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Abstract- The paper presents a new approach to the problem of 
Simultaneous Localization and Mapping - SLAM - inspired by 
computational models of the hippocampus of rodents. The rodent 
hippocampus bas been extensively studied with respect to 
navigation tasks, and displays many of the properties of a 
desirable SLAM solution. RatSLAM is an implementation of a 
hippocampal model that can perform SLAM in real time on a 
real robot. It uses a competitive amactor network to integrate 
odometric information with landmark sensing to form a 
consistent representation of the environmeut Experimental 
results show that RatSLAM can operate with ambiguous 
landmark information and recover from both minor and major 
path integration errors. 

Keyworh4LAM: hippocampus: mobile robof: 

I. hTRODUCTION 

In order for a robot to navigate intelligently within a large 
scale environment, it must possess a means of storing infomation 
about past experience, and have the ablity to use that infomation 
to make decisions about suitable behavior. Over the past decade, 
there has been considerable interest in solving this problem by 
building an internal map of the environment, and navigating based 
on estimates of localization taken 60m that map. This 
methodology has come to be known as Simultaneous Localization 
and Mapping - SLAM. Typical approaches involve the use of grid 
representations [I], landmark representations [2] or topological 
representations [3]. Each of these approaches typically have 
complimentary strengths and weaknesses, and the search for a 
good solution is the subject of much current research. 

This work presents an entirely new SLAM system, RatSLAM, 
that has been derived 60m models of the hippocampal complex in 
rodents. While the detailed models of the function and dynamics 
of the rodent hippocampal complex remain the subject of debate, 
there me areas of key agreement. Most notahly, it is generally 
agreed that rodents have place fields, patterns of neural activity 
that correspond to locations in space. The place fields are 
modulated by the activity of the rodent as it moves about, and also 
by visual stimulus. This corresponds with the problem of 
correlating odometric and range or vision sensors in a mobile 
robot; the problem at the heart of SLAM. Place fields are not 
grids: they do not form Cartesian representations of the 
environment. Nor are place fields strictly topological: rodents are 
able to interpolate between locations to fmd shorter paths, 
indicating that the place fields have some properties of space. 
Place fields are not related solely to visual landmarks either: 
rodents can still navigate effectively in the dark [4]. The rodent 

hippocampal complex appears to use the properties of grid based, 
topological and landmark representations to its advantage. 

The RatSLAM system uses an approximate computational 
model of the hippcampal complex based on competitive attractor 
networks. This follows other recent computational models of the 
rodent hippocampus which use competitive amactor networks as 
the basis for the representation [5-7]. The packet (or packets) of 
activity in the competitive amactor network represent@) the 
belie@) of the robot with regard to its own pose. Movement of the 
robot modulates the dynamics of the network, causing the activity 
packet to change and hence update the pose estimate. Sensory cues 
become associated with activity packets. Once the associations 
between sensory cues and pose estimates are learnt, the sensory 
cues will influence the position of the activity packet to update the 
pose estimate ofthe robot. 

By using a competitive amactor network sl~ctnre,  RatSLAM 
builds a representation that is part grid and part topological. 
Elements that are close in the network are likely to be close in 
space, but the actual connectivity and sense of the network is 
defmd by the behavior of the robot between elements. 
Furthermore, the system has one of the main strengths of landmark 
based systems. RatSLAM can take ambiguous visual input and 
maintain and propagate multiple pose hypotheses simultaneously. 
Network dynamics allow these hypotheses to compete with each 
other until visual input during competition can strengthen the 
belief m one or more of the possible pose hypotheses. 

This paper proceeds with the following structure. The next 
section @) describes details of the RatSLAM architecture. Section 
III gives details of the algorithms and equations that define the 
activity of the competitive attractor network Section N describes 
the experimental methodology used to investigate the properties of 
RatSLAM when employed on a Pioneer 2-DXE. Section V 
describes the results of the experiments, with brief conclusions 
given in Section VI. 

