figure of merit M versus the mean lift
coefficient CT . CT/q for a cyclogiro may not have much
meaning, but it is a convenient parameter 07, for a cyclogiro
is defined (following Wheatley) as the ratio of the total blade
chord to the peripheral length of the rotor cylinder.

bc

21"R
where

b the number of blades

c the blade chord

The figure of merit is defined as usual as

CT/2
M = .707 T

C Q

All available test points are plotted and compared with
typical helicopter results. It can be seen that most cyclogiros
have performed in hover with a very poor efficiency. The ex-
ception is Moineau, with a figure of merit of 0.83. This defin-
itely indicates that the h over potential of the cyclogiro is there,
but the proper blade pitch muchanism is required for its ex-
ploitation.

A comparison made of calculated and measured lift per
horsepower by Wheatley (References 25W and 28W) is shown in
Figure 100. It reveals that the measured data fall very short
of the theoretical predictions, especially in hover and at high
speed. Again, this indicates the use by Wheatley of a poor
feathering system (see Reference 58R).

Autorotation

The ability of a cyclogiro to autorotate is also beyond
question. A typical comparison of calculated and measureddata is shown in Figure 101. :

Forward Flight

Three series of wind tunnel tests form the basis for our "
experimental knowledge of cyclogiro performance in forward
flight. These data were analyzed thoroLghly by Eastman in
Reference 2E. The significant dimensional, theoretical, and
measured characteristics of these models are shown in Table
VI, and the general test arrangement is indicated in Figure 102.
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No. Blades 4
Span 8 ft

.16 - Diameter 8 ft
Chord 312 ft
Airfoil NACA 0012 mod

1 ~.12-7_
.. .. I I

o

1°04 -- _ -

- ------ Measured - Computed

0 20 40 60 80 100
Forward Velocity, mph

Figure 103. Theuretical and Measured Lift Per Horsepower
at Forward Speed for a Low-Pitch Cyclogiro.
Wheatley NACA, Refs. 25W and 28W.
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Forward Velocity, mph

0 0 20 40 60 80 100

lide Angle

-20

0

•' -60

-- >

-80
-80 Computed Measured

-100 -

Vigure 101. Theoretical and Measured Autorotation
Gliding Polar Curve for a Low-Pitch Cyclogiro.
Wheatley NACA, Refs. 25W and 28W.
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The low-pitch model consisted of the single-rotor NACA
arrangement of Figure 73. It had four high-aspect-ratio blades,
each attached to a central axle by means of seven radial arms.
All of the arms and axles were exposed to the airstream. After
the uncertain influence of this bracing is allowed for, some
doubt remains regp,'ding the true rotor characteristics. As
previously mentioned, the low-pitch feathering mechanism used
here became progressively less satisfactory when operating at
other than small advance ralios.

The comparative p1-pitch model (Figure 75) with fuselage
and three cantilevered rotor blades turns two rotor systems
with the top blade advancing and moving down. The driving ,torque in this instance adds a positive pitching nioment about

the spanwise axis (Figure 84). The double-edged blades are
hinged at their midchord, because the leading edge must become
the trailing edge on alternate revolutions. The blades are
tapered so that their chord increases while their thickness de
creases toward the tips. There was also a slight increase in
orbit diameter toward the tips of the blades which would result
in a spanwise variation in the advance ratio, whicl., aggravated
the unfavorable influence of the blade planform on spanwise
lift distribution. The lack of root fillets of the blade was con-
sidered to have a definite detrimental effect oni the overall

l ective span of the rotor system.

Several high-pitch and amplified high-pitch models we:te
tested at the University of Washington. A typical configuration
that corresponds to Baker's amplified high-pitch configiuation
(Reference 8B) is shown in Figures 76 and 77. The modelconsisted of two rotors, with a common horizontal axis, mounted ,on opposite sides of a central wind tunnel fairing and turning in
opposite directions (for torque compensation). Blade-rocking

amplitude was adjustable by changes of a quick-throw linkage.
When the amplitude of the motion was small, ideal blade motion
was closely approximated; for large amplitudes, however,serious discrepancies were introduced. In addition, the lack

of good blade root fillets lessened the effective rotor span.

Eastman (Reference 2E) attempted to reduce and unify the
test data, in an effort to support a full-feathering cyclogiro
theory. As a whole, he was remarkably successful. Some of
his typical results are shown in Figures 103 through 107, which
must be viewed toge.ther with the results of the earlier discus-
sion on cyclogiro aerodynamics, since theoretical aad test
results are presented simultaneously. Notations of Figures -
103 through 107 are the same as those used for the earliertheoretical discussion.

Figure 103 shows the cyclogiro polar curve for a pi-pitch
configuration. Figure 104 shows the same curve for a
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Figure 105. Experi~mental Values and Theoretical Variations ofdL/da and T at Zero Lift for Three Full

Rangs ofPitch Ratios (Ref. 2E).
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_______MODEL TESTTEOYUIGAMX

THEORY USING ALMIN A
Pi PITCH ---- dCpp/dC,THEORETICALI 6 BLDES *UNCORRECTED

02 OW-- FOR TUNNEL WALL

dCeLWPITCH P=45 HIGH PITCH
dC3USING AL b 0 - -b /4

TO INCLUDE MAXIMUM
FUSELAGE CONTRIBUTION

0.1 P= 200 ~7op3

0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0

2Figure 106. Experimental and Theoretical Values of dCD 0 /d L
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Figure 107. Experimental and Theoretical Values of Equivalent
Propulsive Efficiency and of No-Load Power
Coefficient for Three Full Ranges of Pitch Ratios(Ref. 2E)
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high-pitch configuration. General agreement between theory
and experiment can be noted in both cases, at least at low
values of CL.

In Figure 105, Eastman plots thrust (at no lift) against
advance ratio in the upper figure and lift against advance ratio
in the lower figure. CL in the lower figure is the overall
cyclogiro rotor angle of attack, which corresponds to the angle
of attack of the equivalent wing.

In Figure 106, dCDe/ dL 2 , the slope of the "polar curve",
is plotted versus advance ratio, the theoretical value being suc-
cessively based upon several assumed values of the area AL.
In general, test data fall between extreme values of AL.

In Figure 107, experimental and theoretical values of
equivalent propulsive efficiency and of no-load power coefficient
are compared.

11. Helicopter With Auxiliary Cycloidal Rotor Propulsion and
Control

It has been but one thought more for several mgineers to pro-
pose the perpendicular attachment of short cyclogiro-type blades to
the tip of helicopter blades. If one car, overlook the disturbing
feeling this may cause, due to the mechanical and aerodynamic
difficulties, this scheme is not without interest. The intent is that,
as the untilted lifting helicopter rotor revolves, the tip cyclogiro
blades feather so as to produce thrust in the azimuth plane of the
rotor. The Pemberton Billing proposal (References 37B and 8P)
of the helicopter with biplane rotors is an example of this system
(Figure 108).

Although the use of such a full system to produce all of the

required flight thrust may be questipned, Nemeth (Reference 14N)
has suggested the use of smaller tip cycloidal blades to provide a
lateral trimming force to balance that originating from the antitorque
rotor in a single-rotor helicopter. The Gyrodyne QH-50 coaxial
helicopter incorporates small cyclogiro-like blades at the rotor tips
to produce differential rotor torque spoiling for yaw control. There
exists the possibility that such a secondary cycloidal blade arrange-
ment may have future uses as an ancillary control source in the
helicopter rotor.

Proposals and patents have suggested the use of the cycloidal
rotor at the tail of the single-rotor helicopter configuration in place
of the familiar tail rotor (Figure 109). In one instance, as demon-
strated in the patent by Pullin (Reference 52P), the tail-mounted
cycloidal rotor rotates about a horizontal axis which is aft and
parallel to the centerline of the helicopter. In this case, the cycloi-
dal rotor produces the torque-compensating side thrust. Also in
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this arrangement, this tail rotor may produce a force throughout
the azimuth of its rotation by the proper manipulation of its feather-
ing control. It now would become possib-. to pnro,,-_e a,,rti .l-
upward tail force that could be used to incline the main helicopter
rotor for forward flight.

Of more interest in this respect would be the tail installation
of the cycloidal rotor with its axis vertical. In this manner, a
combined torque-compensating side force as well as the primary
center-line propulsive thrust could be gener'ted. In this latter
instance, we could envision a single-rotor compound helicopter
with aft cycloidal propulsion.

12. Evaluation of Cyclogiro Aircraft Potential

The potential of the cyclogiro aircraft comes from the fact
that it is just about the only known type of aircraft that can combine
the high-speed characteristics of the conventicnal airplane with the
low-speed characteristics of the helicopter, without drastic changes
in geometry, using the same elements in both flight conditions.
This makes the cyclogiro a candidate for the U. S. Army "aircraft
composite" mission.

Advances since World War II in propulsion, in materials
technology, and in mechanical systems indicate, at least in a pre-
liminary way, that most of Lhe problems identified by Heuver and
Eastman can be overcome. Preliminary design of a cyclogiro air-
crait for the Army composite mission is presented in the next
section.

C. HORIZONTAL-AXIS PROPELLERS WITH CYCLIC PITCH: THE
RICHARD HELICOPLANE

1. General Description

In the same way that the cyclogiro rotor can produce lifting as
well as propulsive forces by cyclic feathering of its blades, a pro-
peller with a horizontal axis can be made to produce a vertical lift
force, as well as a horizontal thrust, by varying in the proper way
the pitch of the blade during its circular trajectory.

The concept of articulating conventional propellers can be
found in many sources; for example, it was proposed and incor-
porated by Zimmerman in the XF5U-1 "Flying Pancake" airplane
shown in Figure 110. However, the specific concept of incorporating
cyclic pitch into a propeller represents the life's work of G. C.
Richard, a Frenchman, who first proposed what he called the
"helicoplane" in 1932, leading to full-scale tests of a 12-foot rotor
by 0. N. E. R. A. at the Chalais-Meudon wind tunnel in 1948, as
shown in F,-ure 1M1.
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Figure Mi. Helicorplane Pinc!?ri Testi i Chaiais-m-eudonWind Tunnel (98.See Refs. 10H., 31R) 34R-36fl, 50-80.

171



|I

The helicoplane is defined as an aircraft with one or several
rotating wings that have a horizontal axis, oriented in the direction
of fight. The blades of the rotors are subjected to a cyclic varia-
tion of the aerodynamic circulation, which can itself be obtained
by a cyclic variation of the pitch of the blades. In contrast to the
helicoplane, the helicopter obtains its lift by means of the collective
pitch and Us forward (or side) propulsion by the cyclic pitch; the
heilcoplane obtains its thrust (.orward propulsion) by the collective
pitch and its side force (lift) by the cyclic pitch. Thus, it stands to
reason that the helicopter will be more efficient in hover, and the
helicoplane will be more efficient in forward flight.

