
Portland Cement Hydration

Dr. Kimberly Kurtis

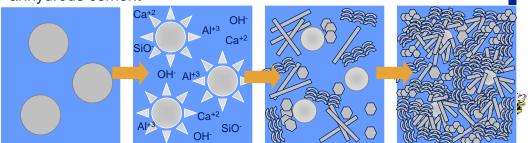
School of Civil Engineering Georgia Institute of Technology Atlanta, Georgia

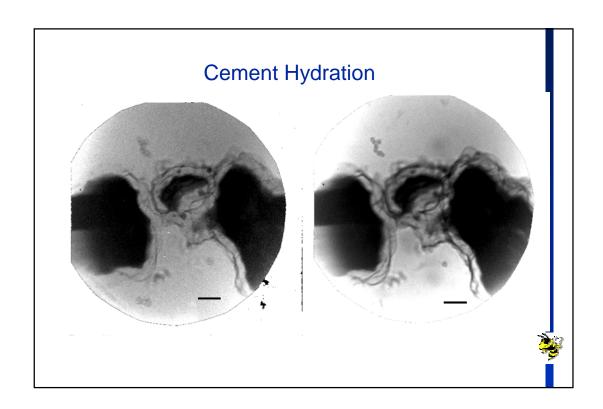
Cement Hydration

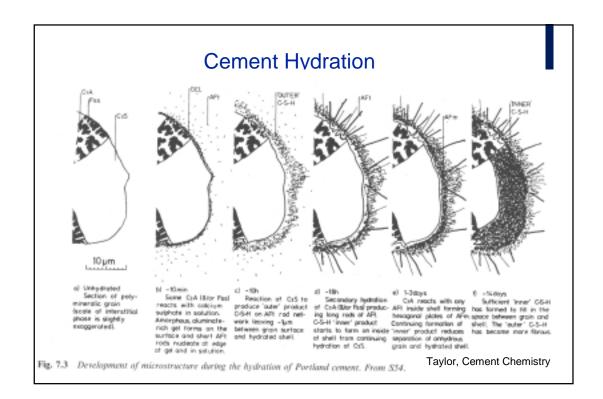
Hydration - chemical combination of cement and water

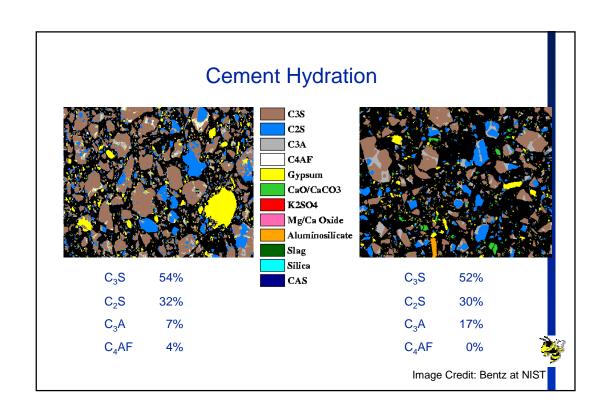
Two primary mechanisms:

<u>Through solution</u> - involves dissolution of anhydrous compounds to their ionic constituents, formation of hydrates in solution, and eventual precipitation due to their low solubility

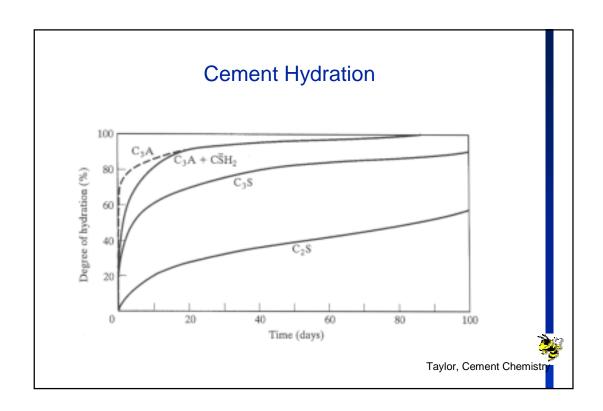

<u>Topochemical</u> - or solid-state hydration - reactions take place directly at the surface of the anhydrous cement compounds without going into solution

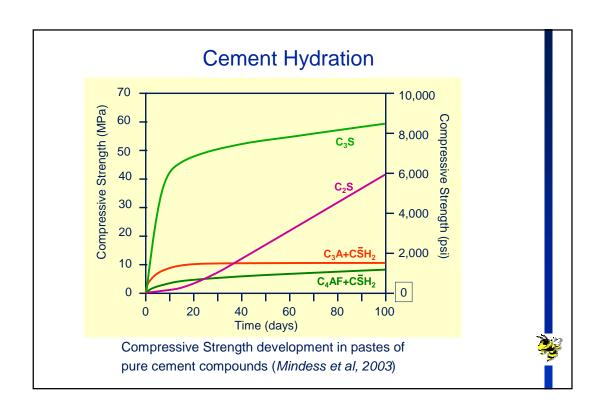


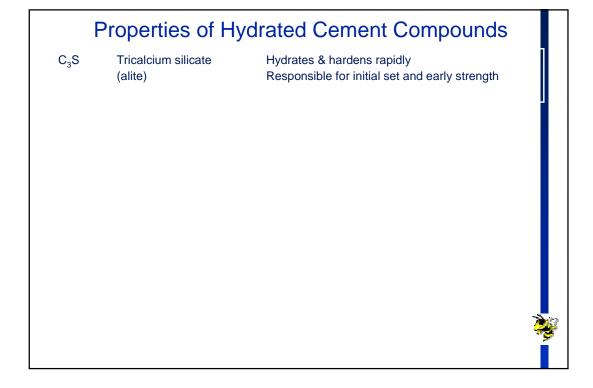



When water is added to cement, what happens?

