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Abstract— The paper presents a new approach to the problem of
Simultaneous Localization and Mapping — SLAM - inspired by
computational models of the hippocampus of rodents. The rodent
bippocampus has been extemsively studied with respect to
navigation tasks, and displays many of the properties of a
desirable SLAM solution. RatSLAM is an implementation of a
hippocampal model that can perform SLAM in real time on a
real robot. It uses a competitive attractor network to integrate
odometric information with landmark sensing to form a
consistent representation of the environment. Experimental
results show that RatSLAM can operate with ambiguous
landmark information and recover from both minor and major
path integration errors.
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1. INTRODUCTION

In order for a robot to navigate intelligently within a large
scale environment, it must possess a means of storing information
about past experience, and have the ability to use that information
to make decisions about suitable behavior. Over the past decade,
there has been considerable interest in solving this problem by
building an internal map of the environment, and navigating based
on estimates of localization taken from that map. This
methodology has come to be known as Simultaneous Localization
and Mapping — SLAM. Typical approaches involve the use of grid
representations [1], landmark representations [2] or topological
representations [3]. Each of these approaches typically have
complimentary strengths and weaknesses, and the search for a
good solution is the subject of much current research.

This work presents an entirely rew SLAM system, RatSLAM,
that has been derived from models of the hippocampal complex in
rodents, While the detailed models of the function and dynamics
of the rodent hippocampal complex remain the subject of debate,
there are areas of key agreement. Most notably, it is generally
agreed that rodents have place fields, patterns of neural activity
that correspond to locations in space. The place fields are
modulated by the activity of the rodent as it moves about, and also
by visual stimulus. This corresponds with the problem of
correlating odometric and range or vision sensors in a mobile
robot; the problem at the heart of SLAM. Place fields are not
grids: they do not form Cartesian representations of the
environment. Nor are place fields strictly topological: rodents are
able to interpolate between locations to find shorter paths,
indicating that the place fields have some properties of space.
Place fields are not related solely to visual landmarks either:
rodents can still navigate effectively in the dark [4]. The rodent
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hippocampal complex appears to use the properties of grid based,
topological and landmark representations to its advantage.

The RatSLAM system uses an approximate computational
model of the hippocampal complex based on competitive attractor
networks. This follows other recent computational models of the
rodent hippocampus which use competitive attractor networks as
the basis for the representation {5-7]. The packet {(or packets) of
activity in the competitive attractor network represent(s)} the
beliefis) of the robot with regard to its own pose. Movement of the
robot modulates the dynamics of the network, causing the activity
packet to change and hence update the pose estimate. Sensory cues
become associated with activity packets. Once the associations
between sensory cues and pose estimates are learnt, the sensory
cues will influence the position of the activity packet to update the
pose estimate of the robot.

By using a competitive attractor network structure, RatSLAM
builds a representation that is part grid and part topological.
Elements that are close in the network are likely to be close in
space, but the actual connectivity and sense of the network is
defined by the behavior of the robot between elements.
Furthermore, the system has one of the main strengths of landmark
based systems. RatSLAM can take ambiguous visual input and
maintain and propagate multiple pose hypotheses simultaneously.
Network dynamics allow these hypotheses to compete with each
other untif visual input during competition can strengthen the
belief in one or more of the possible pose hypotheses.

This paper proceeds with the following structure, The next
sectton (II) describes details of the RatSLAM architecture. Section
III gives details of the algorithms and equations that define the
activity of the competitive attractor network. Section IV describes
the experimental methodology used to investigate the properties of
RatSLAM when employed on a Pioneer 2-DXE. Section V
describes the results of the experiments, with brief conclusions
given in Section VL

