SPHERICAL POSETS AND HOMOLOGY STABILITY FOR $0_{n,n}$

KAREN VOGTMANN

(Received 1 August 1979)

§0. INTRODUCTION

In this paper we prove the following theorem: Let F be a field, $F \neq \mathbb{Z}_2$, and let $0_{n,n}(F)$ be the orthogonal group of the quadratic form $\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$. Then the map i_* : $H_k(0_{n,n}(F)) \to H_k(0_{n+1,n+1}(F))$ is onto for $n \geq 3k-1$ and an isomorphism for $n \geq 3k$, i.e. the k-th homology of the group $0_{n,n}(F)$ stabilizes at n=3k.

Stability theorems for the homology of the general linear group of various classes of rings have been proved by Bass [1, p. 240], Quillen [2], Wagoner [3] and Charney [4].† The method used here for $0_{n,n}$ is based on Quillen's proof. We construct a simplicial complex X_n with a natural $0_{n,n}$ action, and show that X_n is (n-1)-connected. X_n yields an acyclic chain complex C_* , and tensoring with a $Z[0_{n,n}]$ -free resolution E_* of Z gives a double complex $E_* \otimes_{0_{n,n}} C_*$. The spectral sequence associated to this double complex converges to zero, and we examine this spectral sequence to obtain information about the homology of $0_{n,n}$.

It turns out that the information obtained involves a certain subgroup $S_{p,n}$ of $0_{n,n}$, and we must repeat the procedure, using a different complex $X^{p,n}$ for $S_{p,n}$ in order to learn enough about the homology of $S_{p,n}$ to prove the theorem.

In §1, we discuss the simplicial complexes X_n and $X^{p,n}$; in §2 we construct the spectral sequences and prove the theorem.

§1. THE SIMPLICIAL COMPLEXES ASSOCIATED TO 0_{n,n}

The simplicial complexes we will use come from partially ordered sets (posets) of subspaces of a 2n-dimensional vector space. We first give some notation and definitions.

Given a poset X, we can form a simplicial complex called the *realization* of X, denoted |X|, as follows: the 0-simplices of |X| are the elements $x \in X$, and the k-simplices of |X| are (k+1)-tuples (x_0, \ldots, x_k) of elements of X, with $x_0 < x_1 < \cdots < x_k$. The natural identifications make this into a simplicial complex.

Definition. A poset is *n*-spherical if its realization is *n*-dimensional and (n-1)-connected.

Definition. Let x be an element of X. The *height* of x, h(x), is the length of a maximal totally ordered chain of elements less than x.

Notation. Let x and x' be elements of X. Then

$$X_{>x} = \{ y \in X | y > x \}$$

$$X_{

$$(x, x') = \{ y \in X | x < y < x' \}.$$$$

[†]W. Van der Kallen (preprint, Utrecht, December 1979) has proved a very general stability theorem for the general linear group.

Definition. A poset X is Cohen-Macaulay of dimension n, denoted $X \in CM^n$, if

- (i) X is n-spherical
- (ii) $X_{>x}$ is (n-1-h(x))-spherical for all $x \in X$.
- (iii) $X_{\leq x}$ is (h(x)-1)-spherical for all $x \in X$.
- (iv) (x, x') is (h(x') h(x) 2)-spherical for all x < x' in X.

An important example of a Cohen-Macaulay poset is the set of all proper subspaces of a vector space V, partially ordered by inclusion. The Solomon-Tits theorem [5] says the realization of this poset has the homotopy type of a wedge of $(\dim V - 2)$ -spheres, and it follows easily that the poset is in fact Cohen-Macaulay.

We will be interested in the following generalization of the above poset. Let W and U be subspaces of the vector space V, with dim W = k, dim U = m, dim V = n and $k \le m \le n$. Consider the set $T = {}^W T^{U,V}$ of proper subspaces A of V such that $A \cap W = 0$ and A + U = V, partially ordered by inclusion. It turns out that T is always Cohen-Macaulay; we will prove this in some special cases. Note that if W = 0 and U = V, this is just the Solomon-Tits theorem. We now consider the case $W \ne 0$, U = V.

PROPOSITION 1.1. If $W \neq 0$, $T = {}^W T^{V,V}$ is homotopy equivalent to a wedge of (n-k-1)-spheres.

Proof. We will proceed by induction on n-k, the case n-k=1 being obvious. We first prove a lemma.

LEMMA 1.2. If $A \in T$, then $T_{>A}$ is $(n-k-\dim A - 1)$ -spherical.

Proof. $T_{>A} = \{B \supseteq_{\neq} A | B \cap W = 0\}$. Pick a complement A' for A so that $A' \supseteq W$. Then the correspondence $B \mapsto B \cap A'$ gives a poset isomorphism

$$\{B_{\alpha} \supset A | B \cap W = 0\} \stackrel{\cong}{\to} \{B' \subseteq A' | B' \cap W = 0\};$$

by induction, the latter poset is $(n-k-\dim A - 1)$ -spherical.

Now let l be a minimal element of T, i.e. l is a line with $l \not\subseteq W$. Then the realization of $Y_0 = \{A \in T \text{ such that } A + l \in T\}$ is contractible via the maps $A \mapsto A + l \mapsto l$.

POSTER!

Let A be an element of $T - Y_0$; then $A \cap W = 0$ but $(A + l) \cap W \neq 0$, or equivalently, $A \cap (l + W) = v$, where v is a line not equal to l. Now

$$1kA \cap Y_0 = \{B \subset_{\neq} A | B+l \in T\}$$

$$= \{B \subset_{\neq} A | (B+l) \cap W = 0\}$$

$$= \{B \subset_{\neq} A | B \cap v = 0\};$$

dim $A \le n - k < n$ and dim v = 1, so by induction, the realization $|1kA \cap Y_0|$ is homotopy equivalent to a wedge of (dim A - 2)-spheres.

Now define $Y_{i+1} = Y_0 \cup \{A \in T | \dim A \ge n - k - i\}$.

Claim. Y_i is homotopy equivalent to a wedge of (n-k-1)-spheres, for $i \ge 1$.