2. Principle uf the Helicoplane

The concept can best be described by referring to Figure 112A.
Figure 112A shows schematically a copventional propeller, with a
fairly large amount of twist, rotating around a horizontal axis and
moving with a forward velocity V. Airfoil sections of the two-bladed
propeller ar- shown as they pas, through the horizontal plane. The
descending blade has a rotational speed v, and the airfoil operates
at the angle of attack a , giving rise to a resultant force R which
has components P 1 , normal to the propeller disc, and S in the
plane of the disc. Since the angle is constant around the azimuth,
tWe resultant force for the ascending blade B is still R, but
its components are P 2 and S, respectively. The contribution of the
two blades to the propeller thrust is P1 + P2, parallel to the pro-
peller axis. S and S' av'e equal and opposite, and therefore their
vertical resltant is zero. The forces S and S' contribute additively
to the propeller torque.

Consider now Figure 112B, which schemnatizes a cyclically
variable pitch propeller, the cyclic variation taking place around the
axis 00', as shown. Assume that the pitch of the blade at A is the
same as in Figure 112A, but that a cyclic-pitch mechanism allows
Lie descendLng blade to pivot around the axis 00' as it describes the

arc AMB, so that the change in pitch over the pitch at A is the angle
Z?. Let us assume that the anglef3 is larger than the original
angle a; since the resultai-A velocity V,. is constant, the
angle of attack CL' of the ascending blade B with V is in the opposite
direcion ol the corresponding angle at B in Figur' 11. r'onsider
then the aerodynamic resultant RI at B. It has a compL ., _ ,
paralle! to the ree-stream velocity, which is a drag, and an upward
component S , which adds to the lift and acts in the same direction
as the rotor torque.

The propeller disc ir seen to be divided into four quadrants:
descending, propukion, ascending, and propulsion again. In the
descending quadrant, a lift force and a propulsive force are created;
in the following propuisiou quadrant, a propulsive force is created;
in the asceuding quadrant, a it force and a negative propulsive
force (drag) are created; finally, the last quadrant is also mostly
propulsive.
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3. Wind Tunnel Test Results on the Helicoplane Principle

Richard made the first wind tunnel tests of the helicoplane
principle in 1936, under the sponsorship of the French Air Ministry,
in the Issy-les-Moulineaux wind tunnel. He used two counterrotating
propellers, 1.20 meters in diameter, driven by a 5-HP motor. The
test results were reported in Wind Tunnel Report 107/G, dated 30
November 1936, in which it was categorically stated that "the
Richard system, which employs a sinusoidal variation of the blade
incidence, simultareously produces lift and thrust ...".

There is no point in reproducing the numerical results of the
earlier tests, since they were superseded by those of later tests,
which will now be discussed.

In 1948, the French Office d'Etudes et Recherches Aeronautiques
(0. N. E. R. A.) sponsored a series of full-scale tests of a helicoplane
propellei, consisting of three blades, with a diameter of 4 meters,
as shown in Figure 111. A standard variable-pitch propeller hub
was used, which was modified by incorporation of a cyclic-pitch
mechanism, with tiltable swash plate, covering a wide range of in-
cidences. The rotor was mounted forward of a nacelle, 3. 570
meters long and 0.64 meter in diameter, containing also an electric
motor, a gearbox, and electrical actuators for the remote control
of the pitch mechanism.

A typical rotor blade is shown in Figure 113. These blades
were made of wood and were quite heavy (40 kg). They had a trape-
zoidal shape. The feathering axis was at 38% of the chord. The
twist distribution was linear, and the total twist was calculated from
standard propeller theory to give maximum efficiency, as a pro-
peller, at cruise velocity assumed to be 45 meters/second. The
resultant total twist is 30°. The blade airfoil was NACA 23015.

The map of test runs actually performed in the Chalais-Meudon
wind tunnel in 1948, under the supervision of Richard, is shown in
Figure 114. The notation of Figure 114 is as follows:

0 ~ defines the ampJtude of the
2 cyclic motion. LS = 0 corres-

ponds to the co -ventional
propeller

V = wind tunnel test section velocity

@j= root chord pitch angle of the descending blade
as it crosses the horizontal

= root chord pitch angle of the ascending blade
as it crosses the horizontal
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Figure 113. Richard Helicoplane Rotor Blade, French 0. N. E. R. A.
1948 Wind Tunnel Tests
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Figure 114. Matrix of Runs Performed, Richard Helicoplane
0. N. E. R. A. 1948 Wind Tunnel Tests
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e. 7R = rotor collective pitch, masured at the
70% radius station

Before the tests were completed, the program was dropped by
O N. E. R. A., and no formal report was ever written by U. N. E. R. A.
However, in 1952, Richard wrote a complete book: "The Helico-
plane. Principle. Realizations. Tests. Theories. ". This book
was never published but the manuscript was made available to Aero-
physics Company. The comments and figures that follow are ex-
tracted from that book.

Tests were first made of the propeller with cyclic pitch and
then of the propeller without cyclic pitch but with its axis at an inci-
dence to the free stream. This configuration, which Richard claims Fn
to be a special and important case of the helicoplane, will be dis-
cussed in section II. Finally, the helicoplane with cyclic pitch was
tested for the runs shown in Figure 114.

The helicoplane rotor tests, under static conditions, are sum-
marized in Figure 115 F is the vertical force created by the rotor,
and P is the applied shaft horsepower.

For one value of the abscissa of Figure 115, corresponding to
E = 590, one shows in Figure 116 a typical polar curve; i. e., Fz as
a function of Fx, F being the horizontal thrust of the rotor. It is
thus seen that Whoug a significant vertical force Fz is generated
(for example, a maximum of 22.6 kg at 0 = 590), the helicoplane
configuration does not lend itself to a vertical takeoff and landing
aircraft since there is a corresponding large thrust of about 60 kg.
The tests, however, show beyond a shadow of a doubt the ability of
the helicoplane to create large vertical-lift forces.

As discussed earlier, tests were made at three forward speeds.
Results at the highest test speed only, V = 27 meters/second, will
be briefly described here.

A polar-like curve, showing the variation of Fx, prcpeller
thrust, versus Fz, propeller lift (horizontal-axis propeller), for a
given shaft power, P = 10 HP, is shown in Figure 117 for given
values of the cyclic angle R and for various values of collective
pitch e0 . Consider, for d ample, the round point on the curve
farthest to the left. It corresponds to F - 11. 6 kg. For P = 10 CV,
at V = 37 meters/second, this corresponls to a propulsive efficiency
of 57%. In addition, the lift is 65 kg. Consider now the intersec-
tion of the curve with the Fz axis. At this point, Fz/p = 11. 1 kg/
HP. 4

Typical results of forward flight performance are presented' ~~in Figure 118 for 00 = 240 and I.==:100. The effect of tilting the ]

propeller axis over the direction of flight (shown by the angle 1) is
also represented.
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The conclusion of the tests reported here is that a propeller
with cyclic pitch, such as the Richard helicoplane, will simul-
taneously produce thrust and lift, in forward flight as well as in
hover. The lift thus created is not negligible and is such that it is
possible to consider the use of such a propeller in a wingless air-
craft configuration.

Such an aircraft would even be a STOL aircraft with VTOL
capabilities under certain conditions; for example, by tilting the

*propeller somewhat at hover or by deflecting the slipstream by
means of flaps. Its maximum speed would be that of any propeller

* aircraft.

As will be seen in section II, cyclic-pitch propellers and
"thrust wing" or "radial-lift" propellers are operating on the same
principle. It may prove to be advantageous to combine the two.

The tests further show that the creation of the lift force is
achieved at a low power cost. This represents an efficient scheme
oi integration of lift and propulsion.

4. Potential of the Helicopiane Concept

The 0. N. E. R. A. wind tunnel tests demonstrated the correct-
ness of the helicoplane concept, but the performance results obtained
are by no means optimum, nor is the mechanical configuration that
was realized the only or the best one.

First, the blades, shown in Figure 113, were of solid wood
and weighed 40 kg each. Thus, part of the power of the rotor was
used to overcome the cyclic inertia forces of the blades.

Second, the rotor blades were not optimized, neither for plan-
form nor for twist distribution. Whenever technology makes it
possible, it would be desirable to have blades with variable radial
twist distribution (at least two segments adjustable, one with respect
to the other), that variation being cyclic, if possible.

Third, it is advantageous to have the highest possible blade lift
for the asdending blade; hence, the need for a cyclically actuated
high-lift device (flap, slot, or boundary layer suction or blowing)
during the ascending quadrant of the rotor disc. Richard alsosuggests that a means to increase the lift of the helicoplane is by
increasing the speed of the descending blade and decreasing that of
the ascending blade. This can be achieved mechanically by offsetting
the center of rotation of the rotor.

Thus, it appears that improvements in technology (light blades
and light, compact, and reliable mechanical devices) would signifi-
cantly enhance the potential of the helicoplane concept.
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Richard proposed an application of the helicoplane concept to
a light, cheap private plane. He also suggested the incorporation
of helicoplane rotors to the Chance-Vought XF5U-1 "Flying
Pancake". Such a configuration, heavily armored, might make a
good "Flying Tank". The helicoplane works best with large-diameter
propellers, turning at low speed; hence, the noise level is fairly
low.

The most likely early use cf the helicoplane principle is in
conjunction with another principle; for example, in conjunction with
the radial-lift propeller which will be discussed next, or in con-
junction with a deflected-slipstream wing, similar to that of Kaman's
K-16B VTOL airplane.

f
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II. NEAR-HORIZONTAL AXIS "RADIAL-LIFT" CONCEPTS

A. RADIAL-LIFT PROPELLER OR SELF-PROPELLING WING

The side force of a propeller in yaw is well known to aeronautical
engineers as an undesirable phenomenon, since it has a destabilizing
effect on the directional stability of a propeller aircraft.

Quite obviously, if the axis of a propeller in forward flight is
pitched up to the horizontal, the resultant side force on the propeller
is a lift. One would be inclined to think that the magnitude of this ver-
tical force is the projection of the thrust over the vertical: T sin I,
where T is the propeller thrust, and I is the inclination of the propeller
axis over the horizontal. This is not the case. For the proper propel-
ler, one with a fairly large diameter and low RPM, the lift component
can be five to ten times the projection of the thrust vector.