II. THERATSLAM ARCHITECTURE

A, Overall System

Fig. 1 shows the basic model. The robot’s pose is represented
by the activity in a competitive attractor network called the pose
cells. 'Wheel encoder information is used to perform path
integration by injecting activity into the pose cells thereby shifting
the current activity packets. Vision information is converted into a
local view representation which if familiar, injects activity into the
particular pose cells that are associated with that specific local
view.
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Figure 1. Pose is represented by activity in the pose cells. This pose is
updated continually by path integration and local view activity input.
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B.  Pose Cells

The pose cells are implemented as a competitive attractor
network, a type of neural network that is destgned to converge toa
stable pattern of activation across its units. The network units can
be arranged in many configurations, but generally each unit will
excite units close to itself and inhibit those further away, which
leads to a clump of activity known as an activity packef eventually
dominating. Activity injected into the network near. this winning
packét will tend to move that packet towards it. Activity injected
far away from it will create another packet that competes with the
original. If enough activity is mjected the new packet can ‘win’
and the old packet disappear.

The RatSLAM system uses pose cells to concusrently
represent the belief(s) about the location and orientation of the
robot. The integration of location and orientation in a single
network differs significantly from other models of the rodent
hippocampus [8]. Experiments with real rodents have shown that
certain cells respond maximally when a rat is at a certain location
(place code cells) and that others respond when it is orientated in a
certain direction (head direction cells). These results have
prompted the use of separate competitive attractor networks for
place code (x,) and head direction (#). These systems have a
-fundamental limitation — they cannot represent and maintain
multiple beliefs in pose for any period of time. We have
previously illustrated this phenomenon in [9].

By representing (x,,f) in the same competitive attractor
network, the system can concurrently manage several pose beliefs
over time. We arrange the pose cells in an (x,p,4) arrangement for
case of visualization although there is no biological justification
for this sort of ordered arrangement. This arrangement also
. simplifies weight assignment for path integration.

C. Path Integration

Path integration is not meant to be strictly Cartesian; the
distance and bearing relationships between units has only been
partially funed to assist in visualisation and weight assignment
rather than to assist the function of the network. Each cell occupies
approximately 0.25m x 0.25m in area and approximately 9° in
bearing. The weighting of connections between units within the
pose cell network is described in Section IHI. The coarse nature of
the pose cell representation means that path integration based on
the pose cell network alone is far inferior to that achieved with
simple odometric integration. It is the topological properties, and
the relationship of pose to landmarks. that maintains consistency
and stability in the pose representation.

This research was made poss:ble in part by an Australian Research
Council (ARC) grant.

D. Local View

The robot’s camera and vision processing module can see
coloured cylinders and report the distance and relative bearing to
the cylinder, and associated uncertainties [10]. A three-
dimensional matrix of local view cells encodes the cylinder colour
(type), distance and bearing. Activated local view cells are
constantly being associated with the pose cells that are highly
activated at that time through strengthening of weighted
connections between them.

Although one of the visual parameters is distance to a cylinder,
there is no geometric interpretation of distance to a landmark in
our system. Rather in this scheme of artificial landmarks distance
to a landmark is used to distinguish seeing a cylinder one metre
away as constituting a different scene to seeing that same cylmdcr
three metres away.
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Figure 2. Tllustration of the local view network and pose cell network. Units
in the local view become associated with units in the pose cells through learnt
weighted connections beween the two networks.
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M. RATSLAM DYNAMICS .

This section describes the RatSLAM system in operation,
detailing the visual association, path integration and compefitive
attractor processes. The section progresses in the order in which
computation is performed.

A.  Visual Association Process

The visual association process is the key to maintaining
consistent representations of pose in the face of the inconsistent
representations that will arise from the coarse path integration
process. The connection strengths between the local view cells and
the pose cells are strengthened using Hebbian ieamning, by (1)
using the notation from Figure 2.

ﬁhl _ ﬂ

(g Rima)

+ 11 PV i (1)

(8 Kiwee)

The learning rate, #, is not critical in operation and was
arbitrarily set to 0.05. Since only a small percentage of all the
connections will have non-zero weights we encode these weights
in a sparse fashion, growing weights dynamically as they are
needed. Full connecﬁvity between the current implementation of
about 700 local view cells and 180000 pose cells would require
1.3 x 10® connections. However, during a one hour real world
experiment only about 800000 connections had non-zero weights
resulting in a significant saving in computation.