Proof. If i = 1, take $A \in Y_1 - Y_0$. Then we have seen that $1kA \cap Y_0 \simeq VS^{n-k-2}$. Since Y_0 is contractible,

$$Y_1 \simeq \underset{A \in Y_1 - Y_0}{V} \operatorname{susp}(VS^{n-k-2}) \simeq VS^{n-k-1}.$$

If i > 1, look at $A \in Y_i - Y_{i-1}$. Then

$$1kA \cap Y_{i-1} = \{1kA \cap Y_0\} \cup \{B \supseteq_{\neq} A | B \cap W = 0\}.$$

Since every element of the second subset contains every element of the first, the realization of their union is the join of their realizations; so using the lemma we have

$$|1kA \cap Y_{i-1}| \cong VS^{n-k-i-1} * VS^{i-2}$$

$$\cong VS^{n-k-2}.$$

Therefore we have

$$\begin{aligned} |Y_i| &\simeq (\bigvee_{A \in Y_i - Y_{i-1}} \operatorname{susp}(VS^{n-k-2})) V |Y_{i-1}| \\ &\simeq VS^{n-k-1}. \end{aligned}$$

Since $Y_{n-k} = T$, we have proved the proposition.

COROLLARY 1.3. ${}^{0}T^{U,V}$ is homotopy equivalent to a wedge of (m-1)-spheres, for $U \neq V$, dim U = m.

Proof. Equip V with a non-degenerate quadratic form. Then the map $A \mapsto A^{\perp}$ gives a poset isomorphism ${}^{O}T^{U,V} \rightarrow {}^{U^{\perp}}T^{V,V}$.

PROPOSITION 1.4. If $W \neq 0$ and dim U = n - 1, then ${}^{W}T^{U,V}$ is homotopy equivalent to a wedge of (n - k - 1)-spheres.

Proof. The proof is identical to the proof of Proposition 1.1; note that the minimal element l has the additional property that l + U = V, and that for A in $T - Y_0$, we identify $1kA \cap Y_0$ inductively as

$$\{B \subset A | B \in T \text{ and } B+l \in T\} = \{B \subset A | B+U=V \text{ and } (B+l) \cap W=0\}$$
$$= \{B \subset A | B+(U\cap A) = A \text{ and } B\cap v=0\}.$$

Since A is transverse to U, dim $(U \cap A) = \dim A - 1$, so the inductive hypotheses are satisfied.

COROLLARY 1.5. If $W \neq 0$ and dim U = n - 1, then $T = {}^W T^{U,V}$ is Cohen-Macaulay of dimension (n - k - 1).

Proof. By Proposition 1.4, T is (n-k-1)-spherical. Let A, $A' \in T$. Then $T_{>A} =$

 $\{B \supseteq A | B \cap W = 0\}$, which is $(n - k - \dim A - 1)$ -spherical by Lemma 1.2. $T_{<A} = \{B \subseteq A | B + U = V\}$, which is $(\dim A - 2)$ -spherical by Corollary 1.3. And $(A, A') = \{A \subseteq B \subseteq A'\}$, which is $(\dim A' - \dim A - 2)$ -spherical by the Solomon-Tits theorem.

We now introduce the quadratic form $\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ on a 2n-dimensional vector space V with basis $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$. A vector space with such a form will be called a hyperbolic space. A subspace $A \subset V$ is isotropic if the inner product $v \cdot w$ of any two vectors $v, w \in A$ is zero. Let X_n be the poset of nonzero isotropic subspaces of V, partially ordered by inclusion, and $X_{n,k} \subseteq X_n$ the poset of nonzero isotropic subspaces of dimension $\leq k$.

THEOREM 1.6. $X_{n,k}$ is spherical of dimension k-1.

Proof. The proof will proceed by induction on k. If k = 1, the theorem is clear. Let

$$Y_0 = \{A \in X_{n,k} | A \cap (e_1^{\perp}) \neq 0 \text{ and } \dim [(A \cap (e_1^{\perp})) + e_1] \leq k\}.$$

Then the maps

$$A \mapsto A \cap (e_1^{\perp}) \mapsto [(A \cap e_1^{\perp}) + e_1] \mapsto e_1$$

give a contraction of the realization of Y_0 to the point e_1 .

 $X_{n,k}-Y_0$ consists of two types of subspaces, namely isotropic lines a with $a\cdot e_1\neq 0$ and k-dimensional isotropic subspaces A, with $A\subseteq e_1^{\perp}$ but $A\not\supseteq e_1$. In the latter case, $1kA\cap Y_0=\{B\subseteq A|B\neq 0\}$, so $|1kA\cap Y_0|$ is homotopy equivalent to a wedge of (k-2)-spheres by the Solomon-Tits theorem. Thus if we let $Y_1=Y_0\cup\{A\subset V|\dim A=k,\ A\cdot A=0\}$, we have

$$|Y_1| \simeq \underset{A \in Y_1 - Y_0}{V} \operatorname{susp} |1kA \cap Y_0|$$

 $\simeq V \operatorname{susp} (VS^{k-2}) \simeq VS^{k-1}.$

Now let a be an isotropic line with $a \cdot e_1 \neq 0$. Then $1ka \cap Y_1 = \{B \supseteq a | B \cdot B = 0\}$. The map $B \mapsto B \cap e_1^{\perp}$ gives a homotopy equivalence of this poset with $\{A \subset (e_1^{\perp} \cap a^{\perp}) | A \cdot A = 0, \ A \neq 0, \ \dim A \leq k - 1\}$. The subspace $(e_1^{\perp} \cap a^{\perp})$ is hyperbolic of dimension n-1, so by induction $|1ka \cap Y_1|$ is homotopy equivalent to a wedge of (k-2)-spheres. Therefore the realization of $X_{n,k}$ is homotopy equivalent to $|Y_1| \vee V$ susp $|1ka \cap Y_1| = VS^{k-1} \vee VS^{k-1} = VS^{k-1}$.

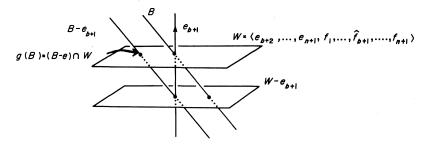
Remark 1.7. Note that in particular this shows that $X_n = \{\text{nonzero isotropic subspaces of } V\}$ is (n-1)-spherical. It is actually Cohen-Macaulay; if A, $A' \in X_n$, then $X_{n < A}$ and (A, A') are C - M by the Solomon-Tits theorem. To see that $X_{n > A}$ is C - M, choose a subspace A', dim $A' = \dim A$, such that $A \oplus A'$ is hyperbolic. Then $W = A^{\perp} \cap A'^{\perp}$ is a hyperbolic complement, and the map $B \mapsto B \cap W$ induces a homotopy equivalence $X_{n > A} \to \{B \subseteq W | B \cdot B = 0, B \neq 0\}$, which is $(n - \dim A - 1)$ -spherical by Theorem 1.6.