11. THE RATSLAM ARCHITECTURE 

A. Overall System 
Fig. 1 shows the basic model. The robot’s pose is represented 

by the activity in a competitive amactor network called the pose 
cells. Wheel encoder information is used to perform path 
integration by injecting activity into the pose cells thereby shifting 
the current activity packets. Vision information is converted into a 
local view representation which if familiar, injects activity into the 
particular pose cells that are associated with that specific local 
view. 
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B. Pow Cells 
The pose cells arc implemented aq a competitive smactor 

network, a t y p  of neural network that is designed to converge to a 
stable pattern of activation across its units. Thc network units can 
be m g e d  in many configurations, but generally each unit will 
excite units close to itself and inhibit thosc further away, which 
leads tu a dump of actlnty h o r n  as an activi(vpackef eventually 
dominating. Activity injected into the network near this winning 
packct will tend to move that packct towards it. Activity injected 
far away from it will ma te  another packet that compctcs with the 
original. If enough activity is mjected the new packet can 'wm' 
and the old packct disappear. 

The RatSLAM system uses pose cells to concurrently 
represent the belieqs) about the location and orientation of the 
robot. The inteption of location and orientation in a smglc 
network &Ken st@cantly from other models of the rodent 
hippocampus [SI. Expenments with real rodcnts have shown that 
certain cells respond maximally whm a rat is at a certain location 
(place code cells) and that others rcspond u,hm it is oricntatcd in a 
cemm duection (head direction cells). These results have 
prompted the use of separate competitive atwctor networks for 
place code (x,v) and head direction (0). These systems have a 
fundamental limitation - they cannot represent and maintain 
multiple beliefs in pose for any pcriod of time. We have 
previously illuslralcd this phenomenon in [9]. 

By representing (x,v.o) in the same competitive attractor 
network, the system can concurrently manage several pose beliefs 
over time. We arrange the posc cells in an (xy.4 arrangment for 
case of nsualiwtion although there is no biolugical ju~tifica~on 
for tlus sori of ordered arrangement. Thls arrangement also 
simplifies weight assignment for path integration. 

C. Path Integration 
Path integration is not meant to be stnctly Cartesian: the 

distance and beanng relatlonships between units has only b e n  
partially tuned to assist in visualisation and weight assignment 
rather than to assist the function of the network. Each cell occupies 
approximately 0 25m x 0 2Sm in arca and approximately 9' in 
beanng. Thc weighting of connections benvan units within the 
pose cell network is described in Section In. The coarsc nature of 
the pose cell representation means that path integration based on 
the pose cell network alone is far inferior to that achieved with 
simple odumetnc mtegratton. It is the topolugd properties, and 
the relationship of pose to landmarks that mmtains consistency 
and stability in the pose repmentation. 

D. Local View 
The robot's camera and vision processing module can see 

coloured cylinders and report the distance and relative bearing to 
the cylinder, and associated uncertainties [lo]. A three- 
dimensional matrix of local view cells encodes the cylinder colour 
(type), distance and bearing. Activated local view cells are 
constantly being associated with the pose cells that are highly 
activated at that time through strengthening of weighted 
connections between them. 

Although one of the visual parameters is distance to a cyliider, 
there is no geometric interpretation of distance to a landmark in 
our system. Rather in this scheme of artificial landmarks distance 
to a landmark is used to distinguish seeing a cylinder one metre 
away as constituting a different scene to seeing that same cylinder 
three metres away. 

Figure 2. IllWmtion of the 1-1 view nemo& and pose cell network Units 
in the local view become associated with units in the pose eelb through 1-1 

weighled connectlonr beween the two network. 

III. RATSLAM D Y N ~ C S  
This section describes the RatSLAM system in operation, 

detailing the visual association, path integration and competitive 
attractor processes. The section progresses in the order in which 
computation is performed 

A. Visual Associafion Process 
The visual association process is the key to maintaining 

consistent representations of pose in the face of the inconsistent 
representations that will arise h m  the coarse path integration 
process. The connection strengths between the local new cells and 
the pose cells are strengthened using Hebbian learning, by (1) 
using tbe notation h m  Figure 2. 

