
INTERNALS
lHf NfW fHONllfHS

. URESH VAHALIA

UNIX Internals

The New Frontiers

UNIX Internals

The New Frontiers

Uresh Vahalia
EMC Corporation
Hopkinton, MA

An Alan R. Apt Book

Prentice Hall
Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Vahalia, Uresh.
UNIX internals : the new frontiers I Uresh Vahalia.

p. em.
Includes index.
ISBN 0-13-101908-2
I. UNIX (Computer file) 2. Operating systems (Computers)

I. Title.
QA76.76.063V33 1996 95-25213
005.4'3--dc20 CIP

Acquisitions editor: Alan Apt
Editorial assistant: Shirley McGuire
Editorial/production supervision: Spectrum Publisher Services
Full service coordinator: Irwin Zucker
Buyer: Donna Sullivan
Cover designer: Joseph Sengotta
Cover illustrator: Don Martineti
Cover art director: Amy Rosen

UNIX is a registered trademark licensed exclusively by X/Open Co., Ltd. Sun OS and Solaris are registered
trademarks of Sun Microsystems, Inc. Digital UNIX is a trademark of Digital Equipment Corporation.
Other designation used by vendors as trademarks to distinguish their products may appear in this book. In
all cases where the publisher is aware of a current trademark claim, the designations have been printed in
initial capitals or all capitals.

It· =- © 1996 by Prentice-Hall, Inc. = Simon & Schuster/A Viacom Company
- Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The
author and publisher make no warranty of any kind, expressed or implied, with regard to these programs
or the documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or
use of these programs.

Printed in the United States of America

10 9 8 7 6 5

ISBN 0-13-101908-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To Bhinna, whose memory will be forever in my heart,

to Rohan, for his laughter and enthusiasm,

and to Archana, for her love and encouragement.

Foreword

Peter H. Salus
Managing Editor-Computing Systems

There are more flavors of UNIX than of most brands of ice cream. Despite the industrial impetus on
the part of X/ Open and its members, the single UNIX specification appears to be ever-further from
our grasp. In fact, it may not be an important goal. Ever since Interactive Systems produced the first
commercial UNIX system and Whitesmiths produced the first UNIX clone, the user community has
been confronted by a variety of implementations running on multiple platforms.

Created in 1969, UNIX was not even a decade old when versions began to proliferate. Be
fore it was 20 years old, there were rival consortia! (the Open Software Foundation and UNIX Inter
national) and a large number of versions. The two main streams were those of AT&T (now Novell)
and the University of California at Berkeley. Descriptions of those UNIXes were made easily avail
able by Maurice Bach [Bach 86] and Sam Leffler, Kirk McKusick, Mike Karels, and John Quarter
man [Leff89].

No single book offered the interested student a view of the UNIX Operating System's vari
ous implementations. Uresh Vahalia has now done this. He has gone boldly where none have gone
before and elucidated the internals of SVR4, 4.4BSD, and Mach. Even more, he presents elaborate
discussions of both Solaris and SunOS, Digital UNIX, and HP-UX.

He has done so clearly and without the bias that some writers have displayed toward this
UNIX or that. With relatively new UNIX clones such as Linux already developing variants and even
Berkeley derivatives diverging from one another, a book like this, which exposes the internals and
principles that motivated UNIX's growth and popularity is of exceptional value.

On June 12, 1972, Ken Thompson and Dennis Ritchie released the UNIX Programmer's
Manual, Second Edition. In its Preface the authors remark: "The number of UNIX installations has
grown to 1 0, with more expected." They could never have expected what has actually happened.

Vll

viii Foreword

I have traced the paleontology and history of the system elsewhere [Salu 94], but Vahalia
has given us a truly original and comprehensive view of the comparative anatomy of the species.

References

[Bach 86]

[Leff89]

[Salu 94]
[Thorn 72]

Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood
Cliffs, NJ, 1986.
Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and
Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, Reading,
MA, 1989.
Salus, P.H., A Quarter Century of UNIX, Addison-Wesley, Reading, MA, 1994.
Thompson, K., and Ritchie, D.M., UNIX Programmer's Manual, Second Edition,
Bell Telephone Laboratories, Murray Hill, NJ, 1972.

Preface

Since the early 1970s, the UNIX system has undergone considerable metamorphosis. It started as a
small, experimental operating system distributed freely (almost) by Bell Telephone Laboratories to
a growing band of loyal followers. Over the years, it absorbed contributions from numerous mem
bers of academia and industry, endured battles over ownership and standardization, and evolved into
its current state as a stable, mature operating system. Today there are several commercial and re
search variants of the UNIX system, each different from the other in many respects, yet all similar
enough to be recognizable as different members of the same family. A UNIX programmer who has
gained experience on one specific UNIX system can be productive on a number of different hard
ware platforms and UNIX variants without skipping a beat.

Hundreds of books have described various features of the UNIX system. Although most of
them describe user-visible aspects such as the command shell or the programming interface, only a
small number of books discuss UNIX internals. UNIX internals refers to a study of the UNIX ker
nel, which comprises the heart of the operating system. To date, each book on UNIX internals has
focused on one specific UNIX release. Bach's The Design of the UNIX Operating System [Bach 86]
is a landmark book on the System V Release 2 (SVR2) kernel. Leffler et al.'s The Design and Im
plementation of the 4. 3BSD UNIX Operating System [Leff 88] is a comprehensive description of the
4.3BSD release by some of its principal designers. Goodheart and Cox's The Magic Garden Ex
plained [Good 94] describes the internals of System V Release 4.0 (SVR4).

Design Perspectives

This book views the UNIX kernel from a system design perspective. It describes a number of main
stream commercial and research UNIX variants. For each component of the kernel, the book ex
plores its architecture and design, how the major UNIX systems have chosen to implement the

IX

X Preface

component, and the advantages and drawbacks of alternative approaches. Such a comparative treat
ment gives the book a unique flavor and allows the reader to examine the system from a critical
viewpoint. When studying an operating system, it is important to note both its strengths and its
weaknesses. This is only possible by analyzing a number of alternatives.

UNIX Variants

Although this book gives most attention to SVR4.2, it also explores 4.4BSD, Solaris 2.x, Mach, and
Digital UNIX in detail. Further, it describes interesting features of a number of other variants, in
cluding some research that has not yet made it into commercial releases. It analyzes the major de
velopments in UNIX from the mid-1980s to the mid-1990s. For completeness it includes a brief de
scription of traditional UNIX functionality and implementation. Where necessary, it provides an
historical treatment, starting with the traditional approach, analyzing its drawbacks and limitations,
and presenting the modem solutions.

Intended Audience

UNIX Internals is useful for university courses and as a professional reference. As a university text,
it is suitable for an advanced undergraduate or graduate course on operating systems. It is not an in
troductory book and assumes knowledge of concepts such as the kernel, processes, and virtual
memory. Each chapter contains a set of exercises designed to stimulate further thought and research,
and to provide additional insight into the system design. Many of the exercises are open-ended, and
some require additional reading on the part of the student. Each chapter also has an exhaustive list
of references, which should be useful for the student seeking to explore further.

UNIX Internals is also suitable as a professional reference for operating system developers,
application programmers, and system administrators. Operating system designers and architects can
use it to study the kernel architecture in contemporary systems, evaluate the relative merits and
drawbacks of different designs, and use the insight to develop the next generation of operating sys
tems. Application programmers can use the knowledge of the system internals to write more effi
cient programs that take better advantage of the characteristics of the operating system. Finally,
system administrators can do a better job of configuring and tuning their systems by understanding
how various parameters and usage patterns affect the system behavior.

Organization of the Book

Chapter 1, "Introduction," traces the evolution of the UNIX system and analyzes the factors that
have influenced major changes in the system. Chapters 2 through 7 describe the process subsystem.
In particular, Chapter 2 describes the process and kernel architecture in traditional UNIX systems
(SVR3, 4.3BSD, and earlier variants). Chapters 3 through 7 describe features of modem UNIX sys
tems such as SVR4, 4.4BSD, Solaris 2.x, and Digital UNIX. Chapter 3 discusses threads and how
they are implemented in the kernel and in user libraries. Chapter 4 describes signals, job control,

Preface xi

and login session management. Chapter 5 describes the UNIX scheduler and the growing support
for real-time applications. Chapter 6 deals with interprocess communications (IPC), including the
set of features known as System V IPC. It also describes the Mach architecture, which uses IPC as
the fundamental primitive for structuring the kernel. Chapter 7 discusses the synchronization
frameworks used in modem uniprocessor and multiprocessor systems.

The next four chapters explore file systems. Chapter 8 describes the file system interface as
seen by the user, and the vnode/vfs interface that defines the interactions between the kernel and the
file system. Chapter 9 provides details of some specific file system implementations, including the
original System V file system (s5fs), the Berkeley Fast File System (FFS), and many small, special
purpose file systems that take advantage of the vnode/vfs interface to provide useful services.
Chapter 10 describes a number of distributed file systems, namely Sun Micro systems' Network File
System (NFS), AT&T's Remote File Sharing (RFS), Carnegie-Mellon University's Andrew File
System (AFS), and Transarc Corporation's Distributed File System (DFS). Chapter II describes
some advanced file systems that use joumaling to provide higher availability and performance, and
a new file system framework based on stackable vnode layers.

Chapters I2 through I5 describe memory management. Chapter 12 discusses kernel memory
allocation and explores several interesting allocation algorithms. Chapter 13 introduces the notion of
virtual memory and uses the 4.3BSD implementation to illustrate several issues. Chapter 14 de
scribes the virtual memory architecture of SVR4 and Solaris. Chapter 15 describes the Mach and
4.4BSD memory models. It also analyzes the effects of hardware features such as translation look
aside buffers and virtually addressed caches.

The last two chapters address the 1/0 subsystem. Chapter 16 describes the device driver
framework, the interaction between the kernel and the 1/0 subsystem, and the SVR4 device driver
interface/driver kernel interface specification. Chapter 17 talks about the STREAMS framework for
writing network protocols and network and terminal drivers.

Typographical Conventions

I have followed a small set of typographical conventions throughout this book. All system calls, li
brary routines, and shell commands are in italics (for instance,fork, fopen, and ls -l). The first oc
currence of any term or concept is also italicized. Names of internal kernel functions and variables,
as well as all code examples, are in fixed-width font, such as ufs _1 ookup (). When specifying the
calling syntax, the system call name is italicized, but the arguments are in fixed-width font. Finally,
all file and directory names are in bold face (for instance, /etc/passwd). In the figures, solid arrows
represent direct pointers, whereas a dashed arrow implies that the relationship between the source
and destination of the arrow is inferred indirectly.

Despite my best efforts, some errors are inevitable. Please send me all corrections, com
ments, and suggestions by electronic mail at vahalia@acm.org.

xii Preface

Acknowledgments

A number of people deserve credit for this book. First of all, I want to thank my son, Rohan, and my
wife, Archana, whose patience, love, and sacrifice made this book possible. Indeed, the hardest
thing about writing the book was justifying to myself the weekends and evenings that could have
been spent with them. They have shared my travails with a smile and have encouraged me every
step of the way. I also thank my parents for their love and support.

Next, I want to thank my friend Subodh Bapat, who gave me the confidence to undertake
this project. Subodh has helped me maintain focus throughout the project and has spent countless
hours advising, counseling, and encouraging me. I owe him special thanks for access to the tools,
templates, and macros used for his book, Object-Oriented Networks [Bapa 94], for his meticulous
reviews of my drafts, and for his lucid discourses on writing style.

A number of reviewers contributed an incredible amount of their time and expertise to im
prove the book, going through several drafts and providing invaluable comments and suggestions. I
want to thank Peter Salus, for his constant encouragement and support, and Benson Marguiles,
Terry Lambert, Mark Ellis, and William Bully for their in-depth feedback on the content and or
ganization of my work. I also thank Keith Bostic, Evi Nemeth, Pat Parseghian, Steven Rago, Margo
Seltzer, Richard Stevens, and Lev Vaitzblit, who reviewed parts of my book.

I want to thank my manager, Percy Tzelnic, for his support and understanding throughout
my project. Finally, I want to thank my publisher Alan Apt, both for proposing the book and for
helping me at every stage, and the rest of the team at Prentice-Hall and at Spectrum Publisher Serv
ices, in particular, Shirley McGuire, Sondra Chavez, and Kelly Ricci, for their help and support.

References

[Bach 86]
[Bapa 94]
[Good 94]

[Leff89]

Bach, M.J ., The Design of the UNIX Operating System, Prentice-Hall, 1986.
Bapat, S.G., Object-Oriented Networks, Prentice-Hall, 1994.
Goodheart, B., and Cox, J., The Magic Garden Explained-The Internals of UNIX
System V Release 4, An Open Systems Design, Prentice-Hall, 1994.
Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and
Implementation of the 4. 3 BSD UNIX Operating System, Addison-Wesley, 1989.

Contents

1 INTRODUCTION 1

1.1 Introduction 1
1.1.1 A Brief History 2
1.1.2 The Beginning 2
1.1.3 Proliferation 3
1.1.4 BSD 4
1.1.5 System V 5
1.1.6 Commercialization 5
1.1.7 Mach 6
1.1.8 Standards 6
1.1.9 OSF and UI 7
1.1.10 SVR4 and Beyond 8

1.2 The Mandate for Change 8
1.2.1 Functionality 9
1.2.2 Networking 9

xiii

xiv Contents

1.2.3 Performance 10
1.2.4 Hardware Changes 10
1.2.5 Quality Improvement 11
1.2.6 Paradigm Shifts 11
1.2.7 Other Application Domains 12
1.2.8 Small is Beautiful 12
1.2.9 Flexibility 13

1.3 Looking Back, Looking Forward 14
1.3.1 What was Good about UNIX? 14
1.3.2 What is Wrong with UNIX? 15

1.4 The Scope of this Book 16

1.5 References 17

2 THE PROCESS AND THE KERNEL 19

2.1 Introduction 19

2.2 Mode, Space, and Context 22

2.3 The Process Abstraction 24
2.3.1 Process State 25
2.3.2 Process Context 26
2.3.3 User Credentials 27
2.3.4 The u Area and the proc Structure 28

2.4 Executing in Kernel Mode 30
2.4.1 The System Call Interface 31
2.4.2 Interrupt Handling 31

2.5 Synchronization 33
2.5.1 Blocking Operations 35
2.5.2 Interrupts 35
2.5.3 Multiprocessors 37

2.6 Process Scheduling 37

2.7 Signals 38

2.8 New Processes and Programs 39
2.8.1 fork and exec 39
2.8.2 Process Creation 41

Contents XV

2.8.3 fork Optimization 41
2.8.4 Invoking a New Program 42
2.8.5 Process Termination 43
2.8.6 Awaiting Process Termination 44
2.8.7 Zombie Processes 45

2.9 Summary 45

2.10 Exercises 45

2.11 References 46

3 THREADS AND LIGHTWEIGHT PROCESSES 48

3.1 Introduction 48
3.1.1 Motivation 49
3.1.2 Multiple Threads and Processors 49
3.1.3 Concurrency and Parallelism 52

3.2 Fundamental Abstractions 52
3.2.1 Kernel Threads 53
3.2.2 Lightweight Processes 53
3.2.3 User Threads 55

3.3 Lightweight Process Design-Issues to Consider 58
3.3.1 Semantics offork 58
3.3.2 Other System Calls 59
3.3.3 Signal Delivery and Handling 60
3.3.4 Visibility 61
3.3.5 Stack Growth 61

3.4 User-Level Threads Libraries 62
3.4.1 The Programming Interface 62
3.4.2 Implementing Threads Libraries 62

3.5 Scheduler Activations 64

3.6 Multithreading in Solaris and SVR4 65
3.6.1 Kernel Threads 65
3.6.2 Lightweight Process Implementation 66
3.6.3 User Threads 67
3.6.4 User Thread Implementation 68
3.6.5 Interrupt Handling 68
3.6.6 System Call Handling 70

xvi Contents

3.7 Threads in Mach 70
3.7.1 The Mach Abstractions-Tasks and Threads 70
3.7.2 Mach C-threads 71

3.8 Digital UNIX 72
3.8.1 The UNIX Interface 72
3.8.2 System Calls and Signals 74
3.8.3 The pthreads Library 75

3.9 Mach 3.0 Continuations 76
3.9.1 Programming Models 76
3.9.2 Using Continuations 77
3.9.3 Optimizations 78
3.9.4 Analysis 79

3.10 Summary 79

3.11 Exercises 80

3.12 References 80

4 SIGNALS AND SESSION MANAGEMENT 83

4.1 Introduction 83

4.2 Signal Generation and Handling 84
4.2.1 Signal Handling 84
4.2.2 Signal Generation 87
4.2.3 Typical Scenarios 87
4.2.4 Sleep and Signals 88

4.3 Unreliable Signals 89

4.4 Reliable Signals 90
4.4.1 Primary Features 90
4.4.2 The SVR3 Implementation 91
4.4.3 BSD Signal Management 92

4.5 Signals in SVR4 93

4.6 Signals Implementation 94
4.6.1 Signal Generation 95
4.6.2 Delivery and Handling 95

Contents xvii

4.7 Exceptions 95

4.8 Mach Exception Handling 96
4.8.1 Exception Ports 97
4.8.2 Error Handling 98
4.8.3 Debugger Interactions 98
4.8.4 Analysis 99

4.9 Process Groups and Terminal Management 99
4.9.1 Common Concepts 99
4.9.2 The SVR3 Model 100
4.9.3 Limitations 102
4.9.4 4.3BSD Groups and Terminals 103
4.9.5 Drawbacks 104

4.10 The SVR4 Sessions Architecture 105
4.10.1 Motivation 105
4.10.2 Sessions and Process Groups 106
4.10.3 Data Structures 107
4.10.4 Controlling Terminals 107
4.10.5 The 4.4BSD Sessions Implementation 109

4.11 Summary 110

4.12 Exercises 110

4.13 References 111

5 PROCESS SCHEDULING 112

5.1 Introduction 112

5.2 Clock Interrupt Handling 113
5.2.1 Cal louts 114
5.2.2 Alarms 115

5.3 Scheduler Goals 116

5.4 Traditional UNIX Scheduling 117
5.4.1 Process Priorities 118
5.4.2 Scheduler Implementation 119
5.4.3 Run Queue Manipulation 120
5.4.4 Analysis 121

xviii Contents

5.5 The SVR4 Scheduler 122
5.5.1 The Class-Independent Layer 122
5.5.2 Interface to the Scheduling Classes 124
5.5.3 The Time-Sharing Class 126
5.5.4 The Real-Time Class 127
5.5.5 The priocntl System Call 129
5.5.6 Analysis 129

5.6 Solaris 2.x Scheduling Enhancements 130
5.6.1 Preemptive Kernel 131
5.6.2 Multiprocessor Support 131
5.6.3 Hidden Scheduling 133
5.6.4 Priority Inversion 133
5.6.5 Implementation of Priority Inheritance 135
5.6.6 Limitations of Priority Inheritance 137
5.6.7 Turnstiles 138
5.6.8 Analysis 139

5.7 Scheduling in Mach 139
5.7.1 Multiprocessor Support 140

5.8 The Digital UNIX Real-Time Scheduler 142
5.8.1 Multiprocessor Support 143

5.9 Other Scheduling Implementations 143
5.9.1 Fair-Share Scheduling 144
5.9.2 Deadline-Driven Scheduling 144
5.9.3 A Three-Level Scheduler 145

5.10 Summary 146

5.11 Exercises 146

5.12 References 147

6 INTERPROCESS COMMUNICATIONS 149

6.1 Introduction 149

6.2 Universal IPC Facilities 150
6.2.1 Signals 150
6.2.2 Pipes 151
6.2.3 SVR4 Pipes 152
6.2.4 Process Tracing 153

Contents xix

6.3 System V IPC 155
6.3.1 Common Elements 155
6.3.2 Semaphores 156
6.3.3 Message Queues 160
6.3.4 Shared Memory 162
6.3.5 Discussion 164

6.4 Mach IPC 165
6.4.1 Basic Concepts 166

6.5 Messages 167
6.5.1 Message Data Structures 167
6.5.2 Message Passing Interface 169

6.6 Ports 170
6.6.1 The Port Name Space 170
6.6.2 The Port Data Structure 170
6.6.3 Port Translations 171

6.7 Message Passing 172
6.7.1 Transferring Port Rights 173
6.7.2 Out-of-Line Memory 175
6.7.3 Control Flow 177
6.7.4 Notifications 177

6.8 Port Operations 177
6.8.1 Destroying a Port 178
6.8.2 Backup Ports 178
6.8.3 Port Sets 179
6.8.4 Port Interpolation 180

6.9 Extensibility 181

6.10 Mach 3.0 Enhancements 182
6.10.1 Send-Once Rights 183
6.10.2 Mach 3.0 Notifications 183
6.10.3 User-Reference Counting of Send Rights 183

6.11 Discussion 184

6.12 Summary 185

6.13 Exercises 185

6.14 References 186

XX Contents

7 SYNCHRONIZATION AND MULTIPROCESSING 187

7.1 Introduction 187

7.2 Synchronization in Traditional UNIX Kernels 188
7.2.1 Interrupt Masking 189
7.2.2 Sleep and Wakeup 189
7.2.3 Limitations of Traditional Approach 190

7.3 Multiprocessor Systems 191
7.3.1 Memory Model 191
7.3.2 Synchronization Support 193
7.3.3 Software Architecture 195

7.4 Multiprocessor Synchronization Issues 195
7.4.1 The Lost Wakeup Problem 196
7.4.2 The Thundering Herd Problem 196

7.5 Semaphores 197
7.5.1 Semaphores to Provide Mutual Exclusion 198
7.5.2 Event-Wait Using Semaphores 198
7.5.3 Semaphores to Control Countable Resources 199
7.5.4 Drawbacks of Semaphores 199
7.5.5 Convoys 200

7.6 Spin Locks 201
7.6.1 Use of Spin Locks 202

7.7 Condition Variables 203
7.7.1 Implementation Issues 204
7.7.2 Events 205
7.7.3 Blocking Locks 205

7.8 Read-Write Locks 206
7.8.1 Design Considerations 206
7.8.2 Implementation 207

7.9 Reference Counts 209

7.10 Other Considerations 209
7.10.1 Deadlock A voidance 209
7.10.2 Recursive Locks 211
7.10.3 To Block or to Spin 211
7.10.4 What to Lock 212
7.10.5 Granularity and Duration 212

Contents xxi

7.11 Case Studies 213
7.11.1 SVR4.2/MP 213
7.11.2 Digital UNIX 214
7.11.3 Other Implementations 216

7.12 Summary 217

7.13 Exercises 217

7.14 References 218

8 FILE SYSTEM INTERFACE AND FRAMEWORK 220

8.1 Introduction 220

8.2 The User Interface to Files 221
8.2.1 Files and Directories 221
8.2.2 File Attributes 223
8.2.3 File Descriptors 225
8.2.4 File 110 227
8.2.5 Scatter-Gather 1/0 228
8.2.6 File Locking 228

8.3 File Systems 229
8.3.1 Logical Disks 230

8.4 Special Files 231
8.4.1 Symbolic Links 231
8.4.2 Pipes and FIFOs 233

8.5 File System Framework 233

8.6 The VnodeNfs Architecture 234
8.6.1 Objectives 234
8.6.2 Lessons from Device 110 235
8.6.3 Overview of the VnodeNfs Interface 238

8.7 Implementation Overview 240
8.7.1 Objectives 240
8.7.2 Vnodes and Open Files 240
8.7.3 The Vnode 241
8.7.4 V node Reference Count 242
8.7.5 The Vfs Object 243

xxii Contents

8.8 File-System-Dependent Objects 244
8.8.1 The Per-File Private Data 244

8.8.2 The vnodeops Vector 245
8.8.3 File-System-Dependent Parts of the Vfs Layer 246

8.9 Mounting a File System 247
8.9.1 The Virtual File System Switch 247

8.9.2 mount Implementation 248

8.9.3 VFS _MOUNT Processing 249

8.10 Operations on Files 249
8.10.1 Pathname Traversal 249
8.10.2 Directory Lookup Cache 250

8.10.3 The VOP _LOOKUP Operation 251
8.10.4 Opening a File 252
8.10.5 File 1/0 253
8.10.6 File Attributes 253
8.10.7 User Credentials 253

8.11 Analysis 254
8.11.1 Drawbacks of the SVR4 Implementation 255
8.11.2 The 4.4BSD Model 256
8.11.3 The OSF/1 Approach 257

8.12 Summary 257

8.13 Exercises 258

8.14 References 259

9 FILE SYSTEM IMPLEMENTATIONS 261

9.1 Introduction 261

9.2 The System V File System (s5fs) 262
9.2.1 Directories 263
9.2.2 I nodes 263
9.2.3 The Superblock 266

9.3 S5fs Kernel Organization 267
9.3.1 In-Core Inodes 267
9.3.2 Inode Lookup 267
9.3.3 File l/0 268
9.3.4 Allocating and Reclaiming !nodes 270

Contents xxiii

9.4 Analysis of s5fs 271

9.5 The Berkeley Fast File System 272

9.6 Hard Disk Structure 272

9.7 On-Disk Organization 273
9.7.1 Blocks and Fragments 273
9.7.2 Allocation Policies 274

9.8 FFS Functionality Enhancements 275

9.9 Anarysis 276

9.10 Temporary File Systems 278
9.10.1 The Memory File System 278
9.10.2 The tmpfs File System 279

9.11 Special-Purpose File Systems 280
9.11.1 The Specfs File System 280
9.11.2 The /proc File System 281
9.11.3 The Processor File System 283
9.11.4 The Translucent File System 283

9.12 The Old Buffer Cache 284
9.12.1 Basic Operation 285
9.12.2 Buffer Headers 286
9.12.3 Advantages 286
9.12.4 Disadvantages 287
9.12.5 Ensuring File System Consistency 287

9.13 Summary 288

9.14 Exercises 288

9.15 References 289

10 DISTRIBUTED FILE SYSTEMS 291

10.1 Introduction 291

10.2 General Characteristics of Distributed
File Systems 292
10.2.1 Design Considerations 292

xxiv Contents

10.3 Network File System (NFS) 293
10.3.1 User Perspective 294
10.3.2 Design Goals 294
10.3.3 NFS Components 295
10.3.4 Statelessness 297

10.4 The Protocol Suite 298
10.4.1 Extended Data Representation (XDR) 298
10.4.2 Remote Procedure Calls (RPC) 300

10.5 NFS Implementation 301
10.5.1 Control Flow 302
10.5.2 File Handles 302
10.5.3 The Mount Operation 303
10.5.4 Pathname Lookup 303

10.6 UNIX Semantics 304
10.6.1 Open File Permissions 304
10.6.2 Deletion of Open Files 305
10.6.3 Reads and Writes 305

10.7 NFS Performance 306
10.7.1 Performance Bottlenecks 306
10.7.2 Client-Side Caching 306
10.7.3 Deferral of Writes 307
10.7.4 The Retransmissions Cache 308

10.8 Dedicated NFS Servers 309
1 0.8.1 The Auspex Functional Multiprocessor Architecture 309
10.8.2 IBM's HA-NFS Server 310

10.9 NFS Security 312
10.9.1 NFS Access Control 312
10.9.2 UID Remapping 313
10.9.3 Root Remapping 313

10.10 NFS Version 3 314

10.11 Remote File Sharing (RFS) 315

10.12 RFS Architecture 315
10.12.1 Remote Message Protocol 316
10.12.2 Stateful Operation 317

Contents XXV

10.13 RFS Implementation 317
317
319
320
321

10.13.1 Remote Mount
10.13.2 RFS Clients and Servers
10.13.3 Crash Recovery
10.13.4 Other Issues

1 0.14 Client-Side Caching 321
10.14.1 Cache Consistency 322

1 0.15 The Andrew File System 323
10.15.1 Scalable Architecture 323
10.15.2 Storage and Name Space Organization 324
10.15.3 Session Semantics 325

10.16 AFS Implementation 326
10.16.1 Caching and Consistency 326
10.16.2 Pathname Lookup 327
10.16.3 Security 327

10.17 AFS Shortcomings 328

10.18 The DCE Distributed File System (DCE DFS) 329
10.18.1 DFS Architecture 329
I 0.18.2 Cache Consistency 330
10.18.3 TheTokenManager 332
10.18.4 Other DFS Services 332
10.18.5 Analysis 333

10.19 Summary 334

1 0.20 Exercises 334

1 0.21 References 335

11 ADVANCED FILE SYSTEMS 338

11.1 Introduction

11.2 Limitations of Traditional File Systems
11.2.1 FFS Disk Layout
11.2.2 Predominance of Writes
11.2.3 Metadata Updates
11.2.4 Crash Recovery

338

339
340
341
342
342

xxvi Contents

11.3 File System Clustering (Sun-FFS) 343

11.4 The Journaling Approach 344
11.4.1 Basic Characteristics 344

11.5 Log-Structured File Systems 345

11.6 The 4.48SO Log-Structured File System 346
11.6.1 Writing the Log 347
11.6.2 Data Retrieval 347
11.6.3 Crash Recovery 348
11.6.4 The Cleaner Process 349
11.6.5 Analysis 349

11.7 Metadata Logging 350
11.7.1 Normal Operation 351
11.7.2 Log Consistency 352
11.7.3 Recovery 353
11.7.4 Analysis 354

11.8 The Episode File System 355
11.8.1 Basic Abstractions 356
11.8.2 Structure 357
11.8.3 Logging 358
11.8.4 Other Features 358

11.9 Watchdogs 359
11.9.1 Directory Watchdogs 360
11.9.2 Message Channels 360
11.9.3 Applications 361

11.1 0 The 4.48SO Portal File System 362
11.10.1 Using Portals 363

11.11 Stackable File System Layers 364
11.11.1 Framework and Interface 364
11.11.2 The SunSoft Prototype 366

11.12 The 4.48SO File System Interface 367
11.12.1 The Nullfs and Union Mount File Systems 368

11.13 Summary 368

11.14 Exercises 368

11.15 References 369

Contents xxvii

12 KERNEL MEMORY ALLOCATION 372

12.1 Introduction 372

12.2 Functional Requirements 374
12.2.1 Evaluation Criteria 374

12.3 Resource Map Allocator 376
12.3.1 Analysis 377

12.4 Simple Power-of-Two Free Lists 379
12.4.1 Analysis 380

12.5 The McKusick-Karels Allocator 381
12.5.1 Analysis 383

12.6 The Buddy System 383
12.6.1 Analysis 385

12.7 The SVR4 Lazy Buddy Algorithm 386
12.7.1 Lazy Coalescing 386
12.7.2 SVR4 Implementation Details 387

12.8 The Mach-OSF/1 Zone Allocator 388
12.8.1 Garbage Collection 388
12.8.2 Analysis 389

12.9 A Hierarchical Allocator for Multiprocessors 390
12.9.1 Analysis 392

12.1 0 The Solaris 2.4 Slab Allocator 392
12.10.1 Object Reuse 392
12.10.2 Hardware Cache Utilization 393
12.10.3 Allocator Footprint 394
12.10.4 Design and Interfaces 394
12.10.5 Implementation 395
12.10.6 Analysis 396

12.11 Summary 397

12.12 Exercises 398

12.13 References 399

xxviii Contents

13 VIRTUAL MEMORY 400

13.1 Introduction 400
13.1.1 Memory Management in the Stone Age 401

13.2 Demand Paging 404
13.2.1 Functional Requirements 404
13.2.2 The Virtual Address Space 406
13.2.3 Initial Access to a Page 407
13.2.4 The Swap Area 407
13.2.5 Translation Maps 408
13.2.6 Page Replacement Policies 409

13.3 Hardware Requirements 410
13.3.1 MMUCaches 412
13.3.2 The Intel 80x86 413
13.3.3 The IBM RS/6000 416
13.3.4 The MIPS R3000 419

13.4 4.3BSD -A Case Study 421
13.4.1 Physical Memory 421
13.4.2 The Address Space 423
13.4.3 Where Is the Page? 424
13.4.4 Swap Space 426

13.5 4.3BSD Memory Management Operations 427
13.5.1 Process Creation 427
13.5.2 Page Fault Handling 428
13.5.3 The Free Page List 431
13.5.4 Swapping 432

13.6 Analysis 433

13.7 Exercises 435

13.8 References 436

14 THE SVR4 VM ARCHITECTURE 437

14.1 Motivation 437

14.2 Memory-Mapped Files 438
14.2.1 mmap and Related System Calls 440

Contents

14.3 VM Design Principles

14.4 Fundamental Abstractions
14.4.1 Physical Memory
14.4.2 The Address Space
14.4.3 Address Mappings
14.4.4 Anonymous Pages
14.4.5 Hardware Address Translation

14.5 Segment Drivers
14.5.1 seg_vn
14.5.2 seg_map
14.5.3 seg_dev
14.5.4 seg_kmem
14.5.5 seg_kp

14.6 The Swap Layer

14.7 VM Operations
14.7.1 Creating a New Mapping
14.7.2 Anonymous Page Handling
14.7.3 Process Creation
14.7.4 Sharing Anonymous Pages
14.7.5 Page Fault Handling
14.7.6 Shared Memory
14.7.7 Other Components

14.8 Interaction with the Vnode Subsystem
14.8.1 Vnode Interface Changes
14.8.2 Unifying File Access
14.8.3 Miscellaneous Issues

14.9 Virtual Swap Space in Solaris
14.9.1 Extended Swap Space
14.9.2 Virtual Swap Management
14.9.3 Discussion

14.10 Analysis

xxix

440

441
442
443
444
445
446

448
448
449
450
450
450

451

452
453
453
455
455
457
458
459

460
460
461
463

464
464
464
466

466

14.11 Performance Improvements 468
14.11.1 Causes of High Fault Rates 468
14.11.2 SVR4 Enhancements to the SunOS VM Implementation 469
14.11.3 Results and Discussion 4 70

XXX Contents

14.12 Summary 470

14.13 Exercises 471

14.14 References 471

15 MORE MEMORY MANAGEMENT TOPICS 473

15.1 Introduction 473

15.2 Mach Memory Management Design 473
15.2.1 Design Goals 474
15.2.2 Programming Interface 474
15.2.3 Fundamental Abstractions 476

15.3 Memory Sharing Facilities 478
15.3.1 Copy-on-Write Sharing 478
15.3.2 Read-Write Sharing 480

15.4 Memory Objects and Pagers 481
15.4.1 Memory Object Initialization 481
15.4.2 Interface between the Kernel and the Pager 482
15.4.3 Kernel-Pager Interactions 484

15.5 External and Internal Pagers 484
15.5.1 A Network Shared Memory Server 485

15.6 Page Replacement 487

15.7 Analysis 489

15.8 Memory Management in 4.4BSD 490

15.9 Translation Lookaside Buffer (TLB) Consistency 492
15.9.1 TLB Consistency on a Uniprocessor 493
15.9.2 Multiprocessor Issues 494

15.10 TLB Shootdown in Mach 494
15.10.1 Synchronization and Deadlock A voidance 495
15.10.2 Discussion 496

15.11 TLB Consistency in SVR4 and SVR4.2 UNIX 497
15.11.1 SVR4/MP 497

Contents xxxi

15.11.2 SVR4.2/MP 498
15.11.3 Lazy Shootdowns 499
15.11.4 Immediate Shootdowns 500
15.11.5 Discussion 500

15.12 Other TLB Consistency Algorithms 501

15.13 Virtually Addressed Caches 502
15.13.1 Mapping Changes 504
15.13.2 Address Aliases 505
15.13.3 DMA Operations 505
15.13.4 Maintaining Cache Consistency 506
15.13.5 Analysis 507

15.14 Exercises 507

15.15 References 508

16 DEVICE DRIVERS AND 1/0 511

16.1 Introduction 511

16.2 Overview 511
16.2.1 Hardware Configuration 513
16.2.2 Device Interrupts 514

16.3 Device Driver Framework 516
16.3.1 Classifying Devices and Drivers 516
16.3.2 Invoking Driver Code 517
16.3.3 The Device Switches 518
16.3.4 Driver Entry Points 519

16.4 The 110 Subsystem 520
16.4.1 Major and Minor Device Numbers 521
16.4.2 Device Files 522
16.4.3 The specfs File System 523
16.4.4 The Common snode 524
16.4.5 Device Cloning 526
16.4.6 I/0 to a Character Device 526

16.5 The poll System Call 527
16.5.1 poll Implementation 528
16.5.2 The 4.3BSD select System Call 529

xxxii Contents

16.6 Block 1/0 530
16.6.1 The buf Structure 531
16.6.2 Interaction with the Vnode 532
16.6.3 Device Access Methods 533
16.6.4 Raw I/0 to a Block Device 535

16.7 The DDI/DKI Specification 535
16.7.1 General Recommendations 537
16.7.2 Section 3 Functions 537
16.7.3 Other Sections 538

16.8 Newer SVR4 Releases 539
16.8.1 Multiprocessor-Safe Drivers 540
16.8.2 SVR4.1/ES Changes 540
16.8.3 Dynamic Loading and Unloading 541

16.9 Future Directions 543

16.10 Summary 544

16.11 Exercises 545

16.12 References 545

17 STREAMS 547

17.1 Motivation 547

17.2 Overview 548

17.3 Messages and Queues 551
17.3.1 Messages 551
17.3.2 Virtual Copying 552
17.3.3 Message Types 553
17.3.4 Queues and Modules 554

17.4 Stream 1/0 556
17.4.1 The STREAMS Scheduler 557
17.4.2 Priority Bands 558
17.4.3 Flow Control 558
17.4.4 The Driver End 560
17.4.5 The Stream Head 561

Contents xxxiii

17.5 Configuration and Setup 562
17.5.1 Configuring a Module or Driver 562
17.5.2 Opening a Stream 564
17.5.3 Pushing Modules 565
17.5.4 Clone Devices 566

17.6 STREAMS ioctls 566
17.6.1 I_ STR ioctl Processing 567
17.6.2 Transparent ioctls 568

17.7 Memory Allocation 568
17.7.1 Extended STREAMS Buffers 570

17.8 Multiplexing 571
17.8.1 Upper Multiplexors 571
17.8.2 Lower Multiplexors 572
17.8.3 Linking Streams 572
17.8.4 DataFlow 574
17.8.5 Ordinary and Persistent Links 575

17.9 FIFOs and Pipes 576
17.9.1 STREAMS FIFOs 576
17.9.2 STREAMS Pipes 577

17.10 Networking Interfaces 578
17.10.1 Transport Provider Interface (TPI) 579
17.10.2 Transport Layer Interface (TLI) 579
17.10.3 Sockets 580
17.10.4 SVR4 Sockets Implementation 582

17.11 Summary 583

17.12 Exercises 584

17.13 References 585

Index 587

1

Introduction

1.1 Introduction

In 1994 the computer industry celebrated the twenty-fifth birthday of the UNIX operating system.
Since its inception in 1969, the UNIX system has been ported to dozens of hardware platforms, and
has been released in many forms by commercial vendors, universities, and research organizations.
Starting as a small collection of programs, it has grown into a versatile operating system used in a
wide range of environments and applications. Today, versions of UNIX run on platforms ranging
from small embedded processors, to workstations and desktop systems, to high-performance multi
processor systems serving a large community of users.

The UNIX system consists of a collection of user programs, libraries, and utilities, running
on the UNIX operating system, which provides a run-time environment and system services for
these applications. This book examines the design and implementation of the operating system it
self, and does not describe the applications and tools that run on it. While UNIX began life in Bell
Telephone Laboratories (BTL), which was responsible for all its early releases, it has since been
embraced by several companies and universities. This has led to a proliferation of UNIX variants in
the marketplace. All these variants loosely support a core set of interfaces, applications, and features
routinely expected from a "UNIX system." They differ in their internal implementation, detailed
semantics of the interfaces, and the set of "value-added" features they provide. This book devotes
greater attention to baseline releases such as Novell, Inc.'s System V Release 4 (SVR4), The Uni
versity of California's Berkeley Software Distribution (4.xBSD), and Carnegie-Mellon University's
Mach. It also discusses a number of commercial implementations such as SunOS and Solaris from

2 Chapter I Introduction

Sun Microsystems, Digital UNIX from Digital Equipment Corporation, and HP-UX from Hewlett
Packard Corporation.

This chapter introduces the UNIX operating system. It begins with a brief history of the
birth, maturation, and industry acceptance of the UNIX system. It then discusses the factors that
have influenced the evolution cf the system. Finally it discusses directions in which UNIX may
continue to evolve.

1.1.1 A Brief History

Before embarking on a detailed study of the design of the UNIX system, it is useful to review its
history and evolution. In the following sections, we trace the growth of the UNIX system from its
modest beginnings with AT&T to its current, somewhat chaotic, state as a multi platform, multiven
dor, and multivariant group of operating systems. There are several excellent sources that provide a
more detailed history, such as A Quarter Century of UNIX by Peter Salus [Salu 94]. This chapter
summarizes the important events.

1.1.2 The Beginning

In the late 1960s Bell Telephone Laboratories was involved in a project with General Electric and
the Massachusetts Institute of Technology to develop a multiuser operating system called Multics
[Orga 72]. When the Multics project was canceled in March 1969, some of its principal developers
at BTL were searching for other interesting projects to pursue. One of them, Ken Thompson, wrote
a game program called Space Travel and found a little-used PDP-7 computer (manufactured by
Digital Equipment Corporation) on which to run it. The PDP-7 lacked a program development envi
ronment. Thompson had to cross-assemble the program on a different machine, a Honeywell 635
running the GECOS operating system, and then hand carry the program on paper tape to the PDP-7.

To facilitate the development of Space Travel, Thompson, along with Dennis Ritchie, began
developing an operating environment for the PDP-7. The first component was a simple file system,
which evolved into an early version of what is now known as the System V file system (s5fs). They
soon added a process subsystem, a simple command interpreter called the shell (which evolved into
the Bourne shell [Bour 78]), and a small set of utilities. The system became self-supporting, and did
not need the GECOS environment. They named this new system UNIX as a pun on the name Mul
tics.

The following year Thompson, Ritchie, and Joseph Ossanna persuaded BTL to purchase
Digital's PDP-II machine to use as a text-processing system for the patent department at BTL.
They ported UNIX to the PDP-11, and added several text-processing utilities including the ed editor
and versions of the runoff text rendering tool. Thompson also developed a new language called B
(an offshoot of an earlier language called BCPL [Rich 82]) and used it to write some early assem
blers and utilities. B was an interpretive language, and hence suffered from poor performance.
Eventually, Ritchie evolved it into the C language, which was compilable and supported data types
and data structures. The success of C has far surpassed that of UNIX.

UNIX became popular within BTL, and many others contributed to its development. In No
vember 1971, Ritchie and Thompson, urged by Doug Mcilroy, published the first edition of the

1.J Introduction 3

UNIX Programmer's Manual. Since then, there have been a total often editions of this manual, cor
responding to ten versions of UNIX released by BTL.

The first several releases were strictly internal to BTL. The third edition, in February 1973,
included cc, the C compiler. That same year, UNIX was rewritten in C (resulting in version 4 in
November 1973), a step that had a tremendous impact on its future success. Thompson and Ritchie
co-authored the first UNIX paper, The UNIX Time Sharing System [Thorn 74]. It was presented at
the ACM Symposium on Operating Systems (SOSP) in October 1973 and published in the Commu
nications of the ACMin July 1974. 1 This paper gave the outside world its first look at UNIX.

1.1.3 Proliferation

In 1956, as a result of antitrust litigation by the Department of Justice against AT&T and the West
em Electric Company,2 AT&T signed a "consent decree" with the federal government. The terms of
this agreement prevented AT&T from manufacturing any equipment not related to telephone or
telegraph services, or engaging in business other than furnishing "common carrier communication
services."

As a result, AT&T took the view that it could not market computing products. On the other
hand, the SOSP presentation resulted in numerous requests for UNIX software and sources. AT&T
provided the UNIX system to universities for educational and research purposes, royalty-free and
under simple licensing agreements. It did not advertise or market the system and did not support its
releases. One of the earliest such licensees was the University of California at Berkeley, which ob
tained the UNIX system in December I973.

Under these conditions UNIX systems quickly proliferated throughout the world. By I975
they had spread to sites as far apart as the Hebrew University of Jerusalem, the University of New
South Wales in Australia, and the University of Toronto in Canada. The first UNIX port was to the
Interdata machine. The port was completed independently by the University of Wollongong in
1976, and again by Ritchie and Steve Johnson at BTL in 1977.

Version 7 UNIX, released in January 1979, was the first truly portable UNIX system, and
greatly influenced future development of UNIX. Its initial release ran on the PDP-II and the Inter
data 8/32. It was both more robust and provided significantly greater functionality than version 6; it
was also considerably slower. Several UNIX licensees responded by improving its performance in
several areas; AT&T incorporated many of these improvements in future releases. This spirit of co
operation between its keepers and users (which, unfortunately, deteriorated considerably once UNIX
became commercially successful) was a key factor in the rapid growth and rising popularity of
UNIX.

Soon UNIX was ported to several other architectures. Microsoft Corporation and the Santa
Cruz Operation (SCO) collaborated to port UNIX to the Intel 8086, resulting in XENIX, one of the
earliest commercial UNIX variants. In 1978 Digital introduced the 32-bit V AX-11 computer. After
being turned down by Ritchie, Thompson, and Johnson, Digital approached a group in the Holmdel,
New Jersey, branch of BTL to port UNIX to the VAX. This was the first port to a 32-bit machine,

I It was later revised and reprinted as [Rite 78].
2 Western Electric was a wholly owned subsidiary of AT&T that was later dissolved. Bell Telephone Laboratories was

jointly owned by AT&T and Western Electric.

4 Chapter I Introduction

and the resulting version was called UNIX/32V. This version was sent to the University of Califor
nia at Berkeley, where it evolved into 3BSD in 1979.

1.1.4 BSD

The University of California at Berkeley obtained one ofthe first UNIX licenses in December 1974.
Over the next few years, a group of graduate students including Bill Joy and Chuck Haley devel
oped several utilities for it, including the ex editor (which was later followed by vi) and a Pascal
compiler. They bundled these additions into a package called the Berkeley Software Distribution
(BSD) and sold it in the spring of 1978 at $50 per license. The initial BSD releases (version 2 was
shipped in late 1978) consisted solely of applications and utilities, and did not modify or redistribute
the operating system. One of Joy's early contributions was the C shell [Joy 86], which provided
facilities such as job control and command history not available in the Bourne shell.

In 1978 Berkeley obtained a VAX-11/780 and the UNIX/32V that had been ported to it by
the BTL group in Holmdel, New Jersey. The VAX had a 32-bit architecture, allowing a 4-gigabyte
address space, but only 2 megabytes of physical memory. Around the same time, Ozalp Babaoglu
designed a paging-based virtual memory system for the VAX, and incorporated it into UNIX. The
result, released as 3BSD in late 1979, was the first operating system release from Berkeley.

The virtual memory work prompted the Defense Advanced Research Projects Agency
(DARPA) to fund the development of UNIX systems at Berkeley. One of the major goals of the
DARPA project was to integrate the Transmission Control Protocol/Internet Protocol (TCPIIP)
network protocol suite. With DARPA funding, Berkeley produced several BSD releases collectively
called 4BSD: 4.0BSD in 1980, 4.1BSD in 1981,3 4.2BSD in 1983, 4.3BSD in 1986, and 4.4BSD in
1993.

The Berkeley team was responsible for many important technical contributions. Besides
virtual memory and the incorporation of TCPIIP, BSD UNIX introduced the Fast File System
(FFS), a reliable signals implementation, and the sockets facility. 4.4BSD replaced the original vir
tual memory design with a new version based on Mach (see Section 1.1.7), and added other en
hancements such as a log-structured file system.

The work on UNIX at Berkeley was performed by the Computer Science Research Group
(CSRG). With 4.4BSD, CSRG decided to close shop and discontinue UNIX development. The ma
jor reasons cited [Bost 93] were:

• Scarcity of grants and funds.
• BSD features were now available in a number of commercial systems.
• The system had become too large and complex for a small group to architect and maintain.

A company called Berkeley Software Design, Inc. (BSDI) was formed to commercialize and
market 4.4BSD. Since most of the original UNIX source code had been replaced with new code de
veloped at Berkeley, BSDI claimed that the source code in its BSD/386 release was completely free
of AT&T licenses. UNIX System Laboratories, the AT&T subsidiary responsible for UNIX devel
opment, filed a lawsuit against BSDI and the Regents of the University of California, claiming

3 There were three separate releases of 4.1 BSD--4.1 a, 4.1 b, and 4.1 c.

1.1 Introduction 5

copyright infringement, breach of contract, and misappropriation of trade secrets [Gerb 92]. The
lawsuit was sparked by BSDI's use of the phone number 1-800-ITS-UNIX to sell the source code.
The university countersued, and the resulting litigation delayed the release. On February 4, 1994,
the case was settled out of court, with all parties dropping their claims. BSDI announced the avail
ability of 4.4BSD-lite, sold with unencumbered source code, for around $1000.

1.1.5 System V

Going back to AT&T, its legal battles with the Justice Department culminated in a landmark decree
in 1982. As a result of this decree, Western Electric was dissolved, the regional operating companies
were divested from AT&T and formed the "Baby Bells," and Bell Telephone Laboratories was
separated and renamed AT&T Bell Laboratories. Also, AT&T was allowed to enter the computer
business.

While the research group at BTL continued to work on UNIX, the responsibility for external
releases shifted from them to the UNIX Support Group, then to the UNIX System Development
Group, and then to AT&T Information Systems. Among them, these groups released System III in
1982, System Vin 1983, System V Release 2 (SVR2) in 1984, and Release 3 (SVR3) in 1987. AT&T
marketed System V aggressively, and several commercial UNIX implementations are based on it.

System V UNIX introduced many new features and facilities. Its virtual memory implemen
tation, called the regions architecture, was quite different from that of BSD. SVR3 introduced an
interprocess communication facility (including shared memory, semaphores, and message queues),
remote file sharing, shared libraries, and the STREAMS framework for device drivers and network
protocols. The latest System V version is Release 4 (SVR4), which will be discussed in Section
1.1.1 0.

1.1.6 Commercialization

The growing popularity of UNIX attracted the interest of several computer companies, who rushed
to commercialize and market their own versions of UNIX. Each began with a base release of UNIX
from either AT&T or Berkeley, ported it to their hardware, and enhanced it with their own value
added features. In 1977 Interactive Systems became the first commercial UNIX vendor. Their first
release was called IS/1 and ran on the PDP-lis.

In 1982 Bill Joy left Berkeley to cofound Sun Microsystems, which released a 4.2BSD
based variant called SunOS (and later, an SVR4-based variant called Safaris). Microsoft and the
SCO jointly released XENIX. Later, SCO ported SVR3 onto the 386 and released it as SCO UNIX.
The 1980s saw a number of commercial offerings, including AIX from IBM, HP-UX from Hewlett
Packard Corporation, and ULTRIX (followed by DEC OSF/1, later renamed to Digital UNIX) from
Digital.

The commercial variants introduced many new features, some of which were subsequently
incorporated in newer releases of the baseline systems. Sun OS introduced the Network File System
(NFS), the vnode/vfs interface to support multiple file system types, and a new virtual memory ar
chitecture that was adopted by SVR4. AIX was among the first to provide a commercial journaling
file system for UNIX. UL TRIX was one of the first multiprocessor UNIX systems.

6 Chapter I Introduction

1.1.7 Mach

A major reason for the popularity of the UNIX system was that it was small and simple, yet offered
many useful facilities. As the system incorporated more and more features, the kernel became large,
complex, and increasingly unwieldy. Many people felt that UNIX was moving away from the prin
ciples that had made it elegant and successful.

In the mid-1980s researchers at Carnegie-Mellon University in Pittsburgh, PA, began work
ing on a new operating system called Mach [Acce 86]. Their objective was to develop a microker
nel, which provides a small set of essential services and a framework for implementing other operat
ing system functions at the user level. The Mach architecture would support the UNIX
programming interface, run on uniprocessor and multiprocessor systems, and be suitable for a dis
tributed environment. By starting afresh, they hoped to avoid many of the problems afflicting UNIX
at the time.

The basic approach was to have the microkernel export a few simple abstractions, and to
provide most of the functionality through a collection of user-level tasks called servers. Mach held
another advantage-it was unencumbered by AT&T licenses, making it attractive to many vendors.
Mach 2.5 is the most popular release, and commercial systems like OSF/1 and NextStep have been
based on it. The early versions of Mach featured monolithic kernels, with a higher-level layer pro
viding a 4BSD UNIX interface. Mach 3.0 was the first microkernel implementation.

1.1.8 Standards

The proliferation of UNIX variants led to several compatibility problems. While all variants "looked
like UNIX" from a distance, they differed in many important respects. Initially, the industry was
torn by differences between AT&T's System V releases (the official UNIX), and the BSD releases
from Berkeley. The introduction of commercial variants worsened the situation.

System V and 4BSD differ in many ways-they have different, incompatible physical file
systems, networking frameworks, and virtual memory architectures. Some of the differences are re
stricted to kernel design and implementation, but others manifest themselves at the programming
interface level. It is not possible to write a complex application that will run unmodified on System
V and BSD systems.

The commercial variants were each derived from either System V or BSD, and then aug
mented with value-added features. These extra features were often inherently unportable. As a re
sult, the application programmers were often very confused, and spent inordinate amounts of effort
making sure their programs worked on all the different flavors of UNIX.

This led to a push for a standard set of interfaces, and several groups began working on
them. The resulting standards were almost as numerous and diverse as the UNIX variants. Eventu
ally, most vendors agreed upon a few standards. These include the System V Interface Definition
(SVID) from AT&T, the IEEE POSIX specifications, and the X!Open Portability Guide from the
X/Open Consortium.

Each standard deals with the interface between the programmer and the operating system,
and not with how the system implements the interface. It defines a set of functions and their detailed
semantics. Compliant systems must meet these specifications, but may implement the functions ei
ther in the kernel, or in user-level libraries.

1.1 Introduction 7

The standards deal with a subset of the functions provided by most UNIX systems. Theoreti
cally, if programmers restrict themselves to using this subset, the resulting application should be
portable to any system that complies with the standard. This precludes the programmer from taking
advantage of added features of a particular variant, or making optimizations based on specific hard
ware or operating system peculiarities, without compromising the portability of the code.

The SVID is essentially a detailed specification of the System V programming interface.
AT&T published three versions-SVID, SVID2, and SVID3 [AT&T 89], corresponding to SVR2,
SVR3, and SVR4, respectively. They allowed vendors to call their operating systems "System V"
only if they conformed to the SVID. AT&T also published the System V Verification Suite (SVVS),
which verifies if a system conforms to the SVID.

In 1986 the IEEE appointed a committee to publish a formal standard for operating system
environments. They adopted the name POSIX (Portable Operating Systems based on UNIX), and
their standard approximates an amalgam of the core parts of SVR3 and 4.3BSD UNIX. The
POSIXI 003. I standard, commonly known as POSIX. I, was published in 1990 [IEEE 90]. It has
gained wide acceptance, in part because it does not align itself closely with a single UNIX variant.

X/Open is a consortium of international computer vendors. It was formed in 1984, not to
produce new standards, but to develop an open Common Applications Environment (CAE) based on
existing de facto standards. It published a seven-volume X/Open Portability Guide (XPG), whose
latest release is Issue 4 in 1993 [XPG4 93]. It is based on a draft of the POSIX.l standard, but goes
beyond it by addressing many additional areas such as internationalization, window interfaces, and
data management.

1.1.9 OSF and Ul

In 1987 AT&T, facing a public outcry against its licensing policies, announced the purchase of20%
of Sun Microsystems. AT&T and Sun planned to collaborate in the development of SVR4, the next
release of AT&T' s System V UNIX. AT&T said that Sun would receive preferential treatment, and
Sun announced that unlike SunOS, which was based on 4BSD, their next operating system would
be based on SVR4.

This produced a strong reaction from other UNIX vendors, who feared that this would give
Sun an unfair advantage. In response, a group of major companies, including Digital, IBM, HP,
Apollo, and others, joined hands in 1988 to announce the formation of the Open Software Founda
tion (OSF). OSF would be funded by its founder companies, and chartered to develop an operating
system, user environment, and a distributed computing environment, all of which would eventually
be free of AT&T license encumbrances. It would make Requests for Technology (RFT) from its
members, and choose the best solutions from those submitted, through a vendor-neutral process.

In retaliation, AT&T and Sun, along with other vendors of System V -based systems, imme
diately formed an organization called UNIX International (UI). UI was dedicated to marketing
SVR4, and was supposed to define the direction of UNIX System V. In 1990 UI released the UNIX
System V Road Map, which outlined the future directions for UNIX development.

In 1989 OSF released a graphical user interface called Motif, which was very well received.
Soon after, it released initial versions of its operating system, called OSF/1. The first release of
OSF/1 was based on Mach 2.5, with 4.3BSD compatibility and some features ofiBM's AIX operat-

8 Chapter I Introduction

ing system. It contained many advanced features not found in SVR4, such as complete multiproces
sor support, dynamic loading, and logical volume management. The plan was for its founding
members to develop commercial operating systems based on OSF/1.

OSF and UI began as great rivals, but were quickly faced with a common outside threat. The
economic downturn in the early 1990s, along with the surge of Microsoft Windows, jeopardized the
growth, and even survival, of UNIX. UI went out of business in 1993, and OSF abandoned many of
its ambitious plans (such as the Distributed Management Environment). DEC OSF/1, released by
Digital in 1993, was the only major commercial system based on OSF/1. Over time, though, Digital
removed many OSF 11 dependencies from their operating system, and in 1995, changed its name to
Digital UNIX

1.1.1 0 SVR4 and Beyond

AT&T and Sun jointly developed System V Release 4 (SVR4), first released in 1989. SVR4 inte
grated features from SVR3, 4BSD, SunOS, and XENIX. It also added new functionality, such as
real-time scheduling classes, the Karn shell, and enhancements to the STREAMS subsystem. The
following year, AT&T formed a software company called UNIX Systems Laboratories (USL) to
develop and sell UNIX.

In 1991 Novell, Inc., maker of the PC-based network operating system called Netware, pur
chased part of USL, and formed a joint venture called Univel. Univel was chartered to develop a
desktop version of SVR4, integrated with Netware. This system, known as Unix Ware, was released
in late 1992. Since then, there have been several newer releases of SVR4. The latest,
SVR4.2/ESIMP, provides enhanced security and multiprocessor support.

In 1993 AT&T sold the rest of its interest in USL to Novell. Later that year, Novell released
the UNIX trademark and conformance certification to X/Open. In 1994, Sun Microsystems bought
the right to use SVR4 code from Novell, freeing themselves of royalty and conformance require
ments. Sun's SVR4-based release is called Safaris. Its latest revision is Safaris 2.5. Solaris provides
many advanced features including a fully preemptible, multithreaded kernel, and comprehensive
support for multiprocessors.

1.2 The Mandate for Change

UNIX has evolved considerably in the past twenty-five years. What started as a basic operating en
vironment for a small group in a laboratory has now evolved into a major operating system, mar
keted in various flavors by numerous vendors. It is used on a wide variety of systems ranging from
small, embedded controllers to huge mainframes and massively parallel systems. It is used in a wide
variety of application domains-in offices as a desktop system, in the financial world to manage
large databases, or in particle physics laboratories for high-speed number crunching.

The UNIX system has had to change and grow considerably to meet the new challenges it
has faced. While it is now a mature operating system, it is not immune to further change. This ongo
ing evolution does not imply a poor initial design. On the contrary, the ease with which new tech
nology has been incorporated into the UNIX system is a tribute to its original architecture. Rather
than having preconceived and inflexible notions about the purpose, form, and functions of the op-

1.2 The Mandate for Change 9

erating system, its originators began with a simple, extensible framework that was built upon incre
mentally by contributions from all over-from the industry, academia, and enthusiastic users.

It is useful to examine the factors that motivate change and growth in an operating system.
In this section we look at the main factors that have influenced the growth of the UNIX system, and
speculate about the direction of its future growth.

1.2.1 Functionality

The biggest motivation for change is adding new features to the system. In the beginning, new
functionality was provided mainly by adding user-level tools and utilities. As the system matured,
its developers added many features to the UNIX kernel itself.

Much of the new functionality helps support more complex programs. The primary example
is the System V lnterprocess Communications (IPC) suite, consisting of shared memory, sema
phpres, and message queues. Together, they allow cooperating processes to share data, exchange
messages, and synchronize their actions. Most modern UNIX systems also provide several levels of
support for writing multithreaded applications.

IPC and threads help the development of complex applications, such as those based on a cli
ent-server model. In such programs, the server usually sits in a loop, waiting for client requests.
When a request arrives, the server processes it and waits for the next one. Since the server may have
to service several clients, it is desirable to handle multiple requests concurrently. With IPC, the
server may use a different process for each request, and these processes can share data and syn
chronize with one another. A multithreaded system can allow the server to be implemented as a
single process with multiple, concurrently executing threads sharing a common address space.

Perhaps the most visible part of an operating system is its file system, which too has incor
porated many new features. These include support for first-in, first-out (FIFO) files, symbolic links,
and files larger than a disk partition. Modern UNIX systems support file and byte-range locks, ac
cess-control lists, and per-user disk quotas.

1.2.2 Networking

The part of the kernel that has undergone the greatest change is the networking subsystem. The
early UNIX systems ran standalone and could not communicate with other machines. The prolifera
tion of computer networks made it imperative for UNIX to support them. The first major undertak
ing was at Berkeley, where DARPA funded the project to integrate the TCPIIP suite into 4BSD.
Today UNIX systems support a number of network interfaces (such as ethernet, FDDI, and ATM),
protocols (such as TCPIIP, UDPIIP,4 and SNA5), and frameworks (such as sockets and STREAMS).

The ability to connect to other machines impacted the system in many ways. Soon users
wanted to share files among connected machines and run programs on remote nodes. To meet this
challenge, UNIX systems evolved in three directions:

4 User Datagram ProtocoVInternet Protocol.
5 IBM's System Network Architecture.

10 Chapter I Introduction

• Many new distributed file systems were developed, which allow almost transparent access
to files on remote nodes. The most successful of these are Sun Microsystems' Network
File System (NFS), Carnegie-Mellon University's Andrew File System (AFS), and Tran
sarc Corporation's Distributed File System (DFS).

• A number of distributed services allow sharing of information in a network. These are
normally implemented as user-level programs based on a client-server model, and use re
mote procedure calls to invoke operations on other machines. Some examples are Sun Mi
crosystems' Network Information Service (NIS) and the Open Software Foundation's Dis
tributed Computing Environment (DCE).

• Distributed operating systems such as Mach, Chorus, and Sprite provided varying
amounts of UNIX compatibility and were marketed as base technologies on which to
build future versions of distributed UNIX systems.

1.2.3 Performance

Improving system performance is a constant motivation for change. Competing UNIX vendors
make great efforts to demonstrate or claim that their system performs better than that of their rivals.
Nearly every kernel subsystem has seen major changes solely to improve performance.

In the early 1980s Berkeley introduced the Fast File System, which took advantage of intel
ligent disk block allocation policies to improve performance. Faster file systems followed, using
extent-based allocation and journaling techniques. Performance improvements also motivated many
developments in the areas of interprocess communications, memory management, and multi
threaded processes. One processor was insufficient for many applications, and vendors developed
multiprocessor UNIX systems, some with hundreds of CPU s.

1.2.4 Hardware Changes

UNIX systems must keep up with new advances in computer hardware technology. Often this
means porting the operating system to newer and faster processors. Since UNIX is largely written in
C, the port is relatively easy. In recent years developers have expended considerable effort in isolat
ing hardware-dependent code into separate modules, so that only those modules need be changed
when porting to a new machine. Usually these modules deal with interrupt handling, virtual address
translation, context switching, and device drivers.

In some cases, the operating system requires major surgery to run on the new hardware. The
most obvious case is with multiprocessor systems. The traditional UNIX kernel is designed to run
on a single processor and lacks the ability to protect its data structures from concurrent access by
multiple processors. Several vendors have developed multiprocessor UNIX systems. Many have
taken a traditional UNIX kernel and added locks to protect global data structures. This approach is
called parallelization. A few others have built new kernels from the ground up and integrated exist
ing subsystems using the new primitives.

At a more subtle level, an imbalance in the rate of progress of different hardware technolo
gies has profound influence on the operating system design. Since the first UNIX system was built
for the PDP-7, the CPU speed of an average UNIX machine has increased by a factor of about a

1.2 The Mandate for Change II

hundred. Memory sizes and the disk space per user have grown by more than a factor of twenty.
Memory and disk speeds, on the other hand, have barely doubled.

In the 1970s, UNIX performance was limited by the processor speed and memory size.
Hence the UNIX kernel made heavy use of techniques such as swapping and (later) paging to juggle
a number of processes in the small memory. As time progressed, memory and CPU speed became
less of an issue, and the system became I/O-bound, spending much of its time moving pages be
tween the disks and main memory. This provoked considerable research in file system, storage, and
virtual memory architectures to reduce the disk bottleneck, leading to the invention of Redundant
Arrays of Inexpensive Disks (RAID) and the proliferation of log-structured file systems.

1.2.5 Quality Improvement

Functionality and speed are of little use if the system is error-prone. Many changes have been moti
vated by the need to make the system more robust and to allow existing software to work better and
more reliably.

The initial signal mechanism was unreliable and deficient in many respects. First Berkeley
and then AT&T revised this implementation to provide a robust signaling facility, aptly known as
reliable signals.

Both the System V and the BSD file systems were vulnerable to system crashes. UNIX sys
tems buffer data in memory rather than write all changes synchronously to disk. Consequently, they
may lose some data in the event of a crash and leave the file system in an inconsistent state. Tradi
tionally, UNIX provides a utility calledfsck(8), which examines and repairs damaged file systems.
This is a time-consuming operation, which may require tens of minutes for a large server with many
disks. Many modem UNIX systems provide file systems that use a technique called joumaling to
eliminate the need forfsck, thereby increasing system availability and robustness.

1.2.6 Paradigm Shifts

The last three decades have seen major changes in the ways in which people use computers. In the
1970s the typical configuration was a large, centralized computer, about the size of a room, support
ing many users through terminals connected over serial lines. The system was time-sharing-the
computer distributed CPU time among all its users. User terminals were "dumb," providing little
more than a text-based display system.

The 1980s witnessed the rise of the workstation, with a high-speed, bitmapped display and
the ability to divide it into multiple windows, each running a UNIX shell. This provided an ideal
facility for interactive use, and enough processing power for running typical user applications. The
workstation was normally used by one user at a time, though it could support multiple users. High
speed networks allowed workstations to communicate with each other and with other computers.

Soon a new model of computing was born, known as client-server computing. One or more
powerful, centralized machines, known as servers, provide a variety of services to individual work
stations, or clients. File servers provide common storage for user files, and users access them
through a number of different protocols. Compute servers are machines with one or more powerful
processors to which users can submit batch jobs involving extensive computations (such as scien-

12 Chapter 1 Introduction

tific number-crunching applications). Database servers run a database engine and handle queries
and transactions submitted by clients. The servers are powerful, high-end machines with fast proc
essors, and plenty of memory and disk space. The client workstations have relatively less processing
power, memory, and storage, but have good display and interactive features.

As workstations grew more powerful, the differences between clients and servers began to
blur. Moreover, centralizing important services on a small number of servers led to network con
gestion and server overload The result was one more paradigm shift, this time to distributed com
puting. In this model, a number of machines collaborated to provide a network-based service. For
instance, each node might have a local file system, which it makes available to other nodes. Hence
each node acts as a server for its local files, and a client for files on other nodes. This avoids net
work congestion and single points offailure.

The UNIX system has adapted to the different models of computing. For instance, early
UNIX releases had only a local file system. The support for network protocols was followed by the
development of distributed file systems. Some of these, such as early versions of AFS, required
centralized, dedicated servers. In time, they evolved into distributed file systems, where a single
machine could be both a client and a server.

1.2. 7 Other Application Domains

The UNIX system was designed initially for simple, time-sharing environments such as research
laboratories and universities. It allowed a number of users to run simple programs such as text proc
essing, editing, and numerical computations. As UNIX became successful, people tried to use it for
a much wider range of applications. In the early 1990s UNIX was used in particle physics and aero
space laboratories, multimedia workstations running audio and video applications, and embedded
controllers for mission-critical systems.

Each application domain placed different types of requirements on the UNIX system, which
had to incorporate several changes to meet these demands. Multimedia and embedded applications
required guarantees of resource availability and bounded response times. Scientific applications re
quired simultaneous use of a number of processors. This led to the introduction of several real-time
features in modern UNIX systems, such as fixed-priority processes, gang scheduling of processors,
and the ability to lock data in memory.

1.2.8 Small is Beautiful

One of the greatest virtues of the original UNIX system was that it was small, simple, and had a
small set of basic abstractions. The basic paradigm was to provide simple tools that could be com
bined in flexible ways using facilities such as pipes. The traditional UNIX kernel, however, was
monolithic and not easily extensible. As more functionality was added, it became larger and more
complex, growing from less than a hundred thousand bytes to several megabytes in size. Vendors
and users ignored this at first, since computer memories were also increasing. It was more of a
problem on low-end platforms, and made UNIX less viable for small personal computers and laptop
systems.

1.2 The Mandate for Change 13

Many people felt that the change was not entirely for the better, and that the system had be
come large, cluttered, and disorganized. This led to many efforts to rewrite the system, or to write a
new operating system that was based on the original UNIX philosophy, but was more extensible and
modular. The most successful of these was Mach, which was the basis of commercial implementa
tions such as OSF/1 and NextStep. Mach migrated to a microkemel architecture (see Section 1.1.7),
in which a small kernel provides the framework for running programs, and user-level server tasks
provide other functions.

Efforts at controlling the kernel size have been only moderately successful. Microkemels
have never been able to provide performance comparable to the traditional, monolithic kernel, pri
marily due to the overhead of message passing. Some less ambitious efforts have been more bene
ficial, such as modularization (see Section 1.2.9), pageable kernels, and dynamic loading, which al
lows some components to be loaded into and out of the kernel as necessary.

1.2.9 Flexibility
In the 1970s and the early 1980s UNIX kernels were not very versatile. They supported a single
type of file system, scheduling policy, and executable file format (Figure 1-1). The only flexibility
was offered by the block and character device switches, which allow different types of devices to be
accessed through a common interface. The development of distributed file systems in the mid-1980s
made it essential for UNIX systems to support both remote and local file systems. Similarly, fea
tures such as shared libraries required different executable file formats. The UNIX system had to
support these new formats, as well as the traditional a. out format for compatibility. The coexistence
of multimedia and real-time applications with normal interactive programs required scheduler sup
port for different classes of applications.

In summary, the broadening use of UNIX systems required a more flexible operating system
that could support several different methods of performing the same task. This need instigated the
development of many flexible frameworks, such as the vnode/vfs interface, exec switch, scheduling
classes, and segment-based memory architecture. The modem UNIX kernel is very similar to the
system shown in Figure 1-2. Each of the outer circles represents an interface that may be imple
mented in a number of ways.

file system
(s5ft)

virtual
memory

Figure 1-1. Traditional UNIX kernel.

14

device
mappings""

network
driver

elf ,

tty
driver

NFS

system
processes

Figure 1-2. Modem UNIX kernel.

1.3 Looking Back, Looking Forward

Chapter I Introduction

FFS

-~ssfs

time-sharing
processes

__ ..

real-time
processes

The UNIX system advanced greatly since its inception. Despite its humble beginnings, it has be
come extremely popular. In the mid-to-late 1980s, it became the operating system of choice for a
wide variety of commercial, university, and research environments. Often, the only serious choice
buyers faced was which flavor of UNIX to buy. Lately, its position of eminence has been challenged
by Microsoft's Windows and Windows/NT operating systems. In the low-end, desktop market,
UNIX appears to have lost the battle. In this section, we examine the reasons for its success and
popularity, as well as the factors that have prevented its domination of the computer world.

1.3.1 What was Good about UNIX?

UNIX became enormously successful, probably much more so than its creators envisioned. One of
the primary reasons for its success was the way in which it was initially distributed. Bound by the
consent decree, AT&T chose to give away UNIX licenses and source code for very low fees. This
encouraged people from all parts of the world to acquire and run the system. Since the source code
was available as well, the users experimented with it, improved it, and told others about their
changes. AT&T incorporated many of these changes into its future releases.

1.3 Looking Back, Looking Forward 15

The efforts at Berkeley furthered this trend. Overall, UNIX evolved through an extremely
open process (or lack of process). Contributions to the operating system came from academia, in
dustry, and enthusiastic hackers from several different countries and continents. Even when UNIX
became commercialized, many vendors recognized the value of open systems and made their inno
vations accessible to others, creating open specifications such as NFS.

The original UNIX system was very well designed and formed a successful basis for a num
ber of later versions and offshoots. One of its greatest strengths was its adherence to the "Small is
Beautiful" philosophy [Allm 87]. A small kernel provided a minimal set of essential services. Small
utilities performed simple manipulations of data. The pipe mechanism, along with the programma
ble shell, allowed users to combine these utilities in many different ways to create powerful tools.

The UNIX file system exemplified the small, simple approach. Unlike other contemporary
operating systems, which had complex file access methods such as Indexed Sequential Access
Method (!SAM) or Hierarchical Sequential Access Method (HSAM), UNIX treated files as merely a
sequence of bytes. Applications could impose any structure on the file's contents and devise their
own access methods, without the file system getting in their way.

Most system applications used lines of text to represent their data. For instance, important
system databases such as the /etc/passwd, /etc/fstab, and /etc/ttys files were ordinary text files.
While it may have been more efficient to store the information in structured, binary format, the text
representation allowed users to read and manipulate these files without special tools. Text is a famil
iar, universal, and highly portable data form, easily manipulated by a variety of utilities.

Another outstanding feature of UNIX was its simple, uniform interface to 1/0 devices. By
representing all devices as files, UNIX allows the user to use the same set of commands and system
calls to manipulate and access devices as well as files. Developers can write programs that perform
1/0 without having to check if the 1/0 is performed to a file, user terminal, printer, or other device.
This, along with the 1/0 redirection features of the shell, provides a simple and powerful 1/0 inter
face.

A key to the success and proliferation of UNIX is its portability. The bulk of the kernel is
written in the C language. This allows it to be ported to new machines with relatively little effort. It
was first available on the popular PDP-11, and then ported to the V AX-11, also a popular machine.
Many vendors could develop new machines and simply port UNIX to them, rather than having to
write new operating systems.

1.3.2 What is Wrong with UNIX?
There are two sides to every picture. While it is nice to extol the virtues of UNIX, it is important not
to lose sight of its drawbacks. One of the most objective reviews of UNIX came from none other
than Dennis Ritchie himself. Speaking at a UNIX Retrospective session at the January 1987
USENIX conference, Ritchie analyzed many of its drawbacks [Rite 87], which are summarized be
low.

Although UNIX was initially a simple system, it did not remain that way. For instance,
AT&T added the standard 1/0 library to buffer data for efficiency and to make programs portable to
non-UNIX systems. The library grew more complex than the underlying system call interface. For

16 Chapter I Introduction

example, while the read and write system calls are atomic (indivisible) operations on the file, the
buffering in the I/0 library loses the atomicity.

While UNIX is an excellent operating system, most users want not an operating system, but
simply the ability to do a particular task. These users are not interested in the elegance of the under
lying file system structure or process model. They want to run specific applications (such as editors,
financial packages, drawing programs) with a minimum of expense and bother. The lack of a sim
ple, uniform (and preferably graphical) user interface in early UNIX systems was a major deterrent
to its acceptance among the masses. In Ritchie's words, "UNIX is simple and coherent, but it takes a
genius (or at any rate, a programmer) to understand and appreciate its simplicity."

The building-block approach to tools is as much a bane as it is a boon. While elegant and
aesthetically pleasing, it requires creativity and imagination to use effectively. Many users prefer the
integrated, do-it-all programs such as those available for personal computers.

In some ways UNIX was a victim of its own success. Its simple licensing terms and port
ability encouraged uncontrolled growth and proliferation. As people tinkered with the system, each
group changed it in a different way, often with incompatible results. At first there were two major
strains-AT &T and BSD, each with a different file system, memory architecture, and signal and
terminal handling framework. Soon many vendors released their own variants, trying for some level
of compatibility with both AT&T and BSD versions. The situation became more chaotic, and many
application developers had to spend great effort porting their programs to all the different flavors of
UNIX.

The standardization efforts were only partly successful, since they met with opposition from
the very people contributing to the process. This is because vendors needed to add unique features
for "product differentiation," to show that their product was different from, and superior to, that of
their competitors.

Richard Rashid, one of the principal developers of Mach, offers further insight into the fail
ures of UNIX. In the introductory talk of the Mach Lecture Series [Rash 89], he explains how the
motivation for Mach grew out of observations on the evolution of the UNIX system. UNIX has a
minimalist, building-block approach to tool building. Large, complex tools are created by combin
ing small, simple ones. Yet the same approach is not carried over to the kernel.

The traditional UNIX kernel is not sufficiently flexible or extensible, and has few facilities
for code reuse. As UNIX grew, developers simply added code to the kernel, which became a
"dumping ground" for new features. Very soon the kernel became bloated, unmodular, and com
plex. Mach tries to solve these problems by rewriting the operating system from the ground up,
based on a small number of abstractions. Modem UNIX systems have tackled this problem differ
ently, adding flexible frameworks to several subsystems, as described in Section 1.2.9.

1.4 The Scope of this Book

This book describes modem UNIX systems. For completeness and to provide historical context, it
also summarizes many features of older UNIX releases. There are many UNIX systems currently in
the market, each unique in its own way. We can divide these systems into two types-baseline sys
tems and commercial variants. The baseline systems include System V, 4BSD, and Mach. The vari-

1.5 References 17

ants are derived from any one of the baseline systems and contain value-added features and en
hancements from the vendor. These include Sun Microsystem's SunOS and Solaris 2.x, IBM's AIX,
Hewlett-Packard's HP-UX, and Digital's ULTRIX and Digital UNIX.

This book does not focus on a specific release or variant of the UNIX system. Instead, it ex
amines a number of important implementations and compares their architecture and approach to
many important problems. SVR4 receives the most attention, but there is ample coverage of
4.3BSD, 4.4BSD, and Mach. Among commercial variants, the book gives maximum coverage to
Sun OS and Solaris 2.x, not only because of their importance in the UNIX market, but also because
Sun Microsystems has been responsible for many technical contributions that have subsequently
been integrated into the baseline releases, and because of the plethora of published work on their
systems.

Often the book makes generic references to traditional UNIX or modem UNIX. By tradi
tional UNIX we mean SVR3, 4.3BSD, and earlier versions. We often discuss features or properties
of traditional systems (for instance, "traditional UNIX systems had a single type of file system").
While there are many differences between SVR3 and 4.3BSD in each subsystem, there is also a lot
of common ground, and such generic discussions focus on these common themes. When talking
about modem UNIX systems, we mean to SVR4, 4.4BSD, Mach, and systems derived from these.
Again, general comments, such as "Modem UNIX systems provide some kind of a joumaling file
system," describe features available in a large number of modem systems, but not necessarily in all
of them.

1.5 References

[Acce 86]

[Allm 87]

[AT&T 89]

[Bost 93]
[Bour 78]

[Gerb 92]

[IEEE 90]

[Joy 86]

Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., and Young, M., "Mach:
A New Kernel Foundation for UNIX Development," Proceedings of the Summer
1986 USENIXTechnical Conference, Jun. 1986, pp. 93-112.
Allman, E., "UNIX: The Data Forms," Proceedings of the Winter 1987 USENIX
Technical Conference, Jan. 1987, pp. 9-15.
American Telephone and Telegraph, The System V Interface Definition (SVID), Third
Edition, 1989.
Bostic, K., "4.4BSD Release," ;login, Vol. 18, No.5, Sep.-Oct. 1993, pp. 29-31.
Bourne, S.R., "The UNIX Shell," The Bell System Technical Journal, Vol. 57, No.6,
Part 2, Jul.-Aug. 1978, pp. 1971-1990.
Gerber, C., "USL Vs. Berkeley," UNIX Review, Vol. 10, No. 11, Nov. 1992, pp. 33-
36.
Institute for Electrical and Electronic Engineers, Information Technology-Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) {C Language}, 1003.1-1990, IEEE, Dec. 1990.
Joy, W.N., Fabry, R.S., Leffler, S.J., McKusick, M.K., and Karels, M.J., "An
Introduction to the C Shell," UNIX User's Supplementary Documents, 4.3 Berkeley
Software Distribution, Virtual V AX-11 Version, USENIX Association, 1986, pp.
4:1-46.

18

[Orga 72]

[Rash 89]

[Rich 82]

[Rite 78]

[Rite 87]

[Salu 94]
[Thorn 74]

[XPG4 93]

Chapter I Introduction

Organick, E.J., The Multics System: An Examination of Its Structure, The MIT Press,
Cambridge, MA, 1972.
Rashid, R.F., "Mach: Technical Innovations, Key Ideas, Status," Mach 2.5 Lecture
Series, OSF Research Institute, 1989.
Richards, M., and Whitby-Strevens, C., BCPL: The Language and Its Compiler,
Cambridge University Press, Cambridge, UK, 1982.
Ritchie, D.M., and Thompson, K., "The UNIX Time-Sharing System," The Bell
System Technical Journal, Vol. 57, No. 6, Part 2, pp. 1905-1930, Jul.-Aug. 1978.
Ritchie, D.M., "Unix: A Dialectic," Proceedings of the Winter I987 USENJX
Technical Conference, Jan. 1987, pp. 29-34.
Salus, P.H., A Quarter Century of UNIX, Addison-Wesley, Reading, MA, 1994.
Thompson, K., and Ritchie, D.M., "The UNIX Time-Sharing System,"
Communications of the ACM, Vol. 17, No.7, Jul. 1974, pp. 365-375.
The X/OPEN Portability Guide (XPG), Issue 4, Prentice-Hall, Englewood Cliffs, NJ,
1993.

2

The Process and the Kernel

2.1 Introduction

The principal function of an operating system is to provide an execution environment in which user
programs (applications) may run. This involves defining a basic framework for program execution,
and providing a set of services-such as file management and I/O-and an interface to these serv
ices. The UNIX system presents a rich and versatile programming interface [Kern 84] that can effi
ciently support a variety of applications. This chapter describes the main components of the UNIX
systems and how they interact to provide a powerful programming paradigm.

There are several different UNIX variants. Some of the important ones are the System V re
leases from AT&T (SVR4, the latest System V release, is now owned by Novell), the BSD releases
from the University of California at Berkeley, OSF/1 from the Open Software Foundation, and
Sun OS and Solaris from Sun Microsystems. This chapter describes the kernel and process architec
ture of traditional UNIX systems, that is, those based on SVR2 [Bach 86], SVR3 [AT&T 87],
4.3BSD [Leff89], or earlier versions. Modern UNIX variants such as SVR4, OSF/1, 4.4BSD, and
Solaris 2.x differ significantly from this basic model; the subsequent chapters explore the modern
releases in detail.

The UNIX application environment contains one fundamental abstraction-the process. In
traditional UNIX systems, the process executes a single sequence of instructions in an address
space. The address space of a process comprises the set of memory locations that the process may
reference or access. The control point of the process tracks the sequence of instructions, using a
hardware register typically called the program counter (PC). Many newer UNIX releases support

19

20 Chapter 2 The Process and the Kernel

multiple control points (called threads [IEEE 94]), and hence multiple instruction sequences, within
a single process.

The UNIX system is a multiprogramming environment, i.e., several processes are active in
the system concurrently. To these processes, the system provides some features of a virtual ma
chine. In a pure virtual machine architecture the operating system gives each process the illusion
that it is the only process on the machine. The programmer writes an application as if only its code
were running on the system. In UNIX systems each process has its own registers and memory, but
must rely on the operating system for 1/0 and device control.

The process address space is virtual, 1 and normally only part of it corresponds to locations in
physical memory. The kernel stores the contents of the process address space in various storage ob
jects, including physical memory, on-disk files, and specially reserved swap areas on local or re
mote disks. The memory management subsystem of the kernel shuffles pages (fixed-size chunks) of
process memory between these objects as convenient.

Each process also has a set of registers, which correspond to real, hardware registers. There
are many active processes in the system, but only one set of hardware registers. The kernel keeps
the registers of the currently running process in the hardware registers and saves those of other
processes in per-process data structures.

Processes contend for the various resources of the system, such as the processor (also known
as the Central Processing Unit or CPU), memory, and peripheral devices. An operating system must
act as a resource manager, distributing the system resources optimally. A process that cannot ac
quire a resource it needs must block (suspend execution) until that resource becomes available.
Since the CPU is one such resource, only one process can actually run at a time on a uniprocessor
system. The rest of the processes are blocked, waiting for either the CPU or other resources. The
kernel provides an illusion of concurrency by allowing one process to have the CPU for a brief pe
riod of time (called a quantum, usually about 10 milliseconds), then switching to another. In this
way each process receives some CPU time and makes progress. This method of operation is known
as time-slicing.

From another perspective, the computer provides several facilities to the user, such as the
processor, disks, terminals, and printers. Application programmers do not wish to be concerned with
the low-level details of the functionality and architecture of these components. The operating sys
tem assumes complete control of these devices and offers a high-level, abstract programming inter
face that applications can use to access these components. It hides all the details of the hardware,
greatly simplifying the work of the programmer. 2 By centralizing all control of the devices, it also
provides additional facilities such as access synchronization (if two users want the same device at
the same time) and error recovery. The application programming interface (API) defines the se
mantics of all interactions between user programs and the operating system.

I There are some UNIX systems that do not use virtual memory. These include the earliest UNIX releases (the first
virtual memory systems appeared in the late 1970s-see Section 1.1.4) and some real-time UNIX variants. This book
deals only with UNIX systems that have virtual memory.

2 The UNIX system takes this too far in some cases; for example, its treatment of tape drives as character streams
makes it difficult for applications to properly handle errors and exceptional cases. The tape interface is inherently re
cord-based and does not fit nicely with the UNIX device framework [AIIm 87].

2.1 Introduction 21

We have already started referring to the operating system as an entity that does things. What
exactly is this entity? On one hand, an operating system is a program (often called the kernel) that
controls the hardware and creates, destroys, and controls all processes (see Figure 2-1). From a
broader perspective, an operating system includes not just the kernel, but also a host of other pro
grams and utilities (such as the shells, editors, compilers, and programs like date, ls, and who) that
together provide a useful work environment. Obviously, the kernel alone is of limited use, and users
purchasing the UNIX system expect many of these other programs to come with it. The kernel,
however, is special in many ways. It defines the programming interface to the system. It is the only
indispensable program, without which nothing can run. While several shells or editors may run con
currently, only a single kernel may be loaded at a time. This book is devoted to studying the kernel,
and when it mentions the operating system, or UNIX, it means the kernel, unless specified other
wise.

To rephrase the earlier question, "What exactly is the kernel?" Is it a process, or something
distinct from all processes? The kernel is a special program that runs directly on the hardware. It
implements the process model and other system services. It resides on disk in a file typically called
/vmunix or /unix (depending on the UNIX vendor). When the system starts up, it loads the kernel
from disk using a special procedure called bootstrapping. The kernel initializes the system and sets
up the environment for running processes. It then creates a few initial processes, which in tum cre
ate other processes. Once loaded, the kernel remains in memory until the system is shut down. It
manages the processes and provides various services to them.

The UNIX operating system provides functionality in four ways:

• User processes explicitly request services from the kernel through the system call interface
(see Figure 2-1), the central component of the UNIX API. The kernel executes these re
quests on behalf of the calling process.

• Some unusual actions of a process, such as attempting to divide by zero, or overflowing
the user stack, cause hardware exceptions. Exceptions require kernel intervention, and the
kernel handles them on behalf of the process.

~y~t~~ ~a!l __
interface

interface
to devices

User processes System processes

Figure 2-1. The kernel interacts with processes and devices.

22 Chapter 2 The Process and the Kernel

• The kernel handles hardware interrupts from peripheral devices. Devices use the interrupt
mechanism to notify the kernel of 110 completion and status changes. The kernel treats
interrupts as global events, unrelated to any specific process.

• A set of special system processes, such as the swapper and the pagedaemon, perform sys
tem-wide tasks such as controlling the number of active processes or maintaining a pool of
free memory.

The following sections describe these different mechanisms and define the notion of the
execution context of a process.

2.2 Mode, Space, and Context

In order to run UNIX, the computer hardware must provide at least two different modes of execu
tion-a more privileged kernel mode, and a less privileged user mode. As you might expect, user
programs execute in user mode, and kernel functions execute in kernel mode. The kernel protects
some parts of the address space from user-mode access. Moreover, certain privileged machine in
structions, such as those that manipulate memory management registers, may only be executed in
kernel mode.

Many computers have more than two execution modes. The Intel 80x86 architecture, for ex
ample, provides four rings of execution-the innermost being the most privileged. UNIX, however,
uses only two of these rings. The main reason for having different execution modes is for protection.
Since user processes run in the less privileged mode, they cannot accidentally or maliciously corrupt
another process or the kernel. The damage from program errors is localized, and usually does not
affect other activity or processes in the system.

Most UNIX implementations use virtual memory. In a virtual memory system the addresses
used by a program do not refer directly to locations in physical memory. Each process has its own
virtual address space, and references to virtual memory addresses are translated to physical memory
locations using a set of address translation maps. Many systems implement these maps as page
tables, with one entry for each page (a fixed-size unit of memory allocation and protection) of
the process address space. The memory management unit (MMU) of the computer typically has a set
of registers that identifies the translation maps of the currently running process (also called the cur
rent process). When the current process yields the CPU to another process (a context switch), the
kernel loads these registers with pointers to the translation maps of the new process. The MMU
registers are privileged and may only be accessed in kernel mode. This ensures that a process can
only refer to addresses in its own space and cannot access or modifY the address space of another
process.

A fixed part of the virtual address space of each process maps the kernel text and data
structures. This portion, known as system space or kernel space, may only be accessed in kernel
mode. There is only one instance of the kernel running in the system, and hence all processes map
a single kernel address space. The kernel maintains some global data structures and some
per-process objects. The latter contain information that enables the kernel to access the address
space of any process. The kernel can directly access the address space of the current process, since

2.2 Mode, Space, and Context 23

the MMU registers have the necessary information. Occasionally, the kernel must access the address
space of a process other than the current one. It does so indirectly, using special, temporary map
pings.

While the kernel is shared by all processes, system space is protected from user-mode ac
cess. Processes cannot directly access the kernel, and must instead use the system call interface.
When a process makes a system call, it executes a special sequence of instructions to put the system
in kernel mode (this is called a mode switch) and transfer control to the kernel, which handles the
operation on behalf of the process. After the system call is complete, the kernel executes another set
of instructions that returns the system to user mode (another mode switch) and transfers control
back to the process. The system call interface is described further in Section 2.4.1.

There are two important per-process objects that, while managed by the kernel, are often
implemented as part of the process address space. These are the u area (also called the user area)
and the kernel stack. The u area is a data structure that contains information about a process of in
terest to the kernel, such as a table of files opened by the process, identification information, and
saved values of the process registers when the process is not running. The process should not be al
lowed to change this information arbitrarily, and hence the u area is protected from user-mode ac
cess. (Some implementations allow the process to read, but not modify, the u area.)

The UNIX kernel is re-entrant, meaning that several processes may be involved in kernel
activity concurrently. In fact, they may even be executing the same routine in parallel. (Of course,
only one process can actually run at a time; the others are blocked or waiting to run.) Hence each
process needs its own private kernel stack, to keep track of its function call sequence when execut
ing in the kernel. Many UNIX implementations allocate the kernel stack in the address space of
each process, but do not allow user-mode access to it. Conceptually, both the u area and the kernel
stack, while being per-process entities in the process space, are owned by the kernel.

Another important concept is the execution context. Kernel functions may execute either in
process context or in system context. In process context, the kernel acts on behalf of the current
process (for instance, while executing a system call), and may access and modify the address space,
u area, and kernel stack of this process. Moreover, the kernel may block the current process if it
must wait for a resource or device activity.

The kernel must also perform certain system-wide tasks such as responding to device inter
rupts and recomputing process priorities. Such tasks are not performed on behalf of a particular
process, and hence are handled in system context (also called interrupt context). When running in
system context, the kernel may not access the address space, u area, or kernel stack of the current
process. The kernel may not block when executing in system context, since that would block an in
nocent process. In some situations there may not even be a current process, for example, when all
processes are blocked awaiting I/0 completion.

This far, we have noted the distinctions between user and kernel mode, process and system
space, and process and system context. Figure 2-2 summarizes these notions. User code runs in user
mode and process context, and can access only the process space. System calls and exceptions are
handled in kernel mode but in process context, and may access process and system space. Interrupts
are handled in kernel mode and system context, and must only access system space.

24

user
mode

application
(user) code

process
context

Chapter 2 The Process and the Kernel

system calls,
exceptions

(access process space only) (access process and system space) kernel

not allowed

(access system space only)

system
context

interrupts,
system tasks

Figure 2-2. Execution mode and context.

mode

2.3 The Process Abstraction

What exactly is a UNIX process? One oft-quoted answer is, "A process is an instance of a running
program." Going beyond perfunctory definitions, it is useful to describe various properties of the
process. A process is an entity that runs a program and provides an execution environment for it. It
comprises an address space and a control point. The process is the fundamental scheduling entity
only one process runs on the CPU at a time. In addition, the process contends for and owns various
system resources such as devices and memory. It also requests services from the system, which the
kernel performs on its behalf.

The process has a definite lifetime-most processes are created by a fork or vfork system
call and run until they terminate by calling exit. During its lifetime, a process may run one or many
programs (usually one at a time). It invokes the exec system call to run a new program.

UNIX processes have a well-defined hierarchy. Each process has one parent, and may have
one or more child processes. The process hierarchy can be described by an inverted tree, with the
init process at the top. The init process (so named because it executes the program /etc/init) is the
first user process created when the system boots. It is the ancestor of all user processes. A few sys
tem processes, such as the swapper and the pagedaemon (also called the pageout daemon), are cre
ated during the bootstrapping sequence and are not descendants of init. If, when a process termi
nates, it has any active child processes, they become orphans and are inherited by init.

2.3 The Process Abstraction 25

2.3.1 Process State

At all times, UNIX processes are in some well-defined state. They move from one state to another
in response to various events. Figure 2-3 describes the important process states in UNIX and the
events that cause state transitions.

The fork system call creates a new process, which begins life in the initial (also called idle)
state. When the process is fully created,fork moves it to the ready to run state, where it must wait to
be scheduled. Eventually, the kernel selects it for execution, and initiates a context switch. This in
vokes a kernel routine (typically called swtch ()) that loads the hardware context of the process (see
Section 2.3.2) into the system registers, and transfers control to the process. From this point, the
new process behaves like any other process, and undergoes state transitions as described below.

A process running in user mode enters kernel mode as a result of a system call or an inter
rupt, and returns to user mode when that completes.3 While executing a system call, the process may
need to wait for an event or for a resource that is currently unavailable. It does so by calling

fork

I

I

Key

0 in 4.2/4.3BSD, not
in SVR2/SVR3

I
I

wakeup 1
I
I

sto~t

--I I ..- I I .
stop 1 1 continue ., "' stop 1 1 contmue

e:::~-~~------
Figure 2-3. Process states and state transitions.

wait

3 Interrupts can also occur when the system is in kernel mode. In this case, the system will remain in kernel mode after
the handler completes.

26 Chapter 2 The Process and the Kernel

s 1 eep (), which puts the process on a queue of sleeping processes, and changes its state to asleep.
When the event occurs or the resource becomes available, the kernel wakes up the process, which
now becomes ready to run and waits to be scheduled.

When a process is scheduled to run, it initially runs in kernel mode (kernel running state),
where it completes the context switch. Its next transition depends on what it was doing before it was
switched out. If the process was newly created or was executing user code (and was descheduled to
let a higher priority process run), it returns immediately to user mode. If it was blocked for a re
source while executing a system call, it resumes execution of the system call in kernel mode.

Finally, the process terminates by calling the exit system call, or because of a signal (signals
are notifications issued by the kernel-see Chapter 4). In either case, the kernel releases all the re
sources of the process, except for the exit status and resource usage information, and leaves the
process in the zombie state. The process remains in this state until its parent calls wait (or one of its
variants), which destroys the process and returns the exit status to the parent (see Section 2.8.6).

4BSD defines some additional states that are not supported in SVR2 or SVR3. A process is
stopped, or suspended, by a stop signal (SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU). Unlike other
signals, which are handled only when the process runs, a stop signal changes the process state im
mediately. If the process is in the running or ready to run state, its state changes to stopped. If the
process is asleep when this signal is generated, its state changes to asleep and stopped. A stopped
process may be resumed by a continue signal (SIGCONT), which returns it to the ready to run state. If
the process was stopped as well as asleep, SIGCONT returns the process to the asleep state. System V
UNIX incorporated these features in SVR4 (see Section 4.5).4

2.3.2 Process Context

Each process has a well-defined context, comprising all the information needed to describe the
process. This context has several components:

• User address space: This is usually divided into several components-the program text
(executable code), data, user stack, shared memory regions, and so on.

• Control information: The kernel uses two main data structures to maintain control in
formation about the process-the u area and the proc structure. Each process also has its
own kernel stack and address translation maps.

• Credentials: The credentials of the process include the user and group IDs associated
with it, and are further described in Section 2.3.3.

• Environment variables: These are a set of strings of the form

variable=value

which are inherited from the parent. Most UNIX systems store these strings at the bottom
of the user stack. The standard user library provides functions to add, delete, or modify
these variables, and to translate the variable and return its value. When invoking a new

4 SVR3 provides a stopped state for the process solely for the purpose of process tracing (see Section 6.2.4). When a
traced process receives any signal, it enters the stopped state, and the kernel awakens its parent.

2.3 The Process Abstraction

program, the caller may ask exec to retain the original environment or provide a new set of
variables to be used instead.

• Hardware context: This includes the contents of the general-purpose registers, and of a
set of special system registers. The system registers include:

• The program counter (PC), which holds the address of the next instruction to exe
cute.

• The stack pointer (SP), which contains the address of the uppermost element of the
stack.5

• The processor status word (PSW), which has several status bits containing informa
tion about the system state, such as current and previous execution modes, current
and previous interrupt priority levels, and overflow and carry bits.

• Memory management registers, which map the address translation tables of the proc
ess.

• Floating point unit (FPU) registers.

27

The machine registers contain the hardware context of the currently running process. When a con
text switch occurs, these registers are saved in a special part of the u area (called the process control
block, or PCB) of the current process. The kernel selects a new process to run and loads the hard
ware context from its PCB.

2.3.3 User Credentials

Every user in the system is identified by a unique number called the user ID, or UID. The system
administrator also creates several user groups, each with a unique user group ID, or GJD. These
identifiers affect file ownership and access permissions, and the ability to signal other processes.
These attributes are collectively called the credentials.

The system recognizes a privileged user called the superuser (normally, this user logs in
with the name root). The superuser has a UID of 0, and GID of 1. The superuser has many privi
leges denied to ordinary users. He or she may access files owned by others, regardless of protection
settings, and may also execute a number of privileged system calls (such as mknod, which creates a
special device file). Many modem UNIX systems such as SVR4.1/ES support enhanced security
mechanisms [Sale 92]. These systems replace the single superuser abstraction with separate privi
leges for different operations.

Each process has two pairs of IDs-real and effective. When a user logs in, the login pro
gram sets both pairs to the UID and GID specified in the password database (the /etc/passwd file,
or some distributed mechanism such as Sun Microsystems' Network Information Service (NJS)).
When a process forks, the child inherits its credentials from the parent.

The effective UID and effective GID affect file creation and access. During file creation, the
kernel sets the owner attributes of the file to the effective UID and GID of the creating process.
During file access, the kernel uses the effective UID and GID of the process to determine whether it

5 Or lowermost, on machines where the stack grows downward. Also, on some systems, the stack pointer contains the
address at which the next item can be pushed onto the stack.

28 Chapter 2 The Process and the Kernel

can access the file (see Section 8.2.2 for more details). The real UID and real GID identify the real
owner of the process and affect the permissions for sending signals. A process without superuser
privileges can signal another process only if the sender's real or effective UID matches the real UID
of the receiver.

There are three system calls that can change the credentials. If a process calls exec to run a
program installed in suid mode (see Section 8.2.2), the kernel changes the effective UID of the
process to that of the owner of the file. Likewise, if the program is installed in sgid mode, the kernel
changes the effective GID of the calling process.

UNIX provides this feature to grant special privileges to users for particular tasks. The clas
sic example is the passwd program, which allows the user to modify his own password. This pro
gram must write to the password database, which users should not be allowed to directly modify (to
prevent them from changing passwords of other users). Hence the passwd program is owned by the
superuser and has its SUID bit set. This allows the user to gain superuser privileges while running
the passwd program.

A user can also change his credentials by calling setuid or setgid. The superuser can invoke
these system calls to change both the real and effective UID or GID. Ordinary users can use this call
only to change their effective UID or GID back to the real ones.

There are some differences in the treatment of credentials in System V and BSD UNIX.
SVR3 also maintains a saved UID and saved GJD, which are the values of the effective UID and
GID prior to calling exec. The setuid and setgid calls can also restore the effective IDs to the saved
values. While 4.3BSD does not support this feature, it allows a user to belong to a set of supplemen
tal groups (using the setgroups system call). While files created by the user belong to his or her
primary group, the user can access files belonging either to the principal or to a supplemental group
(provided the file allows access to group members).

SVR4 incorporates all the above features. It supports supplemental groups, and maintains
the saved UID and GID across exec.

2.3.4 The u Area and the proc Structure

The control information about a process is maintained in two per-process data structures-the u area
and the proc structure. In many implementations, the kernel has a fixed-size array of proc struc
tures called the process table. The size of this array places a hard limit on the maximum number of
processes that can exist at a time. Newer releases such as SVR4 allow dynamic allocation of proc
structures, but have a fixed-size array of pointers to them. Since the proc structure is in system
space, it is visible to the kernel at all times, even when the process is not running.

The u area, or user area, is part of the process space, i.e., it is mapped and visible only when
the process is running. On many implementations, the u area is always mapped at the same fixed
virtual address in each process, which the kernel references simply through the variable u. One of
the tasks of the context switch is to reset this mapping, so that kernel references to u are translated
to the physical location of the new u area.

Occasionally, the kernel may need to access the u area of another process. This is possible,
but must be done indirectly using a special set of mappings. These differences in access semantics
govern what information is stored in the proc structure and what is stored in the u area. The u area

2.3 The Process Abstraction 29

contains data that is needed only when the process is running. The proc structure contains informa
tion that may be needed even when the process is not running.

The major fields in the u area include:

• The process control block-stores the saved hardware context when the process is not
running.

• A pointer to the proc structure for this process.
• The real and effective UID and GID.6
• Arguments to, and return values or error status from, the current system call.
• Signal handlers and related information (see Chapter 4).
• Information from the program header, such as text, data, and stack sizes and other memory

management information.
• Open file descriptor table (see Section 8.2.3). Modem UNIX systems such as SVR4 dy

namically extend this table as necessary.
• Pointers to vnodes of the current directory ana the controlling terminal. Vnodes represent

file system objects and are further described in Section 8.7.
• CPU usage statistics, profiling information, disk quotas, and resource limits.
• In many implementations, the per-process kernel stack is part of the u area.

The major fields in the proc structure include:

• Identification: Each process has a unique process ID (PID) and belongs to a specific proc-
ess group. Newer releases also assign a session ID to each process.

• Location of the kernel address map for the u area of this process.
• The current process state.
• Forward and backward pointers to link the process onto a scheduler queue or, for a

blocked process, a sleep queue.
• Sleep channel for blocked processes (see Section 7.2.3).
• Scheduling priority and related information (see Chapter 5).
• Signal handling information: masks of signals that are ignored, blocked, posted, and han-

dled (see Chapter 4).
• Memory management information.
• Pointers to link this structure on lists of active, free, or zombie processes.
• Miscellaneous flags.
• Pointers to keep the structure on a hash queue based on its PID.
• Hierarchy information, describing the relationship of this process to others.

Figure 2-4 illustrates the process relationships in 4.3BSD UNIX. The fields that describe the
hierarchy are p_pid (process ID), p_ppid (parent process ID), p_pptr (pointer to the parent's proc
structure), p_cptr (pointer to the oldest child), p_ysptr (pointer to next younger sibling), and
p _ osptr (pointer to next older sibling).

6 Modem UNIX systems such as SVR4 store user credentials in a dynamically allocated, reference-counted data
structure, and keep a pointer to it in the proc structure. Section 8.10.7 discusses this arrangement further.

30

p_pid = 58
p_ppid = 50
p_pptr
p_cptr = 0
p_ysptr
p_osptr = 0

p_pid = 50
p_ppid = 38
p_pptr
p_cptr
p_ysptr
p_osptr

p_pid = 56
p_ppid = 50
p_pptr
p_cptr = 0
p_ysptr
p_osptr

Chapter 2 The Process and the Kernel

p_pid = 52
p_ppid = 50
p_pptr
p_cptr
p_ysptr 0
p_osptr

Figure 2-4. A typical process hierarchy in 4.3BSD UNIX.

Many modem UNIX variants have modified the process abstraction to support several
threads of control in a single process. This notion is explained in detail in Chapter 3.

2.4 Executing in Kernel Mode

There are three types of events that cause the system to enter kernel mode--device interrupts, ex
ceptions, and traps or software interrupts. In each case, when the kernel receives control, it consults
a dispatch table, which contains addresses of low-level routines that handle these events. Before
calling the appropriate routine, the kernel saves some state of the interrupted process (such as its
program counter and the processor status word) on its kernel stack. When the routine completes, the
kernel restores the state of the process and changes the execution mode back to its previous value
(an interrupt could have occurred when the system was already in kernel mode, in which case it
would remain in kernel mode after the handler returns).

It is important to distinguish between interrupts and exceptions. Interrupts are asynchronous
events caused by peripheral devices such as disks, terminals, or the hardware clock. Since interrupts
are not caused by the current process, they must be serviced in system context and may not access
the process address space or u area. For the same reason, they must not block, since that would
block an arbitrary process. Exceptions are synchronous to the process and are caused by events re
lated to the process itself, such as attempting to divide by zero or accessing an illegal address. The

2.4 Executing in Kernel Mode 31

exception handler therefore runs in process context; it may access the address space and u area of
the process and block if necessary. Software interrupts, or traps, occur when a process executes a
special instruction, such as in system calls, and are handled synchronously in process context.

2.4.1 The System Call Interface

The set of system calls defines the programming interface offered by the kernel to user processes.
The standard C library, linked by default with all user programs, contains a wrapper routine for
each system call. When a user program makes a system call, the corresponding wrapper routine is
invoked. This routine pushes the system call number (which identifies the particular system call to
the kernel) onto the user stack and then invokes a special trap instruction. The actual name of the
instruction is machine-specific (for example, sysca 11 on the MIPS R3000, chmk on the V AX-11, or
trap on the Motorola 680x0). The function of this instruction is to change the execution mode to
kernel and to transfer control to the system call handler defined in the dispatch table. This handler,
typically called sysca 11 (),is the starting point of all system call processing in the kernel.

The system call executes in kernel mode, but in process context. It thus has access to the
process address space and the u area. Since it runs in kernel mode, it uses the kernel stack of the
calling process. sysca 11 () copies the arguments of the system call from the user stack to the u area
and saves the hardware context of the process on the kernel stack. It then uses the system call num
ber to index into a system call dispatch vector (usually called sysent []) to determine which kernel
function to call to execute that particular system call. When that function returns, sysca 11 () sets
the return values or error status in the appropriate registers, restores the hardware context, and re
turns to user mode, transferring control back to the library routine.

2.4.2 Interrupt Handling

The primary function of interrupts on a machine is to allow peripheral devices to interact with the
CPU, to inform it of task completion, error conditions, or other events that require urgent attention.
Such interrupts are generated asynchronous to regular system activity (i.e., the system does not
know at what point in the instruction stream the interrupt will occur) and are usually unrelated to
any specific process. The function that is invoked to service an interrupt is called the interrupt han
dler or interrupt service routine. The handler runs in kernel mode and system context. Since the
process that was interrupted usually bears no relation to the interrupt, the handler must be careful
not to access the process context. For the same reason, interrupt handlers are not permitted to block.

There is, however, a small impact on the interrupted process. The time used to service the
interrupt is charged to the time slice of this process, even though the activity was unrelated to the
process. Also, the clock interrupt handler charges the clock tick (the time between two clock inter
rupts) to the current process, and thus needs to access its proc structure. It is important to note that
the process context is not explicitly protected from access by interrupt handlers. An incorrectly
written handler has the power to corrupt any part of the process address space.

The kernel also supports the notion of software interrupts or traps, which can be triggered by
executing specific instructions. Such interrupts are used, for example, to trigger a context switch or

32 Chapter 2 The Process and the Kernel

Table 2-1. Setting the interrupt priority level in 4.3BSD and SVR4

4.3BSD SVR4 Purpose
splO splOorsplbase enable all interrupts
splsoftclock spltimeout block functions scheduled by timers
splnet block network protocol processing

splstr block STREAMS interrupts
spltty spltty block terminal interrupts
splbio spldisk block disk interrupts
splimp block network device interrupts
splclock block hardware clock interrupt
splhigh s p l 7 or s p l h i disable all interrupts
splx splx restore ipl to previously saved value

schedule low-priority clock-related tasks. While these interrupts are synchronous to normal system
activity, they are handled just like normal interrupts.

Since there are several different events that may cause interrupts, one interrupt may occur
while another is being serviced. UNIX systems recognize the need to prioritize different kinds of
interrupts and allow high-priority interrupts to preempt the servicing of low-priority interrupts. For
example, the hardware clock interrupt must take precedence over a network interrupt, since the lat
ter may require a large amount of processing, spanning several clock ticks.

UNIX systems assign an interrupt priority level (ipl) to each type of interrupt. Early UNIX
implementations had ipls in the range 0-7. In BSD, this was expanded to 0-31. The processor
status register typically has bit-fields that store the current (and perhaps previous) ipf.7 Normal ker
nel and user processing occurs at the base ipl. The number of interrupt priorities varies both across
different UNIX variants and across different hardware architectures. On some systems, ipl 0 is the
lowest priority, while on others it is the highest. To make things easier for kernel and device driver
developers, UNIX systems provide a set of macros to block and unblock interrupts. However, dif
ferent UNIX variants use different macros for similar purposes. Table 2-1 lists some of the macros
used in 4.3BSD and in SVR4.

When an interrupt occurs, if its ipl is higher than the current ipl, the current processing is
suspended and the handler for the new interrupt is invoked. The handler begins execution at the new
ipl. When the handler completes, the ipl is lowered to its previous value (which is obtained from the
old processor status word saved on the interrupt stack), and the kernel resumes execution of the in
terrupted process. If the kernel receives an interrupt of ipllower than or equal to the current ipl, that
interrupt is not handled immediately, but is stored in a saved interrupt register. When the ipl drops
sufficiently, the saved interrupt will be handled. This is described in Figure 2-5.

The ipls are compared and set in hardware in a machine-dependent way. UNIX also provides
the kernel with mechanisms to explicitly check or set the ipl. For instance, the kernel may raise the
ipl to block interrupts while executing some critical code. This is discussed further in Section 2.5.2.

7 Some processors, such as the Intel 80x86, do not support interrupt priorities in hardware. On these systems, the op
erating system must implement ipls in software. The exercises explore this problem further.

2.5 Synchronization

interrupt arrives

Yes

create new context layer;
push PC and PSW;

set cur ipl = new ipl;
invoke handler

handle interrupt;
return from it

get old ipl from saved PSW

No

No

Yes

save interrupt in special
register

block until ipl drops enough

unblock highest blocked
interrupt

Figure 2-5. Interrupt handling.

33

Some machines provide a separate global interrupt stack used by all the handlers. In ma
chines without an interrupt stack, handlers run on the kernel stack of the current process. They must
ensure that the rest of the kernel stack is insulated from the handler. The kernel implements this by
pushing a context layer on the kernel stack before calling the handler. This context layer, like a
stack frame, contains the information needed by the handler to restore the previous execution con
text upon return.

2.5 Synchronization

The UNIX kernel is re-entrant. At any time, several processes may be active in the kernel. Of these,
only one (on a uniprocessor) can be actually running; the others are blocked, waiting either for the

34 Chapter 2 The Process and the Kernel

CPU or some other resource. Since they all share the same copy of the kernel data structures, it is
necessary to impose some form of synchronization, to prevent corruption of the kernel.

Figure 2-6 shows one example of what can happen in the absence of synchronization. Sup
pose a process is trying to remove element B from the linked list. It executes the first line of code,
but is interrupted before it can execute the next line, and another process is allowed to run. If this
second process were to access this same list, it would find it in an inconsistent state, as shown in
Figure 2-6(b). Clearly, we need to ensure that such problems never occur.

UNIX uses several synchronization techniques. The first line of defense is that the UNIX
kernel is nonpreemptive. This means that if a process is executing in kernel mode, it cannot be pre
empted by another process, even though its time quantum may expire. The process must voluntarily
relinquish the CPU. This typically happens when the process is about to block while waiting for a
resource or event, or when it has completed its kernel mode activity and is about to return to user
mode. In either case, since the CPU is relinquished voluntarily, the process can ensure that the ker
nel remains in a consistent state. (Modern UNIX kernels with real-time capability allow preemption
under certain conditions-see Section 5.6 for details.)

Making a kernel nonpreemptive provides a broad, sweeping solution to most synchroniza
tion problems. In the example of Figure 2-6, for instance, the kernel can manipulate the linked list
without locking it, if it does not have to worry about preemption. There are three situations where
synchronization is still necessary-blocking operations, interrupts, and multiprocessor synchroniza
tion.

(a) Initial state of list

A B c
(b)Ajter B->prev->next B->next;

A B c
(c) Ajter B->next->prev B->prev;

A B c

(d)Ajter free(B);

~
Figure 2-6. Removing an element from a linked list.

2.5 Synchronization 35

2.5.1 Blocking Operations

A blocking operation is one that blocks the process (places the process in the asleep state until the
operation completes). Since the kernel is nonpreemptive, it may manipulate most objects (data
structures and resources) with impunity, knowing that no other process will disturb it. Some objects,
however, must be protected across a blocking operation, and this requires additional mechanisms.
For instance, a process may issue a read from a file into a disk block buffer in kernel memory. Since
disk 110 is necessary, the process must wait until the 110 completes, allowing other processes to run
in the meantime. However, the kernel must ensure that other processes do not access this buffer in
any way, since the buffer is in an inconsistent state.

To protect such an object, the kernel associates a lock with it. The lock may be as simple as a
single bit-flag, which is set when locked and clear when unlocked. Any process that wants to use the
object must first check if it is locked. If so, the process must block until the object is unlocked. If
not, it locks the object and proceeds to use it. Normally, the kernel also associates a wanted flag
with the object. This flag is set by a process that wants the object but finds it locked. When a proc
ess is ready to release a locked object, it checks the object's wanted flag to see if other processes are
waiting for the object and, if so, awakens them. This mechanism allows a process to lock a resource
for a long period of time, even if it had to block and allow other processes to run while holding the
lock.

Figure 2-7 describes the algorithm for resource locking. The following points must be noted:

• A process blocks itself when it cannot obtain a resource, or when it must wait for an event
such as 1/0 completion. It does so by calling a routine called sleep (). This is called
blocking on the resource or event.

• sleep () puts the process on a special queue of blocked processes, changes its state to
asleep, and calls a function called swtch () to initiate a context switch and allow another
process to run.

• The process releasing the resource calls wakeup ()to wake all processes that are waiting
for this resource. 8 wakeup() finds each such process, changes its state to runnable, and
puts it on a scheduler queue, where it now waits to be scheduled.

• There can be a substantial delay between the time a process is awakened and the time it is
scheduled to run. Other processes may run in the meantime, and may even lock the same
resource again.

• Thus upon waking up, the process must check once again if the resource is actually avail
able, and go back to sleep if not.