There is one more poset which we will need to show is Cohen-Macaulay. Again let V be a 2n-dimensional vector space with quadratic form $\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$. Let $X^{k,n}$ denote the poset of all isotropic subspaces A of V such that $A + \langle e_{k+1}, \ldots, e_n, f_1, \ldots, f_n \rangle = V$. To prove that $X^{k,n}$ is Cohen-Macaulay, we will actually consider a more general class of posets and use a theorem of Qullen's to show that they are all Cohen-Macaulay. I am indebted to K. Igusa for most of the following argument.

Let $C^{b,a,n}$ be the poset of all isotropic subspaces of $W = \langle e_{b+1}, \ldots, e_n, f_1, \ldots, f_n \rangle$ such that $A + \langle e_{a+1}, \ldots, e_n, f_1, \ldots, f_n \rangle = W$ and $A \cap \langle f_1, \ldots, f_a \rangle = 0$. Note that $C^{0,0,n} = X_n$, and $C^{0,a,n} = X^{a,n}$. Let $\bar{C}^{b,a,n}$ be the poset of affine subspaces $X + \underline{v}$, where $X \in C^{b,a,n}$ (if b = a = 0, we allow X = 0) and $v \in \langle e_{b+1}, \ldots, e_n, f_1, \ldots, f_n \rangle$. Then we have the following relationship:

Proposition 1.8. $\bar{C}^{b,a,n} \cong C^{b,a+1,n+1}$, for $a \ge b$.

Proof. The map $g: C^{b,a+1,n+1} \to \bar{C}^{b,a,n}$ is given by $g(B) = \pi((B-e_{b+1}) \cap \langle e_{b+2}, \ldots, e_{n+1}, f_1, \ldots, f_{n+1} \rangle)$ where π is projection along f_{b+1} . Then g(B) is an affine subspace of $\langle e_{b+2}, \ldots, e_{n+1}, f_1, \ldots, \hat{f}_{b+1}, \ldots, f_{n+1} \rangle$ parallel to $\pi(B \cap \langle e_{b+2}, \ldots, e_{n+1}, f_1, \ldots, f_{n+1} \rangle)$, i.e. $g(B) \in \bar{C}^{b,a,n}$.



(The above picture is projected along f_{b+1} .) To define the inverse map, we first define maps $\psi \colon V \to V$ by $\psi(v) = v + e_{b+1} - \frac{1}{2}(v \cdot v)f_{b+1}$ and, for $v \in V$, define $\phi_v \colon V \to V$ by $\phi_v(u) = u - (v \cdot u)f_{b+1}$. Then the inverse map $f \colon \bar{C}^{b,a,n} \to C^{b,a+1,n+1}$ is given by $f(X + v) = \langle \psi(v), \phi_v(X) \rangle$. Since ϕ_v is an orthogonal linear map with image contained in $\psi(v)^\perp$, we have $\langle \phi(v), \phi_v(X) \rangle$ is isotropic; transversality is guaranteed by the fact that X, and hence $\phi_v(X)$, is transverse to $\langle e_{b+1}, e_{a+2}, \dots, e_{n+1}, f_1, \dots, f_{n+1} \rangle$, and $\psi(v)$ has a nonzero e_{b+1} -component. Also, $\langle \psi(v), \phi_v(X) \rangle \cap \langle f_1, \dots, f_a \rangle = 0$, and the map f is independent of the choice of v, since if $X + v_1 = X + v_2$, then $v_1 - v_2 \in X$, so $\langle \psi(v_1), \phi_{v_1}(X) \rangle = \langle \psi(v_2), \phi_{v_2}(X) \rangle$.

It is clear that $g(f(X + \underline{v})) = X + \underline{v}$. To see that f(g(B)) = B, write $B = \langle e_{b+1} + v, X \rangle$, where $v, X \subset \langle e_{b+2}, \ldots, e_{n+1}, f_1, \ldots, f_{n+1} \rangle$. Then $g(B) = \pi v + \pi V$, and $f(g(B)) = \langle \psi(\pi v), \phi_{\pi v}(\pi X) \rangle = \langle e_{b+1} + \pi v - \frac{1}{2}(\pi v \cdot \pi v)f_{b+1}, \pi X - (\pi v, \pi X)f_{b+1} \rangle = \langle e_{b+1} + v, X \rangle = B$.

To study the posets $\bar{C}^{b,a,n}$, we need the following definitions and theorem of Quillen's.

Definition. Let X and Y be posets. A map $f: X \to Y$ is a poset map if $x_1 > x_2$ implies $f(x_1) \ge f(x_2)$ for $x_1, x_2 \in X$.

Notation. Given a poset map $f: X \to Y$, then

$$f/y = \{x \in X | f(x) \le y\}$$

$$f \setminus y = \{ x \in X | f(x) \ge y \}.$$

Definition. A poset map $f: X \to Y$ is strictly increasing if $x_1 > x_2$ implies $f(x_1) > f(x_2)$ for $x_1, x_2 \in X$. We can now state Quillen's theorem [6, p. 120].

THEOREM. Let $f: X \to Y$ be a poset map. Assume

- (i) Y is n-spherical.
- (ii) f/y is h(y)-spherical for all $y \in Y$.
- (iii) $Y_{>y}$ is (n h(y) 1)-spherical for all $y \in Y$.

Then X is n-spherical.

COROLLARY 1.9. Let $f: X \to Y$ be a strictly increasing poset map. Assume (i) $Y \in CM^n$.

(ii) $f/y \in CM^{h(y)}$ for all $y \in Y$. Then $X \in CM^n$.

We want to apply this theorem to the posets $\bar{C}^{b,a,n}$. We first would like to (belatedly) introduce the notation $W_k^n = \langle e_{k+1}, \ldots, e_n, f_1, \ldots, f_n \rangle$. Now define a poset map $j \colon \bar{C}^{b,a,n} \to \bar{C}^{b+1,a,n}$ (a > b) by the formula $j(X + \underline{v}) = (X + \underline{v}) \cap W_{b+1}^n$. We need to identify the "fibers" j/Y.