- Dissolution of cement grains
- Growing ionic concentration in "water" (now a solution)
- Formation of compounds in solution
- After reaching a saturation concentration, compounds precipitate out as solids ("hydration products")
- In later stages, products form on or very near the surface of the anhydrous cement


Cement Hydration


Because the hydration rates of the 4 key phases vary considerably, properties like


- time to stiffening
- setting time
- hardening rate

will vary with cement composition.

Properties of Hydrated Cement Compounds

C₃S Tricalcium silicate Hydrates & hardens rapidly

(alite) Responsible for initial set and early strength

C₂S Dicalcium silicate Hydrates & hardens slowly

(belite) Contributes to later age strength (beyond 7 days)

Properties of Hydrated Cement Compounds

C₃S Tricalcium silicate Hydrates & hardens rapidly

(alite) Responsible for initial set and early strength

C₂S Dicalcium silicate Hydrates & hardens slowly

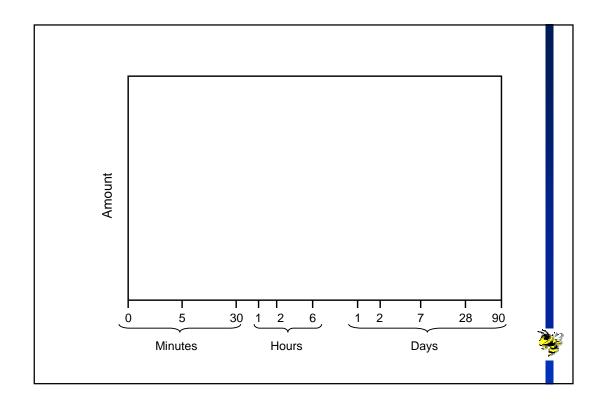
(belite) Contributes to later age strength (beyond 7 days)

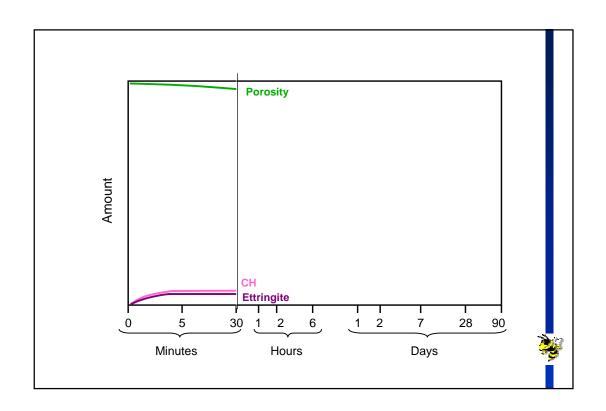
C₃A Tricalcium aluminate Liberates a large amount of heat during first few

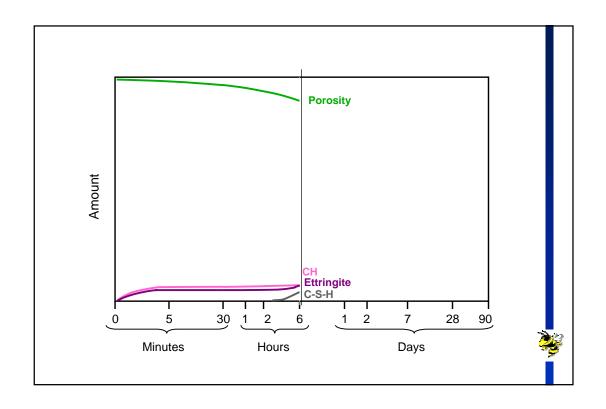
days

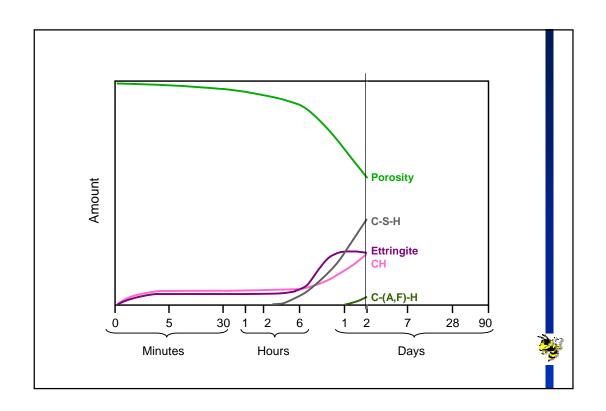
Contributes slightly to early strength development Cements with low %-ages are more resistant to

