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§0. INTRODUCTION
IN THIS PAPER we prove the following theorem: Let F be a field, F# Z,, and let 0, ,(F)

be the orthogonal group of the quadratic form (}) {;) Then the map i:

H (0, ,.(F))> Hy (0,4 ,+1(F)) is onto for n =3k — 1 and an isomorphism for n =3k, i.e.
the k-th homology of the group 0, ,(F) stabilizes at n = 3k.

Stability theorems for the homology of the general linear group of various classes
of rings have been proved by Bass[1, p. 2401, Quillen[2], Wagoner[3] and Charney [4].}
The method used here for 0,, is based on Quillen’s proof. We construct a simplicial
complex X, with a natural 0,, action, and show that X, is (n — 1)-connected. X, yields
an acyclic chain complex Cy, and tensoring with a Z[0,,]-free resolution E, of Z
gives a double complex Ex ®,,, C«. The spectral sequence associated to this double
complex converges to zero, and we examine this spectral sequence to obtain in-
formation about the homology of 0,,.

It turns out that the information obtained involves a certain subgroup S,, of 0,,,
and we must repeat the procedure, using a different complex X?" for S,, in order to
learn enough about the homology of S,, to prove the theorem.

In §1, we discuss the simplicial complexes X, and X”"; in §2 we construct the
spectral sequences and prove the theorem.

§1. THE SIMPLICIAL COMPLEXES ASSOCIATED TO 0,,

The simplicial complexes we will use come from partially ordered sets (posets) of
subspaces of a 2n-dimensional vector space. We first give some notation and
definitions.

Given a poset X, we can form a simplicial complex called the realization of X,
denoted |X|, as follows: the O-simplices of |X| are the elements x € X, and the
k-simplices of |X| are (k + 1)-tuples (xo, . . ., x;) of elements of X, with x,<x;<-:-<
x.. The natural identifications make this into a simplicial complex.

Definition. A poset is n-spherical if its realization is n-dimensional and (n — 1)-
connected.

Definition. Let x be an element of X. The height of x, h(x), is the length of a
maximal totally ordered chain of elements less than x.

Notation. Let x and x' be elements of X. Then

X..={y€Xl|y>x}
X<x={yEX|y<x}
x,x)={yeX|x<y<x'}

tW. Van der Kallen (preprint, Utrecht, December 1979) has proved a very general stability theorem for the
general linear group.
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Definition. A poset X is Cohen—Macaulay of dimension n, denoted X € CM", if
(i) X is n-spherical

(ii)) X., is (n —1— h(x))-spherical for all x € X.

(iii) X<, is (h(x) — 1)-spherical for all x € X.

@iv) (x,x") is (h(x") — h(x) — 2)-spherical for all x <x' in X.

An important example of a Cohen-Macaulay poset is the set of all proper
subspaces of a vector space V, partially ordered by inclusion. The Solomon-Tits
theorem[5] says the realization of this poset has the homotopy type of a wedge of
(dim V —2)-spheres, and it follows easily that the poset is in fact Cohen-Macaulay.

We will be interested in the following generalization of the above poset. Let W
and U be subspaces of the vector space V, with dim W=k, dim U =m, dim V=n
and k < m =< n. Consider the set T =%TUY of proper subspaces A of V such that
ANW=0 and A+ U =V, partially ordered by inclusion. It turns out that T is
always Cohen-Macaulay; we will prove this in some special cases. Note that if W =0
and U =V, this is just the Solomon-Tits theorem. We now consider the case W## 0,
U=V.

ProposiTioNn 1.1. If W#0, T=Y"T"V is homotopy equivalent to a wedge of
(n — k —1)-spheres.

Proof. We will proceed by induction on n —k, the case n —k = 1 being obvious.
We first prove a lemma.

LemMma 1.2. If A€ T, then T-, is (n-k-dim A — 1)-spherical.