2.5.2 Interrupts

While the kernel is normally safe from preemption by another process, a process manipulating ker
nel data structures may be interrupted by devices. If the interrupt handler tries to access those very
data structures, they may be in an inconsistent state. This problem is handled by blocking interrupts
while accessing such critical data structures. The kernel uses macros such as those in Table 2-1 to

8 Recent versions of UNIX offer several alternatives to wakeup(), such as wake_ one() and wakeprocs ().

36

process wants

>---No---.J

Yes

wake up all
waiting processes

Yes

Chapter 2 The Process and the Kernel

lock the resource

No

processing

Figure 2-7. Algorithm for resource locking.

explicitly raise the ipl and block interrupts. Such a region of code is called a critical region (see
Example 2-1).

int x = splbio();
modify disk buffer cache;
splx(x);

I* raises ipl, returns previous ipl *I

I* restores previous ipl *I

Example 2-1. Blocking interrupts in a critical region.

There are several important considerations related to interrupt masking:

• Interrupts usually require rapid servicing, and hence should not be interfered with exces
sively. Thus, critical regions should be few and brief.

• The only interrupts that must be blocked are those that may manipulate the data in the
critical region. In the previous example, only the disk interrupts need to be blocked.

2.6 Process Scheduling

• Two different interrupts can have the same priority level. For instance, on many systems
both terminal and disk interrupts occur at ipl 21.

• Blocking an interrupt also blocks all interrupts at the same or lower ipl.

·Note: T'he word block is used in many different ways when describing
the UN!Xsubsystem. A process blocks on a resource or event when it .
enters the asleep state waiting for the resource to be available or the
eventto occur. The kernel blocks an interrupt or a signal by tempo
rarily disabling its delivery; Finally, the 110 subsystem transfers data
to and from storage devices in fixed-size blocks.

2.5.3 Multiprocessors

37

Multiprocessor systems lead to a new class of synchronization problems, since the fundamental
protection offered by the nonpreemptive nature of the kernel is no longer present. On a uniproces
sor, the kernel manipulates most data structures with impunity, knowing that it cannot be pre
empted. It only needs to protect data structures that may be accessed by interrupt handlers, or those
that need to be consistent across calls to sleep ().

On a multiprocessor, two processes may execute in kernel mode on different processors and
may also execute the same function concurrently. Thus any time the kernel accesses a global data
structure, it must lock that structure to prevent access from other processors. The locking mecha
nisms themselves must be multiprocessor-safe. If two processes running on different processors at
tempt to lock an object at the same time, only one must succeed in acquiring the lock.

Protecting against interrupts also is more complicated, because all processors may handle
interrupts. It is usually not advisable to block interrupts on every processor, since that might degrade
performance considerably. Multiprocessors clearly require more complex synchronization mecha
nisms. Chapter 7 explores these issues in detail.

2.6 Process Scheduling

The CPU is a resource that must be shared by all processes. The part of the kernel that apportions
CPU time between processes is called the scheduler. The traditional UNIX scheduler uses preemp
tive round-robin scheduling. Processes of equal priority are scheduled in a round-robin manner,
each running for a fixed quantum of time(typically I 00 milliseconds). If a higher priority process
becomes runnable, it will preempt the current process (unless the current process is running in ker
nel mode), even if the current process has not used up its time quantum.

In traditional UNIX systems, the process priority is determined by two factors-the nice
value and the usage factor. Users may influence the process priority by modifying its nice value
using the nice system call (only the superuser may increase the priority of a process). The usage
factor is a measure of the recent CPU usage of the process. It allows the kernel to vary the process
priority dynamically. While a process is not running, the kernel periodically increases its priority.
When a process receives some CPU time, the kernel reduces its priority. This scheme prevents star-

38 Chapter 2 The Process and the Kernel

vation of any process, since eventually the priority of any process that is waiting to run will rise
high enough for it to be scheduled.

A process executing in kernel mode may relinquish the CPU if it must block for a resource
or event. When it becomes runnable again, it is assigned a kernel priority. Kernel priorities are
higher than any user priorities. In traditional UNIX kernels, scheduling priorities have integer values
between 0 and 127, with smaller numbers meaning higher priorities. (As the UNIX system is written
almost entirely in C, it follows the standard convention of beginning all counts and indices at 0). In
4.3BSD, for instance, the kernel priorities range from 0 to 49, and user priorities from 50 to 127.
While user priorities vary with CPU usage, kernel priorities are fixed, and depend on the reason for
sleeping. Because of this, kernel priorities are also known as sleep priorities. Table 2-2 lists the
sleep priorities in 4.3BSD UNIX.

Chapter 5 provides further details of the UNIX scheduler.

2.7 Signals

UNIX uses signals to inform a process of asynchronous events, and to handle exceptions. For ex
ample, when a user types control-C at the terminal, a S I G I NT signal is sent to the foreground proc
ess. Likewise, when a process terminates, a SIGCHLD signal is sent to its parent. UNIX defines a
number of signals (31 in 4.3BSD and SVR3). Most are reserved for specific purposes, while two
(SIGUSR1 and SIGUSR2) are available for applications to use as they wish.

Signals are generated in many ways. A process may explicitly send a signal to one or more
processes using the kill system call. The terminal driver generates signals to processes connected to
it in response to certain keystrokes and events. The kernel generates a signal to notify the process of
a hardware exception, or of a condition such as exceeding a quota.

Each signal has a default response, usually process termination. Some signals are ignored by
default, and a few others suspend the process. The process may specify another action instead of the
default by using the signal (System V), sigvec (BSD), or sigaction (POSIX.l) calls. This other ac-

Table 2-2. Sleep priorities in 4.3BSD UNIX

Priority Value Description
PSWP 0 swap per
PSWP + 1 1 page daemon
PSWP + 1/2/4 1/2/4 other memory management activity
PI NOD 10 waiting for inode to be freed
PRIBIO 20 disk 1/0 wait
PRIBIO + 1 21 waiting for buffer to be released
PZERO 25 baseline priority
TTIPRI 28 terminal input wait
TTOPRI 29 terminal output wait
PWAIT 30 waiting for child process to terminate
PLOCK 35 advisory resource lock wait
PSLEP 40 wait for a signal

2.8 New Processes and Programs 39

tion may be to invoke a user-specified signal handler, or it may be to ignore the signal, or even to
revert to the default. The process may also choose to block a signal temporarily; such a signal will
only be delivered to a process after it is unblocked.

A process does not instantaneously respond to a signal. When the signal is generated, the
kernel notifies the process by setting a bit in the pending signals mask in its proc structure. The
process must become aware of the signal and respond to it, and that can only happen when it is
scheduled to run. Once it runs, the process will handle all pending signals before returning to its
normal user-level processing. (This does not include the signal handlers themselves, which run in
user mode.)

What should happen if a signal is generated for a sleeping process? Should the signal be kept
pending until the process awakens, or should the sleep be interrupted? The answer depends on why
the process is sleeping. If the process is sleeping for an event that is certain to occur soon, such as
disk I/0 completion, there is no need to wake up the process. If, on the other hand, the process is
waiting for an event such as terminal input, there is no limit to how long it might block. In such a
case, the kernel interrupts the sleep and aborts the system call in which the process had blocked.
4.3BSD provides the siginterrupt system call to control how signals should affect system call han
dling. Using siginterrupt, the user can specify whether system calls interrupted by signals should be
aborted or restarted. Chapter 4 covers the topic of signals in greater detail.

2.8 New Processes and Programs

UNIX is a multiprogramming environment, and several processes are active in the system at any
time. Each process runs a single program at a time, though several processes may run the same pro
gram concurrently. Such processes may share a single copy of the program text in memory, but
maintain their own individual data and stack regions. Moreover, a process may invoke a new pro
gram at any time and may run several programs in its lifetime. UNIX thus makes a sharp distinction
between the process and the program it is running.

To support such an environment, UNIX provides several system calls to create and terminate
processes, and to invoke new programs. The fork and vfork system calls create new processes. The
exec call invokes a new program. The exit system call terminates a process. Note that a process may
also terminate if it receives a signal.

2.8.1 fork and exec

The fork system call creates a new process. The process that calls fork is the parent, and the new
process is its child. The parent-child relationship creates the process hierarchy described in Figure
2-4. The child process is almost an exact clone of the parent. Its address space is a replica of that of
the parent, and it also runs the same program initially. In fact, the child begins user mode execution
by returning from the fork.

Because the parent and child both return from the fork and continue to execute the same pro
gram, they need a way to distinguish themselves from one another and act accordingly. Otherwise,
it would be impossible for different processes to do different things. For this reason, the fork system

40 Chapter 2 The Process and the Kernel

call returns different values to the parent and child-fork returns 0 to the child, and the child's PID
to the parent.

Most often, the child process will call exec shortly after returning from fork, and thus begin
executing a new program. The C library provides several alternate forms of exec, such as exece,
execve, and execvp. Each takes a slightly different set of arguments and, after some preprocessing,
calls the same system call. The generic name exec refers to any unspecified function of this group.
The code that uses fork and P.xec looks resembles that in Example 2-2.

if ((result= fork())== 0) {
/* child code */

}

if (execve ("new program", ..•)< 0)
perror ("execve failed");
exit (1);

else if (result < 0) {
perror ("fork"); /*fork failed*/

/* parent continues here */

Example 2-2. Usingfork and exec.

Since exec overlays a new program on the existing process, the child does not return to the
old program unless exec fails. Upon successful completion of exec, the child's address space is re
placed with that of the new program, and the child returns to user mode with its program counter set
to the first executable instruction of the new program.

Since fork and exec are so often used together, it may be argued that a single system call
could efficiently accomplish both tasks, resulting in a new process running a new program. Older
UNIX systems [Thorn 78] also incurred a large overhead in duplicating the parent's address space
for the child (duringfork), only to have the child discard it completely and replace it with that of the
new program.

There are many advantages of keeping the calls separate. In many client-server applications,
the server program may fork numerous processes that continue to execute the same program. 9 In
contrast, sometimes a process wants merely to invoke a new program, without creating a new proc
ess. Finally, between the fork and the exec, the child may optionally perform a number of tasks to
ensure that the new program is invoked in the desired state. These tasks include:

• Redirecting standard input, output, or error.
• Closing open files inherited from the parent that are not needed by the new program.
• Changing the UID or process group.
• Resetting signal handlers.

A single system call that tries to perform all these functions would be unwieldy and ineffi
cient. The existing fork-exec framework provides greater flexibility and is clean and modular. In

9 Modem multi-threaded UNIX systems make this unnecessary- the server simply creates a number of threads.

2.8 New Processes and Programs 41

Section 2.8.3 we will examine ways of minimizing the performance problems associated with this
division.

2.8.2 Process Creation

The fork system call creates a new process that is almost an exact clone of the parent. The only dif
ferences are those necessary to distinguish between the two. Upon return from fork, both parent and
child are executing the same program, have identical data and stack regions, and resume execution
at the instruction immediately following the call to fork. The fork system call must perform the fol
lowing actions:

1. Reserve swap space for the child's data and stack.
2. Allocate a new PID and proc structure for the child.
3. Initialize the child's proc structure. Some fields (such as user and group ID, process

group, and signal masks) are copied from the parent, some set to zero (resident time, CPU
usage, sleep channel, etc.), and others (such as PID, parent PID, and pointer to the parent
proc structure) initialized to child-specific values.

4. Allocate address translation maps for the child.
5. Allocate the child's u area and copy it from the parent.
6. Update the u area to refer to the new address maps and swap space.
7. Add the child to the set of processes sharing the text region of the program that the parent

is executing.
8. Duplicate the parent's data and stack regions one page at a time and update the child's

address maps to refer to these new pages.
9. Acquire references to shared resources inherited by the child, such as open files and the

current working directory.
10. Initialize the child's hardware context by copying a snapshot of the parent's registers.
11. Make the child runnable and put it on a scheduler queue.
12. Arrange for the child to return fromforkwith a value of zero.
13. Return the PID of the child to the parent.

2.8.3 fork Optimization
The fork system call must give the child a logically distinct copy of the parent's address space. In
most cases, the child discards this address space when it calls exec or exit shortly after the fork. It is
therefore wasteful to make an actual copy of the address space, as was done in older UNIX systems.

This problem has been addressed in two different ways. The first is the copy-on-write ap
proach, first adopted by System V and now used by most UNIX systems. In this method, the data
and stack pages of the parent are temporarily made read-only and marked as copy-on-write. The
child receives its own copy of the address translation maps, but shares the memory pages with the
parent. If either the parent or the child tries to modify a page, a page fault exception occurs (because
the page is marked read-only) and the kernel fault handler is invoked. The handler recognizes that
this is a copy-on-write page, and makes a new writable copy of that single page. Thus only those

42 Chapter 2 The Process and the Kernel

pages that are modified must be copied, not the entire address space. If the child calls exec or exit,
the pages revert to their original protection, and the copy-on-write flag is cleared.

BSD UNIX provided another solution-a new vfork system call. A user may call vfork in
stead of fork if he or she expects to call exec shortly afterward. vfork does no copying. Instead, the
parent loans its address space to the child and blocks until the child returns it. The child then exe
cutes using the parent's address space, until it calls exec or exit, whereupon the kernel returns the
address space to the parent, and awakens it. vfork is extremely fast, since not even the address maps
are copied. The address space is passed to the child simply by copying the address map registers. It
is, however, a dangerous call, because it permits one process to use and even modifY the address
space of another process. Some programs such as csh exploit this feature.

2.8.4 Invoking a New Program

The exec system call replaces the address space of the calling process with that of a new program. If
the process was created by a vfork, exec returns the old address space to the parent. Otherwise, it
frees the old address space. exec gives the process a new address space and loads it with the contents
of the new program. When exec returns, the process resumes execution at the first instruction of the
new program.

The process address space has several distinct components: 10

• Text: Contains the executable code, and corresponds to the text section of the program.
• Initialized data: Consists of data objects explicitly initialized in the program, and corre

sponds to the initialized data section of the executable file.
• Uninitialized data: Historically called the block static storage (bss) region, consists of

data variables declared, but not initialized, in the program. Objects in this region are guar
anteed to be zero-filled when first accessed. Because it is wasteful to store several pages of
zeroes in the executable file, the program header simply records the total size of this re
gion and relies on the operating system to generate zero-filled pages for these addresses.

• Shared memory: Many UNIX systems allow processes to share regions of memory.
• Shared libraries: If a system supports dynamically linked libraries, the process may have

separate regions of memory containing library code and data that may be shared with
other processes.

• Heap: Source for dynamically allocated memory. A process allocates memory from the
heap by making the brk or sbrk system calls, or using the mallocO function in the standard
C library. The kernel provides each process with a heap, and extends it when needed.

• User stack: The kernel allocates a stack for each process. In most traditional UNIX im
plementations, the kernel transparently catches stack overflow exceptions and extends the
user stack up to a preset maximum.

Shared memory is standard in System V UNIX, but is not available in 4BSD (through re
lease 4.3). Many BSD-based commercial variants support both shared memory and some form of

10 This division is simply functional in nature; the kernel does not recognize so many different components. SVR4, for
instance, views the address space as merely a collection of shared and private mappings.

2.8 New Processes and Programs 43

shared libraries as value-added features. In the following description of exec, we will consider a
simple program that uses neither of these features.

UNIX supports many executable file formats. The oldest is the a.out format, which has a
32-byte header followed by text and data sections and the symbol table. The program header con
tains the sizes of the text, initialized data, and uninitialized data regions, and the entry point, which
is the address of the first instruction the program must execute. It also contains a magic number,
which identifies the file as a valid executable file and gives further information about its format,
such as whether the file is demand paged, or whether the data section begins on a page boundary.
Each UNIX variant defines the set of magic numbers it supports.

The exec system call must perform the following tasks:

1. Parse the pathname and access the executable file.
2. Verify that the caller has execute permission for the file.
3. Read the header and check that it is a valid executable. II
4. If the file has SUID or SGID bits set in its mode, change the caller's effective UID or GID

respectively to that of the owner of the file.
5. Copy the arguments to exec and the environment variables into kernel space, since the

current user space is going to be destroyed.
6. Allocate swap space for the data and stack regions.
7. Free the old address space and the associated swap space. If the process was created by

vfork, return the old address space to the parent instead.
8. Allocate address maps for the new text, data, and stack.
9. Set up the new address space. If the text region is already active (some other process is

already running the same program}, share it with this process. Otherwise, it must be
initialized from the executable file. UNIX processes are usually demand paged, meaning
that each page is read into memory only when the program needs it.

10. Copy the arguments and environment variables back onto the new user stack.
11. Reset all signal handlers to default actions, because the handler functions do not exist in

the new program. Signals that were ignored or blocked before calling exec remain ignored
or blocked.

12. Initialize the hardware context. Most registers are reset to zero, and the program counter is
set to the entry point of the program.

2.8.5 Process Termination

The exit() function in the kernel terminates a process. It is called internally when the process is
killed by a signal. Alternatively, the program may invoke the exit system call, which calls the
exit () function. The ex i t () function performs the following actions:

II exec can also invoke shell scripts whose first line is
#!shell-name

in which case, it invokes the program specified by shell-name (usually the name of a shell, but could be any execu
table file) and passes it the name of the script as the first argument. Some systems (such as UnixWare) require a
space before the shell-name.

44 Chapter 2 The Process and the Kernel

1. Turns off all signals.
2. Closes all open files.
3. Releases the text file and other resources such as the current directory.
4. Writes to the accounting log.
5. Saves resource usage statistics and exit status in the proc structure.
6. Changes state to SZOMB (zombie), and puts the proc structure on the zombie process list.
7. Makes the init process inherit (become the parent of) any live children of the exiting

process.
8. Releases the address space, u area, address translation maps, and swap space.
9. Notifies the parent by sending it a SIGCHLD signal. This signal is ignored by default, and

thus has an effect only if the parent wants to know about the child's death.
10. Wakes up the parent if it is asleep.
11. Finally, calls swtch () to schedule a new process to run.

When exit() completes, the process is in the zombie state. exit does not free the proc
structure of the parent, because its parent may want to retrieve the exit status and resource usage in
formation. The parent is responsible for freeing the child's proc structure, as described below.
When that happens, the proc structure is returned to a free list, and the cleanup is complete.

2.8.6 Awaiting Process Termination

Often a parent process needs to know when a child terminates. For instance, when the shell spawns
a foreground process to execute a command, it must wait for the child to complete, and then prompt
for the next command. When a background process terminates, the shell may want to notify the user
by printing an informational message on the terminal. The shell also retrieves the exit status of the
child process, so that the user may take different actions based on its success or failure. UNIX sys
tems provide the following calls to await process termination:

wait (stat_loc); /*System v; BSD, andPOSIX.J */
wait3 {statusp, options, rusagep); I*BSD*I
waitpid (pid, stat_loc, options); /* POSIX.l */
waitid (i dtype, i d, i nfop, options); /* SVR41Z *I

The wait system call allows a process to wait for a child to terminate. Since a child may have
terminated before the call, wait must also handle that condition. wait first checks if the caller has
any deceased or suspended children. If so, it returns immediately. If there are no deceased children,
wait blocks the caller until one of its children dies and returns once that happens. In both cases, wait
returns the PID of the deceased child, writes the child's exit status into stat _1 oc, and frees its proc
structure (if more than one child is dead, wait acts only on the first one it finds). If the child is being
traced, wait also returns when the child receives a signal. wait returns an error if the caller has no
children (dead or alive), or if wait is interrupted by a signal.

12 SVR4 supports wait3 and waitpid as library functions.

2.10 Exercises 45

4.3BSD provides a wait3 call (so named because it requires three arguments), which also
returns resource usage information about the child (user and system times of the child and all its de
ceased children). The POSIX.l standard [IEEE 90] adds the waitpid call, which uses the pi d argu
ment to wait for a child with a specific process ID or process group. Both wait3 and waitpid support
two options: WNOHANG and WUNTRACED. WNOHANG causes wait3 to return immediately if there are no
deceased children. WUNTRAC ED also returns if a child is suspended or resumed. The SVR4 waitid call
provides a superset of all the above features. It allows the caller to specify the process ID or group
to wait for and the specific events to trap, and also returns more detailed information about the child
process.

2.8.7 Zombie Processes

When a process exits, it remains in zombie state until cleaned up by its parent. In this state, the only
resource it holds is a proc structure, which retains its exit status and resource usage information. 13

This information may be important to its parent. The parent retrieves this information by calling
wait, which also frees the proc structure. Ifthe parent dies before the child, the init process inherits
the child. When the child dies, init calls wait to release the child's proc structure.

A problem may arise if a process dies before its parent, and the parent does not call wait.
The child's proc structure is never released, and the child remains in the zombie state until the sys
tem is rebooted. This situation is rare, since the shells are written carefully to avoid this problem. It
may happen, however, if a carelessly written application does not wait for all child processes. This
is an annoyance, because such zombies are visible in the output of ps (and users are vexed to find
that they cannot be killed-they are already dead). Furthermore, they use up a proc structure,
thereby reducing the maximum number of processes that can be active.

Some newer UNIX variants allow a process to specify that it will not wait for its children.
For instance, in SVR4, a process may specify the SA_ NOCLDWAIT flag to the sigaction system call to
specify the action for SIGCHLD signals. This asks the kernel not to create zombies when the caller's
children terminate.

2.9 Summary

We have described the interactions between the kernel and user processes in traditional UNIX ker
nels. This provides a broad perspective, giving us the context needed to examine specific parts of
the system in greater detail. Modem variants such as SVR4 and Solaris 2.x introduce several ad
vanced facilities, which will be detailed in the following chapters.

2.1 0 Exercises

1. What elements of the process context must the kernel explicitly save when handling (a) a
context switch, (b) an interrupt, or (c) a system call?

13 Some implementations use a special zombie structure to retain this data.

46 Chapter 2 The Process and the Kernel

2. What are the advantages of allocating objects such as proc structures and descriptor table
blocks dynamically? What are the drawbacks?

3. How does the kernel know which system call has been made? How does it access the
arguments to the call (which are on the user stack)?

4. Compare and contrast the handling of system calls and of exceptions. What are the similarities
and differences?

5. Many UNIX systems provide compatibility with another version of UNIX by providing user
library functions to implement the system calls of the other version. Why, if at all, does the
application developer care if a function is implemented by a library or by a system call?

6. What issues must a library developer be concerned with when choosing to implement a
function in the user library instead of as a system call? What if the library must use multiple
system calls to implement the function?

7. Why is it important to limit the amount of work an interrupt handler can do?

8. On a system with n distinct interrupt priority levels, what is the maximum number of
interrupts that may be nested at a time? What repercussions can this have on the sizes of
various stacks?

9. The Intel 80x86 architecture does not support interrupt priorities. It provides two instructions
for interrupt management-eLI to disable all interrupts, and STI to enable all interrupts.
Write an algorithm to implement interrupt priority levels in software for such a machine.

10. When a resource becomes available, the wakeup() routine wakes up all processes blocked on
it. What are the drawbacks of this approach? What are the alternatives?

11. Propose a new system call that combines the functions of fork and exec. Define its interface
and semantics. How would it support features such as I/0 redirection, foreground or
background execution, and pipes?

12. What is the problem with returning an error from the exec system call? How can the kernel
handle this problem?

13. For a UNIX system of your choice, write a function that allows a process to wait for its parent
to terminate.

14. Suppose a process does not wish to block until its children terminate. How can it ensure that
child processes are cleaned up when they terminate?

15. Why does a terminating process wake up its parent?

2.11 References

[Allm 87] Allman, E., "UNIX: The Data Forms," Proceedings of the Winter 1987 USENIX
Technical Conference, Jan. 1987, pp. 9-15.

[AT&T 87] American Telephone and Telegraph, The System V Interface Definition (SVID), Issue
2, 1987.

[Bach 86] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood
Cliffs, NJ, 1986.

[Kern 84] Kernighan, B.W., and Pike, R., The UNIX Programming Environment, Prentice-Hall,
Englewood Cliffs, NJ, 1984.

2.11 References 47

[Leff 89] Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and
Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, Reading,
MA, 1989.

[IEEE 90] Institute for Electrical and Electronic Engineers, Information Technology-Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C Language}, 1003.1-1990, IEEE, Dec. 1990.

[IEEE 94] Institute for Electrical and Electronic Engineers, POSIX Pl003.4a, Threads
Extension for Portable Operating Systems, 1994.

[Sale 92] Salemi, C., Shah, S., and Lund, E., "A Privilege Mechanism for UNIX System V
Release 4 Operating Systems," Proceedings of the Summer 1992 USENIX Technical
Conference, Jun. 1992, pp. 235-241.

[Thorn 78] Thompson, K., "UNIX Implementation," The Bell System Technical Journal, Vol.
57, No.6, Part 2, Jul.-Aug. 1978, pp. 1931-1946.

3

Threads and Lightweight
Processes

3.1 Introduction

The process model has two important limitations. First, many applications wish to perform several
largely independent tasks that can run concurrently, but must share a common address space and
other resources. Examples of such applications include server-side database managers, transaction
processing monitors, and middle- and upper-layer network protocols. These processes are inherently
parallel in nature and require a programming model that supports parallelism. Traditional UNIX
systems force such applications to serialize these independent tasks or to devise awkward and inef
ficient mechanisms to manage multiple operations.

Second, traditional processes cannot take advantage of multiprocessor architectures, because
a process can use only one processor at a time. An application must create a number of separate
processes and dispatch them on the available processors. These processes must find ways of sharing
memory and resources, and synchronizing their tasks with each other.

Modem UNIX variants address these problems by providing a variety of primitives in the
operating system to support concurrent processing. The lack of standard terminology makes it diffi
cult to describe and compare the wide assortment of intraprocess parallelization mechanisms. Each
UNIX variant uses its own nomenclature, including terms such as kernel threads, user threads, ker
nel-supported user threads, C-threads, pthreads, and lightweight processes. This chapter clarifies
the terminology, explains the basic abstractions, and describes the facilities provided by some im
portant UNIX variants. Finally, it evaluates the strengths and weaknesses of these mechanisms. We
begin by investigating the necessity and benefits of threads.

48

3 .I Introduction 49

3.1.1 Motivation

Many programs must perform several largely independent tasks that do not need to be serialized.
For instance, a database server may listen for and process numerous client requests. Since the re
quests do not need to be serviced in a particular order, they may be treated as independent execution
units, which in principle could run in parallel. The application would perform better if the system
provided mechanisms for concurrent execution of the subtasks.

On traditional UNIX systems, such programs use multiple processes. Most server applica
tions have a listener process that waits for client requests. When a request arrives, the listener forks
a new process to service it. Since servicing of the request often involves 1/0 operations that may
block the process, this approach yields some concurrency benefits even on uniprocessor systems.

Next, consider a scientific application that computes the values of various terms in an array,
each term being independent of the others. It could create a different process for each element of the
array and achieve true parallelism by dispatching each process to run on a different computer, or
perhaps on different CPUs of a multiprocessor system. Even on uniprocessor machines, it may be
desirable to divide the work among multiple processes. If one process must block for 1/0 or page
fault servicing, another process can progress in the meantime. As another example, the UNIX make
facility allows users to compile several files in parallel, using a separate process for each.

Using multiple processes in an application has some obvious disadvantages. Creating all
these processes adds substantial overhead, since fork is usually an expensive system call (even on
systems that support copy-on-write sharing of address spaces). Because each process has its own
address space, it must use interprocess communication facilities such as message passing or shared
memory. Additional work is required to dispatch processes to different machines or processors, pass
information between these processes, wait for their completion, and gather the results. Finally,
UNIX systems have no appropriate frameworks for sharing certain resources, e.g., network connec
tions. Such a model is justified only if the benefits of concurrency offset the cost of creating and
managing multiple processes.

These examples serve primarily to underscore the inadequacies of the process abstraction
and the need for better facilities for parallel computation. We can now identify the concept of a
fairly independent computational unit that is part of the total processing work of an application.
These units have relatively few interactions with one another and hence low synchronization re
quirements. An application may contain one or more such units. The thread abstraction represents a
single computational unit. The traditional UNIX process is single-threaded, meaning that all compu
tation is serialized within the same unit.

The mechanisms described in this chapter address the limitations of the process model. They
too have their own drawbacks, which are discussed at the end of the chapter.

3.1.2 Multiple Threads and Processors
For parallelized, compute-bound applications, the advantages of multithreaded systems are most
apparent when combined with multiprocessor architectures. By running each thread on a different
processor, an application can achieve true parallelism. If the number of threads is greater than the

50 Chapter 3 Threads and Lightweight Processes

number of processors, the threads must be multiplexed on the available processors. 1 Ideally, an ap
plication will have n threads running on n processors and will finish its work in J/n1h the time re
quired by a single-threaded version of the program. In practice, the overhead of creating, managing,
and synchronizing thread, and that of the multiprocessor operating system, will reduce the benefit
well below this ideal ratio.

Figure 3-1 shows a set of single-threaded processes executing on a uniprocessor machine.
The system provides an illusion of concurrency by executing each process for a brief period of time
(time slice) before switching to the next. In this example the first three processes are running the
server side of a client-server application. The server program spawns a new process for each active
client. The processes have nearly identical address spaces and share information with one another
using interprocess communication mechanisms. The lower two processes are running another server
application.

Figure 3-2 shows two servers running in a multithreaded system. Each server runs as a sin
gle process, with multiple threads sharing a single address space. Interthread context switching may
be handled by either the kernel or a user-level threads library, depending on the operating system.
For both cases, this example shows some of the benefits of threads. Eliminating multiple, nearly
identical address spaces for each application reduces the load on the memory subsystem. (Even
modern systems using copy-on-write memory sharing must manage separate address translation
maps for each process.) Since all threads of an application share a common address space, they can
use efficient, lightweight, interthread communication and synchronization mechanisms.

The potential disadvantages of this approach are evident. A single-threaded process does not
have to protect its data from other processes. Multithreaded processes must be concerned with every

_ _ _ / address space
.,.. ,/
(®)~ ___ I

'

' '______..

time

Figure 3-1. Traditional UNIX system-uniprocessor with single-threaded processes.

1 This means using each available processor to service the runnable threads. Of course, a processor can run only one
thread at a time.

3.1 Introduction

_ _ -~ address space

(CD 1~
:CD l
!"W_-~) (m- \~
I I

' ..___
'
'

I~
'~ - -- thread

time

~
'
'
'
'
'
'

•••

Figure 3-2. Multithreaded processes in a uniprocessor system.

51

object in their address space. If more than one thread can access an object, they must use some form
of synchronization to avoid data corruption.

Figure 3-3 shows two multithreaded processes running on a multiprocessor. All threads of
one process share the same address space, but each runs on a different processor. Hence they all run
concurrently. This improves performance considerably, but also complicates the synchronization
problems.

Although the two facilities combine well together, they are also useful independently. A
multiprocessor system is also useful for single-threaded applications, as several processes can run in
parallel. Likewise, there are significant benefits of multithreaded applications, even on single
processor systems. When one thread must block for I/0 or some other resource, another thread can
be scheduled to run, and the application continues to progress. The thread abstraction is more suited
for representing the intrinsic concurrency of a program than for mapping software designs to multi
processor hardware architectures.

(UJ -~ address space

I I
CPU

\ CD 1 blocked
! \ill ~-_/f-, ______________ _..,

CPU

CPU

(W- _L~ --------------- CPU
1 I
1

(~thread blocked CPU

time

Figure 3-3. Multithreaded processes on a multiprocessor.

52 Chapter 3 Threads and Lightweight Processes

3.1.3 Concurrency and Parallelism

To understand the different types of thread abstractions, we must first distinguish between concur
rency and parallelism [Blac 90]. The parallelism of a multiprocessor application is the actual degree
of parallel execution achieved and is therefore limited by the number of physical processors avail
able to the application. The application's concurrency is the maximum parallelism it can achieve
with an unlimited number of processors. It depends on how the application is written, and how
many threads of control can execute simultaneously, with the proper resources available.

Concurrency can be provided at the system or application level. The kernel provides system
concurrency by recognizing multiple threads of control (also called hot threads) within a process
and scheduling them independently. It then multiplexes these threads onto the available proces
sor(s). An application can benefit from system concurrency even on a uniprocessor, because if one
thread blocks on an event or resource, the kernel can schedule another thread.

Applications can provide user concurrency through user-level thread libraries. Such user
threads, or coroutines (also called cold threads), are not recognized by the kernel and must be
scheduled and managed by the applications themselves. This does not provide true concurrency or
parallelism, since such threads cannot actually run in parallel. It does, however, provide a more
natural programming model for concurrent applications. By using nonblocking system calls, an
application can simultaneously maintain several interactions in progress. User threads simplify pro
gramming by capturing the state of such interactions in per-thread local variables (on that thread's
stack) instead of in a global state table.

Each of the concurrency models has limited value by itself. Threads are used both as organ
izational tools and to exploit multiple processors. A kernel threads facility allows parallel execution
on multiprocessors, but is not suitable for structuring user applications. For example, a server appli
cation may want to create thousands of threads, one for each client. Kernel threads consume valu
able resources such as physical memory (since many implementations require thread structures to be
memory resident), and hence are not useful for such a program. Conversely, a purely user-level fa
cility is only useful for structuring applications and does not permit parallel execution of code.

Many systems implement a dual concurrency model that combines system and user concur
rency. The kernel recognizes multiple threads in a process, and libraries add user threads that are not
seen by the kernel. User threads allow synchronization between concurrent routines in a program
without the overhead of making system calls, and are therefore desirable even in systems with
multithreaded kernels. Moreover, it is always a good idea to reduce the size and responsibilities of
the kernel, and splitting the thread support functionality between the kernel and the threads library is
consistent wit.1. that strategy.

3.2 Fundamental Abstractions

A process is a compound entity that can be divided into two components-a set of threads and a
collection of resources. The thread is a dynamic object that represents a control point in the process
and that executes a sequence of instructions. The resources, which include an address space, open
files, user credentials, quotas, and so on, are shared by all threads in the process. In addition, each
thread has its private objects, such as a program counter, a stack, and a register context. The tradi-

3.2 Fundamental Abstractions 53

tiona! UNIX process has a single thread of control. Multithreaded systems extend this concept by
allowing more than one thread of control in each process.

Centralizing resource ownership in the process abstraction has some drawbacks. Consider a
server application that carries out file operations on behalf of remote clients. To ensure compliance
with file access permissions, the server assumes the identity of the client while servicing a request.
To do so, the server is installed with superuser privileges, and calls setuid, setgid, and setgroups to
temporarily change its user credentials to match those of the client. Multithreading this server to in
crease the concurrency causes security problems. Since the process has a single set of credentials, it
can only pretend to be one client at a time. Hence the server is forced to serialize (single-thread) all
system calls that check for security.

There are several different types of threads, each having different properties and uses. In this
section, we describe three important types-kernel threads, lightweight processes, and user threads.

3.2.1 Kernel Threads

A kernel thread need not be associated with a user process. It is created and destroyed as needed
internally by the kernel and is responsible for executing a specific function. It shares the kernel text
and global data, and has its own kernel stack. It can be independently scheduled and uses the stan
dard synchronization mechanisms of the kernel, such ass 1 eep () and wakeup().

Kernel threads are useful for performing operations such as asynchronous I/0. Instead of
providing special mechanisms to handle this, the kernel can simply create a new thread to handle
each such request. The request is handled synchronously by the thread, but appears asynchronous to
the rest of the kernel. Kernel threads may also be used to handle interrupts, as discussed in Section
3.6.5.

Kernel threads are inexpensive to create and use. The only resources they use are the kernel
stack and an area to save the register context when not running (we also need some data structure to
hold scheduling and synchronization information). Context switching between kernel threads is also
quick, since the memory mappings do not have to be flushed.

Kernel threads are not a new concept. System processes such as the pagedaemon in tradi
tional UNIX kernels are functionally equivalent to kernel threads. Daemon processes such as nfsd
(the Network File System server process) are started at the user level, but once started, execute en
tirely in the kernel. Their user context is not required once they enter kernel mode. They too are
equivalent to kernel threads. Since traditional systems lacked a separate abstraction to represent ker
nel threads, such processes were encumbered with the unnecessary baggage associated with a tradi
tional process, such as proc and user structures. Multithreaded kernels allow these daemons to be
implemented more simply as kernel threads.

3.2.2 Lightweight Processes

A lightweight process (LWP) is a kernel-supported user thread. It is a higher-level abstraction based
on kernel threads; hence a system must support kernel threads before it can support L WPs. Every
process may have one or more LWPs, each supported by a separate kernel thread (Figure 3-4). The
L WPs are independently scheduled and share the address space and other resources of the process.

54 Chapter 3 Threads and Lightweight Processes

,---------------,

®process
(jJ lightweight
l=.J process

(iLl kernel
elthread

Figure 3-4. Lightweight processes.

, - - -, address
I I

'--' space

They can make system calls and block for 1/0 or resources. On a multiprocessor system, a process
can enjoy the benefits oftrue parallelism, because each LWP can be dispatched to run on a different
processor. There are significant advantages even on a uniprocessor, since resource and 1/0 waits
block individual L WPs, not the entire process.

Besides the kernel stack and register context, an L WP also needs to maintain some user
state. This primarily includes the user register context, which must be saved when the L WP is pre
empted. While each L WP is associated with a kernel thread, some kernel threads may be dedicated
to system tasks and not have an L WP.

Such multithreaded processes are most useful when each thread is fairly independent and
does not interact often with other threads. User code is fully preemptible, and all L WPs in a process
share a common address space. If any data can be accessed concurrently by multiple LWPs, such
access must be synchronized. The kernel therefore provides facilities to lock shared variables and to
block an L WP if it tries to access locked data. These facilities, such as mutual exclusion (mutex)
locks, semaphores, and condition variables, are further detailed in Chapter 7.

It is important to note the limitations of L WPs. Most L WP operations, such as creation, de
struction, and synchronization, require system calls. System calls are relatively expensive operations
for several reasons: Each system call requires two mode switches--one from user to kernel mode on
invocation, and another back to user mode on completion. On each mode switch, the L WP crosses a
protection boundary. The kernel must copy the system call parameters from user to kernel space and
validate them to protect against malicious or buggy processes. Likewise, on return from the system
call, the kernel must copy data back to user space.

3.2 Fundamental Abstractions 55

When the L WPs frequently access shared data, the synchronization overhead can nullify any
performance benefits. Most multiprocessor systems provide locks that can be acquired at the user
level if not already held by another thread [Muel 93]. If a thread wants a resource that is currently
unavailable, it may execute a busy-wait (loop until the resource is free), again without kernel in
volvement. Busy-waiting is reasonable for resources that are held only briefly; in other cases, it is
necessary to block the thread. Blocking an LWP requires kernel involvement and hence is expensive.

Each L WP consumes significant kernel resources, including physical memory for a kernel
stack. Hence a system cannot support a large number of L WPs. Moreover, since the system has a
single L WP implementation, it must be general enough to support most reasonable applications. It
will therefore be burdened with a lot of baggage that many applications do not need. L WPs are un
suitable for applications that use a large number of threads, or that frequently create and destroy
them. Finally, L WPs must be scheduled by the kernel. Applications that must often transfer control
from one thread to another cannot do so easily using L WPs. L WP use also raises some fairness is
sues-a user can monopolize the processor by creating a large number of L WPs.

In summary, while the kernel provides the mechanisms for creating, synchronizing, and
managing LWPs, it is the responsibility of the programmer to use them judiciously. Many applica
tions are better served by a user-level threads facility, such as that described in the next section.

Note: The term LWP is borrowed from the SVR4/MP and Solaris 2.x
terminology. It is somewhat confusing, since version 4.x of SunOS
[Kepe 85 J uses the term L WPs to refer to the user-level threads de
scribed in the next section. In this book, however, we consistently use
L WP to refer to kernel-supported user threads. Some systems use the
term virtual processor, which is essentially the same as an LWP.

3.2.3 User Threads

It is possible to provide the thread abstraction entirely at the user level, without the kernel knowing
anything about them. This is accomplished through library packages such as Mach's C-threads and
POSIX pthreads. Such libraries provide all the functions for creating, synchronizing, scheduling,
and managing threads with no special assistance from the kernel. Thread interactions do not involve
the kernel and hence are extremely fast. 2 Figure 3-S(a) illustrates such a configuration.

Figure 3-S(b) combines user threads and lightweight processes to create a very powerful
programming environment. The kernel recognizes, schedules, and manages L WPs. A user-level li
brary multiplexes user threads on top of L WPs and provides facilities for interthread scheduling,
context switching, and synchronization without involving the kernel. In effect, the library acts as a
miniature kernel for the threads it controls.

The implementation of user threads is possible because the user-level context of a thread can
be saved and restored without kernel intervention. Each user thread has its own user stack, an area
to save user-level register context, and other state information, such as signal masks. The library

2 Many threads library features require the kernel to provide facilities for asynchronous 110.

56 Chapter 3 Threads and Lightweight Processes

(a) User threads on top of ordinary processes

process 1 process 2 process 3

(b) User threads multiplexed on lightweight libraries

~user

U:::.lthread ®process
(j'") lightweight
~process

Figure 3-5. User thread implementations.

, - -, address
I I

'--' space

schedules and switches context between user threads by saving the current thread's stack and regis
ters, then loading those of the newly scheduled one.

The kernel retains the responsibility for process switching, because it alone has the privilege
to modify the memory management registers. User threads are not truly schedulable entities, and the
kernel has no knowledge of them. The kernel simply schedules the underlying process or L WP,
which in tum uses library functions to schedule its threads. When the process or L WP is preempted,
so are its threads. Likewise, if a user thread makes a blocking system call, it blocks the underlying
L WP. If the process has only one L WP (or if the user threads are implemented on a single-threaded
system), all its threads are blocked.

The library also provides synchronization objects to protect shared data structures. Such an
object usually comprises a type of lock variable (such as a semaphore) and a queue of threads
blocked on it. Threads must acquire the lock before accessing the data structure. If the object is al-

3.2 Fundamental Abstractions 57

ready locked, the library blocks the thread by linking it onto its blocked threads queue and transfer
ring control to another thread.

Modem UNIX systems provide asynchronous 1/0 mechanisms, which allow processes to
perform 1/0 without blocking. SVR4, for example, offers an 10 SETSIG ioctl operation to any
STREAMS device. (STREAMS are described Chapter 17.) A s~bsequent read or write to the
stream simply queues the operation and returns without blocking. When the 1/0 completes, the
process is informed via a SIGPOLL signal.

Asynchronous 1/0 is a very useful feature, because it allows a process to perform other tasks
while waiting for 1/0. However, it leads to a complex programming model. It is desirable to restrict
asynchrony to the operating system level and give applications a synchronous programming envi
ronment. A threads library achieves this by providing a synchronous interface that uses the asyn
chronous mechanisms internally. Each request is synchronous with respect to the calling thread,
which blocks until the 1/0 completes. The process, however, continues to make progress, since the
library invokes the asynchronous operation and schedules another user thread to run in the mean
time. When the 1/0 completes, the library reschedules the blocked thread.

User threads have several benefits. They provide a more natural way of programming many
applications such as windowing systems. User threads also provide a synchronous programming
paradigm by hiding the complexities of asynchronous operations in the threads library. This alone
makes them useful, even in systems lacking any kernel support for threads. A system can provide
several threads libraries, each optimized for a different class of applications.

The greatest advantage of user threads is performance. User threads are extremely light
weight and consume no kernel resources except when bound to an L WP. Their performance gains
result from implementing the functionality at user level without using system calls. This avoids the
overhead of trap processing and moving parameters and data across protection boundaries. A useful
notion is the critical thread size [Bita 95], which indicates the amount of work a thread must do to
be useful as a separate entity. This size depends on the overhead associated with creating and using
a thread. For user threads, the critical size is of the order of a few hundred instructions and may be
reduced to less than a hundred with compiler support. User threads require much less time for crea
tion, destruction, and synchronization. Table 3-1 compares the latency for different operations on
processes, L WPs, and user threads on aSP ARCstation 2 [Sun 93].

On the other hand, user threads have several limitations, primarily due to the total separation
of information between the kernel and the threads library. Since the kernel does not know about user
threads, it cannot use its protection mechanisms to protect them from each other. Each process has
its own address space, which the kernel protects from unauthorized access by other processes. User

Table 3-1. Latency of user thread, L WP, and process operations on SP ARCstation 2

Creation time Synchronization time
(microseconds) using semaphores

(microseconds)
User thread 52 66
LWP 350 390
Process 1700 200

58 Chapter 3 Threads and Lightweight Processes

threads enjoy no such protection, operating in the common address space owned by the process. The
threads library must provide synchronization facilities, which requires cooperation from the threads.

The split scheduling model causes many other problems. The threads library schedules the
user threads, the kernel schedules the underlying processes or L WPs, and neither knows what the
other is doing. For instance, the kernel may preempt an LWP whose user thread is holding a spin
lock. If another user thread on a different L WP tries to acquire this lock, it will busy-wait until the
holder of the lock runs again. Likewise, because the kernel does not know the relative priorities of
user threads, it may preempt an L WP running a high-priority user thread to schedule an L WP run
ning a lower-priority user thread.

The user-level synchronization mechanisms may behave incorrectly in some instances. Most
applications are written on the assumption that all runnable threads are eventually scheduled. This is
true when each thread is bound to a separate L WP, but may not be valid when the user threads are
multiplexed onto a small number of L WPs. Since the L WP may block in the kernel when its user
thread makes a blocking system call, a process may run out of L WPs even when there are runnable
threads and available processors. The availability of an asynchronous l/0 mechanism may help to
mitigate this problem.

Finally, without explicit kernel support, user threads may improve concurrency, but do not
increase parallelism. Even on a multiprocessor, user threads sharing a single L WP cannot execute in
parallel.

This section explains three commonly used thread abstractions. Kernel threads are primitive
objects not visible to applications. Lightweight processes are user-visible threads that are recognized
by the kernel and are based on kernel threads. User threads are higher-level objects not visible to the
kernel. They may use lightweight processes if supported by the system, or they may be implemented
in a standard UNIX process without special kernel support. Both L WPs and user threads have major
drawbacks that limit their usefulness. Section 3.5 describes a new framework based on scheduler
activations, which addresses many of these problems. First, however, we examine the issues related
to L WP and user thread design in greater detail.

3.3 Lightweight Process Design-Issues to Consider

There are several factors that influence the design of lightweight processes. Foremost is the need to
properly preserve UNIX semantics, at least for the single-threaded case. This means that a process
containing a single L WP must behave exactly like a traditional UNIX process. (Note again that the
term LWP refers to kernel-supported user threads, not to the SunOS 4.0 lightweight processes,
which are purely user-level objects.)

There are several areas where UNIX concepts do not map easily to a multithreaded system.
The following sections examine these issues and present possible solutions.

3.3.1 Semantics of fork

System calls in a multithreaded environment have some unusual implications. Many calls that deal
with process creation, address space manipulation, or operating on per process resources (such as

3.3 Lightweight Process Design-Issues to Consider 59

open files) must be redesigned. There are two important guidelines. First, the system call must sat
isfy traditional UNIX semantics in the single-threaded case; second, when issued by a multithreaded
process, the system call should behave in a reasonable manner that closely approximates the single
threaded semantics. With that in mind, let us examine some important system calls that are affected
by the multithreading design.

In traditional UNIX, fork creates a child process, which is almost an exact clone of the par
ent. The only differences are those necessary to distinguish the parent from the child. The semantics
of fork are clear for a single-threaded process. In the case of a multithreaded process, there is an op
tion of duplicating all L WPs of the parent or only the one that invokes the fork.

Suppose fork copies only the calling L WP into the new process. This is definitely more ef
ficient. It is also a better model for the case where the child soon invokes another program by call
ing exec. This interface has several problems [Powe 91). L WPs are often used to support user-level
thread libraries. Such libraries represent each user thread by a data structure in user space. If fork
duplicates only the calling L WP, the new process will contain user-level threads that do not map to
any L WP. Furthermore, the child process must not try to acquire locks held by threads that do not
exist in the child, because this could result in deadlock. This may be difficult to enforce, because
libraries often create hidden threads of which the programmer is unaware.

On the other hand, suppose fork duplicates all the L WPs of the parent. This is more useful
when fork is used to clone the entire process, rather than to run another program. It also has many
problems. An L WP in the parent may be blocked in a system call. Its state will be undefined in the
child. One possibility is to make such calls return the status code EINTR (system call interrupted),
allowing the L WP to restart them if necessary. An L WP may have open network connections.
Closing the connection in the child may cause unexpected messages to be sent to the remote node.
Some L WP may be manipulating an external shared data structure, which could become corrupted if
fork clones the L WP.

Neither solution handles all situations correctly. Many systems compromise by offering two
variants offork, one to duplicate the whole process and the other to duplicate a single thread. For
the latter case, these systems define a set of safe functions that may be called by the child prior to
the exec. Another alternative is to allow the process to register one or more fork handlers, which are
functions that run in the parent or the child, before or after the fork, as specified during registration.

3.3.2 Other System Calls

Many other system calls must be modified to work correctly in a multithreaded system. All L WPs
in a process share a common set of file descriptors. This causes a conflict if one L WP closes a file
that another is currently reading or writing. The file offset pointer is also shared through the descrip
tor, so an /seek done by one L WP will affect all others. Figure 3-6 illustrates the problem. L WP Ll
wants to read data from a file starting at offset offl and issues an /seek followed by a read. Between
the two calls, L2 issues an /seek to the same file, specifying a different offset. This causes Ll to
read the wrong data. The application could solve the problem directly by using some file locking
protocol. Alternatively, the kernel could provide mechanisms to perform random I/0 atomically
(see Section 3.6.6).

60 Chapter 3 Threads and Lightweight Processes

/seek (fd, o.ff2, 0);

Figure 3-6. Problems with concurrent access to a file.

Likewise, the process has a single current working directory and a single user credentials
structure. Since the credentials may change at any time, the kernel must sample them atomically,
only once per system call.

All L WPs of a process share a common address space and may manipulate it concurrently
through system calls such as mmap and brk. These calls must be made thread-safe so that they do
not corrupt the address space in such situations. Programmers must be careful to serialize such op
erations, otherwise the results may be unexpected.

3.3.3 Signal Delivery and Handling

In UNIX, signals are delivered to and handled by processes. A multithreaded system must decide
which L WP of the process should handle the signal. The problem also applies to user threads, since
once the kernel delivers the signal to an L WP, the threads library can direct it to a specific thread.
There are several possible answers:

I. Send the signal to each thread.
2. Appoint a master thread in each process to receive all signals.
3. Send the signal to any arbitrarily chosen thread.
4. Use heuristics to determine the thread to which the signal applies.
5. Create a new thread to handle each signal.

The first is highly expensive, not to mention incompatible with most normal applications of
signals. It is, however, useful in certain situations. For instance, when a user presses control-Z at the
terminal, he may wish to suspend all threads of the process. The second leads to an asymmetric
treatment of threads, which is incompatible with the modem approach and with the symmetric mul
tiprocessing systems often associated with multithreaded kernels. The fifth solution is reasonable for
some specific situations only.

The choice between the remaining two alternatives depends on the nature of the generated
signal. Some signals, such as SIGSEGV (segmentation fault) and SIGI LL (illegal exception), are

3.3 Lightweight Process Design-Issues to Consider 61

caused by a thread itself. It makes more sense to deliver such a signal to the thread that caused it.
Other signals, such as SIGTSTP (stop signal generated from the terminal) and SIGINT (interrupt sig
nal), are generated by external events and cannot logically be associated with any particular thread.

Another related issue is that of signal handling and masking. Must all threads share a com
mon set of signal handlers, or can each define its own? Although the latter approach is more versa
tile and flexible, it adds considerable overhead to each thread, which defeats the main purpose in
having multithreaded processes. The same considerations do not hold for signal masking. Signals
are normally masked to protect critical regions of code. Hence it is better to allow each thread to
specify its own signal mask. The overhead of per-thread masks is relatively low and acceptable.

3.3.4 Visibility

It is important to decide to what extent an L WP is visible outside the process. The kernel undoubt
edly knows about L WPs and schedules them independently. Most implementations do not allow
processes to know about or interact with specific L WPs of another process.

Within a process, however, it is often desirable for the L WPs to know about each other.
Many systems therefore provide a special system call that allows one L WP to send a signal to an
other specific L WP within the same process.

3.3.5 Stack Growth

When a UNIX process overflows its stack, it results in a segmentation violation fault. The kernel
recognizes that the fault occurred in the stack segment and automatically extends the stack3 instead
of signaling the process.

A multithreaded process has several stacks, one for each user thread. These threads are allo
cated at the user level by the threads library. It is therefore incorrect for the kernel to try to extend
the stack, since that might conflict with the operation of the stack allocator in the user threads li
brary.

Therefore in multithreaded systems, the kernel has no knowledge of user stacks.4 There may
not be a special stack region, and stacks may be allocated by the user from the heap area (part of the
data region). Usually, a thread will specify the size of the stack it needs, and the library may protect
against overflow by allocating a write-protected page just beyond the end of the stack. This causes a
protection fault when the stack overflows, and the kernel responds by sending a SIGSEGV signal to
the appropriate thread. It is the thread's responsibility to extend the stack or handle the overflow in
another manner.s

3 Up to a configurable limit. In SVR4, the stack size is limited by the value RLIMIT_NOFILE. This value comprises a
hard limit and a soft limit. The getrlimit system call retrieves these limits. The setrlimit call may lower the hard limit,
or lower or raise the soft limit so long as it does not exceed the hard limit.

4 Some multithreaded systems, such as SVR4.2/MP, provide facilities for automatic extension of a user thread stack.
5 Of course, this signal must be handled on a special stack, since the normal stack has no room for the signal handler to

operate. Modem UNIX systems provide a way for an application to specify an alternate stack for signal handling (see
Section 4.5).

62 Chapter 3 Threads and Lightweight Processes

3.4 User-Level Threads Libraries

The design of a user-level threads package must address two important issues-what kind of pro
gramming interface the package will present to the user, and how it can be implemented using the
primitives provided by the operating system. There are many different threads packages, such as in
Chorus [Arma 90], Topaz [Vand 88], and Mach's C threads [Coop 90]. More recently, the P1003.4a
IEEE POSIX standards group has generated several drafts of a threads package known as pthreads
[IEEE 94]. Modem UNIX versions strive to support the pthreads interface to comply with this stan
dard (see Section 3.8.3).

3.4.1 The Programming Interface

The interface provided by a threads package must include several important facilities. It must pro
vide a large set of operations on threads, such as

• creating and terminating threads
• suspending and resuming threads
• assigning priorities to individual threads
• thread scheduling and context switching
• synchronizing activities through facilities such as semaphores and mutual exclusion locks
• sending messages from one thread to another

The threads package strives to minimize kernel involvement, because the overhead of
switching back and forth between user and kernel modes can be significant. Therefore the threads
library provides as many facilities as possible. The kernel generally has no explicit knowledge of
user threads, but the threads library may use system calls to implement some of its functionality.
This has some important implications. For instance, the thread priority is unrelated to the kernel
scheduling priority, which is assigned to the underlying process or L WP. It is simply a process
relative priority used by the threads scheduler to select a thread to run within the process.

3.4.2 Implementing Threads Libraries

The implementation of the library depends on the facilities for multithreading provided by the ker
nel. Many packages have been implemented on traditional UNIX kernels, which offer no special
support for threads. Here, the threads library acts as a miniature kernel, maintaining all the state in
formation for each thread and handling all thread operations at the user level. Although this effec
tively serializes all processing, some measure of concurrency is provided by using the asynchronous
I/0 facilities of the system.

In many modem systems, the kernel supports multithreaded processes through L WPs. In this
case, user threads libraries have a choice of implementations:

• Bind each thread to a different L WP. This is easier to implement, but uses more kernel re
sources and offers little added value. It requires kernel involvement in all synchronization
and thread scheduling operations.

3.4 User-Level Threads Libraries

• Multiplex user threads on a (smaller) set of L WPs. This is more efficient, as it consumes
fewer kernel resources. This method works well when all threads in a process are roughly
equivalent. It provides no easy way of guaranteeing resources to a particular thread.

• Allow a mixture of bound and unbound threads in the same process. This allows the appli
cation to fully exploit the concurrency and parallelism of the system. It also allows prefer
ential handling of a bound thread, by increasing the scheduling priority of its underlying
L WPs or by giving its L WP exclusive ownership of a processor.

63

The threads library contains a scheduling algorithm that selects which user thread to run. It
maintains per-thread state and priority, which has no relation to the state or priority of the underly
ing L WPs. Consider the example in Figure 3-7, which shows six user threads multiplexed onto two
LWPs. The library schedules one thread to run on each LWP. These threads (uS and u6) are in the
running state, even though the underlying L WPs may be blocked in the middle of a system call, or
preempted and waiting to be scheduled.

A thread (such as ul or u2 in Figure 3-7) enters the blocked state when it tries to acquire a
synchronization object locked by another thread. When the lock is released, the library unblocks the
thread, and puts it on the scheduler queue. The thread (such as u3 and u4 in Figure 3-7) is now in
the runnable state, waiting to be scheduled. The threads scheduler selects a thread from this queue
based on priority and L WP affiliation. This mechanism closely parallels the kernel's resource wait
and scheduling algorithms. As mentioned previously, the threads library acts as a miniature kernel
for the threads it manages.

[Doep 87], [Muel 93] and [Powe 91] discuss user threads in more detail.

----------------------------------~ , '
' blocked threads '

~

,'

Figure 3-7. User thread states.

64 Chapter 3 Threads and Lightweight Processes

3.5 Scheduler Activations

Sections 3.3 and 3.4 describe the benefits and drawbacks of LWPs and user threads. Neither model
is entirely satisfactory. Application developers want the performance benefits and flexibility of user
threads. At the same time, user threads cannot match the functionality of L WPs due to lack of inte
gration with the kernel. [Ande 91] describes a new threads architecture that combines the advan
tages of both models. This framework has gained acceptance in the operating systems community
and is emerging in commercial threads implementations by vendors such as SGI [Bita 95].

The basic principle is to have close integration between user threads and the kernel. The ker
nel is responsible for processor allocation, the threads library for scheduling. The library informs the
kernel of events that affect processor allocation. It may request additional processors or relinquish a
processor that it owns. The kernel controls processor allocation completely and may randomly pre
empt a processor and allocate it to another process.

Once the library is given some processors, it has complete control over which threads to
schedule on them. If the kernel takes away a processor, it will inform the library, which reassigns
the threads appropriately. If a thread blocks in the kernel, the process does not lose the processor.
The kernel informs the library, which immediately schedules another user thread onto that proces
sor.

The implementation requires two new abstractions-an upcall and a scheduler activation.
An upcall is a call made by the kernel to the threads library. The scheduler activation is an execution
context that may be used to run a user thread. It is similar to an L WP and has its own kernel and
user stacks. When the kernel makes an upcall, it passes an activation to the library, which the latter
uses to process the event, run a new thread, or invoke another system call. The kernel does not time
slice activations on a processor. At any time, a process has exactly one activation for each processor
assigned to it.

A distinctive feature of the scheduler activations framework is its handling of blocking op
erations. When a user thread blocks in the kernel, the kernel creates a new activation and upcalls to
the library. The library saves the thread state from the old activation and informs the kernel that the
old activation may be reused. The library then schedules another user thread on the new activation.
When the blocking operation completes, the kernel makes another upcall to notify the library of the
event. This upcall requires a new activation. The kernel may assign a new processor to run this acti
vation, or preempt one of the current activations of this process. In the latter case, the upcall notifies
the library of two events-one, that the original thread may be resumed, and two, that the thread
running on that processor has been preempted. The library puts both threads on the ready list, and
then decides which to schedule first.

Scheduler activations have many advantages. They are extremely fast, since most operations
do not require kernel involvement. Benchmarks described in [Ande 91] show that a threads package
based on activations performs comparably to other user threads libraries. Since the kernel informs
the library of blocking and preemption events, the library can make intelligent scheduling and syn
chronization decisions, and avoid deadlocks and incorrect semantics. For instance, if the kernel pre
empts a processor whose current thread holds a spin lock, the library can switch the thread onto an
other processor and run it there until it releases the lock.

3.6 Multithreading in Solaris and SVR4 65

The rest of this chapter describes the threads implementation in Solaris, SVR4, Mach, and
Digital UNIX.

3.6 Multithreading in Solaris and SVR4

Sun Microsystems introduced kernel support for threads in Solaris 2.x.6 UNIX Systems Laboratories
adopted the Solaris threads design for SVR4.2/MP. The architecture provides a wide variety of
primitives, both at the kernel and user levels, allowing the development of powerful applications.

Solaris supports kernel threads, lightweight processes, and user threads. A user process may
have several hundred threads, truly mapping the inherent parallelism of the program. The threads
library will multiplex these threads onto a small number of L WPs. The user can control the number
of L WPs to best utilize the system resources and can also bind some threads to individual L WPs
(see Section 3.6.3).

3.6.1 Kernel Threads

The kernel thread in Solaris is a fundamental lightweight object that can be independently sched
uled and dispatched to run on one of the system processors. It need not be associated with any proc
ess and may be created, run, and destroyed by the kernel to execute specific functions. As a result,
the kernel does not have to remap the virtual address space when switching between kernel threads
[Kepp 91]. Hence context switch to a kernel thread is less expensive than a switch to a new process.

The only resources used by a kernel thread are a small data structure and a stack. The data
structure contains the following information:

• Saved copy of the kernel registers.
• Priority and scheduling information.
• Pointers to put the thread on a scheduler queue or, if the thread is blocked, on a resource

wait queue.
• Pointer to the stack.
• Pointers to the associated 1 wp and proc structures (NULL if thread is not bound to an

LWP).
• Pointers to maintain a queue of all threads of a process and a queue of all threads in the

system.
• Information about the associated LWP, ifthere is one (see Section 3.6.2)

The Solaris kernel is organized as a set of kernel threads. Some run L WPs, while others exe
cute internal kernel functions. The kernel threads are fully preemptible. They may belong to any of
the scheduling classes of the system (see Section 5.5), including the real-time class. They use spe
cial versions of the synchronization primitives (semaphores, conditions, etc.) that prevent priority
inversion, a situation where a low-priority thread locks a resource needed by a higher-priority
thread, thus impeding its progress. These features are described in Section 5.6.

6 Kernel threads were introduced in Solaris 2.0 and the user-visible interface in Solaris 2.2.

66 Chapter 3 Threads and Lightweight Processes

Kernel threads are used to handle asynchronous activity, such as deferred disk writes,
STREAMS service procedures, and callouts (see Section 5.2.1). This allows the kernel to associate
a priority to each such activity (by setting the thread's priority), and thus schedule them appropri
ately. They are also used to support lightweight processes. Each L WP is attached to a kernel thread
(although not all kernel threads have an L WP).

3.6.2 Lightweight Process Implementation

Lightweight processes provide multiple threads of control within a single process. They are sched
uled independently and may execute in parallel on multiprocessors. Each L WP is bound to its own
kernel thread, and the binding remains effective throughout its lifetime.

The traditional proc and user structures are inadequate for representing a multithreaded
process. The data in these objects must be separated into per-process and per-L WP information.
Solaris uses the proc structure to hold all per-process data, including the process-specific part of the
traditional u area.

A new 1 wp structure contains the per-L WP part of the context. It includes the following in-
formation:

• Saved values of user-level registers (when L WP is not running).
• System call arguments, results, and error code.
• Signal handling information.
• Resource usage and profiling data.
• Virtual time alarms.
• User time and CPU usage.
• Pointer to the kernel thread.
• Pointer to the proc structure.

The 1 wp structure can be swapped out with the L WP, and hence information that must not be
swapped out, such as some signal masks, is kept in the associated thread structure. The Spare im
plementation reserves the global register %g7 for holding a pointer to the current thread, thus allow
ing quick access to the current L WP and process.

The synchronization primitives available to LWPs (and to kernel threads) are mutex locks,
condition variables, counting semaphores, and reader-writer locks. These facilities are described in
Chapter 7. Each synchronization facility can exhibit different types of behavior. For example, if a
thread tries to acquire a mutex that is held by another thread, it may either busy-wait (spin) or block
until the mutex is released. When a synchronization object is initialized, the caller must specify
which behavior is desired.

All L WPs in a process share a common set of signal handlers. Each, however, may have its
own signal mask, deciding which signals to ignore or block. Each L WP may also specify its own
alternate stack for handling signals. Signals are divided into two categories-traps and interrupts.
Traps are synchronous signals generated by the actions of the L WP itself (e.g., SIGSEGV, SIGFPE,
and SIGSYS). These are always delivered to the L WP that caused the signal. Interrupt signals (e.g.,
SIGSTOP and SIGINT) can be delivered to any L WP that has not masked the signal.

3.6 Multithreading in Solaris and SVR4 67

L WPs have no global name space and hence are invisible to other processes. A process can
not direct a signal to a specific LWP in another process or know which LWP sent a message to it.

3.6.3 User Threads

User threads are implemented by the threads library. They can be created, destroyed, and managed
without involving the kernel. The threads library provides synchronization and scheduling facilities.
This allows a process to use a large number of threads without consuming kernel resources and
without excessive system call overhead. Although Solaris implements user threads on top of L WPs,
the threads library hides these details, and most application writers deal solely with user threads.

By default, the library creates a pool of L WPs for the process and multiplexes all user
threads on top of it. The size of the pool depends on the number of processors and user threads. An
application may override the default and specify the number of L WPs to create. It may also require
the system to dedicate an L WP to a specific thread. Hence a single process may have two types of
user threads-threads bound to an L WP, and unbound threads that share the common L WP pool
(Figure 3-8).

Multiplexing many threads on a small number of L WPs provides concurrency at a low cost.
For instance, in a windowing system, each object (window, dialog box, menu, icon, etc.) may be
represented by a thread. Only a few windows are active at any given instant, and only those threads
need to be supported by L WPs. The number of L WPs determines the maximum parallelism the
application can achieve (provided there are at least as many processors). It also limits the number of
blocking operations the process may have outstanding at any time.

Sometimes, having more threads than L WPs is a disadvantage. For example, when comput
ing the inner product of two two-dimensional arrays, we could assign a different thread to compute
each element of the resulting array. If the number of processors is small, then this method might be
counterproductive, because the library might waste a lot of time in context switching between
threads. It might be more efficient to create one thread for each row of the product array and bind
each thread to an L WP.

~,--~,

I unbound threads bound threads

L L

address space
~--''

Figure 3-8. The process abstraction in Solaris 2.x.

68 Chapter 3 Threads and Lightweight Processes

Having bound and unbound user threads in the same application can be very useful in situa
tions that involve time-critical processing. Such processing can be handled by threads bound to
LWPs that are assigned a real-time scheduling priority, whereas other threads are responsible for
lower-priority background processing. In the previous windowing example, a real-time thread can
be assigned to respond to mouse movements, since those must be reflected immediately on the dis
play.

3.6.4 User Thread Implementation

Each user thread must maintain the following state information:

• Thread ID - this allows threads within a process to communicate with each other
through signals, and so forth.

• Saved register state -this includes the program counter and the stack pointer.
• User stack- each thread has its own stack, allocated by the library. The kernel does not

know about these stacks.
• Signal mask- each thread may have its own signal masks. When a signal arrives, the li

brary will route it to an appropriate thread by examining these masks.
• Priority - the user thread has a process-relative priority used by the threads scheduler.

The kernel is unaware ofthis priority and only schedules the underlying LWPs.
• Thread local storage- each thread is allowed some private storage (managed by the li

brary), to support reentrant versions of the C library interfaces [IEEE 94]. For example,
many C library routines return the error code in a global variable called errno. This can
lead to chaos if multiple threads invoke such routines concurrently. To avoid these prob
lems, the multithreaded libraries place errno in the thread's local storage [Powe 91].

Threads use the synchronization facilities provided by the library, which are similar to their
kernel counterparts (semaphores, conditions, etc.). Solaris allows threads in different processes to
synchronize with each other, simply by using synchronization variables placed in shared memory.
Such variables may also be placed in files and accessed by mapping the file via mmap. This allows
the synchronization objects to have a lifetime beyond that of the creating process and to be used to
synchronize threads in different processes.

3.6.5 Interrupt Handling
Interrupt handlers often manipulate data shared by the rest of the kernel. This requires the kernel to
synchronize access to shared data. In traditional UNIX, the kernel achieves this by raising the inter
rupt priority level (ipl) to block relevant interrupts while executing code that accesses such data.
Often, the object being guarded is extremely unlikely to be accessed by the interrupt. For instance,
the lock on a sleep queue must be protected from interrupts, even though most interrupts would not
access that queue.

This model has many drawbacks. On many systems, raising or lowering the ipl is expensive
and requires several instructions. Interrupts are important and urgent events, and blocking them de-

3.6 Multithreading in Solaris and SVR4 69

grades performance in many ways. On multiprocessor systems, these problems are magnified. The
kernel must protect many more objects and usually must block interrupts on all processors.

Solaris replaces the traditional interrupt and synchronization model with a new implementa
tion [Eykh 92, Klei 95] that aims to improve performance, particularly for multiprocessors. To be
gin with, it does not utilize IPLs to protect from interrupts. Instead, it uses a variety of kernel syn
chronization objects, such as mutex locks and semaphores. Next, it employs a set of kernel threads
to handle interrupts. These interrupt threads can be created on the fly and are assigned a higher pri
ority than all other types of threads. They use the same synchronization primitives as other threads
and thus can block if they need a resource held by another thread. The kernel blocks interrupts only
in a few exceptional situations, such as when acquiring the mutex lock that protects a sleep queue.

Although the creation of kernel threads is relatively lightweight, it is still too expensive to
create a new thread for each interrupt. The kernel maintains a pool of interrupt threads, which are
preallocated and partially initialized. By default, this pool contains one thread per interrupt level for
each CPU, plus a single systemwide thread for the clock. Since each thread requires about 8 kilo
bytes of storage for the stack and thread data, the pool uses a significant amount of memory. On
systems where memory is scarce, it is better to reduce the number of threads in this pool, since all
interrupts are unlikely to be active at once.

Figure 3-9 describes interrupt handling in Solaris. Thread Tl is executing on processor Pl
when it receives an interrupt. The interrupt handler first raises the ipl to prevent further interrupts of
the same or lower level (preserving UNIX semantics). It then allocates an interrupt thread T2 from
the pool and switches context to it. While T2 executes, Tl is pinned, which means it may not run on
another CPU. When T2 returns, it switches context back to Tl, which resumes execution.

The interrupt thread T2 runs without being completely initialized. This means it is not a full
fledged thread and cannot be descheduled. Initialization is completed only if the thread has a reason
to block. At this time, it saves its state and becomes an independent thread, capable of running on
any CPU. If T2 blocks, it returns control to Tl, thus unpinning it. This way, the overhead of com
plete thread initialization is restricted to cases where the interrupt thread must block.

interrupt
occurs

n CD---.::
return from

interrupt
I

I I

~ I interrupt handler :
T2~ : 1

~~;;~-~i .;,;;;..;,~; ~~d;·:
:mGJGJGJ.
:, _____ O) __ rJ) __ ~----'

Figure 3-9. Using threads to handle interrupts.

• 0

0

70 Chapter 3 Threads and Lightweight Processes

Implementing interrupts as threads adds some overhead (about 40 instructions on the Spare).
On the other hand, it avoids having to block interrupts for each synchronization object, which saves
about 12 instructions each time. Since synchronization operations are much more frequent than in
terrupts, the net result is a performance improvement, as long as interrupts do not block too fre
quently.

3.6.6 System Call Handling
In Solaris, the fork system call duplicates each L WP of the parent in the child. Any L WPs that were
in the middle of a system call return with an EINTR error. Solaris also provides a new forkl system
call; it is similar to fork, but only duplicates the thread that invokes it.forkl is useful when the child
process expects to invoke a new program shortly afterward.

Solaris 2.3 addresses the issue of concurrent random 1/0 to a file (see Section 3.3.2) by
adding the pread and pwrite system calls, which take a seek offset as an argument. Unfortunately, it
does not provide equivalent calls to substitute for readv and writev, which perform scatter-gather
1/0 (see Section 8.2.5).

In conclusion, Solaris provides a rich set of programming interfaces with this two-layered
model. Having both user threads and L WPs allows us to distinguish between what the programmer
sees and what the operating system provides. Programmers can write applications using only
threads, and later optimize them by manipulating the underlying LWPs to best provide the real con
currency needed by the application.

3. 7 Threads in Mach

Mach was designed as a multithreaded operating system from the outset. It supports threads
both in the kernel and through user-level libraries. It provides additional mechanisms to control the
allocation of processors to threads on multiprocessors. Mach provides full 4.3BSD UNIX semantics
at the programming interface level, including all system calls and libraries. 7 This section describes
the threads implementation of Mach. Section 3.8 discusses the UNIX interface in Digital UNIX,
which is derived from Mach. Section 3.9 describes a new mechanism called continuations, which
was introduced in Mach 3.0.

3.7.1 The Mach Abstractions-Tasks and Threads

The Mach kernel provides two fundamental abstractions-the task and the thread [Teva 87]. The
task is a static object comprising an address space and a collection of system resources called port
rights (see Section 6.4.1). By itself it is not an executable entity; it is merely an environment in
which one or more threads can execute.

The thread is the fundamental execution unit and runs within the context of a task. Each task
may contain zero or more threads; they all share the resources of the task. Each thread has a kernel

7 The Mach 2.5 implementation itself provides 4.3BSD functionality within its kernel. Mach 3.0 provides this func
tionality as a server program at the application level.

3.7 Threads in Mach 71

stack, used for system call handling. It also has its own computation state (program counter, stack
pointer, general registers, etc.) and is independently scheduled by the processor. Threads that belong
to user tasks are equivalent to lightweight processes. Pure kernel threads belong to the kernel task.

Mach also supports the notion of processor sets, which are further described in Section
5.7.1. The available processors in the system can be divided into nonoverlapping processor sets.
Each task and thread can be assigned to any processor set (many processor set operations require
superuser privilege). This allows dedicating some CPUs of a multiprocessor to one or more specific
tasks, thus guaranteeing resources to some high-priority tasks.

The task structure represents a task, and contains the following information:

• Pointer to the address map, which describes the virtual address space of the task.
• The header of the list of threads belonging to the task.
• Pointer to the processor set to which the task is assigned.
• Pointer to the utas k structure (see Section 3.8.1).
• Ports and other IPC-related information (see Section 6.4).

The resources held by the task are shared by all its threads. Each thread is described by a thread
structure, which contains:

• Links to put the thread on a scheduler or wait queue.
• Pointers to the task and the processor set to which it belongs.
• Links to put the thread on the list of threads in the same task and on the list of threads in

the same processor set.
• Pointer to the process control block (PCB) to hold its saved register context.
• Pointer to its kernel stack.
• Scheduling state (runnable, suspended, blocked, etc.).
• Scheduling information, such as priority, scheduling policy, and CPU usage.
• Pointers to the associated uthread and utask structures (see Section 3.8.1).
• Thread-specific IPC information (see Section 6.4.1).

Tasks and threads play complementary roles. The task owns resources, including the address
space. The thread executes code. A traditional UNIX process comprises a task containing a single
thread. A multithreaded process consists of one task and several threads.

Mach provides a set of system calls to manipulate tasks and threads. The task_create,
task_terminate, task_suspend, and task_Jesume calls operate on tasks. The thread_create,
thread _terminate, thread _suspend, and thread _Jesume calls operate on threads. These calls have the
obvious meanings. In addition, thread_status and thread_mutate allow reading and modification of
the register state of the thread, and task _threads returns a list of all threads in a task.

3.7.2 Mach C-threads

Mach provides a C-threads library, which provides an easy-to-use interface for creating and manag
ing threads. For example, the function

cthread t cthread fork {void* (*func) 0, void* arg);

72 Chapter 3 Threads and Lightweight Processes

creates a new thread that invokes the function fun c () . A thread can call

void* cthread_join (cthread_t T);

to suspend itself until the thread T terminates. The caller receives the return value ofT's top-level
function or the status code with which thread T explicitly called cthread _exit ().

The C-threads library provides mutexes and condition variables for synchronization. It also
provides a cthread _yi e 1 d () function that requests the scheduler to allow another thread to run in
stead. This function is only necessary for the coroutine implementation discussed below.

There are three implementations of the C-threads library. An application can choose the one
best suited to its requirements:

• Coroutine-based- Multiplexes user threads onto a single-threaded task (UNIX process).
These threads are nonpreemptive, and the library will switch to a different thread only in
synchronization procedures (when the current thread must block on a mutex or sema
phore). Besides this, it relies on threads calling cthread_yi e 1 d () to prevent other threads
from starving. This implementation is useful for debugging, because the order of thread
context switching is repeatable.

• Thread-based - Each C-thread uses a different Mach thread. These threads are preemp
tively scheduled and may execute in parallel on a multiprocessor. This is the default im
plementation and is used in production versions of C-thread programs.

• Task-based -Employs one Mach task (UNIX process) per C-thread, and uses Mach
virtual memory primitives to share memory among threads. This is used only when spe
cialized memory-sharing semantics are necessary.

3.8 Digital UNIX

The Digital UNIX operating system, formerly known as DEC OSF/1, is based on the Mach 2.5 ker
nel. From an application programmer's perspective, it provides a complete UNIX programming in
terface. Internally, many of the UNIX features are implemented using Mach primitives. This work is
based on Mach's 4.3BSD compatibility layer, extended by the Open Software Foundation to be
compatible with SVR3 and SVR4 as well. This approach has had a profound effect on its design.

Digital UNIX provides an elegant set of facilities that extend the process abstraction
[OSF 93]. Multithreaded processes are supported both by the kernel and by POSIX-compliant
threads libraries. The UNIX process is implemented on top of the task and thread abstractions of
Mach.

3.8.1 The UNIX Interface
While tasks and threads adequately provide the Mach program execution interface, they do not fully
describe a UNIX process. A process provides several facilities that have no Mach counterpart, such
as user credentials, open file descriptors, signal handling, and process groups. Furthermore, to avoid
rewriting the UNIX interface from scratch, the code was ported from the 4.3BSD compatibility

3.8 Digital UNIX 73

layer in Mach 2.5, which in tum was ported from the native 4.3BSD implementation. Likewise,
many device drivers were ported from Digital's ULTRIX, which also is BSD-based. The ported
code makes extensive references to the proc and user structures, making it desirable to preserve
these interfaces.

There are two problems with retaining the user and proc structures in their original forms.
First, some of their functionality is now provided by the task and thread structures. Second, they
do not adequately represent a multithreaded process. For instance, the traditional u area contains the
process control block, which holds the saved register context of the process. In the multithreaded
case, each thread has its own register context. Thus these structures must be modified significantly.

The u area is replaced by two objects-a single utask structure for the task as a whole, and
one uthread structure for each thread in the task. These structures are no longer at fixed addresses
in the process and are not swapped out with the process.

The utask structure contains the following information:

• Pointers to vnodes of the current and root directories.
• Pointer to the proc structure.
• Array of signal handlers and other fields related to signaling.
• Open file descriptors table.
• Default file creation mask (cmask).
• Resource usage, quotas, and profiling information.

If one thread opens a file, the descriptor is shared by all threads in the task. Likewise, they
all have a common current working directory. The uthread structure describes the per-thread re
sources of a UNIX process, which include:

• pointer to saved user-level registers
• pathname traversal fields
• current and pending signals
• thread-specific signal handlers

To ease the porting effort, references to fields of the old u area have been converted to refer
ences to utask or uthread fields. This conversion is achieved by macros such as:

#define u cmask
#define u_pcb

utask,->uu cmask
uthread-;[iu_pcb

The proc structure is retained with few changes, but much of its functionality is now pro
vided by the task and thread structures. As a result, many of its fields are unused, although they
are retained for historical reasons. For instance, the fields related to scheduling and priority are un
necessary because Digital UNIX schedules each thread individually. The Digital UNIX proc struc
ture contains the following information:

• Links to put the structure on the allocated, zombie, or free process list.
• Signal masks.
• Pointer to the credentials structure.

74 Chapter 3 Threads and Lightweight Processes

• Identification and hierarchy information-PID, parent PID, pointers to parent, siblings,
children, and so forth.

• Process group and session information.
• Scheduling fields (unused).
• Fields to save status and resource usage when exiting.
• Pointers to the task and utas k structure, and to the first thread.

Figure 3-10 describes the relationship between the Mach and UNIX data structures. The
task maintains a linked list of its threads. The task structure points to the utask, and each thread
structure points to the corresponding uthread. The proc structure has pointers to the task, utas k,
and first thread. The utask points back to the proc, and each thread points back to the task and
the utas k. This allows for rapid access to all the structures.

Not all threads have a user context. Some threads may be created directly by the kernel to
perform system functions such as page replacement. Such threads are associated with the kernel
task, which has no user address space. The kernel task and threads have no associated utask,
uthread, and proc structures.

3.8.2 System Calls and Signals

The fork system call in Digital UNIX creates a new process that has a single thread, a clone of the
thread that initially issued the fork. There is no alternative call that duplicates all the threads.

As in Solaris, signals are classified as synchronous signals or traps, and asynchronous sig
nals or interrupts. A trap is delivered to the thread that caused it. Interrupt signals are delivered to
any thread that has enabled them. Unlike Solaris, however, all threads in a process share a single set
of signal masks, which is stored in the proc structure. Each thread is allowed to declare its own set
of handlers for synchronous signals, but they all share a common set of handlers for asynchronous
signals.

~-------l task 1------+~ address

utask uthread uthread uthread uthread

Figure 3-10. Digital UNIX data structures for tasks and threads.

3.8 Digital UNIX 75

3.8.3 The pthreads Library

The pthreads library provides a POSIX-compliant, user-level programming interface to threads that
is simpler than Mach system calls. The library associates one Mach thread with each pthread. Func
tionally, pthreads are similar to C threads or other threads libraries, but they implement an interface
that has become an accepted standard.

The pthreads library implements the asynchronous 1/0 functions defmed by the POSIX
standard. For instance, if a thread calls the POSIX function aioreadO, the library creates a new
thread to issue the read synchronously. When the read completes, the kernel wakes up the blocked
thread, which in tum notifies the calling thread via a signal. This is illustrated in Figure 3-11.

The pthreads library provides a complete programming interface, including signal handling
and scheduling functions and an assortment of synchronization primitives. Synchronization between
threads can be implemented at the user level, but the kernel must be involved if an L WP needs to
block.

Digital also provides a proprietary cma _threads library, which provides some additional
features [DEC 94]. Programs using this library will work on Digital's VMS and Windows/NT plat
forms, but not on other UNIX systems.

~ T1

Need to perform async 110 I
!

~ T2 I create thread T2 ---------------~

1
continue other I issue 110 request and block I

work !

1 I 110 complete -resume I
!

receive notification ----~ notify thread T1 I
! !

process notification I terminate I
and continue

Figure 3-11. Implementing asynchronous 1/0 by creating a separate thread.

76 Chapter 3 Threads and Lightweight Processes

3.9 Mach 3.0 Continuations

Although a kernel thread is more lightweight than a process, it still consumes a large amount of ker
nel memory, mainly for its stack. Kernel stacks typically consume a minimum of 4K bytes of mem
ory, which is almost 90% of the kernel space used by a thread. On a system with a large number
(hundreds) of threads, this overhead becomes excessive and degrades performance. One solution is
to multiplex user threads onto Mach threads or lightweight processes, thus avoiding the requirement
of one kernel stack per thread. This approach has its disadvantages: user threads can not be sched
uled independently and hence do not provide the same level of concurrency. Moreover, because
kernel threads do not cross task boundaries, each task must contain at least one kernel thread, creat
ing problems on systems with many active tasks. In this section we examine how Mach 3.0 ad
dresses these issues via a kernel facility called continuations.

3.9.1 Programming Models

The UNIX kernel uses a process model of programming. Each thread has a kernel stack, used when
it traps into the kernel for a system call or exception. When the thread blocks in the kernel, the stack
contains its execution state, including its call sequence and automatic variables. This has the advan
tage of simplicity, as kernel threads can block without having to explicitly save any state. The main
drawback is the excessive memory consumption.

Some operating systems, such as QuickSilver [Hask 88] and V [Cher 88] use an interrupt
model of programming. The kernel treats system calls and exceptions as interrupts, using a single
per-processor kernel stack for all kernel operations. Consequently, if a thread needs to block while
in the kernel, it must first explicitly save its state somewhere. The kernel uses this saved information
to restore the thread's state the next time it runs.

The main advantage of the interrupt model is the memory saved by having a single kernel
stack. The main drawback is that a thread must save its state explicitly for each potentially blocking
operation. This makes the model difficult to program, because the information that must be saved
may span module boundaries. Hence if a thread blocks while in a deeply nested procedure, it must
determine what state is needed by all functions in the call chain.

The conditions under which a thread must block dictate which model is more suitable. If a
thread blocks deep inside a call chain, it will benefit from the process model. If, however, the thread
has little state to save when it blocks, the interrupt model will work better. Many server programs,
for instance, repeatedly block in the kernel to wait for a client request, and then process the request
when it arrives. Such a program does not have much state to maintain in the kernel and can easily
relinquish its stack.

The Mach 3.0 continuations facility combines the advantages of the two models, and allows
the kernel to choose the blocking method depending on the circumstances. We now examine its de
sign and implementation.

3.9 Mach 3.0 Continuations 77

3.9.2 Using Continuations

Mach uses the thread_block() function to block a thread. Mach 3.0 modifies the function to ac
cept an argument, and the new syntax is

threa(_block (void (*c()ntfn) ());

where contfn () is the continuationfimction to be invoked the next time the thread runs. Passing a
NULL argument indicates that traditional blocking behavior is required. This way, the thread can
choose to use continuations selectively.

When a thread wishes to use a continuation, it first saves any state that might be needed after
resuming. The thread structure contains a 28-byte scratch area for this purpose; if more space is
needed, the thread must allocate an additional data structure. The kernel blocks the thread and recap
tures its stack. When the thread is resumed, the kernel gives it a new stack and invokes the con
tinuation function. This function recovers the state from where it was saved. This requires that both
the continuation and the calling function must have a detailed understanding about what state was
saved and where.

The following example illustrates the use of continuations. Example 3-1 uses the traditional
approach to blocking a thread:

syscall t (argl)
{ -

}

threa(j bl ockO;
tz (ar~i): ··
return;

f2 (argiJ·•.
{

Example 3-1. Blocking a thread without continuations.

Example 3-2 shows how a thread is blocked using continuations:

sysca 11~1 (argl)

.. ·.l

save argl and any other state infor111ation;
thread block (f2);
l* rioCre~.ch~d. */

78

f2 ()
{

Chapter 3 Threads and Lightweight Processes

restore argl and any other state information;

thread_syscall_return (status};

Example 3-2. Blocking a thread using continuations.

Note that when thread_ block() is called with an argument, it does not return to the caller;
when the thread resumes, the kernel transfers control to f2 (). The thread_ sysca ll_return ()
function is used to return to the user level from a system call. The entire process is transparent to the
user, who sees only a synchronous return from the system call.

The kernel uses continuations when only a small amount of state must be saved when
blocking. For instance, one of the most common blocking operations occurs during page fault han
dling. In traditional implementations, the handler code issues a disk read request and blocks until
the read completes. When this happens, the kernel simply returns the thread to user level, and the
application can resume. The work that must be done after the read completes does requires little
saved state (perhaps a pointer to the page that was read in, and the memory mapping data that must
be updated). This is a good example of how continuations are useful.

3.9.3 Optimizations
The direct benefit of continuations is to reduce the number of kernel stacks in the system. Continua
tions also allow some important optimizations. Suppose, during a context switch, the kernel discov
ers that both the old and new threads have used continuations. The old thread has relinquished its
kernel stack, and the new thread does not have one. The kernel can directly transfer the stack from
the old thread to the new, as shown in Figure 3-12. Besides saving the overhead of allocating a new
stack, this also helps reduce the cache and translation lookaside buffer (TLB) misses (see Section
13.3 .1) associated with a context switch, since the same memory is reused.

The Mach IPC (interprocess communication) implementation (see Section 6.4) takes this
one step further. A message transfer involves two steps-a client thread uses the mach_ msg system
call to send a message and wait for a reply, and a server thread uses mach_msg to send replies to
clients and wait for the next request. The message is sent to and received from a port, which is a
protected queue of messages. The sending and receiving are independent of each other. If a receiver
is not ready, the kernel queues the message on the port.

When a receiver is waiting, the transfer can be optimized using a continuation. If the sender
finds a receiver waiting, it hands off its stack to the receiver and blocks itself with a
mach_ msg_ continue() continuation. The receiving thread resumes using the sender's stack, which
already contains all the information about the message to be transferred. This avoids the overhead of
queuing and dequeuing the message and considerably speeds up the message transfer. When the
server replies, it will hand off its stack to the client thread and resume it in a similar fashion.

3.10 Summary 79

~SP
.,. stack' I

running

+
(a) Before Tl blocks with a continuation.

a~ R1~
I I(. stack .

SP~
running

+
(b) After context switch.

Figure 3-12. Stack handoff using continuations.

3.9.4 Analysis

Continuations have proved extremely effective in Mach. Because their use is optional, it is unneces
sary to change the entire programming model, and their use can be extended incrementally. Con
tinuations greatly reduce the demands placed on kernel memory. Performance measurements
[Drav 91] determined that on average, the system required only 2.002 kernel stacks per processor,
reducing the per-thread kernel space from 4664 to 690 bytes.

Mach 3.0 is particularly well suited for continuations, since it is a microkernel that exports
only a small interface and has a small number of abstractions. In particular, the UNIX compatibility
code has been removed from the kernel and is provided by user-level servers [Golu 90]. As a result
there are only about 60 places where the kernel can block, and 99% of the blocks occur at just six
"hot spots." Concentrating on those provides a large benefit for a small programming effort. Tradi
tional UNIX systems, in contrast, may block at several hundred places and have no real hot spots.

3.10 Summary

We have seen several different ways of designing multithreaded systems. There are many types of
thread primitives, and a system can combine one or more of them to create a rich concurrent pro
gramming environment. Threads may be supported by the kernel, by user libraries, or by both.

Application developers must also choose the right blend of kernel and user facilities. One
problem they face is that each operating system vendor provides a different set of system calls to
create and manage threads, making it difficult to write portable multithreaded code that efficiently
uses the system resources. The POSIX 1003.4a standard defines the threads library functions, but
does not address the kernel interfaces or implementation.

80 Chapter 3 Threads and Lightweight Processes

3.11 Exercises

I. For each of the following applications, discuss the suitability of lightweight processes, user
threads, or other programming models:

(a) The server component of a distributed name service.
(b) A windowing system, such as the X server.
(c) A scientific application that runs on a multiprocessor and performs many parallel

computations.
(d) A make utility that compiles files in parallel whenever possible.

2. In what situations is an application better off using multiple processes rather than L WPs or
user threads?

3. Why does each L WP need a separate kernel stack? Can the system save resources by
allocating a kernel stack only when an L WP makes a system call?

4. The proc structure and the u area contain process attributes and resources. In a multithreaded
system, which of their fields may be shared by all L WPs of the process, and which must be
per-LWP?

5. Suppose one L WP invokes fork just at the same instance that another L WP of the same
process invokes exit. What would be the result if the system uses fork to duplicate all L WPs of
the process? What if fork duplicates only one L WP?

6. Would the problems with fork in a multithreaded system be addressed by having a single
system call to do an atomic fork and exec?

7. Section 3.3.2 described the problems with having a single shared set of resources such as file
descriptors and the current directory. Why should these resources not be per-L WP or per-user
thread? [Bart 88] explores this idea further.

8. The standard library defines a per-process variable called errno, which contains the error
status from the last system call. What problems does this create for a multithreaded process?
How can these problems be solved?

9. Many systems classify library functions as thread-safe or thread-unsafe. What causes a
function to be unsafe for use by a multithreaded application?

10. What are the drawbacks of using threads to run interrupt handlers?
11. What are the drawbacks of having the kernel control L WP scheduling?
12. Suggest an interface that would allow a user to control which of its L WPs is scheduled first.

What problems can this cause?
13. Compare the multithreading primitives of Solaris and Digital UNIX. What are the advantages

of each?

3.12 References

[Ande 91] Anderson, T.E., Bershad, B.N., Lazowska, E.D., and Levy, H.M., "Scheduler
Activations: Effective Kernel Support for the User-Level Management of
Parallelism," Proceedings of the Thirteenth Symposium on Operating System
Principles, Oct. 1991, pp. 95-109.

3.12 References 81

[Anna 90] Armand, F., Hermann, F., Lipkis, J., and Rozier, M., "Multi-threaded Processes in
Chorus/MIX," Proceedings of the Spring 1990 European UNIX Users Group
Conference, Apr. 1990.

[Bart 88] Barton, J.M., and Wagner, J.C., "Beyond Threads: Resource Sharing in UNIX,"
Proceedings of the Winter 1988 USENIX Technical Conference, Jan. 1988, pp. 259-
266.

[Bita 95] Bitar, N., "Selected Topics in Multiprocessing," USENIX 1995 Technical
Conference Tutorial Notes, Jan. 1995.

[Blac 90] Black, D.L., "Scheduling Support for Concurrency and Parallelism in the Mach
Operating System," IEEE Computer, May 1990, pp. 35-43.

[Cher 88] Cheriton, D.R., "The V Distributed System," Communications of the ACM, Vol. 31,
No.3, Mar. 1988, pp. 314-333.

[Coop 90] Cooper, E.C., and Draves, R.P., "C Threads," Technical Report CMU-CS-88-154,
Department of Computer Science, Carnegie Mellon University, Sep. 1990.

[DEC 94] Digital Equipment Corporation, DEC OSF/1- Guide to DECthreads, Part No. AA
Q2DPB-TK, July 1994.

[Doep 87] Doeppner, T.W., Jr., "Threads, A System for the Support of Concurrent
Programming," Brown University Technical Report CS-87-11, Jun. 1987.

[Drav 91] Draves, R.P., Bershad, B.N., Rashid, R.F., and Dean, R.W., "Using Continuations to
Implement Thread Management and Communication in Operating Systems,"
Technical Report CMU-CS-91-115R, Department of Computer Science, Carnegie
Mellon University, Oct. 1991.

[Eykh 92] Eykholt, J.R., Kleiman, S.R., Barton, S., Faulkner, R., Shivalingiah, A., Smith, M.,
Stein, D., Voll, J., Weeks, M., and Williams, D., "Beyond Multiprocessing:
Multithreading the SunOS Kernel," Proceedings of the Summer 1992 USENIX
Technical Conference, Jun. 1992, pp. 11-18.

[Golu 90] Golub, D., Dean, R., Forin, A., and Rashid, R., "UNIX as an Application Program,"
Proceedings ofthe Summer 1990 USENIXTechnical Conference, Jun. 1990, pp. 87-
95.

[IEEE 94] Institute for Electrical and Electronic Engineers, POSIX P1003.4a, Threads
Extension for Portable Operating Systems, 1994.

[Hask 88] Haskin, R., Malachi, Y., Sawdon, W., and Chan, G., "Recovery Management in
QuickSilver," ACM Transactions on Computer Systems, Vol. 6, No. 1, Feb. 1988,
pp. 82-108.

[Kepe 85] Kepecs, J., "Lightweight Processes for UNIX Implementation and Applications,"
Proceedings of the Summer 1985 USENIX Technical Conference, Jun. 1985, pp.
299-308.

[Kepp 91] Keppel, D., "Register Windows and User-Space Threads on the SPARC," Technical
Report 91-08-01, Department of Computer Science and Engineering, University of
Washington, Seattle, WA, Aug. 1991.

[Klei 95] Kleiman, S.R., and Eykholt, J.R., "Interrupts as Threads," Operating Systems
Review, Vol. 29, No.2, Apr. 1995.

82

[Muel 93]

[OSF 93]

[Powe 91]

[Sun 93]
[Teva 87)

[Vand 88)

Chapter 3 Threads and Lightweight Processes

Mueller, F., "A Library Implementation of POSIX Threads under UNIX,"
Proceedings of the Winter 1993 USENIX Technical Conference, Jan. 1993, pp. 29-
41.
Open Software Foundation, Design of the OSF/1 Operating System-Release 1.2,
Prentice-Hall, Englewood Cliffs, NJ, 1993.
Powell, M.L., Kleiman, S.R., Barton, S., Shah, D., Stein, D., and Weeks, M.,
"SunOS Multi-thread Architecture," Proceedings of the Winter 1991 USENIX
Technical Conference, Jan. 1991, pp. 65-80.
Sun Microsystems, SunOS 5.3 System Services, Nov. 1993.
Tevanian, A., Jr., Rashid, R.F., Golub, D.B., Black, D.L., Cooper, E., and Young,
M.W., "Mach Threads and the UNIX Kernel: The Battle for Control," Proceedings
ofthe Summer 1987 USENIXTechnical Conference, Jun. 1987, pp. 185-197.
Vandevoorde, M., and Roberts, E., "WorkCrews: An Abstraction for Controlling
Parallelism," International Journal of Parallel Programming, Vol. 17, No. 4, Aug.
1988, pp. 347-366.

4

Signals and Session
Management

4.1 Introduction

Signals provide a mechanism for notifying processes of system events. They also function as a
primitive mechanism for communication and synchronization between user processes. The pro
gramming interface, behavior, and internal implementation of signals differ greatly from one ver
sion of UNIX to another, and also, for any single variant, from one release to another. To make
matters more confusing for the programmer, the operating system provides additional system calls
and library routines to support earlier interfaces and maintain backward compatibility. 1

The original System V implementation of signals was inherently unreliable and defective.
Many of its problems are addressed in 4.2BSD UNIX (with further enhancements in 4.3BSD),
which introduced a new, robust signal mechanism. The 4.2BSD signal interface, however, is in
compatible with the System V interface in several respects. This causes problems both for applica
tion developers, who wish to write portable code, and for other UNIX vendors, who want their ver
sion of UNIX to be compatible with both System V and BSD.

The POSIX 1003.1 standard [IEEE 90] (also known as POSIX.l) imposes some order amid
the chaos created by the plethora of signal implementations. It defines a standard interface that all
compliant implementations must support. PO SIX standards, however, do not regulate how the inter
face must be implemented. The operating system is free to decide whether to provide the implemen
tation in the kernel, through user-level libraries, or through a combination of both.

1 This creates other problems. If a library using one set of signal interfaces is linked with an application using another,
the program may behave incorrectly.

83

84 Chapter 4 Signals and Session Management

The developers of SVR4 introduced a new, POSIX-compliant signals implementation that
incorporates many features ofBSD signals. Nearly all modem UNIX variants (such as Solaris, AIX,
HP-UX, 4.4BSD, and Digital UNIX) provide a POSIX-compliant signals implementation. The
SVR4 implementation also preserves backward compatibility with all earlier System V releases.

This chapter first explains the basic notion of signals and analyzes the problems with the
original System V implementation. It then shows how these problems are addressed in modem
UNIX systems that provide reliable signals. Finally, it looks at the issue of job control and session
management, which is closely related to signals.

4.2 Signal Generation and Handling

Signals provide a way for a procedure to be called when one of a defined set of events occurs. The
events are identified by integers and are commonly referred to by symbolic constants. Some of the
events are asynchronous notifications (for example, when a user sends an interrupt signal to a proc
ess by pressing control-C at the terminal), while others are synchronous errors or exceptions (for
example, accessing an illegal address).

There are two phases in the signaling process-generation and delivery. A signal is gener
ated when an event occurs that requires a process to be notified of it. It is delivered, or handled,
when the process to which the signal has been sent recognizes its arrival and takes some appropriate
action. In between these two events, the signal is said to be pending to the process.

The original System V implementation defined 15 different signals. Both 4BSD and SVR4
support 31 signals. Each signal is assigned a number between 1 and 31 (setting signal number to
zero has special meanings for different functions, such as "no signal"). The mapping of signals to
signal numbers is different for System V and BSD UNIX (for example, SIGSTOP is 17 in 4.3BSD,
but 23 in SVR4). Moreover, many commercial UNIX variants (such as AIX) support more than 31
signals. Hence, programmers use symbolic constants to identify the signals. POSIX 1003.1 specifies
the symbolic names for all the signals it defines. The names are portable at a minimum to all
POSIX-compliant implementations.

4.2.1 Signal Handling
Each signal has a default action, which is what the kernel does if the process has not specified an
alternative. There are five possible default actions:

abort

exit
ignore

Terminates the process after generating a core dump, that is, writing the
contents of the process's address space and register context in a file called
core in the current directory of the process.2 This file can later be analyzed
by debuggers and other utilities.
Terminates the process without generating a core dump.
Ignores the signal.

2 4.4BSD calls this file core.prog, where prog is the first 16 characters of the program that the process was executing
when it received the signal.

4.2 Signal Generation and Handling

stop
continue

Suspends the process.
Resumes the process, if suspended (or else, ignores the signal).

85

A process may choose to override the default and specify another action for any signal. This
alternative action could be to ignore the signal or to invoke a user-defined function called a signal
handler. At any time, the process may specify a new action or reset the action to default. A process
may block a signal temporarily (not in SVR2 or earlier versions), in which case the signal will not
be delivered until it is unblocked. The SIGKI LL and SIGSTOP signals are special-users cannot ig
nore, block, or specify a handler for them. Table 4-1 lists the complete set of signals, their default
actions, and other restrictions.

It is important to note that any action, including process termination, can only be taken by
the receiving process itself. This requires, at the very least, that the process be scheduled to run. On
a busy system, if this process has a low priority, this may take quite some time. There may be fur
ther delay if the process is swapped out, suspended, or blocked in an uninterruptible way.

The receiving process becomes aware of the signal when the kernel calls the i s s i g () func-
tion on its behalf to check for pending signals. The kernel calls iss i g () only at the following times:

• Before returning to user mode from a system call or interrupt.
• Just before blocking on an interruptible event.
• Immediately after waking up from an interruptible event.

If iss i g () returns TRUE, the kernel calls the psi g () function to dispatch the signal. psi g ()
terminates the process, generating the core file if necessary, or calls sends i g () to invoke the user
defined handler. sends i g () returns the process to user mode, transfers control to the signal handler,
and arranges for the process to resume the interrupted code after the handler completes. Its imple
mentation is very machine-specific since it must manipulate the user stack and save, restore, and
modify the process context.

Signals generated by asynchronous events may occur after any instruction in the code path
of the process. When the signal handler completes, the process resumes from where it was inter
rupted by the signal (Figure 4-1). If the signal arrived when the process was in the middle of a sys
tem call, the kernel usually aborts the call and returns an error of EINTR. 4.2BSD introduced the
automatic restarting of certain system calls after a signal (see Section 4.4.3). 4.3BSD provides a si
ginterrupt call that disables this feature on a per-signal basis.

signal
delivered

execute normal code J

signal handler runs

resume normal execution

Figure 4-1. Signal handling.

86 Chapter 4 Signals and Session Management

Table 4-1. UNIX signals

Signal Description Default Action Available In Notes
SIGABRT process aborted abort APSB
SIGALRM real-time alarm exit OPSB
SIGBUS bus error abort OSB
SIGCHLD child died or suspended ignore OJSB 6
SIGCONT resume suspended process continue/ignore JSB 4
SIGEMT emulator trap abort OSB
SIGFPE arithmetic fault abort OAPSB
SIGHUP hang-up exit OPSB
SIGILL illegal instruction abort OAPSB 2
SIGINFO status request (controi-T) ignore B
SIGINT tty interrupt (control-C) exit OAPSB
SIGIO async 1/0 event exit/ignore SB 3
S IGIOT 1/0 trap abort OSB
SIGKILL ki II process exit OPSB I
SIGPIPE write to pipe with no readers exit OPSB
SIGPOLL pollable event exit s
SIGPROF profiling timer exit SB
SIGPWR power fail ignore OS
SIGQUIT tty quit signal (control-\) abort OPSB
SIGSEGV segmentation fault abort OAPSB
SIGSTOP stop process stop JSB I
SIGSYS invalid system call exit OAPSB
SIGTERM terminate process exit OAPSB
SIGTRAP hardware fault abort OSB 2
SIGTSTP tty stop signal (controi-Z) stop JSB
SIGTTIN tty read from background process stop JSB
SIGTTOU tty write from background process stop JSB 5
SIGURG urgent event on 110 channel ignore SB
SIGUSRl user-definable exit OPSB
SIGUSR2 user-definable exit OPSB
SIGVTALRM virtual time alarm exit SB
SIGWINCH window size change ignore SB
SIGXCPU exceed CPU limit abort SB
SIGXFSZ exceed file size limit abort SB
Availability: 0 Original SVR2 signal A ANSIC

B 4.3 BSD s SVR4
p POSIX.I J POSIX.l, only if job control is supported

Notes: 1 cannot be caught, blocked, or ignored.
2 Not reset to default, even in System V implementations.
3 Default action is to exit in SVR4, ignore in 4.3BSD.
4 Default action is to continue process if suspended, else to ignore. Cannot be blocked.
5 Process can choose to allow background writes without generating this signal.
6 Called SIGCLD in SVR3 and earlier releases.

4.2 Signal Generation and Handling 87

4.2.2 Signal Generation

The kernel generates signals to processes in response to various events that may be caused by the
receiving process itself, by another process, or by interrupts or external actions. The major sources
of signals are as follows:

Exceptions

Other processes

Terminal interrupts

Job control

Quotas

Notifications

Alarms

When an exception occurs in the process (for instance, an attempt to
execute an illegal instruction), the kernel notifies the process by
sending it a signal.
A process may send a signal to another process, or set of processes,
through the kill or sigsend system calls. A process may even send a
signal to itself.
Certain keyboard characters, such as control-C or control-\, send
signals to the foreground process on that terminal. The stty com-
mand allows the user to bind each terminal-generated signal to a
specific key.
Background processes that try to read or write to the terminal are
sent job control signals. Job control shells such as csh and ksh use
signals to manipulate foreground and background processes. When
a process terminates or is suspended, the kernel notifies its parent
via a signal.
When a process exceeds its CPU or file size limits, the kernel sends
a signal to the process.
A process may request notification of certain events, such as a de
vice being ready for 1/0. The kernel informs the process via a sig-
nal.
A process may set an alarm for a certain time; when it expires, the
kernel notifies the process through a signal.

There are three different alarms, which use different kinds of timers. The !TIMER_ REAL
measures the real (clock) time, and generates the SIGALRM signal. The ITIMER_VIRTUAL measures
the virtual time, that is, it runs only when the process is executing in user mode. It generates the
SIGVTALRM signal. The ITIMER_PROF measures the total time used by the process, in both user and
kernel modes. It generates the SIGPROF signal. There is considerable variation in how different ven
dors support alarms and timers.

4.2.3 Typical Scenarios

Let us consider a few examples of signal generation and delivery. Suppose a user types control-C at
the terminal. This results in a terminal interrupt (as would any other character). The terminal driver
recognizes this as a signal-generating character and sends the SIGINT signal to the foreground proc
ess of this terminal. (If the foreground job comprises more than one process, the driver sends the
signal to each of them.) When this process is scheduled to run, it will see the signal upon trying to
return to user mode after the context switch. Sometimes, the foreground process is the currently
running process at the time of the interrupt. In this case, the handler interrupts the foreground proc-

88 Chapter 4 Signals and Session Management

ess and posts the signal to it.3 Upon return from the interrupt, the process will check for and find the
signal.

Exceptions, however, result in synchronous signals. They are usually caused by a program
ming error (division by zero, illegal instruction, etc.) and will occur at the same point if the program
is rerun in the same manner (i.e., if the same execution path is repeated). When an exception occurs
in a program, it causes a trap to the kernel mode. The trap handler in the kernel recognizes the ex
ception and sends the appropriate signal to the current process. When the trap handler is about to
return to user mode, it calls i s s i g (), thus receiving the signal.

It is possible for several signals to be pending to the process simultaneously. In that case, the
signals are processed one at a time. A signal might also arrive while executing a signal handler; this
can cause nesting of handlers. In most implementations, users can ask the kernel to selectively block
certain signals before invoking a specific handler (see Section 4.4.3). This allows users to disable or
control the nesting of signal handlers.

4.2.4 Sleep and Signals

What happens if a sleeping process receives a signal? Should it be awakened prematurely so that it
can handle the signal, or should the signal be kept pending until the process awakens?

The answer depends on why the process has gone to sleep. If it is sleeping for an event such
as disk I/0 completion, that event will occur soon, and it is okay to keep any signals pending. On
the other hand, if the process is waiting for the user to type a keyboard character, it may wait in
definitely. We need a provision to interrupt such processes via signals.

Therefore, UNIX has two categories of sleep-interruptible and uninterruptible. A process
sleeping for a short-term event such as disk I/0 is said to be in an uninterruptible sleep and cannot
be disturbed by a signal. A process waiting for an event such as terminal I/0, which may not occur
for a long time, sleeps in an interruptible state and will be woken up if a signal is generated for it.

If a signal is generated for a process in an uninterruptible sleep, it will be marked as pending,
but no further action will be taken at that point. The process will not notice the signal even after
waking up, until it is about to return to user mode or block on an interruptible event.

If a process is about to block on an interruptible event, it will check for signals just before
blocking. If a signal is found, it handles the signal and aborts the system call. If a signal is generated
after the process has blocked, the kernel will wake up the process. When the process wakes up and
runs--either because the event it was waiting for occurred, or because its sleep was interrupted by a
signal-it will first call i s s i g () and check for signals. The call to i s s i g () is always followed by
psi g () if a signal was pending, as shown in the following:

if (issig{))
psi g 0;

3 On a multiprocessor, the target process may be running on a different processor than the one that handles the termi
nal interrupt. In this case, the interrupt handler must arrange a special cross-processor interrupt so that the target sees
the signal.

4.3 Unreliable Signals 89

4.3 Unreliable Signals

The original (SVR2 and earlier) implementation of signals [Bach 86] is unreliable and defective.
While it adheres to the basic model described in Section 4.2, it suffers from several drawbacks.

The most important problem concerns reliable signal delivery. Signal handlers are not persis
tent and do not mask recurring instances of the same signal. Suppose a user installs a handler for a
particular signal. When that signal occurs, the kernel will reset the signal action to default before
invoking the handler. A user wishing to catch other occurrences of the signal must reinstall the
handler each time, as in Example 4-1.

void sigint~handler (sig)
int sig;
{

signal (SIGINT, sigint_handler);

main()
{

signal (SIGINT, sigint_handler);

/* reinstall the handler */
/* handle the signal */

/* install the handler */

Example 4-1. Reinstalling a signal handler.

This, however, leads to a race condition. Suppose that the user types control-C twice in rapid
succession. The first causes a S I G I NT signal that resets the action to default and invokes the handler.
If the second control-C is typed before the handler is reinstalled, the kernel will take the default ac
tion and terminate the process. This leaves a window between the time the handler is invoked and
the time it is reinstalled, during which the signal cannot be caught. For this reason, the old imple
mentation is often referred to as unreliable signals.

There is also a performance problem regarding sleeping processes. In the old implementa
tion, all information regarding signal disposition is stored in a u_ signa 1 [] array in the u area,
which contains one entry for each signal type. This entry contains the address of a user-defined
handler, SIG_DFL to specify that the default action should be taken, or SIG_IGN to specify that the
signal should be ignored.

Since the kernel can only read the u area of the current process, it has no way of knowing
how another process will deal with a signal. Specifically, if the kernel has to post a signal to a proc
ess in an interruptible sleep, it cannot know if the process is ignoring the signal. It will thus post the
signal and wake up the process, assuming that the process is handling the signal. If the process finds
that it has awakened because of a signal that was to be ignored, it will simply go back to sleep. This
spurious wakeup results in unnecessary context switches and wasteful processing. It is far better if
the kernel can recognize and discard ignored signals without ever waking up the process.

90 Chapter 4 Signals and Session Management

Finally, the SVR2 implementation lacks a facility to block a signal temporarily, deferring its
delivery until unblocked. It also lacks support for job control, where groups of processes can be
suspended and resumed in order to control access to the terminal.

4.4 Reliable Signals

The above problems were first addressed in 4.2BSD, which introduced a reliable and versatile signal
management framework. 4.3BSD adds a few improvements, but the basic facilities remain un
changed. Meanwhile, AT&T provided its own version of reliable signals in SVR3 [AT&T 86]. This
version is incompatible with the BSD interface and is not as powerful. It retains compatibility with
the original SVR2 implementation. SVR3 and 4.2BSD try to solve the same problems in different
ways. Each has its own set of system calls to access their signal management functionality, and
these calls differ both in name and in semantics.

The POSIX.l standard attempts to create order from this chaos by defining a standard set of
functions that POSIX-compliant systems must implement. The functions may be implemented as
system calls or as library routines. Based on these requirements, SVR4 introduced a new interface
that is POSIX-compliant and compatible both with BSD and with all previous versions of AT&T
UNIX.

This section first examines the basic features of reliable signals. It then briefly describes the
SVR3 and 4.3BSD interfaces, and finally, takes a detailed look at the SVR4 signals interface.

4.4.1 Primary Features

All reliable signal implementations provide certain common facilities. These include:

• Persistent handlers - Signal handlers remain installed even after the signal occurs and
do not need to be explicitly reinstalled. This eliminates the window between invoking the
handler and reinstalling it, during which another instance of the signal can terminate the
process.

• Masking- A signal can be masked temporarily. (The words masked and blocked are
synonymous, and are used interchangeably when referring to signals.) If a signal that is
being blocked is generated, the kernel will remember it but will not post it immediately to
the process. When the process unblocks the signal, the signal will be posted and handled.
This allows programmers to protect critical regions of code from being interrupted by
certain signals.

• Sleeping processes - Some of the signal disposition information of a process is visible
to the kernel (kept in the proc structure instead of the u area) even when the process is not
running. Consequently, if the kernel generates a signal for a process in an interruptible
sleep and the process is ignoring or blocking that signal, the kernel will not need to
awaken it.

• Unblock and wait- The pause system call blocks the process until a signal arrives. Re
liable signals provide an additional system call-sigpause-that atomically unmasks a

4.4 Reliable Signals

signal and blocks the process until it receives a signal. If the unmasked signal is already
pending when the system call is issued, the call returns immediately.

4.4.2 The SVR3 Implementation

91

SVR3 provides all the features described in the previous section. Its implementation, however, suf
fers from some important drawbacks. To understand this, let us consider an example that shows the
use of the sigpause system call.

Suppose a process has declared a signal handler to catch the S I GQU IT signal and set a global
flag when the signal is caught. At some time, it wants to check if the flag is set; if not, it wants to
wait for it to be set. The check and the subsequent wait together constitute a critical region of
code-if the signal arrives after the check but before waiting for the signal, it will be missed and the
process will wait forever. Thus the process must mask S I GQU IT while testing the flag. If it enters the
wait with the signal masked, then the signal can never be delivered. Hence we need an atomic call
that will unmask the signal and block the process. The sigpause system call provides that function.
The code in Example 4-2 works for SVR3.

t11t sig:.._:rec~i.ved= 0;

.void .handleri (tnt stg) · {-·

}
s i g. received++;

. ~ ·.·:.:.

ma.JnO
{

stgset (SIGQUIJ, handler);

/* Now waH for the signal, if it is not already pending */
sighdld {SIGQUIT);
whi 1 e (si g received == 0)

si gpause {SIGlNl) ;
/* signal not yet arrived */

/* Slgrial has been received, carry on. *l

Example 4-2. Using sigpause to wait for a signal.

This example illustrates some features of SVR3 signaling. The sighold and sigrelse calls al
low blocking and unblocking of a signal. The sigpause call atomically unblocks a signal and puts
the process to sleep until it receives a signal that is not ignored or blocked. The sigset system call
specifies a persistent handler that is not reset to default when the signal occurs. The old signal call is
retained for backward compatibility; handlers specified through signal are not persistent.

This interface still has several deficiencies [Stev 90]. Most important, the sighold, sigrelse,
and sigpause calls deal with only one signal at a time. There is no way to atomically block or un-

92 Chapter 4 Signals and Session Management

block multiple signals. In Example 4-2, if the handler was used by multiple signals, there is no satis
factory way to code the critical region. We could block the signals one at a time, but sigpause can
not atomically unblock all of them and then wait.

SVR3 also lacks support for job control and facilities such as automatic restarting of system
calls. These features, and many others, are provided in the 4BSD framework.

4.4.3 BSD Signal Management
4.2BSD was the first to provide reliable signals. The facilities offered by BSD signals [Leff 89] are
far more powerful than those in SVR3. Most system calls take a signal mask argument, which is a
32-bit mask of the signals on which the call operates (one bit per signal). This way a single call can
operate on multiple signals. The sigsetmask call specifies the set of signals to be blocked. The sig
block call adds one or more signals to this set. Likewise, the BSD implementation of sigpause
atomically installs a new mask of blocked signals and puts the process to sleep until a signal arrives.