The learning rate, 11, is not critical in op&tion and was 
arbitrarily set to 0.05. Since only a small percentage of all the 
C O M ~ C ~ ~ O ~ S  will have non-zero weights we encode these weights 
in a sparse fashion, growing weights dynamically as they are 
needed. Full connectivity between the current implementation of 
about 700 local view cells and 180000 pose cells would require 
1.3 x 10' connections. However, during a one hour real world 
experiment only a b u t  800000 connections had non-zero weights 
resulting in a s i m c a n t  saving in computation. 

when a familiar scene is encountered the activated local view 
cells project energy along these weighted connections into the 
pose cells (2). The amount of energy projected from the local view 

nseanb WBI made possible in p a i  by an Aushalian Research 
council (ARC) grant. 
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cells is limited by providing a hard limit on the change in each 
pose cell unit, U. 

The value of U was tuned to provide a balance between 
maintaining the current pose estimate(s) and re-calibrating fiom 
the vision system. Assign too little importance to visual calibration 
and the robot is not able to recover fiom kidnapping or even 
maintain localization. Assign too much importance and the 
system cannot deal with the possibility of ambiguous visual input. 
All experiments were conducted with U = 0.0003. 

B. Paih Iniegration 
The path integration process projects the pose cell activity into 

cells slightly offset h m  the currently activated ones. If the robot 
is translating the activity is shifted in the x y  plane; if the robot is 
rotating activity is shifted in the e direction. Under translation the 
direction of movement of activity is dependent upon the position 
of the cell in the 0 direction. The magnitude of the movement in 
the x y  plane is dependent on the translational velocity, v. The 
movement along the 0 axis is dependent on the rotational velocity, 
0. Equation (3) shows the energy injected into each pose cell 
comes &om a group of pose cells offset by the integer amounts 
axo, ayo and Sf?, The amount of activity injected is based on the 
product of the activity of the sending unit, P, and a residue 
component, a. The residue component is spread over a 2 x 2 ~ 2  
cube to account the quantization effects of the grid representation. 
The residue is based on the hctional components of the offsets, 
ax, 6y,and ae, 

C. Competiiive Attracior Dynamics 
After the visual and path integration processes, the pose cells 

undergo the internal competitive attractor dynamic process. The 
competitive a k c t o r  dynamics ensure that the total activity in the 
pose cells remains constant This is consistent with the 
interpretation of the pose cells as a probability dishibution of pose. 
The activity packets located near eacb other move towards each 
other, bringing together similar pose representations. Separated 
activity packets representing multiple hypotheses of pose compete 
with each other. Global inhibition means that without visual or 
path integration input the activity will eventually stabilize to one 
packet. 

There are four stages to the internal dynamics: 

1. 

2. Excitatory update betweenxy layers, 

3. Global inhibition ofall cells, and 

4. Normalization ofpose cell activity. 

Excitatory update within each x y  layer, 

I )  IniemalX-YLayer Updaie 
A two dimensional discrete Gaussian dishibution was used to 

create the excitatory weights, E. The weighted connections project 
the activity fiom each cell P to all other cells in the N, by N, layer. 

(4) 

2) Inter-Layer Updaie 
A one dimensional Gaussian distribution is used to form the 

weights, 6, which cause excitation between layers. The field of 
influence of a layer is about 45" (or two layers each side) -set by 
Y. 

( 5 )  . .. , 
Connections between layers represent links between cells with 

similar angular orientations. As such there is wraparound of 
connections in the theta direction - the 'top' layer in Fig. 2. excites 
both the layers directly below it and the layers at the 'bottom' of 
the diagram. 

3) Global Inhibition 
Because multiple pose hypotheses (represented by multiple 

activity packets) require time to compete and be reinforced by 
further Visual input, inhibition is relatively gentle and rival packets 
can co-exist for sificaut periods of time. The level of inhibition 
decreases as cell activation increases. The inhibition cons!nnt (o 

controls the level of global inhibition and is set to 0.004. 
Activation levels are limited to non-negative values. 

f $ l  = max[$k +q(I$ -max(P))O] (6)  
4) Normalization 

The last step is normalization which maintains the total 
activation level after visual and path integration input at one. 

,.l r.. ik 

(7) 

x=oy=o i=o 

An example of the competitive attractor dynamics in operation 
is illustrated in Fig. 3. This figure shows two rival packets, where 
one packet wraps around through the top of the theta axis. 
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Figure 3. Snapshot ofposc cell activity during an experimsnt. Note the 
current activity packet U smeared indicating that it is moving. The rival 

activify packet here wil l  not win unless it receives reinforcement from huther , 

visual input. 