Proof. T-4={B D A|B N W.=0}. Pick a complement A’ for A so that A’ D W.
#

Then the correspondence B+—>B N A’ gives a poset isomorphism

{B DABNW =0} >{B'C A|B'NW =0};
#
by induction, the latter poset is (n-k-dim A — 1)-spherical. O

Now let | be a minimal element of T, i.e. [ is a line with / € W. Then the realization
of Yo={A €T such that A+ € T} is contractible via the maps A—>A+[— 1l

Let A be an element of T—Y,, then ANW=0 but (A+)NW#0, or
equivalently, A N (I + W) = v, where v is a line not equal to . Now

1kANY,={B CA|B+I€T}
#
={B CA|(B+D)NW=0}
#
={B CA|[BNv=0};
#

dim A<n—k <n and dim v = 1, so by induction, the realization [1kA N Y,| is homo-
topy equivalent to a wedge of (dim A — 2)-spheres.
Now define Y;,;= Y,U{AE T|dimA=n -k —i}.

Claim. Y; is homotopy equivalent to a wedge of (n — k — 1)-spheres, for i = L
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Proof. Ifi = 1,take A € Y,— Y,.Thenwehaveseenthat 1kA N Y,=VS"*2 Since
Y, is contractible,

Y= V susp(VS"*?)=ysgnkl,

AEY-Y,

If i >1, look at A € Y;— Y;_,. Then
kAN Y, ={lIkAN Y}U{B DA|BNW =0}
#

Since every element of the second subset contains every element of the first, the
realization of their union is the join of their realizations; so using the lemma we have

[IkA N Y| = VS™ki-lx y§i-2
= VSt

Therefore we have

[Yil=( V susp(VS"*)V|Y,
A€EY;-Yi
~ Sn—k-l.

Since Y,-, = T, we have proved the proposition. ‘ O

CorOLLARY 1.3. °TYY is homotopy equivalent to a wedge of (m — 1)-spheres, for
U#V,dim U =m. ‘

Proof. Equip V with a non-degenerate quadratic form. Then the map A~ A* gives
a poset isomorphism °TVV - V' TVY, O

ProposITION 1.4. If W#0 and dim U =n —1, then YTV is homotopy equivalent
to a wedge of (n — k — 1)-spheres.

Proof. The proof is identical to the proof of Proposition 1.1; note that the minimal

element | has the additional property that |+ U = V, and that for A in T —Y,, we
identify 1kA N Y, inductively as

{BCABET and B+I€T}={B CA|[B+U=V and (B+1)N W =0}
#* #
={B CA[B+(UNA)=A and BNv =0}
#

Since A is transverse to U, dim (U N A) = dim A — 1, so the inductive hypotheses are
satisfied. O

COROLLARY 1.5. If W#0 and dim U =n—1, then T =¥TYV is Cohen-Macaulay
of dimension (n —k —1).

Prbof. By Proposition 1.4, T is (n — k — 1)-spherical. Let A, A'€ T. Then T-, =
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{B DA|BN W =0}, which is (n—k—dim A — 1)-spherical by Lemma 1.2. T.,=
#

{B C A|B+ U =V}, which is(dim A —2)-spheircal by Corollary 1.3. And (A, A") =
#

{A CB CA'}, which is (dim A’ —dim A — 2)-spheircal by the Solomon-Tits theorem.
#* #*
O

We now introduce the quadratic form (? 6) on a 2n-dimensional vector space V

with basis {e;,..., e, fi,...,f.}. A vector space with such a form will be called a
hyperbolic space. A subspace A C V is isotropic if the inner product v - w of any two
vectors v, w € A is zero. Let X, be the poset of nonzero isotropic subspaces of V,

partially ordered by inclusion, and X,,; C X, the poset of nonzero isotropic subspaces
of dimension =k.

THEOREM 1.6. X, is spherical of dimension k — 1.
Proof. The proof will proceed by induction on k. If k = 1, the theorem is clear. Let
Yo={A€e X, JAN(eY)#0 and dim[(A N(et) + el <k}
Then the maps
A—AN(e)—=[(ANet)+el—e

give a contraction of the realization of Y, to the point e,.
X,.x — Y, consists of two types of subspaces, namely isotropic lines a with a - ¢, # 0
and k-dimensional isotropic subspaces A, with A C ¢;* but A 3 e,. In the latter case,