The sigvec system call replaces signal. Like signal, it installs a handler for one signal only.
In addition, it can specify a mask to be associated with the signal. When the signal is generated, the
kernel will, prior to calling the handler, install a new mask of blocked signals that is a union of the
current mask, the mask specified by sigvec, and the current signal.

Hence, a handler always runs with the current signal blocked, so that a second instance of
that signal will not be delivered until the handler completes. These semantics are closer to the typi
cal scenarios involving signal handlers. Blocking additional signals while the handler runs is also
frequently desirable, since signal handlers themselves are usually critical regions of code. When the
handler returns, the blocked signals mask is restored to its prior value.

Another important feature is the ability to handle signals on a separate stack. Consider a
process that manages its own stack. It may install a handler for the SIGSEGV signal generated when
its stack overflows. Normally, this handler would run on the same (already overflowed) stack, gen
erating further SIGSEGV signals. If signal handlers could run on a separate stack, this problem could
be resolved. Other applications, such as user-level threads libraries, would also benefit from a sepa
rate signal stack. The sigstack system call specifies a separate stack on which the handler runs. It is
the user's responsibility to ensure that the stack is large enough for the handler, since the kernel
does not know the stack's bounds.

BSD also introduced several additional signals, including a few devoted to job control.4 A
job is a group of related processes, usually forming a single pipeline. A user may run several jobs
concurrently from a terminal session, but only one can be the foreground job. The foreground job is
allowed to read and write to the terminal. Background jobs that try to access the terminal are sent
signals that typically suspend the process. The Korn shell (ksh) and the C shell (csh) [Joy 80] use
job control signals to manipulate jobs, send them to the foreground or background, and suspend or
resume them. Section 4.9.1 talks more about job control.

Finally, 4BSD allows automatic restarting of slow system calls that are aborted by signals.
Slow system calls include reads and writes to character devices, network connections and pipes,
wait, waitpid, and ioctl. When such a call is interrupted by a signal, it is automatically restarted after

4 Job control was first supported in 4.1 BSD.

4.5 Signals in SVR4 93

the handler returns instead of being aborted with an EINTR error. 4.3BSD adds the siginterrupt sys
tem call, which allows selective enabling or disabling of this feature on a per-signal basis.

The BSD signal interface is powerful and flexible. Its main drawback is the lack of com
patibility with the original AT&T interface (and even with the SVR3 interface, although that was
released later). These incompatibilities drove third-party vendors to develop various library inter
faces that tried to satisfy both camps. Ultimately, SVR4 introduced a POSIX-compliant interface
that is backward compatible with previous releases of System V as well as with BSD semantics.

4.5 Signals in SVR4

SVR4 offers a set of system calls [UNIX 92] that provides a superset of the functionality of SVR3
and BSD signals, as well as support for the old unreliable signals. These include:

• sigprocmask (how, setp, osetp);
Uses the set p argument to modify the mask of blocked signals. If how is S I G_ BLOCK, then
setp is or'ed to the existing mask. If how is SIG_UNBLOCK, the signals in setp are un
blocked from the existing mask. If how is SIG_ SETMASK, then the current mask is replaced
by setp. Upon return, osetp contains the value of the mask prior to the modification.

• sigaltstack (stack, old stack);
Specifies a new stack to handle the signals. Handlers must specifically request the alter
nate stack when being installed. Other handlers use the default stack. On return,
o 1 d _stack points to the previous alternate stack.

• sigsuspend (sigmask);
Sets the blocked signals mask to s i gma s k and puts the process to sleep, until a signal that
is not ignored or blocked is posted. If changing the mask unblocks such a signal, the call
returns immediately.

• sigpending (setp);
On return, setp contains the set of signals pending to the process. The call does not mod
ify any signal state and is simply used to obtain information.

• sigsendset {procset, sig);
Enhanced version of kill. Sends the signal s i g to the set of processes specified by
procset.

• sigaction (signa, act, oact);
Specifies a handler for signal s i gno. Resembles the BSD sigvec call. The act argument
points to a s i gact ion structure that contains the signal disposition (SIG _ IGN, SIG_DFL, or
handler address), the mask to be associated with the signal (similar to the mask for the
BSD sigvec call), and one or more of the following flags:

SA NOCLDSTOP Do not generate SIGCHLD when a child is suspended.
SA RESTART Restart system call automatically if interrupted by this signal.

94 Chapter 4 Signals and Session Management

SA ONSTACK Handle this signal on the alternate stack, if one has been specified by
sigaltstack

SA NOCLDWAIT Used only with SIGCHLD-asks the system not to create zombie proc
esses (see Section 2.8.7) when children of calling process terminate. If
this process subsequently calls wait, it will sleep until all its children
terminate.

SA SIGINFO Provide additional information to the signal handler. Used for handling
hardware exceptions, etc.

SA NODE FER Do not automatically block this signal while its handler is running.
SA RESETHAND Reset the action to default before calling the handler.

SA_ NODE FER and SA_ RESETHAND provide backward compatibility with the original unreli
able signals implementation. In all cases, oact returns the previously installed sigaction
data.

• Compatibility interface
To provide compatibility with older releases, SVR4 also supports the signal, sigset, sig
hold, sigrelse, sigignore, and sigpause calls. Systems that do not require binary compati
bility may implement these calls as library routines.

Except for the last set, these system calls directly correspond to the POSIX.l functions in name,
calling syntax, and semantics.

4.6 Signals Implementation

To efficiently implement signals, the kernel must maintain some state in both the u area and the
proc structure. The SVR4 signals implementation discussed here resembles that of BSD, differing
primarily in some variable and function names. The u area contains information required to properly
invoke the signal handlers, including the following fields:

u _ s i g na 1 [] Vector of signal handlers for each signal
u _ s i gma s k [] Signal masks associated with each handler
u _ s i ga 1 tstack Pointer to the alternate signal stack
u_ s i gonstack Mask of signals to handle on the alternate stack
u _ o 1 d s i g Set of handlers that must exhibit the old, unreliable behavior

The proc structure contains fields related to generation and posting of signals, including the follow
ing:

p_cursig
p_sig
p_ho1d
p_ignore

The current signal being handled
Pending signals mask
Blocked signals mask
Ignored signals mask

Let us now examine at how the kernel implements various functions related to signal
delivery.

4.7 Exceptions 95

4.6.1 Signal Generation

When a signal is generated, the kernel checks the proc structure of the receiving process. If the sig
nal is being ignored, the kernel returns without taking any action. If not, it adds the signal to the set
of pending signals in p _curs i g. Since p _curs i g is just a bitmask with one bit per signal, the kernel
cannot record multiple instances of the same signal. Hence the process will only know that at least
one instance of that signal was pending.

If the process is in an interruptible sleep and the signal is not blocked, the kernel wakes up
this process so it can receive the signal. Moreover, job control signals such as SIGSTOP or SIGCONT
directly suspend or resume the process instead of being posted.

4.6.2 Delivery and Handling

The process checks for signals by calling i s s i g () when about to return from kernel mode after a
system call or interrupt. It also calls iss i g () just before entering, or after waking up from, an inter
ruptible sleep. The issig() function looks for set bits in p_cursig. If any bit is set, issig()
checks p _hold to discover if the signal is currently blocked. If not, then iss i g () stores the signal
number in p _ s i g and returns TRUE.

If a signal is pending, the kernel calls psi g () to handle it. psi g () inspects the information
in the u area pertaining to this signal. If no handler is declared, psi g () takes the default action,
usually process termination. If a handler is to be invoked, the p _hold mask of blocked signals is
altered by adding the current signal, as well as any signal specified in the u_sigmask entry associ
ated with this signal. The current signal is not added to this mask if the SA_ NODE FER flag is specified
for this handler. Likewise, if the SA_ RESETHAND flag is specified, the action in the u _signal [] array
isresettoSIG DFL.

Finally, psi g () calls sends i g (),which arranges for the process to return to user mode and
pass control to the handler. sends i g () also ensures that when the handler completes, the process
will resume the code it was executing prior to receiving the signal. If the alternate stack must be
used, sendsi g () invokes the handler on that stack. The implementation of sendsi g () is machine
dependent, since it must know the details of stack and context manipulation.

4. 7 Exceptions

An exception5 occurs when a program encounters an unusual condition, usually an error. Examples
include accessing an invalid address and attempting to divide by zero. This results in a trap to the
kernel, which normally generates a signal to notify the process of the exception.

In UNIX, the kernel uses signals to notify the user of exceptions. The type of signal depends
on the nature of the exception. For instance, an invalid address exception may result in a SIGSEGV
signal. If the user has declared a handler for that signal, the kernel invokes the handler. If not, the
default action is to terminate the process. This allows individual programs to install their own ex-

5 This section describes hardware exceptions, which must not be confused with software exceptions supported by cer
tain languages such as C++.

96 Chapter 4 Signals and Session Management

ception handlers. Some programming languages, such as Ada, have built-in exception handling
mechanisms; these are implemented by the language library as signal handlers.

Exceptions are also used extensively by debuggers. Debugged (traced) programs generate
exceptions at breakpoints and upon completion of the exec system call. The debugger must intercept
these exceptions to control the program. The debugger may also wish to intercept other selected ex
ceptions and signals generated by the debugged program. The ptrace system call in UNIX enables
this interception; it is described further in Section 6.2.4.

There are several drawbacks to the way UNIX handles exceptions. First, the signal handler
runs in the same context as the exception. This means that it cannot access the full register context
as it was at the time of the exception. When the exception occurs, the kernel passes some of the ex
ception context to the handler. The amount of context passed depends on the specific UNIX variant
and on the hardware on which it runs. In general, a single thread must deal with two contexts-that
of the handler and that of the context in which the exception occurred.

Second, signals are designed for single-threaded processes. UNIX variants that support
multithreaded processes find it difficult to adapt signals to such an environment. Finally, due to
limitations of the ptrace system call, a traditional ptrace-based debugger can control only its im
mediate children.

4.8 Mach Exception Handling

The limitations of UNIX exceptions prompted the development of a uniform exception handling
facility in Mach [Blac 88]. Mach needed a facility that would allow binary compatibility with UNIX
and also work with multithreaded applications. This facility is also part ofOSF/1, which is based on
Mach.

Mach abandons the idea of executing the handler in the same context as the exception.
UNIX adopted that approach only because the handler needs to access and run in the same address
space in which the exception occurs. Since Mach is multithreaded, it can achieve this by executing
the handler in a different thread in the same task. (Mach threads and tasks are discussed in Section
6.4. In brief, a task holds a set of resources, including an address space, and a thread is an execution
context, or control point, that runs in a task. The traditional UNIX process comprises a task contain
ing a single thread.)

Mach recognizes two distinct entities-the victim (the thread that caused the exception) and
the handler. Figure 4-2 describes the interaction between the two. The victim first raises the excep
tion, notifying the kernel of its occurrence. It then waits for exception handling to complete. The
handler catches the exception, that is, receives notification from the kernel. This notification identi
fies the victim and specifies the nature of the exception. It then handles the exception and clears it,
allowing the victim to resume execution. Alternately, if it cannot handle the exception successfully,
it terminates the victim.

These interactions are somewhat similar to the flow of control for a UNIX exception, except
that the handler executes in a separate thread. As a result, the raise, wait, catch, and clear operations
together constitute a remote procedure call, which Mach implements using its interprocess com
munication (IPC) facilities, described in Section 6.4.

4.8 Mach Exception Handling

Victim

Resume/
Terminate

97

Handler

thread terminate

Figure 4-2. Mach exception handling.

Two messages are involved in handling a single exception. When the victim raises the ex
ception, it sends a message to the handler and waits for the reply. The handler catches the exception
when it receives the message and clears it by sending a reply message to the victim. When the vic
tim receives the reply, it can resume execution.

4.8.1 Exception Ports
In Mach, a message is sent to a port, which is a protected queue of messages. Several tasks may
have send rights (right to send messages) to a given port, but only one task may receive messages
from it. Mach associates one exception port with each task and one with each thread in that task.
This provides two ways of handling an exception, and these correspond to the two applications of
exceptions-error handling and debugging.

Error handlers are associated with threads, since they usually only affect the victim thread.
Each thread may have a different error handler. The handler's port is registered as the thread's ex
ception port. When a new thread is created, its exception port is initialized to the NULL port,
meaning that initially the thread has no error handler.

A debugger attaches to a task by registering one of its ports as that task's exception port. The
debugger runs as a separate task and has the receive rights (right to receive messages sent to the
port) to this port. Each task inherits its exception port from its parent. This allows debuggers to
control all the descendants of a task that is being debugged.

98 Chapter 4 Signals and Session Management

Since an exception could use either the task or the thread exception port, we need a way of
resolving the conflict. To do so, we observe that the thread exception port is used for error handlers
that should be transparent to debuggers. For example, a handler may respond to a floating point un
derflow error by substituting zero as the result of the operation. Such an exception is usually of no
interest to the debugger, which would normally wish to intercept unrecoverable errors only. Hence
if an error handler is installed, Mach invokes it in preference to the debugger.

When an exception occurs, it is sent to the thread exception port if one exists. Thus excep
tions that invoke error handlers are not seen by the debugger. If the installed error handler cannot
successfully clear the exception, it forwards it to the task exception port. (Since the error handler is
another thread in the same task, it has access to the victim's task exception port.) If neither handler
can handle the exception, the kernel terminates the victim thread.

4.8.2 Error Handling

When the victim raises an exception, the initial message sent to the (task or thread) exception port
contains the reply port, identity of the thread and task that caused the exception, and exception type.
After processing the exception, the handler sends a reply message to the reply port. The task in
which the exception occurred owns the receive rights to this port, and the victim thread is waiting to
read the reply. When the reply arrives, the victim receives it and resumes normal execution.

Since the handler and the victim are threads in the same task, the handler shares the victim's
address space. It can also access the victim's register context using the thread_get_state and
thread set state calls.

Mach provides UNIX compatibility, and UNIX signal handlers expect to be invoked in the
same context as the thread that caused the exception. This is contrary to Mach's philosophy of using
a separate thread to handle the error. Mach reconciles this difference by using a system-invoked er
ror handler. When an exception occurs for which a UNIX signal handler is installed, a message is
sent to the special system-invoked handler. This handler modifies the victim thread so that the sig
nal handler is executed when the victim resumes. It then clears the exception, causing the victim to
run and process the signal. The application is responsible for unwinding the stack after the signal
handler completes.

4.8.3 Debugger Interactions

A debugger controls a task by registering a port to which it has receive rights as the task's exception
port. When a thread in that task has an exception that cannot be cleared by its error handler, the ker
nel sends a message to this port, and the debugger receives this message. The exception only stops
the victim thread-all other threads in the task continue to run. A debugger may suspend the whole
task using the task_suspend call if necessary.

Mach offers several facilities that the debugger can use to control the task. It can access the
victim's address space using vm_read or vm_write, or its register context by thread_get_state or
thread_set_state. It can suspend or resume the application, or terminate it by task_terminate.

Mach IPC is location-independent, meaning that messages can be sent to ports on the same
or remote machines. The netmsgserver, a special user task, extends Mach IPC transparently over the

4.9 Process Groups and Terminal Management 99

network. It allocates "proxy" ports for all remote ports, receives messages intended for them, and
forwards these messages across the network transparently to the sender. This allows a debugger to
control a task on any node on the network, just as it would control a local task.

4.8.4 Analysis
The Mach exception handling facility addresses many of the problems faced by UNIX. It is also
more robust and provides functionality not available in UNIX. Some of its important advantages
are:

• A debugger is not restricted to controlling its immediate children. It can debug any task,
provided it has the required permissions.

• A debugger can attach itself to a running task.6 It does so by registering one of its ports as
that task's exception port. It can also detach itself from a task, by resetting the task's ex
ception port to its former value. This port is the only connection between the debugger and
the target, and the kernel contains no special support for debugging.

• The extension of Mach IPC over the network allows the development of distributed de
buggers.

• Having a separate error handler thread allows a clean separation of the handler and victim
contexts and allows the handler to access the entire context of the victim.

• Multithreaded processes are handled cleanly. Only the thread that caused the exception is
suspended, while others remain unaffected. If several threads cause exceptions, each gen
erates a separate message and is handled independently.

4.9 Process Groups and Terminal Management

UNIX provides the notion of process groups in order to control terminal access and support login
sessions. The design and implementation of these facilities vary greatly in different UNIX versions.
This section begins with a review of the common concepts and then examines some important im
plementations.

4.9.1 Common Concepts
Process groups - Each process belongs to a process group, which is identified by its process
group /D. The kernel uses this mechanism to take certain actions on all processes in a group. Each
group may have a group leader, which is the process whose PID is the same as its process group ID.
Normally, a process inherits the process group ID from its parent, and all other processes in the
group are descendants of the leader.

6 Currently, most UNIX debuggers are written using the /proc file system, which allows access to address spaces of
unrelated processes. Hence debuggers can easily attach and detach running processes. At the time when Mach ex
ception handling was designed, this ability was uncommon.

100 Chapter 4 Signals and Session Management

Controlling terminal - Each process may have a controlling tenninal. This is usually the login
tenninal at which this process was created. All processes in the same group share the same control
ling tenninal.
The /dev/tty file - The special file /dev/tty is associated with the controlling tenninal of each
process. The device driver for this file simply routes all requests to the appropriate tenninal. For in
stance, in 4.3BSD, the device number of the controlling tenninal is stored in the u _ ttyd field of the
u area. A read to the tenninal is thus implemented as

(*cdevsw[major(u.u_ttyd)].d_read) (u.u_ttyd, flags);

Thus if two processes belong to different login sessions, and they both open /dev/tty, they will ac
cess different tenninals.
Controlling group - Each tenninal is associated with a process group. This group, called the
tenninal's controlling group, is identified by the t _pgrp field in the tty structure for this tenninalJ
Keyboard-generated signals, such as SIGINT and SIGQUIT, are sent to all processes in the termi
nal's controlling group, that is, to all processes whose p _pgrp equals this tenninal's t _pgrp.
Job control- This is a mechanism (provided in 4BSD and SVR4) that can suspend or resume a
process group and control its access to the tenninal. Job control shells such as csh and ksh provide
control characters (typically control-Z) and commands such as fg and bg to access these features.
The tenninal driver provides additional control by preventing processes not in the tenninal's con
trolling group from reading or writing the tenninal.

The original System V implementation models process groups mainly as representations of
login sessions and provides no job control. 4BSD associates a new process group with every shell
command line (hence, all processes connected by a shell pipeline belong to the same group), thus
representing the notion of a job. SVR4 unifies these divergent and incompatible treatments by in
troducing the session abstraction. The following sections examine all three approaches and analyze
their advantages and drawbacks.

4.9.2 The SVR3 Model

In SVR3 (and earlier AT&T releases), the process group exhibits the characteristics of a tenninal
login session. Figure 4-3 describes the SVR3 treatment oftenninal access. The following are its im
portant features:
Process groups- Each process inherits its parent's process group ID duringfork. The only way to
change the process group is by calling setpgrp, which changes the caller's group to equal its PID.
The caller thus becomes the leader of the new group. Any children it subsequently forks will join
this group.
Controlling terminal - The tenninal is owned by its controlling group. Thus when a process
fonns a new group, it loses its controlling tenninal. Thereafter, the first tenninal it opens (that is not
already a controlling tenninal) becomes its controlling tenninal. The t _pgrp for that tenninal is set
to the p _pgrp of this process. All child processes inherit the controlling tenninal from the group
leader. No two process groups have the same controlling tenninal.

7 The terminal driver maintains the tty structure for each terminal.

4.9 Process Groups and Terminal Management

,. ... -·-.- ·-.-.-. -·-
'

®r--®
I I
I I

f'D\1 I
~-~II
I I I lp\
I II ~-1
I 11 I

I~.~~ I I I I
I I

: : (p) /®
I y I I

'·
' I

I I I I ,

I I I ·" . -. T. -t·- .-

tty

®process
f'D) foreground
~ process

.-·,. process
I ' ·,.,· group

Figure 4-3. Process groups in SVR3 UNIX.

D login
sesswn

101

Typical scenario - The init process forks a child for each terminal listed in the /etc/inittab file.
The child process calls setpgrp, becoming a group leader, and then execs the getty program, which
displays a login prompt and waits for input. When a user types in his login name, getty execs the
login program, which asks for and verifies the password, and finally, execs the login shell. Hence
the login shell is a direct child of init and is also a process group leader. Usually, other processes do
not create their own groups (except for system daemons started from a login session); hence all
processes belonging to a login session will be in the same process group.
Terminal access -There is no support for job control. All processes that have a terminal open can
access it equally, whether they are in the foreground or background. Output from such processes
will be randomly intermingled on the screen. If several processes try to read the terminal concur
rently, it is purely a matter of chance which process will read any particular line of input.
Terminal signals- Signals such as SIGQUIT and SIGINT that are generated at the keyboard are
sent to all processes in the terminal's controlling group, thus usually to all processes in the login
session. These signals are really intended for foreground processes only. Hence when the shell cre
ates a process that will run in the background, it sets them up to ignore these signals. It also redirects
the standard input of such processes to /dev/null, so that they may not read from the terminal
through that descriptor (they may still open other descriptors to read from the terminal).
Detaching the terminal- A terminal is detached from its controlling group when its t_pgrp field
is set to zero. This happens when no more processes have the terminal open or when the group
leader (usually the login process) exits.

102 Chapter 4 Signals and Session Management

Death of group leader - The group leader becomes the controlling process of its terminal and is
responsible for managing the terminal for the entire group. When it dies, its controlling terminal is
disassociated from the group (its t_pgrp is set to zero). Moreover, all other processes in its group
are sent a SIGHUP signal, and their p_pgrp is set to zero, so they do not belong to a process group
(they become orphaned).

Implementation- The p _pgrp field of the proc structure contains the process group ID. The u
area has two terminal-related fields-u_ ttyp (pointer to tty structure of controlling terminal) and
u_ ttyd (device number of controlling terminal). The t _pgrp field in the tty structure contains the
controlling process group of the terminal.

4.9.3 Limitations

The SVR3 process group framework has several limitations [Lenn 86]:

• There is no way for a process group to close its controlling terminal and allocate another.
• Although the process groups are modeled after login sessions, there is no way to preserve

a login session after disconnecting from its controlling terminal. Ideally, we would like to
have such a session persist in the system, so that it can attach to another terminal at a later
time, preserving its state in the meantime.

• There is no consistent way of handling "loss of carrier" by a controlling terminal. The se
mantics of whether such a terminal remains allocated to the group and can be reconnected
to the group differ from one implementation to another.

• The kernel does not synchronize access to the terminal by different processes in the group.
Foreground and background processes can read from or write to the terminal in an unregu
lated manner.

• When the process group leader terminates, the kernel sends a SIGHUP signal to all proc
esses in the group. Processes that ignore this signal can continue to access the controlling
terminal, even after it is assigned to another group. This can result in a new user receiving
unsolicited output from such a process, or worse, the process can read data typed by the
new user, causing a possible security breach.

• If a process other than the login process invokes setpgrp, it will be disconnected from the
controlling terminal. It can continue to access the terminal through any existing file de
scriptors. The process, however, is not controlled by the terminal and will not receive
SIGHUP signals.

• There are no job control facilities, such as the ability to move processes between the fore
ground and the background.

• A program such as a terminal emulator, which opens devices other than its controlling
terminal, has no way of receiving carrier loss notification from those devices.

4BSD addresses some of these problems. The next section describes the BSD approach.

4.9 Process Groups and Terminal Management 103

4.9.4 4.3850 Groups and Terminals

In 4.3BSD, a process group represents a job (also called a task) within a login session. A job is a set
of related processes that are controlled as a single unit with regard to terminal access. The basic
concepts are illustrated in Figure 4-4.
Process groups - A process inherits its group ID from its parent. A process can change its own
group ID or that of any other process (subject to permissions-the caller must own the other process
or be the superuser) by calling setpgrp. The 4.3BSD setpgrp call accepts two arguments-the PID
of the target process, and the new group ID to assign to it. Thus a 4.3BSD process may relinquish
the leadership of a group or join any arbitrary group; indeed, there can be process groups that have
no leader.
Jobs - Job control shells such as csh typically create a new process group for each command line,
whether the command is executed in the foreground or background. Therefore the job will usually
consist of a single process or a set of processes connected by pipes. 8 Descendants of these processes
also will be in the same group.
Login sessions- In 4.3BSD, a single login session may generate several process groups Gobs) that

tty

®process ®

-·-. /fii_
(lpl'-~J -~~- ==

._\g.! ; __

®7. ---- --
'

-·-·' .---·-®·P-·-·-..:.'--
.... - I - ,....

_,· - --7'

foreground
process

/' ®--- ---~-/
\. .' ·""

('·, process
·, _ _. group

tty

D login
session

Figure 4-4. Process groups in 4.3BSD UNIX.

8 It is also possible to combine two or more unconnected processes into a single process group by issuing multiple
shell commands on the same line, separated by semicolons and placed within parentheses, as for example:

% (cc tanman.c; cp filel file2; echo done >newfile)

104 Chapter 4 Signals and Session Management

are active at the same time, all sharing the same controlling terminal. The t _pgrp field of the termi
nal's tty structure always contains the foreground job's process group.
Controlling terminals - If a process with a group ID of zero opens a terminal, the terminal be
comes the controlling terminal for that process, and the process joins the terminal's current control
ling group (the p _pgrp of the process is set to the t _pgrp of the terminal). If the terminal is cur
rently not a controlling terminal for another group, then this process is first made a group leader
(thus, both p _pgrp of the process and t _pgrp of the terminal are set to the process's PID). Direct
descendants of in it (thus, all login shell processes) initially have a group ID of zero. Other than that,
only the superuser can reset a process's group ID to zero.
Terminal access -The foreground processes (the terminal's current controlling group, obtained
from t _pgrp) always have unobstructed access to the terminal. If a background process tries to read
from the terminal, the driver sends a SIGTTIN signal to all processes in its process group. SIGTTIN
suspends the receiving process by default. Writes by background processes are permitted by default.
4.3BSD provides a terminal option (the LTOSTOP bit manipulated by the TIOCLSET ioctl) that causes
a S I G TTOU signal to be sent to a background process that tries to write to the terminal. Jobs stopped
by SIGTTIN or SIGTTOU can later be resumed by sending them a SIGCONT signal.
Controlling group- A process that has read access to the terminal can use the TIOCSPGRP ioctl
call to change the terminal's controlling group (t _pg rp) to any other value. The shell uses this fa
cility to move jobs to the foreground or background. For example, a user can resume a suspended
process group and move it to the foreground by making it the controlling group and sending it a
SIGCONT signal. csh and ksh provide thefg and bg commands for this purpose.
Closing the terminal - When no process has the terminal open, the terminal is disassociated from
the group and its t _pgrp is set to zero. This is done by the terminal driver's close routine, called
when the last descriptor to the terminal is closed.
Reinitializing the terminal line- 4.3BSD provides a vhangup system call, typically used by init
to terminate a login session and start another. vhangup traverses the open file table, finds each entry
that resolves to this terminal, and makes it unusable. It can do so by deleting the open mode in the
file table entry or, in implementations that support the vnode interface (see Section 8.6), by chang
ing the vnodeops pointer to point to a set of functions that simply return an error. vhangup then
calls the close() routine of the terminal and, finally, sends the SIGHUP signal to the terminal's
controlling group. This is the 4.3BSD solution to handling processes that continue after the login
session terminates.

4.9.5 Drawbacks

While 4.3BSD job control is powerful and versatile, it has some important drawbacks:

• There is no clear representation of a login session. The original login process is not special
and may not even be a group leader. SIGHUP is typically not sent when the login process
terminates.

• No single process is responsible for controlling the terminal. Thus a loss of carrier condi
tion sends a SIGHUP signal to its current controlling group, which could even be ignoring

4.10 The SVR4 Sessions Architecture

this signal. For instance, a remote user connected via a modem would remain logged in if
he or she simply disconnected the line.

• A process can change the terminal's controlling group to any value, even a nonexistent
one. If a group is later created with that group ID, it will inherit the terminal and receive
signals from it unintentionally.

• The programming interface is incompatible with that of System V.

105

Clearly, we want an approach that will preserve the concepts of login sessions and of tasks
within such sessions. The next section looks at the sessions architecture of SVR4 and how it deals
with these issues.

4.10 The SVR4 Sessions Architecture

The limitations of the SVR3 and 4.3BSD models can be attributed to one fundamental problem. The
single abstraction of the process group cannot adequately represent both a login session and a job
within such a session. SVR3 does a fair job of controlling the behavior of a login session, but cannot
support job control. 4.3BSD provides powerful job control facilities, but does a poor job of isolating
login sessions from one another.

Modern UNIX systems such as SVR4 and 4.4BSD have addressed these problems by repre
senting the session and the job as separate but related abstractions. The process group identifies a
single job. A new session object represents the login session. The following sections describe the
SVR4 sessions architecture. Section 4.10.5 describes the 4.4BSD sessions implementation, which is
functionally similar to SVR4 and also is POSIX-compliant.

4.1 0.1 Motivation
The sessions architecture addresses several deficiencies in the earlier models. Its main goals include:

• Adequately supporting both the login session and the job abstractions.
• Providing BSD-style job control.
• Retaining backward compatibility with earlier System V versions.
• Allowing a login session to attach and detach several controlling terminals during its life

time (of course, it can have only one controlling terminal at any given time). Any such
change should be propagated to all processes in the session transparently.

• Making the session leader (the process that creates the login session) responsible for
maintaining the session's integrity and security.

• Allowing terminal access based solely on file access permissions. In particular, if a proc
ess successfully opens a terminal, it should be able to continue to access it as long as it is
open.

• Eliminating inconsistencies of earlier implementations. For example, SVR3 exhibits an
anomaly in the case where a group leader forks child processes before allocating the con
trolling terminal. Such offspring would receive signals such as SIGINT from this terminal,
but would not be able to access the terminal using /dev/tty.

I 06 Chapter 4 Signals and Session Management

4.10.2 Sessions and Process Groups

Figure 4-5 describes the SVR4 sessions architecture [Will 89]. Each process belongs both to a ses
sion and to a process group. Likewise, each controlling terminal is associated with a session and a
foreground process group (the terminal's controlling group). The session plays the role of the SVR3
process group, and the session leader is responsible for managing the login session and insulating it
from other sessions. Only the session leader may allocate or deallocate a controlling terminal.

A process creates a new session by calling setsid, which sets both its session ID and group
ID to the same value as its PID. Thus setsid makes the caller both a session leader and a group
leader. If a process is already a group leader, it cannot become a session leader and setsid will fail.

The SVR4 process groups have the basic characteristics of 4.3BSD groups and typically rep
resent a job within a login session. Thus a single login session may have several process groups ac
tive simultaneously. One of these groups is the foreground group and has unlimited access to the
terminal (it is the terminal's controlling group). As in 4.3BSD, background processes that try to ac
cess the controlling terminal are sent S I GTTI N or S I GTTOU signals (S I GTTOU must be explicitly en
abled, as described in Section 4.9.4).

A process inherits its process group from its parent and may change it by calling setpgid or
setpgrp. The setpgrp call is identical to the SVR3 version and sets the caller's group to equal its
PID, thus making it a group leader. The setpgid call is similar to the 4.3BSD setpgrp, but adds some

®process

GJ!I
It obi II

tty
(D) foreground
~ process

. -- '. process
I I

·,.,· group

Figure 4-5. SVR4 sessions architecture.

(":1 session
[J object

4.10 The SVR4 Sessions Architecture 107

important restrictions on the operation. Its syntax is

sctpgid (pjd, Pgtcpr

Its function is to change the process group of the target process, identified by pi d, to the value
specified by pgi d. If pgi d is zero, the process group is set to the same value as the pi d, thus making
the process a group leader. If pi d is zero, the call acts on the calling process itself. There are, how
ever, some important restrictions. The target process must be either the caller itself or a child of the
caller that has not yet called exec. The caller and the target processes must both belong to the same
session. If pgi d is not the same as the target's PID (or zero, which has the same effect), it must be
equal to another existing group ID within the same session only.

Hence processes may move from one group to another within a session. The only way they
can leave the session is by calling setsid to start a new session with themselves as the sole member.
A process that is a group leader may relinquish leadership of its group by moving to another group,.
Such a process, however, cannot start a new session as long as its PID is the group ID of any other
process (that is, the group whose leadership the process relinquished is not empty). This prevents
the confusing situation in which a process group has the same ID as a session of which it is not a
part.

Likewise, a terminal's foreground (controlling) group may only be changed by a process in
the session that controls the terminal, and it can only be changed to another valid group in the same
session. This feature is used by job control shells to move jobs to the foreground or background.

4.1 0.3 Data Structures

Figure 4-6 describes the data structures used to manage sessions and process groups. The setsid call
allocates a new session structure and resets the p _ sessp and p _pgi dp fields in the proc structure.
The session initially has no controlling terminal.

When the session leader opens a terminal for the first time (after becoming the session
leader), the terminal becomes the controlling terminal for this session, unless the caller has passed
the ONOCTTY flag to the open call. The session structure is initialized to point to the vnode of this
terminal, and the vnode in turn points to the stream head for the device.

Child processes of the session leader inherit the p _ sessp pointer, and thus instantly see any
change in the session object. Thus these processes inherit the controlling terminal, even if the termi
nal was opened after the child processes were created.

4.1 0.4 Controlling Terminals
The /dev/tty file again acts as an alias for the controlling terminal. Its driver resolves any calls to
/dev/tty by looking up the session pointer in the proc structure and dereferencing it to get to the
vnode of the controlling terminal. If the controlling terminal is deallocated, the kernel sets the vnode
pointer in the session object to NULL, and any access to /dev/tty will fail. If a process had directly
opened a specific terminal (as opposed to opening /dev/tty), it can continue to access it even after
the terminal is disassociated from its current login session.

When a user logs in to the system, the login process performs the following operations:

108

session
leader

proc

p_sessp

another proc
in session

proc

struct sess;on
tty dev number

.------+ vnode pt r

vnode of
stream
for tty

Chapter 4 Signals and Session Management

leader of
foreground

group

-------,
I

I ...

proc

p_sessp

struct tty

t_pgrp

Figure 4-6. Session management data structures in SVR4 UNIX.

1. Calls setsid to become a session leader.
2. Closes stdin, stdout, and stderr.
3. Calls open to open a designated terminal. Because this is the first terminal opened by the

session leader, it becomes the controlling terminal for the session. The descriptor returned
by open refers to the real device file of the terminal.

4. Duplicates this descriptor elsewhere, so as not to use stdin, stdout, and stderr to refer to the
real device file. Closes the original descriptor after duplication. The controlling terminal
remains open through the duplicated descriptor.

5. Opens /dev/tty as stdin, and duplicates it into stdout and stderr. This effectively reopens
the controlling terminal through the alias device. Thus the session leader and all other
processes in the session (which inherit these descriptors) access the controlling terminal
only through /dev/tty (unless another process explicitly opens the terminal's device file).

6. Finally, closes the saved descriptor, removing any direct contact with the controlling ter
minal.

If the terminal driver detects a broken connection (for instance, due to loss of carrier on a
modem line}, it sends a SIGHUP signal to the session leader only. This contrasts with the 4.3BSD
treatment of sending the signal to the foreground group and the SVR3 treatment of sending it to all
processes in the controlling group (session). The session leader is, in this sense, a trusted process
and is expected to take the correct action when it loses the controlling terminal.

4.10 The SVR4 Sessions Architecture 109

In addition, the driver sends a SIGTSTP signal to the foreground process group, if it is differ
ent from that of the session leader. This prevents foreground processes from receiving unexpected
errors when trying to access the terminal. The controlling terminal remains allocated to the session.
This gives the session leader the option of trying to reconnect to the terminal after the connection is
reestablished.

A session leader may disconnect the current controlling terminal and open a new one. The
kernel will set the session's vnode pointer to point to the vnode of the new terminal. As a result, all
processes in this login session will switch transparently to the new controlling terminal. The indi
rection provided by /dev/tty makes it easy to propagate this change of controlling terminal.

When the session leader terminates, it ends the login session. The controlling terminal is
deallocated by setting the session's vnode pointer to NULL. As a result, none of the processes in
this session can access the terminal through /dev/tty (they can continue to access the terminal if
they have explicitly opened its device file). Processes in the foreground group of the terminal are
sent a SIGHUP signal. All direct children of the exiting process are inherited by the init process.

4.1 0.5 The 4.4850 Sessions Implementation

The SVR4 sessions architecture adequately represents both a login session and a job within that
session, while maintaining compatibility with the POSIX 1003.1 standard and with earlier versions
of System V. The sessions implementations in 4.4BSD and OSF/1 are essentially similar and offer

group
leader

p
p_pgrp

T

pg_mem

p
p_pgrp

foreground
group

session and
group leader

p
p_pgrp

G

p
p_pgrp

pg_session -tllr----,
pg_mem

.----+---+ pg_ session
pg_id pg_id

s
t session -+------H s leader

s_ttyvp
s_ttyp

vnode of
control tty - t_pgrp

(:;") struct
L..J tty

Qstruct
L.J proc

Qstruct
L.J pgrp

(;) struct
L.:J session

h,) struct
L.J vnode

Figure 4-7. Session management data structures in 4.4BSD UNIX.

110 Chapter 4 Signals and Session Management

comparable facilities. They differ from SVR4 in implementation details.
For comparison, Figure 4-7 describes the data structures used in 4.4BSD [Stev 92]. One im

portant difference is that the proc structures do not directly reference the session object. Instead,
they point to the process group object (s t ruct pgrp), which in turn points to the session structure.

4.11 Summary

The PO SIX 1003.1 standard has helped bring together divergent and mutually incompatible meth
ods of signals and controlling terminal handling. The resulting interfaces are robust and closely
match the expectations of typical applications and users.

4.12 Exercises

Note - Some of the questions have different answers for each major UNIX variant. The student
may answer such questions for the UNIX system with which he or she is most familiar.

1. Why are signal handlers not preserved across an exec system call?
2. Why is the S I GCH LD signal ignored by default?
3. What happens if a signal is generated for a process while it is in the middle of a fork, exec, or

exit system call?
4. Under what circumstances will a kill signal not terminate a process immediately?
5. Traditional UNIX systems use the sleep priority for two purposes-to decide if a signal

should wake up the sleeping process and to determine the scheduling priority of the process
after waking up. What is the drawback of this approach, and how do modem systems address
it?

6. What is the drawback of having signal handlers be persistent (remain installed after being
invoked)? Are there any specific signals that should not have persistent handlers?

7. How does the 4.3BSD sigpause call differ from that of SVR3? Describe a situation in which it
is more useful.

8. Why is it desirable to have the kernel restart an interrupted system call rather than have the
user do so?

9. What happens if a process receives several instances of the same signal before it can handle
the first instance? Would other semantics be more useful for this situation?

10. Suppose a process has two signals pending and has declared handlers for each of them. How
does the kernel ensure that the process handles the second signal immediately after handling
the first?

11. What if a process receives a signal while handling another? How may a process control its
behavior in this case?

12. When should a process use the SA_ NOCLDWAIT feature of SVR4? When should it not use it?
13. Why would an exception handler need the full context of the process that raised the

exception?
14. Which process may create a new process group in (a) 4.3BSD and (b) SVR4?

4.13 References 111

15. What benefits does the SVR4 sessions architecture offer over the 4.3BSD terminal and job
control facilities?

16. [Bell 88] describes a user-level session manager to support login sessions. How does this
compare with the SVR4 sessions architecture?

17. What should the SVR4 kernel do when a session leader deallocates its controlling terminal?
18. How does SVR4 allow a session to reconnect to its controlling terminal? In what situations is

this useful?

4.13 References

[AT&T 86] American Telephone & Telegraph, UNIX System V Release 3: Programmer's
Reference Manual, 1986.

[Bach 86] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood
Cliffs, NJ, 1986.

[Bell 88] Bellovin, S.M., "The Session Tty Manager," Proceedings of the Summer I988
USENIXTechnical Conference, Jun. 1988.

[Blac 88] Black, D.L., Golub, D.B., Hauth, K., Tevanian, A., and Sanzi, R., "The Mach
Exception Handling Facility," CMU-CS-88-129, Computer Science Department,
Carnegie Mellon University, Apr. 1988.

[IEEE 90] Institute for Electrical and Electronic Engineers, Information Technology-Portable
Operating System Interface (POSIX) Part I: System Application Program Interface
(API) [C Language], 1003.1-1990, Dec. 1990.

[Joy 80] Joy, W., "An Introduction to the C Shell," Computer Science Division, University of
California at Berkeley, Nov. 1980.

[Leff 89] Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and
Implementation of the 4. 3 BSD UNIX Operating System, Addison-Wesley, Reading,
MA, 1989.

[Lenn 86] Lenner, D.C., "A System V Compatible Implementation of 4.2 BSD Job Control,"
Proceedings of the Summer I986 USENIX Technical Conference, Jun. 1986, pp.
459-474.

[Stev 90] Stevens, W.R., UNIX Network Programming, Prentice-Hall, Englewood Cliffs, NJ,
1990.

[Stev 92] Stevens, W.R., Advanced Programming in the UNIX Environment, Addison-Wesley,
Reading, MA, 1992.

[UNIX 92] UNIX Systems Laboratories, Operating System API Reference: UNIX SVR4.2, UNIX
Press, 1992.

[Will89] Williams, T., "Session Management in System V Release 4," Proceedings of the
Winter I989 USENIXTechnical Conference, Jan. 1989, pp. 365-375.

5

Process Scheduling

5.1 Introduction

Like memory and terminals, the CPU is a shared resource for which processes in the system con
tend. The operating system must decide how to apportion this resource among all the processes. The
scheduler is the component of the operating system that determines which process to run at any
given time, and how long to let it run. UNIX is essentially a time-sharing system, which means it
allows several processes to run concurrently. To some extent this is an illusion (at least on a uni
processor), because a single processor can run only one process at any given instant. The UNIX
system emulates concurrency by interleaving processes on a time-share basis. The scheduler gives
the CPU to each process for a brief period of time before switching to another process. This period
is called a time quantum or time slice.

A description of the UNIX scheduler must focus on two aspects: The first deals with pol
icy-the rules used to decide which process to run and when to switch to another. The second deals
with implementation-the data structures and algorithms used to carry out these policies. The
scheduling policy must try to meet several objectives-fast response time for interactive applica
tions, high throughput for background jobs, avoidance of process starvation, and so forth. These
goals often conflict with each other, and the scheduler must balance them the best that it can. It also
must implement its policy efficiently and with minimum overhead.

At the lowest level, the scheduler arranges for the processor to switch from one process to
another. This is called a context switch. The kernel saves the hardware execution context of the cur
rent process in its process control block (PCB), which is traditionally part of the u area of the proc-

112

5.2 Clock Interrupt Handling 113

ess. The context is a snapshot of the values of the general-purpose, memory management, and other
special registers of the process. The kernel then loads the hardware registers with the context of the
next process to be run. (The context is obtained from the PCB of this process.) This causes the CPU
to begin executing the next process from the saved context. The primary responsibilities of the
scheduler are to decide when to perform a context switch and which process to run.

Context switches are expensive operations. Besides saving a copy of the process registers,
the kernel must perform many architecture-specific tasks. On some systems, it must flush the data,
instruction, or address translation cache to avoid incorrect memory access (see Sections 15.9-15.13)
by the new process. As a result, the new process incurs several main memory accesses when it starts
running. This degrades the performance of the process, because memory access is significantly
slower than cache access. Finally, on pipelined architectures such as Reduced Instruction Set Com
puters (RISC), the kernel must flush the instruction pipeline prior to switching context. These fac
tors may influence not only the implementation, but also the scheduling policy.

This chapter first describes the handling of the clock interrupt and timer-based tasks. The
clock is critical to the operation of the scheduler, because the scheduler often wants to preempt
running processes when their time slice expires. The rest of this chapter examines various scheduler
designs and how they affect the behavior of the system.

5.2 Clock Interrupt Handling

Every UNIX machine has a hardware clock, which interrupts the system at fixed time intervals.
Some machines require the operating system to prime the clock after each interrupt; in others, the
clock rearms itself. The time period between successive clock interrupts is called a CPU tick, clock
tick, or simply, a tick. Most computers support a variety of tick intervals. UNIX typically sets the
CPU tick at 10 milliseconds.' Most UNIX implementations store the clock frequency, or the number
of ticks per second, in a constant called HZ, which is usually defined in the param.h file. For a
10-millisecond tick, HZ would be 100. Kernel functions usually measure time in number of ticks,
rather than in seconds or milliseconds.

Interrupt handling is highly system-dependent. This section describes a generic implementa
tion found in many traditional UNIX systems. The clock interrupt handler runs in response to the
hardware clock interrupt, whose priority is second only to that of the power-failure interrupt. As a
result, the handler must be as quick as possible and its duties kept to a minimum. It performs the
following tasks:

• Rearms the hardware clock if necessary.
• Updates CPU usage statistics for the current process.
• Performs scheduler-related functions, such as priority recomputation and time-slice expi

ration handling.
• Sends a S I GXC PU signal to the current process if it has exceeded its CPU usage quota.

1 This is far from universal and depends on the UNIX variant. It also depends on the resolution of the system's hard
ware clock.

114 Chapter 5 Process Scheduling

• Updates the time-of-day clock and other related clocks. For instance, SVR4 maintains a
variable called l bo l t to store the number of ticks that have elapsed since the system was
booted.

• Handles callouts (see Section 5.2.1).
• Wakes up system processes such as the swapper and pagedaemon when appropriate.
• Handles alarms (see Section 5.2.2).

Some of these tasks do not need to be performed on every tick. Most UNIX systems define a notion
of a major tick, which occurs once every n clock ticks, where n depends on the specific UNIX vari
ant. The scheduler performs some of its tasks only on major clock ticks. For instance, 4.3BSD per
forms priority recomputation on every fourth tick, while SVR4 handles alarms and wakes up system
processes once a second if necessary.

5.2.1 Callouts

A callout records a function that the kernel must invoke at a later time. In SVR4, for example, any
kernel subsystem may register a callout by calling

int to'-ID =timeout (void (*fn)(), caddr_t arg, long delta);

where fn () is the kernel function to invoke, a rg is an argument to pass to fn (), and delta is the
time interval in CPU ticks, after which the function must be invoked. The kernel invokes the callout
function in system context. Hence the function must neither sleep nor access process context. The
return value to_ I D may be used to cancel the callout, using

void untimeout (int to_ID);

Callouts may be used for various periodic tasks, such as:

• Retransmission of network packets.
• Certain scheduler and memory management functions.
• Monitoring devices to avoid losing interrupts.
• Polling devices that do not support interrupts.

Callouts are considered to be normal kernel operations and must not execute at interrupt pri
ority. Therefore, the clock interrupt handler does not directly invoke the callouts. On every tick, the
clock handler checks if any callouts are due. If so, it sets a flag indicating that a callout handler
must run. The system checks this flag when it returns to the base interrupt priority and, if set, in
vokes the callout handler. The handler will invoke each callout that is due. Hence, once due, the
callout will run as soon as possible, but only after all pending interrupts have been serviced.2

The kernel maintains a list of the pending call outs. The organization of the list affects sys
tem performance as there may be several pending callouts. Since the list is checked on every CPU
tick at high interrupt priority, the algorithm must optimize the checking time. The time required to

2 Many implementations provide an optimization when no other interrupt is pending when the primary handler com
pletes. In this case, the clock handler directly lowers the interrupt priority and invokes the callout handler.

5.2 Clock Interrupt Handling 115

insert a new callout into the list is less critical since insertions typically occur at lower priority and
much less frequently than once per tick.

There are several ways to implement the callout list. One method used in 4.3BSD [Leff 89]
sorts the list in order of the "time to fire". Each entry stores the difference between its time to fire
and that of the previous callout. The kernel decrements the time of the first entry at each clock tick
and issues the callout if the time reaches zero. Other callouts due at the same time are also issued.
This is described in Figure 5-1.

Another approach uses a similarly sorted list, but stores the absolute time of expiration for
each entry. This way, at each tick, the kernel compares the current absolute time with that of the
first entry and issues the callout when the times are equal.

Both methods require maintaining a sorted list, which can be expensive if the list is large.
An alternative solution is to use a timing wheel, which is a fixed-size, circular array of callout
queues. At every tick, the clock interrupt handler advances a current time pointer to the next element
in the array, wrapping around at the end of the array. If there are any callouts on that queue, their
expiration time is checked. New callouts are inserted on the queue that is N elements away from the
current queue, where N is the time to fire measured in ticks.

In effect, the timing wheel hashes the callouts based on the expiry time (time at which they
are due). Within each queue, the callouts can be kept either unsorted or sorted. Sorting the callouts
reduces the time required to process non-empty queues, but increases the insertion time. [V arg 87]
describes further refinements to this method that use multiple hierarchical timing wheels to optimize
timer performance.

5.2.2 Alarms

A process can request the kernel to send it a signal after a specific amount of time, much like an
alarm clock. There are three types of alarms-real-time, profiling, and virtual-time. A real-time
alarm relates to the actual elapsed time, and notifies the process via a SIGALRM signal. The profiling
alarm measures the amount of time the process has been executing and uses the SIGPROF signal for

t= 2
round robin

Time left to fire 2

t = 1
schedcpu

3

t = 4
f1

7
(a) Callout queue at one instant of time

t = 4
f1

Time left to fire 1 2 6

(b) Callout queue one tick later

Figure 5-1. Callout implementation in BSD UNIX.

t = 0
f2

7

6

116 Chapter 5 Process Scheduling

notification. The virtual-time alarm monitors only the time spent by the process in user mode and
sends the SIGVTALRM signal.

In BSD UNIX, the setitimer system call allows the process to request any type of alarm and
specify the time interval in microseconds. Internally, the kernel converts this interval to the appro
priate number of CPU ticks, because that is the highest resolution the kernel can provide. In System
V, the alarm system call asks for a real-time alarm. The time must be a whole number of seconds.
SVR4 adds the hrtsys system call, which provides a high-resolution timer interface that allows time
to be specified in microseconds. This allows compatibility with BSD by implementing setitimer
(also getitimer, gettimeofday, and settimeofday) as a library routine. Likewise, BSD provides alarm
as a library routine.

The high resolution of real-time alarms does not imply high accuracy. Suppose a user re
quests a real-time alarm to sound after 60 milliseconds. When that time expires, the kernel promptly
delivers the SIGALRM signal to the calling process. The process, however, will not see and respond to
the signal until it is next scheduled to run. This could introduce a substantial delay depending on the
receiver's scheduling priority and the amount of activity in the system. High-resolution timers are
helpful when used by high-priority processes, which are less likely to have scheduling delays. Even
these processes can be delayed if the current process is executing in kernel mode and does not reach
a preemption point. These concepts are explained further in Section 5.5.4.

The profiling and virtual alarms do not have this problem, because they are not concerned
with the actual clock time. Their accuracy is affected by another factor. The clock interrupt handler
charges the whole tick to the current process, even though it may have used only a part of it. Thus
the time measured by these alarms reflects the number of clock interrupts that have occurred while
this process was running. In the long run, this averages out and is a good indicator of the time used
by the process. For any single alarm, however, it results in significant inaccuracy.

5.3 Scheduler Goals

The scheduler must judiciously apportion CPU time to all processes in the system. Naturally, as the
load on the system increases, each process receives a smaller share of CPU time, and hence runs
more slowly than it would on a lightly loaded system. The scheduler must ensure that the system
delivers acceptable performance to each application, as long as the total workload is in the expected
range.

A typical system runs several applications concurrently. These applications can be loosely
categorized into the following classes, based on their scheduling requirements and performance ex
pectations:

• Interactive - Applications such as shells, editors, and programs with graphical user in
terfaces interact constantly with their users. These applications spend a lot of time waiting
for such user input as characters typed at the keyboard or mouse actions. When input is re
ceived, it must be processed quickly, otherwise the user will find the system to be unre
sponsive. The system needs to reduce the average time and variance between the user ac
tion and application response sufficiently, so users cannot readily detect the delay. For
typing or mouse movements, the acceptable delay is about 50-150 milliseconds.

5.4 Traditional UNIX Scheduling

• Batch - Activities such as software builds and scientific computations do not require
user interaction and are often submitted as background jobs. For such tasks, the measure
of scheduling efficiency is the task's completion time in the presence of other activity, as
compared to the time required on an otherwise inactive system.

• Real-time - This is a catchall class of applications that are often time-critical. Although
there are many types of real-time applications, each with its own set of requirements, they
share many common features. They normally need predictable scheduling behavior with
guaranteed bounds on response times. For instance, a video application may want to dis
play a fixed number of video frames per second ifps). It may care more about minimizing
the variance than simply obtaining more CPU time. Users may prefer a constant rate of 15
fPs to one that fluctuates noticeably between 10 and 30jjJs, with an average of20jjJs.

117

A typical workstation may run many different types of applications simultaneously. The
scheduler must try to balance the needs of each. It must also ensure that kernel functions such as
paging, interrupt handling, and process management can execute promptly when required.

In a well-behaved system, all applications must continue to progress. No application should
be able to prevent others from progressing, unless the user has explicitly permitted it. Moreover, the
system should always be able to receive and process interactive user input; otherwise, the user
would have no way to control the system.

The choice of scheduling policy has a profound effect on the system's ability to meet the
requirements of different types of applications. The next section reviews the traditional
(SVR3/4.3BSD) scheduler, which supports interactive and batch jobs only. The rest of this chapter
examines schedulers in modern UNIX systems, which also provide some support for real-time ap
plications.

5.4 Traditional UNIX Scheduling

We begin by describing the traditional UNIX scheduling algorithm, which is used in both SVR3 and
4.3BSD UNIX. These systems are primarily targeted at time-sharing, interactive environments with
several users running several batch and foreground processes simultaneously. The scheduling policy
aims to improve response times of interactive users, while ensuring that low-priority, background
jobs do not starve.

Traditional UNIX scheduling is priority-based. Each process has a scheduling priority that
changes with time. The scheduler always selects the highest-priority runnable process. It uses pre
emptive time-slicing to schedule processes of equal priority, and dynamically varies process priori
ties based on their CPU usage patterns. If a higher-priority process becomes ready to run, the
scheduler preempts the current process even if it has not completed its time slice or quantum.

The traditional UNIX kernel is strictly nonpreemptible. If a process is executing kernel code
(due to a system call or interrupt), it cannot be forced to yield the CPU to a higher-priority process.
The running process may voluntarily relinquish the CPU when blocking on a resource. Otherwise, it
can be preempted when it returns to user mode. Making the kernel nonpreemptible solves many
synchronization problems associated with multiple processes accessing the same kernel data struc
tures (see Section 2.5).

118 Chapter 5 Process Scheduling

The following subsections describe the design and implementation of the 4.3BSD scheduler.
The SVR3 implementation differs only in a few minor respects, such as some function and variable
names.

5.4.1 Process Priorities

The process priority may be any integer value between 0 and 127. Numerically lower values corre
spond to higher priorities. Priorities between 0 and 49 are reserved for the kernel, while processes in
user mode have priorities between 50 and 127. The proc structure contains the following fields that
contain priority-related information:

p_pri

p_usrpri
p_cpu

p_nice

Current scheduling priority.

User mode priority.
Measure of recent CPU usage.

User-controllable nice factor.

The p _pri and p _us rpri fields are used in different ways. The scheduler uses p _pri to de
cide which process to schedule. When the process is in user mode, its p _pri value is identical to
p _us rpri. When the process wakes up after blocking in a system call, its priority is temporarily
boosted in order to give preference to kernel mode processing. Hence the scheduler uses p_usrpri
to save the priority that must be assigned to the process when it returns to user mode, and p _pri to
store its temporary kernel priority.

The kernel associates a sleep priority with of event or resource on which a process can
block. The sleep priority is a kernel value, and hence is between 0 and 49. For instance, the sleep
priority for terminal input is 28, whereas that for disk I/0 is 20. When a process wakes up after
blocking, the kernel sets its p _pri value to the sleep priority of the event or resource. Because ker
nel priorities are higher than user priorities, such processes are scheduled ahead of those that were
executing user code. This allows system calls to complete promptly, which is desirable since proc
esses may have locked some key kernel resources while executing a system call.

When a process completes the system call and is about to return to user mode, its scheduling
priority is reset to its current user mode priority. This may lower the priority below that of another
runnable process, in which case the kernel will initiate a context switch.

The user mode priority depends on two factors-the nice value and the recent CPU usage.
The nice value is a number between 0 and 39 with a default of 20. Increasing this value decreases
the priority. Background processes are automatically given higher nice values. Only a superuser can
decrease the nice value of a process, thereby increasing its priority. It is called nice because users
can be "nice" to others by increasing the nice value ofless important processes.3

Time-sharing systems try to allocate the processor in such a way that competing applications
receive approximately equal amounts of CPU time. This requires monitoring the CPU usage of dif
ferent processes and using that information in scheduling decisions. The p _cpu field is a measure of
the recent CPU usage of the process. It is initialized to zero when the process is created. At every

3 The nice(/) command is normally used for this purpose. It accepts any value between -20 and 19 (only the superuser
can specify negative values). This value is used as an increment to the current nice value.

5.4 Traditional UNIX Scheduling 119

tick, the clock handler increments p _cpu for the current process, to a maximum of 127. Moreover,
every second, the kernel invokes a routine called schedcpu () (scheduled by a callout) that reduces
the p _cpu value of each process by a decay factor. SVR3 uses a fixed decay factor of 112. 4.3BSD
uses the following formula:

decay= (2 * load_average) I (2 * load_average + 1);

where 1 oad _average is the average number of runnable processes over the last second. The sched
cpu () routine also recomputes the user priorities of all processes using the formula

p_usrpri = PUSER + {p_cpu I 4) + (2 * p_nice);

where PUSER is the baseline user priority of 50.
As a result, if a process has recently accumulated a large amount of CPU time, its p _cpu

factor will increase. This results in a large p _us rpri value, and hence a low priority. The longer a
process waits before being scheduled, the more the decay factor lowers its p _cpu, and its priority
continues to increase. This scheme prevents starvation of lower-priority processes. It also heavily
favors I/O-bound processes as opposed to compute-bound ones. If a process spends most of its time
waiting for I/0 (e.g., an interactive shell process or a text editor), it remains at a high priority, and
receives CPU time quickly when needed. Compute-bound applications such as compilers and link
ers have high p _cpu values and consequently run at lower priorities.

The CPU usage factor provides fairness and parity in scheduling time-sharing processes. The
basic idea is to keep the priorities of all such processes in the same approximate range over a period
of time. They move up or down within this range depending on how much CPU time they have re
cently consumed. If priorities change too slowly, processes that begin at a lower priority will remain
there for long periods of time, and starve as a result.

The effect of the decay factor is to provide an exponentially weighted average of the CPU
usage of the process over its entire lifetime. The SVR3 formula yields a simple exponential average,
which has the undesirable side effect of elevating priorities when the system load rises [Blac 90].
This is because in a heavily loaded system each process receives a small share of the processor. This
keeps its CPU usage value low, and the decay factor reduces it further. As a result, the CPU usage
does not have much impact on the priority, and processes that began with a lower priority starve
disproportionately.

The 4.3BSD approach forces the decay factor to depend on the system load. When the load
is high the decay is small. Consequently, processes that receive CPU cycles will have their priority
lowered quickly.

5.4.2 Scheduler Implementation

The scheduler maintains an array called qs of 32 run queues (Figure 5-2). Each queue corresponds
to four adjacent priorities. Thus, queue 0 is used for priorities 0-3, queue 1 for priorities 4-7, and so
forth. Each queue contains the head of a doubly linked list of proc structures. A global variable
wh i ch q s contains a bitmask with one bit for each queue. The bit is set if there is a process on that
queue. Only runnable processes are kept on these scheduler queues.

120

whichqs

lolololllolllol- ·-I
I

'
'

' -----------

qs

0-3
4-7
8-11
12-15
16-19
20-23

Figure 5-2. BSD scheduler data structures.

Chapter 5 Process Scheduling

This simplifies the task of selecting a process to run. The swtch () routine, which performs
the context switch, examines whi chqs to find the index of the first set bit. This index identifies the
scheduler queue containing the highest priority runnable process. swtch () removes a process from
the head of the queue, and switches context to it. When swtch () returns, the newly scheduled proc
ess resumes execution.

The context switch involves saving the register context (general purpose registers, program
counter, stack pointer, memory management registers, etc.) of the current process in its process
control block (pcb), which is part of the u area, and then loading the registers with the saved context
of the new process. The p _ addr field in the proc structure points to the page table entries of the u
area, and swtch () uses this to locate the new pcb.

Since the V AX-11 was the reference target for both 4BSD and the early System V releases,
its architecture [DEC 86] has greatly influenced the scheduler implementation. The VAX has two
special instructions-FFS, or Find First Set, and FFC, or Find First Clear-to manipulate 32-bit
fields. This made it desirable to collapse the 128 priorities into 32 queues. It also has special in
structions (INSQHI and REMQHI) to atomically insert and remove elements from doubly linked lists,
and others (LDPCTX and SVPCTX) to load and save a process context. This allows the VAX to execute
the entire scheduling algorithm using only a small number of machine instructions.

5.4.3 Run Queue Manipulation
The highest priority process always runs, unless the current process is executing in kernel mode. A
process is assigned a fixed time quantum (1 00 ms in 4.3BSD). This only affects the scheduling of
multiple processes on the same run queue. Every 100 milliseconds, the kernel invokes (through a
callout) a routine called roundrobi n () to schedule the next process from the same queue. If a
higher-priority process were runnable, it would be preferentially scheduled without waiting for
roundrobi n (). If all other runnable processes are on lower priority queues, the current process
continues to run even though its quantum has expired.

5.4 Traditional UNIX Scheduling 121

The schedcpu () routine recomputes the priority of each process once every second. Since
the priority cannot change while the process is on a run queue, schedcpu () removes the process
from the queue, changes its priority, and puts it back, perhaps on a different run queue. The clock
interrupt handler recomputes the priority of the current process every four ticks.

There are three situations where a context switch is indicated:

• The current process blocks on a resource or exits. This is a voluntary context switch.
• The priority recomputation procedure results in the priority of another process becoming

greater than that of the current one.
• The current process, or an interrupt handler, wakes up a higher-priority process.

The voluntary context switch is straightforward-the kernel directly calls swtch () from the
s 1 eep () or ex it() routines. Events that cause involuntary switches occur when the system is in
kernel mode, and hence cannot preempt the process immediately. The kernel sets a flag called run
run, which indicates that a higher priority process is waiting to be scheduled. When the process is
about to return to user mode, the kernel checks the runrun flag. If set, it transfers control to the
s wt c h () routine, which initiates a context switch.

5.4.4 Analysis

The traditional scheduling algorithm is simple and effective. It is adequate for a general time
sharing system with a mixture of interactive and batch jobs. Dynamic recomputation of the priorities
prevents starvation of any process. The approach favors I/O-bound jobs that require small infrequent
bursts of CPU cycles.

The scheduler has several limitations that make it unsuitable for use in a wide variety of
commercial applications:

• It does not scale well-if the number of processes is very large, it is inefficient to recom
pute all priorities every second.

• There is no way to guarantee a portion of CPU resources to a specific process or group of
processes.

• There are no guarantees of response time to applications with real-time characteristics.
• Applications have little control over their priorities. The nice value mechanism is simplis

tic and inadequate.
• Since the kernel is nonpreemptive, higher-priority processes may have to wait a significant

amount of time even after being made runnable. This is called priority inversion.

Modem UNIX systems are used in many kinds of environments. In particular, there is a
strong need for the scheduler to support real-time applications that require more predictable behav
ior and bounded response times. This requires a complete redesign of the scheduler. The rest of this
chapter examines the new scheduling facilities in SVR4, Solaris 2.x, and OSF/1, as well as some
non-mainstream variants.

122 Chapter 5 Process Scheduling

5.5 The SVR4 Scheduler

SVR4 features a completely redesigned scheduler [AT&T 90] that tries to improve on the traditional
approach. It is intended for use in many environments, and provides greater flexibility and control.
The following are the major objectives of this new architecture:

• Support a diverse range of applications including those requiring real-time response.
• Separate the scheduling policy from the mechanisms that implement it.
• Provide applications with greater control over their priority and scheduling.
• Define a scheduling framework with a well-defined interface to the kernel.
• Allow new scheduling policies to be added in a modular manner, including dynamic

loading of scheduler implementations.
• Limit the dispatch latency for time-critical applications.

While the effort has been driven by the desire to support real-time processes, the architecture
is general and versatile enough to handle many different scheduling requirements. The fundamental
abstraction is that of a scheduling class, which defines the scheduling policy for all processes that
belong to it. The system may provide several scheduling classes. By default, SVR4 provides two
classes-time-sharing and real-time.

The scheduler provides a set of class-independent routines that implement common services
such as context switching, run queue manipulation, and preemption. It also defines a procedural in
terface for class-dependent functions such as priority computation and inheritance. Each class im
plements these functions differently. For instance, the real-time class uses fixed priorities, while the
time-sharing class varies the process priority dynamically in response to certain events.

This object-oriented approach is similar to that used by the vnodelvfs system (see Section
8.6) and the memory subsystem (see Section 14.3). Section 8.6.2 provides an overview of the basic
concepts of object-oriented methodology as used in modern UNIX systems. Here, the scheduler rep
resents an abstract base class, and each scheduling class acts as a subclass (derived class).

5.5.1 The Class-Independent Layer

The class-independent layer is responsible for context switching, run queue management, and pre
emption. The highest priority process always runs, (except for nonpreemptible kernel processing).
The number of priorities has been increased to 160, and there is a separate dispatch queue for each
priority. Unlike the traditional implementation, numerically larger priority values correspond to
higher priorities. The assignment and recomputation of process priorities, however, are performed
by the class-dependent layer.

Figure 5-3 describes the data structures for run queue management. The dqactmap is a bit
map that shows which dispatch queues have at least one runnable process. Processes are placed on
the queue by setfrontdq(} and setbackdq(}, and removed by dispdeq(}. These functions may
be called from the mainline kernel code, as well as from the class-dependent routines. Typically, a
newly runnable process is placed at the back of its run queue, while a process that was preempted
before its quantum expired is returned to the front of the queue.

5.5 The SVR4 Scheduler

dqactmap

loloiiiololllol- .. 1
I
I

I_ - - - - - - - - - - -

dispq

160
159
158
157
156
155

0

Figure 5-3. SVR4 dispatch queues.

123

A major limitation of UNIX for use in real-time applications is the nonpreemptive nature of
the kernel. Real-time processes need to have a low dispatch latency, which is the delay between the
time they become runnable and the time they actually begin running. If a real-time process becomes
runnable while the current process is executing a system call, there may be a significant delay be
fore the context switch can occur.

To address this problem, the SVR4 kernel defines several preemption points. These are
places in the kernel code where all kernel data structures are in a stable state, and the kernel is about
to embark on a lengthy computation. When such a preemption point is reached, the kernel checks a
flag called kprunrun. If set, it indicates that a real-time process is ready to run, and the kernel pre
empts the current process. This bounds the amount of time a real-time process must wait before be
ing scheduled.4 The PREEMPT () macro checks kprunrun and calls the preempt() routine to actually
preempt the process. Some examples of preemption points are:

• In the pathname parsing routine 1 ookuppn (), before beginning to parse each individual
pathname component

• In the open system call, before creating the file if it does not exist
• In the memory subsystem, before freeing the pages of a process

The run run flag is used as in traditional systems, and only preempts processes that are about
to return to user mode. The preempt() function invokes the CL _PREEMPT operation to perform
class-dependent processing, and then calls swt ch () to initiate the context switch.

swtch () calls pswtch () to perform the machine-independent part of the context switch, and
then invokes lower-level assembly code to manipulate the register context, flush translation buffers,
etc. pswtch () clears the run run and kprunrun flags, selects the highest-priority runnable process,

4 This code is not class-dependent, despite the explicit mention of real-time processes. The kernel merely checks
kprunrun to detennine if it should preempt the process. Currently, only the real-time class sets this flag, but in future
there may be new classes that also require kernel preemption.

124 Chapter 5 Process Scheduling

and removes it from the dispatch queue. It updates the dqactmap, and sets the state of the process to
SONPROC (running on a processor). Finally, it updates the memory management registers to map the
u area and virtual address translation maps of the new process.

5.5.2 Interface to the Scheduling Classes

All class-dependent functionality is provided by a generic interface whose virtual functions (see
Section 8.6.2) are implemented differently by each scheduling class. The interface defines both the
semantics of these functions and the linkages used to invoke the specific implementation for the
class.

Figure 5-4 shows how the class-dependent interface is implemented. The cl assfuncs
structure is a vector of pointers to the functions that implement the class-dependent interface for any
class. A global class table contains one entry for each class. This entry is composed of the class
name, a pointer to an initialization function, and a pointer to the c 1 ass fun c s vector for that class.

When a process is first created, it inherits the priority class from its parent. Subsequently, it
may be moved to a different class via the priocntl system call described in Section 5.5.5. The proc
structure has three fields that are used by the scheduling classes:

p_cid
p_clfuncs

Class ID-this is simply an index into the global class table.
Pointer to the cl assfuncs vector for the class to which the process be
longs. This pointer is copied from the class table entry.

global class table
rt classfuncs

rt in it real-time r-----------------~=--.

sys_init

ts init

initialization
ts classfuncs

functions

p cid ;/
p_clfuncs

p_clproc

...

class-
dependent

data

proc

p_cid

p_clfuncs

p_clproc

. ..

class-
dependent

data

structures

p_cid

p_clfuncs

p_clproc

class
dependent

data

Figure S-4. SVR4 class-dependent interface.

p_clfuncs

p_clproc

class
dependent

data

5.5 The SVR4 Scheduler 125

p_clproc Pointer to a class-dependent private data structure.

A set of macros resolves calls to the generic interface functions and invokes the correct
class-dependent functions. For instance,

#define CL SLEEP(procp, clprocp, •••) \
(*(protp) ->p_ clfuncs~>cl_sl eep}(cl procp, •• ,)

The class-dependent functions can be accessed in this manner from the class-independent code and
from the priocntl system call.

The scheduling class decides the policies for priority computation and scheduling of the
processes that belong to it. It determines the range of priorities for its processes, and if and under
what conditions the process priority can change. It decides the size of the time slice each time a
process runs. The time slice may be the same for all processes or may vary according to the priority.
It may be anywhere from one tick to infinity. An infinite quantum is appropriate for some real-time
tasks that must run to completion.

The entry points of the class-dependent interface include:

CL TICK

CL_FORK,
CL FORKRET

CL_ENTERCLASS,
CL EXITCLASS

CL SLEEP
CL WAKEUP

Called from the clock interrupt handler-monitors the time slice, recom
putes priority, handles time quantum expiration, and so forth.

Called from fork-CL_FORK initializes the child's class-specific data
structure. CL_FORKRET may set runrun, allowing the child process to run
before the parent.

Called when a process enters or exits a scheduling class-responsible for
allocating and deallocating the class-dependent data structures respec
tively.
Called from sleep () -may recompute process priority.
Called from wakeprocs () - puts the process on the appropriate run
queue; may set run run or kprunrun.

The scheduling class decides what actions each function will take, and each class may im
plement these functions differently. This allows for a very versatile approach to scheduling. For in
stance, the clock interrupt handler of the traditional scheduler charges each tick to the current proc
ess and recomputes its priority on every fourth tick. In the new architecture, the handler simply calls
the C L _TICK routine for the class to which the process belongs. This routine decides how to process
the clock tick. The real-time class, for example, uses fixed priorities and does no recomputation.
The class-dependent code determines when the time quantum has expired and sets run run to initiate
a context switch.

By default, the 160 priorities are divided into the following three ranges:

0-59
60-99
100-159

time-sharing class
system priorities
real-time class

126 Chapter 5 Process Scheduling

The following sub-sections describe the implementation of the time-sharing and real-time
classes.

5.5.3 The Time-Sharing Class

The time-sharing class is the default class for a process. It changes process priorities dynamically
and uses round-robin scheduling for processes with the same priority. It uses a static dispatcher pa
rameter table to control process priorities and time slices. The time slice given to a process depends
on its scheduling priority. The parameter table defines the time slice for each priority. By default,
the lower the priority of the process, the larger its time slice. This may seem counter-intuitive, but
the reasoning is that since the lower priority process does not run often, it should be given a larger
quantum when it does run.

The time-sharing class uses event-driven scheduling [Stra 86]. Instead of recomputing the
priorities of all processes every second, SVR4 changes the priority of a process in response to spe
cific events related to that process. The scheduler penalizes the process (reduces its priority) each
time it uses up its time slice. On the other hand, SVR4 boosts the priority of the process if it blocks
on an event or resource, or if it takes a long time to use up its quantum. Since each event usually
affects a single process, the recomputation is fast. The dispatcher parameter table defines how vari
ous events change the priority of the process.

The time-sharing class uses a struct tsproc to store class-dependent data. Its fields in-
elude:

ts timeleft
ts_cpupri
ts_upri
ts_umdpri
ts_di spwait

Time remaining in the quantum.
System part of the priority.
User part of the priority (nice value).

User mode priority (ts _ cpupri + ts _ upri, but no more than 59).
Number of seconds of clock time since start of quantum.

When a process resumes after sleeping in the kernel, its priority is a kernel priority and is
determined by the sleep condition. When it later returns to user mode, the priority is restored from
ts _ umdpri. The user mode priority is the sum of ts _ upri and ts _ cpupri, but is restricted to a
value between 0 and 59. ts _ upri ranges from -20 to + 19, with the default value of 0. This value
can be changed by priocntl, but only the superuser can increase it. ts_cpupri is adjusted according
to the dispatcher parameter table as described below.

The parameter table contains one entry for each priority in the class. Although every class in
SVR4 has a dispatch parameter table (there is also one for the system priorities), each table has a
different form. It is not a required structure for all classes, and new classes may be created that do
not use such a table. For the time-sharing class, each entry in the table contains the following fields:

ts_globpri

ts_quantum
ts_tqexp
ts_slpret

Global priority for this entry (for the time-sharing class, this is the same as
its index in the table).
Time quantum for this priority.
Newts_ cpupri to set when the quantum expires.
Newts_ cpupri to set when returning to user mode after sleeping.

5.5 The SVR4 Scheduler

ts maxwait
ts 1wait

Number of seconds to wait for quantum expiry before using t s _1 wa i t.
Use instead ofts_tqexp ifprocess took longer than ts_maxwait to use
up its quantum.

127

This table has two uses. It can be indexed by the current ts _ cpupri value to access the ts _ tqexp,
ts _ s 1 pret, and ts _1 wait fields, since these fields provide a new value of ts _ cpupri based on its
old value. It is indexed by ts_umdpri to access the ts_g1obpri, ts_quantum, and ts_maxwait
fields, since these fields relate to the overall scheduling priority.

Table 5-1 shows a typical time-sharing parameter table. To see how it is used, consider a
process with ts _ upri = 14, and ts _ cpupri = 1. Its global priority (ts _g1 obpri) and its ts _ umdpri
both equal15. When its time quantum expires, its ts_cpupri will be set to 0 (thus, ts_umdpri is
set to 14). If, however, the process needs more than 5 seconds to use up its quantum, its ts _ cpupri
is set to 11 (thus, ts _ umdpri is set to 25).

Suppose, before its quantum expires, the process makes a system call and must block on a
resource. When it resumes and eventually returns to user mode, its ts _ cpupri is set to 11 (from the
ts _ s 1 pret column) and ts _ umdpri to 25, regardless of how much time was needed to use up the
quantum.

5.5.4 The Real-Time Class

The real-time class uses priorities in the range 100-159. These priorities are higher than any time
sharing process, even those in kernel mode, which means a real-time process will be scheduled be
fore any kernel process. Suppose a process is already executing in kernel mode when a real-time
process becomes runnable. The kernel will not preempt the current process immediately because
that may leave the system in an inconsistent state. The real-time process must wait until the current
process is about to return to user mode or until it reaches a kernel preemption point. Only superuser
processes can enter the real-time class; they do so by calling priocntl, specifying the priority and
time quantum.

Real-time processes are characterized by a fixed priority and time quantum. The only way
they can change is if the process explicitly makes a priocntl call to change one or the other. The
real-time dispatcher parameter table is simple-it only stores the default quantum for each priority,
which is used if a process does not specify a quantum while entering the real-time class. Here too,

Table 5-1. Time-sharing dispatcher parameter table

index globpri quantum tqexp slpret maxwait I wait
0 0 100 0 10 5 10
1 1 100 0 11 5 11
...
15 15 80 7 25 5 25
...
40 40 20 30 50 5 50
...
59 59 10 49 59 5 59

128 Chapter 5 Process Scheduling

the default parameter table assigns larger time slices for lower priorities. The class-dependent data
of a real-time process is stored in a struct rtproc, which includes the current time quantum, time
remaining in the quantum, and the current priority.

Real-time processes require bounded dispatch latency, as well as bounded response time.
These concepts are explained in Figure 5-5. The dispatch latency is the time between when the
process becomes runnable and when it begins to run. The response time is the time between the oc
currence of an event that requires the process to respond and the response itself. Both these times
need to have a well-defined upper bound that is within a reasonable limit.

The response time is the sum of the time required by the interrupt handler to process the
event, the dispatch latency, and the time taken by the real-time process itself to respond to the event.
The dispatch latency is of great concern to the kernel. Traditional kernels cannot provide reasonable
bounds, since the kernel itself is nonpreemptible, and the process may have to wait for a long period
of time if the current process is involved in some elaborate kernel processing. Measurements have
shown that some code paths in the kernel can take several milliseconds, which is clearly unaccept
able for most real-time applications.

SVR4 uses preemption points to divide lengthy kernel algorithms into smaller, bounded
units of work. When a real-time process becomes runnable, the rt _wakeup() routine that handles
the class-dependent wakeup processing sets the kernel flag kprunrun. When the current process
(presumably executing kernel code) reaches a preemption point, it checks this flag and initiates a
context switch to the waiting real-time process. Thus the wait is bounded by the maximal code path
between two preemption points, which is a much more acceptable solution.

Finally, we must note that any guarantees on the latency bounds apply only when the real
time process is the highest-priority runnable process on the system. If, at any time during its wait, a

event occurs

interrupt processing

process made runnable

~j nonpreemptive kernel
processing

context switch initiated
.------co_n_t_e_x_t-sw--it_c_h-----.1 1

process is scheduled to run

.-----a-p-p-li-ca-t-io-n--co_d_e~---.1 1
process responds to event

Figure 5-5. Response time and dispatch latency.

5.5 The SVR4 Scheduler 129

higher-priority process becomes runnable, it will be scheduled preferentially, and the latency calcu
lation must restart from zero after that process yields the CPU.

5.5.5 The priocntl System Call

The priocntl system call provides several facilities to manipulate the priorities and scheduling be
havior of the process. It accepts a set of different subcommands that can be used to perform many
operations, such as

• Changing the priority class of the process.
• Setting ts _ upri for time-sharing processes.
• Resetting priority and quantum for real-time processes.
• Obtaining the current value of several scheduling parameters.

Most of these operations are restricted to the superuser, and hence are unavailable to most
applications. SVR4 also provides the priocntlset system call, which performs the same operations
on a set of related processes, such as:

• All processes in the system.
• All processes in a process group or session.
• All processes in a scheduling class.
• All processes owned by a particular user.
• All processes having the same parent.

5.5.6 Analysis

SVR4 has replaced the traditional scheduler with one that is completely different in design and be
havior. It provides a flexible approach that allows the addition of scheduling classes to a system. A
vendor can tailor the scheduler to the needs of his applications. Dispatcher tables give much more
control to the system administrator, who can alter the behavior of the system by changing the set
tings in the tables and rebuilding the kernel.

Traditional UNIX systems recpmpute the priority of each process once every second. This
can take an inordinate amount of time if there are many processes. Hence the algorithm does not
scale well to systems that have thousands of processes. The SVR4 time-sharing class changes proc
ess priorities based on events related to that process. Since each event usually affects only one proc
ess, the algorithm is fast and highly scalable.

Event-driven scheduling deliberately favors I/O-bound and interactive jobs over CPU-bound
ones. This approach has some important drawbacks. Interactive users whose jobs also require large
computations may not find the system to be responsive, since these processes may not generate
enough priority-elevating events to offset the effects of CPU usage. Also, the optimal boosts and
penalties to associate with different events depend on the total load on the system and the character
istics of the jobs running at any given time. Thus it may be necessary to retune these values fre
quently to keep the system efficient and responsive.

130 Chapter 5 Process Scheduling

Adding a scheduling class does not require access to the kernel source code. The developer
must take the following steps:

1. Provide an implementation of each class-dependent scheduling function.
2. Initialize a cl assfuncs vector to point to these functions.
3. Provide an initialization function to perform setup tasks such as allocating internal data

structures.
4. Add an entry for this class in the class table in a master configuration file, typically lo

cated in the master.d subdirectory of the kernel build directory. This entry contains point
ers to the initialization function and the c 1 ass funcs vector.

5. Rebuild the kernel.

An important limitation is that SVR4 provides no good way for a time-sharing class process
to switch to a different class. The priocntl call is restricted to the superuser. A mechanism to map
either specific user IDs or specific programs to a nondefault class would be very useful.

Although the real-time facilities represent a major first step, they still fall short of the desired
capability. There is no provision for deadline-driven scheduling (see Section 5.9.2). The code path
between preemption points is too long for many time-critical applications. In addition, true real-time
systems require a fully preemptible kernel. Some of these issues have subsequently been addressed
in Solaris 2.x, which provides several enhancements to the SVR4 scheduler. We describe this ap
proach in the next section.

A major problem with the SVR4 scheduler is that it is extremely difficult to tune the system
properly for a mixed set of applications. [Nieh 93] describes an experiment that ran three different
programs-an interactive typing session, a batch job, and a video film display program
concurrently. This became a difficult proposition since both the typing and the film display required
interaction with the X-server.

The authors tried several permutations of priority and scheduling class assignments to the
four processes (the three applications plus the X-server). It was very difficult to find a combination
that allowed all applications to progress adequately. For instance, the intuitive action is to place
only the video in the real-time class. However, this was catastrophic, and not even the video appli
cation could progress. This was because the X-server, on which the video display depended, did not
receive sufficient CPU time. Placing both video and the X-server in the real-time class gave ade
quate video performance (after correctly tweaking their relative priorities), but the interactive and
batch jobs crawled to a halt, and the system stopped responding to mouse and keyboard events.

Through careful experimentation, it may be possible to find the right combination of priori
ties for a given set of applications. Such settings, however, might only work for that exact mix of
programs. The load on a system varies constantly, and it is not reasonable to require careful manual
tuning each time the load changes.

5.6 Solaris 2.x Scheduling Enhancements

Solaris 2.x enhances the basic scheduling architecture of SVR4 in several respects [Khan 92]. So
laris is a multithreaded, symmetric-multiprocessing operating system, and therefore its scheduler

5.6 Solaris 2.x Scheduling Enhancements 131

must support these features. Additionally, Solaris makes several optimizations to lower the dispatch
latency for high-priority, time-critical processes. The result is a scheduler that is more suitable for
real-time processing.

5.6.1 Preemptive Kernel
Kernel preemption points in SVR4 are at best a compromise solution to the bounded latency re
quirements of real-time processes. The Solaris 2.x kernel is fully preemptive, which allows it guar
antee good response times. This is a radical change for a UNIX kernel and has far-reaching conse
quences. Most global kernel data structures must be protected by appropriate synchronization
objects such as mutual exclusion locks (mutexes) or semaphores. Although this is a formidable task,
it is also an essential requirement for a multiprocessor operating system.

Another related change is the implementation of interrupts using special kernel threads that
can use the standard synchronization primitives of the kernel and block on resources if necessary
(see Section 3.6.5). As a result, Solaris rarely needs to raise the interrupt level to protect critical re
gions, and has only a few nonpreemptible code segments. Thus a higher-priority process can be
scheduled as soon as it is runnable.

Interrupt threads always run at the highest priority in the system. Solaris allows scheduling
classes to be dynamically loaded. If this happens, the priorities of the interrupt threads are recom
puted to ensure that they remain at the highest possible value. If an interrupt thread needs to block
on a resource, it can only be restarted on the same processor.

5.6.2 Multiprocessor Support
Solaris maintains a single dispatch queue for all processors. However, some threads (such as inter
rupt threads) may be restricted to run on a single, specific processor. Processors can communicate
with each other by sending cross-processor interrupts. Each processor has the following set of
scheduling variables in a per-processor data structure:

cpu_thread
cpu_dispthread
cpu_ idle
cpu_runrun
cpu_kprunrun
cpu_ chosen_ level

Thread currently running on this processor.
Thread last selected to run on this processor.
Idle thread for this processor.
Preemption flag used for time-sharing threads.
Kernel preemption flag set by real-time threads.
Priority of thread that is going to preempt the current thread on
this processor.

Figure 5-6 illustrates scheduling in a multiprocessing environment. An event on processor
Pl makes thread T6 (with priority 130) runnable. The kernel puts T6 on the dispatch queue and
calls cpu_ choose () to find the processor with the lowest-priority thread running on it (in this case,
P3). Since this priority is lower than that of T6, cpu_ choose() marks that processor for preemp
tion, sets its cpu_ chosen_l eve 1 to the priority T6 (130), and sends it a cross-processor interrupt.
Suppose at this point, before P3 handles the interrupt and preempts thread T3, another processor,
say P2, handles an event that makes thread T7 (with priority 115) runnable. Now cpu_ choose()

132

~ T1
pri
120

P1

~ T1
pri
120

P1

~ T2
pri
130

P2

~ T3
pri
100

P3

(a) Initial situation

about to be
switched out

~ T4
pri

132

P4

T7
pri
115

~ T2
pri
130

~ T3
pri
100

~ T4
pri
132

P2 P3 P4
cpu_chosen_level = 130

about to be
scheduled on P 3

~ T6 pri
130

J~

~ T7 pri
115

Tl
dispatcher queues

(b) After T6 and T7 become runnable

Chapter 5 Process Scheduling

~ TS
pri
135

P5

~ TS
pri
135

P5

Figure 5-6. Multiprocessor scheduling in Solaris 2.x.

will examine the cpu_ chosen _1 eve 1 of P3, find that it is 130, and realize that a higher-priority
thread is about to run on this processor. Thus, in this case, cpu_ choose() will leave T7 on the dis
patch queue, avoiding the conflict.

There are certain situations where a low-priority thread can block a higher-priority thread for
a long period of time. These situations are caused either by hidden scheduling or by priority inver
sion. Solaris eliminates many of these effects, as described in the following subsections.

5.6 Solaris 2.x Scheduling Enhancements 133

5.6.3 Hidden Scheduling

The kernel often performs some work asynchronously on behalf of threads. The kernel schedules
this work without considering the priority of the thread for which it is doing the work. This is called
hidden scheduling. Two examples of this are STREAMS service routines (see Section 17.4) and
call outs.

In SVR4, for example, whenever a process is about to return to user mode, the kernel calls a
routine called run queues() to check ifthere is a STREAMS service request pending. If so, the ker
nel processes the request by calling the service routine of the appropriate STREAMS module. This
request is thus serviced by the current process (the one that was about to return to user mode) on
behalf of some other process. If the priority of the other process is lower than that of the current
process, the request is being handled at a wrong priority. As a result, the normal execution of the
current process is delayed by lower-priority work.

Solaris handles this by moving STREAMS processing into kernel threads, which run at a
lower priority than any real-time thread. This creates a new problem, since some STREAMS re
quests may be initiated by real-time threads. Because these requests are also serviced by kernel
threads, they run at a lower priority than is desired. This issue cannot be resolved without drastically
changing the semantics of streams processing, and remains a possible obstacle to meeting real-time
requirements.

There is also a problem associated with callout processing (see Section 5.2.1). UNIX serv
ices all callouts at the lowest interrupt priority, which is still higher than any real-time priority. If
the callout was issued by a low-priority thread, its servicing might delay the scheduling of a higher
priority thread. Measurements on earlier releases of SunOS showed that it could take up to 5 milli
seconds to process the callout queue.

To resolve this problem, Solaris handles callouts by a callout thread that runs at the maxi
mum system priority, which is lower than any real-time priority. Callouts requested by real-time
processes are maintained separately and invoked at the lowest interrupt level, thus ensuring prompt
dispatch of time-critical call outs.

5.6.4 Priority Inversion

The priority inversion problem, first described in [Lamp 80], refers to a situation where a lower
priority process holds a resource needed by a higher priority process, thereby blocking that higher
priority process. There are several variations of this problem. Let us look at some examples (Figure
5-7).

The simplest case occurs when a low-priority thread Tl holds a resource R, and a higher
priority thread T2 needs it. T2 must block until Tl relinquishes the resource. Now consider the
same scenario with the addition of thread T3, which has a priority between that of Tl and T2
(Figure 5-7(a)). Assume T2 and T3 are real-time threads. Because T2 is blocked, T3 is the highest
priority runnable thread and will preempt T1 (Figure 5-7(b)). As a result, T2 remains blocked until
T3 either completes or blocks, and then Tl runs and frees the resource.

This problem can be solved using a technique called priority inheritance or priority lending.
When a high-priority thread blocks on a resource, it temporarily transfers its priority to the lower
priority thread that owns the resource. Thus, in the above example, Tl inherits the priority of T2,

134

runnable

inh pri = 130

(a) Initial situation
pri (T2} > pri (T3) > pri (T1)

(b) Without priority inheritance

(c) With priority inheritance

inherited pri (T1) = pri (T2) > pri (T3)

Figure 5-7. Simple priority inversion.

Chapter 5 Process Scheduling

becomes
runnable

and hence cannot be preempted by T3 (Figure 5-7(c)). When Tl releases the resource, its priority
returns to its original value, allowing T2 to preempt it. T3 will be scheduled only after Tl has re
leased the resource and T2 has run and relinquished the CPU.

Priority inheritance must be transitive. In Figure 5-8, T4 is blocked on a resource held by
TS, which in turn is blocked on a resource held by T6. If the priority ofT4 is higher than that ofTS
and T6, then T6 must inherit the priority of T4 via TS. Otherwise, a thread T7 whose priority is
greater than that of TS and T6, but less than that of T4, will preempt T6 and cause priority inver
sion with respect to T4. Thus, the inherited priority of a thread must be that of the highest-priority
thread that it is directly or indirectly blocking.

The Solaris kernel must maintain extra state about locked objects to implement priority in
heritance. It needs to identify which thread is the current owner of each locked object, and also the
object for which each blocked thread is waiting. Since inheritance is transitive, the kernel must be
able to traverse all the objects and blocked threads in the synchronization chain starting from any
given object. The next subsection shows how Solaris implements priority inheritance.

5.6 Solaris 2.x Scheduling Enhancements

currently running

(a) Initial situation

pri (T4) > pri (T7) > pri (T5) > pri (T6)

currently running

i nh pri i nh pri 135

(b) Transitive priority inheritance

(inherited pri (T6) =inherited pri (T5) = pri (T4) > pri (T7))

Figure 5-8. Transitive priority inheritance.

5.6.5 Implementation of Priority Inheritance

becomes
runnable

runnable

135

Each thread has two priorities-a global priority that is determined by its scheduling class and an
inherited priority that depends on its interaction with synchronization objects. The inherited priority
is normally zero unless the thread has benefited from priority inheritance. The scheduling priority of
the thread is the higher of its inherited and global priorities.

When a thread must block on a resource, it calls the function pi_ wi 11 to () to pass on, or
will, its priority to all threads that are directly or indirectly blocking it. Since inheritance is transi
tive, pi_ willto () passes on the inherited priority of the calling thread. The pi_ wi 11 to() function
traverses the synchronization chain of this thread, beginning with the object it is directly blocking
on. This object contains a pointer to its owner thread (the one that currently holds this lock). If the
scheduling priority of the owner is lower than the inherited priority of the calling thread, the owner
inherits the higher value. If the owner is blocked on another resource, its thread structure contains a
pointer to the corresponding synchronization object. pi_ wi 11 to () follows this pointer and passes
the priority onto the owner of that object, and so on. The chain ends when we reach a thread that is
not blocked or an object that is not priority-inverted.5

5 This algorithm is known as the computation of transitive closure, and the chain traversed forms a directed acyclic
graph.

136

owner

runnable

owner

currently running

~wants EJ----- R4

Resources

Chapter 5 Process Scheduling

Blocked threads

~ T2 ~ T3 gp 90
gp 70

ip 100

~ T5 gp 80

Key
gp global

priority
i p inherited

priority

Figure 5-9. Traversing the synchronization chain.

Consider the example of Figure 5-9. Thread T6, which is currently running and has a global
priority of 110, wants resource R4 that is held by thread TS. The kernel calls pi_ wi ll to () which
traverses the synchronization chain starting at R4, taking the following actions:

1. The owner of R4 is thread TS, which has a global priority of 80 and no inherited priority.
Since this is lower than 110, set the inherited priority of TS to 110.

2. TS is blocked on resource R3, which is owned by thread Tl. T1 has a global priority of 60
but an inherited priority of 100 (through R2). That is also smaller than 110, so raise the
inherited priority of T1 to 110.

3. Since Tl is not blocked on any resource, terminate the chain traversal and return.

After pi_ will to () returns, the kernel blocks T6 and selects another thread to run. Since the
priority of Tl was just raised to 110, it is likely to be scheduled immediately. Figure 5-10 shows the
situation after the context switch.

When a thread releases an object, it surrenders its inherited priority by calling pi_ waive().
Sometimes, as in the previous example, a thread may have locked multiple objects. Its inherited pri
ority is then the maximum of all priorities inherited from these objects. When this thread releases an
object, its inherited priority must be recomputed based on the remaining objects it owns. This in
heritance loss may reduce the thread's priority to one below that of another runnable thread, in
which case the former thread will be preempted.

5.6 Solaris 2.x Scheduling Enhancements

Key
gp =global

priority
ip = inherited

priority

owner

Resources Blocked threads

Figure 5-10. Priority inheritance.

5.6.6 Limitations of Priority Inheritance

137

Priority inheritance can only be implemented in situations where we know which thread is going to
free the resource. This is possible when the resource is held by a single, known thread. Solaris 2.x
provides four types of synchronization objects-mutexes, semaphores, condition variables, and
reader/writer locks (Chapter 7 explains these primitives in detail). With mutexes, the owner is al
ways known. For semaphores and condition variables, however, the owner is usually indeterminate,
and priority inheritance is not used. This is unfortunate, because condition variables are often used
in conjunction with mutexes to implement higher-level synchronization abstractions, some of which
have determinable owners.

When a reader/writer lock is locked for writing, there is a single, known owner. It may,
however, be held by multiple readers simultaneously. A waiting writer must block until all current
readers have released the object. In this case, the object does not have a single owner, and it is not
practical to have pointers to all owners in the object. Solaris addresses this case by defining an
owner-of-record, which is the first thread that obtained the read lock. If a higher-priority writer
blocks on this object, the owner-of-record thread will inherit its priority. When the owner-of-record
releases its lock, there may be other unidentifiable threads that still own a lock on it, and these
threads cannot inherit the writer's priority. Thus the solution is limited, but still useful, as there are
many situations where a single reader holds the lock.

Priority inheritance reduces the amount of time a high-priority process must block on re
sources held by lower-priority processes. The worst-case delay, however, is still much greater than

138 Chapter 5 Process Scheduling

what is acceptable for many real-time applications. One reason is that the blocking chain can grow
arbitrarily long. Another is that if a high-priority process has several critical regions in its execution
path, it might block on each of them, resulting in a large total delay. This problem has received great
attention in the research community. Some alternative solutions have been proposed, such as the
ceiling protocol [Sha 90], which controls the locking of resources by processes to ensure that a
high-priority process blocks at most once per activation on a resource held by a lower-priority proc
ess. Although this limits the blocking delay for high-priority processes, it causes low-priority proc
esses to block much more often. It also requires a priori knowledge of all processes in the system
and their resource requirements. These drawbacks limit the usefulness of this protocol to a small set
of applications.

5.6.7 Turnstiles
The kernel contains hundreds of synchronization objects, one for each data structure that must be
separately protected. Such objects must maintain a great deal of information, such as a queue of
threads that are blocked on it. Having a large data structure for each object is wasteful, since there
are hundreds of synchronization objects in the kernel, but only a few of them are in use at any given
instant. Solaris provides a space-effective solution using an abstraction called a turnstile. A syn
chronization object contains a pointer to a turnstile, which contains all the data needed to manipu
late the object, such as the queue of blocked threads and a pointer to the thread that currently owns
the resource (Figure 5-11). Turnstiles are dynamically allocated from a pool that grows in size with
the number of allocated threads in the system. The turnstile is allocated by the first thread that must
block on the object. When no more threads are blocked on the object, the turnstile is released back
into the pool.

In traditional UNIX systems, the kernel associates a specific sleep channel with each re
source or event on which a process may block (see Section 7.2.3). The channel is typically an ad
dress associated with that resource or event. The kernel hashes the process onto a sleep queue based

1 ----------------

active
: ·l!l

active

Blocked threads

Synchronization objects

Figure 5-11. Turnstiles.

5.7 Scheduling in Mach 139

on this wait channel. Because different wait channels may map to the same sleep queue, the time
taken to traverse the queue is bounded only by the total number of threads in the system. Solaris2.x
replaces this mechanism with turnstiles. Turnstiles restrict the sleep queue to threads blocked on that
very resource, thus providing a more reasonable bound on the time taken to process the queue.

Threads in a turnstile are queued in order of their priority. Synchronization objects support
two kinds of unlocking behavior-signa/,6 which wakes up a single blocked thread, and broadcast,
which wakes up all threads blocked on the resource. In Solaris, signal wakes up the highest-priority
thread from the queue.

5.6.8 Analysis

Solaris 2.x provides a sophisticated environment for multithreaded and real-time processing for uni
processors and multiprocessors. It addresses several shortcomings in the SVR4 scheduling imple
mentation. Measurements on a Sparcstation 1 [Khan 92] show that the dispatch latency was under 2
milliseconds for most situations. This is largely due to the fully preemptible kernel and priority in
heritance.

Although Solaris provides an environment suitable for many real-time applications, it is
primarily a general-purpose operating system. A system designed purely for real-time would pro
vide many other features such as gang scheduling of processors and deadline-driven or priority
based scheduling ofl/0 devices. These issues are discussed further in Section 5.9.

Let us now review some other scheduling algorithms in commercial and experimental UNIX
variants.

5.7 Scheduling in Mach

Mach is a multithreaded, multiprocessor operating system. It is designed to run on all types of ma
chines, ranging from uniprocessors to massively parallel systems containing hundreds of CPUs that
share a common address space. Hence it requires a scheduler that scales well for all targets
[Blac 90].

The basic programming abstractions of Mach-tasks and threads-are described in Section
3. 7. The thread is the fundamental scheduling entity, and Mach schedules threads regardless of the
task to which they belong. This approach sacrifices some performance, for context switches be
tween threads of the same task are much faster than between threads belonging to different tasks
(because the memory management maps need not be changed). A policy that favors intra-process
switching, however, may conflict with the goals of usage and load balancing. Furthermore, the dif
ference in performance between the two types of context switches may be insignificant, depending
on the hardware and applications involved.

Each thread inherits a base scheduling priority from the task to which it belongs. This prior
ity is combined with a CPU usage factor, which is maintained separately for each thread. Mach de
cays the CPU usage of each thread by a factor of 5/8 for each second that it is inactive. The decay

6 This signaling behavior is completely unrelated to the traditional UNIX signals. As UNIX inherits terminology from
multiple sources, some terms are overused in this fashion.

140 Chapter 5 Process Scheduling

algorithm is distributed. Each thread monitors its own CPU usage and recomputes it when it awak
ens after blocking. The clock interrupt handler adjusts the usage factor of the current thread. To
avoid starving low-priority threads that remain on run queues without getting a chance to recompute
their priorities, an internal kernel thread runs every two seconds, recomputing the priorities of all
runnable threads.

The scheduled thread runs for a fixed time quantum. At the end of this quantum, it can be
preempted by another thread of equal or higher priority. The current thread's priority may drop be
low that of other runnable threads before its initial quantum expires. In Mach, such reductions do
not cause context switches. This feature reduces the number of context switches that are solely re
lated to usage balancing. The current thread can be preempted if a higher-priority thread becomes
runnable, even though its quantum has not expired.

Mach provides a feature called handoff scheduling, whereby a thread can directly yield the
processor to another thread without searching the run queues. The interprocess communication
(IPC) subsystem uses this technique for message passing-if a thread is already waiting to receive a
message, the sending thread directly yields the processor to the receiver. This improves the per
formance of the IPC calls.

5.7.1 Multiprocessor Support

Mach supports a wide range of hardware architectures, from small uniprocessors to massively paral
lel machines comprising over a hundred processors. Its scheduler provides several features for effi
cient management of processors.

Mach does not use cross-processor interrupts for preemption. Suppose an event on one proc
essor results in a thread becoming runnable with a priority higher than that of another thread run
ning on a different processor. The latter thread will not be preempted until the other processor han
dles a clock interrupt or another scheduler-related event. The absence of cross-processor preemption
does not degrade time-sharing behavior; it may, however, become necessary for efficient response
to real-time applications.

Mach allows users to control processor allocation by creating processor sets, each of which
may contain zero or more processors. Each processor belongs to a single processor set, but may be
moved from one set to another. Each task or thread is assigned to a processor set, and again, the as
signment may be changed at any time. Only privileged tasks are allowed to assign processors, tasks,
and threads to processor sets.

A thread may run only on one of the processors in the set to which it is assigned. The as
signment of the task to a processor set establishes the default set to which new threads of the task
are assigned. Tasks inherit the assignment from their parent, and the initial task is assigned to the
default processor set. The default set initially contains all processors of the system. It must always
contain at least one processor, because internal kernel threads and daemons are assigned to this set.

Processor allocation can be handled by a user-level server program (running as a privileged
task) that determines the allocation policy. Figure 5-12 describes the typical interactions between
the application, the server, and the kernel. The application allocates the processor set and assigns
threads to it. The server allocates processors to the set. The sequence of events is as follows:

1. The application asks the kernel to allocate a processor set.

5.7 Scheduling in Mach 141

kernel

®
application

®
Figure 5-12. Processor allocation in Mach.

2. The application requests the server for processors for this set.
3. The server asks the kernel to assign processors to this set.
4. The server replies to the application indicating that the processors have been allocated.
5. The application asks the kernel to assign threads to this set.
6. The application uses the processors and notifies the server when it is finished.
7. The server reassigns the processors.

This allows tremendous flexibility in managing CPU utilization in the system, especially on
a massively parallel system with a large number of processors. It is possible, for instance, to dedi
cate several processors to a single task or group of tasks, thereby guaranteeing a portion of the
available resources to these tasks, regardless of the total load on the system. In the extreme case, an
application may seek to dedicate one processor to each of its threads. This is known as gang
scheduling.

Gang scheduling is useful for applications that require barrier synchronization. Such appli
cations create several threads that operate independently for a while, then reach a synchronization
point called a barrier. Each thread must wait at the barrier until the rest of the threads get there. Af
ter all threads synchronize at the barrier, the application may run some single-threaded code, then
create another batch of threads and repeat the pattern of activity.

For such an application to perform optimally, the delay at the barrier must be minimized.
This requires that all threads reach the barrier at about the same time. Gang scheduling allows the
application to begin the threads together, and bind each to a separate processor. This helps minimize
the barrier synchronization delay.

Gang scheduling is also useful for fine-grained applications whose threads interact fre
quently. With these applications, if a thread is preempted, it may block other threads that need to
interact with it. The drawback of dedicating processors to single threads is that if the thread must
block, the processor cannot be used.

All processors in the system may not be equivalent-some may be faster, some may have
floating point units attached to them, and so forth. Processor sets make it easy to use the right proc
essors for the right jobs. For example, processors with floating point units may be assigned only to
threads that need to perform floating point arithmetic.

142 Chapter 5 Process Scheduling

Additionally, a thread may be temporarily bound to a specific processor. This feature serves
mainly to support the unparallelized (not multiprocessor-safe) portion of Mach's UNIX compatibil
ity code, which runs on a single, designated master processor. Each processor has a local run queue,
and each processor set has a global run queue shared by all processors in that set. Processors first
examine their local run queue, thereby giving absolute preference to bound threads (even over
higher-priority unbound threads). This decision was made in order to provide maximum throughput
to the unparallelized UNIX code, thus avoiding a bottleneck.

5.8 The Digital UNIX Real-Time Scheduler

The Digital UNIX scheduler supports both time-sharing and real-time applications [DEC 94]. It
complies with the POSIX 1003.lb interface [IEEE 93] that defines real-time programming exten
sions. While Digital UNIX is derived from Mach, its scheduler is completely redesigned. It supports
the following three scheduling classes:

• SCH ED_ OTHER, or time-sharing.
• SCHED_FIFO, or first-in, first-out.
• SCHED _ RR, or round-robin.

A user can call sched _setscheduler to set the scheduling class and priority of a process. The
default class is time-sharing. It varies process priorities dynamically, based on the nice value and the
CPU usage. The FIFO and round-robin classes use fixed priorities. Processes using a SCHED _FIFO
policy have no time quantum and continue to run until they voluntarily yield the processor or are
preempted by a higher-priority process. The time-sharing and round-robin classes impose a time
quantum, which affects scheduling of processes at the same priority. When a time-sharing or round
robin process finishes its quantum, it goes to the end of the process list of its priority. Of course, if
there is no runnable process at higher or equal priority, this process continues to run.

The scheduler always runs the highest-priority runnable process. Each process has a priority
in the range 0--63, with smaller numbers denoting lower priorities. The scheduler maintains an or
dered queue for each priority, and selects the process at the front of the highest nonempty queue.
When a blocked process becomes runnable or a running process yields the processor, it is usually
placed at the end of the queue for its priority. The exception is when a process is preempted before it
finishes its quantum. In this case, the process is returned to the front of its queue, so that it will be
allowed to finish its quantum before running other processes with the same priority.

The priority ranges for the three classes overlap, which allows a great deal of flexibility. The
following rules govern the assignment of process priorities:

• Time-sharing processes have priorities between 0 and 29. Superuser privileges are re
quired to raise the priority above 19.

• Users control time-sharing priorities by changing the nice value of the process via the nice
system call. The nice value ranges from -20 to +20, with smaller numbers denoting higher
priorities (for backward compatibility). Only the superuser can set negative nice values,
which correspond to process priorities in the 20-29 range.

5.9 Other Scheduling Implementations

• The CPU usage factor reduces the priority of time-sharing processes according to the
amount of CPU time it receives.

• System processes have fixed priorities in the range 20-31.
• Fixed-priority processes may be assigned any priority from 0 to 63. Superuser privileges

are required, however, to assign priorities higher than 19. Priorities in the range 32-63 are
real-time priorities, since such processes cannot be preempted by system processes.

143

The sched _setparam call changes priorities of processes in the FIFO and round-robin
classes. The schedyield call puts the calling process at the end of the queue for its priority, thereby
yielding the processor to any runnable process at the same priority. If there is no such runnable
process, the caller continues to run.

5.8.1 Multiprocessor Support
Digital UNIX allows efficient utilization of multiprocessors by tuning its scheduler to optimize
context switches and cache utilization [Denh 94]. Ideally, the scheduler would like to always run the
highest-priority runnable threads on all available processors. Such a policy requires the scheduler to
maintain a global set of run queues shared by all processors. This can create a bottleneck, since all
processors race to lock these queues. Moreover, when a thread runs, it populates the data and in
struction caches on the processor. If the thread is preempted and rescheduled shortly afterward, it is
advantageous to run it on the same processor if possible, since it could benefit from the earlier
caching.

To reconcile these conflicting objectives, Digital UNIX uses a soft affinity policy for time
sharing threads. Such threads are kept on local, per-processor run queues, and hence are usually re
scheduled on the same processor. This also reduces the contention on the run queues. The scheduler
monitors the run queues on each processor and prevents load imbalance by moving threads from run
queues of overloaded processors to run queues of lightly loaded ones.

Fixed-priority threads are scheduled from a global run queue, since they should run as soon
as possible. The kernel schedules them on the processor on which they last ran whenever possible.
Finally, Digital UNIX provides the bind_to_cpu system call, which forces a thread to run only on a
specific processor. This is useful for code that is not multiprocessor-safe.

The Digital UNIX scheduler provides a POSIX-compliant real-time scheduling interface.
However, it lacks many features of Mach and SVR4. It does not provide an interface for processor
set allocation or handoff scheduling. Its kernel is nonpreemptive and has no provision for control
ling priority inversion.

5.9 Other Scheduling Implementations

The desired scheduling behavior of the system depends on the needs of the applications that run on
it. Some systems run time-critical, real-time applications, some are largely time-sharing, and some
have a mix of both. Some systems have an extremely large number of running processes, for which
the existing algorithms do not scale well. This has motivated several different scheduler designs,

144 Chapter 5 Process Scheduling

some of which have found their way into various UNIX implementations. This section examines a
few interesting treatments.

5.9.1 Fair-Share Scheduling

A fair-share scheduler allocates a fixed share of CPU resources to each share group of processes. A
share group may consist of a single process, all processes of a single user, all processes in a login
session, and so on. The superuser may be able to choose how to apportion CPU time between the
share groups. The kernel monitors the CPU usage to enforce the chosen allocation formula. If any
group does not use up its allocated share, the remainder is usually divided among the other groups
in the ratio of their original shares.

This approach provides each share group with a predictable amount of processing time, in
dependent of the total load on the system. This is particularly useful in environments where comput
ing time is a billable resource, because resources can be allocated to users at a fixed cost. It could
also be used to guarantee resources to critical applications in a time-sharing system. [Hem 84] de
scribes one implementation of a fair-share scheduler.

5.9.2 Deadline-Driven Scheduling

Many real-time applications must respond to events within certain deadlines. For instance, a multi
media server may deliver video frames to a client every 33 milliseconds. If it reads the data from a
disk, it can set a deadline by which the disk read must complete. If the deadline is missed, a frame
will be delayed. Deadlines may apply to I/0 requests or computations. In the latter case, a thread
might require a known amount of CPU time before a deadline.

Such applications benefit from deadline-driven scheduling algorithms. The basic principle is
to vary priorities dynamically, increasing the priority as the deadline draws closer. One example of
such a scheduler is in the Ferranti-Originated Real-Time Extension to UNIX (FORTUNIX), de
scribed in [Bond 88]. Its algorithm defines four different priority levels:

• Hard real-time for deadlines that must always be met.
• Soft real-time where deadlines should be met with a quantifiable probability, but occa

sional misses are tolerable.
• Time-sharing, with no specific deadlines, but where a reasonable response time is ex

pected.
• Batch jobs whose deadlines are given in hours instead of milliseconds.

The system schedules processes in order of their priority level so that, for instance, a soft
real-time process can only be scheduled if there is no runnable hard real-time process. Within
classes 1, 2, and 4, processes are scheduled in order of their deadlines; the one with the earliest
deadline is scheduled first. Processes in these classes run until they complete or block, unless a
process from a higher class, or one in the same class with an earlier deadline, becomes runnable.
Time-sharing processes are scheduled in the traditional UNIX manner based on a priority that de
pends on the nice value and the recent CPU usage.

5.9 Other Scheduling Implementations 145

Deadline-driven scheduling is a suitable approach for a system that primarily runs processes
with known response time requirements. The same priority scheme can be applied to scheduling
disk I/0 requests, and so forth.

5.9.3 A Three-Level Scheduler

UNIX schedulers are unable to provide the guarantees required by real-time applications while also
allowing an arbitrary, mixed workload. A major reason for this is the lack of admission control.
There is no restriction on the number or nature of real-time and general-purpose tasks that can be
started in the system. The system allows all processes to compete for resources in an uncontrolled
manner. It relies on the users being sufficiently informed and cooperative to not overload the sys
tem.

[Rama 95] describes a three-level scheduler used in a real-time operating system for a multi
protocol file and media server. The scheduler provides three classes of service-isochronous, real
time, and general-purpose. The isochronous class supports periodic activities such as video frame
delivery, which must be invoked at fixed intervals with minimumjitter, or variation. The real-time
class supports aperiodic tasks that require bounded dispatch latency. Finally, the general-purpose
class supports low-priority background activities. The scheduler ensures that such low-priority tasks
make progress without impacting the guarantees provided to the isochronous streams.

The scheduler imposes an admission control policy. Before accepting a new video stream, it
reserves all the resources the stream will require. This includes a percentage of the CPU time, disk
bandwidth, and network controller bandwidth. If the server cannot reserve the resources, it does not
admit the request. Each real-time service may only process a bounded number of work units on each
activation. For instance, a network driver may process only a certain number of incoming messages
before yielding the CPU. The scheduler also sets aside a fixed portion of all resources for general
purpose activities, which are not subject to admission control. This avoids starvation of general
purpose requests in a heavily loaded system.

For this to work, the system schedules not only CPU time, but also disk and network activi
ties. It assigns priorities to I/0 requests based on the task that initiates them, and handles high
priority requests before lower-priority ones. The end-to-end bandwidth reservation of all resources
ensures that the system will meet the guarantees made to all admitted video streams. It also ensures
that low-priority tasks make progress, even under maximal loads.

In the three-level scheduler, general-purpose tasks are fully preemptible. Real-time tasks
may be preempted by isochronous tasks at well-defined preemption points, which typically occur
upon completion of each single unit of work. Isochronous tasks use a rate-monotonic scheduling
algorithm [Liu 73]. Each such task has a fixed scheduling priority, which depends on its period. The
lower the period, the higher its priority. A high-priority isochronous task may preempt a lower
priority one at preemption points. [Sha 86] has shown that the rate-monotonic algorithm is optimal
for scheduling fixed-priority, periodic tasks.

Another problem with traditional UNIX servers is the inability to cope with saturation due to
excessive load. UNIX systems perform much of the network processing of incoming requests at the
interrupt level. If the incoming traffic is very high, the system spends most of its time processing
interrupts and has very few cycles remaining to service the requests. Once the incoming load ex-

146 Chapter 5 Process Scheduling

ceeds a critical level, the server throughput drops rapidly. This is known as receive livelock. The
three-level scheduler addresses this problem by moving all network processing to real-time tasks,
which bound the amount of traffic they will service in a single invocation. If the incoming traffic
exceeds the critical value, the server will drop excess requests, but still be able to make progress on
the requests that it accepts. Hence, after peaking, the throughput remains nearly constant instead of
declining.

5.10 Summary

We have examined several scheduling architectures and shown how they affect system response to
different types of applications. Because computers are used in very different environments, each
with its own set of requirements, no one scheduler is ideal for all systems. The Solaris 2.x scheduler
is adequate for many applications, and provides the framework for dynamically adding other
scheduling classes to suit the needs of specific environments. It lacks some features such as real
time streams I/0 and user-controlled disk scheduling, but is still an improvement over the tradi
tional UNIX scheduler. Some other solutions we have seen are targeted primarily at a specific appli
cation domain such as parallel processing or multimedia.

5.11 Exercises

1. Why are callouts not handled by the primary clock interrupt handler?
2. In which situations will timing wheels be more efficient than the 4.3BSD algorithm for

managing callouts?
3. What are the advantages and disadvantages of using delta times as opposed to absolute times

in callouts?
4. Why do UNIX systems usually favor I/O-bound processes over CPU-bound processes?
5. What are the benefits of the object-oriented interface of the SVR4 scheduler? What are the

drawbacks?
6. Why ares 1 pret and 1 wait given higher values than tqexp in each row of Table 5-1?
7. For what reasons are real-time processes given higher priorities than kernel processes? What

are the drawbacks of doing this?
8. How does event-driven scheduling favor I/O-bound and interactive applications?
9. Regarding the [Nieh 93] experiments described on page 130, what would be the effect if the X

server, the video application, and the interactive task were all assigned real-time priorities,
while the batch job was given a time-sharing priority?

10. Suppose a process releases a resource for which several processes are waiting. When is it
preferable to wake up all such processes, and when is it better to wake only one? If waking
just one process, how should that process be chosen?

11. Gang scheduling assumes that each thread runs on a separate processor. How will an
application requiring barrier synchronization behave if there are fewer processors than
runnable threads? In such a situation, can the threads busy-wait at the barrier?

5.12 References 147

12. What are the different ways in which Solaris2.x supports real-time applications? In what
respects is this inadequate?

13. Why is deadline-driven scheduling unsuitable for a conventional operating system?
14. What are the characteristics of real-time processes? Give some examples of periodic and

nonperiodic real-time applications.
15. It is possible to reduce response time and dispatch latency simply by using a faster processor.