‘When a familiar scene is encountered the activated local view
cells project energy along these weighted connections into the
pose cells (2). The amount of energy projected from the local view

404



cells is limited by providing a hard limit on the change in each
pose cell unit, 7.
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The value of & was tuned to provide a balance between
maintaining the current pose estimate(s) and re-calibrating from
the vision system. Assign too little importance to visual calibration
and the robot is not able to recover from kidnapping or even
maintain localization. Assign too much importance and the
system cannot deal with the possibility of ambiguous visual input.
All experiments were conducted with ¢ = 0.0003.

B.  Path Integration

The path integration process projects the pose cell activity into
cells slightly offset from the currently activated ones. If the robot
is translating the activity is shified in the x,y plane; if the robot is
rotating activify is shifted in the @ direction. Under translation the
direction of movement of activity is dependent upon the position
of the cell in the @ direction. The magnitude of the movement in
the x,y plane is dependent on the translational velocity, v. The
movement along the # axis is dependent on the rotational velocity,
@. Equation (3) shows the energy imjected into each pose cell
comes from a group of pose cells offset by the integer amounts
dxg, dyp and 368y The amount of activity injected is based on the
product of the activity of the sending unit, P, and a residue
component, o. The residue component is spread over a 2x2x2
cube to account the quantization effects of the grid representation.
The residue is based on the fractional components of the offsets,
(s_'{f, éyfand 69}:
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C. Competitive Attractor Dynamics

After the visual and path integration processes, the pose cells
undergo the internal competitive attractor dynamic process. The
competitive attractor dynamics ensure that the total activity in the
pose cells remains constant. This is consistent with the
interpretation of the pose cells as a probability distribution of pose.
The activity packets located near each other move towards each
other, bringing together similar pose representations. Separated
activity packets representing multiple hypotheses of pose compete
with each other. Global inhibition means that without visual or
path integration input the activity will eventually stabilize to one
packet.

There are four stages to the internal dynamics:
1.  Excitatory update within each x,y layer,
2. Excitatory update between x,y layers,
3. Global inhibition of all cells, and
4. Normalization of pose cell activity.

1) Internal X-Y Layer Update
A two dimensional discrete Gaussian distribution was used to
create the excitatory weights, &. The weighted connections project
the activity from each cell P to all othet cells in the N, by N, layer.

N.\' Nl’
APy =2 Y & Yout)Pa )
a=05b=0 :
2) Inter-Layer Update
A one dimensional Gaussian distribution is used to form the
weights, 4, which cause excitation between layers. The field of
influence of a layer is about 45° (or two layers each side) — set by
7.

k+y
A‘R)‘k = ; 6c—k]}):]’c (5)
c=k-y

Connections between layers represent links between cells with
similar angular orientations. As such there is wraparound of
connections in the theta direction — the ‘top’ layer in Fig. 2. excites
both the layers directly below it and the layers at the ‘bottom’ of

the diagram.

3) Global Inhibition

Because multiple pose hypotheses (represented by multiple
activity packets) require time to compete and be reinforced by
further visual input, inhibition is relatively gentle and rival packets
can co-exist for significant periods of time. The level of inhibition
decreases as cell activation increases. The inhibition constant ¢
controls the level of global inhibition and is set to 0.004.
Activation levels are limited to non-negative values.