1kANY,={B CA|B#0}, so [IlkANY, is homotopy equivalent to a wedge of
#

(k —2)-spheres by the Solomon-Tits theorem. Thus if we let Y;=
YoU{A C V|dim A=k, A-A =0}, we have

Y=V susp|lkANY,

AEY-Y,

=V susp (VS*?) = VS,

Now let a be an isotropic line with a - e¢; #0. Then lka N Y;={B Da|B-B =0}.
%

The map B—BNe* gives a homotopy equivalence of this poset with {A C
(efNa*))JA-A=0, A#0, dim A <k —1}. The subspace (e;* N a*) is hyperbolic of
dimension n — 1, so by induction [1ka N Y;| is homotopy equivalent to a wedge of
(k —2)-spheres. Therefore the realization of X, is homotopy equivalent to |Y;| v

V  susp|lka N Y| = VSt v V§¥ 1= ySkl 0
a€EX, ;—Y)

Remark 1.7. Note that in particular this shows that X, ={nonzero isotropic
subspaces of V} is (n — 1)-spherical. It is actually Cohen—Macaulay; if A, A’'€ X,
then X,.,4 and (A, A') are C — M by the Solomon-Tits theorem. To see that X, is
C — M, choose a subspace A’, dim A’ = dim A, such that A@ A’ is hyperbolic. Then
W =A'*NA" is a hyperbolic complement, and the map B—~B N W induces a
homotopy equivalence X,.,—{B C W|B-B =0, B#0}, which is (n—dim A — 1)-
spherical by Theorem 1.6.
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There is one more poset which we will need to show is Cohen—Macaulay. Again let

V be a 2n-dimensional vector space with quadratic form ((I) é) Let X*" denote the

poset of all isotropic subspaces A of V such that A+ {ex1,..., €0 f1,...,fn)=V.To
prove that X*" is Cohen~Macaulay, we will actually consider a more general class of
posets and use a theorem of Qullen’s to show that they are all Cohen—-Macaulay. I am
indebted to K. Igusa for most of the following argument.

Let C%>*" be the poset of all isotropic subspaces of W ={(ey.1,...,€u f1,---»fn)
such that A +{ezs1s...,€n f1s...,f2)=W and AN{(f,,...,f.)=0. Note that C*%" =
X, and C%"=X*" Let C*" be the poset of affine subspaces X + v, where
Xects (if b=a=0, we allow X =0) and v €{(ey+1,...,€n fi,...,f.). Then we
have the following relationship:

PROPOSITION 1.8. Cb%" = Ch****1 for q = b.

Proof. The map g: C»*"* 150k is  given by g(B)=
(B — ey41) N{€ps2y - - - » €xs1, f15 - - - » fus1)) Where 7 is projection along f,.;. Then g(B)
is an affine subspace of (e,i,...,€u1, f1r.---> fb+1, ..., fus1) parallel to #(BN
(€325 - - - » €nsty f1s oy fas1)), i€ (B) € CHo,

8
B-¢,, €oal a
W=C€prp soeer€papr FraeeesFpppsenenslpg)
g8 rBanw F N ~
/_\\;\7 w-e

b+l

(The above picture is projected along f,.;.) To define the inverse map, we first define
maps ¢: V=V by ¢(v) =10+ e, —3(v - v)fps; and, for v € V, define ¢,: V>V by
&.(u) = u — (v - u)fp+1. Then the inverse map f: C»*" - C»**1*1 js given by f(X + v) =
{(¥(v), ¢,(X)). Since ¢, is an orthogonal linear map with image contained in ¥ (v)*, we
have (¢(v), ¢,(X)) is isotropic; transversality is guaranteed by the fact that X, and
hence ¢,(X), is transverse t0 (€11, €42, - - - » €xs1> f1» - - - » fa+1), @and Y(v) has a nonzero
e,+;-component. Also, (¢(v), ¢,(X)) N {fi,...,f.) =0, and the map f is independent of
the choice of v, since if X +v;= X + v,, then v;— v, € X, so (Y(v1), ¢,,(X)) = (¥(vo),

(X))

It is clear that g(f(X + v)) = X + v. To see that f(g(B)) = B, write B = (e, + v, X),
where v, X C{ep2,..-5 €ws1» fi»---» far1)- Then g(B)=mv+ 7V, and f(g(B))=
(WD), Gr(mX)) = (€1 + 70 —5(70 - TO)fps1, TX — (70, TX)fps1) = (€1 + v, X)= B.