What distinguishes a real-time system from a fast, high-performance system? Can a system
that is slower overall be better suited for real-time applications?

16. What is the difference between hard real-time and soft real-time requirements?
17. Why is admission control important in a real-time system?

5.12 References

[AT&T 90]

[Blac 90]

[Bond 88]

[DEC 86]
[DEC 94]

[Denh 94]

[Henr 84]

[IEEE 93]

[Khan 92]

[Lamp 80]

[Liu 73]

[Leff89]

American Telephone and Telegraph, UNIX System V Release 4 Internals Students
Guide, 1990.
Black, D.L., "Scheduling Support for Concurrency and Parallelism in the Mach
Operating System," IEEE Computer, May 1990, pp. 35-43.
Bond, P.G., "Priority and Deadline Scheduling on Real-Time UNIX," Proceedings
of the Autumn 1988 European UNIX Users' Group Conference, Oct. 1988, pp. 201-
207.
Digital Equipment Corporation, VAX Architecture Handbook, Digital Press, 1986.
Digital Equipment Corporation, DEC OSF/1 Guide to Realtime Programming, Part
No. AA-PS33C-TE, Aug. 1994.
Denham, J.M., Long, P., and Woodward, J.A., "DEC OSF/1 Version 3.0 Symmetric
Multiprocessing Implementation," Digital Technical Journal, Vol. 6, No.3, Summer
1994, pp. 29-54.
Henry, G.J., "The Fair Share Scheduler," AT&T Bell Laboratories Technical
Journal, Vol. 63, No.8, Oct 1984, pp. 1845-1857.
Institute for Electrical and Electronic Engineers, POSIX PI 003.4b, Real-Time
Extensions for Portable Operating Systems, 1993.
Khanna, S., Sebree, M., and Zolnowsky, J., "Realtime Scheduling in SunOS 5.0,"
Proceedings of the Winter 1992 USENIXTechnical Conference, Jan. 1992.
Lampson, B.W. and Redell, D.D., "Experiences with Processes and Monitors in
Mesa," Communications of the ACM, vol. 23, no. 2, Feb 1980, pp. 105-117.
Liu, C.L., and Layland, J.W., "Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment:, Journal of the ACM, Vol. 20, no. 1, Jan. 1973, pp.
46-61.
Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and
Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, Reading,
MA, 1989.

148

[Nieh 93]

[Rama 95]

[Sha 86]

[Sha 90]

[Stra 86]

[Varg 87]

Chapter 5 Process Scheduling

Nieh, J., "SVR4 UNIX Scheduler Unacceptable for Multimedia Applications,"
Proceedings of the Fourth International Workshop on Network and Operating
Support for Digial Audio and Video, 1993.
Ramakrishnan, K.K., Vaitzblit, L., Gray, C.G., Vahalia, U., Ting, D., Tzelnic, P.,
Glaser, S., and Duso, W.W.,"Operating System Support for a Video-on-Demand File
Server," Multimedia Systems, Vol. 3, No.2, May 1995, pp. 53-65.
Sha, L., and Lehoczky, J.P., "Performance of Real-Time Bus Scheduling
Algorithms," ACM Performance Evaluation Review, Special Issue, Vol. 14, No. 1,
May 1986.
Sha, L., Rajkumar, R., and Lehoczky, J.P., "Priority Inheritance Protocols: An
Approach to Real-Time Synchronization," IEEE Tansactions on Computers, Vol. 39,
No.9,Sep. 1990,pp. 1175-1185.
Straathof, J.H., Thareja, A.K., and Agrawala, A.K., "UNIX Scheduling for Large
Systems," Proceedings of the Winter 1986 USENIX Technical Conference, Jan.
1986.
Varghese, G., and Lauck, T., "Hashed and Hierarchical Timing Wheels: Data
Structures for the Efficient Implementation of a Timer Facility," Eleventh ACM
Symposium on Operating Systems Principles, Nov. 1987, pp. 25-38.

6

lnterprocess
Communications

6.1 Introduction

A complex programming environment often uses multiple cooperating processes to perform related
operations. These processes must communicate with each other and share resources and informa
tion. The kernel must provide mechanisms that make this possible. These mechanisms are collec
tively referred to as interprocess communications, or IPC. This chapter describes the IPC facilities
in major UNIX variants.

Interprocess interactions have several distinct purposes:

• Data transfer - One process may wish to send data to another process. The amount of
data sent may vary from one byte to several megabytes.

• Sharing data - Multiple processes may wish to operate on shared data, such that if a
process modifies the data, that change will be immediately visible to other processes
sharing it.

• Event notification - A process may wish to notify another process or set of processes
that some event has occurred. For instance, when a process terminates, it may need to in
form its parent process. The receiver may be notified asynchronously, in which case its
normal processing is interrupted. Alternatively, the receiver may choose to wait for the
notification.

• Resource sharing - Although tii.e kernel provides default semantics for resource alloca
tion, they are not suitable for all applications. A set of cooperating processes may wish to
define their own protocol for accessing specific resources. Such rules are usually imple-

149

150 Chapter 6 lnterprocess Communications

mented by a locking and synchronization scheme, which must be built on top of the basic
set of primitives provided by the kernel.

• Process control - A process such as a debugger may wish to assume complete control
over the execution of another (target) process. The controlling process may wish to inter
cept all traps and exceptions intended for the target and be notified of any change in the
target's state.

UNIX provides several different IPC mechanisms. This chapter first describes a core set of
facilities found in all versions of UNIX, namely signals, pipes, and process tracing. It then examines
the primitives collectively described as System V !PC. Finally, it looks at message-based IPC in
Mach, which provides a rich set of facilities from a single, unified framework.

6.2 Universal IPC Facilities

When the UNIX system was first released externally [Thorn 78], it provided three facilities that
could be used for interprocess communications-signals, pipes, and process tracing. I These are the
only IPC mechanisms common to all UNIX variants. Signals and pipes are described in greater de
tail elsewhere in this book; in this section, we discuss how they are used for interprocess communi
cations.

6.2.1 Signals

Signals serve primarily to notify a process of asynchronous events. Originally intended for handling
errors, they are also used as primitive IPC mechanisms. Modem UNIX versions recognize 31 or
more different signals. Most have predefined meanings, but at least two, SIGUSRl and SIGUSR2, are
available for applications to use as they please. A process may explicitly send a signal to another
process or processes using the kill or killpg system calls. Additionally, the kernel generates signals
internally in response to various events. For instance, typing control-C at the terminal sends a
SIGINT signal to the foreground process.

Each signal has a default action, which is typically to terminate the process. A process may
specify an alternative response to any signal by providing a signal handler function. When the signal
occurs, the kernel interrupts the process, which responds to the signal by running the handler. When
the handler completes, the process may resume normal processing.

This way processes are notified of, and respond to, asynchronous events. Signals can also be
used for synchronization. A process may use the sigpause call to wait for a signal to arrive. In early
UNIX releases, many applications developed resource sharing and locking protocols based entirely
on signals.

The original intent was to use signals primarily for handling errors; for example, the kernel
translates hardware exceptions, such as division by zero or invalid instruction, into signals. If the
process does not have an error handler for that exception, the kernel terminates the process.

I The earliest UNIX systems in Bell Telephone Laboratories did not have these features. For instance, pipes were de
veloped by Doug Mcilroy and Ken Thompson and made available in Version 3 UNIX in 1973 [Salu 94].

6.2 Universal !PC Facilities !51

As an IPC mechanism, signals have several limitations: Signals are expensive. The sender
must make a system call; the kernel must interrupt the receiver and extensively manipulate its stack,
so as to invoke the handler and later resume the interrupted code. Moreover, they have a very lim
ited bandwidth-because only 31 different signals exist (in SVR4 or 4.3BSD; some variants such as
AIX provide more signals), a signal can convey only a limited amount of information. It is not pos
sible to send additional information or arguments with user-generated signals.2 Signals are useful
for event notification, but are inefficient for more complicated interactions.

Signals are discussed in detail in Chapter 4.

6.2.2 Pipes
In traditional implementations, a pipe is a unidirectional, first-in first-out, unstructured data stream
of fixed maximum size.3 Writers add data to the end of the pipe; readers retrieve data from the front
of the pipe. Once read, the data is removed from the pipe and is unavailable to other readers. Pipes
provide a simple flow-control mechanism. A process attempting to read from an empty pipe blocks
until more data is written to the pipe. Likewise, a process trying to write to a full pipe blocks until
another process reads (and thus removes) data from the pipe.

The pipe system call creates a pipe and returns two file descriptors-one for reading and one
for writing. These descriptors are inherited by child processes, which thus share access to the file.
This way, each pipe can have several readers and writers (Figure 6-1). A given process may be a
reader or writer, or both. Normally, however, the pipe is shared between two processes, each own
ing one end. I/0 to the pipe is much like I/0 to a file and is performed through read and write sys
tem calls to the pipe's descriptors. A process is often unaware that the file it is reading or writing is
in fact a pipe.

senders recetvers

data

Figure 6-1. Data flow through a pipe.

2 Signals generated by the kernel in response to hardware exceptions return additional information via the s i gi nfo
structure passed to the handler.

3 Traditional UNIX systems such as SVR2 implement pipes in the file system and use the direct block address fields in
the inode (see Section 9.2.2) to locate data blocks of the pipe. This limits the pipe size to ten blocks. Newer UNIX
systems retain this limit, even though they implement pipes differently.

!52 Chapter 6 Interprocess Communications

Typical applications such as the shell manipulate the descriptors so that a pipe has exactly
one reader and one writer, thus using it for one-way flow of data. The most common use of pipes is
to let the output of one program become the input for another. Users typically join two programs by
a pipe using the shell's pipe operator ('I').

From the IPC perspective, pipes provide an efficient way of transferring data from one proc
ess to another. They have, however, some important limitations:

• Since reading data removes it from the pipe, a pipe cannot be used to broadcast data to
multiple receivers.

• Data in a pipe is treated as a byte-stream and has no knowledge of message boundaries. If
a writer sends several objects of different length through the pipe, the reader cannot de
termine how many objects have been sent, or where one object ends and the next begins.4

• If there are multiple readers on a pipe, a writer cannot direct data to a specific reader.
Likewise, ifthere are multiple writers, there is no way to determine which of them sent the
data.s

There are several ways to implement pipes. The traditional approach (in SVR2, for instance)
is to use the file system mechanisms and associate an inode and a file table entry with each pipe.
Many BSD-based variants use sockets to implement a pipe. SVR4 provides bidirectional,
STREAMS-based pipes, described in the following section.

A related facility available in System V UNIX, and in many commercial variants, is the
FIFO (first-in, first-out) file, also called a named pipe. These differ from pipes mainly in the way
they are created and accessed. A user creates a FIFO file by calling mknod, passing it a filename and
a creation mode. The mode field includes a file type of S _I FIFO and the usual access permissions.
Thereafter, any process that has the appropriate permissions can open the FIFO and read or write to
it. The semantics of reading and writing a FIFO are very similar to those of a pipe, and are further
described in Section 8.4.2. The FIFO continues to exist until explicitly unlinked, even if no readers
or writers are active.

FIFOs offer some important advantages over pipes. They may be accessed by unrelated
processes. They are persistent, and hence are useful for data that must outlive the active users. They
have a name in the file system name space. FIFOs also have some important drawbacks. They must
be explicitly deleted when not in use. They are less secure than pipes, since any process with the
right privileges can access them. Pipes are easier to set up and consume fewer resources.

6.2.3 SVR4 Pipes
SVR4 uses STREAMS (see Chapter 17) as its basic framework for networking and also to imple
ment pipes and FIFOs. Doing so allows it to provide several new and useful features for pipes.6 This
section describes the new functionality; Section 17.9 covers the implementation details.

SVR4 pipes are bidirectional. The pipe system call returns two descriptors as before, but
both are open for reading and writing. The syntax (same as for traditional UNIX) is

4 Cooperating applications could agree on a protocol to store packet boundary information in each object.
5 Again, cooperating applications could agree on a protocol for tagging the data source for each object.
6 This new functionality applies only to pipes. SVR4 FIFOs behave much like traditional ones.

6.2 Universal IPC Facilities !53

status =pipe (int fildes[2]);

In SVR4, this call creates two independent, first-in first-out, I/0 channels that are represented by the
two descriptors. Data written to fi 1 des [1] can be read from fi 1 des [0], and data written to
fi 1 des [0] can be read from fi 1 des [1]. This is very useful because many applications require
two-way communication, and used two separate pipes in pre-SVR4 implementations.

SVR4 also allows a process to attach any STREAMS file descriptor to an object in the file
system [Pres 90]. An application can create a pipe using pipe, and then bind either of its descriptors
to a file name by calling

status = fattach (int fildes, char *path);

where path is the pathname of a file system object owned by, and writable by, the caller.? This ob
ject can be an ordinary file, directory, or other special file. It cannot be an active mount point
(cannot have a file system mounted on it) or an object in a remote file system, and also cannot be
attached to another STREAMS file descriptor. It is possible to attach a descriptor to several paths,
thereby associating multiple names with it.

Once attached, all subsequent operations on path will operate on the STREAMS file until
the descriptor is detached from path throughfdetach. Using this facility, a process can create a pipe
and then allow unrelated processes to access it.

Finally, users can push STREAMS modules onto a pipe or FIFO. These modules intercept
the data flowing through the stream and process it in some way. Because the modules execute inside
the kernel, they can provide functionality not possible with a user-level application. Nonprivileged
users cannot add modules to the system, but can push modules onto streams they have opened.

6.2.4 Process Tracing

The ptrace system call provides a basic set of facilities for process tracing. It is primarily used by
de buggers such as sdb and dbx. Using ptrace, a process can control the execution of a child process.
Multiple children can be controlled with ptrace, though that feature is seldom used. The syntax for
ptrace is

ptrace (cmd, pid, addr, data);

where pi d is the process ID ofthe target process, addr refers to a location in the target's address
space, and interpretation of the data argument depends on cmd. The cmd argument allows the parent
to perform the following operations:

• Read or write a word in the child's address space.
• Read or write a word in the child's u area.
• Read or write to the child's general-purpose registers.

7 Or else the caller must be a privileged process.

!54 Chapter 6 Interprocess Communications

• Intercept specific signals. When an intercepted signal is generated for the child, the kernel
will suspend the child and notify the parent of the event.

• Set or delete watchpoints in the child's address space.
• Resume the execution of a stopped child.
• Single-step the child-resume its execution, but arrange for it to stop again after executing

one instruction.
• Terminate the child.

One command (cmd == 0) is reserved for the child. The child uses this command to inform
the kernel that it (the child) will be traced by its parent. The kernel sets the child's traced flag (in its
proc structure), which affects how the child responds to signals. If a signal is generated to a traced
process, the kernel suspends the process and notifies its parent via a SIGCHLD signal, instead of in
voking the signal handler. This allows the parent to intercept the signal and act appropriately. The
traced flag also changes the behavior of the exec system call. When the child invokes a new pro
gram, exec generates a SIGTRAP signal to the child before returning to user mode. Again, this allows
the parent to gain control of the child before the child begins to run.

The parent typically creates the child, which invokes ptrace to allow the parent to control it.
The parent then uses the wait system call to wait for an event that changes the child's state. When
the event occurs, the kernel wakes up the parent. The return value of wait indicates that the child has
stopped rather than terminated and supplies information about the event that caused the child to
stop. The parent then controls the child by one or more ptrace commands.

Although ptrace has allowed the development of many debuggers, it has several important
drawbacks and limitations:

• A process can only control the execution of its direct children. If the traced process forks,
the debugger cannot control the new process or its descendants.

• ptrace is extremely inefficient, requiring several context switches to transfer a single word
from the child to the parent. These context switches are necessary because the debugger
does not have direct access to the child's address space.

• A debugger cannot trace a process that is already running, because the child first needs to
call ptrace to inform the kernel that it is willing to be traced.

• Tracing a setuid program raises a security problem if such a program subsequently calls
exec. A crafty user could use the debugger to modify the target's address space, so that
exec invokes the shell instead of the program it was asked to run. As a result, the user ob
tains a shell with superuser privileges. To avoid this problem, UNIX either disables trac
ing of setuid programs or inhibits the setuid and setgid actions on subsequent exec calls.

For a long time, ptrace was the only tool for debugging programs. Modern UNIX systems
such as SVR4 and Solaris provide much more efficient debugging facilities using the /proc file
system [Faul 91], described in Section 9.11.2. It is free from the limitations of ptrace and provides
additional capabilities such as allowing a process to debug umelated processes, or allowing a de
bugger to attach to a running process. Many debuggers have been rewritten to use /proc instead of
ptrace.

6.3 System V IPC 155

6.3 System V IPC

The facilities described in the previous section do not satisfy the IPC requirements of many applica
tions. A major advancement came with System V UNIX, which provided three mechanisms
semaphores, message queues, and shared memory-that have collectively come to be known as
System V IPC [Bach 86]. They were originally designed to support the needs of transaction
processing applications. Subsequently, they have been implemented by most UNIX vendors, includ
ing those making BSD-based systems. This section describes the functionality provided by these
mechanisms and how they are implemented in UNIX.

6.3.1 Common Elements

The three mechanisms are very similar in their interface to the programmer, as well as their
implementation. In describing these common features, we use the term !PC resource (or simply, a
resource) to refer to a single semaphore set, message queue, or shared memory region. Each in
stance of an IPC resource has the following attributes:

• Key - a user-supplied integer that identifies this instance of the resource.
• Creator- user and group IDs of the process that created the resource.
• Owner - user and group IDs of the owner of the resource. When the resource is created,

the creator of the resource is also its owner. Subsequently, a process that has permission to
change the owner may specify a new owner. The creator, current owner, and superuser
processes have this permission.

• Permissions - file system-type read/write/execute permissions for owner, group, and
others.

A process acquires a resource by making a shmget, semget, or msgget system call, passing to
it the key, certain flags, and other arguments that depend on the specific mechanism. The permitted
flags are IPC_CREAT and IPC_EXCL. IPC_CREAT asks the kernel to create the resource if it does not
exist. IPC_EXCL is used in conjunction with IPC_CREAT and asks the kernel to return an error ifthe
resource already exists. If no flags are specified, the kernel searches for an existing resource with
the same key.B If found, and if the caller has permission to access it, the kernel returns a resource ID
that may be used to locate the resource quickly for further operations.

Each mechanism has a control system call (shmctl, semctl, or msgctl) that provides several
commands. The commands include IPC_STAT and IPC_SET to obtain and set status information (the
specifics depend on the mechanism), and IPC_RMID to deallocate the resource. Semaphores provide
additional control commands to obtain and set values of individual semaphores in the set.

Each IPC resource must be explicitly deallocated by the I PC_ RM I D command. Otherwise, the
kernel considers it to be active even if all processes that were using it have terminated. This property
can be quite useful. For instance, a process may write data to a shared memory region or message

8 If the key is the special value !PC PRIVATE, the kernel creates a new resource. This resource cannot be accessed
through other get calls (since the k;;-mel will generate a new resource each time), and hence the caller has exclusive
ownership of it. The owner can share the resource with its children, who inherit it through the fork system call.

!56 Chapter 6 Interprocess Communications

queue and then exit; at a later time, another process can retrieve this data. The IPC resource can
persist and be usable beyond the lifetime of the processes accessing it.

The drawback, however, is that the kernel cannot determine if a resource has deliberately
been left active for use by future processes, or if it has been abandoned accidentally, perhaps be
cause the process that would have freed it terminated abnormally before doing so. As a result, the
kernel must retain the resource indefinitely. If this happens often, the system could run out of that
resource. At the very least, the resource ties up memory that could be better used.

Only the creator, current owner, or a superuser process can issue the I PC_ RM ID command.
Removing a resource affects all processes that are currently accessing it, and the kernel must ensure
that these processes handle this event gracefully and consistently. The specifics of this issue differ
for each IPC mechanism and are discussed in the following sections.

To implement this interface, each type of resource has its own fixed-size resource table. The
size of this table is configurable and limits the total number of instances of that IPC mechanism that
can simultaneously be active in the system. The resource table entry comprises a common i pc _perm
structure and a part specific to the type of resource. The i pc _perm structure contains the common
attributes of the resources (the key, creator and owner IDs, and permissions), as well as a sequence
number, which is a counter that is increased each time the entry is reused.

When a user allocates an IPC resource, the kernel returns the resource ID, which it computes
by the formula

id = seq * table size + index;

where seq is the sequence number of this resource, tab 1 e _size is the size of the resource table, and
index is the index of the resource in the table. This ensures that a new i d is generated if a table
element is reused, since seq is incremented. This prevents processes from accessing a resource us
ing a stale i d.

Note: To increment a variable means to increase its value by one; to
decrement it means to decrease its value by one. These terms are de
rived from the increment(++) and decrement(--) operators ofC.

The user passes the i d as an argument to subsequent system calls on that resource. The ker
nel translates the i d to locate the resource in the table using the formula

index = id % table_size;

6.3.2 Semaphores

Semaphores [Dijk 65] are integer-valued objects that support two atomic operations-P () and V () .9

The P () operation decrements the value of the semaphore and blocks if its new value is less than

9 The names P () and V () are derived from the Dutch words for these operations.

6.3 System V IPC 157

zero. The V () operation increments its value; if the resulting value becomes greater than or equal to
zero, V () wakes up a waiting thread or process (if any). The operations are atomic in nature.

Semaphores may be used to implement several synchronization protocols. For example,
consider the problem of managing a counted resource, that is, a resource with a fixed number of in
stances. Processes try to acquire an instance of the resource, and release it when they finish using it.
This resource can be represented by a semaphore that is initialized to the number of instances. The
P () operation is used while trying to acquire the resource; it will decrement the semaphore each
time it succeeds. When the value reaches zero (no free resources), further P () operations will block.
Releasing a resource results in a V () operation, which increments the value of the semaphore,
causing blocked processes to awaken.

In many UNIX systems, the kernel uses semaphores internally to synchronize its operations.
It is also desirable to provide the same facility for applications. System V provides a generalized
version of semaphores. The semget system call creates or obtains an array of semaphores (there is a
configurable upper bound on the array size). Its syntax is

semi d = semget (key, count, flag) ;

where key is a 32-bit value supplied by the caller. semget returns an array of count semaphores as
sociated with key. If no semaphore set is associated with key, the call fails unless the caller has
supplied the I PC_ C REA T flag, which creates a new semaphore set. If the I PC_ EX C L flag was also
provided, semget returns an error if a semaphore set already exists for that key. The semi d value is
used in subsequent semaphore operations to identify this semaphore array.

The semop system call is used to perform operations on the individual semaphores in this ar
ray. Its syntax is

status = semop (semid, sops, nsops);

where sops is a pointer to an nsops-element array of sembuf structures. Each sembuf, as described
below, represents one operation on a single semaphore in the set:

struct sembuf
unsigned short sem_num;
short sem_op;
short sem_flg;

} ;

sem _num identifies one semaphore from the array and sem _ op specifies the action to perform on it.
The value of sem _ op is interpreted as follows:

sem_op > 0

sem_op 0

Add sem_ op to the semaphore's current value. This may result in waking
up processes that are waiting for the value to increase.
Block until the semaphore's value becomes zero.

!58

sem_op < 0

Chapter 6 Interprocess Communications

Block until the semaphore's value becomes greater than or equal to the ab
solute value of sem _ op, then subtract sem _ op from that value. If the sema
phore's value is already greater than the absolute value of sem _ op, the
caller does not block.

Thus, a single semop call can specify several individual operations, and the kernel guaran
tees that either all or none of the operations will complete. Moreover, the kernel guarantees that no
other semop call on this array will begin until this one completes or blocks. If a semop call must
block after completing some of its component operations, the kernel rewinds the operation to the
beginning (undoes all modifications) to ensure atomicity of the entire call.

The sem _ fl g argument can supply two flags to the call. The I PC_ NOWAIT flag asks the ker
nel to return an error instead of blocking. Also, a deadlock may occur if a process holding a sema
phore exits prematurely without releasing it. Other processes waiting to acquire it may block forever
in the P () operation. To avoid this, a S EM_ UNDO flag can be passed to semop. If so, the kernel re
members the operation, and automatically rolls it back if the process exits.

Finally, semaphores must be explicitly removed by the IPC_RMID command of the semctl
call. Otherwise, the kernel retains them even they are no longer being used by any process. This al
lows semaphores to be used in situations that span process lifetimes, but can tie up resources if ap
plications exit without destroying the semaphores.

When a process issues the I PC_ RM I D command, the kernel frees up the semaphore in the re
source table. The kernel also wakes up any processes that have blocked on some semaphore opera
tion; these processes return an EIDRM status from the semop call. Once the semaphore is removed,
processes can no longer access it (whether using the key or the semid).

Implementation Details

The kernel translates the semi d to obtain the semaphore resource table entry, which is described by
the following data structure:

struct semid_ds {

} ;

struct ipc_perm sem_perm;
struct sem* sem_base;
ushort sem_nsems;
time t sem_otime;
time t sem_ctime;

/* see Section 6. 3.1 *I
/*pointer to array of semaphores in set *I
/*number of semaphores in set *I
I* last operation time *I
I* last change time *I

For each semaphore in the set, the kernel maintains its value and synchronization information in the
following structure:

6.3 System V IPC 159

struct sem {
ushort semval; l*cttrrentvdlue *I
pid:_ f sempjd; l*pidofprocessthdt invoked thelastoperd.tion *I
us ho rt semncnt; l*numofprocs }yctitin?[or semvaltoincrea~e *I
us h ort ·. se.rnzcnt; /* num ofprocs Ulaitingfor semval td equql.O :;

};

Finally, the kernel maintains an undo list for each process that has invoked semaphore op
erations with the SEM _UNDO flag. This list contains a record of each operation that must be rolled
back. When a process exits, the kernel checks if it has an undo list; if so, the kernel traverses the list
and reverses all the operations.

Discussion

Semaphores allow the development of complex synchronization facilities for use by cooperating
processes. On early UNIX systems that did not support semaphores, applications requiring syn
chronization sought and used other atomic operations in UNIX. One alternative is the link system
call, which fails if the new link already exists. If two processes try the same link operation at the
same time, only one of them will succeed. It is, however, expensive and senseless to use file system
operations such as link merely for interprocess synchronization, and semaphores fill a major need of
application programmers.

The major problems with semaphores involve race conditions and deadlock avoidance.
Simple semaphores (as opposed to semaphore arrays) can easily cause a deadlock if processes must
acquire multiple semaphores. For example, in Figure 6-2, process A holds semaphore Sl and tries to
acquire semaphore 82, while process B holds S2 and tries to acquire Sl. Neither process can prog
ress. Although this simple case is easy to detect and avoid, a deadlock can occur in an arbitrarily
complex scenario involving several semaphores and processes.

It is impractical to have deadlock detection and avoidance code in the kernel. Moreover,
there are no general, bounded algorithms that apply to all possible situations. The kernel thus leaves
all deadlock detection to the applications. By providing semaphore sets with compound atomic op
erations, the kernel supplies mechanisms to handle multiple semaphores intelligently. Applications
can choose from several well-known deadlock avoidance techniques, some of which are discussed
in Section 7.10.1.

wants wants

Figure 6-2. Semaphores can cause deadlocks.

160 Chapter 6 Interprocess Communications

One major problem in the System V semaphore implementation is that the allocation and
initialization of the semaphores are not atomic. The user calls semget to allocate a semaphore set,
followed by semctl to initialize it. This can lead to race conditions that must be prevented at the
application level [Stev 90].

Finally, the need to explicitly delete the resource through IPC_RMID is a common problem
with all IPC mechanisms. Although it allows the lifetime of the resource to exceed that of its crea
tor, it creates a garbage collection problem if processes exit without destroying their resources.

6.3.3 Message Queues

A message queue is a header pointing at a linked list of messages. Each message contains a 32-bit
type value, followed by a data area. A process creates or obtains a message queue using the msgget
system call, which has the syntax

msgqid = msgget {key, flag);

The semantics of the call are similar to those of semget. The key is a user-chosen integer.
The I PC_ CREAl flag is required to create a new message queue, and I PC_ EXCL causes the call to fail
if a queue already exists for that key. The msgqi d value is used in further calls to access the queue.

The user places messages on the queue by calling

msgsnd (msgqi d. msgp, count, flag);

where msgp points to the message buffer (containing a type field followed by data area), and count
is the total number of bytes in the message (including the type field). The IPC_NOWAIT flag can be
used to return an error if the message cannot be sent without blocking (if the queue is full, for ex
ample-the queue has a configurable limit on the total amount of data it can hold).

Figure 6-3 describes the operation of a message queue. Each queue has an entry in themes
sage queue resource table, and is represented by the following structure:

struct msqid.:...ds {

} ;

struct ipc_perm msg_perm;
struct msg* msg"-first;
struct msg* msg_last;
ushort msg_cbytes;
ushort msg_qbytes;
ushort msg_qnum;

I* described in Section 6.3.1 *I
I* first message on queue *I
I* last message on queue *I
I* current byte count on queue *I
I* max bytes allowed on queue *I
I* number of messages currently on queue *I

Messages are maintained in the queue in order of arrival. They are removed from the queue
(in first-in, first-out order) when read by a process, using the call

count = msgrcv (msgqid, msgp, maxcnt, msgtype, flag);

6.3 System V IPC

receivers

®
~

' ' '

struct
msgqid_ds

messages read' .----"'----,
fromhead ~~ msg ~~

..-"' '------'

~----

Figure 6-3. Using a message queue.

senders

~
/

/
+- ./

new messages
+ g,4._ded at tail

' ' ®

161

Here msgp points to a buffer into which the incoming message will be placed, and maxcnt
limits the amount of data that can be read. If the incoming message is larger than maxcnt bytes, it
will be truncated. The user must ensure that the buffer pointed to by msgp is large enough to hold
maxcnt bytes. The return value specifies the number of bytes successfully read.

Ifmsgtype equals zero, msgrcv returns the first message on the queue. Ifmsgtype is greater
than zero, msgrcv returns the first message of type msgtype. If msgtype is less than zero, msgrcv
returns the first message of the lowest type that is less than or equal to the absolute value ofmsgtyp.
Again, the I PC_ NOWA IT flag causes the call to return immediately if an appropriate message is not
on the queue.

Once read, the message is removed from the queue and cannot be read by other processes.
Likewise, if a message is truncated because the receiving buffer is too small, the truncated part is
lost forever, and no indication is given to the receiver.

A process must explicitly delete a message queue by calling msgctl with the I PC_ RM ID
command. When this happens, the kernel frees the message queue and deletes all messages on it. If
any processes are blocked waiting to read or write to the queue, the kernel awakens them, and they
return from the call with an EIDRM (message ID has been removed) status.

Discussion

Message queues and pipes provide similar services, but message queues are more versatile and ad
dress several limitations of pipes. Message queues transmit data as discrete messages rather than as
an unformatted byte-stream. This allows data to be processed more intelligently. The message type
field can be used in various ways. For instance, it can associate priorities with messages, so that a
receiver can check for urgent messages before reading nonurgent ones. In situations where a mes
sage queue is shared by multiple processes, the type field can be used to designate a recipient.

Message queues are effective for transferring small amounts of data, but become very ex
pensive for large transfers. When one process sends a message, the kernel copies the message into
an internal buffer. When another process retrieves this message, the kernel copies the data to the re
ceiver's address space. Thus each message transfer involves two data copy operations, resulting in
poor performance. Later in this chapter, we describe how Mach IPC allows efficient transfer of large
amounts of data.

162 Chapter 6 lnterprocess Communications

Another limitation of message queues is that they cannot specify a receiver. Any process
with the appropriate permissions can retrieve messages from the queue. Although, as mentioned
earlier, cooperating processes can agree on a protocol to specify recipients, the kernel does not assist
with this. Finally, message queues do not supply a broadcast mechanism, whereby a process can
send a single message to several receivers.

The STREAMS framework, available in most modem UNIX systems, provides a rich set of
facilities for message passing. It provides more functionality than, and is more efficient than, mes
sage queues, rendering the latter almost obsolete. One feature that is available in message queues
but not in STREAMS is the ability to retrieve messages selectively, based on their types. This may
be useful for certain applications. Most applications, however, find STREAMS more useful, and
message queues have been retained in modem UNIX variants primarily for backward compatibility.
Chapter 17 describes STREAMS in detail.

6.3.4 Shared Memory

A shared memory region is a portion of physical memory that is shared by multiple processes. Proc
esses may attach this region to any suitable virtual address range in their address space. This address
range may differ for each process (Figure 6-4). Once attached, the region may be accessed like any
other memory location without requiring system calls to read or write data to it. Hence, shared
memory provides the fastest mechanism for processes to share data. If a process writes to a shared
memory location, the new contents of that location are immediately visible to all processes sharing
the region. 10

A process initially obtains or creates a shared memory region by calling

shmid = shmget (key, size, flag);

where s i z e is the size of this region, and the other parameters and flags are the same as for semget

memory map of memory map of
process A process B

Ox3000:~- _____ -,----------, ~0
Ox50000 \ - ---- -- Ox50000

\ shared memory , Ox?oooo

' region

' '_ ______ __,

, ,

Figure 6-4. Attaching a shared memory region.

10 On a multiprocessor, additional operations are required to ensure cache consistency. Section 15.13 discusses some of
these issues.

6.3 System V IPC 163

or msgget. The process then attaches the region to a virtual address, using

addr = shmat (s hmi d, s hmaddr, s hmfl ag};

The shmaddr argument suggests an address to which the region may be attached. The shmfl ag ar
gument can specify the SHM_RND flag, which asks the kernel to round shmaddr down by an appro
priate alignment factor. If shmaddr is zero, the kernel is free to choose any address. The
SHM _ RDONLY flag specifies that the region should be attached as read-only. The shmat call returns
the actual address to which the region was attached.

A process can detach a shared memory region from its address space by calling

shmdt {shmaddr);

To destroy the region completely, a process must use the I PC_ RM ID command of the shmctl
system call. This marks the region for deletion, and the region will be destroyed when all processes
detach it from their address space. The kernel maintains a count of processes attached to each re
gion. Once a region has been marked for deletion, new processes cannot attach to it. If the region is
not explicitly deleted, the kernel will retain it even if no process is attached to it. This may be desir
able for some applications: a process could leave some data in a shared memory region and termi
nate; at a later time, another cooperating process could attach to this region using the same key and
retrieve the data.

The implementation of shared memory depends heavily on the virtual memory architecture
of the operating system. Some variants use a single page table to map the shared memory region
and share the table with all processes attached to it. Others have separate, per-process address
translation maps for the region. In such a model, if one process performs an action that changes the
address mapping of a shared page, the change must be applied to all mappings for that page. SVR4,
whose memory management is described in Chapter 14, uses an anon_ map structure to locate the
pages of the shared memory region. Its shared memory resource table contains entries represented
by the following structure:

struct shmid_ds {

} ;

struct ipc_perm shm_perm;
int shm_segsz;
struct anon_map *shm_amp;
ushort shm_nattch;

I* described in Section 6. 3.1 *I
/* segment size in bytes *I
/*pointer to memory mgmt info *I
/*number of current attaches *I

Shared memory provides a very fast and versatile mechanism that allows a large amount of
data to be shared without copying or using system calls. Its main limitation is that it does not pro
vide synchronization. If two processes attempt to modify the same shared memory region, the ker
nel will not serialize the operations, and the data written may be arbitrarily intermingled. Processes
sharing a shared memory region must devise their own synchronization protocol, and they usually
do so using primitives such as semaphores. These primitives involve one or more system calls that
impose an overhead on shared memory performance.

164 Chapter 6 Interprocess Communications

Most modem UNIX variants (including SVR4) also provide the mmap system call, which
maps a file (or part of a file) into the address space of the caller. Processes can use mmap for IPC by
mapping the same file into their address space (in the MAP_ SHARED mode). The effect is similar to a
shared memory region that is initialized to the contents of the file. If a process modifies a mapped
file, the change is immediately visible to all processes that have mapped that file; the kernel will
also update the file on disk. One advantage of mmap is that it uses the file system name space in
stead of keys. Unlike shared memory, whose pages are backed by swap space (see Section 14.7.6),
mmap 'ed pages are backed by the file to which they are mapped. Section 14.2 describes mmap in
detail.

6.3.5 Discussion

There are several similarities between the IPC mechanisms and the file system. The resource ID is
like a file descriptor. The get calls resemble open, IPC_RMID resembles unlink, and the send and
receive calls resemble read and write. The shmdt call provides close-like functionality for shared
memory. For message queues and semaphores, however, there is no equivalent of the close system
call, which might be desirable for removing resources cleanly. As a result, processes using ames
sage queue or semaphore may suddenly find that the resource no longer exists.

In contrast, the keys associated with a resource form a name space that is distinct from the
file system name space. 11 Each mechanism has its own name space, and the key uniquely identifies
a resource within it. Because the key is a simple, user-chosen integer, it is useful only on a single
machine and is unsuitable for a distributed environment. Also, it is difficult for unrelated processes
to choose and agree upon an integer-valued key and avoid conflicts with keys used by other appli
cations. Hence, UNIX provides a library routine called ftok (described in the stdipc(3C) manual
page) to generate a key that is based on a file name and an integer. Its syntax is

key = ftok (char *pathname, i nt ndx) ;

The ftok routine generates a key value, usually based on ndx and the inode number of the
file. An application can choose a unique file name more easily than a unique integer value (for in
stance, it can use the pathname of its own executable file), and hence reduce the likelihood of key
conflicts. The ndx parameter allows greater flexibility and can be used, for example, to specify a
project ID known to all cooperating processes.

Security is a problem, because the resource IDs are actually indexes into a global resource
table. An unauthorized process can access a resource simply by guessing the ID. It can thus read or
write messages or shared memory, or tamper with semaphores used by other processes. The per
missions associated with each resource offer some protection, but many applications must share the
resources with processes belonging to different users, and hence cannot use very restrictive permis
sions. Using the sequence number as a component of the resource ID provides a little more protec
tion, since there are more IDs to guess from, but still poses a serious problem for applications that
are concerned about security.

II Several operating systems, such as Windows/NT and OS/2, use pathnames to name shared memory objects.

6.4 Mach IPC 165

Much of the functionality provided by System V IPC can be duplicated by other file system
facilities such as file locking or pipes. However, the IPC facilities are much more versatile and
flexible, and offer better performance than their file system counterparts.

6.4 Mach IPC

The remainder of this chapter discusses Mach's message-based IPC facility. In Mach, IPC is the
central and most important kernel component. Instead of the operating system supporting IPC
mechanisms, Mach provides an IPC facility that supports much of the operating system. There were
several important goals in the design of Mach IPC:

• Message passing must be the fundamental communication mechanism.
• The amount of data in a single message may range from a few bytes to an entire address

space (typically up to four gigabytes). The kernel should enable large transfers without
unnecessary data copying.

• The kernel should provide secure communications and allow only authorized threads to
send and receive messages.

• Communication and memory management are tightly coupled. The IPC subsystem uses
the copy-on-write mechanisms of the memory subsystem to efficiently transfer large
amounts of data. Conversely, the memory subsystem uses IPC to communicate with user
level memory managers (known as "external pagers").

• Mach IPC must support communication between user tasks, and also between the user and
the kernel. In Mach, a thread makes a system call by sending a message to the kernel, and
the kernel returns the result in a reply message.

• The IPC mechanism should be suitable for applications based on the client-server model.
Mach uses user-level server programs to perform many services (such as file system and
memory management) that are traditionally handled by the operating system kernel. These
servers use Mach IPC to handle requests for service.

• The interface should be transparently extensible to a distributed environment. The user
should not need to know whether he is sending a message to a local receiver or to a remote
node.

Mach IPC has evolved steadily over various releases. Sections 6.4 to 6.9 discuss the IPC
facility in Mach 2.5, which is the most popular Mach release and the basis for operating systems
such as OSF/1 and Digital UNIX. Mach 3.0 enhances the IPC mechanisms in several respects; these
features are discussed in Section 6.1 0.

This chapter makes several references to Mach tasks and threads. Section 3. 7.1 discusses
these abstractions in detail. In brief, a task is a collection of resources, including an address space in
which one or more threads execute. A thread is a dynamic entity that represents an independent
program counter and stack-thus a logical control sequence-in a program. A UNIX process is
equivalent to a task containing a single thread. All threads in a task share the resources of that task.

166 Chapter 6 Interprocess Communications

6.4.1 Basic Concepts

The two fundamental IPC abstractions in Mach are messages and ports [Rash 86]. A message is a
collection of typed data. A port is a protected queue of messages. A message can be sent only to a
port, not to a task or thread. Mach associates send rights and receive rightswith each port. These
rights are owned by tasks. A send right allows a task to send messages to the port; a receive right
allows it to receive messages sent to the port. Several tasks may own send rights to a single port, but
only one task, the owner of the port, holds the receive rights. 12 Thus a port allows many-to-one
communication, as illustrated in Figure 6-5.

A message may be simple or complex. A simple message contains ordinary data that is not
interpreted by the kernel. A complex message may contain ordinary data, out-of-line memory (data
that is passed by reference, using copy-on-write semantics), and send or receive rights to various
ports. The kernel interprets the information in a complex message and transforms it to a form
meaningful to the receiver.

Each port has a reference count that monitors the number of rights to it. Each such right
(also known as a capability) represents one name of that port. The names are integers, and the name
space is local to each task. Thus two tasks may have different names for the same port (Figure 6-6).
Conversely, the same port name may refer to different ports in different tasks.

Ports also represent kernel objects. Hence each object, such as a task, thread, or processor,
is represented by a port. Rights to these ports represent object references and allow the holder to
perform operations on that object. The kernel holds the receive rights to such ports.

Each port has a finite-size message queue. The size of this queue provides a simple flow
control mechanism. Senders are blocked when the queue is full, and receivers when the queue is
empty.

Each task and thread has a default set of ports. For instance, each task has send rights to a
task _self port that represents itself (the kernel has receive rights to this port) and receive rights to a
task_notify port (to which the kernel has send rights). Tasks also have send rights to a bootstrap port
that provides access to a name server. Each thread has send rights to a thread _self port, and receive

senders

port
msg
1~1

msg
1~1 -

receiver

1----.!T

Figure 6-5. Communicating via a Mach port.

Key

(!) task

12 Earlier versions of Mach had separate ownership and receive rights. Mach 2.5 and newer releases replace the owner
ship rights with the backup port facility, which is described in Section 6.8.2.

6.5 Messages 167

task A taskB

r- port 6 port6 -

port 9 port 3

port X port Y portZ

Figure 6-6. Local names for ports.

rights to a reply port, used to receive replies from system calls and remote procedure calls to other
tasks. There is also an exception port associated with each task and each thread. The rights to the
per-thread ports are owned by the task in which the thread runs; hence these ports can be accessed
by all threads within the task.

Tasks also inherit other port rights from their parent. Each task has a list of registered ports.
These allow the task to access various system-wide services. These ports are inherited by new tasks
during task creation.

6.5 Messages

Mach is a message-passing kernel, and most system services are accessed by exchanging messages.
Mach IPC provides communication between user tasks, between users and the kernel, and between
different kernel subsystems. A user-level program called the netmsgserver transparently extends
Mach IPC across the network, so that tasks can exchange messages with remote tasks as easily as
with local ones. The fundamental abstractions of Mach IPC are the message and the port. This sec
tion describes the data structures and functions that implement these abstractions.

6.5.1 Message Data Structures

A message is a collection of typed data. It can contain three basic types of data:

• Ordinary data that is not interpreted by the kernel and is passed on to the receiver by
physically copying it.

• Out-of-line memory, used to transfer large chunks of data using copy-on-write techniques,
as described in Section 6.7.2.

168 Chapter 6 lnterprocess Communications

• Send or receive rights to ports.

The message is composed of a fixed-size header, immediately followed by a variable-size set
of data components (Figure 6-7). The message header includes the following information:

• type- simple (ordinary data only) or complex (may have out-of-line memory or port
rights).

• size of the entire message (including the header).
• destination port.
• reply port - send right to a port to which the receiver can send a reply; this field is set

only when the sender wants a reply.
• message ID -may be used by applications as they desire.

The message is constructed in the sending task's address space before it is sent. At that time,
the destination and reply ports are the task's local names for these ports. Before delivering themes
sage, the kernel must transform these port names into values that are meaningful to the receiver.
This is described in Section 0.

Each data component consists of a type descriptor, followed by the data itself. The descrip
tor contains the following information:

• name- identifies the type of data. Mach 2.5 recognizes 16 different name values, includ
ing internal memory, port send or receive rights, and scalars such as byte, 16-bit integer,

message
header

type
descriptor

type
descriptor

~

1

type

size

local port

destination port

message id

name

number

name

number

data

data

• • •

size

flags

size

flags

Figure 6-7. A Mach message.

6.5 Messages

32-bit integer, string, or real.
• size - size of each data item in this component.
• number- number of data items in this component.
• flags - specify if the data is in-line or out-of-line and if the memory or port rights must

be deallocated from the sender task.

6.5.2 Message Passing Interface
Applications may use message passing in several different ways:

• To send a message, but not expect a reply.
• To wait for unsolicited messages and process them when they arrive.
• To send a message and expect a reply, but not wait for it. The application receives there

ply asynchronously and processes it at a later, more convenient time.
• To send a message and wait for a reply.

169

The programming interface [Baro 90] to message passing consists of three functions that
jointly allow all these forms of communication:

msg_send (msg_ header_ t* hdr,
msg option t option,
msg)imeout-'-t timeout);

msg_rcv (msg_header_t* hdr,
msg option t option,
msg=timeout_t timeout);

msg_rpc (msg_header_t* hdr;
msg_ si ze_t··•rcv _size,
msg_option_t option,
msg timeout t send timeout,
msg)imeout) receTve_timeout);

The msg_send call sends a message but does not expect a reply. The call may block if the
destination port's message queue is full. Likewise, msg_rcv blocks until a message is received. Each
call accepts a SEND_TIMEOUT or RCV_TIMEOUT option; if specified, the call blocks for a maximum
of timeout milliseconds. After the timeout period expires, the call returns with a timed out status
instead of remaining blocked. The RCV _NO_ SENDERS option causes msg_rcv to return if no one else
has a send right to the port.

The msg_rpc call sends an outgoing message, then waits for a reply to arrive. It is merely an
optimized way of performing a msg_send followed by a msg_rcv. The reply reuses the message
buffer used by the outgoing message. The options for msg_rpc include all the options of msg_send
and msg_rcv.

The header contains the size of the message. When calling msg_rcv, the header contains the
maximum size of the incoming message that the caller can accept; upon return, the header contains

170 Chapter 6 Interprocess Communications

the actual size received. In the msg_rpc call, rev_ size must be specified separately, because the
header contains the size of the outgoing message.

6.6 Ports

Ports are protected queues of messages. Tasks can acquire send or receive rights or capabilities to a
port. Ports can only be accessed by holders of the appropriate rights. Although many tasks may have
send rights to a port, only one task can hold a receive right. The holder of a receive right automati
cally has a send right to that port.

Ports are also used to represent Mach objects such as tasks, threads, and processors. The
kernel holds the receive rights to such ports. Ports are reference-counted, and each send right consti
tutes a reference to the object represented by the port. Such a reference allows the holder to manipu
late the underlying object. For instance, the task _self port of a task represents that task. The task can
send messages to that port to request kernel services that affect the task. If another task, perhaps a
debugger, also has send rights to this port, it can perform operations on this task, such as suspending
it, by sending messages to the port. The specific operations that are permitted depend on the object
and the interface it wishes to export.

This section describes the port name space and the data structures used to represent a port.

6.6.1 The Port Name Space

Each capability or port right represents a name of that port. The names are simple integers, and the
name space is local to each task. Thus different tasks may have different names for the same port;
conversely, the same name may represent different ports in different tasks. In that sense, port names
are similar to UNIX file descriptors.

Each task can have at most one name for any port. Port rights can be relayed through mes
sages, and thus a task may acquire a right to the same port several times. The kernel ensures that the
same name is reused each time. As a result, a task may compare two port names-if they do not
match, they cannot refer to the same port.

Each port is also represented by a global kernel data structure. The kernel must translate the
local port name to a global name (address of the global data structure for that port), and vice-versa.
In the case of file descriptors, each UNIX process maintains a descriptor table in its u area that
stores pointers to the corresponding open file objects. Mach uses a different translation method, de
scribed in Section 6.6.3.

6.6.2 The Port Data Structure

The kernel maintains a kern_port _ t data structure for each port. It contains the following informa
tion:

• Reference count of all names (rights) to this port.
• Pointer to the task that holds the receive rights.
• Local name for the port in the receiver task.

6.6 Ports

• Pointer to a backup port. If this port is deallocated, the backup port receives all messages
sent to it.

• Doubly linked list of messages.
• Queue of blocked senders.
• Queue of blocked receivers. Although a single task has receive rights, many threads in the

task may be waiting to receive a message.
• Linked list of all translations for this object.
• Pointer to the port set, and pointers to next and previous ports in this set, if the port be

longs to a port set (Section 6.8.3).
• Count of messages currently in the queue.
• Maximum number of messages (backlog) allowed in the queue.

6.6.3 Port Translations

171

Mach maintains one translation entry for each port right. The translation entries must manage a set
of <task, port, local_ name, type> tuples, where task is the task that owns the right, port is a pointer
to the kernel data structure for the port, local_ name is the name of the port within the task, and type
is send or receive. Mach uses the translations in several different ways:

• msg_send must convert a <task, local_ name> to port.
• msg_rcv must convert a <task, port> to local_name.
• When a task deallocates a port, it must find all rights for that port.
• When a task is destroyed, the kernel must find all port translations for that task and release

the corresponding references.
• When a port is destroyed, the kernel must find all translations for that port, and notify

tasks that hold rights to it.

This requires a translation scheme that can efficiently support all the above operations.
Figure 6-8 describes the Mach 2.5 port translation data structures. Mach uses two global hash tables
to find the entries quickly-TP _table hashes the entries based on <task, port>, and TL _table
hashes them based on <task, local_ name>. The kerne l_port _ t and task data structures hold the
heads of the linked lists of translations for that port or task respectively.

Hence in Figure 6-8, the entries a, b, and c describe translations of different ports in the
same task, while entries c, d, and e are translations of the same port in different tasks. Entries b, d,
andfhash to the same index in the TP _table, while entries e and g hash to the same index in the
TL_table. Each translation entry is described by a port_hash_t structure, which contains the fol
lowing information:

• task - the task that owns this right.
• local_ name- name for the right in this task.
• type- send or receive.
• obj -pointer to port object in kernel.

Additionally, each translation entry is on each of the following doubly linked lists:

172 Chapter 6 Interprocess Communications

struct task

'
'

~
-- I \ '. \

\. ~
'·,·,_ ([}---

TP_table ~-----~\-,_-1£1
'·, ~

·,
. , . , . e 1--:L-----1

........ _,_;

struct
kernel_port_t

Key

TL_table translation entries +---- • TL hash chain
(port_hash_t) +---• TPhashchain

Figure 6-8. Port translation in Mach.

• TP _chain -hash chain based on <task, port>.
• TL_chain-hashchainbasedon<task, local_name>.
• task_ chain -list of all translations owned by the same task.
• obj chain -list of all translations for this port.

6. 7 Message Passing

A single message transfer requires several operations:

1. The sender creates the message in its own address space.
2. The sender issues the msg_send system call to send the message. The message header contains

the destination port.
3. The kernel copies the message into an internal data structure (kern_ msg_ t) using the

msg_ copyi n () routine. In this process, port rights are converted to pointers to the ports' ker
nel objects, and out-of-line memory is copied into a holding map.

4. (a) If a thread is waiting to receive the message (the thread is on the blocked receivers
queue of this port), it is awakened and the message is given to it directly.
(b) Otherwise, if the port's message queue is full, the sender blocks until a message is re
moved from the queue.
(c) Otherwise, the message is queued at the port, where it remains until a thread in the re
ceiver task performs a msg_rcv.

6.7 Message Passing 173

5. The kernel returns from msg_send once the message has been queued or given to the receiver.
6. When the receiver calls msg_rcv, the kernel calls msg_ dequeue () to remove a message from

the queue. If the queue is empty, the receiver blocks until a message arrives.
7. The kernel copies the message into the receiver's address space using the msg_ copyout ()

function, which performs further translations on out-of-line memory and port rights.
8. Often the sender expects a reply. For this to happen, the receiver must have a send right to

a port owned by the sender. The sender sends this right to the receiver using the reply port
field in the message header. In such a case, the sender would normally use the mach _rpc
call to optimize this exchange. This call is semantically equivalent to a msg_send followed
by a msg_rcv.

Figure 6-9 describes the transformations on the different components of a message during
the transfer process. Let us now take a closer look at some important issues of message passing.

6. 7.1 Transferring Port Rights
There are several reasons for transferring port rights in messages. The most frequent case is that of a
reply port (Figure 6-1 0). A thread in task T1 sends a message to port P2, which is owned by task
T2. In this message, Tl passes the send right to port Pl, to which Tl has the receive rights. As a
result, T2 can send the reply message to Pl, and the sending thread will wait for it. This situation is
so common that the message header itself contains a field to hold the reply port right.

sender

--~--' ' , '
I

in-line
data

pointers to
out-of-line
memory

port right
(local name)

outgoing
message ... ___________ ,

I

copy

copy
mappings

translate

~---:t_)
I '

copy of data

holding map

pointer to
port object

kern_msg_t
(internal

'---~-e~~~~~~--'

copy

copy
mappings

translate

receiver

---~---,
,' '

copy of data

pointers to
data copied
into address

space

port right
(local name)

received
message , __________ ,

Figure 6-9. Two stages of a message transfer.

174 Chapter 6 Interprocess Communications

msg

owns

reply msg
w-----------~~r-------------~

Figure 6-10. Messages can contain the send rights to a reply port.

Another common situation involves the interactions between a server program, a client, and
a name server (Figure 6-11). The name server holds send rights to several server programs in the
system. Typically, the servers register themselves with the name server when they begin executing
(a). All tasks inherit a send right to a name server during task creation (this value is stored in the
bootstrap port field in the task structure).

When a client wishes to access a server program, it must first acquire send rights to a port
owned by the server. To do so, it queries the name server (b), which returns a send right to that
server (c). The client uses that right to send a request to the server (d). The request contains a reply
port that the server can use to reply to the client (e). Further interactions between this server-client
pair need not involve the name server.

The sender sends a port right using its local name for the port. The type descriptor for that
component of the message informs the kernel that the item is a port right. The local name means
nothing to the receiver, and hence the kernel must translate it. To do this, the kernel searches the
translation entries by hashing on <task, local_name> and identifies the kernel object (global name)
for that port.

name
server

server

client

Figure 6-11. Using a name server to initiate contact between a client and a server.

6.7 Message Passing 175

When the message is retrieved, the kernel must translate this global name to a local name in
the receiving task. It first checks if the receiver already has a right for this port (by hashing on <task,
port>). If so, the kernel translates it to the same name. Otherwise, the kernel allocates a new port
name in the receiver and creates a translation entry that maps the name to the port. Port names are
usually small integers, and the kernel uses the lowest available integer for the new name.

Because the kernel creates an extra reference for this port, it must increment the reference
count in the port object. The kernel does so when it copies the message into system space, since the
new reference is created at that point. Alternately, the sender could have specified the deallocate
flag in the type descriptor. In that case, the kernel deallocates the right in the sender task and does
not need to increment the port reference count.

6.7.2 Out-of-Line Memory
If a message contains a small amount of data, it can be transferred by physically copying the data,
first into a kernel buffer, and later (when retrieved) into the receiving task's address space. This ap
proach, however, is expensive for large data transfers. Because Mach allows a message to contain as
much as an entire address space (up to four gigabytes on 32-bit architectures), it must provide a
more efficient way of transferring such data.

Typically, with large transfers, most of the data may never be modified by either the sender
or the receiver. In such a case there is no need to make another copy of the data. A page must be
copied only if and when one of the two tasks attempts to modify it. Until then, both tasks share a
single physical copy of the page. Mach implements this method by using the copy-on-write sharing
mechanisms of Mach's virtual memory subsystem. Chapter IS describes Mach memory manage
ment in detail. Here, we restrict the discussion to IPC-related issues.

Figure 6-12 describes the transfer of out-of-line memory. The sender specifies out-of-line
memory using a flag in the type descriptor. The msg_ copyi n () routine (called from msg_send)
modifies the sender task's mappings for these pages to be read-only and copy-on-write. It then cre
ates a temporary "holding map" for these pages in the kernel, and also marks those entries as read
only and copy-on-write (Figure 6-12(a)). When the receiver calls msg_rcv, the msg_ copyout ()
function allocates an address range in the receiving task and copies the entries from the holding map
to the receiver's address map. It marks the new entries as read-only and copy-on-write, and deallo
cates the holding map (Figure 6-12(b)).

At this point, the sender and receiver share the pages as copy-on-write. When either task at
tempts to modify such a page, it incurs a page fault. The fault handler recognizes the situation, and
resolves the fault by making a new copy of the page and changing the faulting task's mappings to
point to it. It also changes protections so that both tasks can now write to their copy of the page
(Figure 6-12(c)).

Note that out-of-line memory transfer involves two phases-first, the message is placed on
the queue and the pages are in transit; later, when the message is retrieved, the pages are shared by
both sender and receiver. The holding map handles the transition phase. It ensures that if the sender
modifies the page before the receiver retrieves it, the kernel will create a new copy for the sender,
and the receiver will continue to access the original copy.

176 Chapter 6 Interprocess Communications

sender
holding

map

cow
cow

COW= copy-on-write
pages in memory

(a) message copied to holding map

address map

sender

pages in memory

(b) message copied to receiver task

address map

sender

pages in memory

(c) receiver modifies a page

Figure 6-12. Transferring out-of-line memory.

receiver

receiver

This approach works best when neither the sender nor the receiver modifies the shared
pages. This is true of many applications. Even if the pages are modified, this approach saves a copy
operation. In-line memory is copied twice-once from sender to kernel, then again from kernel to
receiver. Out-of-line memory is copied at most once, the first time either task tries to modifY it.

The sender may set the deallocate flag in the type descriptor. In this case, the kernel does not
use copy-on-write sharing. It simply copies the address map entries to the holding map during
msg_ copyi n () and deallocates them from the sender's address map. When the message is retrieved,
msg_ copyout () copies the entries to the receiver's address map and deletes the holding map. As a
result, the pages move from the sender's address space to that of the receiver without any data
copying.

6.8 Port Operations 177

6.7.3 Control Flow

The message transfer proceeds along one of two paths-fast or slow. The slow path applies if a re
ceiver is not waiting when a message is sent. In this case, the sender queues the message at the port
and returns. When a receiver does a msg_rcv, the kernel dequeues the message and copies it into the
receiver's address space.

Each port has a configurable limit, called its backlog, on the maximum number of messages
that may be queued to it. When that limit is reached, the port is full and new senders will block until
some messages are retrieved from the queue. Each time a message is retrieved from a port that has
blocked senders, one sender will be awakened. When the last message is dequeued from the port, all
blocked senders are awakened.

The fast path scenario occurs when a receiver is already waiting for the message. In this
case, msg_send does not queue the message to the port. Instead, it wakes up the receiver and directly
hands the message to it. Mach provides a facility called handoff scheduling [Drav 91], where one
thread directly yields the processor to another specific thread. The fast path code uses this facility to
switch to the receiver thread, which completes its msg_rcv call, using msg_ copyout () to copy the
message to its address space routine. This eliminates the overhead of queuing and dequeuing the
message, and also speeds up the context switch, because the new thread to run is directly selected.

6.7.4 Notifications

A notification is an asynchronous message sent by the kernel to inform a task of certain events. The
kernel sends the message to the task's notify port. Mach IPC uses three types of notifications:

NOTIFY PORT DESTROYED

NOTIFY PORT DELETED

NOTIFY MSG ACCEPTED

When a port is destroyed, this message is sent to the owner
of its backup port (if any). Port destruction and backup
ports are discussed in the next section.
When a port is destroyed, this message is sent to all tasks
that hold send rights to the port.
When sending a message to a port whose queue is full, the
sender can request this notification (using a
SEND_ NOTIFY option) when a message is removed from
the queue.

The last case requires some elaboration. When the SEND_ NOTIFY option is used, the message
is transferred even if the queue is full. The kernel returns a SEND_ WILL _NOTIFY status, which asks
the sender not to send more messages to the queue until it receives the NOTIFY_MSG_ACCEPTED no
tification. This allows senders to send messages without blocking.

6.8 Port Operations

This section describes several operations on ports.

178 Chapter 6 Interprocess Communications

6.8.1 Destroying a Port

A port is destroyed when its receive right is released, typically when its owner task terminates.
When that happens, a NOTIFY _PORT_ DELETED notification is sent to all tasks that have a send right
to it. Any messages waiting in the port's queue are destroyed. Blocked senders and receivers are
awakened, and receive a SEND_ INVALID _PORT or RCV _INVALID _PORT error respectively.

The destruction can become complex because the queued messages may contain rights to
other ports. If any of these are receive rights, the corresponding ports must also be destroyed. In
fact, a malicious user can send the receive right to a port in a message to that very port. Such situa
tions are rare, but when they do occur, they cause some deadlock and unbounded recursion prob
lems that Mach 2.5 cannot adequately resolve.

6.8.2 Backup Ports

The port_ set_ backup call assigns a backup port to a port. If a port having a backup is destroyed, the
kernel does not deallocate the port; instead, it transfers the receive rights to the backup port.

Figure 6-13 illustrates this process. Port Pl has previously assigned port P2 as its backup.
When Pl is destroyed (perhaps due to termination of its owner task Tl), the kernel sends a