This phenomenon was discovered by Richard in France and von
Holst in Germany in the thirties. It was applied to the Curtiss-Wright
X-100 and X-19 aircraft in the United States in the early sixties. It is
used in a current German project, the VFW VC. 400 (manufactured by
Vereinigte Flugtechnische Werke, in Bremen). It corresponds to a
special case of Richard's helicoplane, that in which the cyclic circula-
tion on the propeller blades is obtained by tilting the propeller axis,
rather than by mechanical means, as was described in the previous
section. One of the proponents of the radial-lift propeller is Professor
Focke. The concept will thus be described as Professor Focke reported
it in the Fifth Cierva Memorial Lecture (Reference 15F).

1. Principle of the Radial-Lift Propeller or Self-Propelling Wing

Focke starts from the premise that, if high subsonic forward
speeds are desired for a VTOL aircraft, the vertical-axis rotor
route becomes hopeless. He then recounts Dr. von Holst's pro-
posal, which comes not from an engineer but from a physiologist
who spent part of his life studying bird flight, as follows.

In Figure 119, a bird of weight W, is just moving its wing
downward, holding its body relatively high by its muscles, thus
producing W' which is a little larger than W. The lift is L, the
resultant R, the drag D, and the forward thrust T. The procedure
looks as if the wing, hav ng the angle of incidence Q, were in glid-
ing flight with the angle j. The bird is proceeding horizontally.
If the wing has a good lift-drag ratio, T is considerable and so the
bird turns the wing to more incidence. Therefore, lift is main-
tained during the upward movement, but deceleration occurs, partly
absorbing the speed gained during the downward movement. This
is ornithopter flight, much discussed at the beginning of aviation
but soon abandoned mainly on grounds of the inertia forces. Von
Holst knew this and his thoughts went another way: if one wing is
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down and we could have nother one coming from above, the
process could go on. The bird cannot do this, but human technique
can, as shown in Figure 120.

Let us take an axis, nearly horizontal, slowly rotating; for
instance, 4 wings may be fixed on it, each a distance of 90 degrees
from the next. Let wing 1 go down first, doing the same job as
the bird's wing; and let wing 3 do the same as the bird's wing does
going up. In the meantime, wings 2 and 4 do not idle, but they work
as a propeller, providing additional thrust. And so it goes on. Von
Holst, as a naturalist, created the self-propelling wing coming
from the living creatures but offering to the human engineer excit-
ing possibilities, which von Holst explained in detail in a paper
published at Gttingen in 1942. Note that every one of these ideas
had been expressed by Richard in 1934 and had met with general
incredulity.

Let us further examine the adaptation of natural flight to aero-
nautics. Why did we take out of use in airplanes the conventional
propeller for very high speeds? Because there was the geometrical
addition of the peripheral and of the forward speed. Here we are
seeing nearly the contrary. The cosine of the angle between the
direction of flight and the direction of true speed of the wing is 0.88.
The wing receives only 13 percent more speed than the flying speed.
Figure 120 shows wing 3 in operation. Its high drag must be com-
pensated for by the three other wings. But its true airspeed is
even 2 percent lower than the flying speed. Consider what this
means if we are later approaching Mach 1. By the very slow rota-
dion, we will scarcely have more difficulty than an airplane in this
region, and the same is happening at higher Mach numbers. Another
advantage of von Holst's self-propelling wing is the fact that profile
drag exists only from the wing and not again a second time from the
propeller.

2. VFW Wind Tunnel Tests

In 1957, the German company Vereinigte Flugtechnische Werke
(VFW) began extended research, design studies, and wind tunnel
tests in the matter of the self-propelling wing. Figure 121 shows
the most important results. The inclinations of the axis at speeds
from 0 to 600 km/h are given at the top of the figure. The slightly
different running of the curves is caused by different rotational
speeds between 700 and 900 RPM. Pure calculation is indicated by
dashes. The most interesting item is the maximum Mach number
0. 736, at a medium speed, going down again with further increasing
speeds.

3. Characteristics of the VFW VC. 400 VTOL Aircraft

Following many rumored cancellations, two prototypes of the
VC. 400 tandem tilt-wing aircraft, shown in Figure 122, are being
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Figure 119. Schematic Representation of Bird Flight
After 'von Hoist and Focke. (Ref. 40F).
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Figure 122. Vereinigte Flugtechnische Werke (VFW) VC. 400
Tilt-Wing VTOL Transport, Shown in Verticai
and Horizontal Flight Arrangements.
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built for the German Defense Ministry, which is funding the project
for p-;ssible military transport (Reference: Flight International
23 May 1968). Component development and testing are well in
hand, and three sets of 23-font propellers and gearboxes have been
ordered from Hamilton Standard Division of United Aircraft Cor-
poration. Each of the tandem pairs of propellers is driven by its
own 3,960-SHP T64-GE-16 engine, with a common interconnecting
transmission. Flight tests of the VC. 400-VI are expected to start
_n 1970, followed by those of the -V2 in 1971. A civil version with
double the number of engines and payload has been projected as
the VC. 500.

Spaa: 63 ft. 10 in.

Length: 73 ft. 5 in.

Height: 25 ft. 2. 5 in.

Operating Empty Weight: 34, 612 lb.

Max. Takeoff (STOL): 63,934 lb.

Max. Speed: 426 knts.

Max. Climb: 6,889 ft./min.

VTOL Radius With 5-Ton Payload: 657 naut. mi.

4. Curtiss-Wright X-100 and X-19 VTOL Aircraft

In the late 1950's and early 1960's, the Curtiss-Wright Cor-
poration engaged in an extensive VTOL program using radial-lift
propellers. These efforts are described in Reference 88B. Form-
ulas are giveit in Reference 56B for the propeller normal force,
when the propeller axis is inclined from the horizontal. Curtiss-
Wright studies compared the lift-drag ratio obtainable from the
inclined propeller with that of a wing. It was concluded that, even
at high speed (300 to 400 knots), itwas advantageous to have 10 to
20 percent of the aircraft lift carried by the propeller.

The X-100 aircraft, shown in Figure 123, was designed and
built to investigate the use of normal force propellers and to deter-
mine the flight characteristics of such a vehicle. Thus it was
designed using a very heavy wing loading of approximately 170 lb./
sq. ft.

The propellers designed for the X-100 aircraft had a hover
figure of merit of about §0 percent and a cruise efficiency of 82 per-
cent. By adjusting .he blade chord distribution so that the blade was
wide inboard and narrow outboard, the normal force produced by
the propeller was increased over that of a propeller using conven-
tional blades. This increase in propeller normal force is obtained
without a reduction of takeoff or cruise performance. Test res.lts
showed that the desired high level of normal force was obtained
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with the X-100 propeller. It may be noted that the normal force
is maximum in the low-speed range, where it becomes expensive
in terms of weight to increase lift by increasing wing area.

The characteristics of the X-100 airplane operating in the con-
version regime were extremely encouraging, as the aircraft could
easily be flown at all speeds through the conversion and back with-
out the necessity of juggling power, attitude, and propeller tilt
angle within narrow operating bands. Propellers operating at high
values of normal force do not exhibit a sharp stall, and therefore
the aircraft can be flown under wide ranges of angle of attack
without encountering stalls.

Based on the data obtained during the development of the X-100
airplane, a new, larger, high-speed VTOL aircraft was designed:
the X-19 (Figure 124). This aircraft unfortunately suffered from
mechanical design limitations that forced early abandonment of the
project.

B. THE HELICOPLANE WITH INCLINED PROPELLER AXIS

It is seen, by referring to the helicoplane discussion of section I. C,
that an inclined-axis helicoplane, without cyclic pitch, is precisely
identical to the radial-lift propeller or self-propelling wing.

In the previous discussion, the self-propelling wing was described
using the words of Focke and von Holst. However, in his own publica-
tions, Richard used almost identical explanations. To clarify this point
further, consider Figure 112. It can be seen that the conventional pro-
peller with its axis inclined to the free stream behaves exactly as the
cyclic-pitch propeller.

Richard's results, some of which were shown in Figures 115
through 118, show that, on many occasions, it is possible to get a greater
efficiency, i. e., a larger lift-drag ratio, using cyclic pitch than simply
inclining the propeller. I is the angle of inclination of the propeller.
Actually, a choice should be made in each design case of the optimum
configuration. in some cases, both should be used.

C. POTENTIAL OF THE RADIAL-LIFT CONCEPTS

The potential of the radial-lift concepts, based on American (Curtiss-
Wright), German (von Holst, Focke-Vereinigte Flugtechnische Werke),
and French (Richard) experience, appears to be enormous. In spite of
the great recent Strides forward (Curtiss-Wright and VFW), extensive
research is needed. The general helicoplane principle, which underlies
the whole field, clearly indicates that the lift generation phenomena areunsteady; actually, the circulation around the blade changes directionas the blade moves in its circular trajectory. Therefore, theory is
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not adequate to predict radial-lift propeller performance. At best, itcan justify some of them a posteriori!
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III. NON-AERONAUTICAL APPLICATIONS OF HARWAS

The bibliographical search of material relating to horizontal-axis
lifting devices has revealed the existence of a large number of aero-
dynamic, but non-aeronautical, applications of these devices, related
to the use of wind power to generate electricity or to pump water, rela-
ted to ship propulsion using wind power in a sail-like fashion, or
related to underwater cycloidal ship propulsion. These applications are
briefly reviewed below.

A. WING ROTOR-TYPE WINDMILLS

Modern use of the conventional propeller-type horizontal-axis
windmill is still considerable. The modern windmill is technically very
advanced and very efficient, making use, for example, of high-aspect-
ratio, laminated-plastic, laminar-flow, variable-pitch blades. It is
typically used to drive an electric generator.

Wing rotor-type windmills are paradoxically called "horizontal
windmills" (Reference lB), though they have a singular vertical axis
about which a wing rotor profile revolves. A typical windmill that em-

* ploys a double (Savonius) section is shown in Figure 125.

A wing rotor windmill is designed to optimize torque and power.
Bach reported in Reference 3B the results of a systematic investigation
of a family of Savonius and similar sections for windmill applications.
He plotted not only the torque and power coefficients but also the lift and
drag coefficients. These are of interest to the designer to insure the
design of a structurally sound windmill tower. Bach's lift and drag re-
sults are shown in Figures 126 and 127.

One can obtain an idea of the relative efficiency of the wing-rotor-
type and of the conventional propeller-type windmill by plotting their
respective power and torque coefficients versus the U/V ratio. This is
done in Figure 128.