O
To study the posets Ch*" we need the following definitions and theorem of
Quillen’s.

Definition. Let X and Y be posets. A map f: X—>Y is a poset map if x,>x,
implies f(x,) = f(x,) for x,, x, € X.
Notation. Given a poset map f: X —» Y, then
fly ={x € X|f(x) =y}
fly ={x € X|f(x) = y}.
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Definition. A poset map f: X - Y is strictly increasing if x,> x, implies f(x;) >
f(x,) for x,, x, € X. We can now state Quillen’s theorem[6, p. 120].

THEOREM. Let f: X - Y be a poset map. Assume
(i) Y is n-spherical.
(i) fly is h(y)-spherical for all y € Y.
(iii) Y, is (n — h(y) — 1)-spherical for all y € Y.

Then X is n-spherical.

CoroLLARY 1.9. Let f: X —>Y be a strictly increasing poset map. Assume (i)
Y e CM*.

(i) fly e CM"*® forall y €Y. Then X € CM".

We want to apply this theorem to the posets C>*". We first would like to
(belatedly) introduce the notation W," =(ey+1,..., € f1,...,f,). Now define a poset
map j: C**" — Cb*%" (a > b) by the formula j(X + v) = (X + v) N W},,. We need to
identify the “fibers” j/Y.

ProposiTiON 1.10. If Y € C**!%" then j\Y = Cbbn-a+b=h(¥) = Chbbn-dimy-1

Proof. We may assume without loss of generality that 0 € Y. Then

j\Y ={subspaces X C W," such that X - X =0, X+ W,/"=W,", XN{fi,...,f.)=0
and X D Y}

It can easily be checked that the group of matrices in 0,, of the form

a Jof
000
{ 0« A0 0 B

b+1{(I 0 0|0 0O

o
(=4

b+1{ |0 0 0 | T 0O

0 % = 0 I =«
0« C10 0 D

where (é g) €0,_,,-, acts transitively on k-dimensional subspaces in C**!*" Let g

be a matrix as above with gY = (ey42,..., €. .., €ny))- Then

an n(gY)J. = (eb+19 vy €py fl’ e 9fb+l9fa+h+la oo ’fn)'

Let
W = (eb+ls €ath+ls+ e+« €ns fl’ ceey fba fb+l, fa+h+l, ) fn)
(which we think of as (gY)*/gY)
= an—d(Y);
let

V = (ea+h+1’ ceey €py fl’ seey fb, fb+l’ fa+h+]; ey fn)
(= Wieps1)) = Wir{™;
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and let

Z=(f,....fy)=8Z

Claim. The map C»b*1n=4) = CZVM ;i\ gY induced by the map X -» X@gY is an
isomorphism.

Proof. To see this is well-defined, we must show X@gY is in j\gY. XPgY
clearly contains gY; since X C gY*, we have (X@PgY) - (XPgY)=0. Also, gY
projects onto {(e,s,...,e,), and X projects onto {(e,,;), so X@PgY projects onto
(€hs1y-..,€,), i.e. (XPgY)+ W, =W,". Finally, we must show that (X@gY)N
{f1,...,f.)=0. But this is clear since

X g <eb+1$ €ath+ls -+ Eny fly LI ) fb+]s fa+h+1’ sy fn)
Xn(fls---,fbH):O
and

gY = <eb+29 ceey ea+h>-

It is also clear that the map is onto and injective, and a poset map, so gives a
simplicial isomorphism of complexes.

Now to prove the assertion of the proposition, we need only observe that applying
g7! to the above construction gives an isomorphism

Cb,b+1,n-d( Y) = CZ,g"V,g—‘W = ;]\Y'_

And by Proposition 1.8, C*+1n=d() = Chba-d(¥)-1 a
Let p: C**" — C**"~* be the map induced by projection along (f,...,f,), which
we will also call p.

ProposiTIoN 1.11. Let Y € C**"~* Then p/Y is Cohen-Macaulay of dimension
dimY —a.