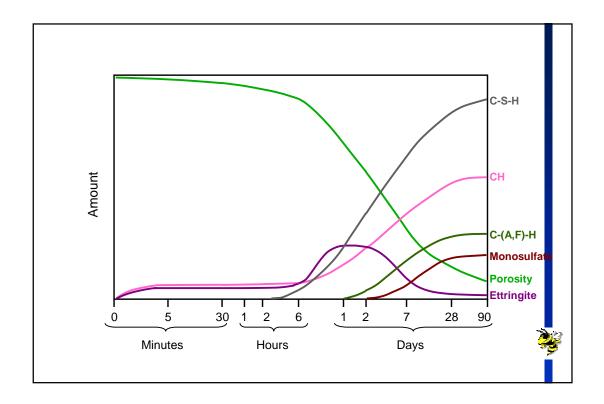
sulfates


Properties of Hydrated Cement Compounds


C ₄ AF	Tetracalcium aluminoferrite (ferrite)	Reduces clinkering temperature Hydrates rapidly but contributes little to strength Colour of hydrated cement (gray) due to ferrite hydrates
C ₃ A	Tricalcium aluminate	Liberates a large amount of heat during first few days Contributes slightly to early strength development Cements with low %-ages are more resistant to sulfates
C ₂ S	Dicalcium silicate (belite)	Hydrates & hardens slowly Contributes to later age strength (beyond 7 days)
C ₃ S	Tricalcium silicate (alite)	Hydrates & hardens rapidly Responsible for initial set and early strength




BLE 3.4 CHARACTER		n of the Cement	Contribution to Cement Heat	
	Reaction Rate	of Heat Liberated	Strength	Liberation
C ₂ S C ₂ S	Moderate Slow	Moderate Low	High Low initially, high later	High Low
$C_3A + C\overline{S}H_2$ $C_4AF + C\overline{S}H_2$	Fast Moderate	Very high Moderate	Low Low	Very high Moderate



Cement Hydration

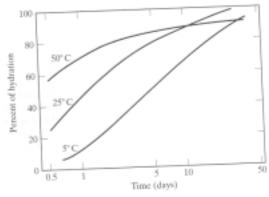
- •Is the chemical combination of cement and water to form hydration products
- Takes time
- •May not proceed to 100% completion

Formation of hydration products over time leads to:

- Stiffening (loss of workability)
- Setting (solidification)
- Hardening (strength gain)

Let's look at the hydration reactions in more detail...

Hydration of the Calcium Silicates


$$2C_3S + 7H \rightarrow C_3S_2H_8 + 3CH$$
 $\Delta H=-500J/g$ $2C_2S + 7H \rightarrow C_3S_2H_8 + CH$ $\Delta H=-250J/g$

- •Both produce C-S-H and CH as reaction products
- •C₂S produces less CH (important for durability in sulfate rich environments)
- •More heat is evolved during C₃S hydration
- •C₃S hydration is more rapid, contributing to early age strength (2-3h to 14 days)
- •C₂S hydration occurs more slowly to contributing to strength after ~7-14 days.

Hydration of the Calcium Silicates

Like most chemical reactions, the rate of cement hydration is influenced by temperature.

C-S-H

- Calcium silicate hydrate
- •C/S varies between 1.1-2; ~1.5 is typical
- •H is even more variable
- Structure ranges from poorly crystalline to amorphous - highly variable and poorly understood
- •Occupies 50-60% of the solid volume of the hydrated cement paste (hcp)
- •Huge surface area (100-700 m²/g)
- Strength due to covalent/ionic bonding (~65%) and Van der Waals bonding (~35%) within the complex structure
- Primary strength-giving phase in portland cement concrete

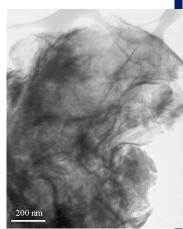
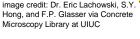



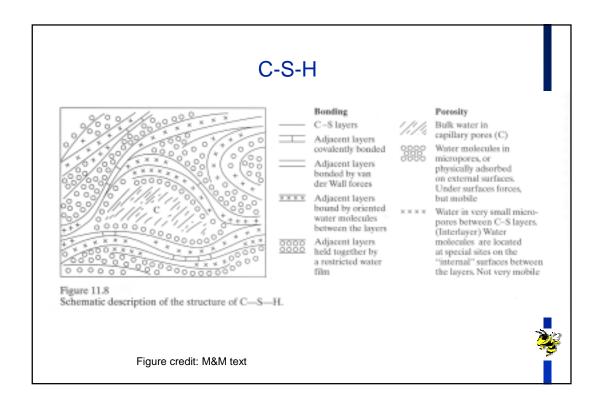
image credit: Dr. Eric Lachowski, S.Y. Hong, and F.P. Glasser via Concrete

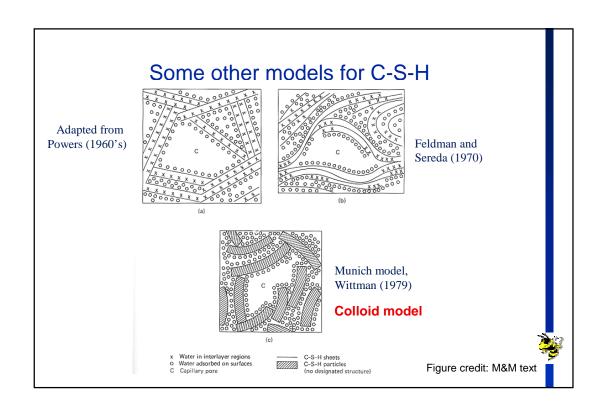
C-S-H The structure of C-S-H is poorly understood.