The power coefficient is defined as

C~ 2P
P PFV3

where

P = measured shaft power

F = largest projected frontal area

P = density

V = wind speed
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Figure 125. Vertical-Axis Double Savonius Windmill-Type F-13
of the Soviet Wind Energy Institute (Ref. 6K).
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The torque coefficient is defined as
Cq - 2

PFRV2

where Q = measured torque.

An inspection of the upper curve of Figure 128 indicates the
superiority of the propeller-type windmill (Types 2, 3 4, 5, 6, 8, and
11) over the wing rotor windmill (Types 1, 7, 9, and 10) in extracting
power out of the wind. This comparison is based on identical swept-out
rotor disc or projected frontal areas (F).

However, a second look at the torque curves of Figure 128 indi-
cates that the wing rotor windmill shows consistently higher torque
coefficients at very low U/V's than the propeller-type windmill,(there
is one exception, the familiar "American"-type (2) windmill). Usually
the wing rotor windmill will have maximum torque at U/V = 0. This is
of significant advantage when starting under load, without clutch, is
required. Such an arrangement is ideal for the pumping of water, and
it is usually for this purpose that the simplicity and directness of the
wing rotor or Savonius mills find an application. Conversely, electric
generators may have no starting torque, and propeller-type windmills
are better adapted to electricity production because of their higher power
coefficients.

Figure 125 illustrates the simplicity of the wing rotor mill arrange-
ment. The vertical shaft of the mill is directly connected to a posi-
five-displacement pump which delivers water to a surface reservoir,
intermittently, as the wind blows. The mill will turn with the wind
approaching from any direction. This arrangement is most useful in
remote areas (Reference 48B).

The vertical-axis wing rotor mill bas a potential application as an
electrical power source, through the proper gearing, for remote, un-
attended beacons or buoy systems.

B. CYCLOGIRO WINDMILL TURBINE

Like the wing rotor windmill discussed above, the cyclogiro wind-
mill has a vertical, rather than a horizontal, axis. Since the cyclogiro
rotor system is capable of autorotation (Figure 100), it is further
capable of extracting energy from the wind in the windmill braking state.
Many investigators have proposed and patented tis type of mill; see,
for example, Reference l10S. A typical example is Donaldson's full-size
mill, shown in Figure 129.

It is of interest to note that in some of the University of Washington
cyclogiro wind tunnel tests, the models were so arranged that the power
output from the drive motor running backward as a generator could be
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measured under conditions of autorotation or windmilling. This wind
generated output is presented a, negative values of the power coefficient

Cp) in the data Figures 23 and 24 of Reference 8B and of data Figures
5, 6, 8, and 9 of Reference 2E.

The simple analysis reported in Reference 30P and the preliminary
design of Reference 29P suggest that such a mill may be more efficient
than the propeller-type windmill. Whether or not this is the case, the
vertical-axis cyclogiro mill has one very attractive, unique feature.
The success of any wind prime mover depends upon the ability of the
d-signer to spread a given amount of power-extractive structure over a
very large "capture" area through which the wind blows. It has been
shown that there exist areas of the world where the wind blows with a
high degree of constancy and that are close enough to civilization to make
industrial use of the power generated. It is therefore always important
to make use of the largest swept areas possible. The propeller-type
mill's swept blade area seems to be limited by the economics of rotor
diameter and of the overall tower height that supports such a piece of
equipment. A concept then suggests itself of a cyclogiro-type device that
can be made to sweep out large cylindrical areas by running the rotor
blades around an immense circular track that could be located on the
crown of an air-accelerating hill. This suggestion is embodied in the
design of Reference 29P, in which the blades travel on individual wheel
systems. The wheels follow a very large diameter circular track, the
windmill rotor cylinder describing a right circular cylinder to the
approaching wind. Further extensions of this idea suggest the use of
the blades travelling in circular moats or on air bearings, etc. Feather-
ing is usually sensed aerodynamically. Through cabling and reduction
gearing, a central generator can be driven.

In the Madaras proposal which was backed by full-scale tests
(References 3M through llM), the rotor blades are replaced by Magnus
cylinders running on a large circular railroad track. It has been shown
(Reference ll0S) that five times as many cylinder rotors would be re-
quired, as compared to the airfoil rotor blade system, for an equal
extraction of wind power by this means.

C. MAGNUS EFFECT SHIP PROPULSION

A discussion of the practical applications of the Magnuis effect
would not be complete without mention of its application to ship propul-
sion. In particular, the full-size experiments in the midtwenties by
Flettner (References 19F through 381F) deserve comment. SeveralFlettner rotor ships wvere built. Two typical configurations are shown
in Figures 130 and 131. The focus of Flettner's experiments was the
attempted revival of the sailing merchant ship. It must be remembered
that even at that late date the windjammer was still in its last stages of
commercial service. Comparative wind tunnel model tests of a wind-
jammer with its lull set of sails were made against the same hull driven
by two cylindrical Magnus roturs. The results, for that time, were
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Figure 131. Powered Cylindrical Flettner Rotor 37-Ft1 Racing Yacht
Hull (1925). Rotor Must Be Stopp,,d and Reve.-r,..d for
Coming About. Dia., 3. 15 Ft. H, 19. 1' Ft.
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indeed very encouraging. One must remember the complexity of the
multiple-sail system and rigging of the old merchantman to appreciate
the vast improvement that was reflected in the aerodynamic and handling
performance of the simple two-Magnus-rotor arrangement. Figure 132
is a performance comparison of the applied Flettner rotor system
against the full-rigged barkentine, and an isolated, single, rigid airfoil
sail. It is important to note that the total projected area of the barken-
tine is the same for the singular airfoil sail. The barkentine and
Flettner rotor curves also included the measured aerodynamic influence
of the ship's hull above the waterline. It is most important to note that
the Flettner curve is based on the total rotor projected area of only
12. 5% that of the barkentine and sail arrangement. Note that the shaded
area of the barkentine polar curve. indicates the practical area in which
sail trim changes may take place and still keep the craft underway. As
would be expected, the isolated airfoil sail, without the obstructions of
rigging and the optimization of a fixed profile, has greater L/D (ability
to point upwind) and CN (greater sail force) potentials. It is toward
this latter arrangement that modern sail design (sail wing, flex wing,
wingsail, etc.) is tending. Thus, the potential of Magnus effect to ship
propulsion remains only for pleasure craft and the like (Figure 131). 1E
would be interesting to adapt the autorotating wing rotor to such craft
(Figure 129, References 461, and 47L) when better aerodynamic sections
become available.

D. CYCLOIDAL SHIP PROPULSION

The following areas of marine cycloidal propulsion have been
examined in the light of their application to the general cyclogiro require-
ments:

1. Rotor blade kinematics, controls, and linkages

2. Rotor blade stress analysis and loads

3. Theoretical treatment of cycloidal propeller performance

As a general consideration, the present state-of-the-art use of
cycloidal propulsion is in the amplified low- or pi-pitch ranges, and this
fact alone limits any usefulness of marine experience. In item 1, the
adaptation of marine blade-feathering systems to low-pitch cyclogiro
aircraft configurations is, in many cases, schematically adaptable, but
the weight and bulk of the marine blade feathering systems restrict their
general use to marine craft. Rotor blade stress analysis and blade load
distribution (2) were found to be generally adaptable though scant
(References 20K, 30K, and 67M).

Although there is no lack of theoretical treatment of the cycloidal
propeller, there is not presently a unified theory that could reflect the
rotor performance for the proper range .of blade aspect ratio, number,
shape, twist, advance and pitch -itios, etc. All of the theoretical work

2
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Isolated Airfoil Twin Flettner Rotors
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Figure 132. Performance Comparison of a Barkentine Sail and
Flettner Rotor. Ship's Hull and Rigging Included.
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to date covers the marine requirements (ahead thrust) in the low- or
pi-pitch regime. Although the full-feathering cyclogiro could profit
from part of this analysis in the area of hover and vertical flight, it is
felt that marine theory cannot be of use when forward flight consider-
ations are involved (rotor lift as well as propulsion).

Mueller, in Reference 67M, showed a general performance curve
that compares the cycloidal marine propeller with an optimized conven-
tional screw propeller. This plot is reproduced in Figure 133 in the
form of the variation with thrust-load coefficient of what Mueller calls
the "degreq of perfection", also referred to as "real efficiency". The
thrust-load coefficient is defined as follows:

CTL T
0.5 PAOVA2

where

T = the thrust of the propeller

fP = the density of water

A o = the disc area of the propeller

VA = the speed of advance of the propeller

The real efficiency is defined as the ratio of the actual efficiency
tof a real propeller in unlimited water to the ideal efficiency 1? 1 of

the imaginary actuator-disc propeller of the same disc area Ao and
working at the same thrust-load coefficient CTL.

A comparison of an efficient cycloidal propeller (Voith-Schneider
amplified low pitch) with the best screw propeller (controllable propeller)
shows a slight performance advantage for the conventional screw. How-
ever, at high speeds of advance, the cyclogiro propeller takes over.
Thus, the advantage of the cyclogiro propeller does not lie in the fact
that it has a higher propulsive efficiency, but in the fact that the efficiency
remains constant whatever the direction of motion. In contrast, the per-
formance of a four-blade controllable-pitch screw propeller, in back
drive, is also shown in Figure 133. The screw propeller loses nearly
one-half of its efficiency in back drive, while the cycloidal propeller
loses none. Hence the logical use of the cycloidal propeller is where
flexible control and maneuverability are important: tug boats, floating
cranes, fireboats, ferryboats, or for such military applications as mine-
sweeping.

The performance curve for a cycloidal propeller with sinusoidal
blade motion which is a variant of the amplified low-pitch system
(Reference 67M), is also shown in Figure 133. There, reduced perfor-
mance is traded for a very simple control system and mechanical
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Figure 133. Comparative Performance of Three Types of Marine Vertical
Axis Cycloidal Propellers With a Forward and Backward
Driving Controllable Pitch Axial Propeller (Ref. 67M).
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layout. Only very limited model testing exists for the marine propeller
in the high-pitch regimes (Reference 18M).

Mueller (Reference 67MNsuggests a means for obtaining a "poor
man' 's" full-feathering cycloidal propeller. In this instance, when the
ship is in a harbor or in close quarters, when maneuverability and pre-
cise control become desirable, the cycloidal propeller operates strictly
in a low or amplified low-pitch regime with the blades normally feather-
ing with respect to the rotor system. Once free of congestion and ship-
ping and in the open sea, the propeller may be momentarily declutched
(continuing to rotate without load) or stopped, and the feathering mechan-

ism may be "gear-shifted" over into th3 high-pitch mode where the
blades rock relative to the ship's hull.