Py =max[By + olpp -max(®)}0]

4) Normalization
The last step is normalization which maintains the total
activation level after visual and path integration input at one.

pl = - P".;k
55
x=0 y=0 =0

An example of the competitive attractor dynamics in operation
is illustrated in Fig. 3. This figure shows two rival packets, where
one packet wraps around through the top of the theta axis.
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Figure 3. Snapshot of pose cell activity during an experiment. Note the
cutrent activity packet is smeared indicating that it is moving. The rival
activity packet here will not win unless it receives reinforcement from further
visual mpul

V. EXPERIMENTAL SETUP

RatSLAM has -been tested on a Pioneer2-DXE robot. The
robot carries a 400-MHz AMD Ké-2 processor that performs on
board processing of the vision-and interfaces with the motion
_ control system. A.1.1 GHz Pentium TII laptop runs the pose cell

network, interfacing over a wireless link. Using thls hardware all
- processes were updated every 200 mus.

* * “The main test arena was a carpeted corridor aréa in a campus
building, with dimensions of approximately 20m x 10m (Fig. 5).
The only modifications'made to the esivitonment were the addition
of cardboard boxes at exits to prevent the robot leaving the. test
“arena and the placement of coloured cylinders (Fig. 4). The
-coloured cylinders were used as arfificial landmarks, with the
vision system tuned to recognize rectangular areas of consistent
colour as landmarks [10]. The cylinders were consistently visible
" when between one and three metres away, with a distance
uncertainty of about 10%. Cylinders positioned with bright light
sources behind them (such as windows) were almost invisible to
. the robot from some orientations but seen easily from others.
" Rectangular patches of sunlight on the floor were sometimes
picked up as being cylinders and learnt as landmarks. The vision
" sensor was a forward-facing ccD camera w1th an effective field
of view of about 40°.

- Glass Door’

)

- - - Tables

Figure 4. Plan view of testing arena. Dott:ed lines indicate where cardboard

boxes have been used to block corridors. Cylinder locations are shown with |

exaggerated size. The colofs of the cylinders were red (R), green (G},
magenta (M) and blue (B).

Figure 5. Testing arena and Pioneer robot. The Pioneer is-equipped with a
ccd camera, wheel encoders and eight sonar sensors spread over the front half
of the robot. Coloured cylinders are used as artificial landmarks.

The robot performed wall following to circumnavigate the test
environment. Additional parallel behaviors included - obstacle
avoidance and homing on the cylinders. The tests were performed
during the day and as such there was a reasonable volume of
human traffic through the area. The robot sometimes had to go
around people who tried to obstruct it, and coped with obscured
landmarks or false landmarks generated by people in bnghtly
coloured pants.

The robot was not given any information about the layout of
the environment before the start of the test. Learning, recall and
map maintenance all occurred concurrently. There was no user
intervention during the tests, and no “phases” of learning in the
trial. All tests were of 40 minute duration.

V. REsuLTs

A.  Performance Indicators

RatSLAM does not produce strictly Cartesian representations
of the environment; rather it creates a topologically consistent
representation that has some Cartesian properties. Consequently,
performance indicators that ilustrate consistency rather than
Cartesian accuracy. have been developed to evaluate the
effectiveness of RatSLAM. The first of these indicators is
consistency in measured trajectory over time. Uncorrected
odometry from the robot gradually drifts in an unbounded fashion
over time — a successful test produces trajectories that remain
bounded. The second indicator is consistency in the perceived
location of the cylinders based on the robot’s localization in the
pose cells. If the robot is consistently localized then the landmark
position estimates should be tightly clustered.

B. Baseline Performance of Odome;‘ry

The initial tests recorded the baseline performance of the
odometry system using the Pioneer’s internal pose estimation.
Note that the interrial estimate is rof related to the RatSLAM path
integration process — RatSLAM is inherently noisy in its pose
estimates because of quantisation effects. The test illustrated in
Fig. 6 and Flg 7 shows that there is sngmﬁcant odometric drift
over the 40 minutes.of operation.
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Figure 7. Mapped cylinder positions based on uncorrected odometry only.

C. Unigue Landmarks

The first set of tests run using the RatSLAM system used
unique landmarks. The landmarks were unique in that each of the
four cylinders in the test arena were of a different colour. There
was still a level of ambiguity in the landmarks during this test
however. The cylinders look identical from any orientation,
meaning that a unique local view representation corresponds to a
helix of possible pose representations. This singularity is resolved
by the ability of the pose cells to account the context of the local
view with respect to the robot’s pose.