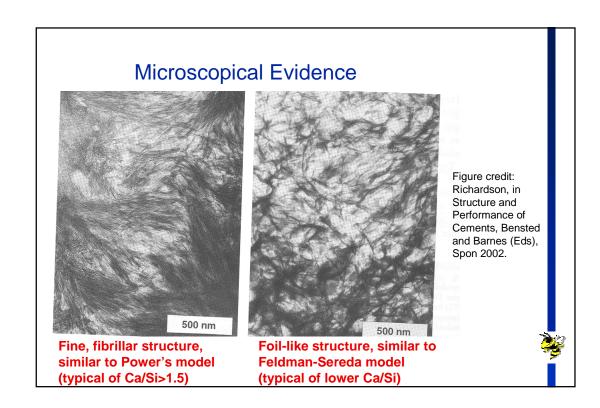
wet

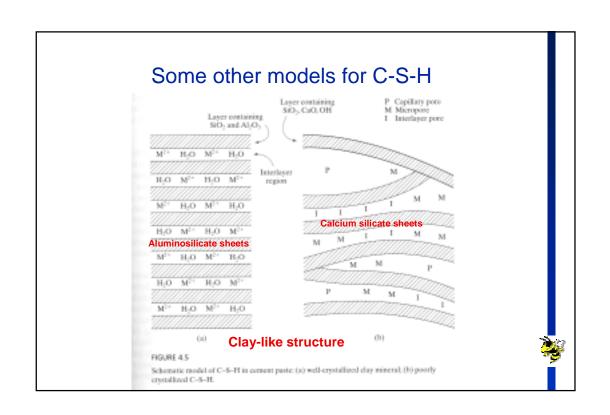
dry

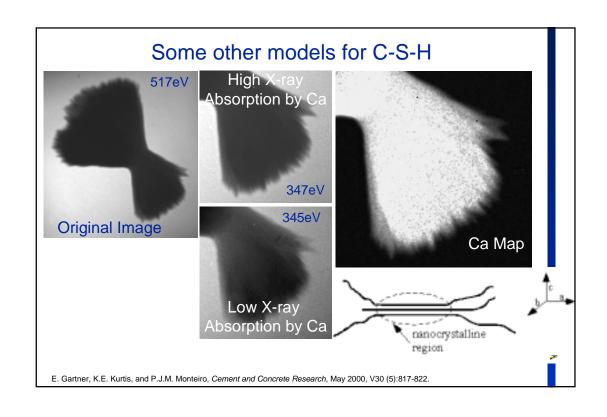
16 hr. C₃S paste

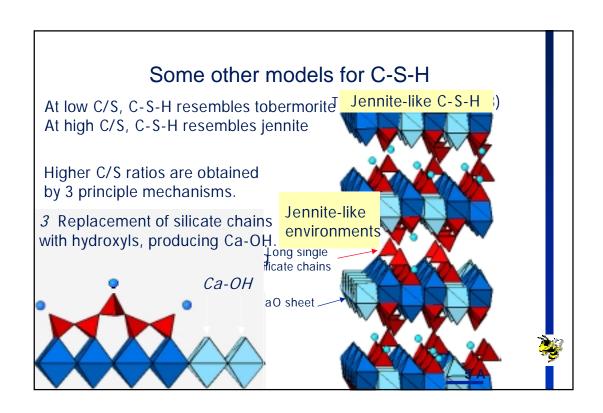

Variations in surface area, depending on technique used


$$S_{H2O} = 200 \text{ m}^2/\text{g}$$


$$S_{N2} = 5-50 \text{ m}^2/\text{g}$$

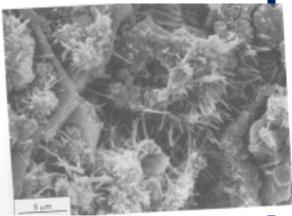

 $S_{neutrons} = 50 \text{ m}^2/\text{g}$





Summary of Models for C-S-H

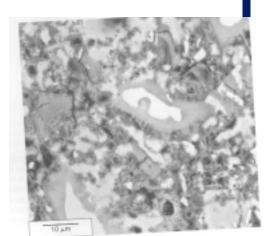
 Table 6: Summary of models for the structure of C-S-H.

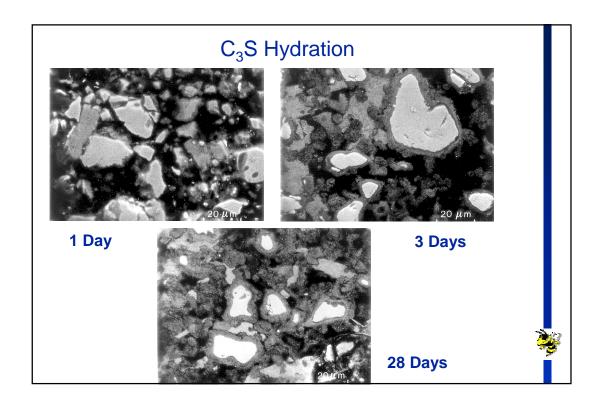

Name of Model	Primary Experimental Basis	Type of Model	Selected Characteristics of Model
Powers	Water sorption Volume of pores	Colloid	All products are gel Particle radius, 5 nm Gel pore volume, 28%
Taylor	X-ray TGA	Imperfect Tobomerite Jennite	Atomic structure of C-S-H
Brunauer	Water Sorption	2-3 layers	Structure changes upon drying
Feldman-Sereda	Nitrogen sorption Length vs. RH Modulus vs. RH Weight vs. RH	Layers	Crumpled and folded layers with interlayer water reversibly removed upon drying
Wittmann	Modulus vs. RH	Colloid	Structure not defined
Jennings	Density vs. RH Composition vs. RH Surface area	Colloid	Fractal: density and surface area depend on length scale