The ship may now be accelerated into high pitch and advance ratios
of high, forward, unobstructed speeds. This arrangement suggests a
high-speed, efficient propeller with the control and maneuvering capa-
bility of the vertical-axis propeller. Schematically, this gear-shifting
may be represented by rotating the slider blade-feathering link half a

* turn from the low-pitch to the high-pitch position (when 0= 80) as
shown in Figure 93. Thus, a quasi-full-feathering cycloidal propeller
becomes feasible for ship propulsion without the intermediate mid-pitch
transition and matching mechanism necessary for a comparable arrange-
ment in aircraft. Two such intermittent full-feathering cycloidal marine
propellers have been patented by Schneider (Reference 56S) and more
recently by Bilke, et al (References 41B and 42B). The latter mechan-
isms are very ingenious, simple and with much merit.
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SUMMARY OF ANALYSIS

A summary of the status of potential applications of horizontal-axis
rotating-wing aircraft systems is presented in Table VII. The most
remarkable part of this table is that it shows the extraordinary varietyof HARWAS; it also shows the status of advancement of those systems:
those that have been fully developed, those on which limited research
has been done but which show promise and those which show promise
but on which hardly any research at all has been performed.

It is interesting, at the end of this study, to attempt to outline the
common features of the very diverse systems that were reviewed. This
will be done in the form of two remarks:

1. The operation of almost all HARWAS is fundamentally
based on unsteady aerodynamics. For example, wing
rotors, cyclogiro systems, helicoplanes, and radial-
lift propellers rely fundamentally on time-varyiig lift
and drag forces. This automatically explains why less
is known about them than about fixed-wing aerodynamics.
The operation of fixed-wing aircraft can, at least in
first approximation, be understood in terms of steady
or quasi-steady flow. This is not possible for HARWAS.
There are today no established engineering rules to ex-
plain unsteady lift and drag flow phenomena. It could I,
very well be that serious study in this direction is
required before there can be a positive understanding
of HARWAS aerodynamics.

2. The other common feature of cyclogiros and radial-lift
propellers is that they were evolved in an attempt to
copy nature, i. e., bird or insect flight. The paradox
of modern aviation is that it has achieved enormous suc-
cess by separating the functions of lift and of propulsion,
which is unknown in nature. As stated in the introduc-
tion of this report, all early attempts to copy bird flight
in aeronautical devices have been markedly unsuccessful.
It is the conclusion of this report that, for VTOL and
STOL aircraft at least, one has much to learn from the
successful integration of lift and propulsion in animal
flight. There again, bird flight is a nonstationary
process!

Kirsten in the United States, von Holst in Germany, and Richard in
France all suggested different versions of HARWAS as a direct conse-

quence of their interest in, and study of, bird flight. It is suggested
that their approaches are worth pursuing.

If one were to select the two most promising HARWAS configura-
tions of those listed in Table VII, and an additional constraint was that
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these configurations should not be under active study elsewhere at the
present time (example: Reference 57W), the two HARWAS systems
would be as follows:

1. The rotating airfoil flap (RAF) for application to a
STOL aircraft

2. The full-feathering cyclogiro for application to the
composite aircraft mission

I
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TABLE Vii. SUMMARY AND CVALWAOr CART FOR HORIZONTAL AXIS ROTATING-WING A CRAFT SYSTM (HARWAS).

ROTATING CYLINDER SLAT Stel Little yes d.W

ROTATING CYLINDER IN WING Stol None 51W

ROTATING CYLINDER AT TRAILING EDGE V/Stol' Ifjir Yes 425

W ROTATING CYLINDER FLAP V/Sto Excl. Yes Done yes Current 66w
Pat "t

, ROTATING CYLINDR WING aol None Done 4Z

-FTATING AIRFOIL SLAT Sto- None ? -0L

ROTATING AIRFOIL IN WING tol Nowe ? 50

. ROTATING AIRFOIL FLAP Stol Zxcl. Yea RWqd. Yes ye 52C

. 1IOTATING AIRFOIL IN FLAP LEADING EDGE V/Stol Good? 221.

ROTATING AIRFOIL CONVERTIBLE ,FIXED WING Stol FaMr Done Yes 21C

9. C r -.
WING ROTOR ROTATING AIRFOIL DECELERATOR Yes ed. Yes Ptet

ORBITING AND THRUST FLAP V/Sto? V, Yes Pa ,lest

I . WRANVERSE FLOW FAN AM FLAP V/StoL? - Currnt~Near
O L4W PITCH Viol Hover Don Yea Yes xW

AT.PLIFIED LOW PITCH Viol Ners Yes

. PI P1 rCH Viol Fair Done Yes Yes 30K

AMPLIFIED HIGH PITCH V/Stol Excl. Yes Yes' Req'd. Yes Yes as

HIGH PITCH Stol m xcl. Yes Yes Yee is

~FULL FEATHER1N4G V/Stol Earl. Yes Req'Id. pin Yes3

OTHER None Done SOL

CONICAL ROTOR ? Yes 32R

RA A .jrL - T PROPELLER Viol' Ktcl. Yes Done Yes Yes 85 B

CYCLIC LIFTING PROPELLER Stol? Very Yes Done yes Yes 31-38

GoodVIG ROTOR OR SAVONIUS WINDMILL Limted Done Yes 38

MAGN S FFECT SlIP PROPUL -OSt Done Ye YIF •
I~~~~~t~Zcl. YeDn e e 0

CYCLOIDAL SNIP PROPULSION Limited yes D e y es 30K

CYCLOGIRO WINDMILL TURBINE Good ? Yes Ye -30P

MOM: I -As DefleCLd SlIptream or Tilt Wing. 2 -Fan Wt. Reduction. 3 -Gas Turtne dhrug
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PRELIMINARY PERFORMANCE AND DESIGN STUDY

OF TWO HARWAS CONCEPTS

I. ROTATING AIRFOIL FLAP (RAF) STOL AIRCRAFT

The search for better high-lift devices is more urgent than ever,
not only for STOL aircraft but also for conventional high-performance
aircraft. Actually, there is no basic difference between the high-lift
devices of a conventional airplane and those of such STOL aircraft as
the Grumman Mohawk or the De Havilland Caribou. It is a matter of
degree: the former type has larger flaps, larger leading-edge slats, a
higher power loading, and 'he maximum favorable interference between
the propelling unit and the wing. Recently, the Boeing Aircraft Company
advanced the concept of the conventional/short takeoff and landing
(C/STOL) aircraft, an airplane with the size and the capacity of the
Boeing 737, the favorable economics of conventional takeoff and landing,
and the flexibility of STOL performance.

The use of horizontal-axis rotating aerodynamic devices, either
autorotating or powered, in conjunction with fixed wings, opens new
possibilities for the enhancement of either low-speed lift or low-speed
lateral control of CTOL STOL, or C/STOL aircraft. In the latter mode,
the rotating devices could be used as fixed surfaces for the CTOL oper-
ation and as rotating surfaces for the STOL operation. Conversion from
a fixed to a rotating position is not expected to be a significant problem.
As shown in Table VII, at least 10 candidate configurations have been
suggested in the past. Out of these, two are of more immediate interest:
the rotating cylinder in flap (RCIF) and the rotating airfoil flap (RAF).
Extensive research and development are being done at the present time
on the RCIF by Alvarez-Calderon and the Ames Research Center of
NASA. It is therefore proper here to concentrate on the less-researched
RAF.

Aerodynamic test data relating to the RAF are collected, examined,
and conpared with similar data for other high-lift systems. The results
of this analysis are used for a preliminary design exercise in which the
present flap system of the DeHavilland DHC-5 Buffalo (shown in Figure
134) is replaced by a rotating airfoil flap system. The fact that all data
on the RAF are small scale requires an extrapolation to full scale, which
may or may not be valid, but for which similar experience with other
high-lift devices is a useful guide. An attempt was made at being con-
servative, rather than optimistic.

A. AERODYNAMIC CHARACTERISTICS OF THE ROTATING AIRFOIL
FLAP (RAF)

As shown in the ANALYSIS section of the report, the KUchemann
study (Reference 51K) is the only source of comprehensive data for appli-
of the external RAF to aircraft and will therefore be used here for further
discussion as well as for sizing. The data will be examined on a
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comparative basis with other related high-lift systems under conditions
as similar as possible.

The comparison is shown in Figure 135 in the form of five polar
curves for complete aircraft configurations with different high-lift, devices, which have the following in common:

- There are no propeller effects (T c ' = 0).

- If the flap is fixed, the flap deflection 8f is 400 to 450 .

- The flap chord, Cf, is 20 to 25% of the wing chord Cw .

- Airfoil thickness ratio is 15 to 18%.

The five configurations are as follows:

U) Full-scale airplane, with external fixed flap,

8f = 400, Cf = .2 Cw

) Model airplane, KUchemann, with external fixed flap,

8f = 450, Cf = . 2 5 w

Q Model airplane, KUchemann, with rotating flap,

U/v = 4.0, Cf = .25 Cw

0 Full-scale STOL airplane, DeHavilland Buffalo, low-
CL end of computed polar curve only,

8f = 4 0 0, C .25 Cw

05 Full-scale airplane model (Ames wind tunnel) of a
rotating cylinder flap

8 f = 400, Cf = .46 Cw (including rotating cylinder)

u/V = 5.1

Obviously, the major differences among the five configurations are

as follow3:

- Scale effect (Reynolds number):

n, and I are full scale; ® and Go)are small scale
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Wing aspect ratio:

® has very large aspect ratio

( has large aspect ratio

has fairly small aspect ratio

and ® are with very small aspect ratio

Thus, the RAF models (3 and ®0 have joint disadvantages of model
data and small wing aspect ratio.

A comparison of @ and () shows the scale effect and the aspect
ratio effect for two airplanes with external fixed flap: the maximum lift
coefficient is about the sa e, but the corresponding drag of ( is one-
third larger than that of (1.

The effect ojrotating the flap (RAF) is shown by comparing Q
(U/V = 0) and () (U/V = 4.0). There is a significant increase in
CLn., but there is a corre ondingly large increase of CD. The sud-
den o~apse of CLmax for W shows a very sharp stall, representative
of the sudden flow breakaway, at the low test Reynolds number.

A comparison of (Dand () shows that aLlow CL's the polar
6urves ar.much the same. At very low C, 1 has aJower drag than
( , but 1 stalls earlier (CL m 2. 1). Configuration 5V would stall
only at CL f 3 .1.