PROPOSITION 1.10. If $Y \in \overline{C}^{b+1,a,n}$, then $i \setminus Y \cong \overline{C}^{b,b,n-a+b-h(Y)} = \overline{C}^{b,b,n-\dim Y-1}$.

Proof. We may assume without loss of generality that $0 \in Y$. Then

 $j \setminus Y = \{ \text{subspaces } X \subseteq W_b^n \text{ such that } X \cdot X = 0, \ X + W_a^n = W_b^n, \ X \cap \langle f_1, \dots, f_a \rangle = 0$ and $X \supseteq Y \}.$

It can easily be checked that the group of matrices in $0_{n,n}$ of the form

$$n \begin{cases} a \begin{cases} b+1 \{ & I & 0 & 0 & 0 & 0 & 0 \\ 0 & I & 0 & 0 & 0 & 0 \\ 0 & * & A & 0 & 0 & B \\ 0 & 0 & 0 & I & 0 & 0 \\ 0 & * & * & 0 & I & * \\ 0 & * & C & 0 & 0 & D \end{cases},$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{O}_{n-a,n-a}$ acts transitively on k-dimensional subspaces in $C^{b+1,a,n}$. Let g be a matrix as above with $gY = \langle e_{b+2}, \ldots, e_a, \ldots, e_{a+h(Y)} \rangle$. Then

$$W_b^n \cap (gY)^{\perp} = \langle e_{h+1}, \ldots, e_n, f_1, \ldots, f_{h+1}, f_{a+h+1}, \ldots, f_n \rangle.$$

Let

$$W = \langle e_{b+1}, e_{a+h+1}, \dots, e_n, f_1, \dots, f_b, f_{b+1}, f_{a+h+1}, \dots, f_n \rangle$$
(which we think of as $(gY)^{\perp}/gY$)
$$\cong W_b^{n-d(Y)};$$

let

$$V = \langle e_{a+h+1}, \dots, e_n, f_1, \dots, f_b, f_{b+1}, f_{a+h+1}, \dots, f_n \rangle$$

$$(= W/\langle e_{b+1} \rangle) \cong W_{b+1}^{n-d(Y)};$$

and let

$$Z = \langle f_1, \ldots, f_b \rangle = gZ.$$

Claim. The map $C^{b,b+1,n-d(Y)} = C^{Z,V,M} \to j \setminus gY$ induced by the map $X \to X \oplus gY$ is an isomorphism.

Proof. To see this is well-defined, we must show $X \oplus gY$ is in $j \setminus gY$. $X \oplus gY$ clearly contains gY; since $X \subseteq gY^{\perp}$, we have $(X \oplus gY) \cdot (X \oplus gY) = 0$. Also, gY projects onto $\langle e_{b+2}, \ldots, e_a \rangle$, and X projects onto $\langle e_{b+1} \rangle$, so $X \oplus gY$ projects onto $\langle e_{b+1}, \ldots, e_a \rangle$, i.e. $(X \oplus gY) + W_a^n = W_b^n$. Finally, we must show that $(X \oplus gY) \cap \langle f_1, \ldots, f_a \rangle = 0$. But this is clear since

$$X \subseteq \langle e_{b+1}, e_{a+h+1}, \dots, e_n, f_1, \dots, f_{b+1}, f_{a+h+1}, \dots, f_n \rangle$$

 $X \cap \langle f_1, \dots, f_{b+1} \rangle = 0$

and

$$gY = \langle e_{h+2}, \ldots, e_{a+h} \rangle.$$

It is also clear that the map is onto and injective, and a poset map, so gives a simplicial isomorphism of complexes.

Now to prove the assertion of the proposition, we need only observe that applying g^{-1} to the above construction gives an isomorphism

$$C^{b,b+1,n-d}(Y) \cong C^{Z,g^{-1}V,g^{-1}W} \xrightarrow{\cong} i \setminus Y.$$

And by Proposition 1.8, $C^{b,b+1,n-d(Y)} \cong \overline{C}^{b,b,n-d(Y)-1}$.

Let $p: \bar{C}^{a,a,n} \to \bar{C}^{0,0,n-a}$ be the map induced by projection along (f, \ldots, f_a) , which we will also call p.

PROPOSITION 1.11. Let $Y \in \overline{C}^{0,0,n-a}$. Then p/Y is Cohen-Macaulay of dimension dim Y-a.

Proof. Without loss of generality, we may assume Y contains 0. Recall that

$$p/Y = \{X + \underline{v} \in \overline{C}^{a,a,n} \text{ s.t. } p(X + \underline{v}) \subseteq Y\}$$

$$= \{X + \underline{v} \in \overline{C}^{a,a,n} \text{ s.t. } pX \subseteq Y \text{ and } pv \in Y\}$$

$$= \{X + \underline{v} \in W_a^n \text{ s.t. } X \cdot X = 0, X \cap \langle f_1, \dots, f_a \rangle = 0, \text{ and } pX, pv \subseteq Y\}.$$

Since $pX \subseteq Y$, pX is isotropic; therefore $pX \oplus \langle f_1, \ldots, f_a \rangle$ is isotropic. Since $X \subseteq p^{-1}(pX) = pX \oplus \langle f_1, \ldots, f_a \rangle$, X itself is automatically isotropic. Therefore the above poset is equal to

$$\{X + \underline{v} \subseteq W_a^n \text{ s.t. } X \cap \langle f_1, \dots, f_a \rangle = 0 \text{ and } pX, pv \subseteq Y\}$$
$$= \{X + \underline{v} \subseteq p^{-1}(Y) \text{ s.t. } X \cap \langle f_1, \dots, f_a \rangle = 0\}.$$

The map $(X + v) \mapsto \langle X, (v, 1) \rangle$ now gives a poset isomorphism $p/Y \cong {}^{\langle f_1, \dots, f_d \rangle} T^{p^{-1}Y \oplus F}$. By Corollary 1.5, this is Cohen–Macaulay of dimension dim Y - a.

Proposition 1.12. $\bar{C}^{0,0,n+1}$ is Cohen-Macaulay of dimension n+1.

Proof. The proof proceeds by induction on n. If n = 0, $\bar{C}^{0,0,1}$ consists of cosets of $\langle e_1 \rangle$, $\langle f_1 \rangle$ and 0. The realization is clearly one-dimensional and connected, so is Cohen-Macaulay of dimension 1.