Inner vs. Outer Product C-S-H

Outer product (early) C-S-H/groundmass

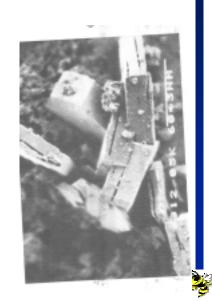
- forms during early hydration
- C-S-H forms away from the cement particle surface, filling water-filled space
- higher porosity
- contains high levels of impurities
- \bullet probably admixed with nanoscale $\mathrm{C_4A\check{S}H_{12}}$




Inner vs. Outer Product C-S-H

<u>Inner product (late) C-S-H/phenograins</u>

- forms during later hydration, when the process is diffusion controlled
- C-S-H grows inwards and outwards from the C-S-H "barrier"
- C-S-H formed takes shape of cement grains
- lower porosity, more dense
- fewer impurities
- more resistant to physical change on drying
- more abundant as hydration \uparrow or as w/c \downarrow



CH

- Calcium hydroxide or Ca(OH)₂
- Definite stoichiometry
- Variable morphology from large, hexagonal prisms to thin, elongated crystals
- •Size of the crystals depends on the amount of space available
- •Occupies 20-25% of the solid volume in the hcp
- •Much lower surface area than C-S-H
- Does not contribute much to strength
- •Keeps the pore solution alkaline (pH 12.4-13.5)

Hydration of the Calcium Aluminates

- •Reaction of C₃A with water occurs *very* quickly and liberates much heat "Flash Set"
- •Gypsum (CŠH₂) is added to the cement to control the hydration of C₃A

 $C_3A + 3C\dot{S}H_2 + 26H \rightarrow C_6A\dot{S}_3H_{32}$ ΔH =-1350J/g

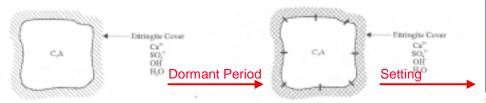
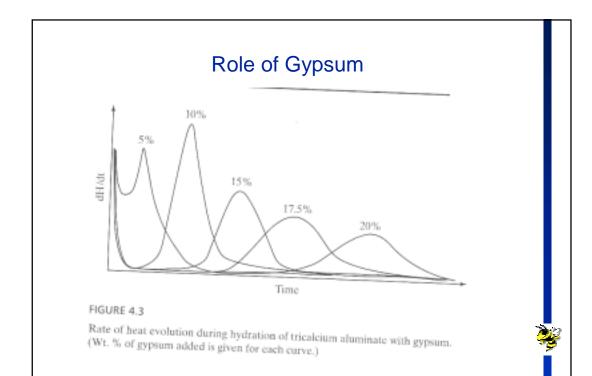
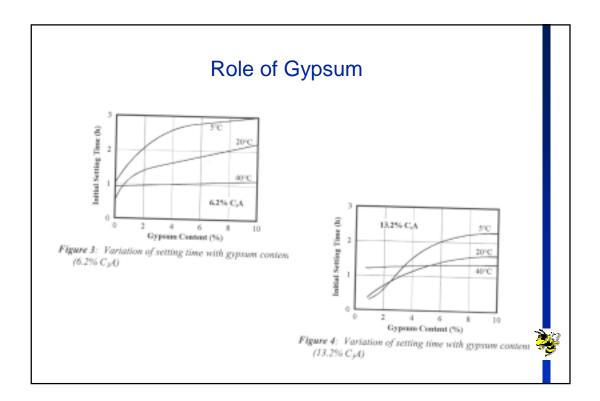




Figure 1: First stage - formation of a thin cover of estringise on the C₂A surface

Figure 2: Second stage - a further amount of ettringite is formed on the C₃A surface

Hydration of the Calcium Aluminates

When more C_3A remains, $C_6A\mathring{S}_3H_{32} + 2C_3A + 4H \rightarrow 3C_4A\mathring{S}H_{12}$

•Reaction of C_4AF occurs more slowly $C_4AF + 2CH + 14H \rightarrow C_4(A,F) H_{13} + (A,F)H_3$

Hydration of the Calcium Aluminates

- •Reaction of C_4AF (ferrite) phase are slower and evolve less heat than C_3A
- · Also heavily retarded by gypsum

$$C_4AF + 3C\dot{S}H_2 + 21H \rightarrow C_6(A,F)\dot{S}_3H_{32} + (F,A)H_3$$

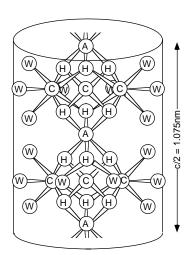
$$C_4AF + C_6(A,F) \mathring{S}_3H_{32} \rightarrow 3C_4(A,F)\mathring{S}H_{12} + (F,A)H_3$$

•Products of C₄AF are more resistant to sulfate attack than those of C₃A hydration

Hydration of the Calcium Aluminates

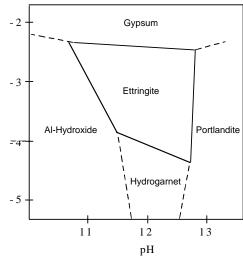
$C_6 A \mathring{S}_3 H_{32}$ (Ettringite, A_{ft})

- Needle-like morphology
- · Needles interlock, take up much water
- · contributes to stiffening of mixture
- · some early strength



Hydration of the Calcium Aluminates

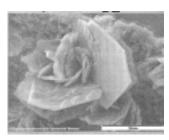
Ettringite crystal structure as part of a single column projection where A=AI, C=Ca, H=O of an OH group, W=O of an H₂O molecule. Hydrogen atoms have been omitted, as are the H₂O molecules attached to the calcium atoms lying in the central vertical line of the figure. (based on Taylor, 1997)