P1
backup

P2

(a) assignment of a backup port

P1
backup

P2

I

~~~3 ~~: ---------+ 

(b) after Pl is destroyed 

Figure 6-13. Backup port implementation. 



6.8 Port Operations 179 

NOTIFY PORT DESTROYED message to P2's owner. Pl is not deallocated, but holds send rights to 
P2. All messages sent to Pl are automatically routed to P2, and can be retrieved by P2's owner. 

6.8.3 Port Sets 
A port set (Figure 6-14) consists of a group of ports whose receive rights are replaced by a single 
set-wide receive right. Thus a single task can receive from the set. Moreover, it cannot receive se
lectively from individual ports in the set. In contrast, messages are sent to the constituent ports and 
not to the port set. Tasks have send rights to specific ports in the set, and when a message is re
ceived, it contains information about the port to which it was sent. 

Port sets are useful when a server manages several objects. It may associate a port with each 
of them and place them all in a single port set. The server can then receive messages sent to any port 
in that set. Each message requests an operation on the port's underlying object. Because the mes
sage identifies the port it was sent to, the server knows which object to manipulate. 

The port set functionality is comparable to that of the UNIX select system call, which allows 
a process to check for input on several descriptors. An important difference is that the time taken to 
retrieve a message from a port set, or to send a message to a port in the set, is independent of the 
number of ports in the set. 

The port's kernel object contains a pointer to the set to which it belongs, as well as pointers 
to maintain a doubly linked list of all ports in a set. If the port is not a member of a port set, these 
pointers are NULL. The port set object contains a single message queue. The queues of the compo
nent ports are not used. Each port, however, retains its own count and limit (backlog) on the number 
of messages queued to it and also its own queue ofblocked senders. 

When a thread sends a message to a port that is a member of a set, the kernel checks that the 
port's backlog has not been exceeded (if so, it adds the sender to the port's blocked senders queue) 
and increments the count of messages queued to that port. It records the identity of the port in the 
message and places the message in the port set's queue. When a thread in the receiver task invokes a 

blocked 
senders 

receiver port set 

port port 

Figure 6-14. Port set implementation. 

port 



180 Chapter 6 lnterprocess Communications 

msg_rcv on a port set, the kernel retrieves the first message in the set's queue, regardless of the 
component port to which the message was queued. 

Port sets are created and destroyed by the port_set_al/ocate and port_set_deallocate calls. 
Individual ports in the set are inserted and removed by the port_set_insert and port_set_remove 
calls. 

6.8.4 Port Interpolation 

Port interpolation allows a task to replace a right belonging to another task with a right to a different 
port, or to acquire a right from another task. This facility gives debuggers and emulators fine control 
over target tasks. 

Figure 6-15 illustrates a possible scenario between a debugger task and a target task. The de
bugger first removes the target's send right to its task_selfport using the task_extract_send call and 
obtains it for itself. It then calls task_insert_send to insert a send right to a port Pl, owned by the 
debugger, in place of the target's task_self right. Similarly, the debugger uses the 
task_extract_receive and task_insert_receive calls to consume the target's receive right to its 
task_notify port, and substitute the receive right to another port P2 to which the debugger has send 
rights. 

target 

task_ self 

task_notify "" --1 TN 

(a) target task before interpolation 

debugger 

target P1 

task_self / I TS 

task_notify "', I TN ~----+ 
' ' ' 'i r----P2 

(b) after port interpolation 

Figure 6-15. Port interpolation by a debugger. 



6.9 Extensibility 181 

Once this is accomplished, the debugger intercepts any messages sent by the target to its 
task_ notifY port (Mach system calls). The debugger processes the call and ensures that a reply is 
eventually sent to the reply port specified in the message. The debugger can choose to emulate the 
call and send the reply itself. Alternatively, it can forward the message to the kernel using the tar
get's original task_notify port (to which the debugger now has send rights). When sending themes
sage to the kernel, it can direct the reply to the target's reply port or specify its own reply port, thus 
intercepting the kernel's reply. 

Likewise, the debugger intercepts any notifications sent to this task and decides whether to 
handle them on the target's behalf or forward them to the target. Hence a debugger (or other task) 
can control any port of a target task, provided it has send rights to the task's task _self port. 

6.9 Extensibility 

Mach IPC is designed to be transparently extensible to a distributed environment. A user-level pro
gram called the netmsgserver extends Mach IPC across a network, so that users can communicate 
with tasks on remote machines as easily as with local tasks. Applications are unaware of the remote 
connection and continue to use the same interface and system calls used for local communications. 
An application is typically unaware if it is communicating with a local or remote task. 

There are two important reasons why Mach is able to provide such transparent extensibility. 
First, the port rights provide a location-independent name space. The sender simply sends the mes
sage using a local name of the port (the send right). It does not have to know if the port represents a 
local or remote object. The kernel maintains the mappings between the task's local name of the port 
and the port's kernel object. 

Second, senders are anonymous. Messages do not identify the senders. The sender may pass 
the send right to a reply port in the message. The kernel translates this so that the receiver sees only 
a local name for this right, and cannot determine who the sender is. Moreover, the sender need not 
own the reply port; it only needs to own a send right to it. By specifying a reply port that is owned 
by another task, the sender can direct the reply to a different task. This is also useful for debugging, 
emulation, and so forth. 

The netmsgserver operation is simple. Figure 6-16 shows a typical scenario. Each machine 
on the network runs a netmsgserver program. If a client on node A wishes to communicate with a 
server on node B, the netmsgserver on A sets up a proxy port to which the client sends the message. 
It then retrieves messages sent to that port and forwards them to the netmsgserver on machine B, 
which in turn forwards them to the server's port. 

If the client expects a reply, it specifies a reply port in the message. The netmsgserver on A 
retains the send right to the reply port. The netmsgserver on B creates a proxy port for the reply port 
and sends the right to the proxy port to the server. The server replies to the proxy port, and the reply 
is routed via the two netmsgservers to the client's reply port. 

Servers register themselves with the local netmsgserver and pass it the send right to a port to 
which the server listens. The netmsgservers maintain a distributed database of such registered net
work ports and provide them the same services (protection, notifications, etc.) that the kernel pro
vides to local ports. Thus the netmsgservers query each other to provide a global name lookup 



182 

SP' 

node A 
RP 

__ [rei>iYl 
~ 

I 
I 

I 

I 

Chapter 6 Interprocess Communications 

Figure 6-16. Remote communications using netmsgservers. 

service. Tasks use this service to acquire send rights to ports registered with remote netmsgservers. 
In the absence of a network, this degenerates into a simple local name service. 

The netmsgservers communicate with each other using low-level network protocols, not 
through IPC messages. 

6.10 Mach 3.0 Enhancements 

Mach 3.0 introduced several enhancements to the IPC subsystem [Drav 90], and addressed some 
important problems in the 2.5 implementation. The changes affect both the interface and the internal 
data structures and algorithms. This section explores some of the important changes. 

A major problem in Mach 2.5 involves send rights. IPC is used heavily in client-server in
teractions. The client typically sends a message containing the send right to a reply port owned by 
the client. Once the server has sent the reply, it no longer needs to retain this right. It cannot, how
ever, afford to deallocate the right. This is because another thread in the server application may have 
received, and may still be using, a send right to the same port, as the result of a separate message. 
The kernel translates the second right to the same local name, so that the server has a single send 
right to this port. If the first thread deallocates this right, the second thread will be unable to send its 
reply. 

Servers work around this by never deallocating such send rights. This creates other prob
lems. It is a security risk-the client may not want the server to hold this right indefinitely. It also 
unnecessarily uses up translation table entries, which impacts the entire system. Finally, it causes 
unnecessary notifications to be generated to servers when the client destroys this port. The kernel 
must send such notifications to all servers who have retained a send right to the port, and the servers 
must receive and process them, even though they have no real interest in this port. 



6.10 Mach 3.0 Enhancements 183 

Mach 3.0 has three separate enhancements that address this general problem-send-once 
rights, notification requests, and user-references for send rights. 

6.10.1 Send-Once Rights 

A send-once right to a port is, as its name implies, a send right that may only be used once. It is 
generated by the task that holds the port's receive right, but can then be transferred from task to 
task. It guarantees that a message will result from it. Normally, the send-once right is consumed by 
using it as a destination port in a (reply) message; it is destroyed when the message is received. If 
the right is destroyed in any other way, such as when the task that holds the right terminates 
abruptly, the kernel sends a send-once notification to the port instead. 

The kernel maintains send-once rights separately from send rights. Thus if a task acquires a 
send right and a send-once right to the same port, it will have separate local names for the two 
rights. A task may acquire multiple send-once rights to the same port. Unlike send rights, each send
once right is given its own unique name. The reference count in the port's kernel object only reflects 
the outstanding send rights, and is not affected by send-once rights. 

Mach 3.0 uses send-once rights to specify reply ports. This right is destroyed once the reply 
is received, so the server does not retain it indefinitely. This eliminates the unnecessary notifications 
when the client destroys the port. 

6.1 0.2 Mach 3.0 Notifications 

Mach 2.5 sends notifications asynchronously to the tasks in response to various system events. The 
tasks have no control over which notifications they receive. Usually, they have no interest in the 
event and simply discard the notification. Such unnecessary notifications degrade overall system 
performance. 

Furthermore, a single task-wide notification port is too limiting. A thread could intercept and 
destroy a notification that another thread in the task may be awaiting. User-level libraries increase 
the likelihood of this scenario, because the main programs and the libraries each use notifications 
differently and independently. 

Mach 3.0 sends notifications only to tasks that request them by explicitly calling 
mach _port _request_ notification. This request specifies a send-once right for the notification port. 
Mach 3.0 thus allows several notification ports in a task. Each program component or thread can 
allocate its own notification port, and avoid contention with others. 

6.1 0.3 User-Reference Counting of Send Rights 

If a task acquires multiple send rights to a port, the kernel maps them all to a single local name in 
the task's port name space, thus combining them into a single send right. If a thread deallocates this 
right, no other thread will be able to use it, even if the other thread had acquired the right independ
ently. 

While send-once rights eliminate one source of this problem, they do not resolve it com
pletely. Send-once rights are primarily used to provide reply ports to servers. Send rights may be 



184 Chapter 6 Interprocess Communications 

acquired in various ways. If a client wants to communicate with a server, the client acquires 
(through the name server) a send right to it. If multiple threads in the client independently initiate 
contact with the server, they will each receive a send right, which will be combined into a single 
name. If one of these threads deallocates the name, it will have an impact on all other threads. 

Mach 3.0 addresses this problem by associating a user-reference with each send right. Thus 
in the previous example, the kernel increments the reference count each time the task obtains the 
same send right, and decrements it each time a thread deallocates the right. When the last reference 
is released, the kernel can remove the right safely. 

6.11 Discussion 

Mach uses IPC not only for communication between processes, but also as a fundamental kernel 
structuring primitive. The virtual memory subsystem uses IPC to implement copy-on-write 
[Youn 87], and the kernel uses IPC to control tasks and threads. The basic abstractions of Mach, 
such as tasks, threads, and ports, interact with one another through message passing. 

This architecture provides some interesting functionality. For instance, the netmsgserver 
transparently extends the IPC mechanisms to a distributed system, so that a task may control and 
interact with objects on remote nodes. This allows Mach to provide facilities such as remote de
bugging, distributed shared memory, and other client-server programs. 

In contrast, the extensive use of message passing results in poor performance. For a while 
there was a great interest in building micro kernel operating systems, where most of the facilities are 
provided by user-level server tasks that communicate with one another using IPC. While many ven
dors are still working on such solutions, the performance concerns have driven these efforts away 
from the mainstream. 

The proponents of Mach have argued that IPC performance is not an important factor in de
signing microkernel operating systems [Bers 92] because of the following reasons: 

• Improvements in IPC performance have been far greater than in other areas of the operat
ing system. 

• With the increasing reliance on hardware caches, the cost of operating system services will 
be dominated by cache hit patterns. Since the IPC code is well localized, it can be easily 
tuned to use the cache optimally. 

• Some data transfer can be achieved through other mechanisms such as shared memory. 
• Migrating some of the kernel functionality into user-level servers reduces the number of 

mode switches and protection boundary crossings, which are expensive. 

Researchers have devoted considerable attention to improving IPC performance [Bers 90, 
Barr 91]. So far, however, Mach IPC has had a limited impact in the commercial world. Even Digi
tal UNIX, which is based on Mach, does not use Mach IPC in many of its kernel subsystems. 



6.13 Exercises 185 

6.12 Summary 

This chapter described several IPC mechanisms. Signals, pipes, and ptrace are universal facilities, 
available in all but the earliest UNIX systems. The System V IPC suite, comprising shared memory, 
semaphores, and message queues, is also available in most modem variants. In the Mach kernel, all 
objects use IPC to interact with each other. Mach IPC is extensible through the netmsgserver, allow
ing the development of distributed, client-server applications. 

Some other IPC mechanisms are covered elsewhere in the book-file locking in Chapter 8, 
memory-mapped files in Chapter 14, and STREAMS pipes in Chapter 17. 

6.13 Exercises 

1. What are the limitations of ptrace as a tool for writing de buggers? 
2. The pi d argument of ptrace must specify the process ID of a child of the caller. What are the 

implications of relaxing this requirement? Why should processes not be able to use ptrace to 
interact with arbitrary processes? 

3. Compare the IPC functionality provided by pipes and message queues. What are the 
advantages and drawbacks of each? When is one more suitable than the other? 

4. Most UNIX systems allow a process to attach the same shared memory region to more than 
one location in its address space. Is this a bug or a feature? When would this be useful? What 
problems could it cause? 

5. What issues must a programmer be concerned with in choosing an address to attach a shared 
memory region to? What errors would the operating system protect against? 

6. How can the I PC_ NOWAIT flag be used to prevent deadlocks when using semaphores? 
7. Write programs to allow cooperating processes to lock a resource for exclusive use, using (a) 

FIFO files, (b) semaphores, (c) the mkdir system call, and (d) flock or lockf system calls. 
Compare and explain their performance. 

8. What side effects, if any, must the programmer be concerned with in each of the above cases? 
9. Is it possible to implement resource locking through (a) signals alone or (b) shared memory 

and signals? What would be the performance of such a facility? 
10. Write programs to transfer a large amount of data between two processes, using (a) a pipe, (b) 

a FIFO, (c) a message queue, and (d) shared memory with semaphores for synchronization. 
Compare and explain their performance. 

11. What are the security problems associated with System V IPC? How can a malicious program 
eavesdrop on, or interfere with, communications between other processes? 

12. Semaphores are created with semget but initialized with semctl. Hence creation and 
initialization cannot be accomplished in a single atomic operation. Describe a situation where 
this might lead to a race condition and suggest a solution to the problem. 

13. Can System V message queues be implemented on top of Mach IPC? What problems must 
such an implementation solve? 



186 Chapter 6 Interprocess Communications 

14. Why are send-once rights useful? 
15. How do port sets help in developing a client-server application for Mach? 

6.14 References 

[Bach 86] 

[Baro 90] 

[Barr 91] 

[Bers 90] 

[Bers 92] 

[Dijk 65] 

[Drav 90] 

[Drav 91] 

[Faul 91] 

[Pres 90] 

[Rash 86] 
[Salu 94] 
[Stev 90] 

[Thorn 78] 

[Youn 87] 

Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood 
Cliffs, NJ, 1986. 
Baron, R.V., Black, D., Bolosky, W., Chew, J., Draves, R.P., Golub, D.B., Rashid, 
R.F., Tevanian, A., Jr., and Young, M.W., Mach Kernel Interface Manual, 
Department of Computer Science, Carnegie-Mellon University, Jan. 1990. 
Barrera, J.S.,III, "A Fast Mach Network IPC Implementation," Proceedings of the 
USENIX Mach Symposium, Nov. 1991, pp. 1-12. 
Bershad, B.N., Anderson, T.E., Lazowska, E.D., and Levy, H.M., "Lightweight 
Remote Procedure Call," ACM Transactions on Computer Systems, Vol. 8, No. 1, 
Feb. 1990,pp.37-55. 
Bershad, B.N., "The Increasing Irrelevance of IPC Performance for Microkemel
Based Operating Systems," USENIX Workshop on Micro-Kernels and Other Kernel 
Architectures, Apr. 1992, pp. 205-212. 
Dijkstra, E.W., "Solution of a Problem in Concurrent Programming Control," 
Communications of the ACM, Vol. 8, Sep. 1965, pp. 569-578. 
Draves, R.P., "A Revised IPC Interface," Proceedings of the First Mach USENIX 
Workshop, Oct. 1990, pp. 101-121. 
Draves, R.P., Bershad, B.N., Rashid, R.F., and Dean, R.W., "Using Continuations to 
Implement Thread Management and Communication in Operating Systems," 
Technical Report CMU-CS-91-115R, School of Computer Science, Carnegie
Mellon University, Oct. 1991. 
Faulkner, R. and Gomes, R., "The Process File System and Process Model in UNIX 
System V," Proceedings of the 1991 Winter USENIX Conference, Jan. 1991, pp. 
243-252. 
Presotto, D.L., and Ritchie, D.M., "Interprocess Communications in the Ninth 
Edition UNIX System," UNIX Research System Papers, Tenth Edition, Vol. II, 
Saunders College Publishing, 1990, pp. 523-530. 
Rashid, R.F., "Threads of a New System," UNIX Review, Aug. 1986, pp. 37-49. 
Salus, P.H., A Quarter Century of UNIX, Addison-Wesley, Reading, MA, 1994. 
Stevens, R.W., UNIX Network Programming, Prentice-Hall, Englewood Cliffs, NJ, 
1990. 
Thompson, K., "UNIX Implementation," The Bell System Technical Journal, Vol. 
57, No. 6, Part 2, Jul.-Aug. 1978, pp. 1931-1946. 
Young, M., Tevanian, A., Rashid, R.F., Golub, D., Eppinger, J., Chew, J., Bolosky, 
W., Black, D., and Baron, R., "The Duality of Memory and Communication in the 
Implementation of a Multiprocessor Operating System," Proceedings of the Eleventh 
ACM Symposium on Operating Systems Principles, Nov. 1987, pp. 63-76. 



7 

Synchronization and 
Multiprocessors 

7.1 Introduction 

The desire for more processing power has led to several advances in hardware architectures. One of 
the major steps in this direction has been the development of multiprocessor systems. These systems 
consist of two or more processors sharing the main memory and other resources. Such configura
tions offer several advantages. They provide a flexible growth path for a project, which may start 
with a single processor and, as its computing needs grow, expand seamlessly by adding extra proc
essors to the machine. Systems used for compute-intensive applications are often CPU-bound. The 
CPU is the main bottleneck, and other system resources such as the I/0 bus and memory are un
derutilized. Multiprocessors add processing power without duplicating other resources, and hence 
provide a cost-effective solution for CPU-bound workloads. 

Multiprocessors also provide an extra measure of reliability; if one of the processors should 
fail, the system could still continue to run without interruption. This, however, is a double-edged 
sword, since there are more potential points of failure. To ensure a high mean time before failure 
(MTBF), multiprocessor systems must be equipped with fault-tolerant hardware and software. In 
particular, the system should recover from the failure of one processor without crashing. 

Several variants of UNIX have evolved to take advantage of such systems. One of the earli
est multiprocessing UNIX implementations ran on the AT&T 3B20A and the IBM 370 architectures 
[Bach 84]. Currently, most major UNIX implementations are either native multiprocessing systems 
(DECUNIX, Solaris 2.x) or have multiprocessing variants (SVR4/MP, SCO/MPX). 

187 



188 Chapter 7 Synchronization and Multiprocessors 

Ideally, we would like to see the system performance scale linearly with the number of proc
essors. Real systems fall short of this goal for several reasons. Since the other components of the 
system are not duplicated, they can become bottlenecks. The need to synchronize when accessing 
shared data structures, and the extra functionality to support multiple processors, adds CPU over
head and reduces the overall performance gains. The operating system must try to minimize this 
overhead and allow optimal CPU utilization. 

The traditional UNIX kernel assumes a uniprocessor architecture and needs major modifica
tions to run on multiprocessor systems. The three main areas of change are synchronization, paral
lelization, and scheduling policies. Synchronization involves the basic primitives used to control 
access to shared data and resources. The traditional primitives of sleep/wakeup combined with inter
rupt blocking are inadequate in a multiprocessing environment and must be replaced with more 
powerful facilities. 

Parallelization concerns the efficient use of the synchronization primitives to control access 
to shared resources. This involves decisions regarding lock granularity, lock placement, deadlock 
avoidance, and so forth. Section 7.10 discusses some of these issues. The scheduling policy also 
needs to be changed to allow the optimal utilization of all processors. Section 7.4 analyzes some 
issues related to multiprocessor scheduling. 

This chapter first describes the synchronization mechanisms in traditional UNIX systems 
and analyzes their limitations. It follows with an overview of multiprocessor architectures. Finally 
the chapter describes synchronization in modern UNIX systems. The methods describe work well 
on both uniprocessor and multiprocessor platforms. 

In traditional UNIX systems, the process is the basic scheduling unit, and it has a single 
thread of control. As described in Chapter 3, many modern UNIX variants allow multiple threads of 
control in each process, with full kernel support for these threads. Such multithreaded systems are 
available both on uniprocessor and multiprocessor architectures. In these systems, individual threads 
contend for and lock the shared resources. In the rest of this chapter, we refer to a thread as the basic 
scheduling unit since it is the more general abstraction. For a single-threaded system, a thread is 
synonymous with a process. 

7.2 Synchronization in Traditional UNIX Kernels 

The UNIX kernel is reentrant-several processes may be executing in the kernel at the same time, 
perhaps even in the same routine. On a uniprocessor only one process can actually execute at a time. 
However, the system rapidly switches from one process to another, providing the illusion that they 
are all executing concurrently. This feature is usually called multiprogramming. Since these proc
esses share the kernel, the kernel must synchronize access to its data structures in order to avoid cor
rupting them. Section 2.5 provides a detailed discussion of traditional UNIX synchronization tech
niques. In this section, we summarize the important principles. 

The first safeguard is that the traditional UNIX kernel is nonpreemptive. Any thread execut
ing in kernel mode will continue to run, even though its time quantum may expire, until it is ready 
to leave the kernel or needs to block for some resource. This allows kernel code to manipulate sev-



7.2 Synchronization in Traditional UNIX Kernels 189 

eral data structures without any locking, knowing that no other thread can access them until the cur
rent thread is done with them and is ready to relinquish the kernel in a consistent state. 

7 .2.1 Interrupt Masking 

The no-preemption rule provides a powerful and wide-ranging synchronization tool, but it has cer
tain limitations. Although the current thread may not be preempted, it may be interrupted. Interrupts 
are an integral part of system activity and usually need to be serviced urgently. The interrupt handler 
may manipulate the same data structures with which the current thread was working, resulting in 
corruption of that data. Hence the kernel must synchronize access to data that is used both by nor
mal kernel code and by interrupt handlers. 

UNIX solves this problem by providing a mechanism for blocking (masking) interrupts. As
sociated with each interrupt is an interrupt priority level (ipl). The system maintains a current ipl 
value and checks it whenever an interrupt occurs. If the interrupt has a higher priority than the cur
rent ipl, it is handled immediately (preempting the lower-priority interrupt currently being handled). 
Otherwise, the kernel blocks the interrupt until the ipl falls sufficiently. Prior to invoking the han
dler, the system raises the ipl to that of the interrupt; when the handler completes, the system re
stores the ipl to the previous value (which it saves). The kernel can also explicitly set the ipl to any 
value to mask interrupts during certain critical processing. 

For example, a kernel routine may want to remove a disk block buffer from a buffer queue it 
is on; this queue may also be accessed by the disk interrupt handler. The code to manipulate the 
queue is a critical region. Before entering the critical region, the routine will raise the ipl high 
enough to block disk interrupts. After completing the queue manipulation, the routine will set the ipl 
back to its previous value, thus allowing the disk interrupts to be serviced. The ipl thus allows ef
fective synchronization of resources shared by the kernel and interrupt handlers. 

7.2.2 Sleep and Wakeup 

Often a thread wants to guarantee exclusive use of a resource even if it needs to block for some rea
son. For instance, a thread wants to read a disk block into a block buffer. It allocates a buffer to hold 
the block and then initiates disk activity. This thread needs to wait for the 1/0 to complete, which 
means it must relinquish the processor to some other thread. If the other thread acquires the same 
buffer and uses it for some different purpose, the contents of the buffer may become indeterminate 
or corrupted. This means that threads need a way of locking the resource while they are blocked. 

UNIX implements this by associating locked and wanted flags with shared resources. When 
a thread wants to access a sharable resource, such as a block buffer, it first checks its locked flag. If 
the flag is clear, the thread sets the flag and proceeds to use the resource. If a second thread tries to 
access the same resource, it finds the locked flag set and must block (go to sleep) until the resource 
becomes available. Before doing so, it sets the associated wanted flag. Going to sleep involves 
linking the thread onto a queue of sleeping threads, changing its state information to show that it is 
sleeping on this resource, and relinquishing the processor to another thread. 

When the first thread is done with the resource, it will clear the locked flag and check the 
wanted flag. If the wanted flag is set, it means that at least one other thread is waiting for (blocked 



190 Chapter 7 Synchronization and Multiprocessors 

on) this resource. In that case, the thread examines the sleep queue and wakes up all such threads. 
Waking a thread involves unlinking it from the sleep queue, changing its state to runnable, and put
ting it on the scheduler queue. When one of these threads is eventually scheduled, it again checks 
the locked flag, finds that it is clear, sets it, and proceeds to use the resource. 

7.2.3 Limitations of Traditional Approach 

The traditional synchronization model works correctly for a uniprocessor, but has some important 
performance problems that are described in this section. In a multiprocessor environment, the model 
breaks down completely, as will be shown in Section 7.4. 

Mapping Resources to Sleep Queues 

The organization of the sleep queues leads to poor performance in some situations. In UNIX, a 
thread blocks when waiting for a resource lock or an event. Each resource or event is associated 
with a sleep channel, which is a 32-bit value usually set to the address of the resource. There is a set 
of sleep queues, and a hash function maps the channel (hence, maps the resource) to one of these 
queues as shown in Figure 7-1. A thread goes to sleep by enqueuing itself onto the appropriate sleep 
queue and storing the sleep channel in its proc structure. 

This approach has two consequences. First, more than one event may map to the same chan
nel. For instance, one thread locks a buffer, initiates I/0 activity to it, and sleeps until the I/0 com
pletes. Another thread tries to access the same buffer, finds it locked, and must block until it be
comes available. Both events map to the same channel, namely the address of that buffer. When the 
I/0 completes, the interrupt handler will wake up both threads, even though the event the second 
thread was waiting for has not yet occurred. 

Second, the number of hash queues is much smaller than the number of different sleep chan
nels (resources or events); hence, multiple channels map to the same hash queue. A queue thus 
contains threads waiting on several different channels. The wakeup() routine must examine each of 
them and only wake up threads blocked on the correct channel. As a result, the total time taken by 
wakeup() depends not on the number of processes sleeping on that channel, but on the total number 

Sleep Blocked 

Figure 7-1. Mapping resources to global sleep queues. 



7.3 Multiprocessor Systems 191 

of processes sleeping on that queue. This sort of unpredictable delay is usually undesirable and may 
be unacceptable for kernels that support real-time applications requiring bounded dispatch latency 
(see Section 5.5.4). 

One alternative is to associate a separate sleep queue for each resource or event (Figure 7-2). 
This approach would optimize the latency of the wakeup algorithm, at the expense of memory over
head for all the extra queues. The typical queue header contains two pointers (forward and back
ward) as well as other information. The total number of synchronization objects in the system may 
be quite large and putting a sleep queue on each of them may be wasteful. 

Solaris 2.x provides a more space-efficient solution [Eykh 92]. Each synchronization object 
has a two-byte field that locates a turnstile structure that contains the sleep queue and some other 
information (Figure 7-3). The kernel allocates turnstiles only to those resources that have threads 
blocked on them. To speed up allocation, the kernel maintains a pool of turnstiles, and the size of 
this pool is greater than the number of active threads. This approach provides more predictable real
time behavior with minimal storage overhead. Section 5.6.7 describes turnstiles in greater detail. 

Shared and Exclusive Access 

The sleep/wakeup mechanism is adequate when only one thread should use the resource at a time. It 
does not, however, readily allow for more complex protocols such as readers-writers synchroniza
tion. It may be desirable to allow multiple threads to share a resource for reading, but require exclu
sive access before modifying it. File and directory blocks, for example, can be shared efficiently 
using such a facility. 

7.3 Multiprocessor Systems 

There are three important characteristics of a multiprocessor system. The first is its memory model, 
which defines the way in which the processors share the memory. Second is the hardware support 
for synchronization. Finally, the software architecture determines the relationships between the 
processors, kernel subsystems, and user processes. 

7 .3.1 Memory Model 
From a hardware perspective, multiprocessor systems can be divided into three categories (see 
Figure 7-4), depending on their coupling and memory access semantics: 

~ 
R1 

~ 
R2 

~ 
R3 

~ 
R4 

Figure 7-2. Per-resource blocked-thread queues. 



192 Chapter 7 Synchronization and Multiprocessors 

turnstiles 

a.---~ 
R1 ~ 

a 
R2 

a_ ___ -~ 
R3 ~ 

Figure 7-3. Queuing blocked threads on turnstiles. 

• Uniform Memory Access (UMA) 
• Non-Uniform Memory Access (NUMA) 
• No Remote Memory Access (NORMA) 

The most common system is the UMA, or shared memory, multiprocessor (Figure 7-4(a)). 
Such a system allows all CPUs equal access to main memory1 and to 1/0 devices, usually by having 

(a) UMA 

(d) NORMA 

high-speed network 
interconnect 

Figure 7-4. UMA, NUMA, and NORMA systems. 

l However, the data, instruction, and address translation caches are local to each processor. 

local 
RAM 

local 
RAM 



7.3 Multiprocessor Systems 193 

everything on a single system bus. This is a simple model from the operating system perspective. Its 
main drawback is scalability. UMA architectures can support only a small number of processors. As 
the number of processors increases, so does the contention on the bus. One of the largest UMA sys
tems is the SGI Challenge, which supports up to 36 processors on a single bus. 

In a NUMA system (Figure 7-4(b)), each CPU has some local memory, but can also access 
memory local to another processor. The remote access is slower, usually by an order of magnitude, 
than local access. There are also hybrid systems (Figure 7-4(c)), where a group of processors shares 
uniform access to its local memory, and has slower access to memory local to another group. The 
NUMA model is hard to program without exposing the details of the hardware architecture to the 
applications. 

In a NORMA system (Figure 7-4(d)), each CPU has direct access only to its own local 
memory and may access remote memory only through explicit message passing. The hardware 
provides a high-speed interconnect that increases the bandwidth for remote memory access. Build
ing a successful system for such an architecture requires cache management and scheduling support 
in the operating system, as well as compilers that can optimize the code for such hardware. 

This chapter restricts itself to UMA systems. 

7.3.2 Synchronization Support 

Synchronization on a multiprocessor is fundamentally dependent on hardware support. Consider the 
basic operation of locking a resource for exclusive use by setting a locked flag maintained in a 
shared memory location. This may be accomplished by the following sequence of operations: 

1. Read the flag. 
2. If the flag is 0 (hence, the resource is unlocked), lock the resource by setting the flag to 1. 
3. Return TRUE if the lock was obtained, or else return FALSE. 

On a multiprocessor, two threads on two different processors may simultaneously attempt to carry 
out this sequence of operations. As Figure 7-5 shows, both threads may think they have exclusive 
access to the resource. To avoid such a disaster, the hardware has to provide a more powerful 
primitive that can combine the three subtasks into a single indivisible operation. Many architectures 
solve this problem by providing either an atomic test-and-set or a conditional store instruction. 

Atomic Test-and-Set 

An atomic test-and-set operation usually acts on a single bit in memory. It tests the bit, sets it to one, 
and returns its old value. Thus at the completion of the operation the value of the bit is one (locked), 
and the return value indicates whether it was already set to one prior to this operation. The operation 
is guaranteed to be atomic, so if two threads on two processors both issue the same instruction on 
the same bit, one operation will complete before the other starts. Further, the operation is also 
atomic with respect to interrupts, so that an interrupt can occur only after the operation completes. 

Such a primitive is ideally suited for simple locks. If the test-and-set returns one, the calling 
thread owns the resource. If it returns zero, the resource is locked by another thread. Unlocking the 
resource is done by simply setting the bit to zero. Some examples of test-and-set instructions are 



194 

thinks it owns the 
lock 

~ 
R1 

Chapter 7 Synchronization and Multiprocessors 

• 0 

Figure 7-5. Race condition if test-and-set is not atomic. 

BBSS I (Branch on Bit Set and Set Interlocked) on the V AX-11 [Digi 87] and LDSTUB (LoaD and 
STore Unsigned Byte) on the SPARC. 

Load-Linked and Store-Conditional Instructions 

Some processors such as the MIPS R4000 and Digital's Alpha AXP use a pair of special load and 
store instructions to provide an atomic read-modify-write operation. The load-linked instruction 
(also called the load-locked instruction) loads a value from memory into a register and sets a flag 
that causes the hardware to monitor the location. If any processor writes to such a monitored loca
tion, the hardware will clear the flag. The store-conditional instruction stores a new value into the 
location provided the flag is still set. In addition, it sets the value of another register to indicate if 
the store occurred. 

Such a primitive may be used to generate an atomic increment operation. The variable is 
read using load-linked, and its new value is set using store-conditional. This sequence is repeated 
until it succeeds. Event counters in DGIUX [Kell 89] are based on this facility. 

Some systems such as the Motorola MC881 00 use a third approach based on a swap-atomic 
instruction. This method is explored further in the exercises at the end of this chapter. Any of these 
hardware mechanisms becomes the first building block for a powerful and comprehensive synchro
nization facility. The high-level software abstractions described in the following sections are all 
built on top of the hardware primitives. 



7.4 Multiprocessor Synchronization Issues 195 

7.3.3 Software Architecture 

From a software perspective, again there are three types of multiprocessing systems-master-slave, 
functionally asymmetric, and symmetric. A master-slave system [Gobl81] is asymmetric: one proc
essor plays the role of a master processor, and the rest are slaves. The master processor may be the 
only one allowed to do 1/0 and receive device interrupts. In some cases, only the master processor 
runs kernel code, and the slaves run only user-level code. Such constraints may simplify the system 
design, but reduce the advantage of multiple processors. Benchmark results [Bach 84] have shown 
that a UNIX system typically spends more than 40% of its time running in kernel mode, and it is 
desirable to spread this kernel activity among all processors. 

Functionally asymmetric multiprocessors run different subsystems on different processors. 
For instance, one processor may run the networking layer, while another manages 1/0. Such an ap
proach is more suitable for a special-purpose system rather than a general-purpose operating system 
like UNIX. The Auspex NS5000 file server [Hitz 90] is a successful implementation of this model. 

Symmetric multiprocessing (SMP) is by far the more popular approach. In an SMP system, 
all CPU s are equal, share a single copy of the kernel text and data, and compete for system re
sources such as devices and memory. Each CPU may run the kernel code, and any user process may 
be scheduled on any processor. This chapter describes SMP systems only, except where explicitly 
stated otherwise. 

The rest of this chapter describes modem synchronization mechanisms, used for uniproces
sor and multiprocessor systems. 

7.4 Multiprocessor Synchronization Issues 

One of the basic assumptions in the traditional synchronization model is that a thread retains exclu
sive use of the kernel (except for interrupts) until it is ready to leave the kernel or block on are
source. This is no longer valid on a multiprocessor, since each processor could be executing kernel 
code at the same time. We now need to protect all kinds of data that did not need protection on a 
uniprocessor. Consider for example, access to an /PC resource table (see Section 6.3.1). This data 
structure is not accessed by interrupt handlers and does not support any operations that might block 
the process. Hence on a uniprocessor, the kernel can manipulate the table without locking it. In the 
multiprocessor case, two threads on different processors can access the table simultaneously, and 
hence must lock it in some manner before use. 

The locking primitives must be changed as well. In a traditional system, the kernel simply 
checks the locked flag and sets it to lock the object. On a multiprocessor, two threads on different 
processors can concurrently examine the locked flag for the same resource. Both will find it clear 
and assume that the resource is available. Both threads will then set the flag and proceed to access 
the resource, with unpredictable results. The system must therefore provide some kind of an atomic 
test-and-set operation to ensure that only one thread can lock the resource. 

Another example involves blocking of interrupts. On a multiprocessor, a thread can typically 
block interrupts only on the processor on which it is running. It is usually not possible to block in
terrupts across all processors-in fact, some other processor may have already received a conflicting 
interrupt. The handler running on another processor may corrupt a data structure that the thread is 



196 Chapter 7 Synchronization and Multiprocessors 

accessing. This is compounded by the fact that the handler cannot use the sleep/wakeup synchroni
zation model, since most implementations do not permit interrupt handlers to block. The system 
should provide some mechanism for blocking interrupts on other processors. One possible solution 
is a global ipl managed in software. 

7.4.1 The Lost Wakeup Problem 
The sleep/wakeup mechanism does not function correctly on a multiprocessor. Figure 7-6 illustrates 
a potential race condition. Thread Tl has locked a resource Rl. Thread T2, running on another 
processor, tries to acquire the resource, and finds it locked. T2 calls s 1 eep () to wait for the re
source. Between the time T2 finds the resource locked and the time it calls s 1 eep (), Tl frees the 
resource and proceeds to wake up all threads blocked on it. Since T2 has not yet been put on the 
sleep queue, it will miss the wakeup. The end result is that the resource is not locked, but T2 is 
blocked waiting for it to be unlocked. If no one else tries to access the resource, T2 could block in
definitely. This is known as the lost wakeup problem, and requires some mechanism to combine the 
test for the resource and the call to s 1 eep () into a single atomic operation. 

It is clear then, that we need a whole new set of primitives that will work correctly on a 
multiprocessor. This gives us a good opportunity to examine other problems with the traditional 
model and devise better solutions. Most of these issues are performance related. 

7.4.2 The Thundering Herd Problem 

When a thread releases a resource, it wakes up all threads waiting for it. One of them may now be 
able to lock the resource; the others will find the resource still locked and will have to go back to 
sleep. This may lead to extra overhead in wakeups and context switches. 

(~ ~1 J has locked ~l:k _!ri_e~ ~ lo~k_ § 
I I 

unRlolcks Q a no threads to I 

~ R1 wakeup 1 

6calls 
~sleep 

I 

not ~ ~blocked 
locked ~onRI 

• 0 

Figure 7-6. The lost wakeup problem. 



7.5 Semaphores 197 

This problem is not as acute on a uniprocessor, since by the time a thread runs, whoever had 
locked the resource is likely to have released it. On a multiprocessor, however, if several threads 
were blocked on a resource, waking them all may cause them to be simultaneously scheduled on 
different processors, and they would all fight for the same resource again. This is frequently referred 
to as the thundering herd problem. 

Even if only one thread was blocked on the resource, there is still a time delay between its 
waking up and actually running. In this interval, an unrelated thread may grab the resource, causing 
the awakened thread to block again. If this happens frequently, it could lead to starvation of this 
thread. 

We have examined several problems with the traditional synchronization model that affect 
correct operation and performance. The rest of this chapter describes several synchronization 
mechanisms that function well on both uniprocessors and multiprocessors. 

7.5 Semaphores 

The early implementations of UNIX on multiprocessors relied almost exclusively on Dijkstra 's 
semaphores [Dijk 65] (also called counted semaphores) for synchronization. A semaphore is an in
teger-valued variable that supports two basic operations-P () and V (). P () decrements the sema
phore and blocks if its new value is less than zero. V () increments the semaphore; if the resulting 
value is less than or equal to zero, it wakes up a thread blocked on it (if any). Example 7-1 describes 
these functions, plus an initialization function i n i t s em () and a C P () function, which is a nonblock
ing version of P () : 

void initsem (semaphore *sem, int val) 
{ 

*sem =val; 

void P(semaphore *sem) /*acquire the semaphore*/ 
{ 

*sem -= 1; 
while (*sem < 0) 

sleep; 

void V (semaphore *sem) /*release the semaphore */ 
{ 

*sem += 1; 
if (*sem <= 0) 

wakeup a thread blocked on sem; 



198 Chapter 7 Synchronization and Multiprocessors 

boolean_t CP(semaphore *sem) /* try to acquire semaphore without blocking *I 
{ 

if(*sem>O) 
*sem -= 1; 
return TRUE; 

else 
return FALSE; 

Example 7-1. Semaphore operations. 

The kernel guarantees that the semaphore operations will be atomic, even on a multiproces
sor system. Thus if two threads try to operate on the same semaphore, one operation will complete 
or block before the other starts. The P () and V () operations are comparable to sleep and wakeup, 
but with somewhat different semantics. The CP () operation allows a way to poll the semaphore 
without blocking and is used in interrupt handlers and other functions that cannot afford to block. It 
is also used in deadlock avoidance cases, where a P () operation risks a deadlock. 

7.5.1 Semaphores to Provide Mutual Exclusion 

Example 7-2 shows how a semaphore can provide mutual exclusion on a resource. A semaphore can 
be associated with a shared resource such as a linked list, and initialized to one. Each thread does a 
P () operation to lock a resource and a V () operations to release it. The first P () sets the value to 
zero, causing subsequent P () operations to block. When a V () is done, the value is incremented and 
one of the blocked threads is awakened. 

/* During initialization */ 
semaphore sem; 
initsem (&sem, 1); 

/* On each use */ 
P (&sem); 
Use resource; 
V (&sem); 

Example 7-2. Semaphore used to lock resource for exclusive use. 

7.5.2 Event-Wait Using Semaphores 

Example 7-3 shows how a semaphore can be used to wait for an event by initializing it to zero. 
Threads doing a P () will block. When the event occurs, a V () needs to be done for each blocked 
thread. This can be achieved by calling a single V () when the event occurs and having each thread 
do another V () upon waking up, as is shown in Example 7-3. 



7.5 Semaphores 199 

/*During initiqlization *I 
semaphore event; 
i nits em (&event, 0); /* probablya[boottime */ 

/* Code executed by thread that mustwaiton event *I 
P (&event); /* Blocksifeventhas notoccurred *I 
/*Event has occurred */ 
V (&event}; I* So that another threadmaywake up*/ 
/* Continue processing *I 

/* Code executedwhen event occurs */ 
V (&event); /*Wake up one thread*/ 

Example 7-3. Semaphores used to wait for an event. 

7.5.3 Semaphores to Control Countable Resources 

Semaphores are also useful for allocating countable resources, such as message block headers in a 
STREAMS implementation. As shown in Example 7-4, the semaphore is initialized to the number 
of available instances of that resource. Threads call P () while acquiring an instance of the resource 
and V () while releasing it. Thus the value of the semaphore indicates the number of instances cur
rently available. If the value is negative, then its absolute value is the number of pending requests 
(blocked threads) for that resource. This is a natural solution to the classic producers-consumers 
problem. 

/* Duringinitializatiofl */ 
semaphore counter; 
initsem (&counter, resourceCount); 

/*Code executed to use the resource */ 
P (&counter}; /*Blocks untilresoilrpe is available*/ 
Use resource;· /*Guaranteed to be available now *I 
V (&counter); /*Release the resource *l 

Example 7-4. Semaphore used to count available instances of a resource. 

7.5.4 Drawbacks of Semaphores 

Although semaphores provide a single abstraction flexible enough to handle several different types 
of synchronization problems, they suffer from a number of drawbacks that make them unsuitable in 
several situations. To begin with, a semaphore is a high-level abstraction based on lower-level 
primitives that provide atomicity and a blocking mechanism. For the P () and V () operations to be 
atomic on a multiprocessor system, there must be a lower-level atomic operation to guarantee ex
clusive access to the semaphore variable itself. Blocking and unblocking require context switches 



200 Chapter 7 Synchronization and Multiprocessors 

and manipulation of sleep and scheduler queues, all of which make the operations slow. This ex
pense may be tolerable for some resources that need to be held for a long time, but is unacceptable 
for locks held for a short time. 

The semaphore abstraction also hides information about whether the thread actually had to 
block in the P () operation. This is often unimportant, but in some cases it may be crucial. The 
UNIX buffer cache, for instance, uses a function called getb 1 k () to look for a particular disk block 
in the buffer cache. If the dt::sired block is found in the cache, getb 1 k () attempts to lock it by call
ing P () . If P () were to sleep because the buffer was locked, there is no guarantee that, when awak
ened, the buffer would contain the same block that it originally had. The thread that had locked the 
buffer may have reassigned it to some other block. Thus after P () returns, the thread may have 
locked the wrong buffer. This problem can be solved within the framework of semaphores, but the 
solution is cumbersome and inefficient, and indicates that other abstractions might be more suitable 
[Ruan 90]. 

7.5.5 Convoys 

Compared to the traditional sleep/wakeup mechanism, semaphores offer the advantage that proc
esses do not wake up unnecessarily. When a thread wakes up within a P () , it is guaranteed to have 
the resource. The semantics ensure that the ownership of the semaphore is transferred to the woken 
up thread before that thread actually runs. If another thread tries to acquire the semaphore in the 
meantime, it will not be able to do so. This very fact, however, leads to a performance problem 
called semaphore convoys [Lee 87]. A convoy is created when there is frequent contention on a 
semaphore. Although this can degrade the performance of any locking mechanism, the peculiar se
mantics of semaphores compound the problem. 

Figure 7-7 shows the formation of a convoy. Rl is a critical region protected by a sema
phore. At instant (a), thread T2 holds the semaphore, while T3 is waiting to acquire it. Tl is run-

(a) holds ( 71 blocks~(s T3) sched 
queue 

R1 

(b) 
sched 

0 queue 
R1 

~ sched (c) 1 
R1 

queue 

holds 

Figure 7-7. Convoy formation. 



7.6 Spin Locks 201 

ning on another processor, and T4 is waiting to be scheduled. Now suppose T2 exits the critical re
gion and releases the semaphore. It wakes up T3 and puts it on the scheduler queue. T3 now holds 
the semaphore, as shown in (b). 

Now suppose Tl needs to enter the critical region. Since the semaphore is held by T3, Tl 
will block, freeing up processor Pl. The system will schedule thread T4 to run on Pl. Hence in (c), 
T3 holds the semaphore and Tl is blocked on it; neither thread can run until T2 or T4 yields its 
processor. 

The problem lies in step (c). Although the semaphore has been assigned to T3, T3 is not 
running and hence is not in the critical region. As a result, Tl must block on the semaphore even 
though no thread is in the critical region. The semaphore semantics force allocation in a first-come, 
first-served order.2 This forces a number of unnecessary context switches. Suppose the semaphore 
was replaced by an exclusive lock, or mutex. Then, in step (b), T2 would release the lock and wake 
up T3, but T3 would not own the lock at this point. Consequently, in step (c), Tl would acquire the 
lock, eliminating the context switch. 

Note: Mutex, short for mutual exclusion lock; Js a general term thqt 
refers to any primitive thatenforces exclusive access semimtics. 

In general, it is desirable to have a set of inexpensive lower-level primitives instead of a 
single monolithic higher-level abstraction. This is the trend in the modem multiprocessing kernels, 
and the following sections examine the low-level mechanisms that together provide a versatile syn
chronization facility. 

7.6 Spin Locks 

The simplest locking primitive is a spin lock, also called a simple lock or a simple mutex. If a re
source is protected by a spin lock,a thread trying to acquire the resource will busy-wait (loop, or 
spin) until the resource is unlocked. It is usually a scalar variable that is zero if available and one if 
locked. The variable is manipulated using a busy-wait loop around an atomic test-and-set or similar 
instruction available on the machine. Example 7-5 shows an implementation of a spin lock. It as
sumes that test_ and_ set() returns the old value of the object. 

void spin 1 ock {spin lock t *s} { 
while-(test_and_set (s) '"" 0} .. 

void spin_unlock {sptnlotbt *s) 

Example 7-5. Spin lock implementation. 

2 Some implementation may choose the thread to wake up based on priority. The effect in this example would be the 
same. 



202 Chapter 7 Synchronization and Multiprocessors 

Even this simple algorithm is flawed. On many processors, test_and_set() works by 
locking the memory bus, so this loop could monopolize the bus and severely degrade system per
formance. A better approach is to use two loops-if the test fails, the inner loop simply waits for the 
variable to become zero. The simple test in the inner loop does not require locking the bus. Example 
7-6 shows the improved implementation: 

void spin lock {spinlock t *s) 
{ - -

while (test_and_set (s) != 0) l*alreadylocked*/ 
while {*s != 0) 

/* wait until unlocked *I 

void spin_unlock {spinlock_t *s) { *s = 0; } 

Example 7-6. Revised spin lock implementation. 

7.6.1 Use of Spin Locks 

The most important characteristic of spin locks is that a thread ties up a CPU while waiting for the 
lock to be released. It is essential, then, to hold spin locks only for extremely short durations. In 
particular, they must not be held across blocking operations. It may also be desirable to block inter
rupts on the current processor prior to acquiring a spin lock, so as to guarantee low holding time on 
the lock. 

The basic premise of a spin lock is that a thread busy-waits on a resource on one processor 
while another thread is using the resource on a different processor. This is only possible on a multi
processor. On a uniprocessor, if a thread tries to acquire a spin lock that is already held, it will loop 
forever. Multiprocessor algorithms, however, must operate correctly regardless of the number of 
processors, which means that they should handle the uniprocessor case as well. This requires strict 
adherence to the rule that threads not relinquish control of the CPU while holding a spin lock. On a 
uniprocessor, this ensures that a thread will never have to busy-wait on a spin lock. 

The major advantage of spin locks is that they are inexpensive. When there is no contention 
on the lock, both the lock and the unlock operations typically require only a single instruction each. 
They are ideal for locking data structures that need to be accessed briefly, such as while removing 
an item from a doubly linked list or while performing a load-modify-store type of operation on a 
variable. Hence they are used to protect those data structures that do not need protection in a uni
processor system. They are also used extensively to protect more complex locks, as shown in the 
following sections. Semaphores, for instance, use a spin lock to guarantee atomicity of their opera
tions, as shown in Example 7-7. 



7.7 Condition Variables 

spinlockt 1 ts~; 
spinlock·(&li$1:}; 
1tem:>¥orw"->flack = 
item->back->forw= itei'IJ"'~forw; 

.• spin.::.YI'IlOqk .(~]JsJJ; 

Example 7-7. Using a spin lock to access a doubly linked list. 

7.7 Condition Variables 

203 

A condition variable is a more complex mechanism associated with a predicate (a logical expres
sion that evaluates to TRUE or FALSE) based on some shared data. It allows threads to block on it and 
provides facilities to wakeup one or all blocked threads when the result of the predicate changes. It 
is more useful for waiting on events than for resource locking. 

Consider, for example, one or more server threads waiting for client requests. Incoming re
quests are to be passed to waiting threads or put on a queue if no one is ready to service them. When 
a server thread is ready to process the next request, it first checks the queue. If there is a pending 
message, the thread removes it from the queue and services it. If the queue is empty, the thread 
blocks until a request arrives. This can be implemented by associating a condition variable with this 
queue. The shared data is the message queue itself, and the predicate is that the queue be nonempty. 

The condition variable is similar to a sleep channel in that server threads block on the condi
tion and incoming messages awaken them. On a multiprocessor, however, we need to guard against 
some race conditions, such as the lost wakeup problem. Suppose a message arrives after a thread 
checks the queue but before the thread blocks. The thread will block even though a message is 
available. We therefore need an atomic operation to test the predicate and block the thread if neces
sary. 

Condition variables provide this atomicity by using an additional mutex, usually a spin lock. 
The mutex protects the shared data, and avoids the lost wakeup problem. The server thread acquires 
the mutex on the message queue, then checks if the queue is empty. If so, it calls the wait () func
tion of the condition with the spin lock held. The wait () function takes the mutex as an argument 
and atomically blocks the thread and releases the mutex. When the message arrives on the queue 
and the thread is woken up, the wa i t () call reacquires the spin lock before returning. Example 7-8 
provides a sample implementation of condition variables: 

struct;conditfo~ 

PtPc:: *ne~t;. .... ·.··.·· !*}iaubfyli!1ke.flti# '!'/> i . 
•· Pri!E *J>#v; > . . 2 \·····. •t+~fi~{l.Ji/lt~(J)iiff¢#a~ fz.t•······· ···· 
. sp]nlock--t lfstlock; .•. l*piotects thiilfst. */ .. 

h 



204 Chapter 7 Synchronization and Multiprocessors 

void wait (condition *c, spinlock_t *s) 
{ 

} 

spin_lock (&c->listlock); 
add self to the linked list; 
spin~unlock (&c->listlock); 
spin unlock (s); /*release spinlock before blocking*/ 
swtch(); /*perform context switch*/ 
/* When we return from swtch, the event has occurred */ 
spin_lock (s); /*acquire the spin lock again*/ 
return; 

void do signal (condition *c) 
I* Wake up one thread waiting an this condition */ 
{ 

spin_lock (&c->listlock); 
remove one thread from linked list, if it is nonempty; 
spin_unlock (lc->listlock); 
if a thread was removed from the list, make it runnable; 
return; 

void do-broadcast (condition *c) 
/*Wake up all threads waiting an this condition*/ 
{ 

spin_lock (&c->listlock); 
while (linked list is nonempty) 

remove a thread from linked list; 
make it runnable; 

spfn_unlock (&c->lfstlock); 

Example 7-8. Implementation of condition variables. 

7.7.1 Implementation Issues 

There are a few important points to note. The predicate itself is not part of the condition variable. It 
must be tested by the calling routine before calling wait (). Further, note that the implementation 
uses two separate mutexes. One is 1 i stlock, which protects the doubly linked list of threads 
blocked on the condition. The second mutex protects the tested data itself. It is not a part of the 
condition variable, but is passed as an argument to the wait () function. The swtch () function and 
the code to make blocked threads runnable may use a third mutex to protect the scheduler queues. 



7.7 Condition Variables 205 

We thus have a situation where a thread tries to acquire one spin lock while holding another. 
This is not disastrous since the restriction on spin locks is only that threads are not allowed to block 
while holding one. Deadlocks are avoided by maintaining a strict locking order-the lock on the 
predicate must be acquired before l i stlock. 

It is not necessary for the queue of blocked threads to be a part of the condition structure it
self. Instead, we may have a global set of sleep queues as in traditional UNIX. In that case, the 
l i stlock in the condition is replaced by a mutex protecting the appropriate sleep queue. Both 
methods have their own advantages, as discussed earlier. 

One of the major advantages of a condition variable is that it provides two ways to handle 
event completion. When an event occurs, there is the option of waking up just one thread with 
do_signal () or all threads with do_broadcast(). Each may be appropriate in different circum
stances. In the case of the server application, waking one thread is sufficient, since each request is 
handled by a single thread. However, consider several threads running the same program, thus 
sharing a single copy of the program text. More than one of these threads may try to access the same 
nonresident page of the text, resulting in page faults in each of them. The first thread to fault initi
ates a disk access for that page. The other threads notice that the read has already been issued and 
block waiting for the I/0 to complete. When the page is read into memory, it is desirable to call 
do _broadcast() and wake up all the blocked threads, since they can all access the page without 
conflict. 

7.7.2 Events 

Frequently, the predicate of the condition is simple. Threads need to wait for a particular task to 
complete. The completion may be flagged by setting a global variable. This situation may be better 
expressed by a higher-level abstraction called an event that combines a done flag, the spin lock pro
tecting it, and the condition variable into a single object. The event object presents a simple inter
face, allowing two basic operations-await Done() and setDone (). await Done() blocks until the 
event occurs, while setDone() marks the event as having occurred and wakes up all threads 
blocked on it. In addition, the interface may support a nonblocking tes tOone() function and a re
set() function, which once again marks the event as not done. In some cases, the boolean done 
flag may be replaced by a variable that returns more descriptive completion information when the 
event occurs. 

7.7.3 Blocking Locks 
Often, a resource must be locked for a long period of time and the thread holding this lock must be 
permitted to block on other events. Thus a thread that needs the resource cannot afford to spin until 
the resource becomes available, and must block instead. This requires a blocking lock primitive that 
offers two basic operations-1 ock () and unlock ()-and optionally, a try lock(). Again there are 
two objects to synchronize-the locked flag on the resource and the sleep queue-which means that 
we need a spin lock to guarantee atomicity of the operations. Such locks may be trivially imple
mented using condition variables, with the predicate being the clearing of the locked flag. For per-



206 Chapter 7 Synchronization and Multiprocessors 

formance reasons, blocking locks might be provided as fundamental primitives. In particular, if each 
resource has its own sleep queue, a single spin lock might protect both the flag and the queue. 

7.8 Read-Write Locks 

Although modification of a resource requires exclusive access, it is usually acceptable to allow sev
eral threads to simultaneously read the shared data, as long as no one is trying to write to it at that 
time. This requires a complex lock that permits both shared and exclusive modes of access. Such a 
facility may be built on top of simple locks and conditions [Birr 89]. Before we look at an imple
mentation, let us examine the desired semantics. A read-write lock may permit either a single writer 
or multiple readers. The basic operations are l ockSha red(), l ockExc l us i ve (), un l ockSha red() 
and unlockExclusive(). In addition, there might be trylockShared() and trylockExclu
sive(), which return FALSE instead of blocking, and also upgrade() and downgrade(), which 
convert a shared lock to exclusive and vice versa. A l o c kS h a red () operation must block if there is 
an exclusive lock present, whereas lockExclusive() must block if there is either an exclusive or 
shared lock on the resource. 

7 .8.1 Design Considerations 

What should a thread do when releasing a lock? The traditional UNIX solution is to wake up all 
threads waiting for the resource. This is clearly inefficient-if a writer acquires the lock next, other 
readers and writers will have to go back to sleep; if a reader acquires the lock, other writers will 
have to go back to sleep. It is preferable to find a protocol that avoids needless wakeups. 

If a reader releases a resource, it takes no action if other readers are still active. When the 
last active reader releases its shared lock, it must wake up a single waiting writer. 

When a writer releases its lock, it must choose whether to wake up another writer or the 
other readers (assuming both readers and writers are waiting). If writers are given preference, the 
readers could starve indefinitely under heavy contention. The preferred solution is to wake up all 
waiting readers when releasing an exclusive lock. If there are no waiting readers, we wake up a sin
gle waiting writer. 

This scheme can lead to writer starvation. If there is a constant stream of readers, they will 
keep the resource read-locked, and the writer will never acquire the lock. To avoid this situation, a 
l ockShared () request must block if there is any waiting writer, even though the resource is cur
rently only read-locked. Such a solution, under heavy contention, will alternate access between in
dividual writers and batches of readers. 

The upgrade() function must be careful to avoid deadlocks. A deadlock can occur unless 
the implementation takes care to give preference to upgrade requests over waiting writers. If two 
threads try to upgrade a lock, each would block since the other holds a shared lock. One way to 
avoid that is for upgrade() to release the shared lock before blocking if it cannot get the exclusive 
lock immediately. This results in additional problems for the user, since another thread could have 
modified the object before upgrade () returns. Another solution is for upgrade () to fail and release 
the shared lock if there is another pending upgrade. 



7.8 Read-Write Locks 

7.8.2 Implementation 

Example 7-9 implements a read-write lock facility: 

struct rwlock 

} ; 

i nt nAct i ve; /* num of active readers, or -1 if a writer is active *I 
int nPendingReads; 
int nPendingWrites; 
spinlock_t sl; 
condition canRead; 
condition canWrite; 

void lockShared (struct rwlock *r} 
{ 

spin_lock (&r->sl}; 
r->nPendingReads++; 
if (r~>nPendingWrites > 0) 

wait (&r->canRead, &r->s l); /*don't starve writers *I 
whi 1 e (r->nActi ve < 0) /*someone has exclusive lock*/ 

wait (&r->canRead, &r->sl); 
r->nActive++; 
r->nPendingReads--; 
spin_unlock (&r->sl); 

void unlockShared (struct rwlock *r) 
{ 

spin_lock (&r->sl); 
r->nActive--; 
if (r->nActive == 0) /*nootherreaders */ 

spin_unlock (&r->sl); 
do_signal (&r->canWrite); 

else 
spin_unlock (&r->sl); 

void lockExclusive (struct rwlock *r) 
{ 

spin_lock (&r->sl); 
r->nPendingWrites++; 
while (r->nActive) 

wait {&r->canWrite, &r->sl); 
r->nPendingWrites--; 

207 



208 

r->nActive = -1; 
spin_unlock (&r->sl); 

Chapter 7 Synchronization and Multiprocessors 

void unlockExclusive (struct rwlock *r) 
{ 

boolean t wakeReaders; 
spin_lo~k (&r->sl); 
r->nActive = 0; 
wakeReaders = (r->nPendingReads != 0); 
spin unlock (&r->sl); 
if (wakeReaders) 

do_broadcast (&r->canRead); I* wake all readers *I 
else 

do--'s i gna 1 ( &r->canWri te) ; I* wake a single writer *I 

void downgrade (struct rwlock *r) 
{ 

boolean t wakeReaders; 
spin_lo~k (&r->sl); 
r->nActtve = 1; 
wakeReaders = (r->nPendingReads != 0); 
spin_unlock (&r->sl); 
if (wakeReaders) 

do broadcast (&r->canRead); I* wake all readers *I 

void upgrade (st ruct rwlock *r) 
{ 

spin lock (&r->sl); 
if (r->nActive == 1) I* no other reader *I 

r->nActive = -1; 
else { 

r->nPendingWrites++; 
r->nAct i ve--; I* release shared lock *I 
while (r->nActive) 

wait (&r->canWrite, &r->sl); 
r->nPendingWrites--; 
r->nActive = -1; 

spin_unlock (&r->sl); 

Example 7-9. Implementation ofread-write locks. 



7 .I 0 Other Considerations 209 

7.9 Reference Counts 

Although a lock may protect the data inside an object, we frequently need another mechanism to 
protect the object itself. Many kernel objects are dynamically allocated and deallocated. If a thread 
deallocates such an object, other threads have no way of knowing it and may try to access the object 
using a direct pointer (which they earlier acquired) to it. In the meantime, the kernel could have real
located the memory to a different object, leading to severe system corruption. 

If a thread has a pointer to an object, it expects the pointer to be valid until the thread relin
quishes it. The kernel can guarantee it by associating a reference count with each such object. The 
kernel sets the count to one when it first allocates the object (thus generating the first pointer). It in
crements the count each time it generates a new pointer to the object. 

This way, when a thread gets a pointer to an object, it really acquires a reference to it. It is 
the thread's responsibility to release the reference when no longer needed, at which time the kernel 
decrements the object's reference count. When the count reaches zero, no thread has a valid refer
ence to the object, and the kernel may deallocate the object. 

For example, the file system maintains reference counts for vnodes, which hold information 
about active files (see Section 8.7). When a user opens a file, the kernel returns a file descriptor, 
which constitutes a reference to the vnode. The user passes the descriptor to subsequent read and 
write system calls, allowing the kernel to access the file quickly without repeated name translations. 
When the user closes the file, the reference is released. If several users have the same file open, they 
reference the same vnode. When the last user closes the file, the kernel can deallocate the vnode. 

The previous example shows that reference counts are useful in a uniprocessor system as 
well. They are even more essential for multiprocessors, since without proper reference counting, a 
thread may deallocate an object while a thread on another processor is actively accessing it. 

7.1 0 Other Considerations 

There are several other factors to consider in the design of a complex locking facility and the way in 
which the locks are used. This section examines some important issues. 

7.10.1 Deadlock Avoidance 
It is often necessary for a thread to hold locks on multiple resources. For instance, the implementa
tion of condition variables described in Section 7.7 uses two mutexes: one protects the data and 
predicate of the condition, while the other protects the linked list of threads blocked on the condi
tion. Trying to acquire multiple locks lead to a deadlock, as illustrated in Figure 7-8. Thread Tl 
holds resource Rl and tries to acquire resource R2. At the same time, thread T2 may be holding R2 
and trying to acquire Rl. Neither thread can make progress. 

The two common deadlock avoidance techniques are hierarchical locking and stochastic 
locking. Hierarchical locking imposes an order on related locks and requires that all threads take 
locks in the same order. In the case of condition variables, for instance, a thread must lock the 
condition's predicate before locking the linked list. As long as the ordering is strictly followed, 
deadlock cannot occur. 



210 Chapter 7 Synchronization and Multiprocessors 

~ ___ !t:i~ !'!_'!'Pice __ -if 
holds holds 

~--!ri·~-10-~u}~---{~ T2J 

Figure 7-8. Possible deadlock when using spin locks. 

There are situations in which the ordering must be violated. Consider a buffer cache imple
mentation that maintains disk block buffers on a doubly linked list, sorted in least recently used 
(LRU) order. All buffers that are not actively in use are on the LRU list. A single spin lock protects 
both the queue header and the forward and backward pointers in the buffers on that queue. Each 
buffer also has a spin lock to protect the other information in the buffer. This lock must be held 
while the buffer is actively in use. 

When a thread wants a particular disk block, it locates the buffer (using hash queues or other 
pointers not relevant to this discussion) and locks it. It then locks the LRU list in order to remove 
the buffer from it. Thus the normal locking order is "first the buffer, then the list. " 

Sometimes a thread simply wants any free buffer and tries to get it from the head of the LRU 
list. It first locks the list, then locks the first buffer on the list and removes it from the list. This, 
however, reverses the locking order, since it locks the list before the buffer. 

It is easy to see how a deadlock can occur. One thread locks the buffer at the head of the list 
and tries to lock the list. At the same time, another thread that has locked the list tries to lock the 
buffer at the head. Each will block waiting for the other to release the lock. 

The kernel uses stochastic locking to handle this situation. When a thread attempts to acquire 
a lock that would violate the hierarchy, it uses a try_lock() operation instead of lock(). This 
function attempts to acquire the lock, but returns failure instead of blocking if the lock is already 
held. In this example, the thread that wants to get any free buffer will lock the list and then go down 
the list, using try _1 oc k () until it finds a buffer it can lock. Example 7-10 describes an implemen
tation oft ry _1 oc k () for spin locks: 

int try_lock (spinlock_t *s) 
{ 

if (test_and_set (s) != 0) /*already locked *I 
return FAILURE; 

else 
return SUCCESS; 

Example 7-10. Implementation of try _1 ock(). 



7 .I 0 Other Considerations 211 

7.10.2 Recursive Locks 

A lock is recursive if an attempt by a thread to acquire a lock it already owns would succeed without 
blocking. Why is this a desirable feature? Why should a thread attempt to lock something it has al
ready locked? The typical scenario has a thread locking a resource, then calling a lower-level rou
tine to perform some operation on it. This lower-level routine may also be used by other higher
level routines that do not lock the resource prior to calling it. Thus the lower-level routine does not 
know if the resource is already locked. If it tries to lock the resource, a single process deadlock may 
occur. 

Such a situation can, of course, be avoided by explicitly informing the lower-level routine 
about the lock via an extra argument. This, however, breaks many existing interfaces and is awk
ward, since sometimes the lower routine may be several function calls down. The resulting inter
faces would be extremely nonmodular. An alternative is to allow the locks to be recursive. This 
adds some overhead, since the lock must now store some sort of owner ID and check it any time it 
would normally block or deny a request. More important, it allows functions to deal only with their 
own locking requirements, without worrying about which locks its callers hold, resulting in clean, 
modular interfaces. 

One example when such a lock is used is directory writes in the BSD file system (ufs). The 
routine ufs _write() handles writes to both files and directories. Requests for file writes usually 
access the file through the file table entry, which directly gives a pointer to the file's vnode. Thus 
the vnode is passed on directly to ufs _write(), which is responsible for locking it. For a.directory 
write, however, the directory vnode is acquired by the pathname traversal routine, which returns the 
vnode in a locked state. When u f s _write () is called for this node, it will deadlock if the lock is not 
recursive. 

7.10.3 To Block or to Spin 

Most complex locks can be implemented as blocking locks or as complex spin locks, without im
pacting their functionality or interface. Consider an object that is protected by a complex lock (such 
as a semaphore or a read-write lock). In most of the implementations described in this chapter, if a 
thread tries to acquire the object and finds it locked, the thread blocks until the object is released. 
The thread could just as easily busy-wait and still preserve the semantics of the lock. 

The choice between blocking and busy-waiting is often dictated by performance considera
tions. Since busy-waiting ties up a processor, it is generally frowned upon. However, certain situa
tions mandate busy-waiting. If the thread already holds a simple mutex, it is not allowed to block. If 
the thread tries to acquire another simple mutex, it will busy-wait; if it tries to acquire a complex 
lock, it will release the mutex it already holds (such as with conditions). 

Sleep and wakeup, however, are expensive operations themselves, involving one context 
switch at each end and manipulating sleep and scheduler queues. Just as it is preposterous to do a 
busy-wait on a lock for an extended period of time, it is inefficient to sleep on a resource that is 
likely to be available soon. 

Moreover, some resources may be subject to short-term or long-term locking, depending on 
the situation. For instance, the kernel may keep a partial list of free disk blocks in memory. When 
this list becomes empty, it must be replenished from disk. In most instances, the list needs to be 



212 Chapter 7 Synchronization and Multiprocessors 

locked briefly while adding or removing entries to it in memory. When disk 1/0 is required, the list 
must be locked for a long time. Thus neither a spin lock nor a blocking lock is by itself a good solu
tion. One alternative is to provide two locks, with the blocking lock being used only when the list is 
being replenished. It is preferable, however, to have a more flexible locking primitive. 

These issues can be effectively addressed by storing a hint in the lock that suggests whether 
contending threads should spin or block. The hint is set by the owner of the lock and examined 
whenever an attempt to acquire the lock does not immediately succeed. The hint may be either advi
sory or mandatory. 

An alternative solution is provided by the adaptive locks of Solaris 2.x [Eykh 92]. When a 
thread Tl tries to acquire an adaptive lock held by another thread T2, it checks to see if T2 is cur
rently active on any processor. As long as T2 is active, Tl executes a busy-wait. If T2 is blocked, 
T1 blocks as well. 

7.10.4 What to Lock 
A lock can protect several things--data, predicates, invariants, or operations. Reader-writer locks, 
for example, protect data. Condition variables are associated with predicates. An invariant is similar 
to a predicate but has slightly different semantics. When a lock protects an invariant, it means that 
the invariant is TRUE except when the lock is held. For instance, a linked list might use a single lock 
while adding or removing elements. The invariant protected by this lock is that the list is in a consis
tent state. 

Finally, a lock can control access to an operation or function. This restricts the execution of 
that code to at most one processor at a time, even if different data structures are involved. The 
monitors model of synchronization [Hoar 74] is based on this approach. Many UNIX variants use a 
master processor for unparallelized (not multiprocessor-safe) portions of the kernel, thus serializing 
access to such code. This approach usually leads to severe bottlenecks and should be avoided if 
possible. 

7.10.5 Granularity and Duration 
System performance depends greatly on the locking granularity. At one extreme, some asymmetric 
multiprocessing systems run all kernel code on the master processor, thus having a single lock for 
the whole kernel.3 At the other extreme, a system could use extremely fine-grained locking with a 
separate lock for each data variable. Clearly, that is not the ideal solution either. The locks would 
consume a large amount of memory, performance would suffer due to the overhead of constantly 
acquiring and releasing locks, and the chances of deadlock would increase because it is difficult to 
enforce a locking order for such a large number of objects. 

The ideal solution, as usual, lies somewhere in between, and there is no consensus on what it 
is. Proponents of coarse-granularity locking [Sink 88] suggest starting with a small number of locks 
to protect major subsystems and adding finer granularity locks only where the system exhibits a 

3 Sometimes, even SMP systems use a master processor to run code that is not multiprocessor-safe. This is known as 
funneling. 



7. II Case Studies 213 

bottleneck. Systems such as Mach, however, use a fine-grained locking structure and associate locks 
with individual data objects. 

Locking duration, too, must be carefully examined. It is best to hold the lock for as short a 
time as possible, so as to minimize contention on it. Sometimes, however, this may result in extra 
locking and unlocking. Suppose a thread needs to perform two operations on an object, both requir
ing a lock on it. In between the two operations, the thread needs to do some unrelated work. It could 
unlock the object after the first operation and lock it again for the second one. It might be better, in
stead, to keep the object locked the whole time, provided that the unrelated work is fairly short. 
Such decisions must be made on a case-by-case basis. 

7.11 Case Studies 

The primitives described in Sections 7.5-7.8 constitute a kind of grab bag from which an operating 
system can mix and match to provide a comprehensive synchronization interface. This section ex
amines the synchronization facilities in the major multiprocessing variants of UNIX. 

7.11.1 SVR4.2/MP 

SVR4.2/MP is the multiprocessor version of SVR4.2. It provides four types of locks-basic locks, 
sleep locks, read-write locks, and synchronization variables [UNIX 92]. Each lock must be explic
itly allocated and deallocated through xxx_ALLOC and xxx_DEALLOC operations, where xxx_ is the 
type-specific prefix. The allocation operation takes arguments that are used for debugging. 

Basic Locks 

The basic lock is a nonrecursive mutex lock that allows short-term locking of resources. It may not 
be held across a blocking operation. It is implemented as a variable of type l oc k _ t. It is locked and 
unlocked by the following operations: 

pl t LOCK (lock t *lockp, pl t new ipl); 
UNLOCK (lock_t *lockp, pl_t old_ipl); 

The LOCK call raises the interrupt priority level to new_ i p l before acquiring the lock and returns the 
previous priority level. This value must be passed to the UNLOCK operation, so that it may restore the 
ipl to the old level. 

Read-Write Locks 

A read-write lock is a nonrecursive lock that allows short-term locking with single-writer, multiple
reader semantics. It may not be held across a blocking operation. It is implemented as a variable of 
type rwl ock _ t and provides the following operations: 

pl_t RW_RDLOCK (rwlock t *lockp, pl_t new ipl); 
pl_t RW_WRLOCK (rwlock=t *lockp, pl_t new=ipl); 
void RW UNLOCK (rwlock_t *lockp, pl_t old_ipl); 



214 Chapter 7 Synchronization and Multiprocessors 

The treatment of interrupt priorities is identical to that for basic locks. The locking operations raise 
the ipl to the specified level and return the previous ipl. RW _UNLOCK restores the ipl to the old level. 
The lock also provides nonblocking operations RW_ TRYRDLOCK and RW _ TRYWRLOCK. 

Sleep Locks 

A sleep lock is a nonrecursive mutex lock that permits long-term locking of resources. It may be 
held across a blocking operation. It is implemented as a variable of type sleep_ t, and provides the 
following operations: 

void SLEEP LOCK (sleep t *lockp, int pri); 
bool t SLEEP LOCK SIG (sleep t *lockp, int pri); 
void-SLEEP_UNLOCK-(sleep_t *lockp); 

The pri parameter specifies the scheduling priority to assign to the process after it awakens. If a 
process blocks on a call to SLEEP_ LOCK, it will not be interrupted by a signal. If it blocks on a call to 
SLEEP_ LOCK_ SIG, a signal will interrupt the process; the call returns TRUE if the lock is acquired, 
and FALSE if the sleep was interrupted. The lock also provides other operations, such as 
SLEEP _LOCK_ AVAIL (checks if lock is available), SLEEP _LOCKOWNED (checks if caller owns the 
lock), and SLEEP_ TRY LOCK (returns failure instead of blocking if lock cannot be acquired). 

Synchronization Variables 

A synchronization variable is identical to the condition variables discussed in Section 7.7. It is im
plemented as a variable of type s v _ t, and its predicate, which is managed separately by users of the 
lock, must be protected by a basic lock. It supports the following operations: 

void SV WAIT (sv t *svp, int pri, lock t *lockp); 
bool t SV WAIT SIG (sv t *svp, int pri~ lock t *lockp}; 
void-SV SIGNAL-(sv t *svp, int flags); -
void SV=BROADCAST (sv_t *svp, int flags); 

As in sleep locks, the pri argument specifies the scheduling priority to assign to the process after it 
wakes up, and SV _WAIT_ SIG allows interruption by a signal. The l ockp argument is used to pass a 
pointer to the basic lock protecting the predicate of the condition. The caller must hold lockp before 
calling SV_WAIT or SV_WAIT_SIG. The kernel atomically blocks the caller and releases lockp. 
When the caller returns from SV_WAIT or SV_WAIT_SIG, lockp is not held. The predicate is not 
guaranteed to be true when the caller runs after blocking. Hence the call to SV_WAIT or 
SV _WAIT_ S I G should be enclosed in a while loop that checks the predicate each time. 

7.11.2 Digital UNIX 

The Digital UNIX synchronization primitives are derived from those of Mach. There are two types 
oflocks-simple and complex [Denh 94]. A simple lock is a basic spin lock, implemented using the 
atomic test-and-set instruction of the machine. It must be declared and initialized before being used. 



7.11 Case Studies 215 

It is initialized to the unlocked state and cannot be held across blocking operations or context 
switches. 

The complex lock is a single high-level abstraction supporting a number of features, such as 
shared and exclusive access, blocking, and recursive locking. It is a reader-writer lock and provides 
two options-sleep and recursive. The sleep option can be enabled or disabled while initializing the 
lock or at any later time. If set, the kernel will block requesters if the lock cannot be granted imme
diately. Further, the sleep option must be set if a thread wishes to block while holding the lock. The 
recursive option can be set only by a thread that has acquired the lock for exclusive use; it can be 
cleared only by the same thread that set the option. 

The interface provides nonblocking versions of various routines, which return failure if the 
lock cannot be acquired immediately. There are also functions to upgrade (shared to exclusive) or 
downgrade (exclusive to shared). The upgrade routine will release the shared lock and return failure 
if there is another pending upgrade request. The nonblocking version of upgrade returns failure but 
does not drop the shared lock in this situation. 

Sleep and Wakeup 

Since a lot of code was ported from 4BSD, it was desirable to retain the basic functions of sleep() 
and wakeup(). Thus blocked threads were put on global sleep queues rather than per-lock queues. 
The algorithms needed modification to work correctly on multiprocessors, and the chief issue here 
was the lost wakeup problem. To fix this while retaining the framework of thread states, the 
sleep() function was rewritten using two lower-level primitives-assert_ wait() and 
thread_b lock(), as shown in Figure 7-9. 

Suppose a thread needs to wait for an event that is described by a predicate and a spin lock 
that protects it. The thread acquires the spin lock and then tests the predicate. If the thread needs to 

assert_ wait() 

reschedule 

thread_ wakeup() 

Figure 7-9. Sleep implementation in Digital UNIX. 



216 Chapter 7 Synchronization and Multiprocessors 

block, it calls assert_ wait (),which puts it on the appropriate sleep queue. It then releases the spin 
lock and calls thread_b lock () to initiate a context switch. If the event occurs between the release 
of the spin lock and the context switch, the kernel will remove the thread from the sleep queue and 
put it on the scheduler queue. Thus the thread does not lose the wakeup. 

7.11.3 Other Implementations 

The initial multiprocessing version of SVR4 was developed at NCR [Camp 91]. This version intro
duced the concept of advisory processor locks (APLs), which are recursive locks containing a hint 
for contending threads. The hint specifies if contending threads should spin or sleep, and whether 
the hint is advisory or mandatory. The thread owning the lock may change the hint from sleep to 
spin or vice versa. Such APLs may not be held across calls to sleep and are used mainly to single
thread the access to longer-term locks. The distinctive feature of APLs is that they are automatically 
released and reacquired across a context switch. This means that the traditional sleep/wakeup inter
face can be used without change. Further, locks of the same class can avoid deadlock by sleeping, 
since the sleep releases all previously held locks. The implementation also provided nonrecursive 
spin locks and read-write APLs. 

The NCR version was modified by the Intel Multiprocessor Consortium, formed by a group 
of companies to develop the official multiprocessing release of SVR4 [Peac 92]. One important 
change involved the function that acquires an APL lock. This function now also takes an interrupt 
priority level as an argument. This allows raising of the processor priority around the holding of the 
lock. If the lock cannot be granted immediately, the busy-wait occurs at the original (lower) priority. 
The function returns the original priority, which can be passed to the unlocking function. 

The lowest-level primitives are a set of atomic arithmetic and logical operations. The arith
metic operations allow atomic incrementing and decrementing of reference counts. The logical 
functions are used for fine-grained multithreading of bit manipulations of flag fields. They all return 
the original value of the variable on which they operate. At the next higher level are simple spin 
locks that are not released automatically on context switches. These are used for simple operations 
like queue insertion or removal. The highest-level locks are resource locks. Resource locks are long
term locks with single-writer, multiple-reader semantics, which may be held across blocking opera
tions. The implementation also provides synchronous and asynchronous cross-processor interrupts, 
which are used for operations such as clock tick distribution and address translation cache coher
ency (see Section 15.9). 

Solaris 2.x uses adaptive locks (see Section 7.1 0.3) and turnstiles (see Section 7.2.3) for 
better performance. It provides semaphores, reader-writer locks, and condition variables as high
level synchronization objects. It also uses kernel threads to handle interrupts, so that interrupt han
dlers use the same synchronization primitives as the rest of the kernel and block if necessary. Sec
tion 3.6.5 discusses this feature in greater detail. 

Every known multiprocessor implementation uses some form of spin locks for low-level 
short-term synchronization. The sleep/wakeup mechanism is usually retained, perhaps with some 
changes, to avoid rewriting a lot of code. The major differences are in the choice of the higher-level 
abstractions. The early implementations on the IBM/370 and the AT&T 3B20A [Bach 84] relied 
exclusively on semaphores. Ultrix [Sink 88] uses blocking exclusive locks. Amdahl's UTS kernel 



7.13 Exercises 217 

[Ruan 90] is based on conditions. DGIUX [Kell 89] uses indivisible event counters to implement 
sequenced locks, which provide a somewhat different way of waking one process at a time. 

7.12 Summary 

Synchronization problems on a multiprocessor are intrinsically different from and more complex 
than those on a uniprocessor. There are a number of different solutions, such as sleep/wakeup, 
conditions, events, read-write locks, and semaphores. These primitives are more similar than differ
ent, and it is possible, for example, to implement semaphores on top of conditions and vice-versa. 
Many of these solutions are not limited to multiprocessors and may also be applied to synchroniza
tion problems on uniprocessors or on loosely coupled distributed systems. Many multiprocessing 
UNIX systems are based on existing uniprocessing variants and, for these, porting considerations 
strongly influence the decision of which abstraction to use. Mach and Mach-based systems are 
mainly free of these considerations, which is reflected in their choice of primitives. 

7.13 Exercises 

1. Many systems have a swap-atomic instruction that swaps the value of a register with that of a 
memory location. Show how such an instruction may be used to implement an atomic test
and-set. 

2. How can an atomic test-and-set be implemented on a machine using load-linked and store
conditional? 

3. Suppose a convoy forms due to heavy contention on a critical region that is protected by a 
semaphore. If the region could be divided into two critical regions, each protected by a 
separate semaphore, would it reduce the convoy problem? 

4. One way to eliminate a convoy is to replace the semaphore with another locking mechanism. 
Could this risk starvation of threads? 

5. How is a reference count different from a shared lock? 
6. Implement a blocking lock on a resource, using a spin lock and a condition variable, with a 

locked flag as the predicate (see Section 7.7.3). 
7. In exercise 6, is it necessary to hold the spin lock protecting the predicate while clearing the 

flag? [Ruan 90] discusses await lock () operation that can improve this algorithm. 
8. How do condition variables avoid the lost wakeup problem? 
9. Implement an event abstraction that returns a status value to waiting threads upon event 

completion. 
10. Suppose an object is accessed frequently for reading or writing. In what situations is it better 

to protect it with a simple mutex, rather than with a read-write lock? 
11. Does a read-write lock have to be blocking? Implement a read-write lock that causes threads 

to busy-wait if the resoure is locked. 
12. Describe a situation in which a deadlock may be avoided by making the locking granularity 

finer. 



218 Chapter 7 Synchronization and Multiprocessors 

13. Describe a situation in which a deadlock may be avoided by making the locking granularity 
coarser. 

14. Is it necessary for a multiprocessor kernel to lock each variable or resource before accessing 
it? Enumerate the kinds of situations where a thread may access or modify an object without 
locking it. 

15. Monitors [Hoar 74] are language-supported constructs providing mutual exclusion to a region 
of code. For what sort of situations do they form a natural solution? 

16. Implement upgrade() and downgrade() functions to the read-write lock implementation in 
Section 7.8.2. 

7.14 References 

[Bach 84] 

[Birr 89] 

[Camp 91] 

[Denh 94] 

[Digi 87] 
[Dijk 65] 

[Eykh 92] 

[Gobi 81] 

[Hoar 74] 

[Hitz 90] 

[Kell 89] 

Bach, M., and Buroff, S., "Multiprocessor UNIX Operating Systems," AT&T Bell 
Laboratories Technical Journal, Vol. 63, Oct. 1984, pp. 1733-1749. 
Birrell, A.D., "An Introduction to Programming with Threads," Digital Equipment 
Corporation Systems Research Center, 1989. 
Campbell, M., Barton, R., Browning, J., Cervenka, D., Curry, B., Davis, T., 
Edmonds, T., Holt, R., Slice, R., Smith, T., and Wescott, R., "The Parallelization of 
UNIX System V Release 4.0," Proceedings of the Winter 1991 USENIX Conference, 
Jan. 1991,pp.307-323. 
Denham, J.M., Long, P., and Woodward, J.A., "DEC OSF/1 Version 3.0 Symmetric 
Multiprocessing Implementation," Digital Technical Journal, Vol. 6, No.3, Summer 
1994,pp.29-54. 
Digital Equipment Corporation, VAX Architecture Reference Manual, 1984. 
Dijkstra, E.W., "Solution of a Problem in Concurrent Programming Control," 
Communications of the ACM, Vol. 8, Sep. 1965, pp. 569-578. 
Eykholt, J.R., Kleinman, S.R., Barton, S., Faulkner, R., Shivalingiah, A., Smith, M., 
Stein, D., Voll, J., Weeks, M., and Williams, D., "Beyond Multiprocessing: 
Multithreading the SunOS Kernel," Proceedings of the Summer 1992 USENIX 
Conference, Jun. 1992, pp. 11-18. 
Goble, G.H., "A Dual-Processor VAX 11/780," USENIX Association Conference 
Proceedings, Sep. 1981. 
Hoare, C. A.R., "Monitors: An Operating System Structuring Concept," 
Communications ofthe ACM, Vol. 17, Oct. 1974, pp.549-557. 
Hitz, D., Harris, G., Lau, J.K., and Schwartz, A.M., "Using UNIX as One 
Component of a Lightweight Distributed Kernel for Multiprocessor File Servers," 
Proceedings of the Winter 1990 US EN !X Technical Conference, Jan. 1990, pp. 285-
295. 
Kelley, M.H., "Multiprocessor Aspects of the DGIUX Kernel," Proceedings of the 
Winter 1989 USENIX Conference, Jan. 1989, pp. 85-99. 



7.14 References 219 

[Lee 87] Lee, T.P., and Luppi, M.W., "Solving Performance Problems on a Multiprocessor 
UNIX System," Proceedings of the Summer 1987 USENJX Conference, Jun. 1987, 
pp. 399-405. 

[Nati 84] National Semiconductor Corporation, Series 32000 Instruction Set Reference 
Manual, 1984. 

[Peac 92] Peacock, J.K., Saxena, S., Thomas, D., Yang, F., and Yu, F., "Experiences from 
Multithreading System V Release 4," The Third USENJX Symposium of Experiences 
with Distributed and Multiprocessor Systems (SEDMS 111), Mar. 1992, pp. 77-91. 

[Ruan 90] Ruane, L.M., "Process Synchronization in the UTS Kernel," Computing Systems, 
Vol. 3, Summer 1990, pp. 387-421. 

[Sink 88] Sinkewicz, U., "A Strategy for SMP ULTRIX," Proceedings of the Summer 1988 
USENJXTechnical Conference, Jun. 1988, pp. 203-212. 

[UNIX 92] UNIX System Laboratories, Device Driver Reference-UNIX SVR4.2, UNIX Press, 
Prentice-Hall, Englewood Cliffs, NJ, 1992. 



8 

File System Interface 
and Framework 

8.1 Introduction 

The operating system must provide facilities for persistent storage and management of data. In 
UNIX, the file abstraction acts as a container for data, and the file system allows users to organize, 
manipulate, and access different files. This chapter describes the interface between the file system 
and user applications, as well as the framework used by the kernel to support different kinds of file 
systems. Chapters 9, IO, and II describe several different file system implementations that allow 
users to access data on local and remote machines. 

The file system interface comprises the system calls and utilities that allow user programs to 
operate on files. This interface has remained fairly stable over the years, changing incrementally and 
in compatible ways. The file system framework, however, has been overhauled completely. The 
initial framework supported only one type of file system. All files were local to the machine and 
were stored on one or more disks physically connected to the system. This has been replaced by the 
vnodelvfs interface, which allows multiple file system types, both local and remote, to coexist on the 
same machine. 

The early commercially released versions of UNIX contained a simple file system now 
known as the System V file system (s5fs) [Thorn 78]. All versions of System V UNIX, as well as 
Berkeley UNIX versions earlier than 4.2BSD, support this file system. 4.2BSD introduced a new, 
Fast File System (FFS) [McKu 84], which provides much better performance and greater function
ality than s5fs. FFS has since gained wide acceptance, culminating in its inclusion in SVR4. Chap-

220 



8.2 The User Interface to Files 221 

ter 9 describes both s5fs and FFS, as well as some special-purpose file systems based on the 
vnode/vfs interface. 

Note: The terms FFS and ufs (UNIX file system) are often used inter
changeably. To be specific, FFS refers to the original implementation 
of the Berkeley Fast File System. The term ufs refers to the implemen
tation ofFFSwithin the vnode!vft framework. In this book, we use the 
two terms in this manner. 

As it became easy to connect computers through a network, developers began to find ways 
to access files on remote nodes. The mid-I980s saw the emergence of several competing technolo
gies that provided transparent file sharing among interconnected computers. Chapter I 0 describes 
the three most important alternatives-the Network File System (NFS), Remote File Sharing (RFS), 
and the Andrew File System (AFS). 

In recent years, several new file systems have been developed that improve upon FFS or ad
dress the needs of specific applications. Most use sophisticated techniques such as joumaling, snap
shots, and volume management to provide better performance, reliability, and availability. Chapter 
II describes some of these modem file systems. 

8.2 The User Interface to Files 

The UNIX kernel allows user processes to interact with the file system through a well-defined, pro
cedural interface. This interface encapsulates the user's view of the file system and specifies the be
havior and semantics of all relevant system calls. The interface exports a small number of abstrac
tions to the user: files, directories, file descriptors, andfile systems. 

As mentioned earlier, there are several different types of file systems, such as s5ft and FFS. 
Each implements the same interface, thus providing applications with a consistent view of all files. 
Each file system may impose its own limitations on certain aspects of the interface. For instance, the 
s5ft file system allows at most I4 characters in a file name, whereas FFS allows as many as 255 
characters. 

8.2.1 Files and Directories 

Afile is logically a container for data. Users may create a file and store data by writing it to the file. 
A file permits both sequential and random access to its data. The kernel provides several control op
erations to name, organize, and control access to files. The kernel does not interpret the content or 
structure of a file. It regards the file simply as a collection of bytes and provides byte-stream access 
to its contents. Some applications require more complex semantics such as record-based or indexed 
access. They are free to devise their own mechanisms on top of the kernel's primitives. 



222 Chapter 8 File System Interface and Framework 

From a user's perspective, UNIX organizes files in a hierarchical, tree-structured name space 
(Figure 8-1 ). The tree consists of files and directories, with the files at the leaf nodes.l A directory 
contains name information about files and other directories that reside in it. Each file or diiectory 
name may contain any ASCII characters except for 'I' and the NULL character. The file system may 
impose a limit on the length of a filename. The root directory is called "f'. Filenames only need to 
be unique within a directory. In Figure 8-1, both the bin and etc directories have a file called 
passwd. To uniquely identify a file, it is necessary to specify its complete pathname. The pathname 
is composed of all the components in the path from the root directory to the node, separated by '/' 
characters. Hence the two passwd files have the same filename, but different pathnames
lbin/passwd and /etc/passwd. The'/' character in UNIX serves both as the name of the root direc
tory and as a pathname component separator. 

UNIX supports the notion of a current working directory for each process, maintained as 
part of the process state. This allows users to refer to files by their relative pathnames, which are 
interpreted relative to the current directory. There are two special pathname components: the first is 
".",which refers to the directory itself; the second is" .. ", which refers to the parent directory. The 
root directory has no parent, and its" .. " component refers to the root directory itself. In Figure 8-1, a 
user whose current directory is /usr/local may refer to the lib directory either as /usr/lib (absolute 
pathname) or as .. /lib (relative pathname). A process may change its current directory by making the 
chdir system call. 

A directory entry for a file is called a hard link, or simply a link, to that file. Any file may 
have one or more links to it, either in the same or in different directories. Thus a file is not bound to 
a single directory and does not have a unique name. The name is not an attribute of the file. The file 
continues to exist as long as its link count is greater than zero. The file links are equal in all ways 
and are simply different names for the same file. The file may be accessed through any of its links, 
and there is no way to tell which is the original link. Modem UNIX file systems also provide an
other type of link called a symbolic link, described in Section 8.4.1. 

Each different type of file system has its own internal directory format. Since application 
programmers want to read the contents of directories in a portable way, the POSIX.1 standard 

Figure 8-1. Files are organized in a directory tree. 

1 The existence of hard links means the correct abstraction is a directed acyclic graph (ignoring the " .. " entries that 
refer back to the parent directory), but for most practical purposes the tree abstraction is simpler and just as adequate. 



8.2 The User Interface to Files 223 

specifies the following standard library routines to operate on directories: 

difp ,;, ~pendir···(~anst ch~t.'*ftT~ti~ili¢); 
direntp = readdir:·{dirp); 
rewinddir {dirp}; .. . 
··status \~closedir>(diy;p);····.·• 

These routines were first introduced in 4BSD and are now supported by SVR4 and most 
commercial variants. When the user calls opendir, the library associates a directory stream with it 
and returns a stream handle to the user. The stream object maintains an offset to the next entry to be 
read. Each readdir call returns a single directory entry and advances the offset. The entries are re
turned in file-system-independent format, defined by the following structure: 

str'uct d i rent . . . c i < 
in() . t d i no; ... ··. •. . Y*znode ~1J1Mer (se(!$eciion8.2f2)*1 
c~~r .. (n~M~kNAM~"-'M~~ t lJ; ()t~ull4~tiftr~P:t¢q}f!l~~O/I]e *l ·.···· . 

}; 
The value ofNAME_MAX depends on the file system type. SVR4 also provides a getdents system 
call to read directory entries in file-system-independent format. The format of entries returned by 
getdents is different from that of struct di rent. Hence users should use the more portable POSIX 
functions wherever possible. 

8.2.2 File Attributes 
Apart from the file name, the file system maintains a set of attributes for each file. These attributes 
are stored not in the directory entry, but in an on-disk structure typically called an inode. The word 
inode is derived from index node. The exact format and contents of the inode are not the same for all 
file systems. The stat andfstat system calls return the file's attributes in a filesystem-independent 
format. The commonly supported attributes of a file include the following: 

• File type - Besides regular files, UNIX recognizes several special types of files including 
directories, FIFOs (first-in, first-out files), symbolic links, and special files that represent 
block or character devices. 

• Number of hard links to the file. 
• File size in bytes. 
• Device ID -Identifies the device on which the file is located. 
• Inode number - There is a single inode associated with each file or directory regardless 

of how many links it has. Each inode on a given disk partition (logical disk, see Section 
8.3.1) has a unique inode number. Hence a file is uniquely identified by specifying its de
vice ID and inode number. These identifiers are not stored in the inode itself. The device 
ID is a property of the file system-all files of a single file system have the same device 
ID. Directory entries store the inode number along with the filename. 

• User and group IDs of the owner of the file. 



224 Chapter 8 File System Interface and Framework 

• Timestamps - There are three timestamps for each file: the time the file was last ac
cessed, the time it was last modified, and the time its attributes (excluding the other 
timestamps) were last changed. 

• Permissions and mode flags, described below. 

There are three types of permissions associated with each file-read, write, and execute. The 
users trying to access a file are also divided into three categories-the owner of the file,2 people in 
the same group as the owner, and everybody else (that is, owner, group, and others). This means 
that all permissions associated with a file can be specified by nine bits. Directory permissions are 
handled differently. Write access to a directory allows you to create and delete files in that directory. 
Execute access allows you to access files in that directory. A user may never directly write to a di
rectory, even if the permissions allow it. The contents of a directory are modified only by file crea
tions and deletions. 

The permissions mechanism is simple but primitive. Today, most UNIX vendors offer en
hanced security features, either in their default implementations or in special secure versions.3 
These normally involve some form of an access-control list, which allows a more detailed specifi
cation of who may access a file and in what manner [Fern 88]. 

There are three mode jlags-suid, sgid, and sticky. The suid and sgid flags apply to execu
table files. When a user executes the file, if the suid flag is set, the kernel sets the user's effective 
UID to that of the owner of the file. The sgid flag affects the effective GID in the same way. 
(Section 2.3 .3 defines UIDs and GIDs.) Since the sgid flag serves no purpose if the file is not execu
table, it is overloaded for another purpose. If the file does not have group-execute permission and 
the sgid flag is set, then mandatory file/record locking [UNIX 92] has been enabled on the file. 

The sticky flag also is used for executable files and requests the kernel to retain the program 
image in the swap area (see Section 13.2.4) after execution terminates. System administrators often 
set the sticky flag for frequently executed files in order to improve performance. Most modem 
UNIX systems leave all images on swap as long as possible (using some form of a least recently 
used replacement algorithm), and hence do not use the sticky flag. 

The sgid and sticky flags are used differently for directories. If the sticky flag is set and the 
directory is writable, then a process may remove or rename a file in that directory only if its effec
tive UID is that of the owner of the file or directory, or if the process has write permissions for the 
file. If the sticky flag is clear, then any process that has write access to the directory may remove or 
rename files in it. 

When a file is created, it inherits the effective UID of the creating process. Its owner GID 
may take one of two values. In SVR3, the file inherits the effective GID of the creator. In 4.3BSD, it 
inherits the GID of the directory in which it is created. SVR4 uses the sgid flag of the parent direc
tory to select the behavior. If the sgid flag is set for a directory, then new files created in the direc-

2 Also known as the user, for the sake of the chmod command, which uses the abbreviations u, g, and o to refer to user 
(owner), group, and others. 

3 Most secure UNIX versions base their requirements on a set of criteria published by the Department of Defense for 
evaluating trusted computer systems. This document, informally known as the Orange Book [DoD 85], defines vari
ous levels of security that a system may provide. 



8.2 The User Interface to Files 225 

tory inherit the GID from the parent directory. If the sgid flag is clear, then new files inherit the GID 
of the creator. 

UNIX provides a set of system calls to manipulate file attributes. These calls take the path
name of the file as an argument. The link and unlink calls create and delete hard links respectively. 
The kernel deletes the file only after all its hard links have been removed, and no one is actively 
using the file. The utimes system call changes the access and modify timestamps of the file. The 
chown call changes the owner UID and GID. The chmod system call changes the permissions and 
mode flags of the file. 

8.2.3 File Descriptors 

A process must first open a file in order to read or write to it. The open system call has the follow
ing syntax: 

f(j = open, {path, oflag •> mode); 

where path is the absolute or relative pathname of the file and mode specifies the permissions to as
sociate with the file if it must be created. The flags passed in ofl ag specify if the file is to be 
opened for read, write, read-write, or append, if it must be created, and so forth. The creat system 
call also creates a file. It is functionally equivalent to an open call with the 0 _ WRON L Y, 0 _ C REAT, 
and 0 _ TRUNC flags (see Section 8.1 0.4). 

Each process has a default file creation mask, which is a bitmask of permissions that should 
not be granted to newly created files. When the user specifies a mode to open or creat, the kernel 
clears the bits specified in the default mask. The umask system call changes the value of the default 
mask. The user can override the mask by calling chmod after the file is created. 

When the user calls open, the kernel creates an open file object to represent the open in
stance of the file. It also allocates a file descriptor, which acts as a handle, or reference, to the open 
file object. The open system call returns the file descriptor (fd) to the caller. A user may open the 
same file several times; also, multiple users may open the same file. In each case, the kernel gener
ates a new open file object and a new file descriptor. 

The file descriptor is a per-process object. The same descriptor number in two different 
processes may, and usually does, refer to different files. The process passes the file descriptor to 
I/O-related system calls such as read and write. The kernel uses the descriptor to quickly locate the 
open file object and other data structures associated with the open file. This way, the kernel can per
form tasks such as pathname parsing and access control once during the open, rather than on each 
1/0 operation. Open files may be closed by the close system call and also are closed automatically 
when the process terminates. 

Each file descriptor represents an independent session with the file. The associated open file 
object holds the context for that session. This includes the mode in which the file was opened and 
the offset pointer at which the next read or write must start. In UNIX, files are accessed sequentially 
by default. When the user opens the file, the kernel initializes the offset pointer to zero. Subse
quently, each read or write advances the pointer by the amount of data transferred. 



226 Chapter 8 File System Interface and Framework 

Keeping the offset pointer in the open file object allows the kernel to insulate different ses
sions to the file from one another (Figure 8-2). If two processes open the same file,4 a read or write 
by one process advances only its own offset pointer and does not affect that of the other. This allows 
multiple processes to share the file transparently. This functionality must be used with care. In many 
cases, multiple processes accessing the same file should synchronize access to it using the file 
locking facilities described in Section 8.2.6. 

A process may duplicate a descriptor through the dup or dup2 system calls. These calls cre
ate a new descriptor that references the same open file object and hence shares the same session 
(Figure 8-3). Similarly, the fork system call duplicates all the descriptors in the parent and passes 
them on to the child. Upon return from fork, the parent and child share the set of open files. This 
form of sharing is fundamentally different from having multiple open instances. Since the two de
scriptors share the same session to the file, they both see the same view of the file and use the same 
offset pointer. If an operation on one descriptor changes the offset pointer, the change will be visible 
to the other as well. 

A process may pass a file descriptor to another unrelated process. This has the effect of 
passing a reference to the open file object. The kernel copies the descriptor into the first free slot in 
the receiver's descriptor table. The two descriptors share the same open file object and hence the 
same offset pointer. Usually, the sending process closes its descriptor after sending it. This does not 
close the open file, even if the other process has not yet received the descriptor, since the kernel 
holds on to the second descriptor while it is in transit. 

The interface for descriptor passing depends on the UNIX variant. SVR4 passes the descrip
tor over a STREAMS pipe (see Section 17. 9), using the ioctl call with the I_ SEND FD command. The 
other process receives it through the I_ RECVFD ioctl call. 4.3BSD uses sendmsg and recvmsg calls to 
a socket connection (see Section 17.1 0.3) between the two processes. Descriptor passing is useful 
for implementing some types of network applications. One process, the connection server, can set 
up a network connection on behalf of a client process, then pass the descriptor representing the con-

I fdl I 

I fd2 I 

file 
descriptors 

offset 

offset/ 

open file 
objects 

v 
Figure 8-2. A file is opened twice. 

4 Or if a process opens the same file twice. 

file 



8.2 The User Interface to Files 

file 
descriptors 

offset -+----~1 

open file 
object 

file 

Figure 8-3. Descriptor cloned through dup, dup2, or fork. 

227 

nection back to the client. Section 11.10 describes the portal file system in 4.4BSD, which takes this 
concept one step further. 

8.2.4 File 1/0 

UNIX allows both random and sequential access to files. The default access pattern is sequential. 
The kernel maintains an offset pointer into the file, which is initialized to zero when a process first 
opens the file. This marks the current position in the file, at which the next I/0 operation will begin. 
Each time the process reads or writes data, the kernel advances the pointer by the amount of data 
transferred. The /seek call permits random access by setting the offset pointer to a specified value. 
The next read or write call will transfer data starting at that offset. 

The read and write calls have similar semantics, and we use read as an example. 5 Its syntax 
IS 

nread = read (fd, buf. count); 

where fd is the file descriptor, buf is a pointer to a buffer in the user address space into which the 
data must be read, and count is the number of bytes to read. 

The kernel reads data from the file associated with fd, starting at the offset stored in the 
open file object. It may read fewer than count bytes if it reaches the end of the file or, in case ofFI
FOs or device files, if there is not enough data available. For instance, a read issued to a terminal in 
canonical mode returns when the user types a carriage return, even if the line contains fewer bytes 
than requested. Under no circumstances will the kernel transfer more than count bytes. It is the 
user's responsibility to ensure that buf is large enough to hold count bytes of data. The read call 
returns the actual number of bytes transferred (nread). read also advances the offset pointer by 
nread bytes so that the next read or write will begin where this one finished. 

While the kernel allows multiple processes to open and share the file at the same time, it se
rializes I/0 operations to it. For instance, if two processes issue writes to the file at (almost) the 
same time, the kernel will complete one write before beginning the other. This allows each opera
tion to have a consistent view of the file. 

5 Most programmers do not use the read and write system calls directly. Instead, they use the standard library func
tionsfread andfwrite, which provide additional functionality such as data buffering. 



228 Chapter 8 File System Interface and Framework 

A file may be opened in append mode by passing the 0 _APPEND flag to the open system call. 
This causes the kernel to set the offset pointer to the end of the file prior to each write system call 
through that descriptor. Again, if one user opens a file in append mode, it has no effect on opera
tions on the file through other descriptors. 

Multithreaded systems must handle additional complications resulting from sharing descrip
tors between threads. For instance, one thread may do an !seek just before another thread issues a 
read, causing the second thread to read from a different offset than intended. Some systems, such as 
Solaris, provide pread/pwrite system calls to perform an atomic seek and read/write. Section 3.6.6 
discusses this issue in more detail. 

8.2.5 Scatter-Gather 110 

The read and write system calls transfer a number of bytes between a logically contiguous portion 
of the file and a contiguous range of locations in the process address space. Many applications want 
to atomically read (or write) data from a file into a number of noncontiguous buffers in their address 
space. The read system call is inefficient for this purpose, because the process would have to first 
read the data into a single buffer and then copy it to the desired locations. UNIX provides two addi
tional calls-readv and writev-that perform scatter-gather 1/0, moving data from the file into 
multiple buffers in user space. 

As an example, consider a network file transfer protocol that receives a file from a remote 
node and must write it out to a local disk. Data arrives in a series of network packets, each contain
ing a part of the file. Without scatter-gather 1/0, the protocol would have to assemble all the packets 
into a single buffer, then write it to disk. Using writev, however, the protocol simply composes a 
single request that collects the data from all the packets. The syntax for writev (readv is analogous) 
is 

nbytes = writev ( fd, i ov, i ovcnt) ; 

where fd is the file descriptor, i ov is a pointer to an array of <base, length> pairs ( s t ruct i ovec) 
that describe the set of source buffers, and i ovcnt is the number of elements in the array. As with 
write, the return value nbytes specifies the number of bytes actually transferred. The offset pointer 
determines the location of the start of the data in the file, and the kernel advances it by nbytes bytes 
upon completion of the call. 

Figure 8-4 illustrates the effect of a scatter-gather write. The kernel creates a struct ui o to 
manage the operation and initializes it with information from the system call arguments and the 
open file object. It then passes a pointer to the ui o structure to lower-level functions that perform 
the 1/0. The operation atomically transfers data from all the specified user buffers to the file. 

8.2.6 File Locking 
By default, UNIX allows multiple processes to concurrently access the file for reading or writing. 
Each read or write call is atomic, but there is no synchronization across system call boundaries. As 
a result, if a process reads a file through multiple read calls, another process may change the file 
between two reads. 



8.3 File Systems 

uio 

= 3 

' ' ' ' 

Figure 8-4. Scatter-gather I/0. 

229 

file on disk 

This behavior is unsuitable for many applications that need to protect a file across multiple 
accesses. Hence UNIX provides facilities to lock files. File locking may be advisory or mandatory. 
Advisory locks are not enforced by the kernel and only protect the file from cooperating processes 
that explicitly check for the lock. Mandatory locks are enforced by the kernel, which will reject op
erations conflicting with the lock. Locking requests may be blocking or nonblocking; the latter re
turn an error code of EWOULDBLOCK if the lock cannot be granted. 

4BSD provides the flock system call, which only supports advisory locking of open files, but 
allows both shared and exclusive locks. File locking in System V UNIX varies with the release. 
SVR2 supports only advisory locking, for both files and records (byte ranges within files). SVR3 
adds mandatory locking, but requires that the file first be enabled for mandatory locking through a 
chmod call as described in Section 8.2.2. This feature is an artifact of XENIX binary compatibility. 
SVR4 adds BSD compatibility and supports single-writer, multiple-reader locks. The fcntl call pro
vides the locking functions, but most applications use a simpler programming interface offered by 
the C library function lockf. 

8.3 File Systems 

Although the UNIX file hierarchy appears monolithic, it is actually composed of one or more inde
pendent subtrees, each of which contains a complete, self-contained file system. One file system is 
configured to be the root file system, and its root directory becomes the system root directory. The 
other file systems are attached to the existing structure by mounting each new file system onto a di
rectory in the existing tree. Once mounted, the root directory of the mounted file system covers or 
hides the directory on which it is mounted, and any access to the "mounted-on" directory is trans-



230 Chapter 8 File System Interface and Framework 

lated to an access to the root directory of the mounted file system. The mounted file system remains 
visible until it is unmounted. 

Figure 8-5 shows a file hierarchy composed of two file systems. In this example, fsO is in
stalled as the root file system of the machine, and the file system fsl is mounted on the /usr direc
tory of fsO. /usr is called the "mounted-on" directory or the mount point, and any attempts to access 
/usr results in accessing the root directory of the file system mounted on it. 

If the /usr directory of fsO contains any files, they are hidden, or covered, when fsl is 
mounted on it, and may no longer accessed by users. When fsl is unmounted, these files become 
visible and are accessible once again. Pathname parsing routines in the kernel must understand 
mount points and behave correctly when traversing mount points in either direction. The original 
s5fs and FFS implementations used a mount table to track mounted file systems. Modem UNIX 
systems use some form of a vfs list (virtual file system list), as is described in Section 8.9. 

The notion of mountable subsystems serves to hide the details of the storage organization 
from the user. The file name space is homogeneous, and the user does not need to specify the disk 
drive as part of the file name (as required in systems such as MS-DOS or VMS). File systems may 
be taken off-line individually to perform backups, compaction, or repair. The system administrator 
may vary the protections on each file system, perhaps making some of them read-only. 

Mountable file systems impose some restrictions on the file hierarchy. A file cannot span file 
systems and hence may grow only as much as the free space on the file system to which it belongs. 
Rename and hard link operations cannot span file systems. Each file system must reside on a single 
logical disk and is limited by the size of that disk. 

8.3.1 Logical Disks 
A logical disk is a storage abstraction that the kernel sees as a linear sequence of fixed sized, ran
domly accessible, blocks. The disk device driver (see Section 16.6) maps these blocks to the under
lying physical storage. The newft or mlifs utilities create a UNIX file system on the disk. Each file 

fsO 
I 

,'~ 
~~usr\ sys dev etc bin 

I ' ....-"1'-. ....-"1'-. ....-"1'-. ....-"1'-. ' ' I ' 
I I 

fs1 I I 

' , I , 
, 

' I 

~ 
local adm users bin 

....-"1'-. ....-"1'-. ....-"1'-. ....-"1'-. 

Figure 8-5. Mounting one file system onto another. 



8.4 Special Files 231 

system is fully contained in a single logical disk, and one logical disk may contain only one file 
system. Some logical disks may not contain file systems, but are used by the memory subsystem for 
swapping. 

Logical disks allow physical storage to be mapped in a variety of useful ways. In the sim
plest case, each logical disk is mapped to a single, entire, physical disk. The most common feature is 
to divide a disk into a number of physically contiguous partitions, each a logical device. Older 
UNIX systems provided only this feature. As a result, the word partition is often used to describe 
the physical storage of a file system. 

Modem UNIX systems support many other useful storage configurations. Several disks may 
be combined into a single logical disk or volume, thus supporting files larger than the size of a sin
gle disk. Disk mirroring allows a redundant copy of all data, increasing the reliability of the file 
system. Stripe sets provide increased throughput from a file system by striping the data across a set 
of disks. Several types of RAID (Redundant Arrays of Inexpensive Disks) configurations provide a 
mix of reliability and performance enhancements to suit the requirements of different types of in
stallations [Patt 88]. 

8.4 Special Files 

One of the distinctive features of the UNIX file system is the generalization of the file abstraction to 
include all kinds of I/O-related objects, such as directories, symbolic links, hardware devices like 
disks, terminals and printers, pseudodevices such as the system memory, and communication ab
stractions such as pipes and sockets. Each of these is accessed through file descriptors, and the same 
set of system calls that operate on ordinary files also manipulate these special files. For instance, a 
user can send data to a line printer simply by opening the special file associated with it and writing 
to it. 

On the other hand, UNIX imposes a simple byte-stream model on files. Many real-world 
applications require much richer data abstractions such as record-based or indexed-sequential ac
cess. Such applications find the UNIX model inadequate and end up layering their own access 
methods on top of it. Some I/0 objects do not support all file operations. Terminals and printers, for 
instance, have no notion of random access or seeks. Applications often need to verify (typically 
throughfttat) what kind of file they are accessing. 

8.4.1 Symbolic Links 
Early UNIX systems such as SVR3 and 4.1BSD supported hard links only. Although extremely use
ful, hard links have several limitations. A hard link may not span file systems. Creating hard links to 
directories is barred except to the superuser, who also is discouraged from doing so. This is because 
such links may create cycles in the directory tree, wreaking havoc on a number of utilities such as 
du or find that recursively traverse the tree. 

The only reason UNIX allows (privileged) users to create hard links to directories is the ab
sence of the mkdir system call in early versions (SVR2 and earlier) of UNIX. To create a directory, 
the user had to call mknod to create the directory special file, followed by two calls to link to add the 
entries for "."and " .. ". This led to several problems and race conditions since the three operations 



232 Chapter 8 File System Interface and Framework 

were not executed atomically [Bach 86]. SVR3 added the mkdir and rmdir system calls, but contin
ued to allow linking to directories to maintain backward compatibility with older applications. 

Hard links also create control problems. Suppose user X owns a file named /usr/X/filel. 
Another user Y may create a hard link to this file and call it /usr/Y /linkl (Figure 8-6). To do so, Y 
only needs execute permission for the directories in the path and write permission to the /usr/Y di
rectory. Subsequently, user X may unlink filet and believe that the file has been deleted (typically, 
users do not often check the link counts on their own files). The file, however, continues to exist 
through the other link. 

Of course, /usr/Y /linkl is still owned by user X, even though the link was created by user Y. 
If X had write-protected the file, then Y will not be able to modify it. Nevertheless, X may not wish 
to allow the file to persist. In systems that impose disk-usage quotas, X will continue to be charged 
for it. Moreover, there is no way X can discover the location of the link, particularly if Y has read
protected the /usr/Y directory (or if X no longer knows the in ode number of the file). 

4.2BSD introduced symbolic links to address many of the limitations of hard links. They 
were soon adapted by most vendors and incorporated into s5fs in SVR4. The symlink system call 
creates a symbolic link. It is a special file that points to another file (the linked-to file). The file type 
attribute identifies it as a symbolic link. The data portion of the file contains the pathname of the 
linked-to file. Many systems allow small pathnames to be stored in the inode of the symbolic link. 
This optimization was first introduced in UL TRIX. 

The pathname contained in the symbolic link may be absolute or relative. The pathname tra
versal routines recognize symbolic links and translate them to obtain the name of the linked-to file. 
If the name is relative, it is interpreted relative to the directory containing the link. While symbolic 
link handling is transparent to most programs, some utilities need to detect and handle symbolic 
links. This is enabled by the !stat system call, which suppresses translation of the final symbolic 
link in a pathname. Hence if file mylink is a symbolic link to the file myfile, then !stat (myl ink, 
... ) returns the attributes of mylink, while stat (myl ink, ..• ) returns the attributes of myfile. 
Having detected a symbolic link through !stat, the user may call read/ink to retrieve the contents of 
the link. 

Figure 8-6. Hard links to a file. 



8.5 File System Framework 233 

8.4.2 Pipes and FIFOs 

Pipes and FIFOs are file abstractions that provide a first-in, first-out data stream. They differ mainly 
in how they are created. A FIFO is created by the mknod system call and may then be opened and 
accessed by any process that knows the name and has the permissions. It continues to exist until 
explicitly deleted. A pipe is created by the pipe system call, which returns a read and a write de
scriptor to it. The process that creates the pipe may pass these descriptors to its descendants through 
fork, thus sharing the pipe with them.6 A pipe may have multiple readers and writers. When no more 
readers or writers remain, the kernel automatically deletes the pipe. 

I/0 operations on FIFOs and pipes are quite similar. Writes append data to the end, while 
reads remove data from the head. Once data has been read, it is removed from the pipe and is un
available even to other readers. The kernel defines a parameter called PIPE_BUF (5120 bytes by de
fault), which limits the amount of data a pipe may hold. If a write would cause the pipe or FIFO to 
overflow, the writer would block until enough data is removed from it (through reads). If a process 
tries to write more than PIPE _BUF bytes in a single write call, the kernel cannot guarantee atomicity 
of the write. The data may become interleaved on arbitrary boundaries with writes by other proc
esses. 

The treatment of reads is a little different. If the size requested is greater than the amount of 
data currently in the pipe or FIFO, the kernel reads whatever data is available and returns the byte 
count to the caller. If no data is available, the reader will block until another process writes to the 
pipe. The 0 _ NDELAY option (set through open for FIFOs or fcntl for either) puts the pipe or FIFO in 
nonblocking mode: reads and writes will complete without blocking, transferring as much data as 
possible. 

Pipes maintain counts of active readers and writers. When the last active writer closes the 
pipe, the kernel wakes up all waiting readers. They may read the data still in the pipe. Once the pipe 
is empty, the readers will get a return value of 0 from the next read and interpret it as the end of file. 
If the last reader closes the pipe, the kernel sends a SIGPIPE signal to blocked writers. Subsequent 
writes will return with an EPIPE error. 

The initial implementations of pipes used the file system and assigned an inode and a block 
list for each pipe. Many BSD-based variants used sockets (see Section 17.1 0.3) to implement a pipe. 
SVR4 builds pipes and FIFOs using STREAMS. Section 17.9 describes this implementation in de
tail. SVR4 pipes are bidirectional and maintain a separate data stream for each direction. This better 
addresses the needs of most applications, which desire a full-duplex, interprocess communication 
mechanism. 

8.5 File System framework 

The traditional UNIX kernel had a monolithic file system organization. It could only support one 
file system type-s5ft. The introduction of FFS in 4.2BSD gave vendors an alternative to s5ft, but 
the basic framework precluded the two file systems from coexisting. Although many vendors pre-

6 Only those descendants that are created after the pipe can share access to it. 



234 Chapter 8 File System Interface and Framework 

ferred FFS for its performance and features, others chose to retain s5fs for backward compatibility. 
Either way, it was not a happy solution. 

Moreover, while both s5fs and FFS were adequate for general time-sharing applications, 
many applications found neither suitable to their needs. Database applications, for example, need 
better support for transaction processing. Applications that use large, read-mostly or read-only files 
would prefer extent-based allocation, which improves the performance of sequential reads. The 
early UNIX systems had no way for vendors to add a custom file system without extensively over
hauling the kernel. This was too restrictive for UNIX to become the operating system of choice for a 
wider variety of environments. 

There also was a growing need for supporting non-UNIX file systems. This would permit a 
UNIX system running on a personal computer to access files on DOS partitions on the same ma
chine or, for that matter, floppy disks written by DOS. 

Most important, the proliferation of computer networks led to an increased demand for 
sharing files between computers. The mid-1980s saw the emergence of a number of distributed file 
systems-such as AT&T's Remote File Sharing (RFS) and Sun Microsystem's Network File System 
(NFS)-that provided transparent access to files on remote nodes. 

These developments necessitated fundamental changes in the UNIX file system framework 
to support multiple file system types. Here again there were several alternative approaches, such as 
AT&T's file system switch [Rifk 86], Sun Microsystem's vnode/vfs architecture [Klei 86], and 
Digital Equipment Corporation's gnode architecture [Rodr 86]. For a while, these rival technologies 
battled for acceptance and dominance. Eventually, AT&T integrated Sun's vnode/vfs and NFS 
technologies into SVR4, enabling them to become de facto industry standards. 

The vnode/vfs interface has evolved substantially from its original implementation. While 
all major variants have embraced its fundamental approach, each provides a different interface and 
implementation. This chapter concentrates on the SVR4 version of this interface. Section 8.11 
summarizes other important implementations. 

8.6 The VnodeNfs Architecture 

Sun Microsystems introduced the vnode/vfs interface as a framework for supporting multiple file 
system types. It has since gained widespread acceptance and became part of System V UNIX in 
SVR4. 

8.6.1 Objectives 
The vnode/vfs architecture has several important objectives: 

• The system should support several file system types simultaneously. These include UNIX 
(s5fs or ufs) and non-UNIX (DOS, AIUX, etc.) file systems. 

• Different disk partitions may contain different types of file systems. Once they are 
mounted on each other, however, they must present the traditional picture of a single ho
mogenous file system. The user is presented with a consistent view of the entire file tree 
and need not be aware of the differences in the on-disk representations of the subtrees. 



8.6 The VnodeNfs Architecture 

• There should be complete support for sharing files over a network. A file system on a re
mote machine should be accessible just like a local file system. 

• Vendors should be able to create their own file system types and add them to the kernel in 
a modular manner. 

235 

The main goal was to provide a framework in the kernel for file access and manipulation, 
and a well-defined interface between the kernel and the modules that implemented specific file sys
tems. 

8.6.2 Lessons from Device 1/0 
Even though the early UNIX versions had just one type of file system, there were many types of 
files. Besides ordinary files, UNIX supported a variety of devices, which were accessed through 
special device files. Although each device driver had its own implementation of the low-level I/0 
routines, they all provided a uniform interface to the user, who accessed them with the same system 
calls as those for ordinary files. 

The framework for device I/0 thus provides an insight into the requirements for multiple file 
system support. Section 16.3 describes the device driver framework in detail. Here, we summarize 
the part of the interface relevant to our discussion. UNIX divides devices into two broad catego
ries-block and character. Their interfaces to the kernel are different in some respects, but the basic 
framework is the same. We shall use the example of character devices. 

UNIX requires each character device to support a standard set of operations. These opera
tions are encapsulated in a struct cdevsw, which is a vector of function pointers, as shown below. 

struct cdevsw { 
int (*d open)(); 
int (*d-c1ose)(); 
int (*d-read)(); 
int (*(write)(); 

cdevsw[]; 

Hence cdevsw[] is a global array of struct cdevsw's and is called the character device 
switch. The fields of the structure define the interface to an abstract character device. Each different 
type of device provides its own set of functions that implements this interface. For example, the line 
printer may provide the functions 1 popen (), 1 pc 1 ose (), and so forth. Each device type has a dif
ferent major device number associated with it. This number forms an index into the global 
cdevsw[] array, giving each device its own entry in the switch. The fields of the entry are initialized 
to point to the functions provided by that device. 

Suppose a user issues a read system call to a character device file. In a traditional UNIX 
system, the kernel will: 

1. Use the file descriptor to get to the open file object. 
2. Check the entry to see if the file is open for read. 



236 Chapter 8 File System Interface and Framework 

3. Get the pointer to the in-core inode from this entry. In-core inodes (also called in-memory 
inodes) are file system data structures that keep attributes of active files in memory. They 
are described in detail in Section 9.3.1. 

4. Lock the inode so as to serialize access to the file. 
5. Check the inode mode field and find that the file is a character device file. 
6. Use the major device number (stored in the inode) to index into a table of character de

vices and obtain the cdevsw entry for this device. This entry is an array of pointers to 
functions that implement specific operations for this device. 

7. From the cdevsw, obtain the pointer to the d_read routine for this device. 
8. Invoke the d_read operation to perform the device-specific processing of the read request. 

The code looks like the following: 

result= {*{cdevsw[major].d_read))( ... ); 

where major is the major device number of that device. 
9. Unlock the inode and return to the user. 

As we can see, much of this processing is independent of the specific device. Steps 1 
through 4 and Step 9 apply to ordinary files as well as to device files and are thus independent of 
file type. Steps 5 through 7 represent the interface between the kernel and devices, which is encap
sulated in the cdevsw table. All the device-specific processing is localized in Step 8. 

Note that the cdevsw fields such as d_read define an abstract interface. Each device imple
ments it through specific functions, for instance, 1 pread () for a line printer or ttread () for a ter
minal. The major device number works as a key, translating the generic d _read operation to the 
device-specific function. 

The same general principles can be extended to the problem of multiple file system support. 
We need to separate the file subsystem code into file-system-independent and file-system-dependent 
parts. The interface between these two portions is defined by a set of generic functions that are 
called by the file-system-independent code to perform various file manipulation and access opera
tions. The file-system-dependent code, which is different for each file system type, provides specific 
implementations of these functions. The framework provides mechanisms for adding new file sys
tems and for translating the abstract operations to the specific functions for the files being accessed. 

Object-Oriented Design -A Digression 

The vnode/vfs interface was designed using object-oriented programming concepts. These 
concepts have since been applied to other areas of the UNIX kernel, such as memory man
agement, message-based communications, and process scheduling. It is useful to briefly 
review the fundamentals of object-oriented programming as they apply to UNIX kernel 
development. Although such techniques are naturally suited to object-oriented languages 
such as C++ [Elli 90], UNIX developers have chosen to implement them in C to be con
sistent with the rest of the kernel. 



8.6 The Vnode!Vfs Architecture 

The object-oriented approach is based on the notion ofclasses and objects. A class is a 
complex data type, made up of data member fields and a set of member functions. An ob
ject is an instance of a class and has storage associated with it. The member functions of a 
class operate on individual objects of that class. Each member (data field or function) of a 
class may be either public or private. Only the public members are visible externally to 
users of the class. Private data and functions may only be accessed internally by other 
functions of that class. 

From any given class, we may generate one or more derived classes, called subclasses 
(see Figure 8-7). A subclass may itself be a base for further derived classes, thus forming 
a class hierarchy. A subclass inherits all the attributes (data and functions) of the base 
class. It may also add its own data fields and extra functions. Moreover, it may override 
some of the functions of the base class and provide its own implementation of these. 
Because a subclass contains all the attributes of the base class, an object ofthe subclass 
type is also an object ofthe base class type. For instance, the class directory may be a de
rived class of the base class file. This means that every directory is also a file. Of course, 
the reverse is not true--every file is not a directory. Likewise, a pointer to a directory ob
ject is also a pointer to a file object. The attributes added by the derived class are not visi
ble to the base class. Therefore a pointer to a base object may not be used to access the 
data and functions specific to a derived class. 

Frequently, we would like to use a base class simply to represent an abstraction and de
fine an interface, with derived classes providing specific implementations of the member 
functions. Thus the file class may define a function called create(), but whena user calls 
this function for an arbitrary file, we would like to invoke a different routine depending on 
whether the file is actually a regular file, directory, symbolic link, device file, and so on. 
Indeed, we may have no generic implementation of create 0 that creates an arbitrary file. 
Such a function is called a pure virtual function. 

Object-oriented languages provide such facilities. In C++, for instance, we can define an 
abstract base class as one that contains at least one pure virtual function. Since the base 
class has no implementation for this function, it cannot be instantiated. It may only be 

data 

functions 

Base class 

data fields inherited additional data 
from base class fields of subclass 

r--------~--~---------

functions inherited 
from base class 

r----------
base class functions 

overridden by 
subclass 

Subclass 

additional 
functions of 

subclass 

Figure 8-7. Relationship between a base class and its subclass. 

237 



238 Chapter 8 File System Interface and Framework 

used for deriving subclasses, which provide specific implementations of the virtual func
tions. All objects are instances of one subclass or another, but the user may manipulate 
them using a pointer to a base class, without knowing which subclass they belong to. 
When a virtual function is invoked for such an object, the implementation automatically 
determines which specific function to call, depending on the actual subtype of the object. 

As mentioned earlier, languages such as C++ and SmallTalk have built-in constructs to 
describe the notions like classes and virtual functions. In C, these concepts are supported 
with some smoke and mirrors. In the next section, we see how the vnode/vfs layer is im
plemented in an object-oriented manner. 

8.6.3 Overview of the VnodeNfs Interface 

The vnode (virtual node) abstraction represents a file in the UNIX kernel; the vfs (virtual file sys
tem) represents a file system. Both can be regarded as abstract base classes, from which we can de
rive subclasses that provide specific implementations for different file system types such as s5fs, 
ufs, NFS, and FAT (the MS-DOS file system). 

Figure 8-8 shows the vnode class in SVR4. The data fields in the base vnode contain infor
mation that does not depend on the file system type. The member functions may be divided into two 
categories. The first is a set of virtual functions that define the file-system-dependent interface. Each 
different file system must provide its own implementation of these functions. The second is a set of 
high-level utility routines that may be used by other kernel subsystems to manipulate files. These 
functions in tum call the file-system-dependent routines to perform the low-level tasks. 

The base vnode has two fields that implement subclassing. The first is v _data, which is a 

data fields (struct vnode) 

v count v data 
v_type v_op 

~ 
file-system-

v vfsmountedhere •.. dependent private 
data 

virtual functions (struct vnodeops) ~ 
vop_open vop_lookup file-system-dependent 
vop_read vop_mkdir ~ -+ implementation of 
vop_getattr ... vnodeops functions 

utility routines and macros 

vn_open VN HOLD 
vn 1 ink VN RELE 
... 

Figure 8-8. The vnode abstraction. 



8.6 The VnodeNfs Architecture 239 

pointer (of type caddr _ t) to a private data structure that holds the file-system-specific data of the 
vnode. For s5fs and ufs files, this structure is simply the traditional (s5fs and ufs, respectively) 
i node structure. NFS uses an rnode structure, tmpfs (see Section 9.1 0.2) uses a tmpnode, and so 
forth. Since this structure is accessed indirectly through v _data, it is opaque to the base vnode class, 
and its fields are only visible to functions internal to the specific file system. 

The v_op field points to a struct vnodeops, which consists of a set of pointers to functions 
that implement the virtual interface of the vnode. Both the v _data and v _ op fields are filled in when 
the vnode is initialized, typically during an open or create system call. When the file-system
independent code calls a virtual function for an arbitrary vnode, the kernel dereferences the v _ op 
pointer and calls the corresponding function of the appropriate file system implementation. For ex
ample, the VOP _CLOSE operation allows the caller to close the file associated with the vnode. This is 
accessed by a macro such as 

#define VOP_CLOSE(vp, ..• ) (*((vp)->v_op->vop_close))(vp, ... ) 

where the ellipsis represent the other arguments to the close routine. Once vnodes have been prop
erly initialized, this macro ensures that invoking the VOP _CLOSE operation would call the 
ufs _close() routine for a ufs file, the nfs _close() routine for an NFS file, and so forth. 

Similarly, the base class vfs has two fields-vfs_data and vfs_op-that allow proper link
age to data and functions that implement specific file systems. Figure 8-9 shows the components of 
the vfs abstraction. 

InC, a base class is implemented simply as a struct, plus a set of global kernel functions 
(and macros) that define the public non virtual functions. The base class contains a pointer to another 
structure that consists of a set of function pointers, one for each virtual function. The v _ op and 
v_data pointers (vfs_op and vfs_data for the vfs class) allow the linkage to the subclass and 
hence provide run time access to the file-system-dependent functions and data. 

data fields (struct vfs) 

vfs next vfs data 
vfs _ vnodecovered vfs _ op 

"" 
file-system-

vfs_fstype ... dependent private 
data 

virtual functions (struct vfsops) ~ 
vfs mount vfs root file-system-dependent 
vfs unmount vfs_sync ~ __ , implementation of 
vfs statvfs ... vfsops functions 

Figure 8-9. The vfs abstraction. 



240 Chapter 8 File System Interface and Framework 

8.7 Implementation Overview 

The following sections examine the vnode/vfs interface in more detail and show how it implements 
various file operations. 

8.7.1 Objectives 

A set of implementation goals evolved to allow the development of a flexible interface that can be 
used efficiently by a large variety of diverse file systems: 

• Each operation must be carried out on behalf of the current process, which may be put to 
sleep if a function must block on a resource or event. 

• Certain operations may need to serialize access to the file. These may lock data structures 
in the file-system-dependent layer and must unlock them before the operation completes. 

• The interface must be stateless. There must be no implicit use of global variables such as u 
area fields to pass state information between operations. 

• The interface must be reentrant. This requirement disallows use of global variables such as 
u_error and u_rvall to store error codes or return values. In fact, all operations return 
error codes as return values. 

• File system implementations should be allowed, but not forced, to use global resources 
such as the buffer cache. 

• The interface must be usable by the server side of a remote file system to satisfy client re
quests. 

• The use of fixed-size static tables must be avoided. Dynamic storage allocation should be 
used wherever possible. 

8. 7.2 Vnodes and Open Files 