Proof. Without loss of generality, we may assume Y contains 0. Recall that

plY ={X+vel*"st.p(X+v)C Y}

={X+veC*"st.pX C Y and pvE Y}

={X+vEW,/st.X-X=0,XN{f1,..., f.)=0, and pX,pv C Y}.
Since pX C Y, pX is isotropic; therefore pX @{f,,...,f,) is isotropic. Since X C
p'(pX)=pXD{f1,..., f), X itself is automatically isotropic. Therefore the above
poset is equal to

{(X+vC Wst. XN{(fi,..., fo)=0 and pX,pv C Y}
={X+vCp(V)st. X N(f1,..., fa)=0}

The map (X + v)—(X, (v, 1)) now gives a poset isomorphism p/Y = fi--foTp~' Y7 IYOF
By Corollary 1.5, this is Cohen-Macaulay of dimension dim Y — a. O

TOP Vol. 20, No. 2—B
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ProposITION 1.12. C**"*! js Cohen-Macaulay of dimension n + 1.

Proof. The proof proceeds by induction on n. If n =0, C*®' consists of cosets of

{e)), {f1) and 0. The realization is clearly one-dimensional and connected, so is
Cohen-Macaulay of dimension 1.
Now let

H=(e29---,en+l,fl,---9fn+l>
P, ={X € C****! such that X N H, # @}.

Then for any A # u,

P, N P, = {cosets of isotropic subspaces A such that A+ H = vV}

= GoLn+l

The maps C*'*! S+t 5500 are both strictly increasing. By Proposition 1.11,
plY is Cohen-Macaulay for all Y € C%" and since C**" is Cohen-Macaulay by
induction, Corollary 1.9 shows C"'"*! is Cohen-Macaulay. By Proposition 1.11,
j\Y = C*o»<dimY . this is Cohen—Macaulay by induction, so Corollary 1.9 again shows
that C*%'**! is Cohen-Macaulay.

Claim. P, is homotopy equivalent to C®%".

Proof. The map X+ X N H, gives a deformation retraction to cosets of isotropic
subspaces in H, ; this poset is isomorphic to the poset of cosets of isotropic subspaces
of H. The maps A—>(A, fi)—>m; A then give a retraction of this poset to the poset of
cosets of isotropic subspaces of (e,, ..., €11, f2, ..., fas1) (here my is projection along
f1), which is G0, O

By van Kampen’s theorem, C****!'= UP, is simply connected if n =2. If n =1,
A
an edge-path calculation shows this is true(7, p. 39]. Therefore, in order to see that
G+ is (n + 1)-spherical, it suffices to show that C®*! = UP, has homology only in
. A

dimension n + 1. We begin by considering P,U P;; since P, and P; are each n-
spherical, the Mayer—Vietoris sequence for P, U P; reduces to

fotf
0> Hy1(Po U Py) > Hy(Q) ——> H,Po@ H,P,~ H,(P,U P,) >0

where Q = PyN P; and f,: Q- P, is the inclusion map. Note that for any A € F, fiis
onto in homology, since we can easily construct a homotopy section ¢,: P, = C*®" -
CH* = Q; e.g. for X + v in C*", define ¢, (X +v) =(X, e;) + v.

Claim. fy+ f, is onto, and hence H,(P,U P)) =0.

Proof. Since f, and f; are each onto, it suffices to construct homotopy sections s,
for f, and s, for f, such that fios,=0 and fyos,=0. For X + v in C*®", define

51(X + v) = subspace of V spanned by the vectors a —(a-v)f, forae X
and the vector e, — (v - v)f, + v
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so(X + v) = ¢, + (subspace spanned by the vectors a +(a-v)f;,, a € X
and v —e; +3(v - v)f)).

These sections are well-defined and inclusion-preserving; foos,(X + v) is a subspace
of Hy,= H, so can be retracted to the zero subspace, and f,°s, is similarly homotopic
to a point. O
Thus H,(P,U P;) =0. Now we notice that adding any number of P,’s to PyU P,
does not add any n-dimensional homology, since each f, is onto in homology. Since
homology commutes with direct limits, we have H,( L’\JPA) = H,(C**) = 0.