Now let

$$H = \langle e_2, \dots, e_{n+1}, f_1, \dots, f_{n+1} \rangle$$
 $H_{\lambda} = H + \lambda \underline{e_1}$
 $P_{\lambda} = \{ X \in \overline{C}^{0,0,n+1} \text{ such that } X \cap H_{\lambda} \neq \emptyset \}.$

Then for any $\lambda \neq \mu$,

$$P_{\lambda} \cap P_{\mu} = \{\text{cosets of isotropic subspaces } A \text{ such that } A + H = V\}$$

= $\bar{C}^{0,1,n+1}$.

The maps $\bar{C}^{0,1,n+1} \xrightarrow{j} \bar{C}^{1,1,n+1} \xrightarrow{p} \bar{C}^{0,0,n}$ are both strictly increasing. By Proposition 1.11, p/Y is Cohen-Macaulay for all $Y \in \bar{C}^{0,0,n}$, and since $\bar{C}^{0,0,n}$ is Cohen-Macaulay by induction, Corollary 1.9 shows $\bar{C}^{1,1,n+1}$ is Cohen-Macaulay. By Proposition 1.11, $j/Y \cong \bar{C}^{0,0,n-\dim Y}$; this is Cohen-Macaulay by induction, so Corollary 1.9 again shows that $\bar{C}^{0,1,n+1}$ is Cohen-Macaulay.

Claim. P_{λ} is homotopy equivalent to $\bar{C}^{0,0,n}$.

Proof. The map $X \mapsto X \cap H_{\lambda}$ gives a deformation retraction to cosets of isotropic subspaces in H_{λ} ; this poset is isomorphic to the poset of cosets of isotropic subspaces of H. The maps $A \mapsto \langle A, f_1 \rangle \mapsto \pi_{f_1} A$ then give a retraction of this poset to the poset of cosets of isotropic subspaces of $\langle e_2, \ldots, e_{n+1}, f_2, \ldots, f_{n+1} \rangle$ (here π_{f_1} is projection along f_1), which is $\bar{C}^{0,0,n}$.

By van Kampen's theorem, $\bar{C}^{0,0,n+1} = \bigcup_{\lambda} P_{\lambda}$ is simply connected if $n \ge 2$. If n = 1, an edge-path calculation shows this is true [7, p. 39]. Therefore, in order to see that $\bar{C}^{0,0,n+1}$ is (n+1)-spherical, it suffices to show that $\bar{C}^{0,0,n+1} = \bigcup_{\lambda} P_{\lambda}$ has homology only in dimension n+1. We begin by considering $P_0 \cup P_1$; since P_0 and P_1 are each n-spherical, the Mayer-Vietoris sequence for $P_0 \cup P_1$ reduces to

$$0 \to H_{n+1}(P_0 \cup P_1) \to H_n(Q) \xrightarrow{f_0 + f_1} H_n P_0 \oplus H_n P_1 \to H_n(P_0 \cup P_1) \to 0$$

where $Q = P_0 \cap P_1$ and $f_{\lambda} \colon Q \to P_{\lambda}$ is the inclusion map. Note that for any $\lambda \in F$, f_{λ} is onto in homology, since we can easily construct a homotopy section $\phi_{\lambda} \colon P_{\lambda} \simeq \bar{C}^{0,0,n} \to \bar{C}^{0,1,n+1} = Q$; e.g. for $X + \underline{v}$ in $\bar{C}^{0,0,n}$, define $\phi_{\lambda}(X + \underline{v}) = \langle X, e_1 \rangle + \underline{v}$.

Claim. $f_0 + f_1$ is onto, and hence $H_n(P_0 \cup P_1) = 0$.

Proof. Since f_0 and f_1 are each onto, it suffices to construct homotopy sections s_0 for f_0 and s_1 for f_1 such that $f_1 \circ s_0 \simeq 0$ and $f_0 \circ s_1 \simeq 0$. For X + y in $\overline{C}^{0,0,n}$, define

$$s_1(X + \underline{v}) = \text{subspace of } V \text{ spanned by the vectors } a - (a \cdot v)f_1 \text{ for } a \in X$$

and the vector $e_1 - \frac{1}{2}(v \cdot v)f_1 + v$

$$s_0(X + \underline{v}) = \underline{e}_1 + (\text{subspace spanned by the vectors } a + (a \cdot v)f_1, \ a \in X$$

and $v - e_1 + \frac{1}{2}(v \cdot v)f_1$.

These sections are well-defined and inclusion-preserving; $f_0 \circ s_1(X + \underline{v})$ is a *subspace* of $H_0 = H$, so can be retracted to the zero subspace, and $f_1 \circ s_0$ is similarly homotopic to a point.

Thus $H_n(P_0 \cup P_1) = 0$. Now we notice that adding any number of P_λ 's to $P_0 \cup P_1$ does not add any *n*-dimensional homology, since each f_λ is onto in homology. Since homology commutes with direct limits, we have $H_n(\cup P_\lambda) = H_n(\bar{C}^{0,0,n+1}) = 0$.

To complete the proof that $\bar{C}^{0,0,n+1}$ is Cohen-Macaulay, we need to check the subcomplexes $\bar{C}^{0,0,n+1}_{\leq Y}$ and $\bar{C}^{0,0,n+1}_{\leq Y}$ for each $Y=X+\underline{v}$ in $\bar{C}^{0,0,n+1}$. In each case we may assume $Y\ni 0$. Then $\bar{C}^{0,0,n+1}_{\leq Y}$ is the set of isotropic subspaces containing Y, which is spherical by Remark 1.7. $\bar{C}^{0,0,n+1}_{\leq Y}$ is the set of all proper subspaces of $\langle a, X \rangle$ which are transverse to $\langle a \rangle$, via the map $B+\underline{v}\mapsto \langle B, w+a \rangle$. This is spherical by Corollary 1.3.

We can now prove the theorem we were after, namely.

THEOREM 1.13. $\bar{C}^{0,a,n}$ is Cohen-Macaulay of dimension n-a, for $a \ge 0$.

Proof. For a=0, this is Proposition 1.12. If a>0, consider the map $p: \bar{C}^{a,a,n} \to \bar{C}^{0,0,n-a}$. By Proposition 1.11, p/Y is Cohen-Macaulay for each $Y \in \bar{C}^{0,0,n-a}$; since p is strictly increasing, Corollary 1.9 implies $\bar{C}^{a,a,n}$ is Cohen-Macaulay.