Hydration of the Calcium Aluminates

Ettringite stability in alkaline environments as a function of pH and sulfate ion concentration. (adapted from Hampson and Bailey, 1982)

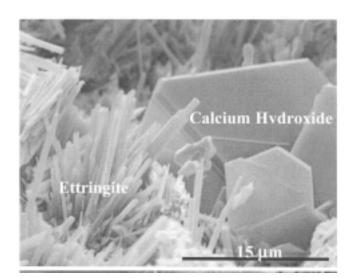
Log [SO₄-2]



Hydration of the Calcium Aluminates

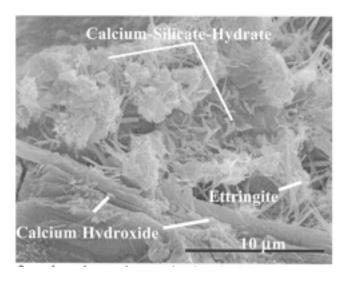
$C_4 A \mathring{S} H_{12}$ (monosulfate, A_{fm})

- hexagonal plate morphology arranged in "rosettes" during early hydration
- become more "platey" with continued hydration
- · can contain impurities
- vulnerable to sulfate attack



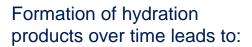
Calcium Aluminates and Calcium Sulfoaluminates

- •Includes ettringite, monosulfate hydration, calcium aluminate hydrates, and ferric-aluminum hydroxide gels
- Comprise 15-20% of solid volume of hcp
- •Do not contribute much to strength
- •Formation of ettringite, in particular, does influence setting time
- •High heat of hydration for C₃A can be favorable or unfavorable, depending upon application

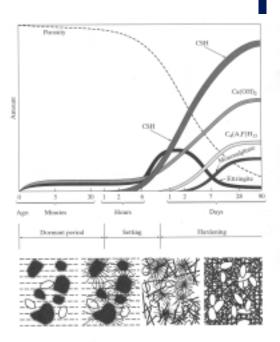


Hydrated Cement Paste (hcp)

Hydrated Cement Paste (hcp)



Hydrated Cement Paste (hcp)


TABLE 4.4 Summary of Properties of the Hydration Products of Portland Cement Compounds

Compound	Specific Gravity	Crystallinity	Morphology in Pastes	Typical Crystal Dimensions in Pastes	Resolved by*
C-S-H	2.3-2.6 ^b	Very poor	Spines; Unresolved morphology	1 × 0.1 μm (Less than 0.01 μm thick)	SEM, TEM
CH	2.24	Very good	Nonporous striated material	0.01-0.1 mm	OM, SEM
Ettringite	~1.75	Good	Long slender prismatic needles	10 × 0.5 μm	OM, SEM
Monosulfo- aluminate	1.95	Fair-good	Thin hexagonal plates; irregular "rosettes"	$1 \times 1 \times 0.1 \mu\text{m}$	SEM

[&]quot;OM, optical microscopy; SEM, scanning electron microscopy; TEM, transmission electron microscopy."

- Stiffening (loss of workability
- Setting (solidification)
- Hardening (strength gain)

Cement Hydration

TABLE 11.4 Influence of Cement Compounds on Concrete Properties

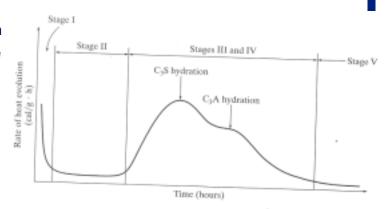
Property	Compound	Remarks
Setting behavior	C ₂ S	Controls normal setting
Temperature rise during hydration	C₃S C₃A C₃S	Can cause premature stiffening
Strength development	C ₃ A C ₃ S	Responsible for early strength
Creep and shrinkage	C2S C2S, C2S	Contributes to long-term strength Major contributions
Durability	C₃A, Ć₄AF C₃S C₃A	Minor effects Leaching of Ca(OH) ₂ , sulfate attac Sulfate attack

Heat of Hydration

- Cement hydration is exothermic
- Concrete is an insulator

Heat of hydration can be:

- detrimental (thermal gradients --> cracking)
- helpful (heat provides activation energy when concreting in cold weather; higher early strength)



Heat of Hydration

Heat evolution can be used to map the progress of hydration:

- (1) Initial dissolution of solids (increasing ionic concentration)
- (2) Induction period
- (3) Acceleration
- (4) Deceleration
- (5) Steady state

Figure 11.4
Rate of heat evolution during the hydration of portland coment (after S. Mindess and J. F. Young, Concrete, Prentice Hall, 1981, Fig. 4.4, p. 85).

Cement Hydration: Avrami Model*

 Popular model for describing hydration during the acceleration periods (Stages 2&3)

 $-\ln(1-\alpha)=[k(t-t_o)]^{m}$

or when α is small, α =

Where α is degree of hydration

t is time of hydration, where to corresponds to the length of induction period

k is a rate constant for a nucleation-controlled process

m = [(p/s)+q], where p= 1 for 1D growth (needles/fibers) $m \sim 1-3$ for C_3S 2 for 2D (sheets/plates)

2 for 2D (sheets/plates)
3 for 3D isotropic growth (sphere)

s=1 for interface or phase-boundary-controlled growth

=2 for diffusion-controlled growth

and q=0 for no nucleation (nucleation saturation)

1 for continuous nucleation at a constant rate

* Avrami, M. J. Phys. Chem., 7, 1103 (1938), 8, 212 (1940).