To complete the proof that C®*"*! is Cohen-Macaulay, we need to check the
subcomplexes C%%*! and C%7*! for each Y = X + v in C®*"*, In each case we may
assume Y 0. Then C%%**! is the set of isotropic subspaces containing Y, which is
spherical by Remark 1.7. C%"*! is the set of all proper subspaces of (a, X) which are
transverse to (a), via the map B + w+>(B, w + a). This is spherical by Corollary 1.3.

O
We can now prove the theorem we were after, namely.

THEOREM 1.13. C%*" is Cohen—~Macaulay of dimension n — a, for a =0.
Proof. For a =0, this is Proposition 1.12. If a >0, consider the map p: C**" -

C%n-a By Proposition 1.11, p/Y is Cohen—Macaulay for each Y € C**"~¢; since p is
strictly increasing, Corollary 1.9 implies C**" is Cohen-Macaulay.

By induction and Proposition 1.10, each of the maps
C'O,a,n __’;C_VI,a,n e s> C'va,a,n

has Cohen—Macaulay fibers; therefore another application of Corollary 1.9 shows that
C*+ is Cohen-Macaulay. O

§2. HOMOLOGY STABILITY FOR 0,,

We will study the homology of 0,, by considering the action of 0,, on the
simplicial complex X, = realization of X,. Recall from §1 that X, = {non-zero isotropic
subspaces of a 2n-dimensional vector space}. We let 0,, act on X, on the left in the
natural way; then the filtration of X, by the subcomplexes X, = realization of
{A € X, s.t. dim A < k} is equivariant. We have

=X, C X, C- - CX,,=X,.

By Theorem 1.6, X, is (k — 1)-spherical; therefore the spectral sequence associated
to this filtration, with E}, = H,. (X, ,+1, Xa,), collapses, giving an exact sequence

(*) 0 g Hn—l(Xn) - Hn-l(Xm Xn,n—l) - Hn—Z(Xn,n—l ’ Xn,n—2)
== H(X,2, Xu1) > Ho( X, ) >Z - 0.
We can further identify these homology groups by noting that for 0=p=n-—1, we

know X,,.; is obtained from X,, by attaching isotropic subspaces A of dimension
p + 1. For each such A, 1kA N X,, ={all proper subspaces of A}; by the Solomon-
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Tits theorem, the realization of 1kA N X,, is homotopy equivalenp to a wedge of
(p — 1)-spheres. Therefore '

X’.‘:le V SuSlekA an,pl,
Xn,p isotropic A

dimA=p+1

SO

Hp(Xn,p+l9 Xn,p) = “éﬁl T(Ap+1)

where 7(A?*") = H,_, (Tits building for A”*"). 0,, acts on this direct sum by permuting
the A?*!, as well as acting on each 7(A”*).
Let 0-»C,,,—»C,—>-:->C,—>Cy=2Z -0 denote the exact sequence (x), and let

EO0, .«= E4 be a free Z[0,,]-resolution of Z. Then we can form the double complex
Ex @ o,,_,,C*i

‘L ®1 l’
—EQ® Cj+| A Ei+1®Cj+| «
l 1R(-1)ia, l 1Q(-1)i+la,
— EQC«—— E.QC;«
| IE®1 .

The vertical filtration of this double complex gives a spectral sequence with E}, =
H,(E,®Cy4, (—1)4.) =0 since E, is free and C, is exact. The horizontal filtration
gives a spectral sequence with E}, = Hy(Ex® C,, dg) = H;(0,,;C,). f 0<p<n+1,
we know C, = g@ 7(A?), s0 Hy(0,,;C,) = Hq(On,,.;gl? T(AP)) = Hy(0nn; Z[0,0] ®zs,,7)s

where 7, = 7({ey, ..., ¢,)) and S,, is the stabilizer in 0,, of (e,,..., e,). By Shapiro’s
lemma, this last homology group is isomorphic to H,(S,.; 7,). We have just proved

THEOREM 2.1. There is a spectral sequence converging to zero with E} =
H,(S,.; 1) for 0=p =n. ) O