By induction and Proposition 1.10, each of the maps

$$\bar{C}^{0,a,n} \stackrel{j}{\to} \bar{C}^{1,a,n} \to \cdots \to \bar{C}^{a,a,n}$$

has Cohen-Macaulay fibers; therefore another application of Corollary 1.9 shows that $\bar{C}^{0,a,n}$ is Cohen-Macaulay.

§2. HOMOLOGY STABILITY FOR 0 ...

We will study the homology of $0_{n,n}$ by considering the action of $0_{n,n}$ on the simplicial complex X_n = realization of X_n . Recall from §1 that X_n = {non-zero isotropic subspaces of a 2n-dimensional vector space}. We let $0_{n,n}$ act on X_n on the left in the natural way; then the filtration of X_n by the subcomplexes $X_{n,k}$ = realization of $\{A \in X_n \text{ s.t. dim } A \leq k\}$ is equivariant. We have

$$\emptyset = X_{n,0} \subset X_{n,1} \subset \cdots \subset X_{n,n} = X_n.$$

By Theorem 1.6, $X_{n,k}$ is (k-1)-spherical; therefore the spectral sequence associated to this filtration, with $E_{p,q}^1 = H_{p+q}(X_{n,p+1}, X_{n,p})$, collapses, giving an exact sequence

(*)
$$0 \to H_{n-1}(X_n) \to H_{n-1}(X_n, X_{n,n-1}) \to H_{n-2}(X_{n,n-1}, X_{n,n-2})$$

 $\to \cdots \to H_1(X_{n,2}, X_{n,1}) \to H_0(X_{n,1}) \to \mathbb{Z} \to 0.$

We can further identify these homology groups by noting that for $0 \le p \le n-1$, we know $X_{n,p+1}$ is obtained from $X_{n,p}$ by attaching isotropic subspaces A of dimension p+1. For each such A, $1kA \cap X_{n,p} = \{\text{all proper subspaces of } A\}$; by the Solomon-

Tits theorem, the realization of $1kA \cap X_{n,p}$ is homotopy equivalent to a wedge of (p-1)-spheres. Therefore

$$\frac{X_{n,p+1}}{X_{n,p}} \simeq \bigvee_{\substack{\text{isotropic } A\\ \dim A = p+1}} \operatorname{susp} |1kA \cap X_{n,p}|,$$

so

$$H_p(X_{n,p+1},X_{n,p})\cong\bigoplus_{A^{p+1}}\tau(A^{p+1})$$

where $\tau(A^{p+1}) = H_{p-1}$ (Tits building for A^{p+1}). $0_{n,n}$ acts on this direct sum by permuting the A^{p+1} , as well as acting on each $\tau(A^{p+1})$.

Let $0 \to C_{n+1} \to C_n \to \cdots \to C_1 \to C_0 = \mathbb{Z} \to 0$ denote the exact sequence (*), and let $E0_{n,n^*} = E_*$ be a free $\mathbb{Z}[0_{n,n}]$ -resolution of \mathbb{Z} . Then we can form the double complex $E_* \bigotimes_{0,n} C_*$:

$$\leftarrow E_{i} \otimes C_{j+1} \xleftarrow{\partial_{E} \otimes 1} E_{i+1} \otimes C_{j+1} \leftarrow \\ \downarrow 1 \otimes (-1)^{i}\partial_{c} & \downarrow 1 \otimes (-1)^{i+1}\partial_{c} \\ \leftarrow E_{i} \otimes C_{j} \xleftarrow{\partial_{E} \otimes 1} E_{i+1} \otimes C_{j} \leftarrow \\ \downarrow \downarrow$$

The vertical filtration of this double complex gives a spectral sequence with $E_{p,q}^1 = H_q(E_p \otimes C_*, (-1)^p \partial_c) = 0$ since E_p is free and C_* is exact. The horizontal filtration gives a spectral sequence with $E_{p,q}^1 = H_q(E_* \otimes C_p, \partial_E) = H_q(0_{n,n}; C_p)$. If $0 , we know <math>C_p = \bigoplus_{A^p} \tau(A^p)$, so $H_q(0_{n,n}; C_p) = H_q(0_{n,n}; \bigoplus_{A^p} \tau(A^p)) = H_q(0_{n,n}; \mathbb{Z}[0_{n,n}] \otimes_{\mathbb{Z}S_{p,n}} \tau_p)$, where $\tau_p = \tau(\langle e_1, \ldots, e_p \rangle)$ and $S_{p,n}$ is the stabilizer in $0_{n,n}$ of $\langle e_1, \ldots, e_p \rangle$. By Shapiro's lemma, this last homology group is isomorphic to $H_q(S_{p,n}; \tau_p)$. We have just proved

THEOREM 2.1. There is a spectral sequence converging to zero with $E_{p,q}^1 = H_q(S_{p,n}; \tau_p)$ for $0 \le p \le n$.

If we consider $0_{n,n}$ as acting on the left, it is easy to calculate that the stabilizer $S_{p,n}$ is the set of all matrices in $0_{n,n}$ of the form

$$\left\{egin{array}{ccccc} lpha & * & * & * \ 0 & A & * & B \ 0 & 0 & {}^tlpha^{-1} & 0 \ 0 & C & * & D \end{array}
ight\},$$

where $\alpha \in GL_p$ and $\binom{A}{C} \stackrel{B}{D} \in 0_{n-p,n-p}$. The subgroup $S_{p,n}$ acts transitively on the *right* on the set of (p+i)-dimensional isotropic subspaces $X \subseteq V$ with $X + \langle e_{p+1}, \ldots, e_n, f_1, \ldots, f_n \rangle = V$; i.e. $S_{p,n}$ acts "transitively" on $X^{p,n}$. In fact the subgroup

 $F_{p,n}$ of $S_{p,n}$ which fixes $\langle e_1, \ldots, e_p \rangle$ also acts transitively in this sense on $X^{p,n}$. Here $F_{p,n}$ consists of matrices in $S_{p,n}$ of the form

$$egin{cases} I & * & * & * \ 0 & A & * & B \ 0 & 0 & I & 0 \ 0 & C & * & D \ \end{cases}.$$

By Theorem 1.13, we know that $X^{p,n}$ is Cohen-Macaulay of dimension n-p. We can filter $X^{p,n}$ in the same way as X_n , by the subcomplexes Z_i = realization of $\{A \in X^{p,n} \text{ such that dim } A \leq i+p\}$. Then

$$\emptyset \subset Z_0 \subset Z_1 \subset \cdots \subset Z_{n-n} = X^{p,n}$$
.