Cement Hydration: Avrami Model

- *k*, then, is a combined rate constant, accounting for rate of nucleation, rate of product growth, and other factors not accounted for (e.g., changing diffusion coefficients)
- Can calculate the rate constant *k* from calorimetry data and the Avrami equation:
- $-\ln(1-\alpha)=[k(t-t_o)]^{m}$
- when modeling as a function of time rather than degree of hydration:

 $d\alpha/dt = Amk^{m} (t-t_{o})^{m-1} exp\{-[k(t-t_{o})]^{m}\}$

Where A is a preexponential factor.

Thomas and Jennings, *Chem. Mat.*, 11:1907-14, 1999.

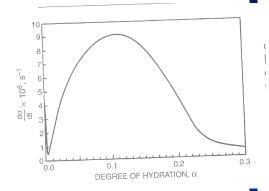


Figure credit: Gartner et al, in Structure and Performance of Cements, Bensted and Barnes (Eds), Spon 2002.

Cement Hydration: Avrami Model

•Can also determine the activation energy (E_a) for the reaction, which can be used to assess the temperature-dependence of the reaction:

$$k(T)=A \exp(-E_a/RT)$$

Where T is absolute temperature (K), R is gas constant,

Table 5. Avrami Fit Parameters as Reported by FitzGerald et al.⁹ for the Hydration Rate of C₃S/H₂O Pastes As Measured by QENS

	rate parameter				
T (°C)	t_{max}^{2}	t ₀ (h)	(h-10)	m	$k (h^{-1})^{\delta}$
20	10.2	3.5	7.4×10^{-3}	2.15	0.1021
30	5.7	1.5	1.74×10^{-2}	2.27	0.1678
40	3.2	0.5	3.3×10^{-2}	2.59	0.2679

^a Estimated from Figure 3 of ref 9. $b k = (\text{rate parameter})^{160}$.

Thomas and Jennings, *Chem. Mat.*, 11:1907-14, 1999.

Cement Hydration: Jander Equation*

• In the deceleration period, the Jander equation for diffusion controlled processes has been used to model the reaction of cement during this period:

$$[1-(1-\alpha)^{1/3}]^2 = k_D$$

Where k_D is the rate constant for diffusion controlled processes.

^{*} Jelenic, Adv. Cem. Tech. Gosh (Ed), p.397, Pergamon, 1987. Bezjak and Jelenic, Cem. Conc. Res., 10:553, 1980.

Cement Hydration: Simple Kinetic Models

Can estimate α based upon the available water-filled porosity (Φ_w):

$$\frac{\partial \alpha}{\partial t} = k_1 \phi_W(t)$$

where k_1 is analogous to a first-order rate constant and depends on the specific cement composition, particle size distribution, curing temperature, etc.

- This approach, based upon first order "physical" kinetics and described by Bentz*, assumes hydration rate is simply proportional to the volume fraction of this water-filled porosity
- Other models** relate the kinetics of hydration to the changing radius of an idealized cement particle or particle distribution

*D. P. Bentz, "Influence of Water-to-Cement Ratio on Hydration Kinetics: Simple Models Based on Spatial Considerations" at http://ciks.cbt.nist.gov/~garbocz/hydration_rates/index.html
**J.M. Pommersheim, J.R. Clifton, Mathematical modeling of tricalcium silicate hydration. Cem Concr Res 9 (1979) 765-770.

- T. Knudsen, The dispersion model for hydration of portland cement 1. General concepts, Cem Concr Res 14 (1984) 622-630.
- B. Osbaeck, V. Johansen, Particle size distribution and rate of strength development of portland cement. J Am Ceram Soc 72 (2) (1989) 1

Cement Hydration: Simple Kinetic Models

Substituting
$$\frac{\partial \alpha}{\partial t} = k_1 \phi_W(t)$$

into Powers equation for water-filled porosity

$$\phi_{W}(t) = \frac{\rho_{cem}(w/c) - (f_{exp} + \rho_{cem}CS)\alpha}{1 + \rho_{cem}(w/c)}$$

the result can be integrated and solved with the boundary condition that $\alpha(0)=0$ to yield:

$$\alpha(t) = Min\{1, \frac{\rho_{cem}(w/c)}{(f_{exp} + \rho_{cem}CS)}[1 - \exp(\frac{-(f_{exp} + \rho_{cem}CS)k_1t}{1 + \rho_{cem}(w/c)})]\}$$

$$CS \text{ is the chemical shrinkage per gram}$$

 $f_{\rm exp}$ is the volumetric expansion coefficient for the "solid" cement

CS is the chemical shrinkage per gram

(the minimum function assures that α <1)

 Although derived from a different perspective, the above is similar in form to kinetics equations often derived considering nucleation and growth kinetics for cement hydration (so-called Avrami behavior)

Heat of Hydration

For the usual portland cement:

- ~ 1/2 total heat is evolved in 1-3 days
- 3/4 at 7 days
- 83-91% at 180 days

Heat of Hydration

The RATE of heat evolution is related to

- cement composition
- cement fineness
- cement content
- casting temperature

The total heat evolved is related to

- cement composition
- degree of hydration
- cement content

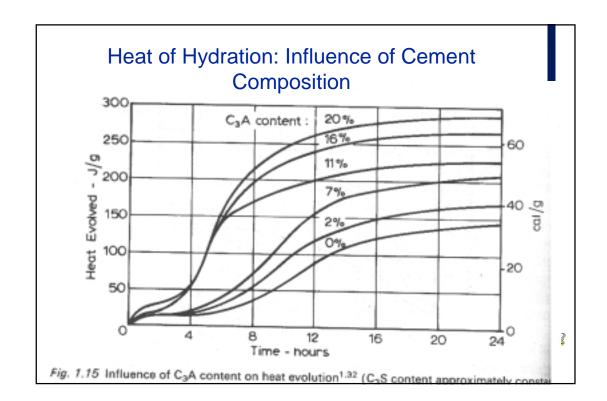
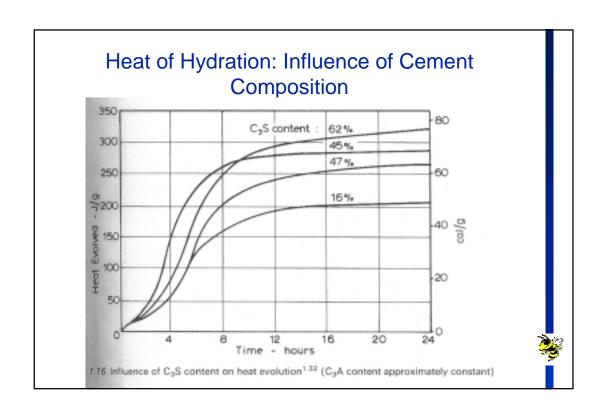
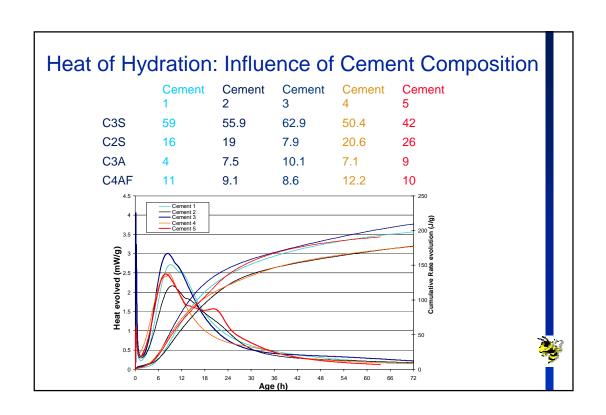

Heat of Hydration

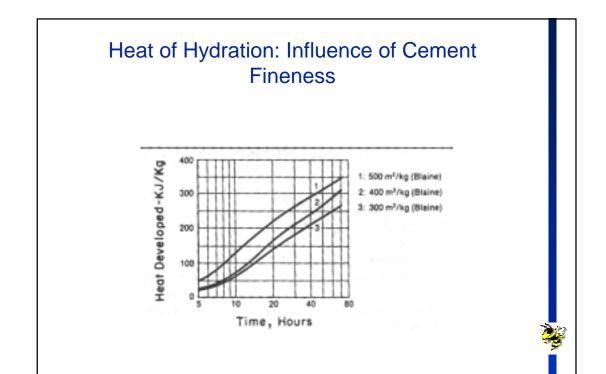
TABLE 4.3 Heats of Hydration of the Cement Compounds

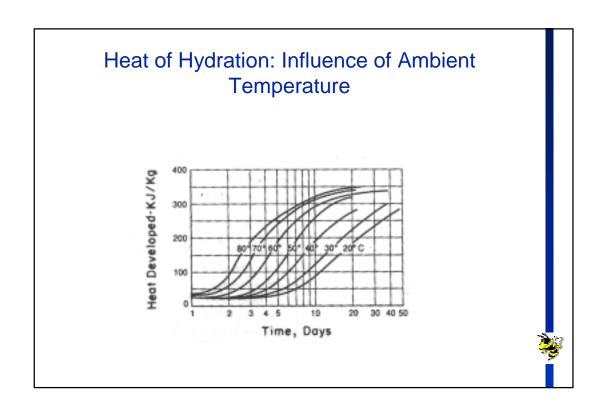
	ΔH (I/g) for Complete Hydration ^e					
Reaction	Pure Cor Calculated	mpounds Measured	Clinker ^{b,d} Measured	Cement ^{c,d} Measured		
$C_3S \rightarrow CSH + CH$	~380	520	570	490		
$C_2S \rightarrow C-S-H + CH$	-170	260	260	225		
$C_3A \rightarrow C_4AH_{13} + C_3AH_8$	~1160	-	_	-		
$\rightarrow C_3AH_4$	900	880	840	-		
→ ettringite	1670	1670	-	-		
→ monosulfoaluminate	1150	1140	-	1170		
$C_3AF \rightarrow C_1(A,F)H_6$	420	420	335	-		
→ monosulfouluminate	-	- 1,11	_	380		
→ ettringite	730	-	_	-		

[&]quot;These values should be negative since they refer to exothermic reactions, but they are customarily written without the negative sign.






Done-year-old pastes of ground clinker (no added gypsum).


^{&#}x27;One-year-old pastes assumed to be completely hydrated.

[&]quot;Individual contributions determined by multiple linear regression analysis.

Estimating Heat of Hydration

Verbeck and Foster estimated that the overall heat of hydration of a cement is near the sum of the heats of hydration of the individual components.

$$H = aA + bB + cC + dD$$

A,B,C,D are % by wt of C3S, C2S, C3A, C4AF

a,b,c,d are coefficients representing the contribution of 1% of the corresponding compound to the heat of hydration

$$H_{3days}$$
= 240(C3S) + 50(C2S) + 880(C3A) + 290(C4AF) J/g H_{1yr} = 490(C3S) + 225(C2S) + 1160(C3A) + 375(C4AF) J/g