If we consider 0,, as acting on the left, it is easy to calculate that the stabilizer S,,
is the set of all matrices in 0,, of the form

o % % %
0 A x B
0 0 ‘a' 0|’
0 C = D

where a € GL, and (é g) € 0,-p,,-p- The subgroup S,, acts transitively on the right
on the set of (p+i)-dimensional isotropic subspaces X C V with X +
(€ps15- s €nf15...,fn)=V;ie. S,, acts “transitively”” on X?". In fact the subgroup
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F, . of S,, which fixes {e,, ..., ¢,) also acts transitively in this sense on X*". Here F,,
consists of matrices in S,, of the form

I % % =
0 A x B
0 0 I O
0 C = D

By Theorem 1.13, we know that X?" is Cohen—Macaulay of dimension n —p. We can
filter X?" in the same way as X,, by the subcomplexes Z; =realization of {A € X"
such that dim A <i+p}. Then

$C Z,CZ C--CZ_, =X

For any vertex A in Z-Z.,, lkANZ_ = {B C A such that B+(AN W,") = A},
#
which is (i — 1)-spherical by Corollary 1.3. Therefore '

Zjz,~  V  susp|lkANZ]
AltPexpn

= V (VS8H,

AitPexpn

SO

@, oA"), .,

AtPEXPN J
Hi+j(Zi, Z, )=
0 j#0

where o(A*?) = H,_,CT“4"%"4),
Thus the spectral sequence of the filtration {Z;} collapses, giving an exact sequence

0->H, ,(X?P")>H, ,(Z,_p, Zy—p-1) > - - > H(Z1, Zp) > H(Z)
->Z-0.

We denote this complex by Dy; Dy has a natural equivariant F, ,-action. Let EF, ,« be
a free Z[F, ,]}-resolution of Z, and form the double complex D, ® Fym EF, ,«. As before,
this gives a spectral sequence converging to zero with E}, = H,(F,,; D,), and we use
Shapiro’s lemma to identify this term and obtain

THEOREM 2.2. Let R;,, be the stabilizer in F,, of the subspace {e,, ..., e,.;) under
the natural right action of F,, on X”" and let o, = o(e,,..., €,.;). Then there is a
spectral sequence converging to zero with Ej, = H,(F,,; Z), and E\;, = H(R;_; ,.; 0s_1)
for0<s<n-p+1. '

The stability theorem we want says that H(0,,) —> H(0,..+1) is an isomorphism
for n sufficiently large with respect to k. We will prove this by showing that the
relative groups H(0,s1,+1,0,,) vanish for n large. Therefore we actually want to
consider relative versions of the spectral sequences 2.1 and 2.2. Let G, =0,, or S,,,
and K,.=Cy or Dy respectively. Then the inclusion G, G, induces natural
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equivariant maps K,-— K, .« and EG,-— EG,.;», and therefore a map from the
spectral sequence for G, to the spectral sequence for G,.;. If we take the mapping

cone of this map, we get a ““relative” spectral sequence[8], i.e.

TueoreM 2.3. There is a spectral sequence converging to zero with E,,=
Hq(Sp,nH, Sp,n; Tp) fOr 0 sp =n.

THEOREM 2.4. There is a spectral sequence converging to zero with E},=
Ht(Fp,nH, Fp,n) and E:,t = Ht(Rs-l.p,n+l9 Rs—l,p,n; 0'3—1) for 0 <s<n-+ 1

We are now ready to prove the main theorem.

THEOREM 2.5. Let F be a field with more than two elements, and let 0, =0, ,(F).
Then Hi(0,.1.0,)=0 for n=3k—1.

Proof. We will prove the theorem by induction on k. Specifically, we will assume

(@)i-i: H(0,,1,0,)=0 for I=k—1 and n=3l-1
(b)k-1: Hi(Fppi1, Fpp)=0 for n—p=3l and I=<k-1.