The vnode is the fundamental abstraction that represents an active file in the kernel. It defines the 
interface to the file and channels all operations on the file to the appropriate file-system-specific 
functions. There are two ways in which the kernel accesses a vnode. First, the I/O-related system 
calls locate vnodes through file descriptors, as described in this section. Second, the pathname tra
versal routines use file-system-dependent data structures to locate the vnode. Section 8.1 0.1 talks 
more about pathname traversal. 

A process must open a file before reading or writing to it. The open system call returns a file 
descriptor to the caller. This descriptor, which is typically a small integer, acts as a handle to the file 
and represents an independent session, or stream, to that file. The process must pass that descriptor 
to subsequent read and write calls. 

Figure 8-10 shows the relevant data structures. The file descriptor is a per-process object that 
contains a pointer to an open file object (struct file), as well as a set of per-descriptor flags. Cur
rently, the flags supported are FCLOSEXEC, which asks the kernel to close the descriptor when the 
process calls exec, and U _FDLOCK, which is used for file locking. 



8.7 Implementation Overview 

file descriptor 

I I 
struct file struct vnode 

open mode flags L/ 
vnode pointer - v _data 
... 
offset pointer v_op 

., 
I 

-I 

I 

I 

file-system
dependent 
objects 

Figure 8-10. File-system-independent data structures. 

241 

The open file object holds the context that manages a session with that file. If multiple users 
have the file open (or the same user has it open multiple times), each has its own open file object. Its 
fields include: 

• Offset in the file at which the next read or write should start. 
• Reference count of the number of file descriptors that point to it. This is normally 1, but 

could be greater if descriptors are cloned through dup or fork. 
• Pointer to the vnode of the file. 
• Mode with which the file was opened. The kernel checks this mode on each I/0 operation. 

Hence if a user has opened a file for read only, he cannot write to the file using that de
scriptor even if he has the necessary privileges. 

Traditional UNIX systems use a static, fixed-size file descriptor table in the u area. The de
scriptor returned to the user is an index into this table. The size of the table (typically 64 elements) 
limits the number of files the user could keep open at a time. In modem UNIX systems, the descrip
tor table is not limited in size, but may grow arbitrarily large.? 

Some implementations, such as SVR4 and SunOS, allocate descriptors in chunks of 
(usually) 32 entries and keep the chunks in a linked list, with the first chunk in the u area of the 
process. This complicates the task of dereferencing the descriptor. Instead of simply using the de
scriptor as an index into the table, the kernel must first locate the appropriate chunk, then index into 
that chunk. This scheme removes the restrictions on the number of files a process may have open, at 
the cost of some increased code complexity and performance. 

Some newer SVR4-based systems allocate the descriptor table dynamically and extend it 
when necessary by calling kmem _rea 11 oc (),which either extends the table in-place or copies it into 
a new location where it has room to grow. This allows dynamic growth of the descriptor table and 
quick translation of descriptors, at the cost of copying the table over when allocating it. 

8.7.3 The Vnode 

The vnode is represented by the following data structure: 

7 It is still bounded by the resource limit RLIMIT _ NOFI LE. 



242 

struct vnode 
u_short v_flag; 
u _short v _count; 
struct vfs *vfsmountedhere; 
struct vnodeops *v_op~ 
struct vfs *vfsp; 
struct stdata *v stream; 
s t ruct page *(_p'a:ge; 
enum vtype v_type; 
dev:....:t v_rdev; 
caddr t v_data; 

Chapter 8 File System Interface and Framework 

I* V _ROOT, etc. *I 
I* reference count *I 
I* for mount points *I 
I* vnode operations vector *I 
I* file system to which it belongs *I 
/* pointer to asspc:i~ted $tream, if any *I 
/* resident page list */ 
/* file type */ 
/* device ID for device files */ 
/* pointer to private data structure */ 

The fields are described in greater detail in other sections. 

8.7.4 Vnode Reference Count 

The v _count field of the vnode maintains a reference count that determines how long the vnode 
must remain in the kernel. A vnode is allocated and assigned to a file when the file is first accessed. 
Thereafter, other objects may maintain pointers, or references, to this vnode and expect to access the 
vnode using that pointer. This means that as long as such references exist, the kernel must retain the 
vnode and not reassign it to another file. 

This reference count is one of the generic properties of the vnode and is manipulated by the 
file-system-independent code. Two macros, VN _HOLD and VN _ RELE, increment and decrement the 
reference count, respectively. When the reference count reaches zero, the file is inactive and the 
vnode may be released or reassigned. 

It is important to distinguish a reference, or hold, from a lock. Locking an object prevents 
others from accessing it in some way, depending on whether the locking is exclusive or read-write. 
Holding a reference to an object merely ensures the persistence of the object. The file-system
dependent code locks vnodes for short times, typically for the duration of a single vnode operation. 
A reference is typically held for a long time, not only across multiple vnode operations but also 
across multiple system calls. The following are some of the operations that acquire a vnode refer
ence: 

• Opening a file acquires a reference (increments the reference count) to the vnode. Closing 
the file releases the reference (decrements the count). 

• A process holds a reference to its current working directory. When the process changes the 
working directory, it acquires a reference to the new directory and releases the reference to 
the old one. 

• When a new file system is mounted, it acquires a reference to the mount point directory. 
Unmounting the file system releases the reference. 



8.7 Implementation Overview 

• The pathname traversal routine acquires a reference to each intermediate directory it en
counters. It holds the reference while searching the directory and releases it after acquiring 
a reference to the next pathname component. 

243 

Reference counts ensure persistence of the vnode and also of the underlying file. When a 
process deletes a file that another process (or perhaps the same process) still has open, the file is not 
physically deleted. The directory entry for that file is removed so no one else may open it. The file 
itself continues to exist since the vnode has a nonzero reference count. The processes that currently 
have the file open may continue to access it until they close the file. This is equivalent to marking 
the file for deletion. When the last reference to the file is released, the file-system-independent code 
invokes the VOP _INACTIVE operation to complete the deletion of the file. For a ufs or s5fs file, for 
example, the inode and the data blocks are freed at this point. 

This feature is very usefUl in creating temporary files. An application like a compiler uses 
several temporary files to store results of intermediate phases. These files should be cleaned up if 
the application were to terminate abnormally. The application ensures this by opening the file and 
then immediately unlinking it. The link count becomes zero and the kernel removes the directory 
entry. This prevents other users from seeing or accessing the file. Since the file is open, the in-core 
reference count is I. Hence the file continues to exist, and the application may read and write to it. 
When the application closes the file, either explicitly or implicitly when the process terminates, the 
reference count becomes zero. The kernel completes the file deletion and frees its data blocks and 
inode. Many UNIX systems have a standard library function called tmpfile, which creates a tempo
rary file. 

8.7.5 The Vfs Object 

The vfs object (struct vfs) represents a file system. The kernel allocates one vfs object for each 
active file system. It is described by the following data structure: 

struct vfs 
struct vfs *vfs_next; l*nextVFSinlist*l 
struct vfsops *vfs_op; l*operationsvector *I 
struct vnode *vfs_vnodecovered; I* vnodemounted on *I 
i nt vfs_:_fstype; /*file system type index *I 
caddr_,t yfs_data; l*privatetfata *I 
deV t vfs~deV; /* d~iiic¢fj) *I 

} ; 

Figure 8-11 shows the relationships between the vnode and vfs objects in a system contain
ing two file systems. The second file system is mounted on the /usr directory of the root file system. 
The global variable rootvfs points to the head of a linked list of all vfs objects. The vfs for the root 
file system is at the head of the list. The vfs _ vnodecovered field points to the vnode on which the 
file system is mounted. 



244 Chapter 8 File System Interface and Framework 

root file system mounted file system 

rootvfs ~ vfs next vfs next 
vfs vnodecovered r-- vfs vnodecovered -

struct vfs ... ... 

struct vnode 

VROOT VROOT 
v_vfsp v_vfsp v_vfsp-
v vfsmountedhere v vfsmountedhere - v vfsmountedhere 
... ... 

vnode of 
"/" 

vnode of 
"/usr" 

... 
"/" vnode of 

mounted filsys 

Figure 8-11. Relationships between vnode and vfs objects. 

The v _ vf s p field of each vnode points to the vfs to which it belongs. The root vnodes of 
each file system have the VROOT flag set. If a vnode is a mount point, its v _ vfsmountedhere field 
points to the vfs object of the file system mounted on it. Note that the root file system is not 
mounted anywhere and does not cover any vnode. 

8.8 File-System-Dependent Objects 

In this section, we describe the file-system-dependent objects of the vnode/vfs interface and how the 
file-system-independent layer accesses them. 

8.8.1 The Per-File Private Data 
The vnode is an abstract object. It cannot exist in isolation and is always instantiated in the context 
of a specific file. The file system to which the file belongs provides its own implementation of the 
abstract vnode interface. The v _ op and v _data fields of the vnode tie it to its file-system-dependent 
part. v _data points to a private data structure that holds file-system-dependent information about 
the file. The data structure used depends on the file system the file belongs to-s5fs and ufs files use 
i node structures,s NFS uses rnodes, and so forth. 

v _data is an opaque pointer, meaning that the file-system-independent code cannot directly 
access the file-system-dependent object. The file-system-dependent code, however, can and does 
access the base vnode object. We therefore need a way to locate the vnode through the private data 
object. Since the two objects are always allocated together, it is efficient to combine them into one. 
In the reference implementations of the vnode layer, the vnode is simply a part of the file-system
dependent object. Note that this is merely a prevalent method in existing implementations. It would 

8 The two inode structures are different in many respects. 



8.8 File-System-Dependent Objects 

base (file-system-
independent) vnode 

v data 

file-system-dependent 
(subclass) data structure 

Relationship 
required by interface 

~,~--------------~ 
base (file-system-
independent) vnode 

'--- v data 

file-system-dependent 
(subclass) data structure 

Standard 
implementation 

Figure 8-12. File-system-dependent vnode. 

245 

be perfectly acceptable to have separate data structures for the vnode and the file-system-dependent 
portion, as long as the v_data field is initialized appropriately. Figure 8-12 illustrates both relation
ships. 

8.8.2 The vnodeops Vector 

The vnode interface defines a set of operations on a generic file. The file-system-independent code 
manipulates the file using these operations only. It cannot access the file-system-dependent objects 
directly. The struct vnodeops, which defines this interface, is described as follows: 

struct vnodeops { 
i nt (*vop open)(}; 
int (*vop-close)(); 
i nt (*vop -read){}; 
i nt (*vop-write) () ; 
int (*vop-ioctl)(); 
int (*vop-getattr) (); 
int (*vop-setattr)(); 
int (*vop-access)(); 
int (*vop=lookup)(); 
int {*VOp create)(); 
int (*Vop-remove) (); 
int (*vop-link)(); 
int (*vop-rename)(); 
int (*vop-mkdir)(); 
int (*vop=rmdir)(); 



246 Chapter 8 File System Interface and Framework 

int (*vop_readdir)(); 
int (*vop_symlink)(); 
int (*vop_readlink)(); 
void (*vop_inactive)(); 
void (*vop _rwl ock) (); 
void (*vop_rwunlock)(); 
int (*vop_realvp) (); 
int (*vop_getpage)(); 
int (*vop_putpage)(); 
int (*vop_map) (); 
int (*vop _;PO 11) () ; 

} ; 

Each file system implements this interface in its own way, and provides a set of functions to 
do so. For instance, ufs implements the VOP _READ operation by reading the file from the local disk, 
while NFS sends a request to the remote file server to get the data. Hence each file system provides 
an instance of the struct vnodeops-ufs, for example, defines the object: 

struct vnodeops ufs_vnodeops = { 
ufs_open, 
ufs_close. 

} ; 

The v _ op field of the vnode points to the vnodeops structure for the associated file system 
type. As Figure 8-13 shows, all files of the same file system type share a single instance of this 
structure and access the same set of functions. 

8.8.3 File-System-Dependent Parts of the Vfs Layer 

Like the vnode, the vfs object has pointers to its private data and its operations vector. The 
vfs _data field points to an opaque, per-file-system data structure. Unlike vnodes, the vfs object and 
its private data structure are usually allocated separately. The vfs_op field points to a struct 
vfsops, described as follows: 

struct vfsops { 

} ; 

int (*vfs mount)(); 
int (*vfs-unmount)(); 
int (*vfs-root)(); 
int (*vfs-statvfs)(); 
int (*vfs=sync)(); 



8.9 Mounting a File System 

struct inode 

l i vnode: 
L v_data 

v_op-
... 

ufs_open 
ufs close 
... 

struct inode 

i vnode: 

v_data 
v_op 
. .. 

struct 
vnodeops 

struct rnode 

v_op 

nfs_open 
nfs close 

Figure 8-13. File-system-dependent vnode objects. 

247 

Each file system type provides its own implementation of these operations. Hence there is 
one instance of struct vfsops for each file system type-ufs_vfsops for ufs, nfs_vfsops for 
NFS, and so forth. Figure 8-14 shows the vfs layer data structures for a system containing two ufs 
and one NFS file system. 

8.9 Mounting a File System 

The implementors of the vfs interface had to modify the mount system call to support the existence 
of multiple file system types. The syntax for mount in SVR4 is 

mount (spec, dir, flags, type, dataptr, datalen) 

where s pee is the name of the device file representing the file system, d i r is the pathname of the 
mount point directory, type is a string that specifies which kind of file system it is, dataptr is a 
pointer to additional file-system-dependent arguments, and data 1 en is the total size of these extra 
parameters. In this section, we describe how the kernel implements the mount system call. 

8.9.1 The Virtual File System Switch 

In order to properly route vnode and vfs operations to the appropriate file-system-specific imple
mentations, the different file system types must be properly configured into the system. The kernel 
needs a mechanism that tells it how to access the interface functions of each file system. 



248 

file-system-dependent data strutctures 

struct 
ufs vfsdata 

i 
vfs data _j 

struct 
ufs vfsdata 

i 
vfs data _j 

-

Chapter 8 File System Interface and Framework 

struct 
mntinfo 

i 
vfs data _j 

-
vfs next ___ I~ vfs next- ---- • vfs_next 
vfs_op -

I 
vfs_op 

. . . 
j 

. .. 

l 
I rootvfs I ufs mount nfs 

ufs unmount nfs 
. . . ... 

struct vfsops 

- vfs_op 
... 

-
mount 
unmount -

struct vfs 

Figure 8-14. vfs layer data structures. 

SVR4 uses a mechanism called the virtual file system switch, which is a global table contain
ing one entry for each file system type. Its elements are described by 

struct vfssw { 
char *vsw_name; 
int (*vsw_init){); 
struct vfsops *vsw_vfsops; 

vfssw[]; 

8.9.2 mount Implementation 

I* file system type name *I 
I* address of initialization routine *I 
I* vfs operations vector for this fs *I 

The mount system call obtains the vnode of the mount point directory by calling l ookuppn (). It 
checks that the vnode represents a directory and that no other file system is mounted on it. (Note 
that l ookuppn () acquires a hold on this directory, which remains until the file system is un
mounted.) It then searches the vfssw[] table to find the entry matching the type name. 

Having located the switch entry, the kernel invokes its v s w _ i n i t operation. This calls a file
system-specific initialization routine that allocates data structures and resources needed to operate 
the file system. The kernel then allocates a new vfs structure and initializes it as follows: 

l. Adds the structure to the linked list headed by rootvfs. 
2. Sets the vfs _ op field to point to the vfsops vector specified in the switch entry. 
3. Sets the vfs _ vnodecovered field to point to the vnode of the mount point directory. 



8.10 Operations on Files 249 

The kernel then stores a pointer to the vfs structure in the v _ vfsmountedhere field of the 
covered directory's vnode. Finally, it invokes the VFS _MOUNT operation of the vfs to perform the 
file-system-dependent processing of the mount call. 

8.9.3 VFS _MOUNT Processing 

Each file system provides its own function to implement the V FS _MOUNT operation. This function 
must perform the following operations: 

1. Verify permissions for the operation. 
2. Allocate and initialize the private data object of the file system. 
3. Store a pointer to it in the vfs _data field of the vfs object. 
4. Access the root directory of the file system and initialize its vnode in memory. The only 

way the kernel accesses the root of a mounted file system is through the V FS _ROOT opera
tion. The file-system-dependent part of the vfs must maintain information necessary to lo
cate the root directory. 

Typically, local file systems may implement VFS _MOUNT by reading in the file system 
metadata (such as the superblock for s5fs) from disk, while distributed file systems may send are
mote mount request to the file server. 

8.10 Operations on Files 

In this section, we examine how several important file operations are handled in the vnode/vfs de
sign. Specifically, we look at pathname traversal and the open and read system calls. 

8.1 0.1 Path name Traversal 

The file-system-independent function 1 ookuppn () translates a pathname and returns a pointer to the 
vnode of the desired file. It also acquires a hold on that vnode. The starting point of the search de
pends on whether the pathname is relative or absolute. For relative pathnames, 1 ookuppn () starts at 
the current directory, obtaining its vnode pointer from the u_cdir field ofthe u area. For absolute 
pathnames, it starts at the root directory. Its vnode pointer is in global variable rootdi r. 9 

1 ookuppn () acquires a hold (increments the reference count) on the starting vnode and then 
executes a loop, parsing one component of the pathname at a time. Each iteration of the loop must 
perform the following tasks: 

1. Make sure the vnode is that of a directory (unless the last component has been reached). 
The v _type field in the vnode contains this information. 

9 A process can call chroot to change its notion of the root directory to something other than the system root. This af
fects how the kernel interprets absolute pathnames for this process. Usually, certain login shells call chroot on behalf 
of the process. System administrators may use this facility to restrict some users to a part of the global file tree. To 
allow for this case, 1 ookuppn () first examines the u. u _rdi r field in the u area and, if that is NULL, checks the 
rootd i r variable. 



250 Chapter 8 File System Interface and Framework 

2. If the component is " .• ," and the current directory is the system root, move on to the next 
component. The system root directory acts as its own parent. 

3. If the component is" .. ," and the current directory is the root of a mounted file system, ac
cess the mount point directory. All root directories have the VROOT flag set. The v_vfsp 
field points to the vfs structure for that file system, which contains a pointer to the mount 
point in the field vfs _ vnodecovered. 

4. Invoke the VOP _LOOKUP operation on this vnode. This results in a call to the lookup func
tion of this specific file system (s51ookup(), ufs_1ookup(), etc.). This function 
searches the directory for the component and, if found, returns a pointer to the vnode of 
that file (allocating it if not already in the kernel). It also acquires a hold on that vnode. 

5. If the component was not found, check to see if this is the last component. If so, return 
success (the caller may have intended to create the file) and also pass back a pointer to the 
parent directory without releasing the hold on it. Otherwise, return with an ENOENT error. 

6. If the new component is a mount point (v _ vfsmountedhere ! = NULL), follow the pointer 
to the vfs object of the mounted file system and invoke its vfs _root operation to return 
the root vnode of that file system. 

7. If the new component is a symbolic link (v_type == VLNK), invoke its VOP _SYMLINK op
eration to translate the symbolic link. Append the rest of the pathname to the contents of 
the link and restart the iteration. If the link contains an absolute pathname, the parsing 
must resume from the system root. 

The caller of 1 ookuppn () may pass a flag that suppresses symbolic link evaluation for 
the last component of the pathname. This is to accommodate certain system calls such as 
/stat that do not want to traverse symbolic links at the end of pathnames. Also, a global 
parameter called MAXSYMLINKS (usually set to 20) limits the maximum number of sym
bolic links that may be traversed during a single call to 1 ookuppn (). This prevents the 
function from going into a possibly infinite loop due to badly conceived symbolic links
for example, if /xly were a symbolic link to /x. 

8. Release the directory it just finished searching. The hold was acquired by the VOP _LOOKUP 
operation. For the starting point, it was explicitly obtained by 1 ookuppn (). 

9. Finally, go back to the top of the loop and search for the next component in the directory 
represented by the new vnode. 

10. When no components are left, or if a component is not found, terminate the search. If the 
search was successful, do not release the hold on the final vnode and return a pointer to 
this vnode to the caller. 

8.1 0.2 Directory Lookup Cache 

The directory name lookup cache is a central resource available to any file system implementations 
wishing to use it. It consists of an LRU (least recently used order) cache of objects that contain a 
directory vnode pointer, the name of a file in that directory, and a pointer to the vnode of that file. 
The cache locates its entries rapidly by organizing them in hash buckets based on the parent direc
tory and filename. 



8.10 Operations on Files 251 

If a file system wishes to use the name cache, its lookup function (the one that implements 
the VOP _LOOKUP operation) first searches the cache for the desired file name. If found, it simply in
crements the reference count of the vnode and returns it to the caller. This avoids the directory 
search, thus saving several disk reads. Cache hits are likely since programmers typically make sev
eral requests on a few frequently used files and directories. In event of a cache miss, the lookup 
function searches the directory. If the component is found, it adds a new cache entry for future use. 

Since the file system can access vnodes without going through pathname traversal, it may 
perform operations that invalidate a cache entry. For instance, a user may unlink a file, and the ker
nel may later reassign the vnode to another file. Without proper precautions, a subsequent search for 
the old file may result in an incorrect cache hit, fetching a vnode that does not belong to that file. 
The cache must therefore provide a way of ensuring or checking the validity of its entries. Both 
4.3BSD and SVR4 implement a directory lookup cache, and each uses a different technique tore
solve this issue. 

4.3BSD does not use the vnode/vfs interface, and its name lookup cache directly locates the 
in-memory inode of the file. The inode has a generation number, also called a capability, which is 
incremented each time the inode is reassigned to a new file. The name lookup cache is hint-based. 
When adding a new entry to the cache, the file system copies the inode generation number of the 
file into the entry. The cache lookup function checks this number against the current generation 
number of the inode. If the numbers are unequal, the entry is invalid and results in a cache miss. 

In SVR4, the cache entry holds a reference to the vnode of the cached file and releases it 
when the entry is flushed or reassigned. Although this method ensures that cache entries are always 
valid, it has certain drawbacks. For example, the kernel must retain some inactive vnodes simply 
because there is a name cache entry that references them. Also, it prevents other parts of the kernel 
from ensuring exclusive use of a file or device. 

8.10.3 The VOP _LOOKUP Operation 

VOP _LOOKUP is the interface to the file-system-specific function that looks up a filename component 
in a directory. It is invoked through a macro as follows: 

error =VOP_LOOKUP(vp; colllpname, &tvp, •.. }; 

where vp is a pointer to the parent directory vnode and compname is the component name. On suc
cessful return, tvp must point to the vnode of compname and its reference count must be incre
mented. 

Like other operations in this interface, this results in a call to a file-system-specific lookup 
function. Usually, this function first searches the name lookup cache. If there is a cache hit, it in
crements the reference count and returns the vnode pointer. In case of a cache miss, it searches the 
parent directory for the name. Local file systems perform the search by iterating through the direc
tory entries block by block. Distributed file systems send a search request to the server node. 

If the directory contains a valid match for the component, the lookup function checks if the 
vnode of the file is already in memory. Each file system has its own method of keeping track of its 
in-memory objects. In ufs, for instance, the directory search results in an inode number, which ufs 
uses to index into a hash table and search for the inode. The in-memory inode contains the vnode. If 



252 Chapter 8 File System Interface and Framework 

the vnode is found in memory, the lookup function increments its reference count and returns it to 
the caller. 

Often the directory search produces a match for the component, but the vnode is not in 
memory. The lookup function must allocate and initialize a vnode, as well as the file-system
dependent private data structure. Usually, the vnode is part of the private data structure, and hence 
both are allocated as one unit. The two objects are initialized by reading in the attributes of the file. 
The v _ op field of the vnode is set to point to the vnodeops vector for this file system, and a hold is 
added to the vnode. Finally, the lookup function adds an entry to the directory name lookup cache 
and places it at the end of the LRU list of the cache. 

8.1 0.4 Opening a File 

The arguments to the open system call include a pathname, a set of flags, and permissions to assign 
to the file should it need to be created. The flags include 0 _READ, 0 _WRITE, 0 _APPEND, 0 _ TRUNC 
(truncate to zero length), 0 _ CREAT (create the file if it does not exist), and 0 _ EXCL (used in conjunc
tion with 0 _ CREAT to return an error if file already exists). The implementation of open is handled 
almost entirely in the file-system-independent layer. The algorithm is as follows: 

1. Allocate a file descriptor (see Section 8.2.3). If open returns successfully, its return value is 
an index that identifies the descriptor in the chunk list. 

2. Allocate an open file object (struct file) and store a pointer to it in the file descriptor. 
SVR4 allocates this object dynamically. Earlier implementations use a static, fixed-size 
table. 

3. Call l ookuppn () to traverse the pathname and return the vnode of the file to be opened. 
l ookuppn () also returns a pointer to the parent directory vnode. 

4. Check the vnode (by invoking its VOP _ACCESS operation) to ensure that the caller has the 
permissions necessary for the type of access desired. 

5. Check for, and reject, certain illegal operations, such as opening a directory or an active 
executable file for writing (otherwise, the user executing the program will get unexpected 
results). 

6. If the file does not exist, check if the 0 _ CREAT option is specified. If so, invoke 
VOP _CREATE on the parent directory to create the file. Otherwise, return the ENOENT error 
code. 

7. Invoke the VOP _OPEN operation of that vnode for the system-dependent processing. Typi
cally, this routine does nothing, but some file systems may wish to perform additional tasks 
at this point. For instance, the specfs file system, which handles all device files, might want 
to call the open routine of the device driver. 

8. If the O_TRUNC option has been specified, invoke VOP _SETATTR to set the file size to zero. 
The file-system-dependent code will perform the necessary cleanup, such as releasing the 
file's data blocks. 

9. Initialize the open file object. Store the vnode pointer and the open mode flags in it, set its 
reference count to one and its offset pointer to zero. 

10. Finally, return the index of the file descriptor to the user. 



8.10 Operations on Files 253 

Note that 1 ookuppn (} increments the reference count on the vnode and also initializes its 
v _ op pointer. This ensures that subsequent system calls can access the file using the file descriptor 
(the vnode will remain in memory) and that the file-system-dependent functions will be correctly 
routed. 

8.1 0.5 File 110 

To perform I/0 to a file, a user first opens it and then calls read or write (readv or writev for scatter
gather I/0) on the descriptor returned by the open call. The file-system-independent code packages 
the parameters of the request into a u i o structure as described in Section 8.2.5. In case of the read 
and write calls, the ui o will point to a single-element i ovec[] array. The kernel uses the file de
scriptor to locate the open file object and checks that the file is opened for the type of access de
sired. If so, it dereferences the vnode pointer in the open file object to locate the vnode. 

UNIX semantics demand that I/0 system calls to a file be serialized. If two users simultane
ously call read or write to the same file, the kernel must complete one operation before starting the 
other. Hence the kernel locks the vnode before starting the read or write and unlocks it after the I/0 
completes. SVR4 does so using the new VOP _ RWLOCK and VOP _ RWUNLOCK operations. Finally, it calls 
the VOP _READ or VOP _WRITE function for the file-system-dependent processing of the operation. 
Most of the processing of the read and write system calls takes place in the file-system-dependent 
layer. This is described further in Section 9.3.3 for s5fs and Section 10.6.3 for NFS. In SVR4, file 
I/0 is closely related to the virtual memory subsystem. This relationship is discussed in Section 
14.8. 

8.10.6 File Attributes 

Several system calls either modify or inquire about specific attributes of a file such as owner ID or 
permissions (see Section 8.2.2). In earlier UNIX versions, these calls directly read or wrote fields in 
the in-core inode and, if necessary, copied them to the on-disk inode, all in a very implementation
dependent manner. Since the vnode interface can deal with quite arbitrary file system types, which 
may have very different on-disk and in-memory structures for metadata storage, it provides a gen
eralized interface. 

The operations VOP_GETATTR and VOP_SETATTR read and write file attributes, respectively, 
using a file-system-independent object called a struct vattr. Although this structure contains the 
information found in a typical s5fs or ufs inode, the format is quite generic and not tied to any par
ticular file system types. It is up to the specific implementations to translate between the informa
tion in this structure and its own metadata structures. 

8.1 0. 7 User Credentials 

Several file system operations must check if the caller has the permissions for the type of file access 
desired. Such access control is governed by the user ID and group IDs of the caller, which tradi
tionally were stored in the u area of the calling process. In modern UNIX systems, this information 



254 Chapter 8 File System Interface and Framework 

is encapsulated in a credentials object (struct cred), which is explicitly passed (through a pointer) 
to most file operations. 

Each process has a statically allocated credentials object, typically in the u area or proc 
structure. For operations on local files, we pass a pointer to this object, which seems no different 
from the earlier treatment of obtaining the information directly from the u area. The benefit of the 
new method is in the handling of remote file operations, which are executed by a server process on 
behalf of remote clients. Here, the permissions are determined by the credentials of the client, not by 
those of the server process. Thus the server can dynamically allocate a credentials structure for each 
client request and initialize it with the UID and GIDs of the client. 

Since these credentials are passed from one operation to another, and must be retained until 
the operations complete, the kernel associates a reference count with each object and frees the 
structure when the count drops to zero. 

8.11 Analysis 

The vnode/vfs interface provides a powerful programming paradigm. It allows multiple file system 
types to coexist. Vendors may add file systems to the kernel in a modular fashion. The object
oriented framework effectively separates the file system from the rest of the kernel. This has led to 
the development of several interesting file system implementations. The file system types found in a 
typical SVR4 installation include: 

s5fs 
ufs 
vxfs 
specfs 
NFS 
RFS 
fzfofs 
/proc 
bfs 

Original System V file system 
Berkeley Fast File System, adapted to the vnode/vfs interface 
Veritas journaling file system, which has several advanced features 
A file system for device special files 
Network File System 
Remote File Sharing file system 
A file system for first-in, first-out files 
A file system that represents each process as a file 
Boot file system 

Many variants, such as Solaris, also support the MS-DOS FAT file system. This is particularly use
ful for moving files to and from DOS machines through floppy disks. The next few chapters de
scribe a number of file systems in greater detail. 

The SunOS vnode/vfs design, now incorporated into SVR4, has gained wide acceptance. It 
is important, however, to examine some of its drawbacks and to see how some other UNIX variants 
have addressed these issues. Its shortcomings are mainly the result of the way it implements path
name lookup. The remainder of this section examines these drawbacks and looks at some recent 
variants that address them. 



8.11 Analysis 255 

8.11.1 Drawbacks of the SVR4 Implementation 

One of the major performance problems is that 1 ookuppn () translates the pathname one component 
at a time, calling the file-system-dependent VOP _LOOKUP function for each component. Not only 
does this cause excessive function call overhead but, for remote file systems, it also requires a large 
number of interactions between the client and the server. Such an approach was chosen since the 
primary concern was the support of Sun's Network File system (NFS), which restricts lookup op
erations to one component at a time. Since that is not necessarily true of all remote file systems, it 
would be preferable if the individual file system could decide what part of the file name to parse in 
one operation. 

The second problem arises from the statelessness of the pathname lookup operation, again 
motivated by the stateless nature of the NFS protocol. Since the lookup operation does not lock the 
parent directory, it does not guarantee the validity of its results for any length oftime. The following 
example illustrates the problems this causes. 

Let us suppose a user requests the creation of the file /a/b. This is implemented in two steps. 
The kernel first performs a lookup to determine whether the file already exists. If it does not, the 
kernel creates the file, using the VOP _ CREAT entry point of the vnode of /a. The problem is that be
tween the time the lookup returned (with an ENOENT result) and the creation call, the /a directory 
was not locked, and another process may have created that very file. Therefore, to guarantee cor
rectness, the VOP _ CREAT operation has to rescan the directory, causing unnecessary overhead. 

One way to avoid this overhead is for the lookup function to not translate the final compo
nent whenever the lookup is to be followed by a create or delete operation. This compromises the 
modularity of the interface, since the operations are not independent of each other. 

There have been several alternative approaches to providing multiple file system support in 
UNIX. Each of them is based on the concept of having a generic interface implemented by individ
ual file systems. The differences can be traced to variations in design goals, differences in the base 
operating systems, and from the specific file systems primarily targeted by the designs. Two of the 
early alternatives were the file system switch in AT&T' s SVR3 UNIX [Rifk 86] and the generic file 
system (GFS) in Ultrix [Rodr 86]. Both retained the concept of the inode as the principal object rep
resenting a file, but split the inode into file-system-dependent and file-system-independent parts. 
Among the modem UNIX variants, both 4.4BSD and OSF/1 provide alternative models of the 
vnode interface. The following sections describe these interfaces. 

There are other, more fundamental, problems with the vnode/vfs interface. Although it is 
designed to allow modular file system development, it does not meet this goal well. It is impossible 
to write any but the most trivial file systems without having the operating system source code. 
There are many intricate dependencies between the file system and the memory management sub
system, some of which are explained in Section 14.8. Moreover, the interface is not consistent 
across different UNIX variants, nor across different releases of the same operating system. As a re
sult, while a small number of new, full-function file systems have been developed using this inter
face (such as Episode and BSD-LFS, described in Chapter 11), file system development is still a 
difficult process. Section 11.11 analyzes these issues in greater detail and describes new work based 
on a stackable vnode interface that provides better facilities for building file systems. 



256 Chapter 8 File System Interface and Framework 

8.11.2 The 4.4850 Model 
The 4.4BSD vnode interface [Kare 86] tries to rectify the shortcomings of the SunOS/SVR4 ap
proach by using a stateful model and an enhanced lookup operation that incorporates features of the 
4.3BSD (and GFS) namei interface. It permits locking of vnodes across multiple operations and 
passes state information between related operations of a multistage system call. 

Pathname traversal is driven by the namei () routine, which first calls the lookup routine for 
the current directory vnode, passing it the entire pathname to be translated. The file-system
dependent lookup routine may translate one or more components in a single call, but will not cross a 
mount point. An implementation such as NFS may translate just one component in one call, 
whereas s5ft or uft lookup routines may translate the whole pathname (unless there is a mount point 
in the path). namei () passes the remainder of the pathname to the next lookup operation, after per
forming mount point processing if applicable. 

The arguments to the lookup function are encapsulated in a namei data structure. This 
structure contains several additional fields for passing state information and for returning extra in
formation. It may then be passed on to other operations such as create and symlink, allowing related 
operations to share a lot of state without passing several variables on the stack. 

One ofthe fields in nameidata states the reason for the pathname traversal. Ifthe search is 
for creation or deletion, then the final lookup operation locks the vnode of the parent directory. It 
also returns additional information in nameidata, such as the location ofthe file in that directory (if 
found) and the first empty slot in the directory (for subsequent creation). This namei data structure 
is then passed on to the create or delete operation. Since the parent directory was locked by the 
lookup, its contents are unchanged and the create or delete does not have to repeat the final direc
tory search. Upon completion, this operation will unlock the parent directory. 

Sometimes, after lookup completes, the kernel might decide not to proceed with the creation 
or deletion (perhaps because the caller does not have adequate permissions). In that case, it must 
invoke an abortop operation to release the lock on the parent directory. 

Even though the interface is stateful, in that locks may be held across multiple operations, 
the locking and unlocking are performed in the file-system-dependent layer. The interface can thus 
accommodate both stateless and stateful file systems, while avoiding redundant operations where 
possible. For instance, stateless file systems such as NFS may perform no locking of the parent di
rectory and, in fact, may choose to defer the search for the final component to the create or delete 
operation that follows. 

The major problem with this approach is that it serializes all operations on a directory, since 
the lock is held for the entire duration of the operation, even if the caller must block for 1/0. The 
implementation uses an exclusive lock, which prevents even two read-only operations from execut
ing in parallel. In particular, for time-sharing systems, this would cause great delays while accessing 
highly shared directories such as "f' or "/etc". For multiprocessor implementations, such serializa
tion is particularly unacceptable. 

Another optimization involved the maintenance of a per-process cache of the directory and 
offset of the last successful name lookup. This helps the performance of operations that iteratively 
act on all files of a directory. namei () uses this cache while searching for the final component of a 



8.12 Summary 257 

pathname. Ifthe parent directory is the same as in the previous call to namei {},the search begins at 
this cached offset instead of at the start of the directory (wrapping around the end if necessary). 

The 4.4BSD file system interface provides many other interesting features, such as stackable 
vnodes and union mounts. These are described in Section 11.12. 

8.11.3 The OSF/1 Approach 

OSF/1 sought to eliminate the performance problems associated with redundant directory operations 
while retaining the stateless nature of the vnode interface. Moreover, the approach had to work cor
rectly and efficiently both on uniprocessor and multiprocessor systems. This was implemented 
[LoVe 91] by considering all state information passed between related operations as simply a hint. 
This hint was associated with a timestamp, which could be checked for validity by subsequent op
erations. The file system could use these hints at its discretion to avoid redundant checking when the 
information had not changed between operations. 

The file metadata is protected by a multiprocessor-safe, mutual-exclusion (mutex) lock. This 
mutex is implemented as a simple spin lock, and held for brief periods of time. In particular, this 
lock is held only by the file-system-dependent code, and never across multiple operations, which 
means that metadata might change between operations. Such changes are monitored by associating a 
timestamp with each such synchronization object. This timestamp consists of a simple, monotoni
cally increasing counter incremented each time the associated object is modified. The hint-based 
directory lookup cache in 4BSD, described in Section 8.1 0.2, uses a similar scheme. 

As an example, consider the operation of creating a file. While searching for the last compo
nent, the lookup operation locks the parent directory and scans it to check if the file already exists. If 
not, it determines the offset in the directory where the new entry can be placed. It then unlocks the 
parent directory and returns this information to the caller, along with the current timestamp of the 
parent directory. Subsequently, the kernel calls di renter() to make the new entry in the parent di
rectory, and passes it the suggested offset along with the saved timestamp. di renter() compares 
this timestamp with the current timestamp of the directory. If the two are equal, the directory is un
changed since the lookup, and the name can be inserted at the suggested offset without rechecking 
the directory. If the timestamps are different, the directory has been modified in the meantime and 
the search must be repeated. 

These changes were motivated by performance considerations for multiprocessor platforms, 
but their advantages are also apparent for the uniprocessor case. The changes cause some new race 
conditions, but those that have been identified have been fixed by methods described in [LoVe 91]. 
The OSF/1 model combines the advantages of the stateless and stateful models and supports several 
file systems such as AFS (see Section 10.15) and Episode (see Section 11.8). 

8.12 Summary 

The vnode/vfs interface provides a powerful mechanism for modular development and addition of 
file systems to the UNIX kernel. It allows the kernel to deal simply with abstract representations of 
files called vnodes and relegates the file-system-dependent code to a separate layer accessed through 



258 Chapter 8 File System Interface and Framework 

a well-defined interface. Vendors may build file systems that implement this interface. The process 
is similar to writing a device driver. 

It is important, however, to note the great variation in the different incarnations of this inter
face. While various implementations such as SVR4, BSD, and OSF/1 are all based on similar gen
eral principles, they differ substantially both in the specifics of the interface (such as the set of op
erations and their arguments, as well as the format of the vnode and vfs structures), and in their 
policies regarding state, synchronization, etc. This means that file system developers would have to 
make major modifications to make their file system compatible with the different vfs interfaces. 

8.13 Exercises 

1. What are the advantages of having a byte-stream representation of files? In what ways is this 
model inadequate? 

2. Suppose a program makes repeated calls to readdir to list the contents of a directory. What 
would happen if other users were to create and delete files in the directory in between? 

3. Why are users never allowed to directly write to a directory? 
4. Why are file attributes not stored in the directory entry itself? 
5. Why does each process have a default creation mask? Where is this mask stored? Why does 

the kernel not use the mode supplied to open or creat directly? 
6. Why should a user not be allowed to write to a file opened in read-only mode, if he or she has 

privileges to do so? 
7. Consider the following shell script called myscri pt: 

date 
cat /etc/motd 

What is the effect of executing the following command? How are the file descriptors shared? 
myscript > result.log 

8. What is the advantage ofhaving /seek be a separate system call, instead ofpassing the starting 
offset to every read or write? What are the drawbacks? 

9. When would a read return fewer bytes than requested? 
10. What are the benefits of scatter-gather 1/0? What applications are most likely to use it? 
11. What is the difference between advisory and mandatory locks? What kind of applications are 

likely to use byte-range locks? 
12. Suppose a user's current working directory is /usr/mntlkaumu. If the administrator mounts a 

new file system on the /usr/mnt directory, how will it affect this user? Would the user be able 
to continue to see the files in kaumu? What would be the result of a pwd command? What 
other commands would behave unexpectedly? 

13. What are the drawbacks of using a symbolic link instead of a hard link? 
14. Why are hard links not allowed to span file systems? 
15. What problems could arise from incorrect use of hard links to directories? 
16. What should the kernel do when the reference count on a vnode drops to zero? 



8.14 References 259 

17. Discuss the relative merits and drawbacks of hint-based and reference-based directory name 
lookup caches. 

18. [Bark 90] and [John 95] describe two implementations that dynamically allocate and 
deallocate vnodes. Can such a system use a hint-based name lookup cache? 

19. Give an example of an infinite loop caused by symbolic links. How does 1 ookuppn () handle 
this? 

20. Why does the VOP _LOOKUP operation parse only one component at a time? 
21. 4.4BSD allows a process to lock a vnode across multiple vnode operations in a single system 

call. What would happen if the process was killed by a signal while holding the lock? How 
can the kernel handle this situation? 

8.14 References 

[Bach 86] 

[Bark 90] 

[DoD 85] 

Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood 
Cliffs, NJ, 1986. 
Barkley, R.E., and Lee, T.P., "A Dynamic File System Inode Allocation and 
Reallocation Policy," Proceedings of the Winter 1990 USENIX Technical 
Conference, Jan. 1990, pp. 1-9. 
Department of Defense, Trusted Computer System Evaluation Criteria, DOD 
5200.28-STD, Dec. 1985. 

[Elli 90] Ellis, M.A., and Stroustrup, B., The Annotated C++ Reference Manual, Addison
Wesley, Reading, MA, 1990. 

[Fern 88] Fernandez, G., and Allen, L., "Extending the UNIX Protection Model with Access 
Control Lists," Proceedings of the Summer 1988 USENIX Technical Conference, 
Jun. 1988,pp. 119-132. 

[John 95] John, A., "Dynamic Vnodes-Design and Implementation," Proceedings of the 
Winter 1995 USENIXTechnical Conference, Jan. 1995, pp. 11-23. 

[Kare 86] Karels, M.J. and McKusick, M.K., "Toward a Compatible Filesystem Interface," 
Proceedings of the Autumn 1986 European UNIX Users' Group Conference, Oct. 
1986, pp. 481-496. 

[Klei 86] Kleiman, S.R., "Vnodes: An Architecture for Multiple File System Types in Sun 
UNIX," Proceedings ofthe Summer 1986 USENIXTechnical Conference, Jun. 1986, 
pp. 238-247. 

[LoVe 91] LoVerso, S., Paciorek, N., Langerman, A., and Feinberg, G., "The OSF/1 UNIX 
Filesystem (UFS)," Proceedings of the Winter 1991 USENIX Conference, Jan. 1991, 
pp. 207-218. 

[McKu 84] McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S., "A Fast File System for 
UNIX," ACMTransactions on Computer Systems, vol. 2, (Aug. 1984), pp. 181-197. 

[Patt 88] Patterson, D.A., Gibson, G.A., and Katz, R.H., "A Case for Redundant Arrays of 
Inexpensive Disks (RAID)," Proceedings of the 1988 ACM SJGMOD Conference of 
Management of Data, Jun. 1988. 



260 Chapter 8 File System Interface and Framework 

[Rifk 86] Rifkin, A.P., Forbes, M.P., Hamilton, R.L., Sabrio, M., Shah, S., and Yueh, K., "RFS 
Architectural Overview," Proceedings of the Summer 1986 USENIX Technical 
Conference, Jun. 1986,pp.248-259. 

[Rodr 86] Rodriguez, R., Koehler, M., and Hyde, R., "The Generic File System," Proceedings 
ofthe Summer 1986 USENIXTechnical Conference, Jun. 1986, pp. 260-269. 

[Thorn 78] Thompson, K., "UNIX Implementation," The Bell System Technical Journal, Jul.
Aug. 1978, Vol. 57, No.6, Part 2, pp. 1931-1946. 

[UNIX 92] UNIX System Laboratories, Operating System API Reference, UNIX SVR4.2, UNIX 
Press, Prentice-Hall, Englewood Cliffs, NJ, 1992. 



9 

File System 
Implementations 

9.1 Introduction 

The previous chapter described the vnode/vfs interface, which provides a framework for supporting 
multiple file system types and defines the interface between the file system and the rest of the ker
nel. Today's UNIX systems support many different types of file systems. These can be classified as 
local or distributed. Local file systems store and manage their data on devices directly connected to 
the system. Distributed file systems allow a user to access files residing on remote machines. This 
chapter describes many local file systems. Chapter 10 discusses distributed file systems, and Chap
ter 11 describes some newer file systems that provide advanced features such as journaling, volume 
management, and high availability. 

The two local, general-purpose file systems found in most modem UNIX systems are the 
System V file system (s5fs) and the Berkeley Fast File System (FFS). s5fs [Thorn 78] is the original 
UNIX file system. All versions of System V, as well as several commercial UNIX systems, support 
s5fs. FFS, introduced by Berkeley UNIX in release 4.2BSD, provides more performance, robust
ness, and functionality than s5fs.lt gained wide commercial acceptance, culminating in its inclusion 
in SVR4. (SVR4 supports three general-purpose file systems: s5fs, FFS, and VxFS, the Veritas 
journaling file system.) 

When FFS was first introduced, the UNIX file system framework could support only one 
type of file system. This forced vendors to choose between s5fs and FFS. The vnode/vfs interface, 
introduced by Sun Microsystems [Klei 86] allowed multiple file system types to coexist on a single 
machine. The file system implementations also required modifications to integrate with the 

261 



262 Chapter 9 File System Implementations 

vnode/vfs framework. The integrated version of FFS is now known as the UNIX file system (ufs) .1 

[Bach 86] provides a comprehensive discussion of s5fs, and [Leff 89] does so for FFS. This chapter 
summarizes and compares the two implementations, both for completeness and to provide the back
ground for understanding the advanced file systems described in the following chapters. 

In UNIX, the file abstraction includes various I/0 objects, including network connections 
through sockets or STREAMS, interprocess communication mechanisms such as pipes and FIFOs, 
and block and character devices. The vnode/vfs architecture builds on this philosophy by represent
ing both files and file systems as abstractions that present a modular interface to the rest of the ker
nel. This motivated the development of several special-purpose file systems. Many of these have 
little to do with files or I/0 and merely exploit the abstract nature of this interface to provide special 
functionality. This chapter examines some of the interesting implementations. 

Finally, this chapter describes the UNIX block buffer cache. In earlier UNIX versions such 
as SVR3 and 4.3BSD, all file I/0 used this cache. Modern releases such as SVR4 integrate file I/0 
and memory management, accessing files by mapping them into the kernel's address space. Al
though this chapter provides some details about this approach, most of the discussion must be de
ferred to Chapter 14, which describes the SVR4 virtual memory implementation. The traditional 
buffer cache mechanism is still used for metadata blocks. The term metadata refers to the attributes 
and ancillary information about a file or file system. Rather than being part of a specific file system 
implementation, the buffer cache is a global resource shared by all file systems. 

We begin with s5fs, and describe its on-disk layout and kernel organization. Although FFS 
differs from s5fs in many important respects, it also has many similarities, and the basic operations 
are implemented in the same way. Our discussion of FFS will focus on the differences. Except 
where noted, the general algorithms of s5fs, described in Section 9.3, also apply to FFS. 

9.2 The System V File System (s5fs) 

The file system resides on a single logical disk or partition (see Section 8.3.1), and each logical disk 
may hold one file system at the most. Each file system is self-contained, complete with its own root 
directory, subdirectories, files, and all associated data and metadata. The user-visible file tree is 
formed by joining one or more such file systems. 

Figure 9-1 shows the layout of an s5fs disk partition. A partition can be logically viewed as a 
linear array of blocks. The size of a disk block is 512 bytes multiplied by some power of two 
(different releases have used block sizes of 512, 1024, or 2048 bytes). It represents the granularity 
of space allocation for a file, and that of an I/0 operation. The physical block number (or simply, the 
block number) is an index into this array, and uniquely identifies a block on a given disk partition. 
This number must be translated by the disk driver into cylinder, track, and sector numbers. The 
translation depends on the physical characteristics of the disk (number of cylinders and tracks, sec
tors per track, etc.) and the location of the partition on the disk. 

I Initially, the term ufs differed in meaning for different variants. System V -based releases used it to refer to their na
tive file system, which is now known as s5fs. BSD-based systems used the terms ufs and s5fs as we use them in this 
book. The confusion was resolved when SVR4 also adopted this convention. 



9.2 The System V File System (s5fs) 263 

boot area superblock 

l~s~im I data blocks 

Figure 9-1. s5fs on-disk layout. 

At the beginning of the partition is the boot area, which may contain code required to boot
strap (load and initialize) the operating system. Although only one partition needs to contain this 
information, each partition contains a possibly empty boot area. The boot area is followed by the 
superblock, which contains attributes and metadata of the file system itself. 

Following the superblock is the inode list, which is a linear array of inodes. There is one 
inode for each file. Inodes are described in Section 9.2.2. Each inode can be identified by its inode 
number, which equals its index in the inode list. The size of an inode is 64 bytes. Several inodes fit 
into a single disk block. The starting offsets of the superblock and the inode list are the same for all 
partitions on a system. Consequently, an inode number can be easily translated to a block number 
and the offset of the inode from the start of that block. The inode list has a fixed size (configured 
while creating the file system on that partition), which limits the maximum number of files the par
tition can contain. The space after the inode list is the data area. It holds data blocks for files and 
directories, as well as indirect blocks, which hold pointers to file data blocks and are described in 
Section 9.2.2. 

9.2.1 Directories 

An s5fs directory is a special file containing a list of files and subdirectories. It contains fixed-size 
records of 16 bytes each. The first two bytes contain the inode number, and the next fourteen the file 
name. This places a limit of 65535 files per disk partition (since 0 is not a valid inode number) and 
14 characters per file name. If the filename has fewer than fourteen characters, it is terminated by a 
NULL character. Because the directory is a file, it also has an inode, which contains a field identify
ing the file as a directory. The first two entries in the directory are".", which represents the direc
tory itself, and" .. ", which denotes the parent directory. If the inode number of an entry is zero, it 
indicates that the corresponding file no longer exists. The root directory of a partition, as well as its 
" .• " entry, always has an inode number of 2. This is how the file system can identify its root direc
tory. Figure 9-2 shows a typical directory. 

9.2.2 lnodes 
Each file has an inode associated with it. The word inode derives from index node. The inode con
tains administrative information, or metadata, of the file. It is stored on disk within the inode list. 
When a file is open, or a directory is active, the kernel stores the data from the disk copy of the 
inode into an in-memory data structure, also called an inode. This structure has many additional 
fields that are not saved on disk. Whenever it is ambiguous, we use the term on-disk inode to refer 



264 Chapter 9 File System Implementations 

73. 
38 .. 

9 fil el 
0 del etedfi 1 e 

110 subdirectory 1 
65 archana 

Figure 9-2. s5fs directory structure. 

to the on-disk data structure (struct di node) and in-core inode to refer to the in-memory structure 
(struct i node). Table 9-1 describes the fields of the on-disk inode. 

The d i _mode field is subdivided into several bit-fields (Figure 9-3). The first four bits spec
ify the file type, which may be I FREG (regular file), I FDIR (directory), I FBLK (block device), I FCHR 
(character device), etc. The nine low-order bits specify read, write, and execute permissions for the 
owner, members of the owner's group, and others, respectively. 

The di _ addr field requires elaboration. UNIX files are not contiguous on disk. As a file 
grows, the kernel allocates new blocks from any convenient location on the disk. This has the ad
vantage that it is easy to grow and shrink files without the disk fragmentation inherent in contiguous 
allocation schemes. Obviously, fragmentation is not completely eliminated, because the last block 
of each file may contain unused space. On average, each file wastes half a block of space. 

This approach requires the file system to maintain a map of the disk location of every block 
of the file. Such a list is organized as an array of physical block addresses. The logical block number 
within a file forms an index into this array. The size of this array depends on the size of the file. A 
very large file may require several disk blocks to store this array. Most files, however, are quite 
small [Saty 81], and a large array would only waste space. Moreover, storing the disk block array on 
a separate block would incur an extra read when the file is accessed, resulting in poor performance. 

Table 9-1. Fields of struct di node 

Field Size (bytes) Description 

di mode 2 file type, permissions, etc. 
di nlinks 2 number of hard links to file -
di uid 2 ownerUID -
di gid 2 ownerGID -
di size 4 size in bytes -
di addr 39 array of block addresses -
di gen 1 generation number (incremented each time inode is re-

-
used for a new file) 

di a time 4 time of last access -
di mtime 4 time file was last modified 
di ctime 4 time in ode was last changed (except changes to -

di atime or di mtime) 



9.2 The System V File System (s5fs) 265 

suid sgid sticky owner group others 

I type(4b2;J:U}:g 1: ~ 
Figure 9-3. Bit-fields of di _mode. 

The UNIX solution is to store a small list in the inode itself and use extra blocks for large 
files. This is very efficient for small files, yet flexible enough to handle very large files. Figure 9-4 
illustrates this scheme. The 39-byte di _addr field comprises a thirteen-element array, with each 
element storing a 3-byte physical block number. Elements 0 through 9 in this array contain the 
block numbers of blocks 0 through 9 of the file. Thus, for a file containing 10 blocks or fewer, all 
the block addresses are in the inode itself. Element 10 is the block number of an indirect block, that 
is, a block that contains an array of block numbers. Element 11 points to a double-indirect block, 
which contains block numbers of other indirect blocks. Finally, element 12 points to a triple
indirect block, which contains block numbers of double-indirect blocks. 

Such a scheme, for a 1 024-byte block size, allows addressing of 10 blocks directly, 256 
more blocks through the single indirect block, 65536 (256 x 256) more blocks through the double 
indirect block, and 16,777,216 (256 x 256 x 256) more blocks through the triple indirect block. 

UNIX files may contain holes. A user may create a file, seek (set the offset pointer in the 
open file object by calling !seek-see Section 8.2.4) to a large offset, and write data to it. The space 
before this offset contains no data and is a hole in the file. If a process tries to read that part of the 
file, it will see NULL (zero-valued) bytes. 

Such holes can sometimes be large, spanning entire blocks. It is wasteful to allocate disk 
space for such blocks. Instead, the kernel sets the corresponding elements of the di _ addr array, or 

disk 

Figure 9-4. disk block array in s5fs inode. 



266 Chapter 9 File System Implementations 

of the indirect block, to zero. When a user tries to read such a block, the kernel returns a zero-filled 
block. Disk space is allocated only when someone tries to write data to the block. 

Refusing to allocate disk space for holes has some important consequences. A process may 
unexpectedly run out of disk space while trying to write data to the hole. If a file containing a hole is 
copied, the new file will have zero-filled pages on the disk instead of the hole. This happens because 
copying involves reading the file's contents and writing them to the destination file. When the ker
nel reads a hole, it creates zero-filled pages, which are then copied without further interpretation. 
This can cause problems for backup and archiving utilities such as tar or cpio that operate at the 
file level rather than the raw disk level. A system administrator may back up a file system, and dis
cover that the same disk does not have enough room to restore its contents. 

9.2.3 The Superblock 
The superblock contains metadata about the file system itself. There is one superblock for each file 
system, and it resides at the beginning of the file system on disk. The kernel reads the superblock 
when mounting the file system and stores it in memory until the file system is unmounted. The su
perblock contains the following information: 

• Size in blocks of the file system. 
• Size in blocks of the inode list. 
• Number of free blocks and inodes. 
• Free block list. 
• Free inode list. 

Because the file system may have many of free inodes or disk blocks, it is impractical to 
keep either free list completely in the superblock. In the case of inodes, the superblock maintains a 
partial list. When the list becomes empty, the kernel scans the disk to find free in odes 
( d i _mode == 0) to replenish the list. 

This approach is not possible for the free block list, since there is no way to determine if a 
block is free by examining its contents. Hence, at all times, the file system must maintain a com
plete list of all free blocks in the disk. As shown in Figure 9-5, this list spans several disk blocks. 

Figure 9-5. free block list in s5fs. 



9.3 S5fs Kernel Organization 267 

The superblock contains the first part of the list and adds and removes blocks from its tail. The first 
element in this list points to the block containing the next part of the list, and so forth. 

At some point, the block allocation routine discovers that the free block list in the super
block contains only a single element. The value stored in that element is the number of the block 
containing the next part of the free list (block a in Figure 9-5). It copies the list from that block into 
the superblock, and that block now becomes free. This has the advantage that the space required to 
store the free block list depends directly on the amount of free space on the partition. For a nearly 
full disk, no space needs to be wasted to store the free block list. 

9.3 S5fs Kernel Organization 

The inode is the fundamental file-system-dependent object of s5fs. It is the private data structure 
associated with an s5fs vnode. As mentioned earlier, in-core inodes are different from on-disk 
inodes. This section discusses in-core inodes, and how s5fs manipulates them to implement various 
file system operations. 

9.3.1 In-Core lnodes 

The struct inode represents an in-core inode. It contains all the fields of the on-disk inode, and 
some additional fields, such as: 

• The vnode-the i vnode field of the inode contains the vnode of the file. 
• Device ID of the partition containing the file. 
• !node number of the file. 
• Flags for synchronization and cache management. 
• Pointers to keep the inode on a free list. 
• Pointers to keep the inode on a hash queue. The kernel hashes inodes by their inode num

bers, so as to locate them quickly when needed. 
• Block number of last block read. 

Figure 9-6 uses a simple example with four hash queues to show how inodes are organized by s5fs. 
The disk block array is handled differently. While the di _ addr [] array in the on-disk inode 

used three bytes for each block number, the in-core inode uses four-byte elements. This is a trade
off between space and performance. Space saving is more critical for the on-disk inode; perform
ance is more important for the in-core inode. 

9.3.2 lnode Lookup 

The l ookuppn () function in the file-system-independent layer performs pathname parsing. As de
scribed in Section 8.10.1, it parses one component at a time, invoking the VOP_LOOKUP operation. 
When searching an s5fs directory, this translates to a call to the s5l ookup () function. s5l ookup () 
first checks the directory name lookup cache (see Section 8.10.2). In case of a cache miss, it reads 
the directory one block at a time, searching the entries for the specified file name. 



268 

hash 
queue 0 

hash 
queue 1 

hash 
queue2 

hash 
queue3 

Chapter 9 File System Implementations 

inode free list 

Figure 9-6. Organization of in-core inodes. 

If the directory contains a valid entry for the file, s 51 oo ku p () obtains the in ode number 
from the entry. It then calls i get() to locate that inode. i get() hashes on the inode number and 
searches the appropriate hash queue for the inode. If the inode is not in the table, i get () allocates 
an inode (this is described in Section 9.3.4), and initializes it by reading in the on-disk inode. While 
copying the on-disk inode fields to the in-core inode, it expands the di_addr[] elements to four 
bytes each. It then puts the inode on the appropriate hash queue. It also initializes the vnode, setting 
its v_op field to point to the s5vnodeops vector, v_data to point to the inode itself, and v_vfsp to 
point to the vfs to which the file belongs. Finally, it returns a pointer to the inode to s51 ookup (). 
s51 ookup (),in turn, returns a pointer to the vnode to 1 ookuppn (). 

Note that i get () is the only function in s5fs that allocates and initializes inodes and vnodes. 
For instance, when creating a new file, s5create() allocates an unused inode number (from the 
free inode list in the superblock) and calls i get() to bring that inode into memory. 

9.3.3 File 1/0 

The read and write system calls both accept a file descriptor (the index returned by open), a user 
buffer address that is the destination (for read) or source (for write) of the data, and a count specify
ing the number of bytes to be transferred. The offset in the file is obtained from the open file object 
associated with the descriptor. At the end of the I/0 operation, this offset is advanced by the number 
of bytes transferred, which means the next read or write will begin where the previous one com
pleted. For random I/0, the user must first call/seek to set the file offset to the desired location. 

The file-system-independent code (see Section 8.6) uses the descriptor as an index into the 
descriptor table to obtain the pointer to the open file object (struct file) and verifies that the file 



9.3 S5fs Kernel Organization 269 

is opened in the correct mode. If it is, the kernel obtains the vnode pointer from the f i 1 e structure. 
Before starting 1/0, the kernel invokes VOP _ RWLOCK operation to serialize access to the file. s5fs 
implements this by acquiring an exclusive lock on the inode.2 This ensures that all data read or 
written in a single system call is consistent and all write calls to the file are single-threaded. The 
kernel then invokes the vnode's VOP _READ or VOP _WRITE operation. This results in a call to 
s5read () or s5write (),respectively. 

In earlier implementations, the file 1/0 routines used the block buffer cache, an area of 
memory reserved for file system blocks. SVR4 unifies file 1/0 with virtual memory and uses the 
buffer cache only for metadata blocks. Section 9.12 describes the old buffer cache. This section 
summarizes the SVR4 operations. They are further detailed in the discussion of virtual memory in 
Section 14.8. 

Let us use the read operation as an example. s5read () translates the starting offset for the 
1/0 operation to the logical block number in the file and the offset from the beginning of the block. 
It then reads the data one page3 at a time, by mapping the block into the kernel virtual address space 
and calling uiomove() to copy the data into user space. uiomove() calls the copyout() routine to 
perform the actual data transfer. If the page is not in physical memory, or if the kernel does not have 
a valid address translation for it, copyout () will generate a page fault. The fault handler will iden
tify the file to which the page belongs and invoke the VOP _ GETPAGE operation on its vnode. 

In s5fs, this operation is implemented by s5getpage (), which first calls a function called 
bmap () to convert the logical block number to a physical block number on the disk. It then searches 
the vnode's page list (pointed to by v _page) to see if the page is already in memory. If it is not, 
s5getpage () allocates a free page and calls the disk driver to read the data from disk. 

The calling process sleeps until the 1/0 completes. When the block is read, the disk driver 
wakes up the process, which resumes the data copy in copyout (). Before copying the data to user 
space, copyout () verifies that the user has write access to the buffer into which it must copy the 
data. Otherwise, the user may inadvertently or maliciously specify a bad address, causing many 
problems. For instance, if the user specifies a kernel address, the kernel will overwrite its own text 
or data structures. 

s5read () returns when all data has been read or an error has occurred. The system
independent code unlocks the vnode (using VOP _ RWUNLOCK), advances the offset pointer in the fi 1 e 
structure by the number of bytes read, and returns to the user. The return value of read is the total 
number of bytes read. This usually equals the number requested, unless the end of file is reached or 
some other error occurs. 

The write system call proceeds similarly, with a few differences. The modified blocks are 
not written immediately to disk, but remain in memory, to be written out later according to the 
cache heuristics. Besides, the write may increase the file size and may require the allocation of data 
blocks, and perhaps indirect blocks, for disk addresses. Finally, if only part of a block is being writ
ten, the kernel must first read the entire block from disk, modify the relevant part, and then write it 
back to the disk. 

2 Many UNIX variants use a single-writer, multiple-readers lock, which allows better concurrency. 
3 A page is a memory abstraction. It may contain one block, many blocks, or part of a block. 



270 Chapter 9 File System Implementations 

9.3.4 Allocating and Reclaiming lnodes 

An inode remains active as long as its vnode has a non-zero reference count. When the count drops 
to zero, the file-system-independent code invokes the VOP _INACTIVE operation, which frees the 
inode. In SVR2, free inodes are marked invalid, so they have to be read back from disk if needed. 
This is inefficient, and hence newer UNIX systems cache the inodes for as long as possible. When 
an in ode becomes inactive, the kernel puts it on the free list, but does not invalidate it. The i get () 
function can find the inode if needed, because it remains on the correct hash queue until it is reused. 

Each file system has a fixed-size inode table that limits the number of active inodes in the 
kernel. In SVR3, the inode caching mechanism simply uses a least recently used replacement algo
rithm. The kernel releases inodes to the back of this list and allocates them from the front of the list. 
Although this is a common cache heuristic, it is suboptimal for the inode cache. This is because 
certain inactive inodes are likely to be more useful than others. 

When a file is actively used, its inode is pinned (see the following note) in the table. As the 
file is accessed, its pages are cached in memory. When the file becomes inactive, some of its pages 
may still be in memory. These pages can be located through the vnode's page list, accessed through 
its v _page field. The paging system also hashes them based on the vnode pointer and the offset of 
the page in the file. If the kernel reuses the inode (and vnode), these pages lose their identity. If a 
process needs the page, the kernel must read it back from disk, even though the page is still in 
memory. 

Note: An object is said to be pinned in memory if it is ineligible for 
freeing or deletion. Reference-counted objects are pinned until the 
last reference is released. As another example, a process can pin part 
of its address space in memory using the mlock system call. 

It is therefore better to reuse those inodes that have no pages cached in memory. When the 
vnode reference count reaches zero, the kernel invokes its VOP _INACTIVE operation to release the 
vnode and its private data object (in this case, the inode). When releasing the inode, the kernel 
checks the vnode's page list. It releases the inode to the front of the free list if the page list is empty 
and to the back of the free list if any pages of the file are still in memory. In time, if the inode re
mains inactive, the paging system frees its pages. 

[Bark 90] describes a new inode allocation and reclaim policy, which allows the number of 
in-core in odes to adjust to the load on the system. Instead of using a fixed-size inode table, the file 
systems allocate inodes dynamically using the kernel memory allocator. This allows the number of 
inodes in the system to rise and fall as needed. The system administrator no longer needs to guess 
the appropriate number of inodes to pre-configure into the system. 

When i get () cannot locate an inode on its hash queue, it removes the first inode from the 
free list. If this inode still has pages in memory, i get() returns it to the back of the free list and 
calls the kernel memory allocator to allocate a new i node structure. It is possible to generalize the 
algorithm to scan the free list for an inode with no in-memory pages, but the implementation de
scribed here is simple and efficient. Its only drawback is that it may allocate a few more inodes in 
memory than are absolutely necessary. 



9.4 Analysis of s5fs 271 

Experiments using a multiuser, time-sharing workload benchmark [Gaed 82] show that the 
new algorithm reduces system time (amount of CPU time spent in kernel mode) usage by 12% to 
16%. Although initially implemented for s5fs, the optimization is general enough to be applied to 
other file systems such as FFS. 

9.4 Analysis of s5fs 

s5fs is distinguished by its simple design. This very simplicity, however, creates problems in the 
areas of reliability, performance, and functionality. In this section we examine some of these prob
lems, which have motivated the design of the BSD fast file system. 

The major reliability concern is the superblock. The superblock contains vital information 
about the entire file system, such as the free block list and the size of the free inode list. Each file 
system contains a single copy of its superblock. If that copy is corrupted, the entire file system be
comes unusable. 

Performance suffers for several reasons. s5js groups all inodes together at the beginning of 
the file system, and the remaining disk space contains the file data blocks. Accessing a file requires 
reading the inode and then the file data, so this segregation causes a long seek on the disk between 
the two operations and hence increases 110 times. !nodes are allocated randomly, with no attempt to 
group related inodes such as those of files in the same directory. Hence an operation that accesses 
all files in a directory (ls -1, for example) also causes a random disk access pattern. 

Disk block allocation is also suboptimal. When the file system is first created (by a program 
called mlifs), s5fs configures the free block list optimally so that blocks are allocated in a rotation
ally consecutive order. However, as files are created and deleted, blocks are returned to the list in 
random order. After the file system has been used for a while, the order of blocks in the list becomes 
completely random. This slows down sequential access operations on files, because logically con
secutive blocks may be very far apart on the disk. 

Disk block size is another concern that affects performance. SVR2 used a block size of 512 
bytes, and SVR3 raised it to I 024 bytes. Increasing the block size allows more data to be read in a 
single disk access, thus improving performance. At the same time, it wastes more disk space, since, 
on average, each file wastes half a block. This indicates the need for a more flexible approach to al
locating space to files. 

Finally, there are some major functionality limitations. Restricting of file names to 14 char
acters may not have mattered much in the pioneer days of UNIX, but for a powerful, commercially 
viable operating system, such a restriction is unacceptable. Several applications automatically gen
erate file names, often by adding further extensions to existing file names, and they struggle to do 
this efficiently within 14 characters. The limit of 65535 inodes per file system is also too restrictive. 

These concerns led to the development of a new file system in Berkeley UNIX. Known as 
the Fast File System (FFS), it was first released in 4.2BSD.4 The following sections describe its im
portant features. 

4 FFS first appeared in 4.1 bBSD, which was a test release internal to Berkeley. It was also part of 4.1 cBSD, another 
test release that was sent to about I 00 sites [Salu 94]. 



272 Chapter 9 File System Implementations 

9.5 The Berkeley Fast File System 

The Fast File System [McKu 84] addresses many limitations of s5fs. The following sections de
scribe its design and show how it improves reliability, performance, and functionality. FFS provides 
all the functionality of s5fs, and most of the system call handling algorithms and the kernel data 
structures remain unchanged. The major differences lie in the disk layout, on-disk structures, and 
free block allocation methods. FFS also provides new system calls to support these added features. 

9.6 Hard Disk Structure 

To understand the factors that influence the disk performance, it is important to examine the way 
data is laid out on a disk. Figure 9-7 shows the format of a typical hard disk manufactured in the 
early- and mid-l980s. This disk is composed of several platters, each associated with a disk head.s 
Each platter contains several tracks that form concentric circles; the outermost track is track 0, and 
so forth. Each track is further divided into sectors, and the sectors are also numbered sequentially. 
The sector size, typically 512 bytes, defines the granularity of a disk 1/0 operation. The term cylin
der refers to the set of tracks, one per platter, at the same distance from the disk axis. Thus, cylinder 
zero comprises track zero of each platter, and so forth. On many disks, all disk heads move together. 
Hence at any given time, all the heads are on the same track number and same sector number of 
each platter. 

sector 0 

I 
-platters 

_j 
Figure 9-7. Conceptual view of a hard disk. 

5 Actually, both sides of the platter are used, and there is a separate disk head for each side. 



9.7 On-Disk Organization 273 

UNIX views the disk as a linear array of blocks. The number of sectors in a block is a small 
power of two; for this section, let us assume there is exactly one sector per block. When a UNIX 
process wants to read a particular block number, the device driver translates that into a logical sector 
number, and from it, computes the physical track, head, and sector number. In this scheme, the sec
tor numbers increase first, then the head number, and finally the cylinder (track) number. Each cyl
inder thus contains a sequential set of block numbers. After computing the location of the desired 
block, the driver must move the disk heads to the appropriate cylinder. This head seek is the most 
time-consuming component of the disk 1/0 operation, and the seek latency depends directly on how 
far the heads must move. Once the heads move into position, we must wait while the disk spins until 
the correct sector passes under the heads. This delay is called the rotational latency. Once the cor
rect sector is under the disk head, the transfer may begin. The actual transfer time is usually just the 
time for one sector to move across the head. Optimizing 1/0 bandwidth thus requires minimizing the 
number and size of the head seeks, and reducing rotational latency by proper placement of the 
blocks on the disk. 

9. 7 On-Disk Organization 

A disk partition comprises of a set of consecutive cylinders on the disk, and a formatted partition 
holds a self-contained file system. FFS further divides the partition into one or more cylinder 
groups, each containing a small set of consecutive cylinders. This allows UNIX to store related data 
in the same cylinder group, thus minimizing disk head movements. Section 9.7.2 discusses this in 
greater detail. 

The information in the traditional superblock is divided into two structures. The FFS super
block contains information about the entire file system-the number, sizes and locations of cylinder 
groups, block size, total number of blocks and inodes, and so forth. The data in the superblock does 
not change unless the file system is rebuilt. Furthermore, each cylinder group has a data structure 
describing summary information about that group, including the free inode and free block lists. The 
superblock is kept at the beginning of the partition (after the boot block area), but that is not enough. 
The data in the superblock is critical, and must be protected from disk errors. Each cylinder group 
therefore contains a duplicate copy of the superblock. FFS maintains these duplicates at different 
offsets in each cylinder group in such a way that no single track, cylinder, or platter contains all 
copies of the superblock. The space between the beginning of the cylinder group and the superblock 
copy is used for data blocks, except for the first cylinder group. 

9. 7.1 Blocks and Fragments 
As discussed earlier, larger block sizes improve performance by allowing more data to be trans
ferred in a single 1/0 operation, but waste more space (on average, each file wastes half a block). 
FFS tries to have the best of both worlds by dividing the blocks into fragments. In FFS, although all 
blocks in a single file system must be of same size, different file systems on the same machine may 
have different block sizes. The block size is a power of two greater than or equal to a minimum of 
4096. Most implementations add an upper limit of 8192 bytes. This is much larger than the 512- or 
1024-byte blocks in s5ft and, in addition to increased throughput, allows files as large as 232 bytes 



274 Chapter 9 File System Implementations 

( 4 gigabytes) to be addressed with only two levels of indirection. FFS does not use the triple indirect 
block, although some variants use it to support file sizes greater than 4 gigabytes. 

Typical UNIX systems have numerous small files that need to be stored efficiently 
[Saty 81]. The 4K block size wastes too much space for such files. FFS solves this problem by al
lowing each block to be divided into one or more fragments. The fragment size is also fixed for each 
file system and is set when the file system is created. The number of fragments per block may be set 
to 1, 2, 4, or 8, allowing a lower bound of 512 bytes, the same as the disk sector size. Each fragment 
is individually addressable and allocable. This requires replacing the free block list with a bitmap 
that tracks each fragment. 

An FFS file is composed entirely of complete disk blocks, except for the last block, which 
may contain one or more consecutive fragments. The file block must be completely contained 
within a single disk block. Even if two adjacent disk blocks have enough consecutive free fragments 
to hold a file block, they may not be combined. Furthermore, if the last block of a file contains more 
than one fragment, these fragments must be contiguous and part of the same block. 

This scheme reduces space wastage, but requires occasional recopying of file data. Consider 
a file whose last block occupies a single fragment. The remaining fragments in that block may be 
allocated to other files. If that file grows by one more fragment, we need to find another block with 
two consecutive free fragments. The first fragment must be copied from the original position, and 
the second fragment filled with the new data. If the file usually grows in small increments, its frag
ments may have to be copied several times, thus impacting performance. FFS controls this by allow
ing only direct blocks to contain fragments. 

Hence for best performance, applications should write a full block at a time to the files 
whenever possible. Different file systems on the same machine may have different block sizes. 
Applications can use the stat system call to obtain the attributes of a file in a file-system
independent format. One attribute returned by stat is a hint as to the best unit size for I/0 operations, 
which, in the case ofFFS, is the block size. This information is used by the Standard I/0 library, as 
well as other applications that manage their own I/0. 

9.7.2 Allocation Policies 

In s5fs the superblock contains one list of free blocks and another of free inodes; elements are sim
ply added to or removed from the end of the list. The only time any order is imposed on these lists is 
while creating the file system-the free block list is created in a rotationally optimal order, and the 
free inode list is sequential. After some amount of use, the lists become effectively random, and 
there is no control over where a block or inode is allocated on the disk. 

In contrast, FFS aims to colocate related information on the disk and optimize sequential ac
cess. It provides a greater degree of control on the allocation of disk blocks and inodes, as well as 
directories,. These allocation policies use the cylinder group concept, and require the file system to 
know various parameters associated with the disk. The following rules summarize these policies: 

• Attempt to place the inodes of all files of a single directory in the same cylinder group. 
Many commands (Is -! being the best example) access all inodes of a directory in rapid 
succession. Users also tend to exhibit locality of access, working on many files in the 
same directory (their current working directory) before moving to another. 



9.8 FFS Functionality Enhancements 

• Create each new directory in a different cylinder group from its parent, so as to distribute 
data uniformly over the disk. The allocation routine chooses the new cylinder group from 
groups with an above-average free inode count; from these, it selects the one with the few
est directories. 

• Try to place the data blocks of the file in the same cylinder group as the inode, because 
typically the inode and data will be accessed together. 

• To avoid filling an entire cylinder group with one large file, change the cylinder group 
when the file size reaches 48 kilobytes and again at every megabyte. The 48-kilobyte mark 
was chosen because, for a 4096-byte block size, the inode's direct block entries describe 
the first 48 kilobytes. 6 The selection of the new cylinder group is based on its free block 
count. 

• Allocate sequential blocks of a file at rotationally optimal positions, if possible. When a 
file is being read sequentially, there is a time lag between when a block read completes 
and when the kernel processes the I/0 completion and initiates the next read. Because the 
disk is spinning during this time, one or more sectors may have passed under the disk 
head. Rotational optimization tries to determine the number of sectors to skip so that the 
desired sector is under the disk head when the read is initiated. This number is called the 
rotdelay factor, or the disk's interleave. 

275 

The implementation must balance the localization efforts with the need to distribute the data 
throughout the disk. Too much localization causes all data to be crammed into the same cylinder 
group; in the extreme case, we have a single large cylinder group, as in s5fs. The rules that begin 
subdirectories in different groups and that break large files prevent such a scenario. 

This implementation is highly effective when the disk has plenty of free space, but deterio
rates rapidly once the disk is about 90% full. When there are very few free blocks, it becomes diffi
cult to find free blocks in optimal locations. Thus the file system maintains a free space reserve pa
rameter, usually set at 10%. Only the superuser can allocate space from this reserve. 

9.8 FFS Functionality Enhancements 

Because FFS has a different on-disk organization than s5fs, migrating to FFS requires dumping and 
restoring all disks. Since the two file systems are fundamentally incompatible, the designers of FFS 
introduced other functional changes that were not compatible with s5fs. 

Long file names 

FFS changed the directory structure to allow file names to be greater than 14 characters. FFS direc
tory entries, shown in Figure 9-8, vary in length. The fixed part of the entry consists of the inode 
number, the allocation size, and the size of the filename in the entry. This is followed by a null
terminated filename, padded to a 4-byte boundary. The maximum size of the filename is currently 
255 characters. When deleting a filename, FFS merges the released space with the previous entry 
(Figure 9-8b ). Hence the allocation size field records the total space consumed by the variable part 

6 The number of direct blocks in the disk address array was increased from I 0 to 12 in FFS. 



276 Chapter 9 File System Implementations 

7 inode number 7 
4 allocation size r--- 24 
2 name length 2 

I f 1 111 0 0 name plus extra space I f1 111 0 0 

14 
8 

L_... 
5 padding 

I fl IiI 1]1 lei 
121 0 0 0 

(a) Initial state (b) After deleting file2 

Figure 9-8. FFS directory. 

of the entry. The directory itself is allocated in 512-byte chunks, and no entry may span multiple 
chunks. Finally, to facilitate writing of portable code, the standard library adds a set of directory ac
cess routines that allow file-system-independent access to directory information (see Section 8.2.1). 

Symbolic links 

Symbolic links (see Section 8.4.1) address many limitations of hard links. A symbolic link is a file 
that points to another file, called the target of the link. The type field in the inode identifies the file 
as a symbolic link, and the file data is simply the pathname of the target file. The pathname may be 
absolute or relative. The pathname traversal routine recognizes and interprets symbolic links. If the 
name is relative, it is interpreted relative to the directory containing the link. Although symbolic 
link handling is transparent to most programs, some utilities need to detect and handle symbolic 
links. They can use the /stat system call, which does not translate the final symbolic link in the 
pathname, and the read/ink call, which returns the contents (target) of the link. Symbolic links are 
created by the symlink system call. 

Other enhancements 

4.2BSD added a rename system call to allow atomic renames of files and directories, which previ
ously required a link followed by an unlink. It added a quota mechanism to limit the file system re
sources available to any user. Quotas apply to both inodes and disk blocks and have a soft limit that 
triggers a warning, along with a hard limit that the kernel enforces. 

Some of these features have been subsequently incorporated into s5fs. In SVR41 s5fs allows 
symbolic links and supports atomic renaming. It does not, however, support long filenames or disk 
quotas. 

9.9 Analysis 

The performance gains of FFS are substantial. Measurements on a V AX/750 with a UNIBUS 
adapter [Krid 83] show that read throughput increases from 29 kilobytes/sec in s5fs (with !-kilobyte 



9.9 Analysis 277 

blocks) to 221 kilobytes/sec in FFS (4-kilobyte blocks, 1-kilobyte fragments), and CPU utilization 
increases from 11% to 43%. With the same configurations, write throughput increased from 48 to 
142 kilobytes/sec, and CPU utilization from 29% to 43%. 

It is also important to examine disk space wastage. The average wastage in the data blocks is 
half a block per file in s5fs, and half a fragment per file in FFS. If the fragment size in FFS equals 
the block size in s5fs, this factor will even out. The advantage of having large blocks is that less 
space is required to map all the blocks of a large file. Thus the file system requires few indirect 
blocks. In contrast, more space is required to monitor the free blocks and fragments. These two 
factors also tend to cancel out, and the net result of disk utilization is about the same when the new 
fragment size equals the old block size. 

The free space reserve, however, must be counted as wasted space, because it is not avail
able to user files. When this is factored in, the percentage of waste in an s5fs with 1K blocks ap
proximately equals that in an FFS with 4K blocks, 512-byte fragments, and the free space reserve 
set at 5%. 

The disk layout described in Figure 9-7 is obsolete for many newer disks. Modem SCSI 
(Small Computer Systems Interface) disks [ANSI 92] do not have fixed-size cylinders. They take 
advantage of the fact that outer tracks can hold more data than inner ones and divide the disk into 
several zones. Within each zone, each track has the same number of sectors. 

FFS is oblivious to this, and hence users are forced to use completely fictional cylinder 
sizes. To support the FFS notion of equal-sized tracks, vendors usually take the total number of 512-
byte sectors on the disk and factor it into a number of tracks and sectors per track. This factoring is 
performed in a convenient way that does not particularly resemble the physical characteristics of the 
drive. As a result, the careful rotational placement optimizations of FFS accomplish very little, and 
may hurt performance in many cases. Grouping the cylinders is still useful, because blocks on 
nearby cylinders, as seen by FFS, are still located on nearby tracks on the disks. 

Overall, FFS provides great benefits, which are responsible for its wide acceptance. System 
V UNIX also added FFS as a supported file system type in SVR4. Moreover, SVR4 incorporated 
many features of FFS into s5fs. Hence, in SVR4, s5fs also supports symbolic links, shared and ex
clusive file locking, and the rename system call. 

Although FFS is a substantial improvement over s5fs, it is far from being the last word in 
file systems. There are several ways to improve performance further. One way is by chaining kernel 
buffers together, so that several buffers can be read or written in a single disk operation. This would 
require modifying all disk drivers. Another possibility is to pre-allocate several blocks to rapidly 
growing files, releasing the unused ones when closing the file. Other important approaches, includ
ing log-structured and extent-based file systems, are described in Chapter 11. 

FFS itself has had several enhancements since it was first introduced. 4.3BSD added two 
types of caching to speed up name lookups [McKu 85]. First, it uses a hint-based directory name 
lookup cache. This cache shows a hit rate of about 70% of all name translations. When FFS was 
ported to SVR4, the implementors moved this cache out of the file-system-dependent code and 
made it a global resource available to all file systems. They also changed its implementation so that 
it held references (instead of hints) to the cached files. Section 8.1 0.2 discusses the directory name 
lookup cache in greater detail. 



278 Chapter 9 File System Implementations 

Second, each process caches the directory offset of the last component of the most recently 
translated pathname. If the next translation is for a file in the same directory, the search begins at 
this point instead of at the top of the directory. This is helpful in cases where a process is scanning a 
directory sequentially, which accounts for about 10-15% of name lookups. The SVR4 implementa
tion moved this cached offset into the in-core inode. This allows FFS to cache an offset for each di
rectory, instead of one directory per process. On the other hand, if multiple processes are concur
rently using the same directory, its cached offset is unlikely to be useful. 

9.10 Temporary File Systems 

Many utilities and applications, notably compilers and window managers, extensively use tempo
rary files to store results of intermediate phases of execution. Such files are deleted when the appli
cation exits. This means they are short-lived and need not be persistent (need not survive a system 
crash). The kernel uses the block buffer cache to defer data writes, and the temporary files are usu
ally deleted before the data needs to be flushed to disk. As a result, I/0 to such files is fast and does 
not involve disk activity. However, the creation and deletion of temporary files remain slow, be
cause these tasks involve multiple synchronous disk accesses to update directory and metadata 
blocks. The synchronous updates are really unnecessary for temporary files, because they are not 
meant to be persistent. It is therefore desirable to have a special file system that allows high speed 
creation and access of transient files. 

This problem has long been addressed by using RAM disks, which provide file systems that 
reside entirely in physical memory. RAM disks are implemented by a device driver that emulates a 
disk, except that the data is stored in physical memory itself and can be accessed in a fraction of the 
time needed for disk access. This does not require creation of a special file system type. Once a 
RAM disk is installed (by allocating a contiguous range of physical memory), a local file system 
such as s5fs or FFS can be built in it using conventional tools like newfs. The difference between a 
RAM disk and an ordinary disk is visible only at the device driver level. 

The main disadvantage of this approach is that dedicating a large amount of memory to ex
elusively support a RAM disk was a poor use of system resources. The amount of memory actively 
needed to support temporary files varies continually as system usage patterns change. Furthermore, 
because RAM disk memory is maintained separately from kernel memory, the metadata updates 
require additional memory-to-memory copies. Clearly, it is desirable to have a special file system 
implementation that efficiently uses memory to support temporary files. The following subsections 
describe two such implementations. 

9.10.1 The Memory File System 

The Memory File System (mfs) was developed at the University of California at Berkeley 
[McKu 90]. The entire file system is built in the virtual address space of the process that handled the 
mount operation. This process does not return from the mount call, but remains in the kernel, wait
ing for I/0 requests to the file system. Each mfsnode, which is the file-system-dependent part of the 
vnode, contains the PID of the mount process, which now functions as an I/0 server. To perform 
I/0, the calling process places a request on a queue that is maintained in the mfsdata structure (per-



9.10 Temporary File Systems 279 

file-system private data), wakes up the mount process, and sleeps while the request is serviced. The 
mount process satisfies the request by copying the data from or to the appropriate portion of its ad
dress space, and awakens the caller. 

Since the file system is in the virtual memory of the mount process, it can be paged out like 
any other data, by the standard memory management mechanisms. The pages of the mfs files com
pete with all the other processes for physical memory. Pages that are not actively referenced are 
written to the swap area, and must be faulted in if needed later. This allows the system to support a 
temporary file system that may be much larger than the physical memory. 

Although this file system is substantially faster than an on-disk system, it has several draw
backs, largely due to the limitations of the BSD memory architecture. Using a separate process to 
handle all 110 requires two context switches for each operation. The file system still resides in a 
separate (albeit virtual) address space, which means we still need extra in-memory copy operations. 
The format of the file system is the same as that of FFS, even though concepts such as cylinder 
groups are meaningless for a memory-based system. 

9.1 0.2 The tmpfs File System 

The tmpfs file system, developed by Sun Microsystems [Snyd 90], combined the powerful facilities 
of the vnode/vfs interface and the new VM (virtual memory) architecture [Ging 87] to provide an 
efficient mechanism for temporary files. The VM facilities mentioned here are described in detail in 
Chapter 14. 

tmpfs is implemented entirely in the kernel, without requiring a separate server process. All 
file metadata is stored in non-paged memory, dynamically allocated from the kernel heap. The data 
blocks are in paged memory and are represented using the anonymous page facility in the VM sub
system. Each such page is mapped by an anonymous object (struct anon), which contains the lo
cation of the page in physical memory or on the swap device. The tmpnode, which is the file
system-dependent object for each file, has a pointer to the anonymous map ( s t ruct anon_ map) for 
the file. This map is an array of pointers to the anonymous object for each page of the file. The link
ages are shown in Figure 9-9. Because the pages themselves are in paged memory, they can be 
swapped out by the paging subsystem and compete for physical memory with other processes, just 
as in mfs. 

These anonymous objects and maps are also used by the VM subsystem to describe pages of 
a process's address space. This allows a process to directly map a tmpfs file into its address space, 
using the mmap system call interface. Such a mapping is implemented by sharing the anon_ map of 
the file with that process. The process can thus directly access the pages of that file without copying 
them into its address space. 

The tmpfs implementation addresses several shortcomings of the mfs approach. It does not 
use a separate I/0 server and thus avoids wasteful context switches. Holding the meta-data in un
paged kernel memory eliminates the memory-to-memory copies and some disk 1/0. The support for 
memory mapping allows fast, direct access to file data. 

A third approach to temporary file systems is explored in [Ohta 90]. It provides an additional 
delay option to the mount system call, which sets a corresponding flag in the private vfs _data ob
ject for ufs. Many ufs routines that normally update the disk synchronously (typically while updat-



280 

struct 
vnode 

struct 
tmpnode 

Chapter 9 File System Implementations 

page in 
memory 

Figure 9-9. Locating tmpfs pages. 

ing metadata) are modified to first check this flag. If the flag is set, these routines defer the write by 
simply marking the buffer as dirty. This approach has several advantages. It does not use a separate 
RAM disk, and hence avoids the overhead in space and time to maintain two in-memory copies of 
the blocks. Its performance measurements are impressive. The main drawback is that it requires 
changes to several ufs routines, so it cannot be added easily to an existing kernel without access to 
the ufs source code. On a system that supports multiple file system types, each implementation 
would have to be modified to use the delay mount option. 

9.11 Special-Purpose File Systems 

The initial application of the vnode/vfs interface was to allow local file systems such as s5fs and 
FFS, and remote file systems such as RFS and NFS (see Chapter 10) to coexist in one system. 
Shortly after this interface became accepted, several special-purpose file systems were developed 
that took advantage of its power and versatility. Some of these have become part of the standard 
SVR4 release, while others are provided as vendor-added components. The following sections de
scribe some of the more interesting file systems. 

9.11.1 The Specfs File System 

The specfs file system provides a uniform interface to device files. It is invisible to users and cannot 
be mounted. It exports a common interface that may be used by any file system that supports special 
files. The primary purpose of specfs is to intercept I/0 calls to device files and translate them to 
calls to the appropriate device driver routines. On the surface, this is a straightforward task-the 
v _type field of the vnode identifies the file as a device file, and the v _rdev field provides the major 
and minor device numbers. The file-system-independent code should be able to call the device 
driver directly using the block and character device switches. 



9.11 Special-Purpose File Systems 281 

We run into problems, however, when multiple device files refer to the same underlying 
device. When different users access a device using different file names, the kernel must synchronize 
access to the device. For block devices, it must also ensure consistency of copies of its blocks in the 
buffer cache. Clearly, the kernel needs to be aware of which different vnodes actually represent the 
same device. 

The specfs layer creates a shadow vnode for each device file. Its file-system-dependent data 
structure is called an snode. Lookup operations to the device file return a pointer to the shadow 
vnode instead of the real vnode. The real vnode can be obtained, if necessary, by the vop _rea 1 vp 
operation. The snode has a field called s _ commonvp, which points to a common vnode (associated 
with another snode) for that device. There is only one common vnode for each device (identified by 
the device number and type), and multiple snodes may point to it. All operations that require syn
chronization, as well as block device reads and writes, are routed through this common vnode. Sec
tion 16.4 describes the implementation in greater detail. 

9.11.2 The /proc File System 

The /proc file system [Faul 91] provides an elegant and powerful interface to the address space of 
any process. It was initially designed as a facility to support debugging, intended to replace ptrace, 
but it has evolved into a general interface to the process model. It allows a user to read and modify 
the address space of another process and to perform several control operations on it, using the stan
dard file system interface and system calls. Consequently, access control is arbitrated through the 
familiar read-write-execute permissions. By default, /proc files may be read or written only by their 
owner. 

In the early implementations, each process was represented by a file in the /proc directory. 
The name of the file was the decimal value of the process ID, and its size equaled the size of the 
process's user address space. Any address in a process was accessed by opening the corresponding 
/proc file and using the /seek, read, and write system calls. A set of ioctl commands to this file al
lowed various control operations on the process. 

The implementation of /proc has changed considerably since its introduction, and this sec
tion describes the SVR4.2 interface. In SVR4.2, each process is represented by a directory under 
/proc, and the directory name is the decimal representation of the process ID. Each directory con
tains the following files and subdirectories: 

status 

psinfo 

ctl 

This read-only file contains information about the process state. Its format 
is defined by struct pstatus, which includes the process ID, process 
group and session IDs, sizes and locations of the stack and heap, and other 
information. 
This read-only file contains information needed by the ps(l) command. Its 
format is defined by struct psinfo, which includes some ofthe fields of 
the status file, and other information such as the image size and the device 
ID of the controlling terminal. 
This write-only file allows users to perform control operations on the tar
get process by writing formatted messages to this file. Some control op
erations are described later in this section. 



282 

map 

as 

sigact 

cred 

object 

lwp 

Chapter 9 File System Implementations 

This read-only file describes the virtual address map of the process. It 
contains an array of prmap structures, each element of which describes a 
single contiguous address range in the process. Process address maps are 
explained in Section 14.4.3. 
This read-write file maps the virtual address space of the process. Any ad
dress in the process may be accessed by !seeking to that offset in this file, 
and then performing a read or write. 
This read-only file contains signal handling information. The file contains 
an array of s i gact ion structures (see Section 4.5), one for each signal. 
This read-only file contains the user credentials of the process. Its format 
is defined by struct prcred. 
This directory contains one file for each object mapped into the address 
space of the process (see Section 14.2). A user can get a file descriptor for 
the object by opening the corresponding file. 
This directory contains one subdirectory for each LWP (see Chapter 3) of 
the process. Each subdirectory contains three fi1es-lwpstatus, lwpsinfo, 
and lwpctl-which provide per-L WP status and control operations, similar 
to the status, psinfo, and ctl files, respectively. 

It is important to note that these are not physical files with real storage. They merely provide 
an interface to the process. Operations on these files are translated by the /proc file system to ap
propriate actions on the target process or its address space. Several users may open a /proc file con
currently. The 0 _ EXCL flag provides advisory locking when opening an as, ctl, or lwpctl file for 
writing. The ctl and lwpctl files provide several control and status operations, including the follow-
ing: 

PCSTOP 
PCWSTOP 
PC RUN 

PC KILL 
PCSENTRY 
PCSEXIT 

Stops all L WPs of the process. 
Waits for all L WPs of the process to stop. 
Resumes a stopped L WP. Additional actions may be specified by optional 
flags, such as PRCSIG to clear the current signal, or PRSTEP to single-step 
the process. 
Sends a specified signal to the process. 
Instructs the L WP to stop on entry to specified system calls. 
Instructs the L WP to stop on exit from specified system calls. 

There is no explicit support for breakpoints. They may be implemented simply by using the 
write system call to deposit a breakpoint instruction at any point in the text segment. Most systems 
designate an approved breakpoint instruction. Alternatively, we could use any illegal instruction that 
causes a trap to the kernel. 

The /proc interface provides mechanisms to handle children of a target process. The debug
ger can set an inherit-on-fork flag in the target process and monitor exits from fork and vfork calls. 
This causes both parent and child to stop on return from fork. When the parent stops, the debugger 
can examine the return value from fork to determine the child PID and open the /proc files of the 



9.11 Special-Purpose File Systems 283 

child. Since the child stops before it returns from fork, the debugger has complete control over it 
from that point. 

This interface has allowed the development of several sophisticated de buggers and pro filers. 
For instance, /proc allows dbx to attach to and detach from running programs. The implementation 
works correctly with /proc files on remote machines accessed via RFS [Rifk 86]. This allows appli
cations to debug and control remote and local processes in identical manner. The ptrace system call 
has become obsolete and unnecessary. Several other commands, notably ps, have been reimple
mented to use /proc. A generalized data watchpoint facility has evolved based on the VM system's 
ability to dynamically change protections on memory pages. 

9.11.3 The Processor File System 

The processor file system [Nadk 92] provides an interface to the individual processors on a multi
processor machine. It is mounted on the /system/processor directory and has one file for each proc
essor on the system. The filename is the decimal representation of the processor number. The file is 
of fixed size, is read-only, and its data fields contain the following information: 

• Processor status - online or offline. 
• CPU type. 
• CPU speed in MHz. 
• Cache size in kilobytes. 
• Whether it has a floating point unit. 
• Drivers bound to it. 
• The time at which the processor state was last changed. 

Additionally, the file system contains a write-only file called ctl, accessible only to the supe
ruser. Writing to this file triggers operations on individual processors, such as setting a processor 
on-line or off-line. 

The processor file system is part of the multiprocessor version of SVR4.2. In the future, it 
may be extended to support notions such as processor sets and light-weight processes by associating 
such entities with additional files in its name space. 

9.11.4 The Translucent File System 

The Translucent File System (TFS) [Hend 90] was developed at Sun Microsystems to address the 
needs of large software development efforts. It aims to provide mechanisms for advanced version 
and build control, and also to support Sun's configuration management tool, the Network Software 
Environment (NSE). It is shipped as a standard component of SunOS. 

There are some typical demands on a large software build environment. Users often maintain 
a private hierarchy of the build tree, because they may want to modify certain files. They do not 
need private copies of unchanged files, but they do want to be insulated from changes made by other 
developers. Furthermore, the environment needs to provide version control facilities, so that a user 
can choose which version of the build tree he wants to access. 



284 Chapter 9 File System Implementations 

TFS provides these facilities using copy-on-write semantics for the file system. Files from 
the shared hierarchy are copied to the user's private hierarchy as they are modified. To achieve this, 
a TFS directory is composed of several layers, where each layer is a physical directory. The layers 
are joined by hidden files called search/inks, which contain the directory name of the next layer. 
Each layer is like a revision of the directory, and the front layer is the newest revision. 

The files seen in a TFS directory are the union of the files in all the layers. The latest revi
sion of a file is accessed by default (layers are searched front to back). If an earlier version is de
sired, it is necessary to explicitly follow the searchlinks chain. This can be done at the user level, 
since each layer is merely a directory. Copy-on-write is implemented by making all layers except 
the front layer read-only; a file in another layer must be copied to the front layer before it can be 
modified. 

TFS performance suffers because each lookup may have to search several layers (the number 
of layers can become quite large in a typical environment). TFS addresses this problem by aggres
sively using name lookup caches. It also provides facilities for variant layers corresponding to dif
ferent machine architectures, because object files are different for each variant. User programs do 
not need to be changed to access TFS files. The system administrator must perform some initial 
setup to take advantage of TFS. Although TFS was initially designed to run as an NFS server, it has 
since been changed to directly use the vnode/vfs interface. 

Section 11.12.1 describes the union mount file system in 4.4BSD, which provides similar 
functionality but is based on the 4.4BSD stackable vnode interface. 

9.12 The Old Buffer Cache 

Disk I/0 is a major bottleneck in any system. The time required to read a 512-byte block from disk 
is of the order of a few milliseconds. The time needed to copy the same amount of data from one 
memory location to another is of the order of a few microseconds. The two differ by a factor of 
about a thousand. If every file I/0 operation requires disk access, the system will be unacceptably 
slow. It is essential to make every effort to minimize disk I/0 operations, and UNIX achieves this 
by caching recently accessed disk blocks in memory. 

Traditional UNIX systems use a dedicated area in memory called the block buffer cache to 
cache blocks accessed through the file system. The virtual memory system caches process text and 
data pages separately. Modem UNIX systems such as SVR4 and SunOS (version 4 and above) inte
grate the buffer cache with the paging system. In this section, we describe the old buffer cache. Sec
tion 14.8 describes the new, integrated approach. 

The buffer cache is composed of data buffers, each large enough to hold one disk block. 
BSD-based systems have variable-size buffers, since different file systems on the same machine 
may have different block and fragment sizes. The cache associates a header with each buffer, to 
hold naming, synchronization, and cache management information. The size of the cache is typi
cally 10% of physical memory. 

The backing store of a cache is the persistent location of the data. A cache can manage data 
from several different backing stores. For the block buffer cache, the backing store is the file sys
tems on disk. If the machine is networked, the backing store includes files on remote nodes. 



9.12 The Old Buffer Cache 285 

Generally, a cache can be write-through or write-behind. A write-through cache writes out 
modified data to the backing store immediately. This has several advantages. The data on the back
ing store is always current (except perhaps for the last write operation), and there is no problem of 
data loss or file system corruption in event of a system crash. Also, cache management is simple, 
making this approach a good choice for hardware-implemented caches, such as track buffers on 
certain hard disks. 

The write-through approach is unsuitable for the block buffer cache, since it imposes a major 
performance penalty. About a third of file I/0 operations are writes, and many of them are very 
transient-the data is overwritten, or the file deleted, within minutes of the write. This would cause 
many unnecessary writes, slowing the system tremendously. 

For this reason, the UNIX buffer cache is primarily write-behind.? Modified blocks are sim
ply marked as dirty, and written to the disk at a later time. This allows UNIX to eliminate many 
writes and also to reorder the writes in a way that optimizes disk performance. Delaying the writes, 
however, can potentially corrupt the file system in event of a crash. This issue is discussed in Sec
tion 9.12.5. 

9.12.1 Basic Operation 

Whenever a process must read or write a block, it first searches for the block in the buffer cache. To 
make this search efficient, the cache maintains a set of hash queues based on the device and block 
number of the block. If the block is not in the cache, it must be read from disk (except when the en
tire block is being overwritten). The kernel allocates a buffer from the cache, associates it with this 
block, and initiates a disk read if needed. If the block is modified, the kernel applies the modifica
tions to the buffer cache copy and marks it as dirty by setting a flag in the buffer header. When a 
dirty block must be freed for reuse, it is first written back to the disk. 

When a buffer is being actively used, it must first be locked. This happens before initiating 
disk I/0 or when a process wants to read or write that buffer. If the buffer is already locked, the 
process trying to access it must sleep until it is unlocked. Because the disk interrupt handler may 
also try to access the buffer, the kernel disables disk interrupts while trying to acquire the buffer. 

When the buffer is not locked, it is kept on a free list. The free list is maintained in least re
cently used (LRU) order. Whenever the kernel needs a free buffer, it chooses the buffer that has not 
been accessed for the longest time. This rule is based on the fact that typical system usage demon
strates a strong locality of reference: recently accessed data is more likely to be accessed before data 
that has not been accessed in a long time. When a buffer is accessed and then released, it is placed at 
the end of the free list (it is at this point most recently used). As time passes, it advances towards the 
list head. If at any time it is accessed again, it returns to the end of the list. When it reaches the head 
of the list, it is the least recently used buffer and will be allocated to any process that needs a free 
buffer. 

There are some exceptions to this scenario. The first involves buffers that become invalid, 
either due to an I/0 error or because the file they belong to is deleted or truncated. Such buffers will 
be placed immediately at the head of the queue, since they are guaranteed not to be accessed again. 

7 Certain metadata updates are written back synchronously, as described in Section 9.12.5. 



286 Chapter 9 File System Implementations 

The second involves a dirty buffer that reaches the head of the list, at which time it is removed from 
the list and put on the disk driver's write queue. When the write completes, the buffer is marked as 
clean and can be returned to the free list. Because it had already reached the list head without being 
accessed again, it is returned to the head of the list instead of the end. 

9.12.2 Buffer Headers 

Each buffer is represented by a buffer header. The kernel uses the header to identify and locate the 
buffer, synchronize access to it, and to perform cache management. The header also serves as the 
interface to the disk driver. When the kernel wants to read or write the buffer from or to the disk, it 
loads the parameters of the I/0 operation in the header and passes the header to the disk driver. The 
header contains all the information required for the disk operation. Table 9-2 lists the important 
fields of the s t ru c t b u f, which represents the buffer header. 

The b _flags field is a bitmask of several flags. The kernel uses the B _BUSY and B _WANTED to 
synchronize access to the buffer. B _DELWRI marks a buffer as dirty. The flags used by the disk driver 
include B_READ, B_WRITE, B_ASYNC, B_DONE, and B_ERROR. The B_AGE flag indicates an aged buffer 
that is a good candidate for reuse. 

9.12.3 Advantages 

The primary motivation for the buffer cache is to reduce disk traffic and eliminate unnecessary disk 
I/0, and it achieves this effectively. Well-tuned caches report hit rates of up to 90% [Oust 85]. 
There are also several other advantages. The buffer cache synchronizes access to disk blocks 
through the locked and wanted flags. If two processes try to access the same block, only one will be 
able to lock it. The buffer cache offers a modular interface between the disk driver and the rest of 
the kernel. No other part of the kernel can access the disk driver, and the entire interface is encapsu
lated in the fields of the buffer header. Moreover, the buffer cache insulates the rest of the kernel 
from the alignment requirements of disk I/0, since the buffers themselves are page aligned. There 
are no problems of arbitrary disk I/0 requests to possibly unaligned kernel addresses. 

Table 9-2. Fields ofstruct buf 

Fields Description 

int b_flags status flags 

struct buf *b forw, *b back pointers to keep buf in hash queue 
- -

struct buf *av_forw, *av back pointers to keep buf on free list 

caddr t b addr pointer to the data itself 

dev t b edev device number 

daddr t b blkno block number on device 

int b error I/0 error status 

unsigned b resid number of bytes left to transfer 



9.12 The Old Buffer Cache 287 

9.12.4 Disadvantages 

Despite the tremendous advantages, there are some important drawbacks of the buffer cache. First, 
the write-behind nature of the cache means that data may be lost if the system crashes. This could 
also leave the disk in an inconsistent state. This issue is further explored in Section 9.12.5. Second, 
although reducing disk access greatly improves performance, the data must be copied twice-first 
from the disk to the buffer, then from the buffer to the user address space. The second copy is orders 
of magnitude faster than the first, and normally the savings in disk access more than compensate for 
the expense of the additional memory-to-memory copy. It can become an important factor, however, 
when sequentially reading or writing a very large file. In fact, such an operation creates a related 
problem called cache wiping. If a large file is read end-to-end and then not accessed again, it has the 
effect of flushing the cache. Since all blocks of this file are read in a short period of time, they con
sume all the buffers in the cache, flushing out the data that was in them. This causes a large number 
of cache misses for a while, slowing down the system until the cache is again populated with a more 
useful set of blocks. Cache wiping can be avoided if the user can predict it. The Veritas File System 
(VxFS), for example, allows users to provide hints as to how a file will be accessed. Using this fea
ture, a user can disable caching of large files and ask the file system to transfer the data directly 
from the disk to user address space. 

9.12.5 Ensuring File System Consistency 

The major problem with the buffer cache is that data on the disk may not always be current. This is 
not a problem when the system is up and running, since the kernel uses the cached copy of the disk 
block, which is always up-to-date. The problem occurs if the system crashes, because several modi
fications may be lost. The loss of data may affect file data blocks or metadata. UNIX handles both 
cases differently. 

From the perspective of the operating system, if some file data writes do not reach the disk, 
the loss is not catastrophic, although it may seem that way to the user. This is because it does not 
compromise file system consistency. Requiring all writes to be synchronous is prohibitively expen
sive, and thus the default for file data writes is write-behind. There are, however, a few ways to 
force the kernel to write the data to the disk. The sync system call initiates disk writes for all dirty 
buffers. It does not, however, wait for these writes to complete, so there is no guarantee that a block 
has actually been written to disk after the sync call completes. A user can open a file in synchronous 
mode, forcing all writes to this file to be synchronous. Finally, several implementations have an up
date daemon (called the fsflush process in SVR4) which calls sync periodically (typically, once 
every 30 seconds) to clean the cache. 

If some metadata changes are lost, the file system can become inconsistent. Many file op
erations modify more than one metadata object, and if only some of these changes reach the disk, 
the file system may become corrupted. For instance, adding a link to a file involves writing an entry 
for the new name in the appropriate directory and incrementing the link count in the inode. Suppose 
the system were to crash after the directory change was saved but before the inode was updated to 
disk. When the system reboots, it will have two directory entries referencing a file that has a link 
count of one. If someone deletes the file using either of the names, the inode and disk blocks will be 
freed, since the link count will drop to zero. The second directory entry will then point to an unallo-



288 Chapter 9 File System Implementations 

cated inode (or one that is reassigned to another file). Such damage to the file system must be 
avoided. 

There are two ways in which UNIX tries to prevent such corruption. First, the kernel 
chooses an order of metadata writes that minimizes the impact of a system crash. In the previous 
example, consider the effect of reversing the order of the writes. Now suppose the system were to 
crash with the inode updated but not the directory. When it reboots, this file has an extra link, but 
the original directory entry is valid and the file can be accessed without any problems. If someone 
were to delete the file, the directory entry would go away, but the inode and data blocks would not 
be freed because the link count is still one. Although this does not prevent corruption, it causes less 
severe damage than the earlier order. 

Thus the order of metadata writes must be carefully chosen. The problem of enforcing the 
order still remains, since the disk driver does not service the requests in the order that they are re
ceived. The only way the kernel can order the writes is to make them synchronous. Hence in the 
above case, the kernel will write the inode to the disk, wait until the write completes, and then issue 
the directory write. The kernel uses such synchronous metadata writes in many operations that re
quire modifying more than one related object [Bach 86]. 

The second way of combating file system corruption is the fsck (file system check) utility 
[Kowa 78, Bina 89]. This program examines a file system, looks for inconsistencies, and repairs 
them if possible. When the correction is not obvious, it prompts the user for instructions. By default, 
the system administrator runs fsck each time the system reboots and may also run it manually at any 
time. fsck uses the raw interface to the disk driver to access the file system. It is further described in 
Section 11.2.4. 

9.13 Summary 

The vnode/vfs interface allows multiple file systems to coexist on a machine. In this chapter, we 
have described the implementation of several file systems. We began with the two most popular lo
cal file systems-s5fs and FFS. We then described several special-purpose file systems that took 
advantage of the special properties of the vnode/vfs interface to provide useful functionality. Fi
nally, we discussed the buffer cache, which is a global resource shared by all file systems. 

In the following chapters, we describe many other file systems. The next chapter discusses 
distributed file systems-in particular, NFS, RFS, AFS, and DFS. Chapter 11 deals with advanced 
and experimental file systems that use techniques such as logging to provide better functionality and 
performance. 

9.14 Exercises 

1. Why do s5fs and FFS have a fixed number of on-disk inodes in each file system? 
2. Why is the inode separate from the directory entry of the file? 
3. What are the advantages and drawbacks of having each file allocated contiguously on disk? 

Which applications are likely to desire such a file system? 



9.15 References 289 

4. What happens if a disk error destroys the s5fs superblock? 
5. What are the benefits of allocating and deallocating inodes dynamically? 
6. A system using a reference-based directory name lookup cache may run out of free inodes 

simply because the lookup cache references many inodes that would otherwise be free. How 
should the file system handle this situation? 

7. A name lookup in a very large directory can be extremely inefficient for conventional file 
systems like s5fs and FFS. Explore the possibility of organizing the directory as a hash table. 
Should the hash table be only in memory, or should it be part of the persistent storage? Does 
this duplicate the functionality of the name lookup cache? 

8. In 4.4BSD, the name lookup cache also maintains entries for unsuccessful lookups. What is 
the advantage of caching this information? What problems will the implementation need to 
address? 

9. Why must the write system call sometimes read the data block from disk first? 
10. Why does FFS allocate each new directory in a different cylinder group from its parent? 
11. In what situations does the rotdelay factor actually worsen the file system performance? 
12. Why would the rotational layout algorithms of FFS hurt performance when using modem 

SCSI disks? 
13. What is the purpose of the free space reserve in FFS? 
14. Suppose a file system decides to store the data portion of small files in the inode itself, rather 

than in a separate data block. What would be the benefits and problems of this approach? 
15. What are the advantages of using a special file system for temporary files? 
16. What can an operating system do to reduce cache wiping? 
17. What are the benefits of separating the buffer cache from the virtual memory subsystem? 

What are the drawbacks? 

9.15 References 

[ANSI 92] 

[Bach 86] 

[Bark 90] 

[Bina 89] 

[Faul 91] 

[Gaed 82] 

American National Standard for Information Systems, Small Computer Systems 
Interface-2 (SCSI-2), X3.131-199X, Feb. 1992. 
Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood 
Cliffs, NJ, 1986. 
Barkley, R.E., and Lee, T.P., "A Dynamic File System !node Allocation and Reclaim 
Policy," Proceedings of the Winter 1990 USENIX Technical Conference, Jan. 1990, 
pp. 1-9. 
Bina, E.J., and Emrath, P.A., "A Faster fsck for BSD UNIX," Proceedings of the 
Winter 1989 USENIXTechnical Conference, Jan. 1989, pp. 173-185. 
Faulkner, R. and Gomes, R., "The Process File System and Process Model in UNIX 
System V," Proceedings of the 1991 Winter USENIX Conference, Jan. 1991, pp. 
243-252. 
Gaede, S., "A Scaling Technique for Comparing Interactive System Capacities," 
Conference Proceedings ofCMG XIIL Dec. 1982, pp. 62-67. 



290 

[Ging 87] 

[Hend 90] 

[Klei 86] 

[Kowa 78] 

[Krid 83] 

[Leff89] 

[McKu 84] 

[McKu 85] 

[McKu 90] 

[Nadk 92] 

[Ohta 90] 

[Oust 85] 

[Rifk 86] 

[Salu 94] 
[Saty 81] 

[Snyd 90] 

[Thorn 78] 

Chapter 9 File System Implementations 

Gingell, R.A., Moran, J.P., and Shannon, W.A., "Virtual Memory Architecture in 
SunOS," Proceedings of the Summer 1987 USENIX Technical Conference, Jun. 
1987, pp. 81-94. 
Hendricks, D., "A FileSystem for Software Development," Proceedings of the 
Summer 1990 USENIXTechnical Conference, Jun. 1990, pp. 333-340. 
Kleiman, S.R., "Vnodes: An Architecture for Multiple File System Types in Sun 
UNIX," Proceedings ofthe Summer 1986 USENIXTechnical Conference, Jun. 1986, 
pp. 238-247. 
Kowalski, T., "FSCK-The UNIX System Check Program," Bell Laboratory, 
Murray Hill, N.J. 07974, Mar. 1978. 
Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem Choices for 
VAX Systems Running 4.2BSD UNIX," Technical Report No. 8, Computer Systems 
Research Group, Dept. of EECS, University of California at Berkeley, CA, 1983. 
Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and 
Implementation of the 4. 3 BSD UNIX Operating System, Addison-Wesley, Reading, 
MA, 1989. 
McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S., "A Fast File System for 
UNIX," ACMTransactions on Computer Systems, vol. 2, (Aug. 1984), pp. 181-197. 
McKusick, M.K., Karels, M., and Leffler, S.J., "Performance Improvements and 
Functional Enhancements in 4.3BSD," Proceedings of the Summer 1985 USENIX 
Conference, Jun. 1985, pp. 519-531. 
McKusick, M.K., Karels, M.K., and Bostic, K., "A Pageable Memory Based 
Filesystem," Proceedings of the Summer 1990 USENIX Technical Conference, Jun. 
1990. 
Nadkarni, A.V., "The Processor File System in UNIX SVR4.2," Proceedings of the 
1992 USENIX Workshop on File Systems, May 1992, pp. 131-132. 
Ohta, M. and Tezuka, H., "A Fast /tmp File System by Delay Mount Option," 
Proceedings ofthe Summer 1990 USENIXConference, Jun. 1990, pp. 145-149. 
Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer, M. and 
Thompson, J.G., "A Trace-Driven Analysis of the UNIX 4.2 BSD File System," 
Proceedings of the Tenth Symposium on Operating System Principles, Dec. 1985, pp. 
15-24. 
Rifkin, A.P., Forbes, M.P., Hamilton, R.L., Sabrio, M., Shah, S., and Yueh, K., "RFS 
Architectural Overview," Proceedings of the Summer 1986 USENIX Technical 
Conference, Jun. 1986, pp. 248-259. 
Salus, P.H., A Quarter Century of UNIX, Addison-Wesley, Reading, MA, 1994. 
Satyanarayan, M., "A Study of File Sizes and Functional Lifetimes," Proceedings of 
the Eighth Symposium on Operating Systems Principles, 1981, pp. 96-108. 
Snyder, P., "tmpfs: A Virtual Memory File System," Proceedings of the Autumn 
1990 European UNIX Users' Group Conference, Oct. 1990, pp. 241-248. 
Thompson, K., "UNIX Implementation," The Bell System Technical Journal, Jul.
Aug. 1978, Vol. 57, No. 6, Part 2, pp. 1931-1946. 



10 

Distributed File Systems 

10.1 Introduction 

Since the 1970s, the ability to connect computers to each other on a network has revolutionized the 
computer industry. The increase in network connectivity has fueled a desire to share files between 
different computers. The early efforts in this direction were restricted to copying entire files from 
one machine to another, such as the UNIX-to-UNIX copy (uucp) program [Nowi 90] and File 
Transfer Protocol (ftp) [Post 85]. Such solutions, however, do not come close to fulfilling the vision 
of being able to access files on remote machines as though they were on local disks. 

The mid-1980s saw the emergence of several distributed file systems that allow transparent 
access to remote files over a network. These include the Network File System (NFS) from Sun Mi
crosystems [Sand 85a], the Remote File Sharing system (RFS) from AT&T [Rifk 86], and the 
Andrew File System (AFS) from Carnegie-Mellon University [Saty 85]. All three are sharply differ
ent in their design goals, architecture, and semantics, even though they try to solve the same funda
mental problem. Today, RFS is available on many System V-based systems. NFS has gained much 
wider acceptance and is available on numerous UNIX and non-UNIX systems. AFS development 
has passed on to Transarc Corporation, where it has evolved into the Distributed File System (DFS) 
component of Open Software Foundation's Distributed Computing Environment (DCE). 

This chapter begins by discussing the characteristics of distributed file systems. It then de
scribes the design and implementation of each of the above-mentioned file systems and examines 
their strengths and weaknesses. 

291 



292 Chapter I 0 Distributed File Systems 

10.2 General Characteristics of Distributed File Systems 

A conventional, centralized file system allows multiple users on a single system to share access to 
files stored locally on the machine. A distributed file system extends the sharing to users on differ
ent machines interconnected by a communication network. Distributed file systems are imple
mented using a client-server model. The client is a machine that accesses a file, while a server is one 
that stores the file and allows clients to access it. Some systems may require clients and servers to 
be distinct machines, while others may allow a single machine to act as both client and server. 

It is important to note the distinction between distributed file systems and distributed operat-. 
ing systems [Tann 85]. A distributed operating system, such as V [Cher 88] or Amoeba [Tann 90], is 
one that looks to its users like a centralized operating system, but runs simultaneously on multiple 
machines. It may provide a file system that is shared by all its host machines. A distributed file sys
tem, however, is a software layer that manages communication between conventional operating 
systems and file systems. It is integrated with the operating systems of the host machines and pro
vides a distributed file access service to systems with centralized kernels. 

There are several important properties of distributed file systems [Levy 90]. Each file system 
may have some or all of these properties. This gives us a basis to evaluate and compare different 
architectures. 

• Network transparency-Clients should be able to access remote files using the same op
erations that apply to local files. 

• Location transparency-The name of a file should not reveal its location in the network. 
• Location independence--The name of the file should not change when its physical loca

tion changes. 
• User mobility-Users should be able to access shared files from any node in the network. 
• Fault tolerance--The system should continue to function after failure of a single compo

nent (a server or a network segment). It may, however, degrade in performance or make 
part of the file system unavailable. 

• Scalability-The system should scale well as its load increases. Also, it should be possi
ble to grow the system incrementally by adding components. 

• File mobility-It should be possible to move files from one physical location to another 
in a running system. 

1 0.2.1 Design Considerations 
There are several important issues to consider in designing a distributed file system. These involve 
tradeoffs in functionality, semantics, and performance. We can compare different file systems ac
cording to how they deal with these issues: 

• Name space- Some distributed file systems provide a uniform name space, such that 
each client uses the same pathname to access a given file. Others allow each client to cus
tomize its name space by mounting shared subtrees to arbitrary directories in the file hier
archy. Both methods have some appeal. 



I 0.3 Network File System (NFS) 

• Stateful or stateless operation - A stateful server is one that retains information about 
client operations between requests and uses this state information to service subsequent 
requests correctly. Requests such as open and seek are inherently stateful, since someone 
must remember which files a client has opened, as well as the seek offset in each open file. 
In a stateless system, each request is self-contained, and the server maintains no persistent 
state about the clients. For instance, instead of maintaining a seek offset, the server may 
require the client to specify the offset for each read or write. Stateful servers are faster, 
since the server can take advantage of its knowledge of client state to eliminate a lot of 
network traffic. However, they have complex consistency and crash recovery mechanisms. 
Stateless servers are simpler to design and implement, but do not yield as good perform
ance. 

• Semantics of sharing - The distributed file system must define the semantics that apply 
when multiple clients access a file concurrently. UNIX semantics require that changes 
made by one client be visible to all other clients when they issue the next read or write 
system call. Some file systems provide session semantics, where the changes are propa
gated to other clients at the open and close system call granularity. Some provide even 
weaker guarantees, such as a time interval that must elapse before the changes are certain 
to have propagated to other clients. 

• Remote access methods - A pure client-server model uses the remote service method of 
file access, wherein each action is initiated by the client, and the server is simply an agent 
that does the client's bidding. In many distributed systems, particularly stateful ones, the 
server plays a much more active role. It not only services client requests, but also partici
pates in cache coherency mechanisms, notifying clients whenever their cached data is in
valid. 

293 

We now look at the distributed file systems that are popular in the UNIX world, and see how 
they deal with these issues. 

10.3 Network File System (NFS) 

Sun Microsystems introduced NFS in 1985 as a means of providing transparent access to remote file 
systems. Besides publishing the protocol, Sun also licensed a reference implementation, which was 
used by vendors to port NFS to several operating systems. NFS has since become a de facto indus
try standard, supported by virtually every UNIX variant and several non-UNIX systems such as 
VMS and MS-DOS. 

The NFS architecture is based on a client-server model. A file server is a machine that ex
ports a set of files. Clients are machines that access such files. A single machine can act as both a 
server and a client for different file systems. The NFS code, however, is split into client and server 
portions, allowing client-only or server-only systems. 

Clients and servers communicate via remote procedure calls, which operate as synchronous 
requests. When an application on the client tries to access a remote file, the kernel sends a request to 
the server, and the client process blocks until it receives a reply. The server waits for incoming cli
ent requests, processes them, and sends replies back to the clients. 



294 Chapter I 0 Distributed File Systems 

1 0.3.1 User Perspective 

An NFS server exports one or more file systems. Each exported file system could be either an entire 
disk partition or a subtree thereof. 1 The server can specify, typically through entries in the 
/etc/exports file, which clients may access each exported file system and whether the access permit
ted is read-only or read-write. 

Client machines can then mount such a file system, or a subtree of it, onto any directory in 
their existing file hierarchy, just as they would mount a local file system. The client may mount the 
directory as read-only, even though the server has exported it as read-write. NFS supports two types 
of mounts-hard and soft. This influences client behavior if the server does not respond to a re
quest. If the file system is hard-mounted, the client keeps retrying the request until a reply is re
ceived. For a soft-mounted file system, the client gives up after a while and returns an error. Once 
the mount succeeds, the client can access files in the remote file system using the same operations 
that apply to local files. Some systems also support spongy mounts, which behave as hard mounts 
for mount retries but as soft mounts for subsequent 1/0 operations. 

NFS mounts are less restrictive than those of local file systems. The protocol does not re
quire the caller of mount to be a privileged user, although most clients impose this requirement.2 

The client may mount the same file system at multiple locations in the directory tree, even onto a 
subdirectory of itself. The server can export only its local file systems and may not cross its own 
mount points during pathname traversal. Thus, for a client to see the all the files on a server, it must 
mount all of the server's file systems. 

This is illustrated in Figure 10-1. The server system nfssrv has two disks. It has mounted 
dskl on the /usrllocal directory of dskO and has exported the directories /usr and /usr/Iocal. Sup
pose a client executes the following four mount operations: 

mount -t nfs nfssrv:/usr /usr 
mount -t nfs nfssrv:/usr/ul /ul 
mount -t nfs nfssrv: /usr /users 
mount -t nfs nfssrv:/usr/local /usr/local 

All four mounts will succeed. On the client, the /usr subtree reflects the entire /usr subtree 
of nfssrv, since the client has also mounted /usrllocal. The /ul subtree on the client maps the 
/usr/ul subtree on nfssrv. This illustrates that it is legal to mount a subdirectory of an exported file 
system.J Finally, the /users subtree on the client only maps that part of the /usr subtree of nfssrv 
that resides on dskO; the file system on dskl is not visible under /users/local on the client. 

1 0.3.2 Design Goals 

The original NFS design had the following objectives: 

1 Different UNIX variants have their own rules governing the granularity of the exports. Some may only allow an 
entire file system to be exported, whereas some may permit only one subtree per file system. 

2 Digital's ULTRIX, for instance, allows any user to mount an NFS file system so long as the user has write permis
sion to the mount point directory. 

3 Not all implementations allow this. 



10.3 Network File System (NFS) 

file systems on nfssrv view seen by client 
dskO 

0 mount point I ufsmount 
/ 

/ 
r --, 

L_ 

Figure 10-1. Mounting NFS file systems. 

\ 
\ 
>--... 

(local) 
'-~ 

nfs subtree 

• NFS should not be restricted to UNIX. Any operating system should be able to implement 
an NFS server or client. 

• The protocol should not be dependent on any particular hardware. 
• There should be simple recovery mechanisms from server or client crashes. 
• Applications should be able to access remote files transparently, without using special 

pathnames or libraries and without recompiling. 
• UNIX file system semantics must be maintained for UNIX clients. 
• NFS performance must be comparable to that of a local disk. 
• The implementation must be transport-independent. 

1 0.3.3 NFS Components 

295 

An NFS implementation is composed of several components. Some of these are localized either to 
the server or to the client, whereas some are shared by both. A few components are not required for 
the core functionality, but form part of the extended NFS interface: 

• The NFS protocol defines the set of requests that may be made by the client to the server 
and the arguments and return values for each. Version 1 of the protocol existed only 
within Sun Microsystems and was never released. All NFS implementations support NFS 
version 2 (NFSv2), 4 which was first released in Sun OS 2.0 in 1985 [Sand 85b ]; hence this 
chapter deals mainly with this version. Section 10.10 discusses version 3 of the protocol, 

4 This includes those that support NFSv3. 



296 Chapter I 0 Distributed File Systems 

which was published in 1993 and has been implemented by a number of vendors. Table 
10-1 enumerates the complete set ofNFSv2 requests. 

• The Remote Procedure Call (RPC) protocol defines the format of all interactions between 
the client and the server. Each NFS request is sent as an RPC packet. 

• The Extended Data Representation (XDR) provides a machine-independent method of en
coding data to send over the network. All RPC requests use XDR encoding to pass data. 
Note that XDR and RPC are used for many other services besides NFS. 

• The NFS server code is responsible for processing all client requests and providing access 
to the exported file systems. 

• The NFS client code implements all client system calls on remote files by sending one or 
more RPC requests to the server. 

• The Mount protocol defines the semantics for mounting and unmounting NFS file sys
tems. Table I 0-2 contains a brief description of the protocol. 

• Several daemon processes are used by NFS. On the server, a set of nfsd daemons listen for 
and respond to client NFS requests, and the mountd daemon handles mount requests. On 
the client, a set of biod daemons handles asynchronous 1/0 for blocks ofNFS files. 

• The Network Lock Manager (NLM) and the Network Status Monitor (NSM) together pro
vide the facilities for locking files over a network. These facilities, while not formally tied 
to NFS, are found on most NFS implementations and provide services not possible in the 
base protocol. NLM and NSM implement the server functionality via the lockd and statd 
daemons, respectively. 

Table 10-1. NFSv2 operations 

Proc Input args Results 

NULL void void 
GETATTR fhandle status, fattr 
SETATTR fhandl e, sattr status, fattr 
LOOKUP di rfh, name status, fhandle, fattr 
READ LINK fhandle status, l ink_value 
READ fhandl e, offset, count, tot count status, fattr, data 
WRITE fhandl e, offset, count, tot count, data status, fattr 
CREATE dirfh, name, sattr status, fhandle, fattr 
REMOVE di rfh, name status 
RENAME dirfhl, namel, dirfh2, name2 status 
LINK fhandle, dirfh, name status 
SYMLINK dirfh, name, linkname, sattr status 
MKDIR dirfh, name, sattr status, fhandle, fattr 
RMDIR di rfh, name status 
READDIR fhandle, cookie, count status, dir_entries 
STATFS fhandle status, file stats 
Key: fattr =file attnbutes; sattr = attnbutes to set; cook1 e =opaque obJect returned by 
previous READDIR; fhandl e =file handle; di rfh =file handle of directory. 



10.3 Network File System (NFS) 297 

Table 10-2. Mount protocol (version I) 

Procedure Input args Results 
NULL void void 
MNT path name status, fhand1 e 
DUMP void mount 1 i st 
UMNT pathname void 
UMNTALL void void 
EXPORT void export 1 i st 
Key: fhandl e =handle of top-level directory of mounted subtree. 

1 0.3.4 Statelessness 
The single most important characteristic of the NFS protocol is that the server is stateless and does 
not need to maintain any information about its clients to operate correctly. Each request is com
pletely independent of others and contains all the information required to process it. The server need 
not maintain any record of past requests from clients, except optionally for caching or statistics 
gathering purposes. 

For example, the NFS protocol does not provide requests to open or close a file, since that 
would constitute state information that the server must remember. For the same reason, the READ 
and WRITE requests pass the starting offset as a parameter, unlike read and write operations on local 
files, which obtain the offset from the open file object (see Section 8.2.3).5 

A stateless protocol makes crash recovery simple. No recovery is required when a client 
crashes, since the server maintains no persistent information about the client. When the client re
boots, it may remount the file systems and start up applications that access the remote files. The 
server neither needs to know nor cares about the client crashing. 

When a server crashes, the client finds that its requests are not receiving a response. It then 
continues to resend the requests until the server reboots.6 At that time, the server will receive the 
requests and can process them since the requests did not depend on any prior state information. 
When the server finally replies to the requests, the client stops retransmitting them. The client has 
no way to determine if the server crashed and rebooted or was simply slow. 