For any vertex A in Z_{i-1} , $1kA \cap Z_{i-1} = |\{B \subset A \text{ such that } B + (A \cap W_p^n) = A\}|$, which is (i-1)-spherical by Corollary 1.3. Therefore

$$Z_i | Z_{i-1} \simeq \bigvee_{A^{i+p} \in X^{p,n}} \operatorname{susp} | 1kA \cap Z_i |$$

$$\simeq \bigvee_{A^{i+p} \in X^{p,n}} (VS^i),$$

so

$$H_{i+j}(Z_i, Z_{i-1}) = \begin{cases} \bigoplus_{A^{i+p} \in X^{p,n}} \sigma(A^{i+p}), & j = 0 \\ 0 & j \neq 0 \end{cases}$$

where $\sigma(A^{i+p}) = H_{i-1}({}^{0}T^{(A\cap W_{p^n}),A}).$

Thus the spectral sequence of the filtration $\{Z_i\}$ collapses, giving an exact sequence

$$0 \to H_{n-p}(X^{p,n}) \to H_{n-p}(Z_{n-p}, Z_{n-p-1}) \to \cdots \to H_1(Z_1, Z_0) \to H_0(Z_0)$$

$$\to \mathbb{Z} \to 0.$$

We denote this complex by D_* ; D_* has a natural equivariant $F_{p,n}$ -action. Let EF_{p,n^*} be a free $Z[F_{p,n}]$ -resolution of Z, and form the double complex $D_* \bigotimes_{F_{p,n}} EF_{p,n^*}$. As before, this gives a spectral sequence converging to zero with $E^1_{s,t} = H_t(F_{p,n}; D_s)$, and we use Shapiro's lemma to identify this term and obtain

THEOREM 2.2. Let $R_{s,p,n}$ be the stabilizer in $F_{p,n}$ of the subspace $\langle e_1, \ldots, e_{p+s} \rangle$ under the natural right action of $F_{p,n}$ on $X^{p,n}$ and let $\sigma_s = \sigma \langle e_1, \ldots, e_{p+s} \rangle$. Then there is a spectral sequence converging to zero with $E_{0,t}^1 = H_t(F_{p,n}; \mathbb{Z})$, and $E_{s,t}^1 = H_t(R_{s-1,p,n}; \sigma_{s-1})$ for 0 < s < n-p+1.

The stability theorem we want says that $H_k(0_{n,n}) \to H_k(0_{n+1,n+1})$ is an isomorphism for n sufficiently large with respect to k. We will prove this by showing that the relative groups $H_k(0_{n+1,n+1},0_{n,n})$ vanish for n large. Therefore we actually want to consider relative versions of the spectral sequences 2.1 and 2.2. Let $G_n = 0_{n,n}$ or $S_{p,n}$, and $K_{n^*} = C_*$ or D_* respectively. Then the inclusion $G_n \to G_{n+1}$ induces natural

equivariant maps $K_{n^*} \to K_{n+1^*}$ and $EG_{n^*} \to EG_{n+1^*}$, and therefore a map from the spectral sequence for G_n to the spectral sequence for G_{n+1} . If we take the mapping cone of this map, we get a "relative" spectral sequence [8], i.e.

THEOREM 2.3. There is a spectral sequence converging to zero with $E_{p,q}^1 = H_q(S_{p,n+1}, S_{p,n}; \tau_p)$ for $0 \le p \le n$.

THEOREM 2.4. There is a spectral sequence converging to zero with $E_{0,t}^1 = H_t(F_{p,n+1}, F_{p,n})$ and $E_{s,t}^1 = H_t(R_{s-1,p,n+1}, R_{s-1,p,n}; \sigma_{s-1})$ for 0 < s < n+1.

We are now ready to prove the main theorem.

THEOREM 2.5. Let F be a field with more than two elements, and let $0_n = 0_{n,n}(F)$. Then $H_k(0_{n+1}, 0_n) = 0$ for $n \ge 3k - 1$.

Proof. We will prove the theorem by induction on k. Specifically, we will assume

$$(a)_{k-1}$$
: $H_l(0_{n+1}, 0_n) = 0$ for $l \le k-1$ and $n \ge 3l-1$

$$(b)_{k-1}$$
: $H_l(F_{p,n+1}, F_{p,n}) = 0$ for $n-p \ge 3l$ and $l \le k-1$.

Then to prove that $H_k(0_{n+1}, 0_n) = 0$, a diagram chase of the following diagram shows that it suffices to show that the map j_* : $H_k(0_{n-1}, 0_{n-2}) \to H_k(0_n, 0_{n-1})$ is onto:

$$H_{k}(0_{n-1}, 0_{n-2}) \to H_{k-1}(0_{n-2})$$

$$\downarrow^{i_{*}} \qquad \downarrow^{i_{*}}$$

$$H_{k}(0_{n}) \to H_{k}(0_{n}, 0_{n-1}) \to H_{k-1}(0_{n-1}) \xrightarrow{i_{*}} H_{k-1}(0_{n}) \to 0$$

$$\downarrow^{i_{*}} \qquad \downarrow^{i_{*}}$$

$$H_{k}(0_{n+1}) \to H_{k}(0_{n+1}, 0_{n}).$$

The map j_* is the composition of the maps

$$H_k(0_{n-1}, 0_{n-2}) \xrightarrow{d} H_k(F_{1,n}, F_{1,n-1}) \xrightarrow{i} H_k(S_{1,n}, S_{1,n-1}) \xrightarrow{d'} H_k(0_n, 0_{n-1})$$

where i is induced by inclusion, d is the d_1 -map of the spectral sequence 2.4 and d' is the d_1 -map of the spectral sequence 2.3. We will use our induction hypotheses to show that each of the above maps is onto.

LEMMA 1. Let

$$d': H_k(S_{1,n}, S_{1,n-1}) \to H_k(0_n, 0_{n-1})$$

be the d_1 -map of the spectral sequence 2.3. Then for $n \ge 3k - 1$, d' is onto.