Then to prove that H;(0,,,0,) =0, a diagram chase of the following diagram shows
that it suffices to show that the map j,: H(0,_;,0,_,) > H;(0,,0,_,) is onto:

H(0,-1,0,5) > H,_,(0,)

L

H;(0,) > Hy(0,,0,_) > H,_,(0,_,) >H_,(0,) >0

Y

Hi(0,41) > Hi (0,41, 0,).
The map j, is the composition of the maps
d i d'
Hk(on—-l, 0n—2) _)Hk(Fl,m Fl,n—l) _)Hk(Sl,m Sl,n—l) _)Hk(om On—l)

where i is induced by inclusion, d is the d;-map of the spectral sequence 2.4 and d' is
the d;-map of the spectral sequence 2.3. We will use our induction hypotheses to
show that each of the above maps is onto.

LeEmMA 1. Let
d': Hk(sl,m Sl,n—l) - Hk(om On—l)

be the d\-map of the spectral sequence 2.3. Then for n =3k —1, d' is onto.

Proof. Since we know the spectral sequence 2.3 converges to zero, we can show d’
is onto by showing that the terms E!,_,,, are zero for 2<s=<k+1 (so d’ is the only
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non-zero differential). If k +1<n +1, we have
E.lv,k—s+l = Hk—s+l(ss,m Ss,n—l; T:)-

To show that this is zero, we consider the extensions

1 - Fs,n—l - Ss,n—l -> GLs - 1

! S I

1- F,, » S, > GL;~>1.

The mapping cone spectral sequence of this diagram[3] has
E%c,v = Hu(GLs; Hv(Fs,m Fs,n—l; Ts)]$ Hu+v(Ss,m Ss,n—l; Ts)-

Since F,, acts trivially on 7, our induction hypothesis (b)-; shows
H,(F,,, F,,_1; ;) =0 for v <k; thus all terms in the filtration of Hi_;+1(S;n, Ssn-15 75)

are zero.

LemMA 2. The map i: Hy(Fi,, Fin-1) = Hi(S),, Si,0-1) induced by inclusion is onto
forn=3k—1.

Proof. The diagram
1->Fp 1> Sin1— GL,~1
I ! I
1-F, » S, »GL,>1
gives a spectral sequence

E%«,u = Hu(GLl; Hv(FI,m Fl,n—l))ﬁHu+v(Sl,m Sl,n—l)-

All the terms of the filtration for H (S, ,, Si.-1) are zero by (b),_; except Egy. Thus

Hy(F, 4, Fyn-1) >> H(GL; H((Fy, Fi0-1)) = Ej
—> EG = Hi(S1 0 Sl,n—l)-

Lemma 3. Let d: Hi(0,-1,0,5) > H(F,,, F,,-1) be the di-map of the spectra
sequence 2.3. Then for n =3k — 1, d is onto. '

Proof. As in Lemma 1, we need only show that E!;, .., =0 for 2<s=<k+1. If
k+1<n+ 1, we have Ei,k—sH = Hk—s+l(Rs—|,1,m Rs—l,l,n—l; 0}_1). Recall that Rs,p,,, is the
stabilizer in S,, of (ej,. .., €., i.e. R,,, consists of matrices in S,, of the form

p{ [ * 0 0 0 O

n ls{ 0 X 0 o 0 0
0 = A O 0 B

0 0 0 ' 0 O

0 * * * ‘X1 «

0 « C O 0 D
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with « € GL,, X € GL, and (‘é B) €0uy-. The projection map

a x* 0 0 0 0
0 X 0 0 0 0
0 0 1 0 0 O
Rs,p.n -> Gs,p = 0 0 0 '«a! 0 0
0 0 O * ‘X710
0 0 O 0 0 1

has kernel F;,_,; the diagram

- Fs,n—p—l - Rs,p,n—l - Gs,p -1

l l l

1-» Fpop » Ropu = Gsp—>1
gives a spectral sequence with
E%w = Hu(Gs,p; HU(F‘s,n—p—l; 0’;))$ Hu+v(Rs,p,m Rs,p,n—-l; 0')

Again oy is a trivial F;,_,-module. For p =1, n>3k—1 and (b),-, guarantees that
E2,=0if u+v <k, so all terms in the filtration of H; s+ /(Rs_ 14 Rs—114-1; 05—1) are
zero.

Lemmas 1-3 show that j, is onto, so' H;(0,.;,0,)=0. It remains to verify our

induction hypotheses (b),: this is a consequance of the above statement together with
Lemma 3. Q.E.D.
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