Stateful protocols, however, require complex crash-recovery mechanisms. The server must 
detect client crashes and discard any state maintained for that client. When a server crashes and re
boots, it must notify the clients so that they can rebuild their state on the server. 

A major problem with statelessness is that the server must commit all modifications to stable 
storage before replying to a request. This means that not only file data, but also any metadata such 
as inodes or indirect blocks must be flushed to disk before returning results. Otherwise, a server 
crash might lose data that the client believes has been successfully written out to disk. (A system 

5 Some systems provide pread and pwrite calls, which accept the offset as an argument. This is particularly useful for 
multithreaded systems (see Section 3.3.2). 

6 This is true only for hard mounts (which are usually the default). For soft mounts, the client gives up after a while 
and returns an error to the application. 



298 Chapter I 0 Distributed File Systems 

crash can lose data even on a local file system, but in that case the users are aware of the crash and 
of the possibility of data loss.) Statelessness also has other drawbacks. It requires a separate protocol 
(NLM) to provide file locking. Also, to address the performance problems of synchronous writes, 
most clients cache data and metadata locally. This compromises the consistency guarantees of the 
protocol, as discussed in detail in Section 10.7.2. 

10.4 The Protocol Suite 

The primary protocols in the NFS suite are RPC, NFS, and Mount. They all use XDR for data en
coding. Other related protocols are the NLM, NSM, and the portmapper. This section describes 
XDRandRPC. 

1 0.4.1 Extended Data Representation (XDR) 

Programs that deal with network-based communications between computers have to worry about 
several issues regarding the interpretation of data transferred over the network. Since the computers 
at each end might have very different hardware architectures and operating systems, they may have 
different notions about the internal representation of data elements. These differences include byte 
ordering, sizes of data types such as integers, and the format of strings and arrays. Such issues are 
irrelevant for communication with the same machine or even between two like machines, but must 
be resolved for heterogeneous environments. 

Data transmitted between computers can be divided into two categories--opaque and typed. 
Opaque, or byte-stream, transfers may occur, for example, in file transfers or modem communica
tions. The receiver simply treats the data as a stream of bytes and makes no attempt to interpret it. 
Typed data, however, is interpreted by the receiver, and this requires that the sender and receiver 
agree on its format. For instance, a little-endian machine may send out a two-byte integer with a 
value of OxO 103 (259 in decimal). If this is received by a big-endian machine, it would (in absence 
of prior conventions) be interpreted as Ox0301 (decimal 769). Obviously, these two machines will 
not be able to understand each other. 

The XDR standard [Sun 87] defines a machine-independent representation for data trans
mission over a network. It defines several basic data types and rules for constructing complex data 
types. Since it was introduced by Sun Microsystems, it has been influenced by the Motorola 680x0 
architecture (the Sun-2 and Sun-3 workstations were based on the 680x0 hardware) in issues such as 
byte ordering. Some of the basic definitions ofXDR are as follows: 

• Integers are 32-bit entities, with byte 0 (numbering the bytes from left to right) represent
ing the most significant byte. Signed integers are represented in two's complement nota
tion. 

• Variable-length opaque data is described by a length field (which is a four-byte integer), 
followed by the data itself. The data is NULL-padded to a four-byte boundary. The length 
field is omitted for fixed-length opaque data. 



10.4 The Protocol Suite 

• Strings are represented by a length field followed by the ASCII bytes of the string, 
NULL-padded to a four-byte boundary. If the string length is an exact multiple of four, 
there is no (UNIX-style) trailing NULL byte. 

• Arrays of homogeneous elements are encoded by a size field followed by the array ele
ments in their natural order. The size field is a four-byte integer and is omitted for fixed
size arrays. Each element's size must be a multiple of four bytes. While the elements must 
be of the same type, they may have different sizes, for instance, in an array of strings. 

• Structures are represented by encoding their components in their natural order. Each 
component is padded to a four-byte boundary. 

299 

Figure 10-2 illustrates some examples of XDR encoding. In addition to this set of defini
tions, XDR also provides a formal language specification to describe data. The RPC specification 
language, described in the next section, simply extends the XDR language. Likewise, the rpcgen 
compiler understands the XDR specification and generates routines that encode and decode data in 
XDRform. 

XDR forms a universal language for communication between arbitrary computers. Its major 
drawback is the performance penalty paid by computers whose natural data representation semantics 
do not match well with that of XDR. Such computers must perform expensive conversion opera
tions for each data element transmitted. This is most wasteful when the two computers themselves 
are of like type and do not need data encoding when communicating with each other. 

For instance, consider two V AX-11 machines using a protocol that relies on XDR encoding. 
Since the VAX is little-endian (byte 0 is least significant byte), the sender would have to convert 
each integer to big-endian form (mandated by XDR), and the receiver would have to convert it back 
to little-endian form. This wasteful exercise could be prevented if the representation provided some 

Value 

Ox203040 

Array of 3 integers 
{Ox30, Ox40, Ox50} 

Variable length array of 
strings 
{ 

"Monday", 
"Tuesday" 

XDR Representation 

00 20 30 40 

00 00 00 30 
00 00 00 40 
00 00 00 50 

00 00 00 02 
00 00 00 06 
IMI lol In I I d I 

I a I lyl 00 00 
00 00 00 07 
ITI I U I lei IS I 

ldl I a I lyl 00 

Figure 10-2. Examples ofXDR encoding. 



300 Chapter I 0 Distributed File Systems 

means of communicating the machine characteristics, so that conversions were required only for 
unlike machines. DCE RPC [OSF 92] uses such an encoding scheme in place ofXDR. 

1 0.4.2 Remote Procedure Calls (RPC) 

The Remote Procedure Call (RPC) protocol specifies the format of communications between the 
client and the server. The client sends RPC requests to the server, which processes them and returns 
the results in an RPC reply. The protocol addresses issues such as message format, transmission, 
and authentication, which do not depend on the specific application or service. Several services have 
been built on top of RPC, such as NFS, Mount, NLM, NSM, portmapper, and Network Information 
Service (NIS). 

There are several different RPC implementations. NFS uses the RPC 
protocol introduced by Sun Microsystems [Sun 88], which is known 
as Sun RPC or ONC-RPC. (ONC stands for Open Network Comput
ing.) Throughout this boolc, the term RPC refors to Sun RPC, except 
when explicitly stated otherwise. The only other RPC facility men
tioned in the book is that of OSF's Distributed Computing Environ
ment, which is reforred to as DCE RPC. 

Unlike DCE RPC, which provides synchronous and asynchronous operations, Sun RPC uses 
synchronous requests only. When a client makes an RPC request, the calling process blocks until it 
receives a response. This makes the behavior of the RPC similar to that of a local procedure call. 

The RPC protocol provides reliable transmission of requests, meaning it must ensure that a 
request gets to its destination and that a reply is received. Although RPC is fundamentally transport
independent, it is often implemented on top ofUDPIIP (User Datagram Protocol/Internet Protocol), 
which is inherently unreliable. The RPC layer implements a reliable datagram service by keeping 
track of unanswered requests and retransmitting them periodically until a response is received. 

Figure 10-3 describes a typical RPC request and (successful) reply. The xi d is a transmis
sion ID, which tags a request. The client generates a unique xi d for each request, and the server re
turns the same xi din the reply. This allows the client to identify the request for which the response 
has arrived and the server to detect duplicate requests (caused by retransmissions from the client). 
The direction field identifies the message as a request or a reply. The rpc _ vers field identifies 
the version number of the RPC protocol (current version= 2). prog and vers are the program and 
version number of the specific RPC service. An RPC service may register multiple protocol ver
sions. The NFS protocol, for instance, has a program number of I 00003 and supports version num
bers 2 and 3. proc identifies the specific procedure to call within that service program. In the reply, 
the reply_stat and accept_stat fields contain status information. 

RPC uses five authentication mechanisms to identify the caller to the server-AUTH _NULL, 
AUTH_UNIX, AUTH_SHORT, AUTH_DES, and AUTH_KERB. AUTH_NULL means no authentication. 
AUTH_UNIX is composed of UNIX-style credentials, including the client machine name, a UID, and 
one or more GIDs. The server may generate an AUTH _SHORT upon receipt of an AUTH _UNIX creden-



I 0.5 NFS Implementation 

RPC request (call) 

xid 

direction (=call) 

rpc vers ( = 2 ) 

prog 

vers 
proc 

authentication info ·-·~ 
procedure-specific 

arguments 

RPC reply message 

xid 

direction ( = reply ) 

reply stat 

authentication info 

accept stat 
--

? 
procedure-specific 

results 

Figure 10-3. RPC message formats. 

301 

tial, and return it to the caller for use in subsequent requests. The idea is tha~ the server can decipher 
AUTH _SHORT credentials very quickly to identify known clients, thus providing faster authentication. 
This is an optional feature and not many services support it. AUTH _DES is a secure authentication 
facility using a mechanism called private keys [Sun 89]. AUTH _KERB is another secure facility based 
on the Kerberos authentication mechanism [Stei 88]. Each service decides which authentication 
mechanisms to accept. NFS allows all five, except that it allows AUTH _NULL only for the NULL pro
cedure. Most NFS implementations, however, use AUTH _UNIX exclusively. 

Sun also provides an RPC programming language, along with an RPC compiler called 
rpcgen. An RPC-based service can be fully specified in this language, resulting in a formal interface 
definition. When rpcgen processes this specification, it generates a set of C source files containing 
XDR conversion routines and stub versions of the client and server routines, and a header file con
taining definitions used by both client and server. 

10.5 NFS Implementation 

We now examine how typical UNIX systems implement the NFS protocol. NFS has been ported to 
several non-UNIX systems such as MS-DOS and VMS. Some of these are client-only or server-only 
implementations, while others provide both pieces. Moreover, there are several dedicated NFS 
server implementations from vendors like Auspex, Network Appliance Corporation, and Novell, 
which do not run on general-purpose operating systems. Finally, there are a number of user-level 
implementations of NFS for various operating systems, many available as shareware or freeware. 
The implementation details on such systems are, of course, fundamentally different, and Section 
10.8 describes some interesting variations. In this section, we restrict our discussion to kernel im
plementations ofNFS in conventional UNIX systems that also support the vnode/vfs interface. 



302 Chapter I 0 Distributed File Systems 

1 0.5.1 Control Flow 

In Figure 10-4, the server has exported a uf~ file system, mounted by the client. When a process on 
the client makes a system call that operates on an NFS file, the file-system-independent code iden
tifies the vnode of the file and invokes the relevant vnode operation. For NFS files, the file-system
dependent data structure associated with the vnode is the rnode (for remote node). The v _ op field in 
the vnode points to the vector ofNFS client routines (struct vnodeops) that implement the various 
vnode operations. These routines act by constructing RPC requests and sending them to the server. 
The calling process on the client blocks until the server responds (see footnote 6). The server proc
esses the requests by identifying the vnode for the corresponding local file and invoking the appro
priate vnodeops calls, which are implemented by the local file system (ufs in this example). 

Finally, the server completes processing the request, bundles the results into an RPC reply 
message and sends it back to the client. The RPC layer on the client receives the reply and wakes up 
the sleeping process. This process completes execution of the client vnode operation and the rest of 
the system call, and returns control to the user. 

This implies the client must maintain a local vnode for each active NFS file. This provides 
the proper linkages to route the vnode operations to the NFS client functions. It also allows the cli
ent to cache attributes of remote files, so that it can perform some operations without accessing the 
server. The issues related to client caching are discussed in Section 10.7.2. 

10.5.2 File Handles 

When a client makes an NFS request to the server, it must identify the file it wants to access. Pass
ing the pathname on each access would be unacceptably slow. The NFS protocol associates an ob-

client 
code 

rpc c call 
client 

interface rpc reply 

ufsnode 

nfs 
server 
code 

Server 

rpc 
server 

interface 

Figure 10-4. Control flow in NFS. 

ufs code 

local disk 



10.5 NFS Implementation 303 

ject called a file handle with each file or directory. The server generates this handle when the client 
first accesses or creates the file through a LOOKUP, CREATE, or MKDIR request. The server returns the 
handle to the client in the reply to the request, and the client can subsequently use it in other opera
tions on this file. 

The client sees the file handle as an opaque, 32-byte object and makes no attempt to interpret 
the contents. The server can implement the file handle as it pleases, as long as it provides a unique 
one-to-one mapping between files and handles. Typically, the file handle contains ajile system ID, 
which uniquely identifies the local file system, the inode number of the file, and the generation 
number of that inode. It may also contain the inode number and generation number of the exported 
directory through which the file was accessed. 

The generation number was added to the inode to solve problems peculiar to NFS. It is pos
sible that, between the client's initial access of the file (typically through LOOKUP, which returns the 
file handle) and when the client makes an I/0 request on the file, the server deletes the file and re
uses its inode. Hence the server needs a way of determining that the file handle sent by the client is 
obsolete. It does this by incrementing the generation number of the inode each time the inode is 
freed (the associated file is deleted). The server can now recognize requests that refer to the old file 
and respond to them with an EST ALE (stale file handle) error status. 

1 0.5.3 The Mount Operation 

When a client mounts an NFS file system, the kernel allocates a new vfs structure and invokes the 
nfs _mount() function. nfs _mount() sends an RPC request to the server, using the Mount protocol. 
The argument to this request is the pathname of the directory to be mounted. The mountd daemon 
on the server receives this request and translates the pathname. It checks whether the pathname is 
that of a directory and whether that directory is exported to the client. If so, mountd returns a suc
cessful completion reply, in which it sends the file handle of that directory. 

The client receives the successful reply and completes the initialization of the vfs structure. 
It records the name and network address of the server in the private data object of the vfs. It then 
allocates the mode and vnode for the root directory. If the server crashes and reboots, the clients still 
have the file systems mounted, but the server has lost that information. Since the clients are sending 
valid file handles in NFS requests, the server can assume that a successful mount had taken place 
previously and rebuild its internal records. 

The server does, however, need to check access rights to the file system on each NFS re
quest. It must ensure that the files being operated on are exported to that client (if the request will 
modify the file, it must be exported read-write). To make this check efficient, the file handle con
tains the <inode, generation number> of the exported directory. The server maintains an in-memory 
list of all exported directories, so it can perform this check quickly. 

1 0.5.4 Path name Lookup 

The client gets the file handle of the top-level directory as a result of the mount operation. It obtains 
other handles during pathname lookup or as a result of CREATE or MKDIR. The client initiates lookup 
operations during system calls such as open, creat, and stat. 



304 Chapter I 0 Distributed File Systems 

On the client, lookup begins at the current or root directory (depending on whether the path
name is relative or absolute) and proceeds one component at a time. If the current directory is an 
NFS directory or if we cross a mount point and get to an NFS directory, the lookup operation calls 
the NFS-specific VOP _LOOKUP function. This function sends a LOOKUP request to the server, passing 
it the file handle of the parent directory (which the client had saved in the mode) and the name of 
the component to be searched. 

The server extracts the file system ID from the handle and uses it to locate the vfs structure 
for the file system. It then invokes the VFS _ VGET operation on this file system, which translates the 
file handle and returns a pointer to the vnode of the parent directory (allocating a new one if it is not 
already in memory). The server then invokes the VOP _LOOKUP operation on that vnode, which calls 
the corresponding function of the local file system. This function searches the directory for the file 
and, if found, brings its vnode into memory (unless it is already there, of course) and returns a 
pointer to it. 

The server next invokes the VOP _ GETATTR operation on the vnode of the target file, followed 
by VOP _FID, which generates the file handle for the file. Finally, it generates the reply message, 
which contains the status, the file handle of the component, and its file attributes. 

When the client receives the reply, it allocates a new mode and vnode for the file (if this file 
had been looked up previously, the client may already have a vnode for it). It copies the file handle 
and attributes into the mode and proceeds to search for the next component. 

Searching for one component at a time is slow and requires several RPCs for a single path
name. The client may avoid some RPCs by caching directory information (see Section 10.7.2.). Al
though it would seem more efficient to send the entire pathname to the server in a single LOOKUP 
call, that approach has some important drawbacks. First, since the client may have mounted a file 
system on an intermediate directory in the path, the server needs to know about all the client's 
mount points to parse the name correctly. Second, parsing an entire pathname requires the server to 
understand UNIX pathname semantics. This conflicts with the design goals of statelessness and op
erating system independence. NFS servers have been ported to diverse systems such as VMS and 
Novell NetWare, which have very different pathname conventions. Complete pathnames are used 
only in the mount operation, which uses a different protocol altogether. 

10.6 UNIX Semantics 

Since NFS was primarily intended for UNIX clients, it was important that UNIX semantics be pre
served for remote file access. The NFS protocol, however, is stateless, which means that clients 
cannot maintain open files on the server. This leads to a few incompatibilities with UNIX, which we 
describe in the following paragraphs. 

1 0.6.1 Open File Permissions 

UNIX systems check access permissions when a process first opens the file, not on every read or 
write. Suppose, after a user opens a file for writing, the owner of the file changes its permissions to 
read-only. On a UNIX system, the user can continue to write to the file until he closes it. NFS, 



10.6 UNIX Semantics 305 

lacking the concept of open files, checks the permissions on each read or write. It would therefore 
return an error in such a case, which the client would not expect to happen. 

Although there is no way to fully reconcile this issue, NFS provides a work-around. The 
server always allows the owner of the file to read or write the file, regardless of the permissions. On 
the face of it, this seems a further violation of UNIX semantics, since it appears to allow owners to 
modify their own write-protected files. The NFS client code, however, prevents that from happen
ing. When the client opens the file, the LOOKUP operation returns the file attributes along with the 
handle. The attributes contain the file permissions at the time of the open. If the file is write
protected, the client code returns an EACCESS (access denied) error from the open call. It is impor
tant to note that the server's security mechanisms rely on proper behavior of the client. In this in
stance, the problem is not serious, since it only affects the owner's lack of write access. Section 10.9 
discusses the major problems with NFS security. 

1 0.6.2 Deletion of Open Files 

If a UNIX process deletes a file that another process (or that process itself) still has open, the kernel 
simply marks the file for deletion and removes its entry from the parent directory. Although no new 
processes can now open this file, those that have it open can continue to access it. When the last 
process that has the file open closes it, the kernel physically deletes the file. This feature is used by 
several utilities to implement temporary files. 

Once again, this is a problem for NFS, since the server does not know about open files. The 
work-around this time involves modifying the NFS client code, since the client does know about 
open files. When the client detects an attempt to delete an open file, it changes the operation to a 
RENAME, giving the file a new location and name. The client usually chooses some unusual and long 
name that is unlikely conflict with existing files. When the file is last closed, the client issues aRE
MOVE request to delete the file. 

This works well when the process that has the file open is on the same machine as the one 
deleting the file. There is no protection, however, against the file being deleted by a process on an
other client (or on the server). If that happens, the user will get an unexpected error (stale file han
dle) when he next tries to read or write that file. Another problem with this work-around is that if 
the client crashes between the RENAME and REMOVE operations, a garbage file is left behind on the 
server. 

1 0.6.3 Reads and Writes 
In UNIX, a read or write system call locks the vnode of the file at the start of the I/0. This makes 
file I/0 operations atomic at the system call granularity. If two writes are issued to the same file at 
roughly the same time, the kernel serializes them and completes one before starting the other. 
Likewise, it ensures that the file cannot change while a read is in progress. The local file-system
dependent code handles the locking, within the context of a single vop _ rdwr operation. 

For an NFS file, the client code serializes concurrent access to a file by two processes on the 
same client. If, however, the two processes are on different machines, they access the server inde
pendently. A read or write operation may span several RPC requests (the maximum size of an RPC 



306 Chapter I 0 Distributed File Systems 

message is 8192 bytes), and the server, being stateless, maintains no locks between requests. NFS 
offers no protection against such overlapping l/0 requests. 

Cooperating processes can use the Network Lock Manager (NLM) protocol to lock either 
entire files or portions thereof. This protocol only offers advisory locking, which means that another 
process can always bypass the locks and access the file if it so chooses. 

10.7 NFS Performance 

One of the design goals of NFS was that its performance be comparable to that of a small local disk. 
The metric of interest is not raw throughput, but the time required to do normal work. There are 
several benchmarks that try to simulate a normal workload on an NFS file system, the most popular 
being LADDIS [Witt 93] and nhfsstone [Mora 90]. This section discusses the major performance 
problems ofNFS and how they have been addressed. 

1 0. 7.1 Performance Bottlenecks 

NFS servers are usually powerful machines with large caches and fast disks, which compensate for 
the time taken for RPC requests going back and forth. There are several areas, however, where the 
NFS design directly leads to poor performance. 

Being a stateless protocol, NFS requires that all writes be committed to stable storage before 
replying to them. This includes not only modifications to the file metadata (inodes and indirect 
blocks), but also to the body of the file. As a result, any NFS request that modifies the file system in 
any way (such as WRITE, SETATTR, or CREATE) is extremely slow. 

Fetching of file attributes requires one RPC call per file. As a result, a command such as Is -l 
on a directory results in a large number of RPC requests. In the local case, such an operation is fast, 
since the inodes end up in the buffer cache, so the stat calls need only a memory reference. 

If the server does not reply to a request fast enough, the client retransmits it to account for 
the server crashing or the request being lost on the network. Processing the retransmitted request 
further adds to the load on the server and may aggravate the problem. This has a cascading effect, 
resulting in an overloaded server bogged down by the incoming traffic. 

Let us look at some ways of addressing NFS performance problems and the repercussions of 
these solutions. 

10.7.2 Client-Side Caching 

If every operation on a remote file required network access, NFS performance would be intolerably 
slow. Hence most NFS clients resort to caching both file blocks and file attributes. They cache file 
blocks in the buffer cache and attributes in the modes. This caching is dangerous, since the client 
has no way of knowing if the contents of the cache are still valid, short of querying the server each 
time they must be used. 

Clients take certain precautions to reduce the dangers of using stale data. The kernel main
tains an expiry time in the mode, which monitors how long the attributes have been cached. Typi
cally, the client caches the attributes for 60 seconds or less after fetching them from the server. If 



10.7 NFS Perfonnance 307 

they are accessed after the quantum expires, the client fetches them from the server again. Likewise, 
for file data blocks, the client checks cache consistency by verifying that the file's modifY time has 
not changed since the cached data was read from the server. The client may use the cached value of 
this timestamp or issue a GETATTR if it has expired. 

Client-side caching is essential for acceptable performance. The precautions described here 
reduce, but do not eliminate, the consistency problems. In fact, they introduce some new race con
ditions, as described in [Mack 91] and [Jusz 89]. 

1 0. 7.3 Deferral of Writes 

The NFS requirement of synchronous writes applies only to the server. The client is free to defer 
writes, since if data is lost due to a client crash, the users know about it. The client policy, therefore, 
is to use asynchronous writes for full blocks (issue the WRITE request but do not wait for the reply) 
and delayed writes for partial blocks (issue the WRITE sometime later). Most UNIX implementations 
flush delayed writes to the server when the file is closed and also every 30 seconds. The biod 
daemons on the client handle these writes. 

Although the server must commit writes to stable storage before replying, it does not have to 
write them to disk. It may use some special hardware to make sure that the data will not be lost in 
the event of a crash. For instance, some servers use a special, battery backed, nonvolatile memory 
(NVRAM). The WRITE operation simply transfers the data to an NVRAM buffer (provided one was 
free). The server flushes the NVRAM buffers to disk at a later time. This allows the server to re
spond quickly to write requests, since the transfer to NVRAM is much faster than a disk write. The 
disk driver can optimize the order of the NVRAM-to-disk writes, so as to minimize disk head 
movements. Moreover, multiple updates to the same buffer could be written to disk in a single op
eration. [Mora 90] and [Ritz 94] describe NFS server implementations that use NVRAM. 

[Jusz 94] shows a technique called write-gathering that reduces the synchronous write bot
tleneck without using special hardware. It relies on the fact that typical NFS clients use a number of 
biod daemons to handle write operations. When a client process opens a file and writes to it, the 
kernel simply caches the changes and marks them for delayed write. When the client closes the file, 
the kernel flushes its blocks to the server. If there are sufficient biods available on the client, they 
can all issue the writes in parallel. As a result, servers often receive a number of writes requests for 
the same file bunched together. 

Using write-gathering, the server does not process WRITE requests immediately. Rather, it 
delays them for a little while, in the hope that it receives other WRITEs for the same file in the mean
time. It then gathers all requests for the same file and processes them together. After completing 
them all, the server replies to each of them. This technique is effective when the clients use biods 
and is optimal when they use a large number of biods. Although it appears to increase the latency of 
individual requests, it improves performance tremendously by reducing the total number of disk op
erations on the server. For instance, if the server gathers n writes to a file, it may be able to commit 
them to disk using a single data write and a single inode write (as opposed to n of each). Write
gathering improves the server throughput, and reduces the load on its disks. These gains more than 
offset the latency increase caused by the delay, and the overall effect is to reduce the average time of 
the writes. 



308 Chapter 10 Distributed File Systems 

Some servers rely on an uninterruptible power supply (UPS) to flush blocks to disk in case 
of a crash. Some simply ignore the NFS requirement of synchronous writes, expecting crashes to be 
rare occurrences. The plethora of solutions and work-arounds to this problem simply highlights its 
severity. NFSv3, described in Section 10.10, provides a protocol change that allows clients and 
servers to use asynchronous writes safely. 

10.7.4 The Retransmissions Cache 

In order to provide reliable transmission, RPC clients repeatedly retransmit requests until they re
ceive a response. Typically, the waiting period is quite short (configurable, typically 1-3 seconds) 
for the first retransmission and increases exponentially for each subsequent retry. If, after a certain 
number of retries, the client still does not receive a response, it may (in some implementations) send 
a new request identical to the old, but with a different transmission ID (xid). 

Retransmissions occur due to packet loss (original request or the reply) on the network or 
because the server could not reply promptly enough. Very often the reply to the original request is 
on the way when the client sends a second copy. Multiple retransmissions usually happen when the 
server crashes or when the network is extremely congested. 

The server needs to handle such duplicate requests correctly and efficiently. NFS requests 
can be divided into two types-idempotent and nonidempotent [Jusz 89]. Idempotent requests, such 
as READ or GETATTR, can be executed twice without any ill effects. Nonidempotent requests may re
sult in incorrect behavior if repeated. Requests that modify the file system in any way are nonidem
potent. 

For example, consider the following sequence of events caused by a duplicate REMOVE op-
eration: 

I. Client sends a REMOVE request for a file. 
2. Server removes the file successfully. 
3. Server sends a success reply to the client. This reply is lost on the network. 
4. Client sends a duplicate REMOVE request. 
5. Server processes the second REMOVE, which fails because the file has already been deleted. 
6. Server sends an error message to the client. This message reaches the client. 

As a result, the client gets an error message, even though the REMOVE operation succeeded. 
Reprocessing of duplicate requests also hurts server performance, because the server spends 

a lot of time doing work it should never do. This aggravates a situation that was bad to start with, 
since the retransmission probably occurred because the server was overloaded and therefore slow. 

It is therefore necessary to detect and handle retransmissions correctly. To do so, the server 
keeps a cache of recent requests. A request can be identified as a duplicate if its xid, procedure 
number, and client ID match those of another request in the cache. (This is not always foolproof, 
because some clients may generate the same xid for requests from two different users.) This cache is 
normally called the retransmissions cache or the xid cache. 

The original Sun reference port maintained such a cache only for the CREATE, REMOVE, LINK, 
MKD I R, and RMD I R requests. It checked the cache only after a request failed, to determine if the fail
ure was due to the request being a retransmission. If so, it sent a success reply to the client. This was 



10.8 Dedicated NFS Servers 309 

inadequate-it covered only some of the loopholes and opened up new consistency problems. 
Moreover, it does not address the performance problems, since the server does not check the cache 
until after it has processed the request. 

[Jusz 89] provides a detailed analysis of the problems in handling retransmissions. Based on 
that, Digital revamped the xid cache in Ultrix. The new implementation caches all requests and 
checks the cache before processing new requests. Each cache entry contains request identification 
(client ID, xid, and procedure number), a state field, and a timestamp. If the server finds the request 
in the cache, and the state of the request is in progress, it simply discards the duplicate. If the state is 
done, the server discards the duplicate if the timestamp indicates that the request has completed re
cently (within a throwaway window set at 3-6 seconds). Beyond the throwaway window, the server 
processes the request if idempotent. For nonidempotent requests, the server checks to see if the file 
has been modified since the original timestamp. If not, it sends a success response to the client; oth
erwise, it retries the request. Cache entries are recycled on a least recently used basis so that if the 
client continues to retransmit, the server will eventually process the request again. 

The xid cache helps eliminate several duplicate operations, improving both the performance 
and the correctness of the server. It is possible to take this one step further. If the server caches the 
reply message along with the xid information, then it can handle a duplicate request by retransmit
ting the cached reply. Duplicates that arrive within the throwaway window may still be discarded 
altogether. This will further reduce wasteful reprocessing, even for idempotent requests. This ap
proach requires a large cache capable of saving entire reply messages. Some replies, such as those 
for READ or READDIR requests, can be very large. It is better to exclude these requests from the xid 
cache and process them again if necessary. 

10.8 Dedicated NFS Servers 

Most UNIX vendors design file servers by repackaging workstations in a rack and adding more 
disks, network adapters, and memory. These systems run the vendor's UNIX variant, which is de
signed primarily for use in a multiprogramming environment and is not necessarily appropriate for 
high-throughput NFS service. Some vendors have designed systems specifically for use as dedicated 
NFS servers. These systems either add to the functionality of UNIX or completely replace the op
erating system. This section describes two such architectures. 

1 0.8.1 The Auspex Functional Multiprocessor Architecture 

Auspex Systems entered the high-end NFS server market with a functional multiprocessing (FMP) 
system called the NS5000. The FMP architecture [Ritz 90] recognizes that NFS service comprises 
two major subsystems-network and file system.? It uses a number of Motorola 680x0 processors 
sharing a common backplane, each dedicated to one of these subsystems. These processors run a 
small functional multiprocessing kernel (FMK) and communicate with each other via high-speed 

7 The original design separated the storage functionality into a third subsystem. The recent line of products do not 
feature separate storage processors. 



310 Chapter 10 Distributed File Systems 

message passing. One processor (also a 68020) runs a modified version of SunOS4.1 (with FMK 
support added to it) and provides management functionality. Figure 10-5 shows the basic design. 

The UNIX front end can communicate directly to each of the functional processors. It talks 
to network processors through the standard network if driver and to file system processors through a 
special local file system, which implements the vfs interface. The UNIX processor also has direct 
access to the storage through a special device driver that represents an Auspex disk and converts disk 
1/0 requests into FMK messages. This allows utilities such as fsck and newfs to work without 
change. 

Normal NFS requests bypass the UNIX processor altogether. The request comes in at a net
work processor, which implements the IP, UDP, RPC, and NFS layers. It then passes the request to 
the file system processor, which may issue I/0 requests to the storage processor. Eventually, the 
network processor sends back the reply message to the client. 

The FMK kernel supports a small set of primitives including light-weight processes, mes
sage passing, and memory allocation. By eliminating a lot of the baggage associated with the tradi
tional UNIX kernel, FMK provides extremely fast context switching and message passing. For in
stance, FMK has no memory management and its processes never terminate. 

This architecture provided the basis for a high-throughput NFS server that established Aus
pex Systems as a leader in the high-end NFS market. Recently, its position has been challenged by 
cluster-based NFS servers from vendors such as Sun Microsystems and Digital Equipment Corpo
ration. 

10.8.2 IBM's HA-NFS Server 
[Bhid 91] describes a prototype implementation of HA-NFS, a highly available NFS server de
signed at IBM. HA-NFS separates the problem of high availability NFS service into three compo-

NS5000 

NW = network processor FS = file system processor 

Figure 10-5. Auspex NS5000 architecture. 



10.8 Dedicated NFS Servers 311 

nents-network reliability, disk reliability, and server reliability. It uses disk mirroring and optional 
network replication to address the first two problems and uses a pair of cooperating servers to pro
vide server reliability. 

Figure 10-6 illustrates the HA-NFS design. Each server has two network interfaces and, cor
respondingly, two IP addresses. A server designates one of its network interfaces as the primary in
terface and uses it for normal operation. It uses the secondary interface only when the other server 
fails. 

HA-NFS also uses dual-ported disks, which are connected to both servers through a shared 
SCSI bus. Each disk has a primary server, which alone accesses it during normal operation. The 
secondary server takes over the disk when the primary server fails. Thus the disks are divided into 
two groups, one for each server. 

The two servers communicate with each other through periodic heartbeat messages. When a 
server does not receive a heartbeat from the other, it initiates a series of probes to make sure the 
other server has actually failed. If so, it initiates a failover procedure. It takes control of the failed 
server's disks and sets the IP address of its secondary network interface to that of the failed server's 
primary interface. This allows it to receive and service messages intended for the other server. 

The takeover is transparent to clients, who only see reduced performance. The server seems 
to be unresponsive while the failover is in progress. Once failover completes, the surviving server 
may be slow, since it now handles the load normally meant for two servers. There is, however, no 
loss in service. 

Each server runs IBM's AIX operating system, which uses a metadata logging file system. 
HA-NFS adds information about the RPC request to log entries for NFS operations. When a server 
takes over a disk during failover, it replays the log to restore the file system to a consistent state and 
recovers its retransmission cache from the RPC information in the log. This prevents inconsistencies 
due to retransmissions during failover. The two servers also exchange information about clients that 

Disks 
Network SCSI 

Client nodes 

Primary -------
connection 

Secondary 
-------

connection 

Figure 10-6. HA-NFS configuration. 



312 Chapter I 0 Distributed File Systems 

have made file locking requests using NSM and NLM [Bhid 92]. This allows recovery of the lock 
manager state after failure of one of the servers. 

There are two ways to make the IP address takeover transparent to clients. One is to use 
special network interface cards that allow their hardware addresses to be changed. During failover, 
the server changes both the IP address and the hardware address of the secondary interface to those 
of the failed server's primary interface. In absence of such hardware, the server can take advantage 
of some side effects of certain address resolution protocol (ARP) requests [Plum 82] to update the 
new <hardware address, IP address> mapping in the clients. 

10.9 NFS Security 

It is difficult for any network application to provide the same level of security as a local system. 
While NFS seeks to provide UNIX semantics, its security mechanisms are woefully inadequate. 
This section examines the major loopholes in NFS security and some possible solutions. 

10.9.1 NFS Access Control 

NFS performs access control at two points-when the file system is mounted and also on every 
NFS request. Servers maintain an exports list that specifies which client machines can access each 
exported file system and whether the access permitted is read-only or read-write. When a client tries 
to mount a file system, the server mountd checks this list and denies access to ineligible clients. 
There are no restrictions on specific users, meaning that any user on an eligible client can mount the 
file system. 8 

On each NFS request, the client sends authentication information, usually in AUTH _UN I X 
form. This information contains the user and group IDs of the owner of the process making the re
quest. The NFS server uses this information to initialize a credentials structure, which is used by the 
local file systems for access control. 

For this to work, the server and all the clients must share a flat <UID, GID> space. This 
means that any given UID must belong to the same person on all machines sharing NFS file sys
tems. If user ul on machine ml has the same UID as user u2 on machine m2, the NFS server will 
not be able to distinguish the two and will allow each user complete access to the other's files. 

This is a major problem in today's typical workgroups, where each user has his or her own 
private workstation, and a central NFS server maintains common files (including, in many cases, 
login directories). Since each user typically has root privileges to his own workstation, he can create 
accounts with any <UID, G!Ds>, thereby impersonating anyone else. Such an impostor can freely 
access the victim's files on the server, without the victim ever learning about it. The impostor can 
do this without writing sophisticated programs or modifying the kernel or the network. The only 
line of defense is to restrict NFS access to known clients that can be trusted or monitored. This is 
the strongest demonstration of the fact that NFS security is nonexistent. 

There are other ways of breaking into NFS. Since NFS relies on data that is being sent over 
unsecured networks, it is easy to write programs that imitate NFS clients and send packets contain-

8 Many client implementations allow only privileged users to mount NFS file systems. 



I 0.9 NFS Security 313 

ing fake authentication data, perhaps even appearing to come from a different machine. This would 
allow break-ins even by users who do not have root permission on a machine or by users on ma
chines that do not have NFS access to a server. 

10.9.2 UID Remapping 

There are some ways to prevent such intrusions. The first line of defense involves UID remapping. 
This means that instead of a flat < UID, G!Ds> space on the server and all clients, the server main
tains a translation map for each client. This map defines the translation from credentials received 
over the network to an identity to be used on the server. This identity is also described by a <UID, 
G!Ds> set, but the set may be different from that sent by the client. 

For instance, the translation map may specify that UID 17 from client c1 translates to UID 
33 on the server, whereas UID 17 from client c2 translates to UID 17 on the server, and so forth. It 
may also define translations for the GIDs. The map may contain several default translations or wild
cards (e.g., "no translation required for credentials from a set of trusted clients"). Typically, it 
would also specify that if a particular incoming credential does not match any map entry or default 
rule, then that credential is mapped to user nobody, which is a special user that can only access files 
that have world permissions. 

Such UID remapping can be implemented at the RPC level. This means that the translations 
would apply to any RPC-based service and take place before the request was interpreted by NFS. 
Since such translations require additional processing, this would degrade the performance of all 
RPC-based services, even if a particular service did not need that level of security. 

An alternative approach is to implement UID remapping at the NFS level, perhaps by 
merging the map with the /etc/exports file. This would enable the server to apply different map
pings for different file systems. For instance, if the server exports its /bin directory as read-only and 
the /usr directory as read-write, it may want to apply UID maps only to the /usr directory, which 
might contain sensitive files that users wish to protect. The drawback of this approach is that each 
RPC service would have to implement its own UID maps (or other security mechanisms), perhaps 
duplicating effort and code. 

Very few mainstream NFS implementations provide any form of UID remapping at all. Se
cure versions of NFS prefer to use secure RPC with AUTH _DES or AUTH _KERB authentication, de
scribed in Section 1 0.4.2. 

1 0.9.3 Root Remapping 

A related problem involves root access from client machines. It is not a good idea for superusers on 
all clients to have root access to files on the server. The usual approach is for servers to map the su
peruser from any client to the user nobody. Alternatively, many implementations allow the 
/etc/exports file to specify an alternative UID to which root should be mapped. 

Although this takes care of the obvious problems with superuser access, it has some strange 
effects on users logged in as root (or who are executing a privileged program installed in setuid 
mode). These users have fewer privileges to NFS files than ordinary users. They may not, for in
stance, be able to access their own files on the server. 



314 Chapter I 0 Distributed File Systems 

Many of the above problems are not restricted to NFS. The traditional UNIX security 
framework is designed for an isolated (no network), multiuser environment and is barely adequate 
even in that domain. The introduction of a network where nodes trust each other severely compro
mises the security and opens several loopholes. This has led to the development of several network 
security and authentication services, the most notable in the UNIX world being Kerberos [Stei 88]. 
A more detailed discussion of network security is beyond the scope of this book. 

10.10 NFS Version 3 

NFSv2 became enormously popular and was ported to many different hardware platforms and op
erating systems. This also helped highlight its shortcomings. While some of the problems could be 
addressed by clever implementations, many problems were inherent to the protocol itself. In 1992, 
engineers from several companies gathered for a series of meetings in Boston, Massachusetts, to 
develop version 3 of the NFS protocol [Pawl 94, Sun 95]. NFSv3 is beginning to appear in com
mercial releases. Digital Equipment Corporation was the first to support NFSv3 in DEC OSF re
lease 3,9 and Silicon Graphics, Inc. and a few others have also followed suit. Rick Macklem of the 
University of Guelph has made available a public domain implementation for 4.4BSD, which may 
be obtained by anonymous ftp from snowhite.cis.uoguelph.ca:/pub/nfs. 

NFSv3 addresses several important limitations of NFSv2. The main problem with NFSv2 
performance is the requirement that the server must commit all modifications to stable storage be
fore replying. This is due to the stateless nature of the protocol, since the client has no other way of 
knowing that the data has been safely transferred. NFSv3 allows asynchronous writes by adding a 
new COMMIT request, which works as follows: When a client process writes to an NFS file, the ker
nel sends asynchronous WRITE requests to the server. The server may save the data in its local cache 
and reply to the client immediately. The client kernel holds on to its copy of the data, until the proc
ess closes the file. At that time, the kernel sends a COMMIT request to the server, which flushes the 
data to disk and returns successfully. When the client receives the reply to the COMMIT request, it can 
discard its local copy of the data. 

Asynchronous writes are optional in NFSv3, and specific clients or servers may not support 
them. For instance, clients that do not have adequate data caching facilities may continue to use old
style writes, which the server must write to stable storage immediately. Servers may choose to use 
synchronous writes even for asynchronous requests, in which case, they must indicate this in the 
reply. 

Another major problem in NFSv2 is its use of 32-bit fields for specifying file sizes and read 
and write offsets. This limits the protocol to supporting files smaller than 4 gigabytes. Many appli
cations need to deal with larger files and find this constraint unacceptable. NFSv3 widens these 
fields to 64 bits, thus allowing files up to 1.6x1019 bytes (16 billion terabytes) in size. 

The NFSv2 protocol causes far too many LOOKUP and GETATTR requests. For instance, when 
a user reads a directory through Is -1, the client sends a REA DO I R request to the server, which returns 

9 DEC OSF/1 is now known as Digital UNIX. 



I 0.12 RFS Architecture 315 

a list of the filenames in the directory. The client then issues a LOOKUP and a GETA TTR for each file 
in the list. For a large directory, this can cause excessive network traffic. 

NFSv3 provides a READDIRPLUS operation, which returns the names, file handles, and at
tributes of the files in the directory. This allows a single NFSv3 request to replace the entire se
quence ofNFSv2 requests. The READDIRPLUS request must be used with care, since it returns a large 
amount of data. If the client wants information about one file only, it may be cheaper to use the old 
sequence of calls. 

Implementations that support NFSv3 must also support NFSv2. The client and server nor
mally use the highest version of the protocol that both of them support. When it first contacts the 
server, the client uses its highest protocol version; if the server does not understand the request, the 
client tries the next lowest version and so on, until they find a commonly supported version. 

Only time will tell how effective and successful NFSv3 will be. The changes described 
above are very welcome improvements to the NFS protocol, and should result in great performance 
improvement. NFSv3 also cleans up a few minor problems with NFSv2. Some of the smaller 
changes reduce the performance ofNFSv3, but the benefits of asynchronous writes and READDIR
PLUS are expected to more than compensate for that. 

10.11 Remote File Sharing (RFS) 

AT&T introduced the Remote File Sharing (RFS) file system in SVR3 UNIX to provide access to 
remote files over a network. While its basic objective is similar to that of NFS, RFS has a funda
mentally different architecture and design. 

The major design goal of RFS is to provide completely transparent access to remote files and 
devices, in a way that preserves all UNIX semantics. This implies support for all file types, includ
ing device files and named pipes (FIFO files), as well as for file and record locking. Other important 
goals include binary compatibility, so that existing applications do not need to be modified to use 
RFS (except to deal with some new error codes), and network independence, so that RFS can be 
used over both local- and wide-area networks (LANs and WANs). 

The initial implementation was portable only to other SVR3 UNIX systems on different 
hardware. This limitation was due to RFS's use of the file system switch mechanism of SVR3. 
SVR4 integrated RFS with the vnode/vfs interface, which made it portable to many other UNIX 
variants. This redesign was based on an earlier port of RFS to Sun OS [Char 87]. We shall concen
trate on this vnode-based implementation ofRFS. 

10.12 RFS Architecture 

Similar to NFS, RFS is based on a client-server model. The server advertises (exports) directories, 
and the client mounts them. Any machine may be a client, or a server, or both. The similarities end 
there. RFS is a completely stateful architecture, which is necessary to correctly provide UNIX open 
file semantics. This has a far-reaching impact both on its implementation and its functionality. 

RFS uses a reliable, virtual-circuit transport service such as TCPIIP. Each client-server pair 
uses a single virtual circuit, established during the first mount operation. If the client mounts any 



316 Chapter 1 0 Distributed File Systems 

other directories of the server, all the mounts are multiplexed on the same circuit. The circuit is kept 
open for the duration of the mounts. If either the client or server crashes, the circuit breaks, and the 
other becomes aware of the crash and can take appropriate action. 

Network independence is achieved by implementing RFS on top of the STREAMS frame
work (see Chapter 17) and using AT &T's transport provider interface (TPI). RFS can communicate 
over multiple streams and thus use several different transport providers on the same machine. Figure 
10-7 illustrates the communication setup between the client and the server. 

RFS associates a symbolic resource name with each directory advertised (exported) by any 
server. A centralized name server maps resource names to their network location. This allows the 
resources (exported file trees) to be moved around in the network; clients can access the resource 
without having to know its current location.IO 

Since RFS is intended to work over large networks, resource management can become 
complex. Therefore, RFS provides the concept of a domain, which is a logical grouping of a set of 
machines in the network. Resources are identified by the domain name and the resource name, 
which now must be unique only within the domain. If the domain name is not specified, the current 
domain is assumed. The name server may only store the information about resources in its own do
main and forward other requests to name servers of the respective domains. 

10.12.1 Remote Message Protocol 
The initial design of RFS used a remote system call model, which provides an RFS operation for 
each system call that operates on a remote file. For each such operation, the client packages the ar
guments to the system call, as well as information about the client process's environment, into an 

Client Server 

virtual circuit 

Figure 10-7. Communications in RFS. 

I 0 Of course, the resource cannot be moved while any client has it mounted. 



I 0.13 RFS Implementation 317 

RFS request. The server recreates the client's environment and executes the system call. The client 
process blocks until the server processes the request and sends back a response message, containing 
the results of the system call. The client then interprets the results and completes the system call, 
returning control to the user. This implementation was called the RFS 1.0 protocol. 

When RFS was integrated with the vnode/vfs interface, it was necessary for RFS to imple
ment each vnode operation. In the port to Sun OS [Char 87], each vnode operation was implemented 
in terms of one or more RFS 1.0 requests. For instance, vn _open could simply use the RFS _OPEN re
quest, whereas vn_ setattr required an RFS _OPEN, followed by one or more of RFS _ CHMOD, 
RFS _ CHOWN, and RFS _UTI ME. 

SVR4 introduced a new version of the RFS protocol, called RFS2.0. It provided a set of re
quests that directly mapped vnode and vfs operations, thus providing a cleaner integration with the 
vnode/vfs interface. This did, however, bring up the problem of backward compatibility, since dif
ferent machines on the network may be running different UNIX releases and, thus, different ver
sions ofRFS. 

To address this, SVR4 clients and servers understand both RFS protocols. When the con
nection is made (during the first mount operation), the client and the server exchange information 
about which protocols each of them can handle and agree on the protocol they both understand. 
Thus RFS2.0 is only used when both machines support it. If one of the machines is running SVR4 
and the other SVR3, they will use the RFSl.O protocol. 

This requires SVR4 to implement each vnode and vfs operation in two ways-one when 
speaking to another SVR4 machine and the other when talking to an older system. 

10.12.2 Stateful Operation 

RFS is an inherently stateful file system, which means the server maintains state about the clients. 
In particular, the server records which files have been opened by the client, and increments the ref
erence counts on their vnodes. In addition, the server keeps track of file/record locks held by each 
client and reader/writer counts for named pipes. The server also maintains a table of all clients that 
have mounted its file systems. This table stores the client internet address, the mounted file system, 
and parameters of the virtual circuit connection. 

The stateful nature requires that the server and the client are informed when the other crashes 
and that they perform appropriate recovery actions. This is discussed in detail in Section 10.13.3. 

10.13 RFS Implementation 

The RFS protocol allows a clean separation of the client and server functionality. Mount operations 
are handled separately by the remote mount facility, in conjunction with the name server. Let us ex
amine each of these components separately. 

10.13.1 Remote Mount 

An RFS server can advertise a directory using the advfs system call. The arguments to advfs include 
the pathname of the exported directory, the resource name associated with the directory, and a list of 



318 Chapter I 0 Distributed File Systems 

client machines authorized to access the resource. In addition, the server may require a password 
check to be performed during virtual circuit establishment. 

The server calls advfs to advertise a directory. advfs creates an entry for the directory in are
source list in the kernel (Figure 1 0-8). This entry contains the resource name, a pointer to the vnode 
of the exported directory, and a list of authorized clients. It also contains the head of a list of mount 
entries for each of the clients that mount this resource. In SVR4, the advfs system call has been re
placed by the rfsys call, which exports several subfunctions, including one to advertise a file system. 

Figure 10-9 describes the interactions between the RFS server, the name server, and the cli
ent. The server invokes the adv(J) command to register its advertised resource with the name server. 
Some time later, a client mounts an RFS resource by a command such as 

mount -d <RNAME> /mnt 

where <RNAME> is the name of the resource. The mount command queries the name server to obtain 
the network location for this resource and sets up a virtual circuit if necessary. It then invokes the 
mount system call with the pathname of the local mount point and a flag specifying an RFS type 
mount. The RFS-specific arguments to the system call include the virtual circuit pointer and the re
source name. 

The mount system call sends a MOUNT request to the server, passing it the symbolic resource 
name. The server locates the resource table entry, verifies that the client is authorized to mount the 
resource, and adds an entry for the client in the mount list for that resource. It increments the refer
ence count of the exported directory to account for the remote mount and sends a successful reply 
back to the client. This response contains a mount ID, which the client can send back in future re
quests to this file system. The server uses the mount ID to quickly locate the corresponding re
source. 

When the client receives the MOUNT response, it completes its part of the processing. It sets 
up the vfs entry, storing the mount ID in the file system-specific data structure. It also sets up the 

-+ 

ufsnode list of authorized clients 

mount list for resource 

Figure 10-8. RFS resource list. 



10.13 RFS Implementation 

Server registers name 
with name server 

Client gets server 
® location from 

name server 

Client sends mount 
request to server 

Figure 10-9. Mounting an RFS file system. 

319 

vnode for the root directory of the resource. The v _data field of an RFS vnode points to a data 
structure called a send descriptor, which contains information about the virtual circuit (such as a 
pointer to the stream), as well as a file handle that the server can use to locate the corresponding lo
cal vnode. 

The first mount operation between a client and a server establishes the virtual circuit. All 
subsequent mounts (and RFS operations) are multiplexed over this circuit, which is maintained until 
the last resource is unmounted. The mount operation initiates a connection to a daemon process on 
the server, using the transport interface. Once the connection is established, the client and the server 
negotiate the run-time parameters, including the protocol version number, and the hardware archi
tecture type. If the two machines have different architectures, they use XDR for data encoding. 

The initial virtual circuit establishment occurs in user mode, using the standard network pro
gramming interface in the system. Once established, the user calls the FWFD function of the rfsys 
system call, to pass the virtual circuit into the kernel. 

1 0.13.2 RFS Clients and Servers 

The client can access an RFS file either through its pathname or through a file descriptor. The kernel 
may encounter an RFS mount point while traversing a pathname. In RFS 1.0, this results in sending 
the remainder of the pathname to the RFS server, which will parse it in a single operation and return 
a handle to the vnode. RFS2.0 allows the client to mount other file systems on RFS directories, and 
therefore checks to see if this is the case. If so, the client must translate the pathname one compo
nent at a time, so as to process the mount point correctly. If not, it sends the entire pathname to the 
server. The server returns a handle, which the client stores in the private data of the vnode. Figure 
10-10 shows the data structures on the client and server. 

Subsequent operations on the file access it through the file descriptor, which the kernel uses 
to locate the vnode. The vnode operations invoke RFS client functions, which extract the file handle 
from the vnode and pass it in RFS requests to the server. The handle is opaque to the client. Usually, 
it simply contains a pointer to the vnode on the server. 

The RFS server runs as one or more independent daemon processes. They execute entirely in 
the kernel, in order to avoid context switches between user and kernel mode. Each daemon listens 



320 

Client 
struct vfs 

vfs data 
... mount id -... 

struct rf vfs -

[ 
a Fvnodel 

virtual circuit 
file handle -- ~--
... 

RFS send descriptor 

-

-
/ 

/ 

Chapter I 0 Distributed File Systems 

Server 
resource list 

local vnode 
of file 

vnode of 
exported 
directory 

Figure 10-10. RFS data structures. 

for incoming requests and services each request to completion before attending to the next one. 
While servicing a request, the daemon assumes the identity of the client process, using the creden
tials, resource limits, and other attributes passed in the message. The RFS daemons may sleep if 
they need to wait for resources and are scheduled just like normal processes. 

10.13.3 Crash Recovery 

Stateful systems need elaborate crash recovery mechanisms. Both the client and the server need to 
detect and handle the other's failure. When either machine crashes, the virtual circuit between them 
breaks, causing the underlying transport mechanism to notify RFS of the event. The circuit may also 
be broken by a network failure, which is treated just like a crash by RFS. The recovery mechanisms 
are different for the server and the client. 

When a client crashes, the server must undo all state related to that client. To do so, the 
server maintains per-client state information for each inode and uses it to perform the following ac
tions: 

1. Decrements the inode's reference count by the number of references held by the crashed 
client. 

2. Releases any reader/writer locks on named pipes in use by the client. 
3. Releases any file/record locks held by the client. 

In the event of a server crash, all client processes waiting for responses from the server are 
woken up, and the system calls return an ENOLINK error message. All RFS inodes referring to files 
on that server are flagged such that subsequent operations on them return an error. A user-level 
daemon (rfudaemon (1M)) is awakened to handle any additional recovery tasks. 



10.14 Client-Side Caching 321 

10.13.4 Other Issues 

Process pool - Since RFS allows transparent access to remote devices and named pipes, server 
processes may block for a long time waiting for device or pipe 1/Q.II Thus the server needs to 
maintain a dynamic pool of processes. Whenever a client request arrives and all server processes are 
busy, it creates a new process. This pool has a (tunable) upper bound, and the last process is notal
lowed to sleep. 
Remote signals - UNIX allows a signal to abort a system call, and this facility must be extended 
to RFS environments. Suppose a client process is blocked because it is waiting for the server to re
spond to a request. If this process receives a signal, the client kernel sends a signal request to the 
server. This request identifies the process using a system ID along with the PID. The server uses this 
information to locate the daemon process sleeping on behalf of this client and posts the ~ignal to it. 
Data transfer- For a local read or write system call, the copyi n () and copyout () routines move 
data between the buffer cache and the user address space. RFS operations must move data to or 
from the request messages. A special flag in the process table entry identifies the process as being 
an RFS server, and the copyi n () and copyout () routines check this flag and handle the transfer 
appropriately. 

10.14 Client-Side Caching 

If every 1/0 operation required remote access, RFS performance would suffer terribly. Some form 
of caching is essential for reasonable throughput. The problem with any distributed cache is main
taining consistency of data that may reside in multiple client caches, as well as on the server. 
NFSv2, as we saw in Section 10.7.2, takes a very cavalier attitude to this problem, which is accept
able for a stateless system not too particular about preserving full UNIX semantics. RFS, however, 
needs to be much more circumspect and must establish a workable consistency protocol. 

Client caching was introduced in RFS in SVR3.1 [Bach 87]. It is activated at mount time, 
allowing the user to disable the cache if desired (this makes sense for some applications who do 
their own caching). The RFS cache has been designed to provide a strong degree of consistency, 
meaning that there can be no situations where users can get obsolete data from the cache. 

The cache is strictly write-through. Clients send all writes to the server immediately, after 
updating the local cached copy. This does not improve the write performance, but is important for 
consistency. A read system call returns cached data if and only if all the data requested is available 
in the cache (reads may span multiple buffers). If any part of the data is not in the local cache, the 
client fetches all the data from the server in a single operation. If only the missing blocks were read 
from the server, we could not guarantee the atomicity of the read, since the blocks from the cache 
and those from the server could reflect different states of the file. 

The RFS cache shares the resources of the local block buffer cache. Some of the buffers are 
reserved for RFS use, some for local files, and the rest are available to both. This prevents local files 
from monopolizing the buffer pool. Buffers are reused in least recently used order. 

11 In practice, using RFS to share devices is problem-prone, except in completely homogeneous environments. Small 
differences in system call semantics may make device sharing impossible. 



322 Chapter I 0 Distributed File Systems 

10.14.1 Cache Consistency 

The strong cache consistency model guarantees that a read always returns data that is identical to the 
server's image of the file at the time of access. The server's image reflects the disk copy of the file, 
as well as any more recent blocks in the server's buffer cache. 

Any modification to a file, either by a user on the server, or by one of the clients, invalidates 
the cached copies on all other clients. One way to achieve this is to notify all affected clients upon 
each write operation, but this leads to extensive network traffic and is prohibitively expensive. RFS 
provides consistency in a more efficient manner, by distinguishing between clients that have the file 
open and those who have already closed it. 

Consistency protocols are only required for files that are shared by multiple clients. If a re
mote file is shared by different processes on the same machine, the cache consistency can be pro
vided by the client itself, without involving the server. 

Figure 10-11 shows how RFS maintains cache consistency. When the server receives the 
first write request for a file open on more than one client, it suspends the write operation and sends 
an invalidate message to all other clients who have the file open. These clients invalidate any 
cached data for this file and temporarily disable caching for it. Subsequent reads for that file will 
bypass the cache and fetch data from the server. The caching is reenabled when the writer process 
closes the file or when a certain (tunable) time interval has elapsed since the last modification. Once 
all clients invalidate the cache and acknowledge the message, the write request is allowed to re
sume. 

There may be some clients who have closed the file, but still retain some of its blocks in 

C1 C2 

I Has opened file1 I I Has opened file1 I 

Writes to file1 
Sends message I'- Blocks write, 
to server ">> sends invalidate 

" message to C2 ">> Invalidates cache 
entries for file 1 

I 
~ Replies to server Completes write, ~ 

Returns from / 
V responds to C 1 

write call 

Figure 10-11. RFS cache consistency algorithm. 



10.15 The Andrew File System 323 

their cache. It is important to prevent them from using stale cached blocks if they reopen the file. 
This is achieved by associating a version number with each file, which is incremented each time the 
file is modified. The server returns the version number in the response to each open request, and the 
client stores it in its cache. If a file has been modified since the client closed it, the client will get 
back a different version number when it tries to reopen the file. When that happens, the client can 
flush all the blocks associated with that file, ensuring that it will not access stale cached data. 

Under normal circumstances, the RFS consistency mechanisms provide strong consistency 
guarantees at a reasonable cost. Problems may arise if one of the client crashes or becomes unre
sponsive. It may then take a long time to respond to cache invalidation requests, preventing other 
nodes from completing their operations. In this way, a single errant client can cause problems for 
the whole network. Overall, the benefits of caching are far greater than the cost of maintaining con
sistency, and the RFS cache has demonstrated a performance improvement of about a factor of two 
(over the old implementation) on benchmarks with one to five clients. 

10.15 The Andrew File System 

Both NFS and RFS are targeted at small LANs with a limited number of clients. Neither scales well 
to a large network spanning several buildings and hundreds or thousands of clients, such as those 
found in typical university campuses. In 1982, Carnegie-Mellon University (CMU) and IBM jointly 
formed the Information Technology Center (lTC) to develop the computing infrastructure for edu
cational computing. One of its main projects was the Andrew File System (AFS), a distributed file 
system capable of scaling to thousands of users [Morr 86]. 

The lTC released several versions of the AFS, culminating in AFS 3.0. Thereafter, work on 
AFS moved to Transarc Corporation, formed by many of its original developers. At Transarc, AFS 
evolved into the Distributed File System (DFS) component of OSF's Distributed Computing Envi
ronment (DCE). The following sections describe the design and implementation of AFS. Section 
10.18 talks about DCE DFS. 

Besides scalability, the designers of AFS specified several important objectives [Saty 85]. 
AFS must be UNIX-compatible, so UNIX binaries can run unmodified on AFS clients. It must 
provide a uniform, location-independent name space for shared files. Users can access their files 
from any client node in the network, and files can be moved to a new location without quiescing the 
system. It must be fault-tolerant, so that failure of a single server or network component does not 
make the entire system unavailable. Faults must be isolated close to the point of failure. It should 
provide security without trusting client workstations or the network. Finally, the performance 
should be comparable to a time-sharing system. 

10.15.1 Scalable Architecture 
There are three important problems in making a distributed file system scalable. If a single server 
handles a large number of clients, we get both server congestion and network overload. Inadequate 
client-side caching causes excessive network traffic. Finally, if the server performs the bulk of the 
processing of all operations, it will become overloaded sooner. A scalable system must address all 
these issues correctly. 



324 Chapter I 0 Distributed File Systems 

AFS controls network congestion and server overload by segmenting the network into a 
number of independent clusters. Unlike NFS and RFS, AFS uses dedicated servers. Each machine is 
either a client or a server, but not both. Figure 10-12 shows the organization of an AFS network. 
Each cluster contains a number of clients, plus a server that holds the files of interest to those cli
ents, such as the user directories of the owners of the client workstations. 

This configuration provides fastest access to files residing on the server on the same network 
segment. Users can access files on any other server, but the performance will be slower. The net
work can be dynamically reconfigured to balance loads on servers and network segments. 

AFS uses aggressive caching of files, coupled with a stateful protocol, to minimize network 
traffic. Clients cache recently accessed files on their local disks. The original implementation 
cached entire files. Since that was not practical for very large files, AFS3.0 divides the file into 
64-kilobyte chunks, and caches individual chunks separately. The AFS servers participate actively 
in client cache management, by notifying clients whenever the cached data becomes invalid. Section 
10.16.1 describes this protocol further. 

AFS also reduces server load by moving the burden of name lookups from the server to the 
clients. Clients cache entire directories and parse the filenames themselves. Section 10.16.2 de
scribes this in detail. 

10.15.2 Storage and Name Space Organization 

The collection of AFS servers (called Vice, which has been rumored to stand for Vast Integrated 
Computing Environment) together holds the shared files. AFS organizes files in logical units called 
volumes. A volume [Side 86] is a collection of related files and directories and forms a subtree in 
the shared file hierarchy. For instance, a volume may contain all files belonging to a single user. 
Typically, one disk partition may hold several small volumes. A large volume, however, may span 
multiple disks. 

Backbone network 

Figure 10-12. AFS network organization. 



I 0.15 The Andrew File System 325 

The volume provides a unit of file system storage that is distinct from partitions, which pro
vide units of physical storage. This separation has several advantages. Volumes may be moved 
freely from one location to another, without affecting active users. This may be done for load bal
ancing, or to adjust for permanent moves of users. If a user moves his or her home workstation to a 
different part of the network, the system administrator can move the user's volume to the local 
server. Volumes also allow files that are much larger than a single disk. Read-only volumes can be 
replicated on several servers to increase availability and performance. Finally, each volume can be 
individually backed up and restored. 

AFS provides a single, uniform name space that is independent of the storage location. Each 
file is identified by anjid, which consists of a volume ID, a vnode number, and a vnode uniquifier. 
Historically, AFS uses the term vnode to mean a Vice inode; hence, the vnode number is an index 
into the inode list of the volume. The uniquifier is a generation number, incremented each time the 
vnode is reused. 

The volume location database provides location independence and transparency. It provides 
a mapping between a volume ID and the physical location of the volume. The database is replicated 
on each server, so that it does not become a bottleneck resource. If a volume is moved to another 
location, the original server retains its forwarding information, so that the databases on the other 
servers need not be updated immediately. While the volume is being transferred, the original server 
may still handle updates, which are later migrated to the new server. At some point, the volume is 
temporarily quiesced to transfer the recent changes. 

Each client workstation must have a local disk. This disk contains a few local files, plus a di
rectory on which it mounts the shared file hierarchy. Conventionally, each workstation mounts the 
shared tree on the same directory. The local files include the system files essential for minimal op
eration, plus some files the user may want to keep local for reasons of security or performance. 
Hence each client sees the same shared name space, plus its own, unique, local files. The local disk 
also acts as a cache for recently accessed shared files. 

10.15.3 Session Semantics 

In a centralized UNIX system, if a process modifies a file, other processes see the new data on the 
next read system call. Enforcing UNIX semantics in a distributed file system causes excessive net
work traffic and performance degradation. AFS 2.0 uses a less restrictive consistency protocol, 
called session semantics, which performs cache consistency operations only at file open or close. 
Clients flush modified data to the server only when the file is closed. When that happens, the server 
notifies other clients that their cached copies have become invalid. Clients do not check data valid
ity on every read or write access to the file, but continue to use stale data until they open the file 
again. Hence users on different machines see changes to a shared file at the open and close system 
call granularity, rather than at the read and write system call granularity as in UNIX. 

AFS provides stronger guarantees for metadata operations, which are updated to the server 
(and from the server, to other clients) immediately. For instance, if a rename system call completes 
on one client, no other machine on the network can open the file under the old name, and all can 
open it under its new name. 



326 Chapter I 0 Distributed File Systems 

The consistency guarantees of session semantics are much weaker than those of UNIX se
mantics. AFS 3.0 checks the data validity on every read or write, thus providing better consistency. 
It still falls short of UNIX semantics, since the client does not flush changes to the server until the 
file is closed. DFS, the new incarnation of AFS, enforces UNIX semantics through a token passing 
mechanism, which is described in Section 1 0.18.2. 

10.16 AFS Implementation 

AFS has distinct servers and clients. The collection of servers is referred to as Vice, and the client 
workstations are called Virtue. Both servers and clients run some flavor of UNIX as the underlying 
operating system. Initial AFS implementations used simple, user-level processes to implement the 
client and server functionality. The client kernel was modified slightly to detect references to shared 
files and forward them to the AFS client process, known as Venus. In AFS 3.0, the client kernel 
contains the AFS cache manager, which provides AFS functionality through the vnode/vfs inter
face. The server runs as a single, multithreaded, user process (using user-level threads libraries on 
traditional systems). In recent versions, most of the server functionality has migrated to the kernel, 
and runs in the context of daemon processes. 

10.16.1 Caching and Consistency 

The cache manager [Spec 89] implements the vnode operations for AFS files on the client. When a 
client first opens an AFS file, the cache manager reads in the whole file (or a 64K chunk, for files 
larger than 64 kilobytes) and caches it as a file in the client's local file system. The cache manager 
redirects all read and write calls to the cached copy. When the client closes the file, the cache man
ager flushes the changes to the server. 

When the cache manager fetches the file from the server, the server also supplies a callback 
associated with the data. The callback is a promise that the data is valid. If another client modifies 
the file and writes the changes back to the server, the server notifies all clients holding callbacks for 
the file. This is called breaking the callback. The client responds by discarding the stale data, and 
fetching it again from the server if needed.12 

The client caches file attributes separately from file data. Attributes are cached in memory, 
unlike file data, which is cached on the local disk. The client and server use the same callback 
mechanism for attributes. The client notifies the server when it changes any file attributes, and the 
server immediately breaks all associated callbacks. 

Certain race conditions can cause problems with the callback-breaking mechanism 
[Kaza 88]. Suppose the client fetches a file from the server, just as the server sends a message 
breaking the callback to that very file. If the file data arrives later, the client does not know if the 
broken callback notification applies to the current data or to a previous callback for the file and, 
therefore, cannot tell if the callback is valid. AFS solves this by simply discarding the data and 

12 Prior to AFS 3.0, clients discarded the stale data only on the next open. This, along with the large chunk size, made 
those implementations unsuitable for transaction processing and database systems. 



I 0.16 AFS Implementation 327 

fetching it from the server again. This may cause some extra network traffic and slow down the op
eration. Such a situation requires an unlikely combination of events and, in practice, does not hap
pen very often. 

A more severe problem is when a temporary network failure prevents the delivery of a call
back-breaking message. In AFS, the client may run for a long time without contacting the server. 
During this time, it will incorrectly assume that its cached data is correct. To bound this time, the 
client regularly probes each file server from which it has callback promises (once every ten minutes, 
by default). 

The callback mechanism implies a stateful server. The server keeps track of all callbacks it 
has issued for each file. When a client modifies the file, the server must break all outstanding call
backs for that file. If the volume of this information becomes unmanageable, the server can break 
some existing callbacks and reclaim storage. The client must maintain validation information for 
cached files. 

10.16.2 Path name Lookup 

A scalable system must prevent server overload. One way to do so is to shift certain operations from 
the server to clients. In particular, pathname lookup is a CPU-intensive operation, and AFS handles 
it directly on clients. 

The client caches both symbolic links and directories. It also caches entries from the volume 
location database. It traverses the pathname one component at a time. If it does not have the direc
tory in the local cache, it fetches the entire directory from the server. It then searches the directory 
for the component. The directory entry maps the component name to itsjid, which contains the vol
ume ID, vnode number and vnode uniquifier. 

If the client knows the volume location, it contacts the corresponding server to get the next 
component (unless the component is already in the local cache). If not, it queries the volume loca
tion database on the nearest server and caches the reply. The client treats the cached database entries 
as hints. If the information has changed, the server will reject the request, and the client must query 
a server database for the correct location. It is also possible that the volume has migrated, and the 
nearest server does not know about it yet. In this case, the client will first try the old location of the 
volume; that server will have the forwarding address and react appropriately. 

10.16.3 Security 

AFS considers Vice (the collection of servers) as the boundary of security. It considers both user 
workstations and the network as inherently insecure (with good reason). It avoids passing unen
crypted passwords over the network, since it is too easy to catch them through computers that can 
snoop on the network. 

AFS uses the Kerberos authentication system [Stei 88], developed at the Massachusetts In
stitute of Technology. Kerberos clients authenticate themselves not by transmitting a password 
known to the client and the server, but by answering encrypted challenges from the server. The 
server encrypts the challenge with the key known to both the server and the client. The client de
crypts the challenge, encrypts the answer with the same key, and sends the encrypted answer to the 



328 Chapter I 0 Distributed File Systems 

server. Since the server uses a different challenge each time, the client cannot reuse the same re
sponse. 

[Hone 92] identifies several loopholes in the way in which AFS 3.0 uses Kerberos. The cli
ent keeps several important data structures unencrypted in its address space, making it vulnerable to 
users who can acquire root privilege on their own workstations. Such users can traverse the kernel 
data structures to obtain authenticated Kerberos tickets of other users. Moreover, the challenge
response protocol in AFS 3.0 is susceptible to attack from another node on the network that sends 
out fake challenges to the client. Transarc subsequently fixed these loopholes in AFS 3.1. 

AFS also provides access-control lists (ACLs) for directories (but not for individual files). 
Each ACL is an array of pairs. The first item in each pair is a user or group name, and the second 
defines rights granted to that user or group. The ACLs support four types of permissions on a direc
tory-lookup, insert, delete, and administer (modify the ACL for this directory). In addition, they 
allow three types of permissions for files in that directory-read, write, and lock. AFS also retains 
the standard UNIX permission bits, and a user must pass both tests (ACL and UNIX permissions) to 
operate on a file. 

10.17 AFS Shortcomings 

AFS is a highly scalable architecture. At CMU, AFS became operational in mid-1985, and by Janu
ary 1989, it supported 9000 user accounts, 30 file servers, 1000 client machines, and about 45 giga
bytes of storage. It is also suitable for wide-area file sharing. By the spring of 1992, there were 67 
AFS cells available worldwide for public mounting [Gerb 92]. Users could access files from dis
persed locations such as the OSF Research Institute in Grenoble, France; the Keio University in Ja
pan, and the National Institute of Health in Washington, DC, using regular UNIX commands such 
as cd, Is, and cat. [Howa 88] describes a through series of performance tests, which confirm that 
AFS reduces server CPU utilization, network traffic, and overall time for remote operation. 

Client performance, however, is far from satisfactory [Stol93]. The AFS client uses the lo
cal file system to cache recently accessed file chunks. When accessing that data, it must perform a 
series of additional, time-consuming operations. Besides accessing the local file, the cache manager 
must validate the cached data (check for broken callbacks) and perform the mapping from the AFS 
file or chunk to the local file. Moreover, if the request spans multiple chunks, the cache manager 
must break it up into several smaller requests, each operating on a single chunk. As a result, even 
for data that is already in the cache, accessing an AFS file takes up to twice as long as accessing a 
local file. By careful tuning, the AFS overhead in the fast path (the case where data is valid and the 
request is isolated to one chunk) can be reduced to about I 0-15%. 

The stateful model is difficult to implement. The cache consistency algorithms must deal 
with several race conditions and potential deadlocks. As implemented, the model falls far short of 
UNIX semantics. Its consistency guarantees are much weaker, since clients write back changes only 
when a process closes the file. This can lead to many unpredictable results. The client may be un
able to flush the file due to server crashes, network failures, or real errors such as the disk becoming 
full. This has two important consequences. First, the close system call fails much more often for 
AFS files than for other file systems. Many applications do not check the return value of close or 
take any corrective action. In many cases, the application closes files implicitly when it terminates. 



I 0.18 The DCE Distributed File System (DCE DFS) 329 

Second, the write system call often succeeds when it should not (e.g., when the write extends the 
file but the disk is full). Both situations have unexpected results on the client. 

Finally, shifting the pathname lookup to the client decreases the server load, but requires the 
client to understand the directory format of the server. Contrast this with NFS, which provides direc
tory information in a hardware and operating system independent format. 

Some of the drawbacks of AFS are addressed by DFS, which we describe in the next 
section. 

10.18 The DCE Distributed File System (DCE DFS) 

In 1989, Transarc Corporation took over the development and productization of AFS. With their 
efforts, the Open Software Foundation accepted the AFS technology as the basis for the distributed 
file system of OSF's Distributed Computing Environment (DCE). This new incarnation is often re
ferred to as DCE DFS, or simply as DFS. In the rest of this chapter, we call it DFS. 

DFS has evolved from AFS and is similar to it in several respects. It improves upon AFS in 
the following ways: 

1. It allows a single machine to be both a client and a server. 
2. It provides stronger, UNIX-like sharing semantics and consistency guarantees. 
3. It allows greater interoperability with other file systems. 

Transarc developed the Episode file system [Chut 92] as the local file system for DFS serv
ers. Episode, described in detail in Section 11.8, provides high availability (through the use of log
ging), as well as support for logical volumes (what are Volumes in AFS are calledfilesets in Epi
sode) and POSIX-compatible access-control lists. In this chapter, we concentrate on the distributed 
components ofDFS. 

10.18.1 DFS Architecture 

The DFS architecture [Kaza 90] is similar to that of AFS in many regards. It uses a stateful client
server model with an active server that initiates cache invalidation messages. It caches entire files 
(64-kilobyte chunks for large files) in the client's local file system. It uses a volume location data
base to provide name transparency. 

DFS improves upon AFS in many respects. It uses the vnode/vfs interface both on the client 
and on the server, to allow interoperability with other file systems and access protocols. It allows 
local users on the server node to access the DFS file system as well. DFS clients and servers com
municate using DCE RPC [OSF 92], which offers several useful features such as synchronous and 
asynchronous modes, Kerberos authentication, and support for long-haul operation and connection
oriented transport. 

Figure 10-13 shows the overall architecture of DFS. The client is fairly similar to the AFS 
client, the main difference being in their handling of directories. Both AFS and DFS clients cache 
directory information. DFS, however, allows the server to export many different file system types 
(but Episode is preferred, since it is designed specifically for DFS), so the client may not understand 



330 

Client 

Chapter I 0 Distributed File Systems 

Server 

system call layer 

glue layer 

vnode/vfs interface 

Episode 
FS 

Figure 10-13. DFS architecture. 

the format of the server's directories. Hence DFS clients cache the results of individual lookups, 
rather than entire directories. 

The DFS server design is very different from AFS. In AFS, the access protocol and the file 
system are a single, integrated entity. In DFS, the two are separated and interact through the 
vnode/vfs interface. This allows DFS to export the server's native file system. It also allows local 
applications on the server to access the exported file system. The DFS server uses an extended vfs 
interface (called VFS+ ), which has additional functions to support volumes and access-control lists. 
Episode supports all VFS+ operations, and hence provides full DFS functionality. Other local file 
systems may not support the extensions and may provide only a subset of the DFS functionality. 

The protocol exporter services requests from DFS clients. It maintains state information for 
each client and informs the client whenever some of its cached data becomes invalid. The glue layer 
in the vfs interface maintains consistency between the protocol exporter and other file access meth
ods (local access and other distributed protocols supported by the server), as explained in Section 
10.18.2. 

10.18.2 Cache Consistency 

DFS exports strict UNIX single-system semantics for access to shared files. If one client writes data 
to a file, any client reading the file should see the new data. DFS guarantees cache consistency at the 
read and write system call granularity, unlike AFS, which does so at the open and close system call 
level. 



I 0.18 The DCE Distributed File System (DCE DFS) 331 

To implement these semantics, the DFS server includes a token manager, which keeps track 
of all active client references to files. On each reference, the server gives the client one or more to
kens, which guarantee the validity of file data or attributes. The server may cancel the guarantee at 
any time by revoking the token. The client must then treat the corresponding cached data as invalid, 
and fetch it again from the server if needed. 

DFS supports four types of tokens, each dealing with a different set of file operations: 

Data tokens There are two types of data tokens-read and write. Each applies to a 
range of bytes within a file. If the client holds a read token, its cached 
copy of that part of the file is valid. If it holds a write token, it may modify 
its cached data without flushing it to the server. When the server revokes a 
read token, the client must discard its cached data. When the server re
vokes a write token, the client must write any modifications back to the 
server and then discard the data. 

Status tokens These tokens provide guarantees about cached file attributes. Again there 
are two types-status read and status write. Their semantics are similar to 
those of data read and write tokens. If a client holds the status write token 
to a file, the server will block other clients that try to even read the file's 
attributes. 

Lock tokens These allow the holder to set different types of file locks on byte ranges in 
the file. As long as the client holds a lock token, it does not need to contact 
the server to lock the file, since it is guaranteed that the server will not 
grant a conflicting lock to another client. 

Open tokens Allow the holder to open a file. There are different types of open tokens, 
corresponding to different open modes-read, write, execute, and exclu
sive write. For instance, a client holding an open for execute token is as
sured that no other client will be able to modify the file. This particular 
guarantee is difficult for other distributed file systems to support. It is nec
essary because most UNIX systems access executable files one page at a 
time (demand paging, see Section 13.2). If a file were modified while be
ing executed, the client would get part of the old program and part of the 
new one, leading to strange and unpredictable results. 

DFS defines a set of compatibility rules when different clients want tokens for the same file. 
Tokens of different types are mutually compatible, since they relate to separate components of a 
file. For tokens of the same type, the rules vary by token type. For data and lock tokens, the read 
and write tokens are incompatible if their byte ranges overlap. Status read and write tokens are al
ways incompatible. For open tokens, exclusive writes are incompatible with any other subtype, and 
execute tokens are incompatible with normal writes as well. The rest of the combinations are mu
tually compatible. 

Tokens are similar to the AFS callbacks-both provide cache consistency guarantees that 
the server may revoke at any time. Unlike callbacks, tokens are typed objects. AFS defines a single 
type of callback for file data and one for file attributes. DFS provides several token types, as previ-



332 Chapter I 0 Distributed File Systems 

ously described. This allows a greater degree of concurrency in the file system, and enables UNIX
style single-user semantics for access to shared files. 

10.18.3 The Token Manager 
Each server has a token manager, which resides in the glue layer of the vnode interface. The glue 
layer contains a wrapper routine for each vnode operation. This routine acquires all tokens required 
to complete the operation and then calls the file-system-dependent vnode routine. 

In many cases, a vnode operation requires multiple tokens. Some operations also require di
rectory lookups to identify the set of vnodes whose tokens must be obtained before performing the 
operation. For instance, a rename operation requires status write tokens for the source and destina
tion directories, if the two are different. The operation must also search the destination directory to 
check if it already has a file with the new name. If so, rename must obtain additional tokens for de
leting that file. The token manager must take care to avoid deadlock, using mechanisms similar to 
those used by physical file systems. 

Often a client request conflicts with a token already granted to another client. The token 
manager must block the request and revoke the conflicting tokens by notifying the other client 
(current owner of the token). If the token was for reading, its owner simply returns the token to the 
server and marks its cached data as invalid. If the token was for writing, its owner flushes any 
modified data to the server before returning the token. If the token is for locking or opening, the 
owner may not return the token until it unlocks or closes the file. When the token manager gets the 
token back, it completes the request and gives the token to the caller. 

The token manager needs to be in the vnode layer, since DFS may coexist with other access 
methods, such as local access through system calls and other distributed protocols such as NFS. The 
token manager acquires tokens regardless of the access method, so as to ensure DFS guarantees 
during mixed-mode access. For instance, suppose two clients access the same file concurrently, one 
using DFS and another using NFS. If the NFS access did not acquire or check for tokens, it would 
violate the guarantees made to the DFS client. By placing the token manager in the glue layer, the 
server synchronizes all operations on the file. 

1 0.18.4 Other DFS Services 
DFS requires more than just the protocol exporter and the client cache manager. It provides a num
ber of ancillary services that cooperate with file service operations. These include: 

Fileset location database (/ldb) This is a global, replicated database that contains the 
location of each volume. It stores information about 
the location of the fileset and its replicas, and it is 
similar to the AFS volume location database. 

Fileset server (ftserver) 

Authentication server 

Implements per-fileset operations such as fileset mi
gration. 
Provides Kerberos-based authentication. 



I 0.18 The DCE Distributed File System (DCE DFS) 

Replication server (rpserver) 

10.18.5 Analysis 

DFS supports fileset replication for increasing avail
ability of important data. Replication protects 
against network and server outages, and also reduces 
bottlenecks by distributing the load for heavily used 
filesets across several machines. The replicas are 
read-only, but the original may be read-write. DFS 
allows two forms of replication-release and 
scheduled. With release replication, clients must is
sue explicit.fts release commands to update the rep
licas from the original. Scheduled replication auto
matically updates replicas at fixed intervals. 

333 

DFS provides a comprehensive set of facilities for distributed file access. Its Episode file system 
uses logging to reduce crash recovery time, thereby increasing file system availability. It uses two 
separate abstractions-aggregates and filesets-to organize the file system. Aggregates are units of 
physical storage, while filesets are logical divisions of the file system. In this way, it decouples the 
logical and physical organization of data. 

Episode uses POSIX-compliant access-control lists for finer granularity file protection. Al
though this allows for a more flexible and robust security scheme than that of UNIX, it is unfamiliar 
to system administrators and users. Similarly, Kerberos provides a secure authentication framework 
for DFS, but requires modification to several programs such as login, ftp, and various batch and 
mail utilities. 

DFS uses fileset replication to increase the availability of data and to reduce access times by 
distributing the load among different servers. Replication also allows online backup of individual 
filesets, since a replica is a frozen, consistent snapshot of the fileset. The fileset location database 
provides location independence and transparency. 

The DFS architecture is based on client-side caching with server-initiated cache invalidation. 
This approach is suitable for large-scale networks, since it reduces network congestion under normal 
usage patterns. By implementing both server and client on top of the vnode/vfs interface, DFS 
achieves interoperability with other physical file systems and with other local and remote file access 
protocols. 

However, the DCE DFS architecture is complex and difficult to implement. It requires not 
only DCE RPC but also a variety of related services, such as the X.500 global directory service 
[OSF 93]. In particular, it is not easy to support DFS on small machines and simple operating sys
tems (MS-DOS readily comes to mind). This will be a barrier to its acceptance in truly heterogene
ous environments. 

The cache consistency and deadlock avoidance mechanisms are highly complex as well. The 
algorithms must also recover correctly from failure of individual clients, servers, or network seg
ments. This is a problem with any distributed file system that provides fine-granularity concurrent 
access semantics. 



334 Chapter 10 Distributed File Systems 

10.19 Summary 

This chapter describes the architecture and implementation of four important distributed file sys
tems-NFS, RFS, AFS, and DFS. NFS is the simplest to implement and is the most portable archi
tecture. It has been ported to a large variety of platforms and operating systems, making it the proto
col of choice for truly heterogeneous environments. However, it does not scale well, falls far short 
of UNIX semantics, and suffers from poor write performance. RFS provides UNIX semantics and 
also sharing of devices, but only works with System V UNIX and variants derived from it. AFS and 
DFS are highly scalable architectures. DFS provides UNIX semantics, and is interoperable with 
other access protocols. It is, however, complex and unwieldy, and difficult to implement. It is an 
emerging technology, and only time will tell how successful it will become. 

There are few published measurements of relative performance of these file systems. 
[Howa 88] compares the performance ofNFS and AFS using identical hardware configurations. The 
results show that for a single server, NFS is faster at low loads (less than 15 clients), but deteriorates 
rapidly for higher loads. Both systems have evolved substantially since then, but the factors affect
ing scalability have not changed significantly. 

10.20 Exercises 

l. Why is network transparency important in a distributed file system? 
2. What is the difference between location transparency and location independence? 
3. What are the benefits of a stateless file system? What are the drawbacks? 
4. Which distributed file system provides UNIX semantics for shared access to files? Which 

provides session semantics? 
5. Why is the mount protocol separate from the NFS protocol? 
6. How would an asynchronous RPC request operate? Suggest a client interface to send an 

asynchronous request and receive a reply. 
7. Write an RPC program that allows the client to send a text string to be printed on the server. 

Suggest a use for such a service. 
8. Suppose an NFS server crashes and reboots. How does it know what file systems its clients 

have mounted? Does it care? 
9. Consider the following shell command, executed from an NFS-mounted directory: 

echo hello > krishna. txt 
What sequence ofNFS requests will this cause? Assume the file krishna.txt does not already 
exist. 

10. In Exercise 9, what would be the sequence of requests ifbello.txt already existed? 
11. NFS clients fake the deletion of open files by renaming the file on the server and deleting it 

when the file is closed. If the client crashes before deleting the file, what happens to the file? 
Suggest a possible solution. 

12. The write system call is asynchronous and does not wait for the data to be committed to stable 
storage. Why should the NFS write operation be synchronous? How do server or client 
crashes affect outstanding writes? 



10.21 References 335 

13. Why is NFS not suitable for wide-area operation? 
14. Why is RFS only usable in homogeneous environments? 
15. How well does RFS meet the goals of network transparency, location independence, and 

location transparency? 
16. In what ways does DFS improve upon AFS? 
17. What is the function of the DFS protocol exporter? 
18. How do DFS tokens differ from AFS callbacks? 
19. Which of the distributed file systems discussed in this chapter provides user or file mobility? 
20. Compare the name space seen by users in NFS, RFS, AFS, and DFS environments. 
21. Compare the consistency semantics of client-side caching in NFS, RFS, AFS, and DFS. 

1 0.21 References 

[Bach 87] Bach, M.J., Luppi, M.W., Melamed, A.S., and Yueh, K., "A Remote-File Cache for 
RFS," Proceedings of the Summer 1987 USENIX Technical Conforence, Jun. 1987, 
pp. 273-279. 

[Bhid 91] Bhide, A., Elnozahy, E., and Morgan, S., "A Highly Available Network File Server," 
Proceedings of the Winter 1991 USENIXTechnical Conference, Jan. 1991, pp. 199-
205. 

[Bhid 92] Bhide, A., and Shepler, S., "A Highly Available Lock Manager for HA-NFS," 
Proceedings of the Summer 1992 USENIX Technical Conference, Jun. 1992, pp. 
177-184. 

[Char 87] Chartok, H., "RFS in Sun OS," Proceedings of the Summer 1987 USENIX Technical 
Conference, Jun. 1987,pp.281-290. 

[Cher 88] Cheriton, D.R., "The V Distributed System," Communications of the ACM, Vol. 31, 
No.3, Mar. 1988,pp.314-333. 

[Chut 92] Chutani, S., Anderson, O.T., Kazar, M.L., Leverett, B.W., Mason, W.A., and 
idebotham, R.N., "The Episode File System," Proceedings of the Winter 1992 
USENIXTechnical Conference, Jan. 1992, pp. 43-59. 

[Gerb 92] Gerber, B., "AFS: A Distributed File System that Supports Worldwide Networks," 
Network Computing, May 1992, pp. 142-148. 

[Hitz 90] Hitz, D., Harris, G., Lau, J.K., and Schwartz, A.M., "Using UNIX as One 
Component of a Lightweight Distributed Kernel for Multiprocessor File Servers," 
Proceedings of the Winter 1990 USENIX Technical Conference, Jan. 1990, pp. 285-
295. 

[Hitz 94] Hitz, D., Lau, J., and Malcolm, M., "File System Design for an NFS File Server 
Appliance," Proceedings of the Winter 1994 USENIX Technical Conference, Jan. 
1994, pp. 235-245. 

[Hone 92] Honeyman, P., Huston, L.B., and Stolarchuk, M.T., "Hijacking AFS," Proceedings 
ofthe Winter 1992 USENIXTechnical Conference, Jan. 1992, pp. 175-181. 



336 

[Howa 88] 

[Jusz 89] 

[Jusz 94] 

[Kaza 88] 

[Kaza 90] 

[Levy 90] 

[Mack 91] 

[Mora 90] 

[Morr 86] 

[Nowi 90] 

[OSF 92] 

[OSF 93] 

[Pawl94] 

[Post 85] 
[Plum 82] 
[Rifk 86] 

[Sand 85a] 

Chapter I 0 Distributed File Systems 

Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., and 
Sidebotham, R.N., "Scale and Performance in a Distributed File System," ACM 
Transactions on Computer Systems, Vol. 6, No. 1, Feb. 1988, pp. 55-81. 
Juszczak, C., "Improving the Performance and Correctness of an NFS Server," 
Procedings of the Winter 1989 USENIXTechnical Conference, Jan. 1989, pp. 53-63. 
Juszczak, C., "Improving the Write Performance of an NFS Server," Proceedings of 
the Winter 1994 USENIXTechnical Conference, Jan. 1994, pp. 247-259. 
Kazar, M.L., "Synchronization and Caching Issues in the Andrew File System," 
Proceedings of the Winter 1988 USENIX Technical Conference, Feb. 1988, pp. 27-
36. 
Kazar, M.L., Leverett, B.W., Anderson, O.T., Apostolides, V., Bottos, B.A., Chutani, 
S., Everhart, C.F., Mason, W.A., Tu, S.-T., and Zayas, E.R., "Decorum File System 
Architectural Overview," Proceedings of the Summer 1990 USENIX Technical 
Conference, Jun. 1990. 
Levy, E., and Silberschatz, A., "Distributed File Systems: Concepts and Examples," 
ACMComputingSurveys, Vol. 22, No.4, Dec. 1990, pp. 321-374. 
Macklem, R., "Lessons Learned Tuning the 4.3BSD Reno Implementation of the 
NFS Protocol," Proceedings of the Winter 1991 USENIX Technical Conference, Jan. 
1991, pp. 53-64. 
Moran, J., Sandberg, R., Coleman, D., Kepecs, J. and Lyon, B., "Breaking Through 
the NFS Performance Barrier," Proceedings of the Spring 1990 European UNIX 
Users' Group Conference, Apr. 1990, pp. 199-206. 
Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.H., 
and Smith, F.D., "Andrew: A Distributed Personal Computing Environment," 
Communications of the ACM, Vol. 29, No.3, Mar. 1986, pp. 184-201. 
Nowitz, D.A., "UUCP Administration," UNIX Research System Papers, Tenth 
Edition, Vol. II, Saunders College Publishing, 1990, pp. 563-580. 
Open Software Foundation, OSF DCE Application Environment Specification, 
Prentice-Hall, Englewood Cliffs, NJ, 1992. 
Open Software Foundation, OSF DCE Administration Guide-Extended Services, 
Prentice-Hall, Englewood Cliffs, NJ, 1993. 
Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., and Hitz, D., "NFS 
Version 3 Design and Implementation," Proceedings of the Summer 1994 USENIX 
Technical Conference, Jun. 1994, pp. 137-151. 
Postel, J., and Reynolds, J., "The File Transfer Protocol," RFC 959, Oct. 1985. 
Plummer, D.C., "An Ethernet Address Resolution Protocol," RFC 826, Nov. 1982. 
Rifkin, A.P., Forbes, M.P., Hamilton, R.L., Sabrio, M., Shah, S., and Yueh, K., "RFS 
Architectural Overview," Proceedings of the Summer 1986 USENIX Technical 
Conference, Jun. 1986,pp. 248-259. 
Sandberg, R., Goldberg, D., Kleiman, S.R., Walsh, D., and Lyon, B., "Design and 
Implementation of the Sun Network Filesystem," Proceedings of the Summer 1985 
USENIX Technical Conference, Jun. 1985, pp. 119-130. 



10.21 References 337 

[Sand 85b] Sandberg, R., "Sun Network Filesystem Protocol Specification," Sun Microsystems, 
Inc., Technical Report, 1985. 

[Saty 85] Satyanarayanan, M., Howard, J.H., Nichols, D.A., Sidebotham, R.N., Spector, A.Z., 
and West, M.J., "The ITC Distributed File System: Principles and Design," Tenth 
ACM Symposium on Operating Systems Principles, Dec. 1985, pp. 35-50. 

[Side 86] Sidebotham, R.N., "VOLUMES-The Andrew File System Data Structuring 
Primitive," Proceedings of the Autumn 1986 European UNIX Users' Group 
Conference, Oct. 1986, pp. 473-480. 

[Spec 89] Spector, A.Z., and Kazar, M.L., "Uniting File Systems," Unix Review, Vol. 7, No.3, 
Mar. 1989, pp. 61-70. 

[Stei 88] Steiner, J.G., Neuman, C., and Schiller, J.I., "Kerberos: An Authentication Service 
for Open Network Systems," Proceedings of the Winter 1988 USENIX Technical 
Co~erence, Jan. 1988,pp. 191-202. 

[Stol 93] Stolarchuk, M.T., "Faster AFS," Proceedings of the Winter 1993 USENIX Technical 
Conference, Jan. 1993, pp. 67-75. 

[Sun 87] Sun Microsystems, Inc., "XDR: External Data Representation Standard," RFC 1014, 
DDN Network Information Center, SRI International, Jun. 1989. 

[Sun 88] Sun Microsystems, Inc., "RPC: Remote Procedure Call, Protocol Specification, 
Version 2," RFC 1057, DDN Network Information Center, SRI International, Jun. 
1989. 

[Sun 89] Sun Microsystems, Inc., "Network File System Protocol Specification," RFC 1094, 
DDN Network Information Center, SRI International, Mar. 1989. 

[Sun 95] Sun Microsystems, Inc., "NFS Version 3 Protocol Specification," RFC 1813, DDN 
Network Information Center, SRI International, Jun. 1995. 

[Tann 85] Tannenbaum, A.S., and Van Renesse, R., "Distributed Operating Systems," ACM 
Computing Surveys, Vol. 17, No.4, Dec. 1985, pp. 419-470. 

[Tann 90] Tannenbaum, A.S., Van Renesse, R., Van Staveren, H., Sharp, G.J., Mullender, S.J., 
Jansen, J., and Van Rossum, G., "Experiences with the Amoeba Distributed 
Operating System," Communications of the ACM, Vol. 33, No. 12, Dec. 1990, pp. 
46--63. 

[Witt 93] Wittle, M., and Keith, B., "LADDIS: The Next Generation in NFS File Server 
Benchmarking," Proceedings of the Summer 1993 USENIX Technical Conference, 
Jun. 1993, pp. 111-128. 



11 

Advanced File Systems 

11.1 Introduction 

Operating systems need to adapt to changes in computer hardware and architecture. As newer and 
faster machines are designed, the operating system must change to take advantage of them. Often 
developments in some components of the computer outpace those in other parts of the system. This 
changes the balance of the resource utilization characteristics, and the operating system must ree
valuate its policies accordingly. 

Since the early 1980s, the computer industry has made very rapid strides in the areas of CPU 
speed and memory size and speed [Mash 87]. In 1982, UNIX was typically run on a VAX 11/780, 
which had a 1-mips (million instructions per second) CPU and 4-8 megabytes of RAM, and was 
shared by several users. By 1995, machines with a 1 00-mips CPU and 32 megabytes or more of 
RAM have become commonplace on individual desktops. Unfortunately, hard disk technology has 
not kept pace, and although disks have become larger and cheaper, disk speeds have not increased 
by more than a factor of two. The UNIX operating system, designed to function with moderately 
fast disks but small memories and slow processors, has had to adapt to these changes. 

Using traditional file systems on today's computers results in severely I/O-bound systems, 
unable to take advantage of the faster CPUs and memories. As described in [Stae 91], if the time 
taken for an application on a system is c seconds for CPU processing and i seconds for 1/0, then the 
performance improvement seen by making the CPU infinitely fast is restricted to the factor (1 + cit). 
If i is large compared to c, then reducing c yields little benefit. It is essential to find ways to reduce 

338 



11.2 Limitations of Traditional File Systems 339 

the time the system spends doing disk I/0, and one obvious target for performance improvements is 
the file system. 

Throughout the mid- and late 1980s, an overwhelming majority of UNIX systems had either 
s5fs or FFS (see Chapter 9) on their local disks. Both are adequate for general time-sharing applica
tions, but their deficiencies are exposed when used in diverse commercial environments. The 
vnode/vfs interface made it easier to add new file system implementations into UNIX. Its initial use, 
however, was restricted to small, special-purpose file systems, which did not seek to replace s5fs or 
FFS. Eventually, the limitations of s5fs and FFS motivated the development of several advanced file 
systems that provide better performance or functionality. By the early 1990s, many of these had 
gained acceptance in mainstream UNIX versions. In this chapter, we discuss the drawbacks of tra
ditional file systems, consider various ways of addressing them, and examine some of the major file 
systems that have emerged as alternatives to s5fs and FFS. 

11.2 Limitations of Traditional File Systems 

The s5fs file system was popular due to its simple design and structure. It was, however, very slow 
and inefficient, which motivated the development of FFS. Both these file systems, however, have 
several limitations, which can be broadly divided into the following categories: 

• Performance- Although FFS performance is significantly better than that of s5fs, it is 
still inadequate for a commercial file system. Its on-disk layout restricts FFS to using only 
a fraction of the total disk bandwidth. Furthermore, the kernel algorithms force a large 
number of synchronous I/0 operations, resulting in extremely long completion times for 
many system calls. 

• Crash recovery - The buffer cache semantics mean that data and metadata may be lost 
in the event of a crash, leaving the file system in an inconsistent state. Crash recovery is 
performed by a program called fsck, which traverses the entire file system, finding and 
fixing problems as best as it can. For large disks, this program takes a long time, since the 
whole disk must be examined and rebuilt. This results in unacceptable delays (downtime) 
before the machine can reboot and become available. 

• Security - Access to a file is controlled by permissions associated with user and group 
IDs. The owner may allow access to the file to him- or herself only, to all users in a certain 
group, or to the whole world. In a large computing environment, this mechanism is not 
flexible enough, and a finer granularity access-control mechanism is desirable. This usu
ally involves some type of an access-control list (ACL), which allows the file owner to 
explicitly allow or restrict different types of access to specific users and groups. The 
UNIX inode is not designed to hold such a list, so the file system must find other ways of 
implementing ACLs. This may require changing the on-disk data structures and file sys
tem layout. 

• Size - There are many unnecessary restrictions on the size of the file system and of in
dividual files. Each file and file system must fit in its entirety on a single disk partition. 
We could devote the entire disk to a single partition; even so, typical disks are only one 
gigabyte or smaller in size. Although that may seem large enough for most purposes, sev-



340 Chapter II Advanced File Systems 

eral applications (for example, in the database and multimedia domains) use much larger 
files. In fact, the constraint that the file size be less than 4 gigabytes (since the size field in 
the inode is 32 bits long) is also considered too restrictive. 

Let us now examine the performance and crash recovery issues in greater detail, identify 
their underlying causes, and explore ways in which they may be addressed. 

11.2.1 FFS Disk Layout 

Unlike s5fs, FFS tries to optimize the allocation of blocks for a file, so as to increase the speed of 
sequential access. It tries to allocate blocks of a file contiguously on disk whenever possible. Its 
ability to do so depends on how full and fragmented the disk has become. Empirical evidence 
[McVo 91, McKu 84] shows that it can do an effective job until the disk approaches about 90% of 
its capacity. 

The major problem, however, is due to the rotational delay it introduces between contiguous 
blocks. FFS is designed to read or write a single block in each 1/0 request. For an application read
ing a file sequentially, the kernel will perform a series of single-block reads. Between two consecu
tive reads, the kernel must check for the next block in the cache and issue the 110 request if neces
sary. As a result, if the two blocks are on consecutive sectors on the disk, the disk would rotate past 
the beginning of the second block before the kernel issues the next read. The second read would 
have to wait for a full disk rotation before it can start, resulting in very poor performance. 

To avoid this, FFS estimates the time it would take for the kernel to issue the next read and 
computes the number of sectors the disk head would pass over in that time. This number is called 
the rotational delay, or rotdelay. The blocks are interleaved on disk such that consecutive logical 
blocks are separated by rotdelay blocks on the track, as shown in Figure 11-1. For a typical disk, a 
complete rotation takes about 15 milliseconds, and the kernel needs about 4 milliseconds between 
requests. If the block size is 4 kilobytes and each track has 8 such blocks, the rotdelay must be 2. 

Although this avoids the problem of waiting for a full disk rotation, it still restricts through
put (in this example) to one-third the disk bandwidth at most. Increasing the block size to 8 kilo
bytes will reduce the rotdelay to 1 and increase throughput to one-half the disk bandwidth. This is 
still way short of the maximum throughput supported by the disk, and the restriction is caused 
solely by the file system design. If the file system reads and writes entire tracks (or more) in each 
operation, rather than one block at a time, it can achieve 1/0 rates close to the actual disk bandwidth. 

On many disks, this problem disappears for read operations. This is because the disk main
tains a high-speed cache, and any disk read stores an entire track in the cache. If the next operation 
needs a block from the same track, the disk can service the request directly from its cache at the 
speed of the I/0 bus, without losing time in rotational waits. Disk caches are usually write-through, 
so each write is propagated to the appropriate place on disk before returning. 1 If the cache were not 
write-through, a disk crash would lose some data that the user was told had been successfully writ
ten to disk. Hence, although an on-disk cache improves read performance, write operations continue 
to suffer from the rotational delay problems and do not utilize the full disk bandwidth. 

1 Some modem SCSI disks cache writes on a per-track basis, using the rotational energy of the drive to write cached 
data in case of a power failure. 



11.2 Limitations of Traditional File Systems 

8 sectors I track 
rotdel ay = 2 

Figure 11-1. Layout of blocks in a track in FFS. 

11.2.2 Predominance of Writes 

341 

Several studies on file system usage and access patterns [Oust 85] have shown that read requests for 
file data or metadata outnumber write requests by about two to one. The reverse, however, is true 
for disk I/0 requests, which are predominantly writes. This unusual behavior is caused by the UNIX 
buffer cache. Since applications exhibit a strong locality of reference in their file access, the buffer 
cache has a high hit rate (80-90%) and satisfies most read requests without disk I/0. 

Write operations, too, are normally completed by modifying the cached copy, without resort
ing to disk I/0. If, however, the disk is not updated periodically, we run the risk of losing a large 
amount of data in the event of a crash. Therefore, most UNIX implementations run an update 
daemon process, which periodically flushes dirty blocks to disk. Moreover, several operations re
quire synchronous updates to inodes, indirect blocks, and directory blocks to ensure that the file 
system is in a recoverable state following a crash. (This is explained in detail in the next section.) 
These two factors result in the dominance of write requests to the disk. As increasing memory sizes 
result in larger buffer caches, reads account for a very small fraction of disk traffic. 

Many of the synchronous writes tum out to be quite unnecessary. Typical usage patterns 
exhibit a strong locality of reference, which means the same block is very likely to be modified 
again soon. Moreover, many files have a very short lifetime-they are created, accessed, and de
leted in a matter of seconds, causing several synchronous writes that serve no real purpose. 

The problem is worse if the file system is exported through NFS. Since NFS requires that all 
writes be committed to stable storage, the write traffic is much higher, since all data writes and most 
metadata writes must be synchronous. 

Finally, disk head seeks (moving the disk head to the correct track) add substantially to the 
cost of an I/0 operation. Although sequential access to a file should cause almost no seeks on a 
well-tuned FFS, a time-sharing environment (or a system that also acts as a file server) sees a very 
mixed load, resulting in a more random disk access pattern. Average seek times tend to be several 
times the rotational delay for contiguous FFS blocks. 

As described in Section 11.2.1, on-disk caches eliminate rotational delays for most sequen
tial reads, but not for writes. Since writes account for most of the disk activity, the operating system 
needs to find other ways to solve this problem. 



342 Chapter II Advanced File Systems 

11.2.3 Metadata Updates 

Certain system calls require several metadata changes. In order to prevent file system corruption due 
to a system crash, these modifications may need to be written in a precise order. For instance, when 
a file is deleted (its last link is unlinked), the kernel must remove the directory entry, free the inode, 
and free the disk blocks used by the file. These operations must be done in this exact order, to en
sure consistency across a system crash. 

Suppose the file system frees the inode before removing the directory entry, and the system 
crashes in between. Upon reboot, the directory will have a reference to an unallocated inode. By 
first removing the directory entry, we limit the damage to having an unreferenced inode with a 
nonzero link count, which simply means it cannot be reused. This is a less severe problem, and 
should easily be fixed by fsck. In the former case, if the inode had been reallocated to another file, 
fsck would not know which is the valid directory entry. 

Similarly, suppose while truncating a file, the file system frees the disk blocks before writing 
the modified inode to disk. It is possible for these blocks to be allocated to another file, whose inode 
may be written out to disk before that of the truncated file. If the system were to crash at this point, 
both inodes would reference the same blocks, resulting in user-visible corruption. This cannot be 
fixed by fsck, since it would have no way of knowing which inode is the rightful owner of these 
blocks. 

In traditional file systems, such ordering is achieved through synchronous writes. This re
sults in poor performance, especially since these writes are not contiguous on disk and thus require 
time-consuming seeks. Worse yet, NFS operations require synchronous writes for all data blocks as 
well. Clearly, we need some way to reduce the number of synchronous writes in the system, as well 
as to localize the writes so as to reduce seeks. 

11.2.4 Crash Recovery 

Ordering the metadata writes helps control the damage caused by a system crash, but does not 
eliminate it. In most cases, the effect is to ensure that the file system is recoverable. In cases where 
some disk sectors are damaged due to hardware failures, a complete recovery may not be possible. 
The fsck utility rebuilds a file system after a crash. It is a user-level program that accesses the file 
system through the raw device interface. It performs the following sequence of operations: 

1. Read and check all inodes and build a bitmap of used data blocks. 
2. Record inode numbers and block addresses of all directories. 
3. Validate the structure of the directory tree, making sure that all links are accounted for. 
4. Validate directory contents to account for all the files. 
5. If any directories could not be attached to the tree in phase 2, put them in the lost+found 

directory. 
6. If any file could not be attached to a directory, put it in the lost+found directory. 
7. Check the bitmaps and summary counts for each cylinder group. 

As we can see, fsck has a lot of work to do, and machines with several large file systems 
may experience a long delay before they can restart after a crash. In many environments, such de
lays are unacceptable, and we need to find alternatives that allow rapid crash recovery. 



11.3 File System Clustering (Sun-FFS) 343 

Finally,ftck provides a limited form of crash recovery-it returns the file system to a consis
tent state. A reliable file system should deliver more than that. The ideal, of course, would be full 
recovery, which requires each operation to be committed to stable storage before returning control 
to the user. While that policy is followed by NFS and some non-UNIX file systems such as that of 
MS-DOS, it suffers from poor performance. A more reasonable objective is to limit the damage 
caused by the crash, without sacrificing performance. As we shall see (Section 11. 7), such a goal 
can indeed be attained. 

11.3 File System Clustering (Sun-FFS) 

A simple way to achieve higher performance is through clustering of file I/0 operations. Most file 
accesses in UNIX involve reading or writing a file sequentially in its entirety, even though that may 
span multiple system calls. It seems wasteful, then, to restrict individual disk I!Os to one block 
(typically 8 kilobytes) at a time. Many non-UNIX file systems allocate files in one or more extents, 
which are large, physically contiguous areas on the disk. This allows the system to read or write 
large chunks of the file in a single disk operation. While the UNIX one-block-at-a-time allocation 
policy offers several advantages, such as easy dynamic growth of files, it seems to preclude efficient 
sequential access. 

These considerations prompted the development of file clustering enhancements to FFS in 
SunOS [McVo 91], which were later incorporated into SVR4 and 4.4BSD. In this chapter, we refer 
to this improved implementation as Sun-FFS. Its goal is to achieve higher performance by having 
larger granularity I/0 operations, without changing the on-disk structure of the file system. Its im
plementation requires only a small number of localized changes to the internal kernel routines. 

The FFS disk block allocator does an excellent job of allocating contiguous blocks to a file, 
using a smart algorithm that anticipates further allocation requests. Hence Sun-FFS makes no 
changes to the allocator and retains the block-at-a-time allocation policy. 

Sun-FFS sets the rotdelay factor to zero, since the goal is to avoid paying the penalty inher
ent in rotational interleaving. The maxcont i g field in the superblock contains the number of con
tiguous blocks to store before applying the rotdelay spacing. This field is usually set to one, but is 
meaningless whenever rotdelay is zero. Therefore, Sun-FFS uses this field to store the desired clus
ter size. This allows the superblock to store this extra parameter without changing its data structure. 

Whenever a read request requires a disk access, it is desirable to read in an entire cluster. 
This is achieved by modifying the interface to the bma p () routine. In the traditional FFS implemen
tation, bmap () takes a single logical block number and returns the physical block number for that 
block. Sun-FFS changes this interface to have bmap () return an additional contigsize value, which 
specifies the size of the physically contiguous extent of the file starting at the specified block. The 
contigsize value is at most maxcont i g, even though the file may have a greater amount of contigu
ous data. 

Sun-FFS uses contigsize to read in an entire cluster at a time. It performs read-aheads in the 
usual way, except that they are on a per-cluster basis. In some cases, the allocator cannot find a 
complete cluster, and the contigsize value returned by bmap () is smaller than maxconti g. The read
ahead logic is based on the contigsize returned by bmap () and not on the ideal cluster size. 



344 Chapter I I Advanced File Systems 

Write clustering requires a change to the ufs _put page() routine, which flushes a page to 
disk. In Sun-FFS, this routine simply leaves the pages in the cache and returns successfully to the 
caller, until a full cluster is in the cache or the sequential write pattern is broken. When that hap
pens, it calls bma p () to find the physical location of these pages and writes them out in a single op
eration. If the allocator has not been able to place the pages contiguously on disk, bmap () returns a 
smaller length, and ufs _putpage () spreads the write over two or more operations. 

While Sun-FFS adds a few refinements to address issues such as cache wiping, the above 
changes describe the bulk of the clustering enhancements. Performance studies have shown that se
quential reads and writes are improved by about a factor of two, whereas random access occurs at 
about the same or slightly better speed than traditional FFS. The clustering approach does not en
hance NFS write performance, since NFS requires all changes to be committed to disk synchro
nously. To extend the benefits of clustering to NFS writes, it is necessary to incorporate the NFS 
write-gathering optimizations to NFS described in Section 10.7.3. 

11.4 The Journaling Approach 

Many modern file systems use a technique called logging or journaling to address many of the 
drawbacks of traditional file systems, which were discussed in Section 11.2. The basic concept is to 
record all file system changes in an append-only log file. The log is written sequentially, in large 
chunks at a time, which results in efficient disk utilization and high performance. After a crash, only 
the tail of the log needs to be examined, which means quicker recovery and higher reliability. 

This, of course, is an oversimplification. Although the advantages seem attractive, there are 
several complex issues to deal with and tradeoffs to consider. There have been numerous implemen
tations of logging file systems, both in research and in industry, and each of these has a fundamen
tally different architecture. Let us start by identifying the principal characteristics that distinguish 
these file systems from each other and then examine some of the more important designs in detail. 

11.4.1 Basic Characteristics 

There are several decisions to be made while designing a logging file system: 

• What to log- Journaling file systems fall into two main camps: those that log all modi
fications and those that log only metadata changes. Metadata logs may further restrict 
logging to selected operations. For instance, they may choose not to log changes to file 
timestamps, ownership, or permissions, and log only those changes that affect file system 
consistency. 

• Operations or values - A log may record either the individual operations or the results 
of the operations. The former is useful, for instance, when logging changes to the disk 
block allocation bitmap. Since each change affects just a few bits, the log of the operation 
could fit in a compact record. However, when logging data writes, it is preferable to write 
the entire contents of the modified block to the log. 

• Supplement or substitute - Log-enhanced file systems retain the traditional on-disk 
structures, such as inodes and superblocks, and use the log as a supplemental record. In a 



11.5 Log-Structured File Systems 

log-structured file system, the log is the only representation of the file system on disk. 
Such an approach, of course, requires full logging (data as well as metadata). 

• Redo and undo logs - There are two types of logs: redo-only and undo-redo. A redo
only log records only the modified data. An undo-redo log records both old and new val
ues of the data. The redo-only log simplifies crash recovery, but places greater constraints 
on the ordering of writes to the log and of in-place metadata updates (see Section 11.7.2 
for details). The undo-redo log is larger and has more complex recovery mechanisms, but 
allows greater concurrency during normal use. 

• Garbage collection - Although a small number of implementations expand the log end
lessly, moving old portions of the log onto tertiary storage, the popular approach is to have 
a finite-sized log. This requires garbage collection of obsolete portions of the log, which is 
treated as a logically circular file. This can be done on a running system or may require 
stand-alone operation. 

• Group commit - In order to meet the performance goals, the file system must write the 
log in large chunks, bundling together several small writes if necessary. In deciding the 
frequency and granularity of these writes, we need to make a tradeoff between perform
ance and reliability, since the unwritten chunk is vulnerable to a crash. 

• Retrieval - In a log-structured file system, we need an efficient way of retrieving data 
from the log. Although the normal expectation is that a large cache will satisfy most reads, 
making disk access a rarity, we still need to make sure that cache misses can be handled in 
a reasonable time. This requires an efficient indexing mechanism to locate arbitrary file 
blocks in the log. 

11.5 Log-Structured File Systems 

345 

Log-structured file systems use a sequential, append-only log as their only on-disk structure. The 
idea is to gather a number of file system changes into a large log entry and write it to disk in a single 
operation. This, of course, requires a major overhaul of the on-disk structure of the file system, as 
well as of the kernel routines that access it. 

The advantages seem impressive. Since writes are always to the tail of the log, they are all 
sequential, and disk seeks are eliminated. Each log write transfers a large amount of data, typically a 
full disk track. This eliminates the need for rotational interleaving and allows the file system to use 
the full disk bandwidth. All components of an operation-data and metadata--can be bundled into a 
single atomic write, thus providing a high degree of reliability comparable to that of transaction
based systems. Crash recovery is very fast-the file system locates the last consistent log entry and 
uses it to reconstruct the system state. Any partially committed operations following that entry are 
simply discarded. 

All this is fine as long as we only keep writing to the log, but what happens when we wish to 
retrieve data from it? The traditional mechanisms of locating data on the disk (fixed locations of su
perblocks, cylinder groups, and inodes) are no longer available, and we need to search the log for 
the data we need. This problem is largely addressed by having a huge in-memory cache (remember 
our assumption that modem systems have large, inexpensive memories and high-speed processors, 



346 Chapter II Advanced File Systems 

but slow disks). On a system in steady state (one that has been running for a while), a large cache 
could easily have a hit rate of more than 90%. Nevertheless, for those blocks that must be accessed 
from disk (and there will be many of these when the system is initially booted), we need a way to 
locate the data in the log in a reasonable time. Hence a fully log-structured file system must provide 
an efficient way of addressing its contents. 

The 4.4BSD log-structured file system, known as BSD-LFS [Selt 93], is based on similar 
work in the Sprite operating system [Rose 90a]. In the rest of this section, we describe its structure 
and implementation, and see how it achieves its objectives of reliability and performance. 

11.6 The 4.4BSD Log-Structured File System 

BSD-LFS dedicates the entire disk to the log, which is the only persistent representation of the file 
system. All writes go to the tail of the log, and garbage collection is done by a cleaner process, al
lowing the log to wrap around. The log is divided into fixed-size segments (typically, half a mega
byte). Each segment has a pointer to the next, resulting in a logically contiguous log, without requir
ing consecutive segments to be physically adjacent to each other (thus disk seeks may be required 
when crossing segment boundaries). 

BSD-LFS retains the familiar directory and inode structures, as well as the indirect block 
scheme for addressing logical blocks of large files. Hence, once the inode of a file is located, its data 
blocks can be accessed in the usual manner. The important issue is how to find the inode. The origi
nal FFS configures inodes statically on disk, in fixed locations in the different cylinder groups. Con
sequently, it can simply compute the disk address of the inode from its inode number. 

In BSD-LFS, inodes are written to disk as part of the log and hence do not have fixed ad
dresses. Each time the inode is modified, it is written to a new location in the log. This requires an 
additional data structure called an inode map, which stores the current disk address of each inode. 
BSD-LFS maintains this map in physical memory, but writes it to the log at periodic checkpoints. 

Although BSD-LFS tries to write a complete segment at a time, this is often not possible. A 
partial segment may have to be written due to memory shortages (cache being full),ftync requests, 
or NFS operations. Thus a segment, which describes a physical partitioning of the disk, is made up 
of one or more partial segments, which comprise a single atomic write to the log (Figure 11-2). 

Each partial segment has a segment header, which contains the following information, used 
during crash recovery and garbage collection: 

• Checksums, which are used to detect media errors and incomplete writes 
• Disk address of each inode in the partial segment 
• For each file that has data blocks located in the segment, the inode number and inode ver

sion number, as well as the logical block numbers 
• Creation time, flags, and so on. 

The system also maintains a segment usage table, which stores the number of live bytes 
(data that is not obsolete) in each segment, and the time that the segment was last modified. The 
cleaner process uses this information to choose the segments to clean. 



11.6 The 4.4BSD Log-Structured File System 

next 
segment 
pointers 

-

-
(2) full segment 

(1) full segment 

(3) partial segment (4) partial segment ~ 

Figure 11-2. BSD-LFS log structure. 

11.6.1 Writing the Log 

-
current 
end of 
log 

347 

BSD-LFS gathers dirty blocks until it has enough to fill a complete segment. A partial segment may 
have to be written due to an NFS request,ftync call, or due to memory shortfalls. If the disk control
ler supports scatter-gather I/0 (fetching the data from noncontiguous memory locations), the blocks 
are written out directly from the buffer cache. Otherwise, the kernel may allocate temporary, 64K 
staging buffers for the transfer. 

In preparing for the transfer, the disk blocks are sorted by logical block number within the 
files. Disk addresses are assigned to each block at this time, and the inodes (and indirect blocks if 
needed) must be modified to reflect these addresses. These inodes are bundled into the same seg
ment, along with any other dirty metadata blocks. 

Since the log is append-only, each time a disk block is modified, it is written to a new loca
tion in the log. This means that older copies of the block in the log have become obsolete and may 
be reclaimed by the cleaner process. Figure 11-3 illustrates an operation that modifies both the data 
and the inode of a file. 

Each write operation flushes all the dirty data from the cache, which means that the log 
contains all the information required for a complete recovery. The inode map and segment usage 
table represent redundant information, which can be derived from the log, albeit slowly. These two 
structures are contained in a regular, read-only file called the ifile. The ifile can be accessed by users 
like any other file, but it is special in the sense that ifile modifications are not written out in each 
segment. Instead, the system defines periodic checkpoints, at which it flushes the ifile to disk. 
Keeping the ifile as an ordinary file allows the number ofinodes in the system to vary dynamically. 

11.6.2 Data Retrieval 
Efficient file system operation requires a large cache, so that most requests can be satisfied without 
disk access. It is important to treat the cache misses efficiently, and the BSD-LFS data structures 
make this easy. Files are located by traversing directories one component at a time and obtaining the 
inode number of the next component, just as in FFS. The only difference is in the way BSD-LFS 



348 Chapter II Advanced File Systems 

locates the inode on disk. Instead of computing the disk address directly from the inode number, it 
looks up the address in the inode map, using the inode number as an index. 

In the cache, data blocks are identified and hashed by vnode and logical block number. The 
indirect blocks do not easily fit into this scheme. In FFS, indirect blocks are identified by the vnode 
of the disk device and the physical block number. Because LFS does not assign disk addresses until 
the segment is ready to be written, there is no convenient way to map these blocks. To get around 
this problem, LFS uses negative logical block numbers to refer to indirect blocks. Each indirect 
block number is the negative of that of the first block it references. Each double indirect block has a 
number equal to one less than that of the first indirect block it points to, and so on. 

11.6.3 Crash Recovery 

Crash recovery in BSD-LFS is fast and easy. The first step is to locate the latest checkpoint and ini
tialize the in-memory inode map and segment usage table from it. Any changes to these structures 
since the checkpoint are recovered by replaying the portion of the log following the checkpoint. Be
fore replaying each partial segment, the timestamps must be compared to ensure that the segment 
was written after the checkpoint, and the recovery is complete when we hit an older segment. The 
checksum in the segment summary makes sure that the partial segment is complete and consistent. 
If not, that segment (presumably the last one written) is discarded from the log, and recovery is 
complete. The only data lost is that in the last partial segment if it was not completely written, or the 
modifications that have occurred since the last write. 

This recovery procedure is quick, the time taken being proportional to the time elapsed since 
the last checkpoint. It cannot, however, detect hard errors that damage one or more disk sectors. A 
complete file system verification is done by a task similar to fsclc, which can continue to run in the 
background after the system has been brought up quickly by the replaying the log. 

old copy 
of block 

old copy 
ofinode 

new copy new copy 
of block of inode 

log on disk 

D cached copy 
of block 

D cached copy 
ofinode 

Figure 11-3. Writing to a file in BSD-LFS. 



11.6 The 4.4BSD Log-Structured File System 349 

11.6.4 The Cleaner Process 

The log wraps around when it reaches the end of the disk. When that happens, the file system must 
ensure that it does not overwrite useful data. This requires a garbage collection mechanism, which 
collects active data from a segment and moves it to a new location, making the segment reusable. 

Garbage collection may be performed in parallel with other system activity. It involves 
reading a segment of the log and finding its valid entries. Log entries become invalid either when 
they are followed by newer entries for the same object (due to subsequent operations on the same 
file or directory) or when the corresponding object is removed (for example, when a file is deleted). 
If the segment contains any valid entries, these are simply gathered and written out to the tail of the 
log (Figure 11-4). The entire segment may then be reused. 

In BSD-LFS, a user process called the cleaner performs garbage collection, using the ifile 
and a set of special system calls. It first selects a segment to clean by examining the segment usage 
table, and reads the segment into its address space. For each partial segment, the cleaner loops 
through the blocks to determine which ones are still live. Likewise, it checks each inode by compar
ing its version number with that in the inode map. Live inodes and blocks must be written back to 
the file system in such a way that the inode modify and access times are not changed. LFS writes 
them in the next partial segment, to new locations. Finally, it discards obsolete inodes and blocks, 
and marks the segment as reusable. 

Four new system calls were added to allow the cleaner to accomplish its tasks: 

lfs_bmapv Computes the disk addresses for a set of <inode, logical block> pairs. If 
the address of a block is the same as that in the segment being cleaned, the 
block is live. 

lfs_markv 

lfs _segwait 
lfs _segclean 

Appends a set of blocks to the log, without updating the inode's modify 
and access times. 
Sleeps until a timeout expires or another segment is written. 
Marks a segment as clean, so it may be reused. 

11.6.5 Analysis 

There are three areas that create awkward problems for BSD-LFS. First, when a directory operation 
involves more than one metadata object, these modifications may not all make it to the same partial 
segment. This requires additional code to detect such cases and recover correctly if only a part of the 
operation survives the crash. 

Second, disk block allocation occurs when the segment is being written, not when the block 
is first created in memory. Careful accounting of free space is necessary, or else a user may see a 
successful return from a write system call, but the kernel may later find that there is no room on the 
disk. 

Finally, efficient operation of BSD-LFS requires a large physical memory, not only for the 
buffer cache, but also for the large data structures and staging buffers required for logging and gar
bage collection. 

[Selt 93] and [Selt 95] describe detailed experiments comparing the performance of BSD
LFS with traditional FFS and with Sun-FFS. The results show that BSD-LFS provides superior per-



350 Chapter II Advanced File Systems 

obsolete blocks live blocks copied 

llhU ~\over 

segment being 
cleaned end of log before _ _ end of log afte r 

garbage collection garbage collection 

Figure 11-4. Garbage collection in a metadata log. 

formance to traditional FFS in most circumstances (the exception being under high degrees of mul
tiprogramming, where its performance is slightly worse). In comparison with Sun-FFS, BSD-LFS is 
clearly superior in metadata-intensive tests (which focus on operations such as create, remove, 
mkdir, and rmdir). In measurements of read and write performance and general multiuser bench
marks, the results are less clear. Sun-FFS is faster in most I/O-intensive benchmarks, especially 
when the BSD-LFS cleaner is turned on. The two are comparable for general, multiuser simulations 
such as the Andrew benchmark [Howa 88]. 

The performance gains of BSD-LFS are questionable at best, since Sun-FFS provides equal 
or better gains at a mere fraction of the implementation cost. LFS requires rewriting not only the file 
system, but also a host of utilities, such as newfs and fsck, that understand the on-disk structures. 
The real advantages of BSD-LFS are that it provides fast crash recovery and improves the perform
ance of metadata operations. Section II. 7 shows how metadata logging can provide the same 
benefits with a lot less effort. 

Another log-structured file system worthy of note is the Write-Anywhere File Layout 
(WAFL) system used by Network Appliance Corporation in their F AServer family of dedicated NFS 
servers [Hitz 94]. WAFL integrates a log-structured file system with nonvolatile memory 
(NV -RAM) and a RAID-4 disk array to achieve extremely fast response times for NFS access. 
WAFL adds a useful facility called snapshots. A snapshot is a frozen, read-only copy of an active 
file system. The file system can maintain a number of snapshots of itself, taken at different times, 
subject to space constraints. Users can access the snapshots to retrieve older versions of files or to 
undelete accidentally removed files. System administrators can use a snapshot to backup the file 
system, since it provides a consistent picture of the file system at a single instance of time. 

11.7 Metadata Logging 

In metadata logging systems, the log supplements the normal representation of the file system. This 
simplifies the implementation considerably, since no modification is necessary to nonmutative op
erations (those that do not modify the file system). The on-disk structure of the file system is left 
undisturbed, and data and metadata can be accessed from disk (upon a cache miss) in exactly the 
same way as in a traditional file system. The log is read only during crash recovery and perhaps for 
garbage collection. The rest of the file system code uses the log in append-only mode. 



11.7 Metadata Logging 351 

This approach provides the primary benefits of logging-rapid crash recovery and faster 
metadata operations-without the drawbacks of a log-structured file system (complex, requires re
writing of utilities, garbage collection degrades performance). Metadata logging has minimal impact 
on normal 1/0 operations, but needs careful implementation to prevent the logging overhead from 
reducing overall system performance. 

The metadata log typically records changes to inodes, directory blocks and indirect blocks. It 
may also include changes to superblocks, cylinder group summaries, and disk allocation bitmaps, or 
the system may opt to reconstruct this information during crash recovery. 

The log may reside either inside the file system itself or externally as an independent object. 
The choice is governed by considerations regarding efficient disk usage and performance. The Ce
dar file system [Hagm 87], for instance, implements the log as a fixed-size, circular file, using preal
located blocks near the middle cylinders of the disk (so that it can be accessed quickly). The log file 
is just like any other file: It has a name and an inode, and it may be accessed without special 
mechanisms. In the Calaveras file system [Vaha 95], all file systems on a machine share a single 
log, which resides on a separate disk. The Veritas file system [Yage 95] keeps the log separate from 
the file system, but allows the system administrator to decide whether to dedicate a separate disk. 

11.7.1 Normal Operation 

As a first example, let us consider a redo-only, new-value (the log records the new values of the 
changed objects) logging scheme, such as the one in the Cedar file system [Hagm 87]. The log does 
not deal with file data writes, which continue to be handled in the usual way. Figure 11-5 describes 