IV. EXPERIMENTALSETW 
RatSLAM has -been tested on a Pioneer2-D& robot. The 

robot carries a 40O-MHz AMD K6-2 processor that performs on 
board processing of the visioo~and interfaces with the motion 

. . control system. A 1.1 GHz Pentium III laptop runs the pose cell 
network, interfacing over a wireless li+ Using this hardware all 

- 

. 'The main test arena was a carpeted corridor aria in acampus 
bdding, with dimensions of approximately 2Om x 1Om (Fig. 5). 
The only mcdifigtions made to the eivironment were the addition 
of cardboard boxes at exits to prevent the robot leaving the test 

'arena and the placement of coloured cyh&rs (Fig. 4). The 
coloured cylinders were used as artificial landmarks, with the 
vision system tuned to <ecopnize reaangular areas of consistent 
colour as landmarks [IO]. The cylinders were consistently visible 
when between one and tbree metres away, with- a distance 
uncertainty of about 10%. Cylinders position4 with bright light 
sources behind them (such as windows) were almost invisible to 

. the robot h m  some ori.entations but seen easily from others. 
Rectangular patches of sunlight on the floor were sometimes 
picked up as being cylinders ,and learnt as landmarks. The vision 
sensor was a foxward-facing CCD cam'era With an effective field 
of view of about 40'. 

. ~~ - processes were updated every 200 ms. 

~. 

' 

. 

Glass Door 

Rgure 4. Plm YIW of tntmg arm% Dotted Imes ~ndmte whne cardboard 
bares have been used to block corndon Cylmder locanons arc shown mlh 

exaggerated w e  The colon ofthe cylrndol  we^ red (RI. grm (G), 
magenta M and blue (U) 

Figure 5. Teshg arem and Pioneer robot. The Pioneer h equipped with a 
ccd camera, wheel mcdm and eight sonar sensors spread over the front half 

of lhc robot. Colound Eyliodm are used BS artificial landmarks. 

The robot performed wall following to,circumnavigate the test 
environment. Additional parallel behaviors included obstacle 
avoidance and homing on the cyhders. The tests were performed 
during the day and as such there was a reasonable volume of 
buman traffic through the area. The robot sometimes had to go 
around people who tried to obstruct it, and coped with obscured 
landmarks or false landmarks generated by people in brightly 
coloured pants. 

The robot was not given any information about the layout of 
the environment before the start of the test. Learning, recall and 
map maintenance all occurred concurrently. There was no user 
intervention during the tests, and no "phases" of learning in the 
trial. All tests were of 40 minute duration. 

v. -kESULTS 

A. Pe6ormance Indicators 
RatSLAM does .not produce strictly Cartesian representations 

of the environment; rather it creates a toplogic+lly consistent 
representation that bas some Cartesian properties. Consequintly, 
performance indicators that illustrate consistency rather than 
Cartesian accuracy~ have been developed to evaluate the 
effectiveness of RatSLAM. The first of these indicators is 
consistency measured trajectory over time. Uncorrected 
cdomehy froni the robot gradually drih in an unbounded fashion 
over time - a successful test produces irajectories that remain 
bounded. The second indicator is consistency in the perceived 
location of the cylinders based on the robot's localization in the 
pose cells. If the robot is consistently localized then the landma& 
position estimates should be tightly clustered. 

B. Baseline Peformancebf Odornehy 
The initial tests recorded the baseline performance of the 

odomehy system using the Pioneer's internal pose estimation 
Note that the interrial estimate is nor related to the RatSLAM path 
integration process - RatSLAM is inherently noisy in its pose 
estimates because of quantisation effects. The test illustrated in 
Fig. 6 and Fig. 7 shows that there is significant odometric drift 
over the 40 minutes of operation. 
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Figure 7. Mapped sylindsr positions bared on mcomcted odomstry only. 

C. Unique Landmarks 
The fmt set of tests run using the RatSLAM system used 

unique landmarks. The landmarks were unique in that each of the 
four cylinders in the test arena were of a different colour. There 
was Still a level of ambiguity in the landmarks during this test 
however. The cylinders look identical from any orientation, 
meaning that a unique local view representation corresponds to a 
helix of possible pose representations. This singularity is resolved 
by the ability of the pose cells to account the context of the local 
view with respect to the robot's pose. 