A comparison of C' ® , and @ shows that () and 5 Jve
very similar polar curves, wich both extend the polar curve of (3 to
higher C 's. Thus, based on this figure (poweroff condition), a good
double-sltted flap and the rotating cylinder flap (RCIF) have about the
same characteristics. Although not shown here but in Figures 33 and 36,
the influence of propeller slipstream s to dramatically increase the
C~max of the RCIF, configuration,_ (t5 from 3.1 to 12. It is to be
no-[bffrom actual flight tests that the CL of the double-slotted flap; only increases to 3. 6with propeller eff6"c"bg:

~Finally, a comparison of @) and 0 .O hows that, under the condi-

e (teRF aahigherI t tions of similarity stateA above, airplane (3 the ra g hihe
CLmax thn airplane ((the RCIF). Furter, at CL=, the d
airplane 3 is one-third higher than that of airplane 5. It was noted
earlier tha, the one-third factor may-correspond to a scle effect. Thus,
the lift-drag ratio of configuratjpn (), full scale, cgld be about the
same as that of configuration 5. It remains tt (§3 has a C
that is 25% higher than W. Sall could-also be less aLbrupt than is
shown in Figure 135 for configuration 3).

Assuming apw that the propeller slipstream effect is as large on
configuration 0 (the RAF) as on configuration U5 (the RCIF), one
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might speculate that the RAF is capable of very high lift coefficients,
of the order of 15.

Naturally, all this is speculation, but it indicates the desirability
of following the full-scale wind tunnel tests on the RCIF by similar
tests on the RAF.

The aerodynamic problems to be investigated in RAF full-scale
tests are as follows:

1. Size; i. e., Reynolds number effect on aerodynamic
performance.

2. Effect of propeller slipstream on performance.

3. Effect of wing aspect ratio, flap aspect ratio, airfoil
shape, airfoil thickness ratio, and flap tip plate shape.

4. Effect of flap-chord-to-wing-chord ratio and of the
position of the flap axis with respect to the fixed-wing
trailing edge.

5. Effect if it exists, as hinted in Reference 42S, of the
fixed-wing airfoil on the overall geometry of the RAF.

6. Installation arrangement of the RAF as an external
airfoil flap. May not be the optimum aerodynamic or
mechanical arrangement. Variations have been described
by Tino (Figure 76), Lake (Figure 89), and Henter-K'dser
(Figure 88).

7. Effect of external and locked RAF on cruise lift-drag
ratio and environmental (icing) problems.

8. Pitching moment data on the RAF. Should be obtained

for all the tests suggested above.

B. THE RAF AS A CONTROL DEVICE

There are no test data that can be used to substantiate the effec-
tiveness of the RAF as a lateral control device (aileron) for the low-speed
operation of a STOL aircraft. It is well known that the minimum approach
speed of an aircraft is sometimes dictated by control, not by high-lift
considerations. The RAF can be broken down into several spanwise sec-
tions rotating independently, and the outer section can be used for lateral
control. (See Table VII).

The tests suggested in the preceding paragraph should definitely
include a determination of the lateral control effectiveness of the RAF.
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C. POWER REQUIRE) TO ROTATE THE RAF

There is a great shortage of data on the power required to activate
a rotating airfoil flap. The only data available (Wiese Reference 56W)
concern the power required to rotate isolated airfoils tnot in conjunction
with a fixed wing) about their 50% chord axis. Wiese's data are shown
in Figure 136, and they really have more of a qualitative than a quanti-
tative value. On the contrary, the power required to drive the NASA/
Ames RCIF system was exactly determined and is also plotted in Figure
136, where it can be used as a lower boundary.

In Figure 136, the power coefficient CR is plotted versus U/V.
c R  P-1/ p u3

where

P = power required

) = density

U = peripheral velocity of flap

Sf = flap area

Certain trends can be observed from Figure 136, as follows:

- Required power decreases with increasing Reynolds
numbers.

- Required power decreases with increasing aspect ratio.

- Required power decreases with the addition and shape
of tip plates.

- Possibly, profile shape affects the required power.

It is felt that a reasonable estimate of the variation of Cp, with U/Vis provided by thle curve of Figure 136 correspondin t "'R •5 and an

elliptical tip plate. The curve ='. used in the numerical example and
design study that follow.

It is of interest to note that the majority of test curves for theL lenticular rotating airfoil of Figure 136 (16. 7% thickness ratio) do not
pass through th6 origin but tend to originate near U/V = 1, in th auto-
rotational condition. Also shown in Figure 136 is configuration (U of
Table I, which autorotates at a U/V of nearly 2. It is possible at
this shape would have reduced power requirements in the driven mode as
well.
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D. APPLICATION OF THE RAF TO A STOL TRANSPORT AIRCRAFT

To investigate the application of the RAF to aircraft, the following
preliminary study was undertaken to understand the problems of RAF
adaptation, powering, and practical performance. To this end, it was
considered to be desirable to adapt the RAF system, with a minimum of
modifications, to an existing STOL transport aircraft. The aircraft
selected for this study is the DeHavilland DFIC-5 "Buffalo" transport
aircraft (Figure 134). The basic characteristics of the RAF-modified
version of this aircraft are shown in Figure 137 and are tabulated in
Figure 139. For mattE.rs of direct comparison, it will be noted that the
gross weight (for STOL landing) and the wing area have been kept iden-
tical for the RAF-modified and the nonmodified DHC-5. As with other
flapwing area conventions, the external nonrotating flap is not included
in the total wing area measurement. For the purposes of this discussion,
the overall RAF system consists of six flap elements, each with a nom-
inal aspect ratio of five, elliptical tip plates, and a lenticular cross
section profile. Thus, the approximate power requirements of each flap
section may be determined from the tests by Wiese, Figure 136.

The RAF axis is located in the "optimum" position 2 (Figure 43).
The RAF system is further broken down into two inboard rotating flap
elements and four outboard rotating flaperons. Referring to Figure 137,
the rotating flap element, drive, and control system are represented
schematically in plan view. Note that the two outboard flaperons rotate
directly together and are split to provide for a midpoint support hanger,
In practice, the individual flap elements would be allowed to slide axially
on splines or couplings to accommodate wing and flap deflecting during
flight. For the same reason, the support bearings would need to be
self-aligning. Figure 138 further indicates that the individual port and
starboard flap systems acquire their driving power from hydraulic pumps
possibly attached to the main flight engine accessory pad. An alternate
suggestion would be to drive the flaps from an auxiliary power unit
centrally located within the fuselage in the area of the cross-coupling
clutch.

The functioning of the "hydraulic mechanical selector mixer system"
is tabulated in Table V.I. The effect of various control and power func-
tions in these units is further tabulated to show the flap responses over
the full range of flight regimes and for various aircraft missions.

A comparison of the RAF with the existing double-slotted flap of
the DHC-5 is of great interest. The existing DHC-5 flap and ailefon
system is briefly described here. The wing incorporates high lift, fuall-
span, double-slotted flaps along the trailing edge. The outer section
of the trailing flap operates as a conventional aileron. The DHC-5 flap
system is power-operated via a hydraulic motor, gearboxes, torque
tubes, and irreversible screw jacks. The flap system is provided with
adequate protection against a malfunction. The flap-aileron system
consists of fore sections and trailing sections--inner, mid, and outer on
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each wing. The fore and trailing sections are separated from the wing
shroud and each other to provide the slotted-flap characteristic for
greater aerodynamic efficiency. The relative motion of the two sections
is defined by mechanical linkages hinged from, and carried by, the rear
wing spar. The outer trailing sections function as ailerons, super-
imposed on their travel as part of the flap system. To provide additional
lateral control of the DHC-5, the aileron system is coupled to the spoi-
lers. The spoilers are cotipl.ed to operate asymmetrically in proportion
to aileron control commands. The spoilers extend "up" in proportion
to "up" commands to the associated aileron. The t:onventional cable/rod
aileron control circuit is coupled to the servo control valves of the hy-
draulic actuators that function the spoilers. The system is designed
such that a failure or seizure of the spoiler actuator cannot impair nor-
mal aileron operation. Various safety and gust locks are located
throughout the flap system.

The RAF flap mechanism is understood from the representation
of Figure 138 and Table VfI. Not indicated are the safety and duplication
arrangements required to insure fail-safe flap function in response to
hydraulic or mechanical failure.

An aerodynamic performance comparison of the RAF concept with
a conventional STOL aircraft is limited by the test data of Kuichemann
(Reference 51K). The restriction is such that only during a power-off
landing (Tc' = 0) situation could an equitable comparison be made of
these data with the actual DHC-5 flight test data. Thus, the comparative
stall speeds of the gliding standard DHC-5 with double-slotted flaps and
two RAF systems have been graphically presented in Figure 139. In
this situation, standard sea level conditions, equal wing areas (945 ft. 2),
and equal gross weights (39, 100 lbs.) are considered.

An attempt at a performance comparison of the RAF modified
"Buffalo" and the original Buffalo is shown in Figure 139. The compari-
son is made in terms of the stalling speed of the aircraft in the approach
condition with power off. The stall speed of the Caribou with flaps re-
tracted is 87t.knots. The corresponding stall speed, with fixed double-
slotted flap O - 400 , is 63 knots (corresponding to CLm = 3.10).
Two RAF configurations are considered, one with a 10% cEord flap and
the other with a 25% chord flap. The basis for the performance estimate
is K~chemann's data (Reference 51K and Figures 41 and 43). The plots
of Figure 139--flap RPM is shown as the solid curves and flap required
horsepower as the dashed curves--wer3 established as follows. Values
of U/V between 0 and 5.20 are assumed. The corresponding CT.mx,
for each flap chord, are determined from test data. To each CI,
there corresponds a stall speed which is calculated. The corres-6h-ing
U is then calculated, hence the flap RPM; the coefficient CR corres-
ponding to the assumed U/V is determined from Figure 136, and the
corresponding horsepower is calculated.

It can be seen that the RAF in autorotation will permit the lowering
of the stall speed to 77 knots for the 10% flap and to 71 knots for the
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25% flap. At U/V's above autorotation, the flap power required rises
rapidly. There is a slight power advantage to bave a 25% flap rather
than a 10% flap.

The power expenditure corresponding to a stall speed equal to that
of the basic Buffalo aircraft--63 knots--is about 650 HP. Above that
point, power expenditure is out of proportion to potential gains, as 1006
HP is reqired to lower the stall speed by 10 knots. Note that the hump
of the 25% flap RPM curve comes from the apparent sudden stall of the
position 2 airfoil.

The above discussion and the data of Figure 139 must, however, be
considered unrealistic for two related reasons.

First, the data of FigUre 139 are for T.1 = 0, and it was shown in
the discussion of Figure 135 that there was at least a suspicion that
T ' had a powerful influence on the maximum attainable lift coefficient. 4

Thus, the calculated vrlues of CTm used to establish Figure 139 may,
in actuality, be pessimisti. by a Tco'r of 2 or 3.