Proof. Since we know the spectral sequence 2.3 converges to zero, we can show d' is onto by showing that the terms $E_{s,k-s+1}^1$ are zero for $2 \le s \le k+1$ (so d' is the only

non-zero differential). If k+1 < n+1, we have

$$E_{s,k-s+1}^1 = H_{k-s+1}(S_{s,n}, S_{s,n-1}; \tau_s).$$

To show that this is zero, we consider the extensions

$$1 \to F_{s,n-1} \to S_{s,n-1} \to GL_s \to 1$$

$$\downarrow \qquad \qquad \parallel$$

$$1 \to F_{s,n} \to S_{s,n} \to GL_s \to 1.$$

The mapping cone spectral sequence of this diagram [3] has

$$E_{u,v}^2 = H_u(GL_s; H_v(F_{s,n}, F_{s,n-1}; \tau_s)] \Rightarrow H_{u+v}(S_{s,n}, S_{s,n-1}; \tau_s).$$

Since $F_{s,n}$ acts trivially on τ_s , our induction hypothesis $(b)_{k-1}$ shows $H_v(F_{s,n}, F_{s,n-1}; \tau_s) = 0$ for v < k; thus all terms in the filtration of $H_{k-s+1}(S_{s,n}, S_{s,n-1}; \tau_s)$ are zero.

LEMMA 2. The map $i: H_k(F_{1,n}, F_{1,n-1}) \to H_k(S_{1,n}, S_{1,n-1})$ induced by inclusion is onto for $n \ge 3k-1$.

Proof. The diagram

$$1 \to F_{1,n-1} \to S_{1,n-1} \to GL_1 \to 1$$

$$\downarrow \qquad \qquad \parallel$$

$$1 \to F_{1,n} \to S_{1,n} \to GL_1 \to 1$$

gives a spectral sequence

$$E_{u,v}^2 = H_u(GL_1; H_v(F_{1,n}, F_{1,n-1})) \Rightarrow H_{u+v}(S_{1,n}, S_{1,n-1}).$$

All the terms of the filtration for $H_k(S_{1,n}, S_{1,n-1})$ are zero by $(b)_{k-1}$ except $E_{0,k}^{\infty}$. Thus

$$H_k(F_{1,n}, F_{1,n-1}) \longrightarrow H_0(GL_1; H_k(F_{1,n}, F_{1,n-1})) = E_{0,k}^2$$

 $\longrightarrow E_{0,k}^{\infty} = H_k(S_{1,n}, S_{1,n-1}).$

LEMMA 3. Let d: $H_k(0_{n-1}, 0_{n-2}) \rightarrow H_k(F_{1,n}, F_{1,n-1})$ be the d_1 -map of the spectral sequence 2.3. Then for $n \ge 3k-1$, d is onto.

Proof. As in Lemma 1, we need only show that $E_{s,k-s+1}^1 = 0$ for $2 \le s \le k+1$. If k+1 < n+1, we have $E_{s,k-s+1}^1 = H_{k-s+1}(R_{s-1,1,n}, R_{s-1,1,n-1}; \sigma_{s-1})$. Recall that $R_{s,p,n}$ is the stabilizer in $S_{p,n}$ of $\langle e_1, \ldots, e_{p+s} \rangle$, i.e. $R_{s,p,n}$ consists of matrices in $S_{p,n}$ of the form

$$n \begin{cases} p \begin{cases} \alpha & * & 0 & 0 & 0 & 0 \\ 0 & X & 0 & 0 & 0 & 0 \\ 0 & * & A & 0 & 0 & B \\ 0 & 0 & 0 & {}^{t}\alpha^{-1} & 0 & 0 \\ 0 & * & * & * & {}^{t}X^{-1} & * \\ 0 & * & C & 0 & 0 & D \end{cases}$$

with $\alpha \in GL_p$, $X \in GL_x$ and $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in 0_{n-p-s}$. The projection map

$$R_{s,p,n} \to G_{s,p} = \left\{ \begin{array}{cccccc} \alpha & * & 0 & 0 & 0 & 0 \\ 0 & X & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & {}^{t}\alpha^{-1} & 0 & 0 \\ 0 & 0 & 0 & * & {}^{t}X^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right\}$$

has kernel $F_{s,n-p}$; the diagram

$$1 \to F_{s,n-p-1} \to R_{s,p,n-1} \to G_{s,p} \to 1$$

$$\downarrow \qquad \qquad \parallel$$

$$1 \to F_{s,n-p} \to R_{s,p,n} \to G_{s,p} \to 1$$

gives a spectral sequence with

$$E_{uv}^2 = H_u(G_{s,p}; H_v(F_{s,n-p-1}; \sigma_s)) \Rightarrow H_{u+v}(R_{s,p,n}, R_{s,p,n-1}; \sigma).$$

Again σ_s is a trivial $F_{s,n-p}$ -module. For p=1, n>3k-1 and $(b)_{k-1}$ guarantees that $E^2_{u,v}=0$ if u+v< k, so all terms in the filtration of $H_{k-s+1}(R_{s-1,1,n},R_{s-1,1,n-1};\sigma_{s-1})$ are zero.

Lemmas 1-3 show that j_* is onto, so $H_k(0_{n+1}, 0_n) = 0$. It remains to verify our induction hypotheses $(b)_k$: this is a consequence of the above statement together with Lemma 3.

O.E.D.

Acknowledgements—I would like to thank K. Igusa for his help in proving that the complex $X^{p,n}$ is spherical, and J. B. Wagoner and R. Charney for their interest and comments.

REFERENCES

- 1. H. BASS: Algebraic K-Theory. Benjamin (1968).
- 2. D. QUILLEN: M.I.T. Lectures (1974-75).
- 3. J. B. WAGONER: Stability for homology of the general linear group of a local ring. *Topology* 15(4) (1976), 417-423.
- 4. R. CHARNEY: Homology stability for GL_n of a Dedekind domain. Inventiones 56(1) (1980), 1-17.
- 5. D. QUILLEN: Finite generation of the groups K_i of a ring of algebraic integers. Algebraic K-Theory I, Lecture Notes in Mathematics, No. 341. Springer-Verlag, New York (1973).
- 6. D. QUILLEN: Homotopy properties of the poset of non-trivial p-subgroups of a group. Adv. Math. 28(2) (1978), 101-128.
- 7. K. VOGTMANN: Homology Stability for $0_{n,n}$. Thesis. University of California (1977).
- 8. K. VOGTMANN: Homology Stability for $0_{n,n}$. Commun. Algebra 7(1) (1979), 9-38.

Columbia University,

New York, NY 10027, U.S.A.