The results from an indicative test run are shown in Fig. 8 and
Fig. 9. In contrast to the unbounded drift in localisation seen in
Fig. 6, the RatSLAM system bounds the trajectories, as shown in
Fig. 8. Errors in path integration that were not corrected by visual
cues caused the robot to become lost (perhaps because the
cylinders were temporarily obscured by passers-by). However
once visual input was received the robot re-localized, as shown at
point A. The mapped cylinder positions in Fig. 9 show tight
clustering, which indicates that the robot maintained consistent
localisation throughout the test.

Figure 9. Mapped cylinder positions using RatSLAM — unique landmarks.

D.  Ambiguous Landmarks

In the second set of test runs, the landmark information was
further ambiguated by the use of two identical landmarks. The
magenta cylinder in Fig. 4 was replaced with a red cylinder. In this
test, the pose cells were required to maintain multiple pose
hypotheses over a period of time until one hypothesis could be
strengthened by evidence from a unique landmark.

The results from an indicative test run are shown in Fig. 10
and Fig. 11. The trajectory of the robot remains bounded in a
fashion similar to the tests with unique landmarks. The plot in Fig.
10 shows two clear cases of significant re-localization from path
integration errors. The system is, of course, continuously re-
localising in a less dramatic fashion. The errors at points B and C
were due to significant whee] slippage caused when the robot
clipped an obstacle. In both cases the robot was able to effectively
re-localize to a consistent location from visual cues. Fig. 11 also
shows tight clustering of the cylinder locations, indicating
consistent localization. The additional cluster that appears in the
top left comer came from a patch of sunlight that had similar
appearance to a blue cylinder. The system was able to use this
forther ambiguous feature to its advantage, rather than the feature
causing any degeneration in system function.
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Figure 10. RatSLAM trajectory with non-unique landmarks, Note the two
obvious relocalization jumps at B and C after the robot has travelled fora
while without visual input and built up a significant path integration error.

Figure 11. Mapped cylinder positions using RatSLAM — non-unique
landmarks. Note the comespondence with the cylinder positions in Fig. 4 and
the learnt cylinder at top left corresponding to a patch of sunlight.

- E. Discussion

The experiments have clearly shown that RatSLAM is able to
build consistent representations of its environment. Any consistent
and useful representation of the environment can be called a

“map”, so the system is clearly mapping even though the map does
not follow a strict Cartesian coherence. Furthermore, the robot is
able to localize itself with respect to the map in an incremental on-
line fashion. Consequently, it is clear that RatSLAM is performing
Simultaneous Localization and Mapping.

While this work shows that the RatSLAM hippocampal
model can perform SLAM, it opens questions in terms of
operation of the system in wider settings. There are issues in
computability of the large competitive attractor networks needed
to operate in larger environments. “Closing the loop” on large
circular arenas will be a good test of the topological properties of
the pose cell representation. Methods of using the map for goal
oriented behavior require investigation. Methods currently under
investigation follow the ideas of a *“cognitive map” [4]. In other
work, we propose to replace the cylinder landmark local view
system with a system inspired by hierarchical models of the visual

cortex in mammals. It is intended then to perform SLAM in an
unmedified indoor environment.

VI. CONCLUSION

RatSLAM captures the benefits of mapping and localization
using a model of the rodent hippocampus. The pose cell
representation at the heart of RatSLAM captures the benefits of
grid-based, topological and landmark based representations, giving
the robot a sense of space that is not rigidly tied to a Cartesian
grid. The system has been shown, by experimentation on a real
robot, to create consistent representations of its environment in an
on-line incremental fashion without wuser intervention.
Furthermore, RatSLAM can resolve ambiguous landmark data,
even when subject to large odometric errors.
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