Second, because of the lack of meaningful data, it was assumed that
the RAF-modified and the original Buffalo had the same gross weight.
This fails to account for the weight of the auxdliary motors needed to
drive the rotating flaps. It would be interesting to determnine the one
point for which t.is is true: the RAF system is simpler than the basic
double-flap arrangement, hence a potential weight saving, which can be
used in motors to drive the rotating flaps. It is impossible to determine
at this time whether this "break-even" point corresponds to a Vsral]
greater or smaller than thfe 63 knots uf the basic Caribouj.

All of this indicates that large-scale test data are needed before
a meaningful assessment of the RAF systemn can be made,

E. ADDITIONAL APPLICATIONS OF THE I:,F CONCEPT

The RAF concept is ideally suited for application tc the COIN air-
craft configuiation. A conceptual study is shown in Figure 140. The
COIN aircraft requires both STOL performance 2aid good control at low
speeds. It uses large propellers which immerse the wing nearly rotally
in their slipstream. The RAF is concidered to be a prime m-ans to
deflect the propeller slipstream ,, to prevent wing st'1 at low speeds.

The outboard RAF unit is independently modulated to provide the
strong, effective low-speed control at and near hovering flight. With
both engines ou.t, the RAF continues to autorotate and provide substan-
tial lift for power-off emergency landings. The rotating flaps may be
programmed and controlled to operate in the manner previously oLtlined
in Table VIII. The compactness of this COIN aircraft may reduce the
flap area with a subsequent saving in the flap power required.
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H. VTOL CYCLOGIRO TRANSPORT FOR THE COMPOSITE
AIRCRAFT MISSION

A. DESIGN PHILOSOPHY

USAAVLABS has conducted much research in the last few years
in the areas of the high-performance helicopter, the compound helicopter,
and the composite aircraft Lo provide further increases in Army mobility
(References 61C and 68L). The most advaluced concept, the composite
aircraft, is aimed at combining into one aircraft the hover efficiency
and downwash velocities of the helicopter and the high-speed efficiency
of fixed-wing-type aircraft, in the speed range of 30 to 350 knots. The
cyclogiro aircraft is the only known nonrotary-wing aircraft that has
full hover capability with relatively low disc loadings, as demonstrated
in the ANALYSIS section of this report. It was therefore reasonable
that a preliminary design of a cyclogiro composite aircraft should be
compared to other proposed composite aircraft. In view of the newness
of the application of the cyclogiro concept to the composite aircraft
mission and of the total lack of research in this area for the last twenty
years, one is constrained to a conceptual s~udy, rather than a detailed,
quantitative one.

The assumptions used in References 61C and 68L for the design
objectives are those also used here. They are briefly summarized
below:

Payload 3000 lbs

Fuel 3000 lbs

Useful Load 6450 lbs

Hover O.G. E. at 950 F 6000 ft pressure altitude

Disc Loading 10 lb/ft2 or less (except for tiltwing or cyclogiro which have
35 yb/fit w)

Maximum Speed 300-350 knts

Internal Cargo Com,'art- 5.5 ft wide x 6 ft high x
ment 14. 3 ft long

Power Plant Current-or-advanced- tech:
ogy gas turbine sized to m.
the concept's power require-
meats (rubber engines)

The disc loading is chosen at 35 lb/ft 2 as a compromise between
a lighter loading that would give less hover power required but would
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present rotor structural probiems, and a higher loading that would
present the opposite situation: good structural efficiency, poor hover
efficiency, and higher rotor parasite area. The disc loading is based on
the projected area of the cylinder described by the rotor blades, includ-
ing the fuselage blanketed area. Like all other param~eters of this study,
the disc loading is not optimized. Only a detailed aerodynamic and
weight study would make it possible to ascertain whether the assumed
vaiue is close to optimum or not.

The preliminary design study mainly consists of three elements:
a configuration ctudy showing the approximate sizing of the aircraft, a
performance study, and a control study showing specific means to
achieve control with a cyclogiro rotor. The overall purpose of the study
is to indicate that the considerations described in the ANALYSIS section
of the report can be meaningfully applied to the design of a cyclogiro
transport.

B. GENERAL CHARACTERISTICS OF THE CONFIGURATION

A three-view preliminary drawing of the configuration is shown in
Figure 141. A tandem-rotor configuration was chosen, with front and
aft rotors rotating in opposite directions. Each rotor consists of three
blades. Details of rotor geometry resemble closely those of a configura-
tion that was thoroughly tested by Baker in the University of Washington
wind tunnel (Reference 8B, Figures 76 and 77), except that a reducedsolidity is used.

Each rotor is basically driven by a gas turbine engine mounted on
top of the fuselage, along the centerline. In case of failure, the engines
are mechanialy interconnected, and a system of overriding clutches
permits autorotation in case of total power failure.

Detailed studies made twenty years ago concluded that the weight
of a complete cyclogiro rotor-propulsion system including the power-
plant was of the same order of magnitude as the weight of the corres-
ponding helicopter roltor powerplan. system. Technical advances have
considerably reduced the weight of the rotor system, of the transmission,
and of the gas turbine pcwerplant; it is assumed that corresponding
advances in cyclogiro rotor technology, the transmission, and the blade-
rocking7 system may make possible a corresponding reduction of the
wei,ht -of the cyclogiro rotor-propulsion system.

It is assumed that the cyclogiro mechanical loss is 7% of the total
hocesepower.

The cyclogiro rotor type used h,2re is of the combined high-pitch
and amplified high-pitch type, to be described later in some detail. At
high speed, it is a high-pitch type; at lo-er speeds nd hover, it is of

result iti a higher aerodynamic efficiency; however, it would present
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Figure 141. High-Speed Amplified High-Pitch VTOL Cyclogiro Project.



additional and unknown development and mechanical difficulties at
this time.

The gross weight of the configuration is assumed to be 20,000
pounds, which may be slightly optimistic in view of the high ins talled
horsepower (9000 SHP). It is assumed to be distributed equally between
the two rotors, to the effect that rotor aerodynamic interference between
the front and rear rotors is ignored.

A parasite drag area of 15 ft. 2 is assumed, which is conservative
if the landing gear is assumed to be retractable (not shown in the figure).

Any co-ifiguration such as that of Figure 141 will look different from
that of a fixed-wing aircraft or of a conventional VTOL aircraft, and
will have a high fuselage. However, it does not show any unacceptable
aerodynamic or structural compromises: the fuselage is hardly larger
and heavier than that of a conventional aircraft; the integration of lift
and propulsion into the cyclogiro rotors and the absence of antitorque
rotors and of any control system external to the rotors teud to make up
for the complexity of the rotors themselves. Should be necessary,
the aspect ratio (i. e., span) of the cyclogiro rotors L juld b.e increased
without the configuration looking misshapen.

C. PERFORMANCE CHARACTERISTICS OF THE CONFIGURATION

One possible way to look at performance is as follows. Based on
the results of the ANALYSIS section (Figure 99, for example), one can
expect, for a properly designed cyclogiro, a hovering figure of merit
of 0.8. This gives an HP/W figure of the order of 0.20 for a disc
loading of 35 p. s. f.

As far as forward flight is concerned, it was shown that a propul-
sive efficiency of the order of 0.8 (or even higher) could be achieved.
One could thus calculate forward-flight performance or at least estimate
maximum speed, based on that figure.

It was decided to follow another approach for this study. In order
to avoid giving grounds to extreme and uncritical optimism, the perfor-
mance of the aircraft was calculated, based on ?"%ker's actual wind tunnel
test data (Reference 8B) of a small nonoptimized model.7T - only devia-
tion from Baker's rotor geometry was to reduce the rotor solidity by a
factor of 2. A comparison of Baker's data with theory shows that the
results come very short of the theory. Hence, use of Baker's results
should correspond to a most pessimistic use of the cyclogiro.

Out of the results of Reference 8B, two curves are reproduced here:

Figure 142 shows a polar curve, CL verstis CD, for various values of
J(the symbols are the same as those defined in the ANALYSIS section);
Figure 143 shows a lift-power curve, CT versus Cp, for the same
advance ratios. The design poJnts on tlese curves correspond to
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a thrust coefficient equal to minus the drag& coefficient, itself cor-
responding to a parasite drag area of 7. 5 ft. z per rotor; i. e., a CDf=
.0375.

Comparative concept characteristics and calculated performance
are shown in Figure 144 for the helicopter, the compound helicopter,
the slowed-rotor compound, the composites, the tilt wing and two
cyclogiros (a high-pitch and a stopped-rotor configuration).

It can be seen that the cyclogiro performance is not spectacular,
because of the pessimistic assumptions made, but that at least it extends
the area of operation of the other configurations toward higher speeds.
It could be shown that use of the assumptions first discussed in this
paragraph would lead to a drastically improved picture. The limitations
of the test results that were used for the performance curves will be
discussed at the end of this section.

D. REVIEW OF HIGH-PITCH AND AMPLIFIED HIGH-PITCH BLADE
MOTIONJ

Cyclogiro blade-rocking motion was discussed in some detail in
the ANALYSIS section. However, it is useful to elaborate here on the
specific details of a cyclogiro blade motion that will be the basis for
the proposed cyclogiro aircraft control system. The geometrical des-
cription of the blade-rocking motion that leads to the aerodynamic
generation of t- "ust and lift forces on the cyclogiro rotor, either
separately or s..ultaneously, will be discussed in this section. Appli-
cation to cyclogiro control will be made in the next paragraph. The
cases of the high-pitch cyclogiro (Figure 145) and the amplified high-
pitch cyclogiro (Figure 146) will also be discussed.

Consider first, for example, the ideal basic motion of the forward
port rotor of the proposed cyclogiro of Figure 141 moving at a constant
translational velocity VT, which corresponds to the velocity V of the
ANALYSIS section of the report. This motion is described in Figure
145A, in which the blade chord line is shown at six equidistant stations
about the periphery of the rotor orbit. The rotor blade axes revolve
geometrically about an instantaneous center o on the mechanical axis
of symmetry, which is a line determined by the point o and the center
A of the orbit circle. One can define also an instantaneous aerodynamic
of directional center o', which is the point of intersection of the normals
to the resultant velocity vectors Vr at the s'*x stations, as shown in
Figure 145A. Note that the velocity vectors carry subscripts correspon-
ding to their respective stations, 1 through 6.