The results €rom an indicative test run are shown in Fig. 8 and 
Fig. 9. In contrast to the unbounded drifl in localisation seen in 
Fig. 6, the RatSLAM system bounds the trajectories, as shown in 
Fig. 8. Errors in path integration that were not corrected by visual 
cues caused the robot to become lost (perhaps because the 
cylinders were temporarily obscured by passers-by). However 
once visual input was received the robot re-localized, as sbown at 
point A. The mapped cylinder positions in Fig. 9 show tight 
clustering, which indicates that the robot mainiained consistent 
localisation throughout the test. 

Figure 8. FatSLAM trajectory - unique landmarks. 
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Fi- 9. Ma@ cylinder positions using R a t S W  - unique landmarb. 

D. Ambiguous Lonmnrrrkr 
In the second set of test NIIS, the landmark information was 

further amhiguated by the use of two identical landmarks. The 
magenta cylinder in Fig. 4 was replaced with a red cylinder. In this 
test, the pose cells were required to maintain multiple pose 
hypotheses over a period of time until one hypothesis could be 
strengthened by evidence €room a unique landmark. 

The results €room an indicative test run are shown in Fig. 10 
and Fig. 11. The trajectory of the robot remains bounded in a 
fashion similar to the tests with unique landmarks. The plot in Fig. 
10 shows two clear cases of significant re-localization from path 
integration errors. The system is, of course, continuously re- 
localising in a less dramatic fashion. The errors at points B and C 
were due to significant wheel slippage caused when the robot 
clipped an obstacle. In both cases the robot was able to effectively 
re-localize to a consistent location from visual cues. Fig. 11 also 
shows tight clustering of the cylinder locations, indicating 
consistent localization. The additional cluster that appears in the 
top lefl corner came from a patch of sunlight that had similar 
appearance to a blue cylinder. The system was able to use this 
further ambiguous feature to its advantage, rather than the feature 
causing any degeneration in system function. 
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Figure IO. RatSLAM trajectory with non-unique landmarks. Note the two 
obvious reloedition jump at B and C aftcr the robot tm hwelled for a 
while without Visual input and built up a sigaificant path integmtion emr. 
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Figure 11. Mapped cylinder positions using RatSLAM - nobunique 
landmarb. Note the eomspmdenes with the cylinder positions in Fig. 4 and 

the lcamt cylinder at top lefl c-spading to a patch of sunlight 

E. Discussion 
The experiments have clearly shown that RatSLAM is able to 

build consistent representations of its environment. Any consistent 
and useful representation of the environment can be called a 
'bap'', so the system is clearly mapping even though the map does 
not follow a strict Cartesian coherence. Furthermore, the robot is 
able to localize itself with respect to the map in an incremental on- 
line fashion. Consequently, it is clear that RatSLAM is performing 
Simultaneous Localization and Mapping. 

While this work shows that the RatSLAM hippocampal 
model can perform SLAM, it opens questions in terms of 
operation of the system in wider seitings. There are issues in 
computability of the large competitive amactor networks needed 
to operate in larger environments. "Closing the loop" on large 
circular arenas will a good test of the topological properties of 
the pose cell representation. Methods of using the map for goal 
oriented behavior require investigation. Methods cu~~ently under 
investigation follow the ideas of a "cognitive map" [4]. In other 
work, we propose to replace the cylinder landmark local view 
system with a system inspired by hierarchical models of the visual 

cortex in mammals. It is intended then to perform SLAM in an 
unmodified indoor environment. 

VI. CONCLUSION 

RatSLAM captures the benefits of mapping and localization 
using a model of the rodent hippocampus. The pose cell 
representation at the heart of RatSLAM captures the benefits of 
grid-based, topological and landmark based representations, giving 
the robot a sense of space that is not rigidly tied to a Cartesian 
grid. The system has been shown, by experimentation on a real 
robot, to create consistent representations of its environment in an 
on-line incremental fashion without user intervention. 
Furthermore, RatSLAh4 can resolve ambiguous landmark data, 
even when subject to large odometric errors. 
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