One may recall here (see Figure 88) that when the point o' is out'
side the orbit circle, one has a high-pitch arrangement. If o' is on the
circle, one has a pio pitch arrangement; if o' is inside the circle, one
has a low-pitch arrangement. Only the high-pitch arrangement wiil be
corsidered further here.
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Figure 144. Comparative VTOL Aircraft Concept Characteristics
and Forward-Flight Performance.
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Note that, for the nnotions of interest here, the instantaneous
aerodynamic center o' remains fixed through a blade revolution and is
also an "overall" center.

Returning to Figure 145A, it can be seen that the two centers o
and o' coincide and that the sum of thrust forces and cf lift forces is
equal to zero. The resultant net force on the rotor is zero.

Consider now Figure 145B, in which the instantaneous blade
mechanical center o is displaced vertically downward along the axis

& o'. Rotational and translational velocity of the rotor remains theA|
e. The change in featherinZ at stations 2. 3, 5, and 6 causes the

corresponding blades to have an increased angle of attack O'i with
respect to the local resultant air velocity VR. The forces thus generated
at the six stations are shown in Figure 145B. In this iiistance, the
vertical-lift components cancel Gat, b'ut there is an overall net thrust,
directed to the left. Thus, mechanically, thrust control of the rotor can I
be achieved by the mechanical displacement of the mechanical inter-
section point o away from the aerodynamic intersection point o'.

Consider now Figure 145C, in which point o is not only moved
downward from o' but is also moved to the left of the axis Ap - o', the
basic local velocities remaining unchanged. ln this case, th summation
of the lift forces becomes positive. Thus, lift control of the rotor can I
be produced by moving the mechanical intersection point o to the left.
The effect is analogous to that resulting from a change of angle of attack
of a fixed wing. Note that the lateral position of o in Figure 145C is
extreme and corresponds to a negative thrust. In practice, point o is 1
moved just enough to the left to provide the necessary lilt, while retain-
ing enough thr-ust to overcome the aircraft parasite drag.

A mechanism such as that described in Figure 145 was embodied
in the Baker wind tunnel model (Reference 8B) and is shown schematically
in Figure 147. The result of the wind tunnel tests was show, in Figure
142. A complete polar curve can be covered by going through a com-
plete range of the "angle-of-attack" parameter O. of Figure 145C. For
a given advance ratio J (corresponding to the j of the ANALYSIS section),
one clearly sees in Figure 142 the passage from a "thrusting" to a
"dragging" rotor as the point o of Figure 145C moves to Lhe left.

As discussed in the ANALYSIS section, an ideal rocking motion is
undesirable, at least at low pitch, because of excessive accelerations.
The scheme of Figure 145 io therefore acceptable for high-speed
cyclogiro operation, but an amplified pitch system must be devised for
operation at lower speeds and at hover. Specifically, opesration becomes
impossible when the point o' approaches the orbit circie too ciosely.

Consider then the amplified high-pitch motion schematically
described in Figure 146. The basic difference is that the instantaneous
mechanical center o' moves during each blade revolution in its orbit.
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Specifically, looking first at Figure 146A for stations 2 and 6, o' is at
point o" ' , whereas for stations 3 and 5 it is at point o"'. For station 1,
o' lies at the position on the axis shown as "I", above point o"; for
station 4, o' lies somewhat below point o"', in the position shown as
14f" .

This device may be construed as superimposing a "higher control
harmonic" to the basic cycloidal mechanism. In practice; this har-
monic can be introduced by means of an eccentric, as shown in Figure
94, or by the two oscillating sections A and C in the mechanism of
Figure 147.

A detailed consideration of the force diagrams of Figure 146A shows
that the asymmetry created by the amplified motion only creates a
negligible horizontal thrust; its main effect is, as intended, to reduce
the maximum blade accelerations, hence blade stresses, in the bottom
part of the orbit (41=1800).

The steps taken in Figures 146B and 146C are similar to those
that were taken in Figures 145B and 145C, with corresponding results;
i. e., the generation of a net horizontal thrust force in Figure 146B,
and of both a thrust and a vertical-lift force in Figure 146C. The dif-
ference is that, instead of just one mechanical center, one has six
mechanical centers, 01 to 06, spread as shown in Figure 146C.

Note that low-pitch and amplified low-pitch motion characteristics
can be explained, as was done for the high-pitch motion in Figures 145
and 146, by drawing corresponding figures with the instantaneous center
o' located inside the rotor orbit.

In summary, basic features of cyclogiro control are as follows:

1. High-pitch motion control is satisfactory for high flight speeds;
amplified high-pitch motion control is required for low speeds and hover
flight.

2,. Horizontal thrust i3 modulated by a vertical displacement of
the mechanical instantaneous center o along the mechanical axis.

3. Vertical lift is modulated by a horizontal displacement of point
o away from the mechanical axis.

4. Lift and thrust forces are generated simultaneously by a com-
bined mechanical (angular) horizontal and vertical displacement of point
o away from the mechanical axis.

5. Lift and thrust, alone or in combination can be further modii-
lated by overall rotor RPM changes consistent with structural limitations
of the rotor and its blades. Weight and structural considerations dictate
that the rotor RPM be as low as possible and that the advance ratio j as
high as possible.
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E. CONTROL SYSTEM OF THE CYCLOGIRO PROPOSED DESIGN

Forward motion of the control column will cause a simultaneous
vertical displacement of all instantaneous mechanical intersection points
o" and o'" (Figure 146B) in both fore and aft rotors of the tandem
cyclogiro project. Forward motion of this column produces forward
horizontal translation of the cyclogiro; rearward column motion will
cause the craft to move backward.

Lateral displacement of this main control column produces a direct
rolling couple about the aircraft centerline, simultaneously increasing
the net rotor lift on one side of the aircraft and decreasing it on the
other; that is, this lateral movement of the control stick produces an
opposite horizontal displacement of the instantaneous mechanical center
point o (Figure 1450). From hover, as will be seen, this control
motion will produce a roll and lateral crabbing translation by the opposite
horizontal displacement of the instantaneous mechanical centers (o1 - o6)
on each side of the aircraft.

The use of the rudder pedals will produce yawing of the aircraft
fuselage. At forward speed, the required yawing couple is generated by
a fore-and-aft horizontal thrust differential between rotors on the opposite
sides of the aircraft. This involves a differential fore-and-aft and side-
to-side vertical displacement of the mechanical center point o (Figure
145B). In hover, of course, the use of the rudder pedal produces a turn
about the aircraft's vertical z-axis.

Vertical and hovering flight are controlled by the side-mounted
"collective pitch" lift stick. At normal and high forward speeds, this
stick is full down. Upon slowing down to hover, this stick is manually
pulled up, thereby making the necessary adjustment in the horizontal
displacement in all of the rotor lift controls. The first function, when
this control is moved up, is to introduce the amplified blade motion into
the four rotor systems. Further movement upward of this control hori-
zontally displaces the instantaneous mechanical intersection centers (o1 -
0, in Figure 146C, and consequently increases the collective lift of

four rotor systems. The other components of the control system
continue to introduce overriding control motions into the rotor system,
insuring direct and positive maneuvering responses about all of the flight
axes at very low speeds and in hovering flight.

In all instances, engine output power is modulated by the control
system to insure the proper balance between the rotor nower re.ir ed
for each flight maneuver and the optimum power available from the
engines.

Should a total engine failure occur, the engines would disconnect and
the rotors would enter the autorotational state, as follows. The over-
riding reatures of the transmission system would:
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1. Mechanically effect conversion to amplified blade motion, if
the blades were not already in that mode.

2. Displ- ,e the Lapit,.e aechanical intersection points o1-
06 to the extreme position shtwa La Figure 146C. This is the case -here
the lift capability is the largest (to be paid for by P, drag, which is of no
consequence in this instance).

Autorotational data are shown in Reference 8B, Figures 23 and 24.
It can be shown that there is considerable autorotational lift available for
power-off flight. The glide angle can be estimated from Figure 145C as

I-

eg taf 1 7.
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CONCLUSIONS

From Table VII, one might identify several interesting avenues
for future research and development:

1. Wing rotors present promise as aerial delivery devices, as
they present today the best-known combination of high lift-to-drag ratio
and of high maximum lift coefficient. The study of their aerodynamics
is very incomplete. Surprisingly, the study of their dynamics has made
great progress in the last three years because of military interest in
bomblets.

2. Immediate full-scale research and development of a powered
rotating airfoil flap, such as the one discussed in this report, to be used
also for lateral and directional control, inclut'ng possibly a rotating
rudder, are strongly recommended.

3. Cyclogiros for high-subsonic transport show promise. The
development of such aircraft will be hampered by many difficult struc-
tural, aerodynamic, and aero-elastic problems. Much engine and power
train development directed toward other VTOL systems will be directly
usable for the advanced cyclogiro.

4. The Curtiss-Wright X-19 aircraft and the VFW VC. 400 air-
plane are fascinating projects. The fact that the latter "s being pushed
actively today in Germany means that this configuration has current
interest compared to many concepts cited which are dormant. What is
of interest is the fact that the VFW VC. 400 operates essentially on th6
same principle and has some of the same problems as the cyclogiro, i
forward flight. At hover, the situation is completely different, the
cyclogiro operating as a helicopter and the VC. 400 requiring significant
rotation of the propeller axis in order to achieve significant ,-'.rtic-il lift.
Richard teaches us that the optimum configuration may be a c )mhia 2tion
of the radial-lift propeller and the helicoplane.

5. Several other configurations appear worthy of future iesearch;
for example, the rotating airfoil convertible to fixed wing, the orbiting
flap and undulating propeller, and the transverse-fan VTOL.
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3. Cyclogiros for high-subsonic transport show promise. The
4, development of such aircraft will be hampered by many difficult struc-

tural, aerodynamic, and aero-elastic problems. Much engine and power
train development directed toward other VTOL systems will be directly
usable for the advanced cyclogiro.

4. The Curtiss -Wright X-19 aircraft and the VFW VC. 400 air-
plane are fascinating projects. The fact that the latter is being pushed
actively today in Germany means that this configuration has current
interest compared to many concepts cited which are dormant. What is
of interest is the fact that the VFW VC. 400 operates essentially on the
same principle and has some of the same problems as the cyclogiro, in
forward flight. At hover, the situation is completely different, the
cyclogiro operating as a helicopter and the VC. 400 requiring significant
rotation of the propeller axis in order to achieve significant verticii lift.
Richard teaches us that the optimum configuration may be a c,)mbir vation
of the radial-lift propeller and the helicoplane.

5. Eaveral other configurations appear worthy of future vesc:arch;
for example, the rotating airfoil convertible to fixed wing, the orbiting
flap and undulating propeller, and the transverse-fan VTOL.
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