an operation such as setattr, which modifies a single inode. The kernel executes the following se
quence of actions: 

I. Updates the cached copy and marks it dirty. 
2. Builds a log entry, which consists of a header identifying the modified object, followed by 

the new contents of the object. 
3. Writes the entry to the tail of the log. When the write completes, the operation has been 

committed to disk. 
4. Writes the inode back to its real disk location at some later time. This is called the in-place 

update. 

This simple example illustrates how logging can impact system performance. On one hand, 
each metadata update is written to disk twice-once in the log entry and once during the in-place 
update. On the other hand, since the in-place updates are delayed, they are often eliminated or 
hatched. For instance, the same inode may be modified several times before it is flushed to disk, and 
multiple inodes in the same disk block are written back in a single 1/0 operation. For a metadata 
logging implementation to perform reasonably, the reduction in the in-place updates should com
pensate for the logging overhead. 

Batching can be applied to log writes as well. Many file operations modify multiple 
metadata objects. For instance, a mkdir modifies the parent directory and its inode, and also allo
cates and initializes a new directory and inode. Some file system combine all changes caused by a 



352 

physical memory 

®[3---------- @) 
cached copy 
ofinode i 

Chapter II Advanced File Systems 

disk partition 

___ EJ disk copy 
ofinode i 

Figure 11-5. Metadata logging implementation. 

single operation into one log entry. Some go further and collect changes from a number of opera
tions into a single entry. 

This decision affects not only the performance, but also the reliability and consistency guar
antees of the file system. If the file system crashes, it will lose any changes that were not written out 
to the log. If the file system is used for NFS access, it cannot reply to the client requests until the 
changes have been committed to the log. If multiple operations modify the same object, the changes 
must be serialized to avoid inconsistency. This is discussed in detail in Section 11.7.2. 

Since the log is fixed in size, it wraps around when it reaches its end. The file system must 
prevent it from overwriting useful data. A log entry is considered active until all its objects have 
been flushed to their on-disk locations (the in-place updates). There are two ways to deal with the 
wraparound condition. One is to perform explicit garbage collection, as in BSD-LFS. The cleaner 
must constantly stay one step ahead of the log and free up space by moving active entries to the tail 
of the log [Hagm 87]. A simpler approach is to be more proactive with in-place updates. If the log is 
large enough for in-place updates to keep it clean at peak loads, garbage collection can be avoided 
altogether. This does not require a very large log-a few megabytes are sufficient for small servers 
or time-sharing systems. 

11.7.2 Log Consistency 

A logging file system must worry about consistency when an operation modifies multiple objects 
(see Section 11.2.3). It must also ensure consistency between multiple concurrent operations on the 
same set of objects. In this section, we describe consistency issues in a redo-only log; Section 11.8.3 
talks about consistency in an undo-redo log. 

A redo-only log performs crash recovery by replaying the log, writing each entry out to its 
actual disk location. This assumes that the log has the latest copy of any metadata object. Hence 
during normal operation, the file system must never perform an in-place update until the object is 
written out to the log. Such a log is often called an intent log [Yage 95], since each entry contains 
objects that the file system intends to write to disk. 



11.7 Metadata Logging 353 

Suppose an operation modifies two metadata objects-A and B, in that order. A robust file 
system may provide either an ordering or a transactional guarantee for multiple updates. An order
ing guarantee promises that after recovering from a crash, the disk would have the new contents of 
object B only if it also had the new contents of object A. A transactional guarantee is stronger, 
promising that either both modifications would survive the crash, or neither would. 

A redo log can satisfy the ordering guarantee by delaying the in-place update of any 
metadata object until after its log entry is committed to disk. It writes objects to the log in the order 
in which they are modified or created. In the previous example, it writes the log entry for object A 
before that ofB (it may also write them out in a single log entry). This preserves the ordering of the 
changes even if the in-place update of B precedes that of A. 

Transactional guarantee in a redo-only log requires that neither object may be flushed to 
disk until the log entries for both blocks are written out successfully. This may be trivial if the two 
blocks have been bundled into a single log entry, but this cannot always be guaranteed. Suppose the 
in-place update of A occurred before writing the log entry for B, and the system were to crash in 
between. There is no way of recovering the old copy of A or the new copy of B. Hence we need to 
force both log entries to disk before writing back either cached entry. The log also needs to add in
formation that identifies the two updates as belonging to the same transaction, so that we do not re
play partial transactions during recovery. 

There is, in fact, a stronger requirement, which applies to concurrent operations on the same 
object. It is incorrect to even read a modified object until it has been written to the log. Figure 11-6 
shows a potential race condition. Process pl modifies object A and is about to write it out, first to 
the log and then to disk. Before it can do so, process p2 reads object A and, based on its contents, 
modifies object B. It then writes B to the log, and is about to write it to the disk. If the system were 
to crash at this instant, the log contains the new value of B, but the new value of A is neither in the 
log nor on disk. Since the change to B depends on the change to A, this situation is potentially in
consistent. 

To take a concrete example, suppose pl is deleting a file from a directory, while p2 is creat
ing a file with the same name in the same directory. pl deletes the file name from block A of the 
directory. p2 finds that the directory does not have a file with this name and proceeds to make a di
rectory entry in block B of the directory. When the system recovers from the crash, it has the old 
block A and the new block B, both of which have a directory entry for the same file name. 

11.7 .3 Recovery 

If the system crashes, the file system recovers by replaying the log, and using its entries to update 
metadata objects on disk. This section describes recovery in a redo-only log. Section 11.8.3 dis
cusses the issues related to undo-redo logs. The main problem is to determine the beginning and end 
of the log, since it wraps around continuously. [Vaha 95] describes one solution. During normal op
eration, the file system assigns an entry number to each entry. This number is monotonically in
creasing and corresponds to the location of the entry in the log. When the log wraps around, the en
try number continues to increase. Hence at any time, the relationship between the entry number and 
its location in the log (its offset from the start of the log, measured in 512-byte units) is given by 



354 Chapter II Advanced File Systems 

Figure 11-6. Race condition in a redo-only log. 

entry location = entry number% size of log; 

The file system constantly monitors the entry numbers of the first and last active entry in the 
log and writes these values in the header of each log entry. To replay the log, the system must locate 
the highest numbered entry. This marks the tail of the log; its header also contains the entry number 
of the current head of the log. 

Having identified the head and tail of the log, the system recovers by writing out the 
metadata objects from each entry to their actual locations on disk. The entry header contains the 
identity and physical location of each object in the entry. This approach restricts the metadata loss to 
the few entries that were not written out to the log. An incomplete log entry can be identified easily, 
since each entry has either a checksum or a trailer record. Such a partial entry is discarded during 
crash recovery. 

The recovery time does not depend on the size of the file system, but is proportional to the 
active size of the log at the time of the crash. This depends on the load on the system, and the fre
quency of the in-place updates. Metadata logging systems usually recover in a matter of seconds, as 
composed to systems usingftck, which require several minutes or even hours. It may still be neces
sary to run some disk-checking utility, since the log does not protect against corruption caused by 
hard disk errors. Such a utility can run in the background, after the system has recovered and is op
erational. 

11.7.4 Analysis 

Metadata logging provides the important benefits of logging, namely rapid crash recovery and faster 
metadata operations, without the complexity and implementation effort of log-structured file sys
tems. The system recovers from a crash by replaying the log, writing its metadata objects to their 



11.8 The Episode File System 355 

on-disk locations. This usually takes a fraction of the time required by disk-checking utilities such 
asfsck. 

Metadata logging also speeds up operations that modify multiple metadata objects, such as 
mkdir and rmdir, by collecting all changes made by the operation into a single log entry, thus reduc
ing the number of synchronous writes. In this way, it also provides ordering or transactional guaran
tees (depending on the implementation) for related metadata changes. This makes the file system 
more robust than traditional architectures. 

The overall impact on performance is unclear. Logging has no impact on operations that do 
not modify the file system and little impact on data writes. Overall, logging is meant to reduce the 
number of in-place metadata writes by deferring them. To obtain adequate performance, this reduc
tion should compensate for the logging overhead. 

[V aha 95] shows that the log may become a performance bottleneck and describes several 
optimizations to prevent this. It also describes a number of experiments comparing two file systems 
whose sole difference is that one uses logging and the other does not. The logging file system is 
much faster in metadata-intensive benchmarks, but is only marginally better in a LADDIS bench
mark [Witt 93], which simulates multiuser NFS access. 

Metadata logging has some important drawbacks and limitations. Although it minimizes the 
metadata changes lost in a crash, it does not limit the loss of ordinary file data (other than by run
ning the update daemon). This also means that we cannot assure transactional consistency for all 
operations-if an operation modifies both a file and its inode, the two are not updated atomically. 
Hence a crash may result in just one of the two components of the transaction being recovered. 

Overall, metadata logging offers increased robustness and rapid recovery, as well as modest 
performance gains, without changing the on-disk structure of the file system. It is also relatively 
easy to implement, since only the part of the file system that deals with writing metadata to disk 
needs to be modified. 

The debate between metadata logging and log-structured file systems has raged for some 
time in the UNIX community. Metadata logging is winning the argument and has been the basis of 
several successful commercial implementations, including the Veritas File System (VxFS) from 
Veritas Corporation, IBM's Journaling File System (JFS), and Transarc's Episode File System (see 
Section 11.8). Moreover, since metadata logging does not affect the data transfer code, it is possible 
to combine it with other enhancements such as file-system clustering (Section 11.3) or NFS write
gathering (Section 10.7.3), resulting in a file system that performs well for both data and metadata 
operations. 

11.8 The Episode File System 

In 1989, Transarc Corporation took over the development of the Andrew File System (AFS, de
scribed in Section 10.15) from Carnegie-Mellon University. AFS evolved into the Episode file sys
tem [Chut 92], which since became the local file system component of OSF's Distributed Comput
ing Environment (DCE). Episode provides several advanced features not found in traditional UNIX 
file systems, such as enhanced security, large files, logging, and the separation of storage abstrac-



356 Chapter 11 Advanced File Systems 

tions from the logical file system structure. Section 10.18 described DCE's Distributed File System 
(DCE DFS). In this section, we discuss the structure and features of Episode. 

11.8.1 Basic Abstractions 
Episode introduces several new file system abstractions, namely aggregates, containers, filesets, 
and anodes. An aggregate is the generalization of a partition, and refers to a logically contiguous 
array of disk blocks. It hides the details of the physical partitioning of the disks from the rest of the 
file system. An aggregate may be composed of one or more physical disk partitions.2 It can trans
parently provide powerful functionality such as disk mirroring and striping. It enables a single file 
to span more than one physical disk, thus allowing the creation of very large files. 

Afileset is a logical file system, consisting of a directory tree headed by the fileset root di
rectory. Each fileset can be independently mounted and exported.3 An aggregate may contain one or 
more filesets, and filesets can be moved from one aggregate to another even while the system is up 
and these filesets are being used for normal file operations. Figure 11-7 shows the relationship be
tween aggregates, filesets, and physical disks. 

A container is an object that can store data. It it is composed of several blocks. Each fileset 
resides in a container, which stores all the file data and metadata of that fileset. Each aggregate has 
three additional containers, for the bitmap, log, and aggregate fileset table, as explained below. 

An anode is analogous to the UNIX inode. Episode has one anode for each file, as well as 
one for each container. 

aggregate 1 

fileset 1 fileset 2 

EJ~Ej fileset 5 

fileset 6 

c; .· disk 4 :=:: 
fileset 3 fileset 4 

aggregate 3 

DO fileset 7 

'--- --
Figure 11-7. Storage organization in Episode. 

2 IBM's Joumaling File System (JFS) was among the first UNIX file systems to allow logical volumes to span disk 
partitions. 

3 Current DCE tools only allow all the filesets in an aggregate to be exported together. 



11.8 The Episode File System 357 

11.8.2 Structure 

The aggregate comprises several containers. The fileset container stores all its files and anodes. The 
anodes reside in the fileset anode table at the head of the container and are followed by the data and 
indirect blocks. A container does not occupy contiguous storage within the aggregate, so it can 
shrink and grow dynamically with ease. Thus the file block addresses refer to block numbers within 
the aggregate and not within the container. 

The bitmap container allows aggregate wide block allocation. For each fragment in the ag
gregate, it stores whether the fragment is allocated and whether it is used for logged or unlogged 
data. This last information is used for special functions that must be performed when reusing a 
logged fragment for unlogged data, and vice versa. 

The log container contains an undo-redo, metadata-only log of the aggregate. The advan
tages of undo-redo logs are discussed in Section 11.8.3. The log is fixed in size and is used in a cir
cular fashion. Although current implementations place the log in the same aggregate as the one it 
represents, that is not a strict requirement. 

The aggregate fileset table (Figure 11-8) contains the superblock and the anode for each 
container in the aggregate. Directory entries reference files by the fileset ID and the anode number 
within the fileset. A file is located by first searching the aggregate fileset table for the anode of the 
fileset and then indexing into the fileset's anode table for the desired file. Of course, appropriate use 
of caching speeds up most of these operations. 

Containers allow three modes of storage-inline, fragmented, and blocked. Each anode has 
some extra space, and the inline mode stores small amounts of data in that. This is useful for sym
bolic links, access-control lists, and small files. In the fragmented mode, several small containers 
may share a single disk block. The blocked mode allows large containers and supports four levels of 
indirection. This allows a maximum file size of231 disk blocks.4 

Aggregate Fileset Table Fileset 

[ superblock / aggregate fileset table anode F anodes :: 

bitmap anode / 
log anode / 
fileset anode / 

fileset anode r-file data-
1- blocks -

fileset anode 

... 

Figure 11-8. The aggregate fileset table and the fileset. 

4 The file size is further bounded by (232 x fragment size). 



358 Chapter II Advanced File Systems 

11.8.3 Logging 

Episode uses a redo-undo metadata log, which provides the strong transactional guarantees de
scribed in Section 11.7.2. The redo-undo log offers greater flexibility, since each entry stores both 
the old and the new value of the object. During crash recovery, the file system has the option of re
playing an entry by writing its new value to the on-disk object, or rolling it back by writing the old 
value. 

Transactional guarantees in redo-only logs require a two-phase locking protocol, which 
locks all objects involved in a transaction until the entire transaction is committed to disk, so that no 
other transaction will even read any uncommitted data. This reduces the concurrency of the system, 
and incurs a substantial penalty in performance. Episode avoids this by using a mechanism called an 
equivalence class, which contains all active transactions that involve the same metadata objects. The 
equivalence class has the property that either all its transactions commit or none do. 

In the event of a crash, the recovery procedure replays all complete equivalent classes, but 
rolls back all transactions of an incomplete equivalent class. This allows a high degree of concur
rency during normal operation. However, it doubles the size of each log entry, increases the 1/0 
traffic to the log disk, and complicates log recovery. 

In Episode, the buffer cache is tightly integrated with the logging facility. Higher-level 
functions do not modify buffers directly, but call the logging functions. The logger correlates the 
buffers with log entries and ensures that a buffer is not flushed to disk until its log entry has been 
written successfully. 

11.8.4 Other Features 

Cloning - Filesets may be replicated, or moved from one aggregate to another, by a process 
known as fileset cloning. Each anode in the fileset is individually cloned, and the clones share the 
data blocks with the original anodes through copy-on-write techniques. The cloned fileset is read
only and resides in the same aggregate as the original. Clones can be created very quickly, without 
disturbing access to the original fileset. They are used widely by administrative tools, such as 
backup programs, which operate on the clone instead of the original. If any block in the original 
fileset is modified, a new copy must be made, so that the version seen by the clone is unchanged. 
Security- Episode provides POSIX-style access-control lists (ACLs), which are far more versatile 
than the owner-group-other permission sets of UNIX. Any file or directory may have an ACL asso
ciated with it. The ACL is a list of entries. Each entry consists of a user or group ID and a set of 
rights granted to that user or group. There are six types of rights to any object-read, write, execute, 
control, insert, and delete [OSF 93]. A user having the control right to an object may modify its 
ACL. Insert and delete rights apply only to directories and allow creation and removal, respectively, 
of files in that directory. A standard set of wildcard characters allows a single ACL entry to refer to 
multiple users or groups. For example, the following entry grants the user rohan permission to read, 
write, execute, and insert entries in the directory with which the entry is associated: 

user:rohan:rwx-i-



11.9 Watchdogs 359 

Each dash indicates a permission that is not granted. In this example, rohan does not have 
control and delete permissions. 

11.9 Watchdogs 

A file system implementation defines its policies on several issues such as naming, access control, 
and storage. These semantics are applied uniformly to all its files. Often, it is desirable to override 
the default policies for some files that might benefit from special treatment, such as in the following 
examples: 

• Allow users to implement different access control mechanisms. 
• Monitor and log all access to a particular file. 
• Take some automatic actions upon receipt of mail. 
• Store the file in compressed form and automatically decompress it when read. 

Such functionality was provided in an extension to FFS developed at the University of 
Washington [Bers 88]. The basic idea was to associate a user-level process called a watchdog with a 
file or directory. This process intercepts selected operations on the file and can provide its own im
plementation of those functions. Watchdog processes have no special privileges, are completely 
transparent to applications accessing the files, and incur additional processing expense only for the 
operations they override. 

A wdlink system call was added to associate a watchdog process with a file, thus making it a 
guarded file. The arguments to wdlink specified the filename and the name of the watchdog pro
gram. The program name was stored in a 20-byte area in the inode that was reserved for "future use" 
in BSD UNIX. To circumvent the 20-character limit, the names referred to entries in a public direc
tory called /wdogs, which contained symbolic links to the real watchdog programs. 

When a process tries to open a guarded file, the kernel sends a message to the watchdog 
process (starting it up if not already running). The watchdog may use its own policies to permit or 
deny access, or it may pass the decision back to the kernel. If the open is permitted, the watchdog 
informs the kernel of the set of operations on the file that it is interested in guarding. This set of 
guarded operations may be different for different open instances of the file, thus providing multiple 
views of the same file. 

Once opened, whenever a user tries to invoke a guarded operation, the kernel relays it to the 
watchdog (Figure 11-9). The watchdog must do one of three things: 

• Perform the operation. This may involve passing additional data between the kernel and 
the watchdog (such as for read or write operations). To avoid loops, the watchdog is al
lowed direct access to the file it is guarding. 

• Deny the operation, passing back an error code. 
• Simply acknowledge the operation, and ask the kernel to perform it in the usual manner. 

The watchdog may perform some additional processing, such as accounting, before defer
ring the operation to the kernel. 



360 Chapter II Advanced File Systems 

return success or error 

Yes 

No + • .---------------------------~ 
normal system 
call processing 

Figure 11-9. Watchdog operation. 

11.9.1 Directory Watchdogs 

A watchdog may also be associated with a directory. It would then guard operations on the directory 
and could be used to control access to all its files (since access control is performed on each direc
tory in a pathname). A directory watchdog is given some special powers. It guards, by default, all 
files within that directory that do not have watchdogs directly associated with them. 

This allows some interesting applications. Users may access nonexistent files in a guarded 
directory, provided the associated watchdog is capable of maintaining the illusion. In such a case, 
none of the operations on that file may be deferred back to the kernel. 

11.9.2 Message Channels 
The communication between the kernel and the watchdog is handled by message passing. Each 
watchdog is associated with a unique Watchdog Message Channel (WMC), created by a new cre
atewmc system call. This call returns a file descriptor, which the watchdog can use to receive and 
send messages to the kernel. 

Each message contains a type field, a session identifier and the message contents. Each open 
instance of the file constitutes a unique session with the watchdog. Figure 11-10 describes the data 
structures maintained by the kernel. The open file table entry for a guarded file points to an entry in 
a global session table. This in tum points to the kernel's end of the WMC, which contains a queue 
of unread messages. The WMC also points to the watchdog process. 



11.9 Watchdogs 361 

guarded file descriptor 
Open File Table 

User process WMC 

Session Table 

Messages 
Watchdog 

Figure 11-10. Watchdog data structures. 

The watchdog reads the messages and sends its replies using the file descriptor returned by 
createwmc. This maps to an entry for the WMC in the open file table, which points back to the ker
nel end of the WMC. Thus both the watchdog and the kernel can access the message queue, and put 
and get messages from it. 

A master watchdog process manages all watchdog processes. It controls their creation (when 
the guarded file is opened) and termination (usually upon the last close of the file). It may choose to 
keep some frequently used watchdogs active even when no one has the associated file open, to 
avoid the cost of starting up new processes each time. 

11.9.3 Applications 

The original implementation described several interesting applications: 

wdacl 

wdcompact 
wdbiff 

wdview 

Associates an access-control list with a file. A single watchdog may con
trol access to many files. 
Provides on-line compression and decompression. 
Watches a user's mailbox and notifies the user when new mail arrives. 
This may be extended to provide auto-answering or auto-forwarding ca
pabilities. 
Presents different views of a directory to different users. 



362 

wddate 

Chapter I I Advanced File Systems 

Allows users to read the current date and time from a file. The file itself 
contains no data; the watchdog reads the system clock whenever the file is 
accessed. 

User interfaces that provide graphical views of the file tree can also benefit from watchdogs. 
Whenever a user creates or deletes a file, the watchdog can ask the user interface to redraw itself to 
reflect the new state of the directory. As these examples show, watchdogs provide a versatile 
mechanism to extend the file system in several ways, limited only by the imagination. The ability to 
redefine individual operating system functions at the user level is extremely useful and merits con
sideration in modem operating systems. 

11.10 The 4.4850 Portal File System 

Watchdogs allow a user-level process to intercept operations by other processes on a watched file. 
The 4.4BSD portal file system [Stev 95] provides a similar function. It defines a name space of files 
that processes can open. When a process opens a file in this file system, the kernel passes a message 
to a portal daemon, which processes the open request and returns a descriptor to the process. The 
portal daemon, not the file system itself, defines the set of valid filenames and their interpretation. 

The portal daemon creates a UNIX socket [Leff 89] and invokes the listen system call to al
low incoming connection requests to the socket. It then mounts the portal file system, usually on the 
/p directory. It then enters a loop, where it calls accept to wait for a connection request and proc
esses requests as they arrive. 

Suppose a user opens a file in the portal file system. This causes the following chain of 
events (see Figure 11-11): 

I. The kernel first calls namei () to parse the filename. When namei () crosses the mount 
point of the portal file system, it calls porta 1_1 ookup () to parse the rest of the pathname. 

2. porta 1_1 ookup () allocates a new vnode and saves the pathname in the vnode's private 
data object. 

3. The kernel then invokes the VOP _OPEN operation on the vnode, which results in a call to 
porta 1_ open(). 

[ user ] [ portal ] 
process daemon 

/p 
open fd rest-of-path fd /rest-of-path user spa ce 

kernel spa ce 
I portal file I 

system J 'J UNIX sockets I 

Figure 11-11. Opening a file in the portal file system. 



11.10 The 4.4BSD Portal File System 

4. porta 1_ open() passes the pathname to the portal daemon, which returns from the accept 
system call. 

5. The portal daemon processes the name as it sees fit and generates a file descriptor. 
6. The daemon sends the descriptor back to the caller over a socket-pair connection set up by 

the kernel. 
7. The kernel copies the descriptor into the first unused slot in the caller's descriptor table. 
8. The portal daemon dismantles the connection and calls accept to await further connection 

requests. 

363 

Usually, the daemon creates a new child process to handle each request. The child executes 
steps 5 through 7 and exits, thus dismantling the connection. The parent calls accept immediately 
after creating the child. 

11.10.1 Using Portals 

The portal file system can be used in a number of ways. The portal daemon determines the func
tionality it provides and also how it interprets the name space. One important application is the con
nection server, mentioned earlier in Section 8.2.4. This server opens network connections on behalf 
of other processes. Using portals, a process can create a TCP (Transmission Control Protocol) con
nection simply by opening a file called 

/p/tcp/ node/ service 

where node is the name of the remote machine to connect to, and service is the TCP service (such as 
ftp or rlogin) that the caller wishes to access. For instance, opening the file /p/tcp/archana/ftp 
opens a connection to the ftp server on node archana. 

The daemon performs all the work required to set up the connection. It determines the net
work address of the remote machine, contacts the portmapper on that node to determine the port 
number for the service, creates a TCP socket, and connects to the server. It passes the file descriptor 
for the connection back to the calling process, which can use the descriptor to communicate to the 
server. 

This makes TCP connections available to naive applications. A naive application is one that 
only uses stdin, stdout, and stderr, and does not use special knowledge about other devices. For in
stance, a user can redirect the output of a shell or awk script to a remote node by opening the appro
priate portal file. 

Similar to watchdogs, the portal file system allows a user process to intercept file operations 
by other processes, and implement them on their behalf. There are a few important differences. The 
portal daemon only intercepts the open system call, whereas a watchdog may intercept a number of 
operations of its choosing. Watchdogs may also intercept an operation, perform some work, and 
then ask the kernel to complete the operation. Finally, the portal daemon defmes its name space. 
This is possible because, in 4.4BSD, namei () passes the rest of the pathname to porta 1_1 ookup () 
when it crosses the mount point. Watchdogs usually operate on the existing file hierarchy, although 
directory watchdogs can extend the name space in a limited way. 



364 Chapter II Advanced File Systems 

11.11 Stackable File System Layers 

The vnode/vfs interface was an important step toward a flexible framework for developing UNIX 
file systems. It has led to many new file systems, described in Chapters 9-11. It has, however, some 
important limitations: 

• The interface is not uniform across UNIX variants. As described in Section 8.11, there are 
substantial differences between the set of operations defined by the interface in SVR4, 
4.4BSD, and OSF/1, as well as in their detailed semantics. For instance, the VOP_LOOKUP 
operation parses one component at a time in SVR4, but may parse several components in 
4.4BSD. 

• Even for a single vendor, the interface has evolved considerably from one release to an
other. For instance, SunOS4.0 replaced buffer cache operations such as VOP _BMAP and 
VOP _BREAD with paging operations such as VOP _ GETPAGE and VOP _PUTPAGE. SVR4 added 
new operations, such as VOP _ RWLOCK and VOP _RWUNLOCK, which were incorporated into 
later SunOS releases. 

• The file system and the memory management subsystem are highly interdependent. As a 
result, it is impossible to write a general-purpose file system without a full understanding 
of the memory management architecture. 

• The interface is not as opaque as originally intended. The kernel accesses many fields of 
the vnode directly, instead of through a procedural interface. As a result, it is difficult to 
change the structure of vnodes while providing binary compatibility with previous ver
sions. 

• The interface does not support inheritance. A new file system cannot inherit some of the 
functionality of an existing file system. 

• The interface is not extensible. A file system cannot add new functions or alter the seman
tics of existing operations. 

These factors inhibit advances in file system technology. Developing a new general-purpose 
file system, such as Transarc's Episode File System or Veritas Corporation's Veritas File System, is 
a major undertaking. Large teams are required to port the file system to different UNIX variants and 
to newer releases of the operating system from each vendor. Moreover, many vendors do not wish 
to develop entire file systems. Rather, they want to add some functionality to existing implementa
tions, such as replication, encryption and decryption, or access-control lists. 

Independent research efforts at the University of California at Los Angeles [Heid 94] and at 
SunSoft [Rose 90b, Skin 93] resulted in frameworks using stackable file system layers, which pro
vide better support for modular file system development. The UCLA implementation has been in
corporated in 4.4BSD, while the SunSoft effort is in the prototype stage. In this section, we describe 
the important features of stackable file systems and describe some applications of this approach. 

11.11.1 Framework and Interface 

The vfs interface allows different file systems to coexist on a single machine. It defines a set of op
erations, which are implemented differently by each file system. Whenever a user invokes an opera-



ll.ll Stackable File System Layers 

encryption/ 
decryption 

physical 
file system 

Figure 11-12. An encryption-decryption layer. 

365 

tion on a file, the kernel dynamically routes it to the file system to which the file belongs. This file 
system is responsible for complete implementation of the operation. 

The stackable layers framework allows multiple file systems to be mounted on top of each 
other. Each file is represented by a vnode stack, with one vnode for each file system in the stack. 
When the user invokes a file operation, the kernel passes it to the topmost vnode. This vnode may 
do one of two things: It may execute the operation completely and pass the results back to the caller. 
Alternatively, it may perform some processing, and pass the operation down to the next vnode in the 
stack. This way, the operation can pass through all the layers. On return, the results again go up 
through all the layers, giving each vnode the chance to do some additional processing. 

This allows incremental file system development. For instance, a vendor may provide an en
cryption-decryption module, which sits on top of any physical file system (Figure 11-12). This 
module intercepts all I/0 operations, encrypting data while writing and decrypting it while reading. 
All other operations are passed directly to the lower layer. 

The stacking may allow fan-in or fan-out configurations. A fan-in stack allows multiple 
higher layers to use the same lower layer. For example, a compression layer may compress data 
while writing and decompress it while reading. A backup program may want to read the compressed 
data directly while copying it to a tape. This results in the fan-in configuration shown in Figure 
11-13. 

A fan-out stack allows a higher layer to control multiple lower layers. This could be used for 
a hierarchical storage manager (HSM) layer, which keeps recently accessed files on local disks, and 
migrates rarely used files onto optical disks or tape jukeboxes (Figure 11-14). The HSM layer inter
cepts each file access, both to track file usage and to download files from tertiary storage when 
needed. [Webb 93] describes an HSM implementation using a framework that combines features of 
stackable layers and watchdogs. 

Figure 11-13. A fan-in configuration. 



366 

ufs 

Disk 

Hierarchical Storage 
Manager 

Chapter II Advanced File Systems 

tertiary storage 
manager 

Tertiary storage 

Figure 11-14. A hierarchical storage manager. 

11.11.2 The SunSoft Prototype 

[Rose 90b] describes the initial work on stackable vnodes at Sun Microsystems. This work was 
passed on to the UNIX International Stackable Files Working Group [Rose 92] and later resumed at 
SunSoft. The SunSoft prototype [Skin 93] resolves many problems and limitations of the 
[Rose 90b] interface. 

In this implementation, a vnode contains nothing more than a pointer to a linked list of 
pvnodes, one for each file system layered on that node (Figure 11-15). The pvnode contains pointers 
to the vfs, the vnodeops vector, and its private data. Each operation is first passed to the topmost 
pvnode, which may pass it down to the lower layers if necessary. 

The development of the prototype identified several important issues: 

• In the current interface, the vnode has several data fields that are accessed directly by the 
kernel. These must be moved into the private data object, and read and written through a 
procedural interface. 

vnode 
vnodeops ptr 
ptr to pvt data 

1--+t 
ptr to vfs 

vnodeops ptr 
ptr to pvt data 
ptr to vfs 
next pvnode 

Figure 11-15. The SunSoft prototype. 



11.12 The 4.4BSD File System Interface 

• A vnode may hold a reference to another vnode as part of its private data. For example, 
the root directory vnode of a file system keeps a reference to the mount point. 

• The vfs operations must also be passed on to lower layers. To achieve this, many vfs op
erations were converted to vnode operations that can be invoked on any vnode of the file 
system. 

• Many operations in the current interface operate on multiple vnodes. To function cor
rectly, these must be broken up into separate suboperations on each vnode. For instance, 
VOP _LINK must be divided into two operations: one on the file vnode to fetch its file ID 
and increment its link count, and another on the directory vnode to add the entry for the 
file. 

• A transaction facility is needed to ensure atomic execution of suboperations invoked by 
the same high-level operation. 

• The <vnode, offset> name space for the page cache does not map well to the stacked 
vnode interface, since the page now belongs to multiple vnodes. The interface with the 
virtual memory system must be redesigned to handle this. 

11.12 The 4.4850 File System Interface 

367 

The virtual file system interface in 4.4BSD is based on the work on stackable layers in the Ficus file 
system at UCLA [Heid 94 ]. Sections 8.11.2 and 11.10 described other features of the 4.4BSD file 
system. This section describes the part of the interface that deals with stacking, and some interesting 
file system implementations based on it. 

In 4.4BSD, the mount system call pushes a new file system layer onto the vnode stack, and 
unmount pops off the topmost layer. As in the SunS oft model, each operation is first passed to the 
topmost layer. Each layer can either complete the operation and return the results, or pass the opera
tion (with or without additional processing) to the next lower layer. 

4.4BSD allows a file system layer to be attached to multiple locations in the file system 
name space. This allows the same file to be accessed through multiple paths (without using separate 
links). Moreover, other layers in the stack may be different for each mount point, resulting in differ
ent semantics of the same operation. This allows the fan-in configurations described in Section 
11.11.1. For example, a file system may be mounted at /direct and /compress, and a compression 
layer pushed onto /compress. This allows users to perform on-the-fly compression-decompression 
by accessing the files through /compress. The backup program can access the file system through 
/direct and bypass the decompression. 

File systems can add new operations to the interface. When the system boots, the kernel dy
namically builds the vnodeops vector as a union of the operations supported by each file system. To 
implement this, all file systems use a standard bypass function to handle unknown operations. The 
bypass function passes the operation and its arguments to the next lower layer. Since it cannot know 
the number and types of the arguments, 4.4BSD packages all arguments to a vnode operation in an 
argument structure. It then passes a pointer to this structure as a single parameter to all operations. 
When a layer does not recognize the operation, it simply passes the argument pointer to the next 
layer. If a layer does recognize the operation, it also knows how to interpret the structure. 



368 Chapter II Advanced File Systems 

The following section describes two interesting applications of the stackable file system in
terface. 

11.12.1 The Nullfs and Union Mount File Systems 

The nullfs file system [McKu 95] is a largely pass-through file system that allows arbitrary subtrees 
of the file hierarchy to be mounted anywhere else in the file system. The effect is to provide a sec
ond pathname for each file in the subtree. It passes most operations on to the original file system. 
This facility can be used in some interesting ways. For example, a user who has subtrees on many 
different physical file systems can attach them under a common directory, thus seeing a single sub
tree containing all her files. 

The union mount file system [Pend 95] provides functionality similar to the Translucent File 
System (TFS) described in Section 9.11.4. It provides a union, or merger, of the file systems 
mounted below it. The topmost layer is logically the most recent, and it is the only writable layer. 
When a user looks up a file, the kernel goes down the layers until it finds a layer containing the file. 
If a user tries to modify a file, the kernel first copies it to the topmost layer. As in TFS, if a user de
letes a file, the kernel creates a whiteout entry in the topmost layer, which prevents it from searching 
the lower layers for this file on subsequent lookups. Special operations are provided to bypass and 
remove whiteout entries, allowing accidentally erased files from being recovered. 

11.13 Summary 

We have seen several advanced file systems in this chapter. Some of them replace existing imple
mentations such as FFS and s5fs, whereas some extend the traditional file systems in different ways. 
These file systems offer higher performance, quicker crash recovery, increased reliability, or en
hanced functionality. Some of these systems have already gained commercial acceptance; most re
cent UNIX releases feature an enhanced file system that uses some form of logging. 

The vnode/vfs interface has been an important enabling technology, allowing these new im
plementations to be integrated into the UNIX kernel. The stackable layers framework addresses 
many limitations of the vnode interface and promotes incremental file system development. 4.4BSD 
has already adopted this approach, and commercial vendors are exploring it. 

11.14 Exercises 

1. Why does FFS use a rotdelay factor to interleave disk blocks? What does it assumme about 
usage patterns and buffer cache sizes? 

2. How would file system clustering affect the performance of an NFS server? 
3. What is the difference between file system clustering and write-gathering (described in 

Section 10.7.3)? What situation is each one useful in? When is it beneficial to combine the 
two? 

4. Would file system clustering reduce the benefit of nonvolatile memory? What is a good way 
of using NV-RAM in a system that supports clustering? 



11.15 References 369 

5. What is the benefit of delaying disk writes? 
6. Suppose a file system writes all metadata synchronously, but delays data writes until the 

update daemon runs. To what security problems could this lead? Which data blocks must be 
written synchronously to avoid this? 

7. Can a log-structured file system improve performance by scheduling garbage collection 
during off-peak times? What restrictions does this place on the use of the system? 

8. A file system can use an in-memory bitmap to track the active and obsolete parts of the log. 
Discuss the suitability of this approach for a log-structured file system and for a metadata 
logging file system. 

9. Suppose a metadata logging system records changes to inodes and directory blocks in its log, 
but writes out indirect blocks synchronously. Describe a scenario where this might lead to an 
inconsistent file system after a crash. 

10. In a metadata logging file system, can a single log hold the updates for all file systems? What 
are the benefits and drawbacks ofthis approach? 

11. Is it advantageous to keep a metadata log on the same physical disk as the file system itself? 
12. Why does Episode use a two-phase locking protocol? Why does the Cedar file system not 

need this? 
13. Suppose a user wanted to record all access to his files by other users. Can he do so using 

either watchdogs or portals? Would it have any other effect on system behavior? 
14. Consider a disk containing union-mounted directories. What would happen if the disk 

becomes full and a user tries to free space by deleting a set of files that live in a lower layer? 

11.15 References 

[Bers 88] Bershad, B.N., and Pinkerton, C.B., "Watchdogs-Extending the UNIX File 
System," Computing Systems, Vol. I, No. 2, Spring I988, pp. I69-I88. 

[Chut 92] Chutani, S., Anderson, O.T., Kazar, M.L., Mason, W.A., and Sidebotham, R.N., 
"The Episode File System," Proceedings of the Winter 1992 USENIX Technical 
Conferenc~ Jan. 1992,pp.43-59. 

[Hagm 87] Hagmann, R., "Reimplementing the Cedar File System Using Logging and Group 
Commit," Proceedings of the 11th Symposium on Operating Systems Principles, 
Nov. I987, pp. I55-I62. 

[Reid 94] Heidemann, J.S., and Popek, G.J., "File-System Development with Stackable 
Layers," ACM Transactions on Computer Systems, Vol. I2, No. I, Feb. I994, pp. 
58-89. 

[Ritz 94] Ritz, D., Lau, J., and Malcolm, M., "File System Design for an NFS File Server 
Appliance," Proceedings of the Winter 1994 USENIX Technical Conference, Jan. 
I994, pp. 235-245. 

[Howa 88] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., and 
Sidebotham, R.N., "Scale and Performance in a Distributed File System," ACM 
Transactions on Computer Systems, Vol. 6, No. I, Feb. I988, pp. 55-81. 



370 Chapter II Advanced File Systems 

[Leff 89] Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and 
Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, Reading, 
MA, 1989. 

[Mash 87] Mashey, J.R., "UNIX Leverage-Past, Present, Future," Proceedings of the Winter 
1987 USENIXTechnical Conference, Jan. 1987, pp. 1-8. 

[McKu 84] McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S., "A Fast File System for 
UNIX," ACMTransactions on Computer Systems, Vol. 2, No.3, Aug 1984, pp. 181-
197. 

[McKu 95] McKusick, M.K., 'The Virtual Filesystem Interface in 4.4BSD," Computing 
Systems, Vol. 8, No. 1, Winter 1995, pp. 3-25. 

[McVo 91] McVoy, L.W., and Kleiman, S.R., "Extent-like Performance from a UNIX File 
System," Proceedings of the 1991 Winter USENIX Conference, Jan. 1991, pp. 33-
43. 

[OSF 93] Open Software Foundation, OSF DCE Administration Guide-Extended Services, 
Prentice-Hall, Englewood Cliffs, NJ, 1993. 

[Oust 85] Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer, M., and 
Thompson, J.G., "A Trace-Driven Analysis of the UNIX 4.2 BSD File System," 
Proceedings of the I Oth Symposium on Operating System Principles, Dec. 1985, pp. 
15-24. 

[Pend 95] Pendry, J.-S., and McKusick, M.K., "Union Mounts in 4.4BSD-Lite," Proceedings of 
the Winter 1995 USENIXTechnical Conference, Jan. 1995, pp. 25-33. 

[Rose 90a] Rosenblum, M., and Ousterhout, J.K., "The LFS Storage Manager," Proceedings of 
the Summer 1990 USENIXTechnical Conference, Jun. 1990, pp. 315-324. 

[Rose 90b] Rosenthal, D.S.H., "Evolving the Vnode Interface," Proceedings of the Summer 
1990 US EN !X Technical Conference, Jun. 1990, pp. 107-118. 

[Rose 92] Rosenthal, D.S.H., "Requirements for a "Stacking" VnodeNFS Interface," UNIX 
International Document SF-01-92-N014, Parsippany, NJ, 1992. 

[Selt 93] Seltzer, M., Bostic, K., McKusick, M.K., and Staelin, C., "An Implementation of a 
Log-Structured File System for UNIX," Proceedings of the Winter 1993 USENIX 
Technical Conference, Jan. 1993, pp. 307-326. 

[Selt 95] Seltzer, M., and Smith, K.A., "File System Logging Versus Clustering: A 
Performance Comparison," Proceedings of the Winter 1995 USENIX Technical 
Conference, Jan. 1995,pp.249-264. 

[Skin 93] Skinner, G.C., and Wong, T.K., "Stacking Vnodes: A Progress Report," Proceedings 
of the Summer 1993 USENIXTechnical Conference, Jun. 1993, pp. 161-174. 

[Stae 91] Staelin, C., "Smart Filesystems," Proceedings of the Winter 1991 USENIX 
Conference, Jan. 1991, pp. 45-51. 

[Stev 95] Stevens, W.R., and Pendry, J.-S., "Portals in 4.4BSD," Proceedings of the Winter 
1995 USENIXTechnical Conference, Jan. 1995, pp. 1-10. 

[Vaha 95] Vahalia, U., Gray, C., and Ting, D., "Metadata Logging in an NFS Server," 
Proceedings of the Winter 1995 US EN IX Technical Conference, Jan. 1995, pp. 265-
276. 



11.15 References 371 

[Webb 93] 

[Witt 93] 

[Yage 95] 

Webber, N., "Operating System Support for Portable Filesystem Extensions," 
Proceedings ofthe Winter 1993 USENIXTechnical Conference, Jan. 1993, pp. 219-
228. 
Wittle, M., and Keith, B., "LADDID: The Next Generation in NFS File Server 
Benchmarking." Proceedings of the Summer 1993 USENIX Technical Conference, 
Jun. 1993, pp. 111-128. 
Yager, T., "The Great Little File System," Byte, Feb. 1995, pp. 155-158. 



12 

Kernel Memory Allocation 

12.1 Introduction 

The operating system must manage all the physical memory and allocate it both to other kernel sub
systems and to user processes. When the system boots, the kernel reserves part of physical memory 
for its own text and static data structures. This portion is never released and hence is unavailable for 
any other purpose. 1 The rest of the memory is managed dynamically-the kernel allocates portions 
of it to various clients (processes and kernel subsystems), which release it when it is no longer 
needed. 

UNIX divides memory into fixed-size frames or pages. The page size is a power of two, 
with 4 kilobytes being a fairly typical value.2 Because UNIX is a virtual memory system, pages that 
are logically contiguous in a process address space need not be physically adjacent in memory. The 
next three chapters describe virtual memory. The memory management subsystem maintains map
pings between the logical (virtual) pages of a process and the actual location of the data in physical 
memory. As a result, it can satisfy a request for a block of logically contiguous memory by allocat
ing several physically non-contiguous pages. 

This simplifies the task of page allocation. The kernel maintains a linked list of free pages. 
When a process needs some pages, the kernel removes them from the free list; when the pages are 
released, the kernel returns them to the free list. The physical location of the pages is unimportant. 

1 Many modern UNIX systems (AIX, for instance) allow part of the kernel to be pageable. 
2 This is a software-defined page size and need not equal the hardware page size, which is the granularity for protec

tion and address translation imposed by the memory management unit. 

372 



12.1 Introduction 373 

The merna 11 () and memfree () routines in 4.3BSD and the get page() and freepage () routines in 
SVR4 implement this page-level allocator. 

The page-level allocator has two principal clients (Figure 12-1). One is the paging system, 
which is part of the virtual memory system. It allocates pages to user processes to hold portions of 
their address space. In many UNIX systems, the paging system also provides pages for disk block 
buffers. The other client is the kernel memory allocator, which provides odd-sized buffers of mem
ory to various kernel subsystems. The kernel frequently needs chunks of memory of various sizes, 
usually for short periods of time. 

The following are some common users of the kernel memory allocator: 

• The pathname translation routine may allocate a buffer (usually 1024 bytes) to copy a 
pathname from user space. 

• The a 11 ocb () routine allocates STREAMS buffers of arbitrary size. 
• Many UNIX implementations allocate zombie structures to retain exit status and resource 

usage information about deceased processes. 
• In SVR4, the kernel allocates many objects (such as proc structures, vnodes, and file de

scriptor blocks) dynamically when needed. 

Most of these requests are much smaller than a page, and hence the page-level allocator is 
inappropriate for this task. A separate mechanism is required to allocate memory at a finer granular
ity. One simple solution is to avoid dynamic memory allocation altogether. Early UNIX implemen
tations [Bach 86] used fixed-size tables for vnodes, proc structures, and so forth. When memory 
was required for holding temporary pathnames or network messages, they borrowed buffers from 
the block buffer cache. Additionally, a few ad hoc allocation schemes were devised for special 
situations, such as the clists used by the terminal drivers. 

This approach has several problems. It is highly inflexible, because the sizes of all tables and 
caches are fixed at boot time (often at compile time) and can not adjust to the changing demands on 

physical memory 

Figure 12-1. Memory allocators in the kernel. 



374 Chapter 12 Kernel Memory Allocation 

the system. The default sizes of these tables are selected by the system developers based on the us
age patterns expected with typical workloads. Although system administrators can usually tune 
these sizes, they have little guidance for doing so. If any table size is set too low, the table could 
overflow and perhaps crash the system without warning. If the system is configured conservatively, 
with large sizes of all tables, it wastes too much memory, leaving little for the applications. This 
causes the overall performance to suffer. 

Clearly, the kernel needs a general-purpose memory allocator that can handle requests for 
large and small chunks of data efficiently. In the following section, we describe the requirements for 
this allocator and the criteria by which we can judge different implementations. We then describe 
and analyze various memory allocators used by modem UNIX systems. 

12.2 Functional Requirements 

The kernel memory allocator (KMA) services requests for dynamic memory allocation from several 
clients such as the pathname parser, STREAMS, and the interprocess communication facility. It 
does not handle requests for user process pages, which are the responsibility of the paging system. 

When the system boots, the kernel first reserves space for its own text and static data struc
tures, as well as some pre-defined pools such as the block buffer cache. The page-level allocator 
manages the remaining physical memory, which is contended for both by the kernel's own dynamic 
allocation requests and by user processes. 

The page-level allocator pre-allocates part of this space to the KMA, which must use this 
memory pool efficiently. Some implementations allow no change in the total memory given to the 
KMA. Others allow the KMA to steal more memory from the paging system. Some even permit a 
two-way exchange, so the paging system can steal back excess free memory held by the KMA. 

If the KMA runs out of memory, it blocks the caller until more memory is free. The caller 
may send a flag in the request, asking the KMA to return a failure status (usually a NULL pointer) 
instead of blocking. This option is most used by interrupt handlers, which must take some corrective 
action if the request fails. For example, if a network interrupt cannot allocate memory to hold an 
incoming packet, it may simply drop the packet, hoping the sender will retransmit it later. 

The KMA must monitor which parts of its pool are allocated and which are free. Once a 
piece of memory is freed, it should be available to other requests. Ideally, a request for memory 
should fail only when memory is really full, that is, when the total free memory available to the al
locator is less than the amount requested. In reality, the allocator fails sooner than that because of 
fragmentation--even if there is enough memory available to satisfy the request, it may not be avail
able as one contiguous chunk. 

12.2.1 Evaluation Criteria 

An important criterion for evaluating a memory allocator is its ability to minimize wastage. Physical 
memory is limited, so the allocator must be space-efficient. One measure of efficiency is the utiliza
tion factor, which is the ratio of the total memory requested to that required to satisfy the requests. 
An ideal allocator would have 100% utilization; in practice, 50% is acceptable [Korn 85]. The major 
cause of wasted memory is fragmentation-the free memory is broken into chunks that are too 



12.2 Functional Requirements 375 

small to be useful. The allocator reduces fragmentation by coalescing adjacent chunks of free mem
ory into a single large chunk. 

A KMA must be fast, because it is used extensively by various kernel subsystems, including 
interrupt handlers, whose performance is usually critical. Both the average and the worst-case la
tency are important. Because kernel stacks are small, the kernel uses dynamic allocation in many 
situations where a user process would simply allocate the object on its stack. This makes allocation 
speed all the more important. A slow allocator degrades the performance of the entire system. 

The allocator must have a simple programming interface that is suitable for a wide variety of 
clients. One possibility is to have an interface similar to the rna 11 oc () and free() functions of the 
user-level memory allocator provided by the standard library: 

void* rna11oc (size t nbytes); 
void free (void* ptr); 

An important advantage of this interface is that the free() routine does not need to know 
the size of the region being freed. Often, one kernel function allocates a chunk of memory and 
passes it to another subsystem, which eventually frees it. For example, a network driver may allo
cate a buffer for an incoming message and send it to a higher-level module to process the data and 
free the buffer. The module releasing the memory may not know the size of the allocated object. If 
the KMA can monitor this information, it will simplify the work of its clients. 

Another desirable interface feature is that the client not be forced to release the entire allo
cated area all at once. If a client wants to release only part of the memory, the allocator should han
dle it correctly. The rna 11 oc ()/free() interface does not permit this. The free() routine will re
lease the entire region and will fail if called with a different address from that returned by 
rna 11 oc (). Allowing clients to grow a buffer (for instance by a rea 11 oc () function) would also be 
useful. 

Allocated memory should be properly aligned for faster access. On many RISC architec
tures, this is a requirement. For most systems, longword alignment is sufficient, but 64-bit machines 
such as DEC's Alpha AXP [DEC 92] may require alignment on an eight-byte boundary. A related 
issue is the minimum allocation size, which is usually eight or sixteen bytes. 

Many commercial environments have a cyclical usage pattern. For example, a machine may 
be used for database queries and transaction processing during the day and for backups and database 
reorganization at night. These activities may have different memory requirements. Transaction 
processing might consume several small chunks of kernel memory to implement database locking, 
while backups may require that most of the memory be dedicated to user processes. 

Many allocators partition the pool into separate regions, or buckets, for requests of different 
sizes. For instance, one bucket may contain all 16-byte chunks, while another may contain all 
64-byte chunks. Such allocators must guard against a bursty or cyclical usage pattern as described 
above. In some allocators, once memory has been assigned to a particular bucket, it cannot be re
used for requests of another size. This may result in a large amount of unused memory in some 
buckets, and hence not enough in others. A good allocator provides a way to dynamically recover 
excess memory from one bucket for use by another. 

Finally, the interaction with the paging system is an important criterion. The KMA must be 
able to borrow memory from the paging system when it uses up its initial quota. The paging system 



376 Chapter 12 Kernel Memory Allocation 

must be able to recover unused memory from the KMA. This exchange should be properly con
trolled to ensure fairness and avoid starvation of either system. 

We now look at several allocation methods, and analyze them using the above criteria. 

12.3 Resource Map Allocator 

The resource map is a set of <base, size> pairs that monitor areas of free memory (see Figure 12-2). 
Initially, the pool is described by a single map entry, whose base equals the starting address of the 
pool and size equals the total memory in the pool (Figure 12-2(a)). As clients allocate and free 
chunks of memory, the pool becomes fragmented, and the kernel creates one map entry for each 
contiguous free region. The entries are sorted in order of increasing base address, making it easy to 
coalesce adjacent free regions. 

Using a resource map, the kernel can satisfy new allocation requests using one of three 
policies: 

• First fit - Allocates memory from the first free region that has enough space. This is the 
fastest algorithm, but may not be optimal for reducing fragmentation. 

• Best fit - Allocates memory from the smallest region that is large enough to satisfy the 
request. This has the drawback that it might leave several free regions that are too small to 
be useful. 

• Worst fit- Allocates memory from the largest available region, unless a perfect fit is 
found. This may seem counter-intuitive, but its usefulness is based on the expectation that 
the region left behind after the allocation will be large enough to be used for a future re
quest. 

No one algorithm is ideal for all usage patterns. [Knut 73] provides a detailed analysis of these and 
other approaches. UNIX chooses the first-fit method. 

Figure 12-2 describes a simple resource map that manages a 1024-byte region of memory. It 
supports two operations: 

offset_ t rma 11 oc (size); /*returns offset of allocated region *I 
voidrmfree (base, size); 

Initially (Figure 12-2(a)), the entire region is free and is described by a single map entry. We 
then have two allocation requests, for 256 and 320 bytes respectively. This is followed by there
lease of 128 bytes starting at offset 256. Figure 12-2(b) shows the state of the map after these op
erations. We now have two free regions, and hence two map entries to describe them. 

Next, another 128 bytes are released starting at offset 128. The allocator discovers that this 
region is contiguous with the free region that starts at offset 256. It combines them into a single, 
256-byte, free region, resulting in the map shown in Figure 12-2(c). Finally, Figure 12-2(d) shows 
the map at a later time, after many more operations have occurred. Note that while the total free 
space is 256 bytes, the allocator cannot satisfy any request greater than 128 bytes. 



12.3 Resource Map Allocator 

576,448 

256,128 

576,448 

128,256 

832,32 
544,128 

288,64 
128,32 

(a) Initial configuration 

(b) After (i) rma 11 oc (256), (ii) rma 11 oc (320), 
and (iii) rmfree (256, 128). 

t 
(c) After rmfree (128, 128). 

t 
(d) After many more operations 

~ 

I II I I 

D free Din use 

Figure 12-2. Using a resource map allocator. 

12.3.1 Analysis 

I 

The resource map provides a simple allocator. The following are its main advantages: 

• The algorithm is easy to implement. 

I 

• The resource map is not restricted to memory allocation. It can manage collections of arbi
trary objects that are sequentially ordered and require allocation and freeing in contiguous 
chunks (such as page table entries and semaphores, as described below). 

377 



378 Chapter 12 Kernel Memory Allocation 

• It can allocate the exact number of bytes requested without wasting space. In practice, it 
will usually round up requests to four- or eight-byte multiples for simplicity and align
ment. 

• A client is not constrained to release the exact region it has allocated. As the previous ex
ample shows, the client can release any part of the region, and the allocator will handle it 
correctly. This is because the arguments to rmfree() provide the size of the region being 
freed, and the bookkeeping information (the map) is maintained separately from the allo
cated memory. 

• The allocator coalesces adjacent free regions, allowing memory to be reused for different 
sized requests. 

However, the resource map allocator also has some major drawbacks: 

• After the allocator has been running for a while, the map becomes highly fragmented, 
creating many small free regions. This results in low utilization. In particular, the resource 
map allocator does poorly in servicing large requests. 

• As the fragmentation increases, so does the size of the resource map, since it needs one 
entry for each free region. If the map is preconfigured with a fixed number of entries, it 
might overflow, and the allocator may lose track of some free regions. 

• If the map grows dynamically, it needs an allocator for its own entries. This is a recursive 
problem, to which we offer one solution below. 

• To coalesce adjacent free regions, the allocator must keep the map sorted in order of in
creasing base offsets. Sorting is expensive, even more so if it must be performed in-place, 
such as when the map is implemented as a fixed array. The sorting overhead is significant, 
even if the map is dynamically allocated and organized as a linked list. 

• The allocator must perform a linear search of the map to find a free region that is large 
enough. This is extremely time consuming and becomes slower as fragmentation in
creases. 

• Although it is possible to return free memory at the tail of the pool to the paging system, 
the algorithm is really not designed for this. In practice, the allocator never shrinks its 
pool. 

The poor performance of the resource map is the main reason why it is unsuitable as a gen
eral-purpose kernel memory allocator. It is, however, used by some kernel subsystems. The System 
V interprocess communication facility uses resource maps to allocate semaphore sets and data areas 
for messages. The virtual memory subsystem in 4.3BSD uses this algorithm to manage system page 
table entries that map user page tables (see Section 13.4.2). 

The map management can be improved in some circumstances. It is often possible to store 
the map entry in the first few bytes of the free region. This requires no extra memory for the map 
and no dynamic allocation for map entries. A single global variable can point to the first free region, 
and each free region stores its size and a pointer to the next free entry. This requires free regions to 
be at least two words long (one for the size, one for the pointer), which can be enforced by requiring 
allocation and freeing words in multiples of two. The Berkeley Fast File System (FFS), described in 
Section 9.5, uses a variation of this approach to manage free space within directory blocks. 



12.4 Simple Power-of-Two Free Lists 379 

While this optimization is suitable for the general memory allocator, it cannot be applied to 
other uses of the resource map, such as for semaphore sets or page table entries, where the managed 
objects have no room for map entry information. 

12.4 Simple Power-of-Two Free Lists 

The power-of-two free lists method is used frequently to implement rna ll oc () and free () in the 
user-level C library. This approach uses a set of free lists. Each list stores buffers of a particular 
size, and all the sizes are powers of two. For example, in Figure 12-3, there are six free lists, storing 
buffers of sizes 32, 64, 128,256,512, and 1024 bytes. 

Each buffer has a one-word header, which reduces its usable area by this amount. When the 
buffer is free, its header stores a pointer to the next free buffer. When the buffer is allocated, its 
header points to the free list to which it should be returned. In some implementations, it contains the 
size of the allocated area instead. This helps detect certain bugs, but requires the free() routine to 
compute the free list location from the size. 

To allocate memory, the client calls rna ll oc (), passing the required size as an argument. 
The allocator computes the size of the smallest buffer that is large enough to satisfy the request. 
This involves adding space for the header to the requested size and rounding the resulting value to 
the next power of two. The 32-byte buffers satisfy requests for 0-28 bytes, the 64-byte buffers sat
isfy requests for 29-60 bytes, and so on. The allocator then removes a buffer from the appropriate 
free list and writes a pointer to the free list in the header. It returns to the caller a pointer to the byte 
immediately following the header in the buffer. 

When the client releases the buffer, it calls the free() routine, passing the pointer returned 
by rna ll oc () as an argument. The user does not have to specify the size of the buffer being freed. It 
is essential, however, to free the entire buffer obtained from rna ll oc (); there is no provision for 
freeing only part of the allocated buffer. The free () routine moves the pointer back four bytes to 
access the header. It obtains the free list pointer from the header and puts the buffer on that list. 

The allocator can be initialized either by preallocating a number of buffers to each list or by 
leaving the lists empty at first and calling the page-level allocator to populate them as required. Sub-

' ' I 
I 
I 
I 
I 
I 

list 
headers 

free 
buffers 

Figure 12-3. The power-of-two free list allocator. 



380 Chapter 12 Kernel Memory Allocation 

sequently, if a list becomes empty, the allocator may handle a new rna 11 oc () request for that size in 
one of three ways: 

• Block the request until a buffer of the appropriate size is released. 
• Satisfy the request with a larger buffer, beginning with the next list and continuing the 

search until it finds a nonempty list. 
• Obtain additional memory from the page-level allocator to create more buffers of that size. 

Each method has its benefits and drawbacks, and the proper choice depends on the situation. For 
example, a kernel implementation of this algorithm may use an additional priority argument for al
location requests. In this case, the allocator may block low-priority requests that cannot be satisfied 
from the correct free list, but complete high-priority requests by one of the other two methods. 

12.4.1 Analysis 
The above algorithm is simple and reasonably fast. Its main appeal is that it avoids the lengthy lin
ear searches of the resource map method and eliminates the fragmentation problem entirely. In 
situations where a buffer is available, its worst-case performance is well bounded. The allocator also 
presents a familiar programming interface, with the important advantage that the free() routine 
need not be given the buffer size as an argument. As a result, an allocated buffer can be passed to 
other functions and subsystems and eventually freed using only the pointer to the buffer. On the 
other hand, the interface does not allow a client to release only part of the allocated buffer. 

There are many important drawbacks of this algorithm. The rounding of requests to the next 
power of two often leaves a lot of unused space in the buffer, resulting in poor memory utilization. 
The problem becomes worse due to the need to store the header in the allocated buffers. Many 
memory requests are for an exact power-of-two bytes. For such requests, the wastage is almost 
100%, since the request must be rounded to the next power of two to allow for the header. For ex
ample, a 512-byte request would consume a 1 024-byte buffer. 

There is no provision for coalescing adjacent free buffers to satisfy larger requests. Gener
ally, the size of each buffer remains fixed for its lifetime. The only flexibility is that large buffers 
may sometimes be used for small requests. Although some implementations allow the allocator to 
steal memory from the paging system, there is no provision to return surplus free buffers to the 
page-level allocator. 

While the algorithm is much faster than the resource map method, it can be further im
proved. In particular, the round-up loop, shown in Example 12-1, is slow and inefficient: 

void*ma11oc (size) 
{ 

int ndx = 0; 
int bufsize = 1 << MINPOWER; 
size+= 4; 
assert (size<= MAXBUFSIZE); 

/*free list index */ 
I* size of smallest buffer *I 
/* account for header *I 



12.5 The McKusick-Karels Allocator 

while (bufsize < size) 
ndx++; 
bufsize «= 1; 

/*at this point, ndx is the index of the appropriate free list *I 

Example 12-1. Crude implementation of rna 11 oc (). 
The next section describes an improved algorithm that addresses many of these problems. 

12.5 The McKusick-Karels Allocator 

381 

Kirk McKusick and Michael Karels introduced an improved power-of-two allocator [McKu 88], 
which is now used in several UNIX variants including 4.4BSD and Digital UNIX. In particular, it 
eliminates space wastage in the common case where the size of the requested memory was exactly a 
power of two. It also optimizes the round-up computation and eliminates it if the allocation size is 
known at the time of compilation. 

The McKusick-Karels algorithm requires the memory managed by the allocator to comprise 
a set of contiguous pages and all buffers belonging to the same page to be the same size (a power of 
two). It uses an additional page usage array (krnerns i zes []) to manage its pages. Each page may be 
in one of three states: 

• Free-the corresponding element of krnerns i zes [] contains a pointer to the element for 
the next free page. 

• Divided into buffers of a particular size-the krnerns i zes [] element contains the size. 
• Part of a buffer that spanned multiple pages-the krnerns i zes [] element corresponding to 

the first page of the buffer contains the buffer size. 

Figure 12-4 shows a simple example for a 1024-byte page size. free1 i starr[] is the usual 
array of free list headers for all buffer sizes smaller than one page. 

Since all buffers on the same page are of the same size, allocated buffers do not need a 
header to store a free list pointer. The free() routine locates the page by masking off the low-order 
bits of the buffer address and finding the size of the buffer in the corresponding element of the 
krnerns i zes [] array. Eliminating the header in allocated buffers yields the greatest savings for 
memory requests whose sizes are an exact power of two. 

The call to rna 11 oc () is replaced by a macro that rounds the request to the next power of two 
(allocated buffers have no header infonnation) and removes a buffer from the appropriate free list. 
The macro calls the rna 11 oc () function for requests of one or more pages or if the appropriate free 
list is empty. In the latter case, rna 11 o c () calls a routine that consumes a free page and divides it 
into buffers of the required size. In the macro, the round-up loop is replaced by a set of conditional 
expressions. Example 12-2 provides an implementation for the pool shown in Figure 12-4: 



382 

freeHstarr[ ] 
Allocated blocks 32 

0 64 

128 
r-l 256 

Chapter 12 Kernel Memory Allocation 

free buffers 

io ~ 512 : : L ______________________________ , 
I 1 --------------------- 1 I l---------------- I I I 

------------- I 
I 
I 
I 

Figure 12-4. The McKusick - Karels allocator. 

#define NDX(size) \ 
(stze) > 128 \ 

? (size) > 256 ? 4 3 \ 
(size) > 64 \ 

? 2 \ 
: (size) > 32 ? 1 0 

#d~fin~-MALLOC(space, cast, size, flags) \ 
{ \ 

register struct freelisthdr* flh; \ 
if {size <= 512 && \ 
(flh = freelistarr [NDX(size)]) !=NULL) \ 

space = (cast)flh~>next; \ 
flh->next = *{caddr t *)space; \ 

else \ -
space= (cast)malloc (size, flags); \ 

Example 12-2. Using macros to speed up malloc. 

The main advantage of using a macro is that when the allocation size is known at the time of 
compilation, the NDX {) macro reduces to a compile-time constant, saving a substantial number of 
instructions. Another macro handles the simple cases of buffer release, calling the free {) function 
in only a few cases, such as when freeing large buffers. 



12.6 The Buddy System 383 

12.5.1 Analysis 

The McKusick-Karels algorithm is a significant improvement over the simple power-of-two alloca
tor described in Section 12.4. It is faster, wastes less memory, and can handle large and small re
quests efficiently. However, the algorithm suffers from some of the drawbacks inherent in the 
power-of-two approach. There is no provision for moving memory from one list to another. This 
makes the allocator vulnerable to a bursty usage pattern that consumes a large number of buffers of 
one particular size for a short period. Also, there is no way to return memory to the paging system. 

12.6 The Buddy System 

The buddy system [Pete 77] is an allocation scheme that combines free buffer coalescing with a 
power-of-two allocator.3 Its basic approach is to create small buffers by repeatedly halving a large 
buffer and coalescing adjacent free buffers whenever possible. When a buffer is split, each half is 
called the buddy of the other. 

To explain this method, let us consider a simple example (Figure 12-5), where a buddy al
gorithm is used to manage a 1 024-byte block with a minimum allocation size of 32 bytes. The allo
cator uses a bitmap to monitor each 32-byte chunk of the block; if a bit is set, the corresponding 
chunk is in use. It also maintains free lists for each possible buffer size (powers of two between 32 
and 512). Initially, the entire block is a single buffer. Let us consider the effect of the following se
quence of requests and allocator actions: 

1. allocate (256): Splits the block into two buddies-A and A'-and puts A' on the 512-
byte free list. It then splits A into B and B', puts B' on the 256-byte 
free list, and returns B to the client. 

fre e list headers 32 64 12s 1 256 1 512 1 

0 256 384 4~512 ( 1023 

B C,'' D D' A' 
/. \ 

A D free 0 muse 

Figure 12-5. The buddy system. 

3 This is the binary buddy system, which is the simplest and most popular buddy system. We can implement other 
buddy algorithms by splitting buffers into four, eight, or more pieces. 



384 Chapter 12 Kernel Memory Allocation 

2. allocate (128): Finds the 128-byte free list empty. It checks the 256-byte list, re
moves B' from it, and splits it into C and C'. Then, it puts C' on the 
128-byte free list and returns C to the client. 

3. allocate (64): Finds the 64-byte list empty, and hence removes C' from 128-byte 
free list. It splits C' into D and D', puts D' on the 64-byte list, and re
turns D to the client. Figure 12-5 shows the situation at this point. 

4. allocate (128): Finds the 128-byte and 256-byte lists empty. It then checks the 512-
byte free list and removes A' from it. Next, it splits A' into E and E', 
and further splits E into F and F'. Finally, it puts E' onto the 256-byte 
list, puts F' on the 128-byte list, and returns F to the client. 

5. release (C, 128): Returns C to the 128-byte free list. This leads to the situation shown 
in Figure 12-6. 

So far, there has been no coalescing. Suppose the next operation is 

6. release (D, 64): The allocator will note that D' is also free and will coalesceD with D' 
to obtain C'. It will further note that C is also free and will coalesce it 
with C' to get back B'. Finally, it will return B' to the 256-byte list, 
resulting in the situation in Figure 12-7. 

A few points of interest need to be clarified: 

• There is the usual rounding of the request to the next power of two. 
• For each request in this example, the corresponding free list is empty. Often, this is not the 

case. If there is a buffer available on the appropriate free list, the allocator uses it, and no 
splitting is required. 

free list headers 

0 1023 

B C D D' F F' E' 

C' 
~ 

B' E 

A A' 

Figure 12-6. The buddy system, stage 2. 



12.6 The Buddy System 

fre e list headers 32 1 64 128 256 512 1 

............ ) 

0 256 { 512 640). 768 1023 

B B' F F' E' 

l E ) 
A 

Figure 12-7. The buddy system, stage 3. 

• The address and size of a buffer provide all the information required to locate its buddy. 
This is because the algorithm automatically gives each buffer an alignment factor equal to 
its size. Thus, for example, a 128-byte buffer at offset 256 has its buddy at offset 384, 
while a 256-byte buffer at the same offset has its buddy at offset 0. 

• Each request also updates the bitmap to reflect the new state of the buffer. While coalesc
ing, the allocator examines the bitmap to determine whether a buffer's buddy is free. 

• While the above example uses a single, 1 024-byte page, the allocator can manage several 
disjoint pages simultaneously. The single set of free list headers can hold free buffers from 
all pages. The coalescing will work as before, since the buddy is determined from the 
buffer's offset in the page. The allocator will, however, maintain a separate bitmap for 
each page. 

12.6.1 Analysis 

385 

The buddy system does a good job of coalescing adjacent free buffers. That provides flexibility, al
lowing memory to be reused for buffers of a different size. It also allows easy exchange of memory 
between the allocator and the paging system. Whenever the allocator needs more memory it can 
obtain a new page from the paging system and split it as necessary. Whenever the release routine 
coalesces an entire page, the page can be returned to the paging system. 

The main disadvantage of this algorithm is its performance. Every time a buffer is released, 
the allocator tries to coalesce as much as possible. When allocate and release requests alternate, the 
algorithm may coalesce buffers, only to split them again immediately. The coalescing is recursive, 
resulting in extremely poor worst-case behavior. In the next section, we examine how SVR4 modi
fies this algorithm to overcome this performance bottleneck. 

Another drawback is the programming interface. The release routine needs both the address 
and size of the buffer. Moreover, the allocator requires that an entire buffer be released. Partial re
lease is insufficient, since a partial buffer has no buddy. 



386 Chapter 12 Kernel Memory Allocation 

12.7 The SVR4 Lazy Buddy Algorithm 

The major problem with the simple buddy algorithm is the poor performance due to repetitive coa
lescing and splitting of buffers. Normally, memory allocators are in a steady state, where the num
ber of in-use buffers of each size remains in a fairly narrow range. Under such conditions, coalesc
ing offers no advantage and is only a waste of time. Coalescing is necessary only to deal with bursty 
conditions, where there are large, temporary, variations in the buffer usage pattern. 

We define a coalescing delay as the time taken to either coalesce a single buffer with its 
buddy or determine that its buddy is not free. The coalescing results in a buffer of the next larger 
size, and the process is recursive until we find a buffer whose buddy is not free. In the buddy algo
rithm, each release operation incurs at least one coalescing delay, and often more than one. 

A straightforward solution is to defer coalescing until it becomes necessary, and then to 
coalesce as many buffers as possible. Although this reduces the average time for allocation and re
lease, the few requests that invoke the coalescing routine are slow. Because the allocator may be 
called from time-critical functions such as interrupt handlers, it is essential to control this worst-case 
behavior. We need an intermediate approach that defers coalescing, but does not wait until the 
situation is critical, and amortizes the cost of coalescing over several requests. [Lee 89] suggests a 
solution based on low- and high-watermarks on each buffer class. The SVR4 approach [Bark 89] 
described below is based on the same idea, but is more efficient. 

12.7.1 Lazy Coalescing 

Buffer release involves two steps. First, the buffer is put on the free list, making it available for 
other allocation requests. Second, the buffer is marked as free in the bitmap and coalesced with ad
jacent buffers if possible; this is the coalescing operation. The normal buddy system performs both 
steps on each release operation. 

The lazy buddy system always performs the first step, which makes the buffer locally free 
(available for allocation within the class, but not for coalescing). Whether it performs the second 
step depends on the state of the buffer class. At any time, a class has N buffers, of which A buffers 
are active, L are locally free, and G are globally free (marked free in the bitmap, available for coa
lescing). Hence, 

N"A+L+G 

Depending on the values of these parameters, a buffer class is said to be in one of three states: 

• lazy- buffer consumption is in a steady state (allocation and release requests are about 
equal) and coalescing is not necessary. 

• reclaiming - consumption is borderline; coalescing is needed. 
• accelerated- consumption is not in a steady state, and the allocator must coalesce faster. 

The critical parameter that determines the state is called the slack, defined as 

slack " N - 2L - G 



12.7 The SVR4 Lazy Buddy Algorithm 387 

The system is in the lazy state when slack is 2 or more, in the reclaiming state when slack equals 1, 
and in the accelerated state when slack is zero. The algorithm ensures that slack is never negative. 
[Bark 89] provides comprehensive proof of why the slack is an effective measure of the buffer class 
state. 

When a buffer is released, the SVR4 allocator puts it on the free list and examines the result
ing state of the class. If the list is in the lazy state, the allocator does no more. The buffer is not 
marked as free in the bitmap. Such a buffer is called a delayed buffer and is identified as such by a 
flag in the buffer header (the header is present only on buffers on the free list). Although it is avail
able for other same-size requests, it cannot be coalesced with adjacent buffers. 

If the list is in the reclaiming state, the allocator marks the buffer as free in the bitmap and 
coalesces it if possible. If the list is in accelerated state, the allocator coalesces two buffers-the one 
just released and an additional delayed buffer, if there is one. When it releases the coalesced buffer 
to the next higher-sized list, the allocator checks the state of that class to decide whether to coalesce 
further. Each of these operations changes the slack value, which must be recomputed. 

To implement this algorithm efficiently, the buffers are doubly linked on the free lists. De
layed buffers are released to the head of the list, and non-delayed buffers to the tail. This way, de
layed buffers are reallocated first; this is desirable because they are the least expensive to allocate 
(no bitmap update is required). Moreover, in the accelerated stage, the additional delayed buffer can 
be quickly checked for and retrieved from the head of the list. If the first buffer is non-delayed, there 
are no delayed buffers on the list. 

This is a substantial improvement over the basic buddy system. In steady state, all lists are in 
the lazy state, and no time is wasted in coalescing and splitting. Even when a list is in the acceler
ated state, the allocator coalesces at most two buffers on each request. Hence, in the worst-case 
situation, there are at most two coalescing delays per class, which is at most twice as bad as the 
simple buddy system. 

[Bark 89] analyzes the performance of the buddy and lazy buddy algorithms under various 
simulated workloads. It shows that the average latency of the lazy buddy method is 10% to 32% 
better than that of the simple buddy system. As expected, however, the lazy buddy system has 
greater variance and poorer worst-case behavior for the release routine. 

12.7.2 SVR4 Implementation Details 
SVR4 uses two types of memory pools-large and small. Each small pool begins with a 4096-byte 
block, divided into 256-byte buffers. The first two buffers are used to maintain the data structures 
(such as the bitmap) for this pool, while the rest are available for allocation and splitting. This pool 
allocates buffers whose sizes are powers of two ranging from 8 to 256 bytes. A large pool begins 
with a 16-kilobyte block and allocates buffers of size 512 to 16K bytes. In steady state, there are 
numerous active pools of both types. 

The allocator exchanges memory with the paging system in pool-sized units. When it needs 
more memory, it acquires a large or small pool from the page-level allocator. When all memory in a 
pool is coalesced, the allocator returns the pool to the paging system. 

A large pool is coalesced by the lazy buddy algorithm alone, because the pool size equals 
that of the largest buffer class. For a small pool, the buddy algorithm only coalesces up to 256 bytes, 



388 Chapter 12 Kernel Memory Allocation 

and we need a separate function to gather the 256-byte buffers of a pool. This is time-consuming, 
and should be performed in the background. A system process called the kmdaemon runs periodi
cally to coalesce the pools and return free pools to the page-level allocator. 

12.8 The Mach-OSF/1 Zone Allocator 

The zone allocator used in Mach and OSF/1 [Sciv 90] provides fast memory allocation and performs 
garbage collection in the background. Each class of dynamically allocated objects (such as proc 
structures, credentials, or message headers) is assigned its own zone, which is simply a pool of free 
objects of that class. Even if objects of two classes have the same size, they have their own zone. 
For example, both port translations and port sets (see Chapter 6) are 104 bytes in size [DEC 93], 
but each has its own zone. There is also a set of power-of-two-sized zones used by miscellaneous 
clients that do not require a private pool of objects. 

Zones are initially populated by allocating memory from the page-level allocator, which also 
provides additional memory when required. Any single page is only used for one zone; hence, all 
objects on the same physical page belong to the same class. The free objects of each zone are main
tained on a linked list, headed by a struct zone. These themselves are dynamically allocated from 
a zone of zones, each element of which is a struct zone. 

Each kernel subsystem initializes the zones it will need, using the function 

zinit (size, max, alloc, name); 

where size is the size of each object, max is the maximum size in bytes the zone may reach, a 11 oc 
is the amount of memory to add to the zone each time the free list becomes empty (the kernel 
rounds it to a whole number of pages), and name is a string that describes the objects in the zone. 
zinit() allocates a zone structure from the zone ofzones and records the size, max, and a11oc 
values in it. z in it () then allocates an initial a 11 oc-byte region of memory from the page-level al
locator and divides it into size-byte objects, which it puts on the free list. All active zone structures 
are maintained on a linked list, described by the global variables first_zone and 1ast_zone 
(Figure 12-8). The first element on this list is the zone of zones, from which all other elements are 
allocated. 

Thereafter, allocation and release are extremely fast, and involve nothing more than remov
ing objects from and returning objects to the free list. If an allocation request finds the free list 
empty, it asks the page-level allocator for a 11 oc more bytes. If the size of the pool reaches max 
bytes, further allocations will fail. 

12.8.1 Garbage Collection 
Obviously, a scheme like this requires garbage collection, otherwise a bursty usage pattern will 
leave a lot of memory unusable. This happens in the background, so that it does not lead to deviant 
worst-case behavior of a few operations. The allocator maintains an array called the zone page map, 
with one element for each page that is assigned to a zone. Each map entry contains two counts: 

• in_ free _1 i st is the number of objects from that page on the free list. 



12.8 The Mach-OSF/1 Zone Allocator 

active zones free objects 

first zone 

last zone 

struct 
f--------+1 

obj1 

struct struct 
t----------+1 

objn objn 

Figure 12-8. The zone allocator. 

struct 
obj1 

• a 11 oc _count is the total number of objects from that page assigned to the zone. 

389 

The a 11 oc _count is set whenever the page is acquired by the zone from the page-level allo
cator. Since the page size may not be an exact multiple of the object size, an object may occasion
ally span two pages. In this case, it is included in the a 11 oc _count of both pages. The 
i n _free _1 i s t count is not updated with each allocation and release operation, but is recomputed 
each time the garbage collector runs. This minimizes the latency of individual allocator requests. 

The garbage collector routine, zone _gc (), is invoked by the swapper task each time it runs. 
It walks through the list of zones and, for each zone, makes two passes through its free list. In the 
first pass, it scans each free element and increments the in_ free_ count of the page to which it be
longs. At the end of this scan, if the in_ free _1 i st and a 11 oc _count of any page are equal, all ob
jects on that page are free, and the page can be recaptured.4 Hence, in the second pass, zone _gc () 
removes all such objects from the free list. Finally, it calls kmem _free() to return each free page to 
the page-level allocator. 

12.8.2 Analysis 

The zone allocator is fast and efficient. It has a simple programming interface. Objects are 
allocated by 

obj = void* zalloc (struct zone* z); 

4 If the page being recaptured has objects at its top or bottom that span two pages, such objects must be removed from 
the free list, and the all oc _count of the other page must be decremented to reflect this. 



390 Chapter 12 Kernel Memory Allocation 

where z points to the zone for that class of objects, set up by an earlier call to z in it (). The objects 
are released by 

void zfree(struct zone* z, void* obj); 

This requires that clients release allocated objects in their entirety and that they know to which zone 
the objects must be released. There is no provision for releasing only part of the allocated object. 

One interesting property is that the zone allocator uses itself to allocate zone structures for 
newly created zones (using the zone of zones). This leads to a "chicken-and-egg problem" when the 
system is bootstrapped. The memory management system needs zones to allocate its own data 
structures, while the zones subsystem needs the page-level allocator, which is part of the memory 
management system. This problem is addressed by using a small, statically configured, region of 
memory to create and populate the zone of zones. 

Zone objects are exactly the required size and do not incur the space wastage inherent in 
power-of-two methods. The garbage collector provides a mechanism for memory reuse-free pages 
can be returned to the paging system and later recovered for other zones. 

The efficiency of the garbage collector is a major concern. Because it runs as a background 
task, it does not directly impact the performance of individual allocation or release requests. The 
garbage collection algorithm is slow, as it involves a linear traversal, first of all free objects and then 
of all pages in the zone. This affects the system responsiveness, for the garbage collector ties up the 
CPU until it completes. 

[Sciv 90) claims that the addition of garbage collection did not significantly change the per
formance of a parallel compilation benchmark. There are, however, no definitive published meas
urements of garbage collection overhead, and it is difficult to estimate its impact on the overall sys
tem performance. The garbage collection algorithm, however, is complex and inefficient. Compare 
this with the slab allocator (Section 12.1 0), which has a simple and fast garbage collection mecha
nism and also exhibits better worst-case behavior. 

12.9 A Hierarchical Allocator for Multiprocessors 

Memory allocation for a shared-memory multiprocessor raises some additional concerns. Data 
structures such as free lists and allocation bitmaps used by traditional systems are not multiproces
sor-safe and must be protected by locks. In large, parallel systems, this results in heavy contention 
for these locks, and CPUs frequently stall while waiting for the locks to be released. 

One solution to this problem is implemented in Dynix, a multiprocessor UNIX variant for 
the Sequent S2000 machines [McKe 93]. It uses a hierarchical allocation scheme that supports the 
System V programming interface. The Sequent multiprocessors are used in large on-line transac
tion-processing environments, and the allocator performs well under that load. 

Figure 12-9 describes the design of the allocator. The lowest (per-CPU) layer allows the 
fastest operations, while the highest (coalesce-to-page) layer is for the time-consuming coalescing 
process. There is also (not shown) a coalesce-to-vmblock layer, which manages page allocation 
within large (4MB-sized) chunks of memory. 



12.9 A Hierarchical Allocator for Multiprocessors 

Coalesce-to
Page layer 

per-page 
free lists 

global freelist 
Globallaye bucket list 

1-----=-------l 
target = 3 

Per-CPU 
cache 

main freelist 

aux freelist 

target= 3 

Figure 12-9. A hierarchical allocator for a multiprocessor. 

391 

The per-CPU layer manages one set of power-of-two pools for each processor. These pools 
are insulated from the other processors, and hence can be accessed without acquiring global locks. 
Allocation and release are fast in most cases, as only the local free list is involved. 

Whenever the per-CPU free list becomes empty, it can be replenished from the global layer, 
which maintains its own power-of-two pools. Likewise, excess buffers in the per-CPU cache can be 
returned to the global free list. As an optimization, buffers are moved between these two layers in 
target-sized groups (three buffers per move in the case shown in Figure 12-9), preventing unneces
sary linked-list operations. 

To accomplish this, the per-CPU layer maintains two free li!"ts-main and aux. Allocation 
and release primarily use the main free list. When this becomes empty, the buffers on aux are 
moved to main, and the aux list is replenished from the global layer. Likewise, when the main list 
overflows (size exceeds target), it is moved to aux, and the buffers on aux are returned to the global 
layer. This way, the global layer is accessed at most once per target-number of accesses. The value 
of target is a tunable parameter. Increasing target reduces the number of global accesses, but ties up 
more buffers in per-CPU caches. 

The global layer maintains global power-of-two free lists, and each list is subdivided into 
groups of target buffers. Occasionally, it is necessary to transfer odd-sized groups of blocks to the 
global layer, due to low-memory operations or per-CPU cache flushes. Such blocks are added to a 
separate bucket list, which serves as a staging area for the global free list. 

When a global list exceeds a global target value, excess buffers are returned to the coalesce
to-page layer. This layer maintains per-page free lists (all buffers from the page are the same size). 
This layer places the buffers on the free list to which they belong, and increases the free count for 
that page. When all buffers on a page are returned to this list, the page can be given back to the 
paging system. Conversely, the coalesce-to-page layer can borrow memory from the paging system 
to create new buffers. 

The coalesce-to-page layer sorts its lists based on the number of free blocks on each page. 
This way, it allocates buffers from pages having the fewest free blocks. Pages with many free blocks 



392 Chapter 12 Kernel Memory Allocation 

get more time to recover other free blocks, increasing the probability of returning them to the paging 
system. This results in a high coalescing efficiency. 

12.9.1 Analysis 

The Dynix algorithm provides efficient memory allocation for shared memory multiprocessors. It 
supports the standard System V interface, and allows memory to be exchanged between the alloca
tor and the paging system. The per-CPU caches reduce the contention on the global lock, and the 
dual free lists provide a fast exchange of buffers between the per-CPU and global layers. 

It is interesting to contrast the Dynix coalescing approach with that of the Mach zone-based 
allocator. The Mach algorithm employs a mark-and-sweep method, linearly scanning the entire pool 
each time. This is computationally expensive, and hence is relegated to a separate background task. 
In Dynix, each time blocks are released to the coalesce-to-page layer, the per-page data structures 
are updated to account for them. When all the buffers in a page are freed, the page can be returned to 
the paging system. This happens in the foreground, as part of the processing of release operations. 
The incremental cost for each release operation is small; hence it does not lead to unbounded worst
case performance. 

Benchmark results [McKe 93] show that for a single CPU, the Dynix algorithm is faster than 
the McKusick-Karels algorithm by a factor of three to five. The improvement is even greater for 
multiprocessors (a hundred to a thousand-fold for 25 processors). These comparisons, however, are 
for the best-case scenario, where allocations occur from the per-CPU cache. This study does not de
scribe more general measurements. 

12.10 The Solaris 2.4 Slab Allocator 

The slab allocator [Bonw 94], introduced in Solaris 2.4, addresses many performance problems that 
are ignored by the other allocators described in this chapter. As a result, the slab allocator delivers 
better performance and memory utilization than other implementations. Its design focuses on three 
main issues--object reuse, hardware cache utilization, and allocator footprint. 

12.10.1 Object Reuse 

The kernel uses the allocator to create various kinds of temporary objects, such as inodes, proc 
structures, and network buffers. The allocator must execute the following sequence of operations on 
an object: 

1. Allocate memory. 
2. Construct (initialize) the object. 
3. Use the object. 
4. Deconstruct it. 
5. Free the memory. 

Kernel objects are usually complex, and contain sub-objects such as reference counts, linked 
list headers, mutexes, and condition variables. Object construction involves setting these fields to a 



12.10 The Solaris 2.4 Slab Allocator 393 

fixed, initial state. The deconstruction phase deals with the same fields, and in many cases, leaves 
them in their initial state before deallocating the memory. 

For instance, a vnode contains the header of a linked list of its resident pages. When the 
vnode is initialized, this list is empty. In many UNIX implementations [Bark 90], the kernel deallo
cates the vnode only after all its pages have been flushed from memory. Hence, just before freeing 
the vnode (the deconstruction stage), its linked list is empty again. 

If the kernel reuses the same object for another vnode, it does not need to reinitialize the 
linked list header, for the deconstruction took care of that. The same principle applies to other ini
tialized fields. For instance, the kernel allocates objects with an initial reference count of one, and 
deallocates them when the last reference is released (hence, the reference count is one, and is about 
to become zero). Mutexes are initialized to an unlocked state, and must be unlocked before releasing 
the object. 

This shows the advantage of caching and reusing the same object, rather than allocating and 
initializing arbitrary chunks of memory. Object caches are also space-efficient, as we avoid the typi
cal rounding to the next power of two. The zone allocator (Section 12.8) is also based on object 
caching and gives efficient memory utilization. However, because it is not concerned with the object 
state, it does not eliminate the reinitialization overhead. 

12.10.2 Hardware Cache Utilization 

Traditional memory allocators create a subtle but significant problem with hardware cache utiliza
tion. Many processors have a small, simple, Ievel-l data cache whose size is a power of two. 
(Section 15.13 explains hardware caches in detail.) The MMU maps addresses to cache locations by 

cache location= address% cachesize; 

When the hardware references an address, it first checks the cache location to see if the data is in the 
cache. If it is not, the hardware fetches the data from main memory into the cache, overwriting the 
previous contents of that cache location. 

Typical memory allocators such as the McKusick-Karels and the buddy algorithms round 
memory requests to the next power of two and return objects aligned to that size. Moreover, most 
kernel objects have their important, frequently accessed fields at the beginning of the object. 

The combined effect of these two factors is dramatic. For instance, consider an implementa
tion where the in-core inode is about 300 bytes, the first 48 bytes of which are frequently accessed. 
The kernel allocates a 512-byte buffer aligned at a 512-byte boundary. Of these 512 bytes, only 48 
bytes (9%) are frequently used. 

As a result, parts of the hardware cache that are close to the 512-byte boundary suffer serious 
contention, whereas the rest of the cache is underutilized. In this case, inodes can utilize only 9% of 
the cache. Other objects exhibit similar behavior. This anomaly in buffer address distribution results 
in inefficient use of the hardware cache and, hence, poor memory performance. 

The problem is worse for machines that interleave memory access across multiple main 
buses. For instance, the SPARCcenter 2000 [Cekl92] interleaves data in 256-byte stripes across two 
buses. For the above example of inode use, most of the accesses involve bus 0, resulting in unbal
anced bus use. 



394 Chapter 12 Kernel Memory Allocation 

12.10.3 Allocator Footprint 

The footprint of an allocator is the portion of the hardware cache and the translation lookaside 
buffer (I'LB) that is overwritten by the allocation itself. (Section 13.3.1 explains TLBs in detail.) 
Memory allocators using resource maps or buddy algorithms must examine several objects to find a 
suitable buffer. These objects are distributed in many different parts of memory, often far from each 
other. This causes many cache and TLB misses, reducing the performance of the allocator. The im
pact is even greater, because the allocator's memory accesses overwrite hot (active) cache and TLB 
entries, requiring them to be fetched from main memory again. 

Allocators such as McKusick-Karels and zone have a small footprint, since the allocator de
termines the correct pool by a simple computation and merely removes a buffer from the appropri
ate free list. The slab allocator uses the same principles to control its footprint. 

12.10.4 Design and Interfaces 

The slab allocator is a variant of the zone method and is organized as a collection of object caches. 
Each cache contains objects of a single type; hence, there is one cache of vnodes, one of proc 
structures, and so on. Normally, the kernel allocates objects from, and releases them to, their re
spective caches. The allocator also provides mechanisms to give more memory to a cache, or re
cover excess memory from it. 

Conceptually, each cache is divided into two parts-a front end and a back end (Figure 
12-1 0). The front end interacts with the memory client. The client obtains constructed objects from 
the cache and returns deconstructed objects to it. The back end interacts with the page-level alloca
tor, exchanging slabs ofunconstructed memory with it as the system usage patterns change. 

A kernel subsystem initializes a cache to manage objects of a particular type, by calling 

cachep = kmem_cache_create (name. size, align, ctor, dtor}; 

where name is a character string describing the object, size is the size of the object in bytes, align 
is the alignment required by the objects, and ctor and dtor are pointers to functions that construct 
and deconstruct the object respectively. The function returns a pointer to the cache for that object. 

/..-active .... ' 
{ \ 
' vnodes / ' / ----

page-level allocator 

/..-active .... , 
I \ 
', procs _../ ----

/..-active .... , 
I \ 
', mbufs / ____ ...... 

/..-active .... ' 
I \ 
', msgbs _../ ----

Figure 12-10. Slab allocator design. 



12.10 The Solaris 2.4 Slab Allocator 

Thereafter, the kernel allocates an object from the cache by calling 

objp = km¢ln.:c:cache_a11oc (cachep, flags); 

and releases it with 

kmem_cache~free (cachep, objp}; 

395 

This interface does not construct or deconstruct objects when reusing them. Hence the kernel 
must restore the object to its initial state before releasing it. As explained in Section 12.10.1, this 
usually happens automatically and does not require additional actions. 

When the cache is empty, it calls kmem _cache _grow (} to acquire a slab of memory from the 
page-level allocator and create objects from it. The slab is composed of several contiguous pages 
managed as a monolithic chunk by the cache. It contains enough memory for several instances of 
the object. The cache uses a small part of the slab to manage the memory in the slab and divides the 
rest of the slab into buffers that are the same size as the object. Finally, it initializes the objects by 
calling their constructor (specified in the ctor argument to kmem_cache_create(}), and adds them 
to the cache. 

When the page-level allocator needs to recover memory, it calls kmem_cache_reap(} on a 
cache. This function finds a slab whose objects are all free, deconstructs these objects (calling the 
function specified in the dtor argument to kmem_cache_create(}), and removes the slab from the 
cache. 

12.10.5 Implementation 

The slab allocator uses different techniques for large and small objects. We first discuss small ob
jects, many of which can fit into a one-page slab. The allocator divides the slab into three parts-the 
kmem _ s 1 ab structure, the set of objects, and some unused space (Figure 12-11 ). The kmem _ s 1 ab 
structure occupies 32 bytes and resides at the end of the slab. Each object uses an extra four bytes to 
store a free list pointer. The unused space is the amount left over after creating the maximum pos
sible number of objects from the slab. For instance, if the inode size is 300 bytes, a 4096-byte slab 
will hold 13 inodes, leaving 104 bytes unused (accounting for the kmem _ s 1 ab structure and the free 
list pointers). This space is split into two parts, for reasons explained below. 

coloring area 
(unused) 

free 

linked list 

Figure 12-11. Slab organization for small objects. 



396 Chapter 12 Kernel Memory Allocation 

The kmem _slab structure contains a count of its in-use objects. It also contains pointers to 
chain it in a doubly linked list of slabs of the same cache, as well as a pointer to the first free object 
in the slab. Each slab maintains its own, singly linked, free buffer list, storing the linkage informa
tion in a four-byte field immediately following the object. This field is needed only for free objects. 
It must be distinct from the object itself, since we do not want to overwrite the constructed state of 
the object. 

The unused space is split into two parts: a slab coloring area at the head of the slab and the 
rest just before the kmem _slab structure. The cache tries to use a different-sized coloring area in 
each of its slabs, subject to alignment restrictions. In our inode cache example, if the inodes require 
an 8-byte alignment, the slabs can have 14 different coloring sizes (0 through 104 in 8-byte incre
ments). This allows a better distribution of the starting offsets of the objects of this class, resulting 
in more balanced and efficient use of the hardware cache and memory buses. 

The kernel allocates an object from a slab by removing the first element from the free list 
and incrementing the slab's in-use count. When freeing the object, it identifies the slab by a simple 
computation: 

slab address = object address %slab size; 

It then returns the object to the slab's free list, and decrements the in-use count. 
When its in-use count becomes zero, the slab is free, or eligible for reclaiming. The cache 

chains all its slabs on a partly sorted, doubly linked list. It stores fully active slabs (all objects in 
use) at the beginning, partially active slabs in the middle, and free slabs at the tail. It also maintains 
a pointer to the first slab that has a free object and satisfies allocations from that slab. Hence the 
cache does not allocate objects from a completely free slab until all partly active slabs are ex
hausted. If the page-level allocator must reclaim memory, it checks the slab at the tail of the list and 
removes the slab if free. 

Large Object Slabs 

The above implementation is not space-efficient for large objects, which are usually multiples of a 
page in size. For such objects, the cache allocates slab management data structures from a separate 
pool of memory (another object cache, of course). In addition to the kmem _slab structure, the cache 
uses a kmem _bufct l structure for each object in the cache. This structure contains the free list link
age, a pointer to the kmem _slab, and a pointer to the object itself. The slab also maintains a hash 
table to provide a reverse translation from the object to the kmem _ bufct l structure. 

12.10.6 Analysis 

The slab allocator is a well-designed, powerful facility. It is space-efficient, because its space over
head is limited to the kmem _slab structure, the per-object linkage field, and an unused area no larger 
than one object per slab. Most requests are serviced extremely quickly by removing an object from 
the free list and updating the in-use count. Its coloring scheme results in better hardware cache and 
memory bus utilization, thus improving overall system performance. It also has a small footprint, as 
it accesses only one slab for most requests. 



12.11 Summary 397 

The garbage collection algorithm is much simpler than that of the zone allocator, which is 
based on similar principles. The cost of garbage collection is spread over all requests, since each 
operation changes the in-use count. The actual reclaim operation involves some additional overhead, 
for it must scan the different caches to find a free slab. The worst-case performance is proportional 
to the total number of caches, not the number of slabs. 

One drawback of the slab allocator is the management overhead inherent in having a sepa
rate cache for each type of object. For common classes of objects, where the cache is large and often 
used, the overhead is insignificant. For small, infrequently used caches, the overhead is often unac
ceptable. This problem is shared by the Mach zone allocator and is solved by having a set of power
of-two buffers for objects that do not merit a cache of their own. 

The slab allocator would benefit from the addition of per-processor caches such as those of 
Dynix. [Bonw 94] acknowledges this and mentions it as a possible future enhancement. 

12.11 Summary 

The design of a general-purpose kernel memory allocator raises many important issues. It must be 
fast, easy to use, and use memory efficiently. We have examined several allocators and analyzed 
their advantages and drawbacks. The resource map allocator is the only one that permits release of 
part of the allocated object. Its linear search methods yield unacceptable performance for most ap
plications. The McKusick-Karels allocator has the simplest interface, using the standard rna ll oc () 
and free () syntax. It has no provision for coalescing buffers or returning excess memory to the 
page-level allocator. The buddy system constantly coalesces and breaks buffers to adjust to shifting 
memory demands. Its performance is usually poor, particularly when there is frequent coalescing. 
The zone allocator is normally fast, but has inefficient garbage collection mechanisms. 

The Dynix and slab allocators offer significant improvements over these methods. Dynix 
uses a power-of-two method, but adds per-processor caches and fast garbage collection (the coa
lesce-to-page layer). The slab allocator is a modified zone algorithm. It improves performance 
through object reuse and balanced address distribution. It also uses a simple garbage collection al
gorithm that bounds the worst-case performance. As was previously noted, adding per-CPU caches 
to the slab algorithm would provide an excellent allocator. 

Table 12-1 summarizes the results of a set of experiments [Bonw 94] comparing the slab al
locator with the SVR4 and McKusick-Karels allocators. The experiments also show that object re
use reduces the time required for allocation plus initialization by a factor of 1.3 to 5.1, depending on 
the object. This benefit is in addition to the improved allocation time noted in the table. 

Table 12-1. Performance measurements of popular allocators 

SVR4 McKusick- slab 
Karels 

Average time for alloc +free (microseconds) 9.4 4.1 3.8 
Total fragmentation (waste) 46% 45% 14% 
Kenbus benchmark performance 

(number of scripts executed per minute) 199 205 233 



398 Chapter 12 Kernel Memory Allocation 

Many of these techniques can also be applied to user-level memory allocators. However, the 
requirements of user-level allocators are quite different; hence, a good kernel allocator may not 
work as well at the user level, and vice versa. User-level allocators deal with a very large amount of 
(virtual) memory, practically limitless for all but the most memory-intensive applications. Hence, 
coalescing and adjusting to shifting demands are less critical than rapid allocation and deallocation. 
A simple, standard interface is also extremely important, since they are used by many diverse, inde
pendently written applications. [Korn 85] describes several different user-level allocators. 

12.12 Exercises 

1. In what ways do the requirements for a kernel memory allocator differ from those for a user
level allocator? 

2. What is the maximum number of resource map entries required to manage a resource with n 
items? 

3. Write a program that evaluates the memory utilization and performance of a resource map 
allocator, using a simulated sequence of requests. Use this to compare the first-fit, best-fit, and 
worst-fit approaches. 

4. Implement the free() function for the McKusick-Karels allocator. 
5. Write a scavenge() routine that coalesces free pages in the McKusick-Karels allocator and 

releases them to the page-level allocator. 
6. Implement a simple buddy algorithm that manages a 1 024-byte area of memory with a 

minimum allocation size of 16 bytes. 
7. Determine a sequence of requests that would cause the worst-case behavior for the simple 

buddy algorithm. 
8. In the SVR4 lazy buddy algorithm described in Section 12.7, how would each of following 

events change the values of N, A, L, G, and slack? 
(a) A buffer is released when slack is greater than 2. 
(b) A delayed buffer is reallocated. 
(c) A non-delayed buffer is allocated (there are no delayed buffers). 
(d) A buffer is released when slack equals 1, but none of the free buffers can be coalesced 

because their buddies are not free. 
(e) A buffer is coalesced with its buddy. 

9. Which of the other memory allocators can be modified to have a Dynix-style per-CPU free list 
in case of multiprocessors? Which algorithms cannot adopt this technique? Why? 

10. Why does the slab allocator use different implementations for large and small objects? 
11. Which of the allocators described in this chapter have simple programming interfaces? 
12. Which of the allocators allow a client to release part of an allocated block? 
13. Which of the allocators can reject an allocation request even if the kernel has a block of 

memory large enough to satisfy the request? 



12.13 References 399 

12.13 References 

[Bach 86] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood 
Cliffs, NJ, 1986. 

[Bark 89] Barkley, R.E., and Lee, T.P., "A Lazy Buddy System Bound By Two Coalescing 
Delays per Class," Proceedings of the Twelfth ACM Symposium on Operating 
Systems Principles, Dec. 1989, pp. 167-176. 

[Bark 90] Barkley, R.E., and Lee, T.P., "A Dynamic File System !node Allocation and Reclaim 

[Bonw94] 

[Cekl92] 

[DEC 92] 
[DEC 93] 

[Knut 73] 

[Korn 85] 

[Lee 89] 

[McKe 93] 

[McKu 88] 

[Pete 77] 

[Sciv 90] 

[Step 83] 

Policy," Proceedings of the Winter 1990 USENIX Technical Conference, Jan. 1990, 
pp. 1-9. 
Bonwick, J., "The Slab Allocator: An Object-Caching Kernel Memory Allocator," 
Proceedings of the Summer 1994 USENIX Technical Conference, Jun. 1994, pp. 87-
98. 
Cekleov, M., Frailong, J.-M., and Sindhu, P., Sun-4D Architecture, Revision 1.4, 
Sun Microsystems, 1992. 
Digital Equipment Corporation, Alpha Architecture Handbook, Digital Press, 1992. 
Digital Equipment Corporation, DEC OSF/1 Internals Overview-Student 
Workbook, 1993. 
Knuth, D., The Art of Computer Programming, Vol. I, Fundamental Algorithms, 
Addison-Wesley, Reading, MA, 1973. 
Korn, D.G., and Vo, K.-P., "In Search of a Better Malloc," Proceedings of the 
Summer 1985 USENIXTechnical Conference, Jun. 1985, pp. 489-505. 
Lee, T.P., and Barkley, R.E., "A Watermark-Based Lazy Buddy System for Kernel 
Memory Allocation," Proceedings of the Summer 1989 USENIX Technical 
Conference, Jun. 1989, pp. 1-13. 
McKenney, P.E., and Slingwine, J., "Efficient Kernel Memory Allocation on Shared
Memory Multiprocessors," Proceedings of the Winter 1993 USENIX Technical 
Conference, Jan. 1993,pp.295-305. 
McKusick, M.K., and Karels, M.J., "Design of a General-Purpose Memory Allocator 
for the 4.3BSD UNIX Kernel," Proceedings of the Summer 1988 USENIX Technical 
Conference, Jun. 1988,pp.295-303. 
Peterson, J.L., and Norman, T.A., "Buddy Systems," Communications of the ACM, 
Vol. 20, No.6, Jun. 1977, pp. 421-431. 
Sciver, J.V., and Rashid, R.F., "Zone Garbage Collection," Proceedings of the 
USENIX Mach Workshop, Oct. 1990, pp. 1-15. 
Stephenson, C.J., "Fast Fits: New Methods for Dynamic Storage Allocation," 
Proceedings of the Ninth ACM Symposium on Operating Systems Principles, Vol. 
17,no.5, 1983,pp.30-32. 



13 

Virtual Memory 

13.1 Introduction 

One of the primary functions of the operating system is to manage the memory resources of the 
system efficiently. Each system has a high-speed, randomly accessible primary memory, also 
known as main memory, physical memory, or simply, as memory or core. Its access time is of the 
order of a few CPU cycles. 1 A program may directly reference code or data that is resident in main 
memory. Such memory is relatively expensive and therefore limited. The system uses a number of 
secondary storage devices (usually disks or other server machines on a network) to store informa
tion that does not fit in main memory. Access to such devices is several orders of magnitudes slower 
than to primary memory and requires explicit action on part of the operating system. The memory 
management subsystem in the kernel is responsible for distributing information between main 
memory and secondary storage. It interacts closely with a hardware component called the memory 
management unit (MMU), which is responsible for getting data to and from main memory. 

Life would be very simple for the operating system in the absence of memory management. 
The system would keep only one program in memory at a time, loaded contiguously at a known, 
fixed address. This would simplify the task of linking and loading, and absolve the hardware of any 
address translation chores. All addressing would be directly to physical addresses, and the program 
would have the entire machine to itself (shared, of course, with the operating system). This would 
be the fastest, most efficient way of running any single program. 

1 For instance, in 1995, a typical desktop system has a 75 Mhz processor and a 70-nanosecond memory access time, 
which equals 5.25 CPU cycles. 

400 



13.1 Introduction 401 

Such a scenario is often found on real-time, embedded, and small microprocessor-based 
systems. For general-purpose systems, the drawbacks are obvious. First, program size is bounded by 
memory size, and there is no way to run large programs. Second, with just one program loaded in 
memory, the entire system is idle when the program must wait for I/0. While the system is opti
mized for the single, small program case, it is hopelessly inadequate for providing a multipro
gramming environment. 

Accepting the need for some form of memory management, let us draw up a wish list of 
things we would like to be able to do: 

• Run programs larger than physical memory. Ideally, we should be able to run programs of 
arbitrary size. 

• Run partially loaded programs, thus reducing program startup time. 
• Allow more than one program to reside in memory at one time, thereby increasing CPU 

utilization. 
• Allow relocatable programs, which may be placed anywhere in memory and moved 

around during execution. 
• Write machine-independent code-there should be no a priori correspondence between 

the program and the physical memory configuration. 
• Relieve programmers of the burden of allocating and managing memory resources. 
• Allow sharing-for example, if two processes are running the same program, they should 

be able to share a single copy of the program code. 

These goals are realized through the use of virtual memory [Denn 70]. The application is 
given the illusion that it has a large main memory at its disposal, although the computer may have a 
relatively small memory. This requires the notion of an address space as distinct from memory lo
cations. The program generates references to code and data in its address space, and these addresses 
must be translated to locations in main memory. The hardware and software must cooperate to bring 
information into main memory when it is needed for processing by the program and to perform the 
address translations for each access. 

Virtual memory does not come without cost. The translation tables and other data structures 
used for memory management reduce the physical memory available to programs. The cost of ad
dress translation is added to the execution time for each instruction and is particularly severe when 
it involves extra memory accesses. When a process attempts to access a page that is not resident in 
memory, the system generates a fault. It handles the fault by bringing the page into memory, which 
may require time-consuming disk 1/0 operations. In all, memory management activities take up a 
significant amount of CPU time (about 10% on a busy system). The usable memory is further re
duced by fragmentation-for instance, in a page-based system, if only a part of a page contains use
ful data, the rest is wasted. All these factors underscore the importance of an efficient design that 
emphasizes performance as well as functionality. 

13.1.1 Memory Management in the Stone Age 

Early implementations of UNIX (Version 7 and before) ran on the PDP-11, which had a 16-bit ar
chitecture with an address space of 64 kilobytes. Some models supported separate instruction and 



402 Chapter 13 Virtual Memory 

data spaces, but that still restricted the process size to 128 kilobytes. This limitation led to the de
velopment of various software overlay schemes for both user programs and the kernel [Coli 91]. 
Such methods reuse memory by overwriting a part of the address space that is no longer useful with 
another part of the program. For example, once the system is up and running, it no longer needs the 
system initialization code and can reclaim that space for use by other parts of the program. Such 
overlay schemes require explicit actions by the application developer, who needs to be familiar with 
the details of the program and the machine on which it runs. Programs using overlays are inherently 
unportable, since the overlay scheme depends on the physical memory configuration. Even adding 
more memory to the machine requires modifYing these programs. 

The memory management mechanisms were restricted to swapping (Figure 13-1). Processes 
were loaded in physical memory contiguously and in their entirety. A small number of processes 
could fit into physical memory at the same time, and the system would time-share between them. If 
another process wanted to run, one of the existing processes needed to be swapped out. Such a proc
ess would be copied to a predefined swap partition on a disk. Swap space was allocated on this 

Physical Memory 
Swap Area on Disk 

Operating System 

PO 
P1 t =tO 

P2 
P3 

Operating System 
P3 

P1 t = t1 
PO 

P2 

unused memory 

Operating System P1 

P3 
PO t = t2 

P2 

Figure 13-1. Swapping based memory management. 



13.1 Introduction 403 

partition for each process at process creation time, so as to guarantee its availability when needed. 
Demand paging made its appearance in UNIX with the introduction of the VAX -11/780 in 

1978, with its 32-bit architecture, 4-gigabyte address space, and hardware support for demand pag
ing [DEC 80]. 3BSD was the first major UNIX release to support demand paging [Baba 79, 
Baba 81]. By the mid-1980s, all versions of UNIX used demand paging as the primary memory 
management technique, with swapping relegated to a secondary role. 

In a demand-paged system, both memory and process address space are divided into fixed
size pages, and these pages are brought into and out of memory as required. A page of physical 
memory is often called a page frame (or a physical page). Several processes may be active at any 
time, and physical memory may contain just some of the pages of each process (Figure 13-2). Each 
program runs as though it is the only program on the system. Program addresses are virtual and are 
divided by the hardware into a page number and an offset in the page. The hardware, in conjunction 
with the operating system, translates the virtual page number in the program address space to a 
physical page frame number and accesses the appropriate location. If the required page is not in 
memory, it must be brought into memory. In pure demand paging, no page is brought into memory 
until needed (referenced). Most modem UNIX systems do some amount of anticipatory paging, 
bringing in pages the system predicts will be needed soon. 

A demand paging scheme may be used along with or instead of swapping. There are several 
benefits: 

• Program size is limited only by virtual memory, which, for 32-bit machines, can be up to 
4 gigabytes. 

• Program startup is fast since the whole program does not need to be in memory in order to 
run. 

• More programs may be loaded at the same time, since only a few pages of each program 

P1 

P2 

/ 
P3 

~ / 

:7 ~ 

v ~ >( 

~ 
Physical 
memory 

P4 

?>< 
P6 

P5 

Key 

C==:J in-core 

C==:J not in-core 

Figure 13-2. Physical memory holds a few pages of each process. 



404 Chapter I 3 Virtual Memory 

need to be in memory at any given time. 
• Moving individual pages into and out of memory is a lot cheaper than swapping entire 

processes or segments. 

No discussion of memory management is complete without a mention of segmentation. This 
technique divides a process's address space into several segments. Each address in the program 
consists of a segment ID and an offset from the base of the segment. Each segment may have indi
vidual protections (read/write/execute) associated with it. Segments are loaded contiguously in 
physical memory, and each segment is described by a descriptor containing the physical address at 
which it is loaded (its base address), its limit or size, and protections. The hardware checks segment 
boundaries on each memory access, preventing the process from corrupting an adjacent segment. 
Program loading and swapping may be done on segment granularity instead of the whole program. 

Segmentation may also be combined with paging [Bach 86] to provide a flexible, hybrid 
memory management mechanism. In such a system, segments need not be physically contiguous in 
memory. Each segment has its own address translation map, which translates segment offsets to 
physical memory locations. The Intel 80x862 architecture, for instance, supports this model. 

Programmers typically think of the process address space as consisting of text, data, and 
stack regions, and the notion of segments maps well to this view. Although many versions of UNIX 
explicitly define these three regions, they are usually supported as a high-level abstraction com
posed of a set of virtually contiguous pages and not as hardware-recognized segments. Segmenta
tion has not been popular in mainstream UNIX variants, and we do not discuss it in further detail. 

13.2 Demand Paging 

The paging system is responsible for allocating and managing the address spaces of all processes. It 
tries to optimize the use of the physical resources, including the main memory and secondary stor
age devices, to provide the desired functionality with minimum overhead. This chapter, as well as 
Chapters 14 and 15, examine several different virtual memory architectures. We begin by exploring 
some fundamental issues shared by all demand paging implementations. 

13.2.1 Functional Requirements 

Having accepted the desirability of a demand-paged architecture, we need to think about what func
tionality it must provide. The primary goal is to allow a process to run in a virtual address space 
and to perform translations from virtual to physical addresses transparently to the process. This goal 
must be achieved with the least possible impact on system resources. Nearly all other requirements 
can be derived directly or indirectly from this primary goal. From that perspective, we can develop a 
more detailed set of requirements, as follows: 

• Address space management - The kernel allocates the address space to the process 
during fork and releases it when the process exits. If the process makes an exec system 

2 This book uses the term 80x86 (or more simply, x86) to refer to properties generic to the Intel 80386, 80486, and 
Pentium architectures. 



13 .2 Demand Paging 

call, the kernel releases the old address space and allocates a new one that corresponds to 
the new program. Other major operations on the address space include changing the size 
of the d:tta region or the stack, and adding a new region (such as shared memory). 

• Adllress translation -For each instruction that accesses memory, the MMU needs to 
translate virtual addresses generated by the process to physical addresses in main memory. 
In a demand-paged system, a page is the unit of memory allocation, protection, and ad
dress translation. The virtual address is converted into a virtual page number and an offset 
within that page. The virtual page number is converted to a physical page number using 
some kind of address translation maps. If an instruction accesses a page that is not in 
physical memory (not resident), it will cause a page fault exception. The fault handler in 
the kernel must resolve the fault by bringing the page into memory. 

• Physical memory management- Physical memory is the most important resource con
trolled by the memory management subsystem. Both the kernel and the user processes 
contend for memory, and these requests must be satisfied quickly. The total size of all ac
tive processes is usually much larger than that of physical memory, which can hold only a 
limited subset of this data. Hence the system uses physical memory as a cache of useful 
data. The kernel must optimize the utilization of this cache and ensure consistency and 
currency of the data. 

• Memory protection - Processes must not access or modify pages in an unauthorized 
manner. The kernel must protect its own code and data against modification by user proc
esses. Otherwise, a program may accidentally (or maliciously) corrupt the kernel. Forse
curity reasons, the kernel must also prevent processes from reading its code or data. Proc
esses should not be able to access pages belonging to other processes. A part of the 
process's address space may even be protected from the process itself. For example, the 
text region of a process is usually write-protected, so that the process cannot accidentally 
corrupt it. The kernel implements the system's memory protection policies using the 
available hardware mechanisms. If the kernel detects an attempt to access an illegal loca
tion, it notifies the offending process by sending it a segmentation violation (SIGSEGV) 
signaJ.3 

• Memory sharing - The characteristics of UNIX processes and their interactions natu
rally suggest sharing of certain portions of their address spaces. For instance, all processes 
running the same program can share a single copy of the text region of the program. Proc
esses may explicitly ask to share a region of memory with other cooperating processes. 
The text regions of standard libraries may be shared in the same manner. These are exam
ples of high-level sharing. There is also potential for low-level sharing of individual 
pages. For instance, after a fork, the parent and child may share a single copy of data and 
stack pages as long as neither tries to modify them. 

These and other forms of sharing improve performance by reducing the contention on 
physical memory and by eliminating the in-memory copying and disk 1/0 needed to 
maintain multiple copies of the same data. The memory management subsystem must de
cide what forms of sharing it supports and how to implement such sharing. 

3 In some cases, the kernel sends the S I GBUS (bus error) signal instead. 

405 



406 Chapter 13 Virtual Memory 

• Monitoring system load- Usually, the paging system is able to cope with the demands 
of the active processes. Sometimes, however, the system may become overloaded. When 
that happens, processes do not get enough memory for their active pages and hence are 
unable to make progress. The load on the paging system depends on the number and size 
of the active processes, as well as their memory reference patterns. The operating system 
needs to monitor the paging system to detect such a situation and to take corrective action 
when required. This may involve controlling the system load by preventing new processes 
from starting up or by deactivating some existing processes. 

• Other facilities - Some of the other functions provided by the memory management 
system include support for memory-mapped files, dynamically linked shared libraries, and 
execution of programs residing on remote nodes. 

The memory management architecture has a great impact on overall system performance, 
and therefore the design must be sensitive to performance and scalability. Portability is important as 
well, to allow the system to run on different types of machines. Finally, the memory subsystem 
should be transparent to the user, who should be able to write code without worrying about the un
derlying memory architecture. 

13.2.2 The Virtual Address Space 

The address space of a process comprises all (virtual) memory locations that the program may refer
ence or access. At any instant, the address space, along with the process's register context, reflects 
the current state of the program. When the process invokes a new program via exec, the kernel 
builds an address space that corresponds to the new image. Demand-paged architectures divide this 
space into fixed-size pages. The pages of a program may hold several types of information: 

• text 
• initialized data 
• uninitialized data 
• modified data 
• stack 
• heap 
• shared memory 
• shared libraries 

These page types differ in the protections, method of initialization, and how they are shared 
by processes. Text pages are usually read-only, while data, stack, and heap pages are read-write. 
Protections on shared memory pages are usually set when the region is first allocated. 

Text pages are normally shared by all processes running the same program. Pages in a 
shared memory region are shared by all processes that attach the region to their address space. A 
shared library may contain both text and data pages. The text pages are shared by all processes ac
cessing the library. Library data pages are not shared, and each process gets its own private copy of 
these pages. (Some implementations may allow them to be shared until they are modified.) 



13.2 Demand Paging 407 

13.2.3 Initial Access to a Page 

A process can start running a program with none of its pages in physical memory. As it accesses 
each nonresident page, it generates a page fault, which the kernel handles by allocating a free page 
and initializing it with the appropriate data. 

The method of initialization is different for the first access to a page and for subsequent ac
cesses. In this section, we describe the first access. Text and initialized data pages are read in from 
the executable file. Uninitialized data pages are filled with zeroes, so that global uninitialized vari
ables are automatically initialized to zero. Shared library pages are initialized from the library file. 
The u area and kernel stack are set up during process creation by copying the pages from the parent. 

If a process executes a program that another process is already executing or has recently 
executed, then some or all of its text pages may be in physical memory or on fast devices such as 
the swap area (discussed in Section 13.2.4). In this case, the system can avoid the expense of retriev
ing these pages from the executable file. This issue is discussed in detail later in Sections 13.4.4 and 
14.6. 

13.2.4 The Swap Area 

The total size of all active programs is often much greater than the physical memory, which conse
quently holds only some of the pages of each process. If a process needs a page that is not resident, 
the kernel makes room for it by appropriating another page and discarding its old contents. 

Ideally, we would like to only replace those pages that will never be needed again, such as 
pages belonging to terminated processes. Often this is not possible, and the kernel must steal a page 
that may be required in the future. Thus, the kernel must save a copy of the page on secondary stor
age. UNIX uses a swap area, comprising one or more disk partitions, to hold such temporary pages. 
When the system is initially configured, certain disk partitions are left unformatted and are reserved 
for swapping. They may not be used by the file system. 

Figure 13-3 describes how a page moves between physical memory and various secondary 
storage locations. If a page that has been saved on swap is accessed again, the kernel handles the 
page fault by reading it in from the swap area. To do so, it must maintain some type of swap map 
that describes the location of all outswapped pages. If this page must be removed from memory 
again, it must be saved only if its contents are different from the saved copy. This happens if the 
page is dirty, that is, if it was modified since it was last read in from the swap area. The kernel thus 
needs some way to recognize if a page is dirty. This can be easy for some systems where the page 
table entries have a hardware-supported dirty bit. Without such hardware support, the kernel must 
obtain this information in other ways, as we shall see in Section 13.5.3. 

Text pages do not need to be saved in the swap area, since they can be recovered from the 
executable file itself. Some implementations swap out text pages as well, for performance reasons. 
Swap maps are usually very efficient, and the kernel can look up the swap location of a page simply 
by indexing into an in-memory table. To locate the page in the executable file, the kernel must go 
through the file system, which involves examining the inode and perhaps some indirect blocks (see 
Section 9.2.2). This is a much slower method, particularly if additional disk accesses are required to 
read the indirect blocks. However, swapping out the text pages requires extra disk I/0, which may 



408 Chapter 13 Virtual Memory 

uninitialized data pages 

zero-filled on first access j_ 

dirty pages saved 

executable text and main before freeing swap 

file initialized data memory 
area 

subsequent faults on on disk 
outswapped pages 

stack and heap pages j 
allocated on first access 

Figure 13-3. Pages move into and out of main memory. 

offset the faster swap-ins. Most modem implementations do not swap out the text pages, but read 
them back from the file if needed. 

13.2.5 Translation Maps 
The paging system may use four different types of translation maps to implement virtual memory, 
as shown in Figure 13-4: 
Hardware address translations- For each instruction that accesses memory, the hardware has to 
translate the virtual address in the program to a location in physical memory. Each machine pro-

address 

address 
translations 

physical 

Figure 13-4. Address translations. 

Data 



13.2 Demand Paging 409 

vides some hardware address translation mechanism, so that the operating system does not need to 
be involved in each translation. Section 13.3 examines three examples of memory architectures, all 
of which involve some form of translation lookaside buffers (TLBs) and page tables. Although the 
hardware dictates the form of these data structures, the operating system is responsible for their 
setup and maintenance. 

The hardware address translation maps are the only data structures known to the MMU 
hardware. The other maps described in this section are known only to the operating system. 
Address space map - When the hardware is unable to translate an address, it generates a page 
fault. This might happen because the page is not in physical memory or because the hardware does 
not have a valid translation for it. The fault handler in the kernel must resolve the fault by bringing 
the page into memory if necessary and loading a valid hardware translation entry. 

The hardware-recognized maps may not provide complete information about the address 
space of a process. For example, on the MIPS R3000, the hardware uses only a small TLB. The op
erating system may maintain additional maps that fully describe the address space. 
Physical memory map- Frequently, the kernel also needs to perform the reverse mapping and 
determine the owning process and the virtual page number for a given physical page. For instance, 
when the kernel removes an active page from physical memory, it must invalidate any translation 
for that page. To do so, it must locate the page table entry and/or TLB entry for the page; otherwise, 
the hardware will continue to expect the page to be at this physical location. Thus the kernel main
tains a physical memory map that keeps track of what data is stored in each physical page. 
Backing store map- When the fault handler cannot find a page in physical memory, it allocates a 
new page and initializes it in one of two ways-by filling it with zeroes or by reading it in from 
secondary storage. In the latter case, the page could be obtained from the executable file, from a 
shared library object file, or from its saved copy in the swap area. These objects comprise the back
ing store for the pages of a process. The kernel must maintain maps to locate pages on the backing 
store. 

13.2.6 Page Replacement Policies 

To make room for a new page, the kernel must reclaim a page that is currently in memory. The page 
replacement policy deals with how the kernel decides which page to reclaim [Bela 66]. The ideal 
candidate is a dead page, that is, one that will never be required again (for example, a page belong
ing to a terminated process). If there are no dead pages (or not enough of them), the kernel may 
choose a local or global replacement policy. A local policy allocates a certain number of pages to 
each process or group of related processes. If a process needs a new page, it must replace one of its 
own pages. If the kernel uses a global policy, it can steal a page from any process, using global se
lection criteria such as usage patterns. 

Local policies are necessary when it is important to guarantee resources to certain processes. 
For example, the system administrator may allocate a larger set of pages to a more important proc
ess. Global policies, on the other hand, are simpler to implement and more suitable for a general 
time-sharing system. Most UNIX variants implement a global replacement policy, but reserve a 
minimum number of resident pages for each active process. 



410 Chapter 13 Virtual Memory 

For a global replacement policy, the kernel must choose criteria for deciding which pages 
should be kept in memory. Ideally, we want to keep those pages that are going to be needed in the 
near future. We call this set of pages the working set of a process. If the page reference behavior of 
the processes were known in advance, the working set could be determined exactly, at least in the
ory. In practice, we have little advance knowledge of the access pattern of processes, and we must 
rely on empirical studies of typical processes to guide our implementation. 

Such studies have shown that processes tend to exhibit locality of reference, that is, a proc
ess tends to localize its references to a small subset of its pages, and this subset changes slowly. For 
instance, when executing a function, all instructions are on the page (or pages) containing that func
tion, and after a while, the process may move to a different function, thus changing its working set. 
Similarly for data references, loops that operate on arrays and functions that perform several opera
tions on a structure are examples of code that exhibits locality of reference. 

The practical inference is that recently accessed pages are more likely to be accessed again 
in the near future. Thus, a good approximation to the working set is the set of pages most recently 
accessed. This leads to a least recently used (LRU) policy for page replacement--discard those 
pages that have not been accessed for the longest time. Such an LRU policy is also adopted by the 
filesystem buffer cache, since file access patterns exhibit similar trends. For memory management, 
however, the LRU policy must be modified due to practical considerations, as seen in Section 
13.5.3. 

Finally, the kernel must decide when to free active pages. One option is to look for a page to 
reclaim only when a process actually needs to bring a page into memory. This is inefficient and de
grades system performance. The better solution is to maintain a pool of free pages and periodically 
add pages to this pool, so that the load on the paging system is more evenly distributed over time. 

13.3 Hardware Requirements 

The memory management subsystem relies on the hardware to perform several tasks. These tasks 
are carried out by a hardware component called the Memory Management Unit (MMU), which 
functionally sits between the CPU and the primary memory. The architecture of the MMU has far
reaching impact on the design of the memory management system in the kernel. With that in mind, 
we first discuss the MMU functionality in abstraction and then look at three specific examples
Intel x86, IBM RS/6000, and MIPS R3000-to see how the architectural characteristics influence 
the kernel design. 

The primary task of the MMU is the translation of virtual addresses. Most systems imple
ment address translation maps using page tables, TLBs, or both. We describe page tables in this 
section and TLBs in the next. Typically, there is one page table for kernel addresses and one or 
more page tables to describe the user address space of each process. A page table is an array of en
tries, one per virtual page of the process. The index of the page table entry (PTE) in the table de
fines the page it describes. For example, PTE 3 of the text region page table describes virtual page 3 
of the text region. 

A page table entry is usually 32 bits in size and is divided into several fields. These fields 
contain the physical page frame number, protection information, a valid bit, a modified bit, and op-



13.3 Hardware Requirements 411 

tionally, a referenced bit. The page table format is hardware-prescribed; other than that, page tables 
are simply data structures located in main memory. Several page tables reside in memory at any 
time. The MMU uses only the active tables, whose locations are loaded in hardware page table reg
isters. Typically, on a uniprocessor, there are two active page tables--one for the kernel and one for 
the currently running process. 

The MMU breaks a virtual address into the virtual page number and the offset within the 
page. It then locates the page table entry for this page, extracts the physical page number, and com
bines that with the offset to compute the physical address. 

Address translation may fail for three reasons: 

• Bounds error - The address does not lie in the range of valid addresses for the process. 
There is no page table entry for that page. 

• Validation error- The page table entry is marked invalid. This usually means the page 
is not resident in memory. There are some situations where the valid bit is clear even if the 
page is valid and resident; they are covered in Section 13.5.3. 

• Protection error- The page does not permit the type of access desired (e.g., write ac
cess to a read-only page or user access to a kernel page). 

In all such cases, the MMU raises an exception and passes control to a handler in the kernel.4 

Such an exception is called a page fault, and the fault handler is passed the offending virtual address 
as well as the type of fault (validation or protection-bounds errors result in a validation fault). The 
handler may try to service the fault by bringing the page into memory or to notify the process by 
sending it a signal (usually SIGSEGV). 

If the fault can be successfully handled, the process (when it eventually runs again) must re
start the instruction that caused the fault. This requires the hardware to save the correct information 
required to restart the offending instruction prior to generating the page fault. 

Every time a page is written to, the hardware sets the modified bit in its PTE. If the operating 
system finds this bit set, it saves the page on stable storage before recycling it. If the hardware sup
ports a referenced bit in its PTEs, it sets this bit on each reference to a page. This allows the operat
ing system to monitor the usage of resident pages and recycle those that do not seem useful. 

If a process has a large virtual address space, its page table may become extremely large. For 
instance, if a process has an address space of 2 gigabytes and the page size is 1024 bytes, then the 
page table must have 2 million entries, and thus be 8 megabytes in size. It is impractical to keep 
such a large table in physical memory. Moreover, most of this address space is probably not really 
being used-a typical process address space comprises a number of regions (text, data, stack, etc.) 
scattered in different parts of this space. Thus the system needs a more compact way of describing 
the address space. 

This problem is addressed by having segmented page tables or by paging the page table it
self. The first approach works best when the system explicitly supports segmentation. Each segment 
of the process has its own page table, which is just large enough to hold the valid address range for 

4 Some architectures do not support protection faults. On such systems, the kernel must force validation faults by un
mapping the page, then determine the appropriate action based on whether the page is in memory and the type of ac
cess attempted. 



412 Chapter 13 Virtual Memory 

that segment. In the second approach, the page table itself is paged, which means an additional 
higher-level page table is used to map the lower-level page table. With such a multitiered page table 
hierarchy, we need to allocate only those pages of the lower-level table that map valid addresses of 
the process. The two-level approach is more common, but some architectures such as the SP ARC 
Reference MMU [SPARC 91] allow three levels of page tables. 

The page table thus forms a link between the MMU and the kernel, both of which can ac
cess, use, and modify the PTEs. The hardware also has a set of MMU registers, which point to the 
page tables. The MMU is responsible for using the PTE to translate virtual addresses, checking the 
valid and protection bits in the process, and for setting referenced and modified bits as appropriate. 
The kernel must set up the page tables, fill in the PTEs with the correct data, and set the MMU reg
isters to point to them. These registers usually need to be reset on each context switch. 

13.3.1 MMU Caches 

Page tables alone cannot provide efficient address translation. Each instruction would require sev
eral memory accesses--one to translate the virtual address of the program counter, one to fetch the 
instruction, and similarly, two accesses for each memory operand involved. If the page tables them
selves are paged or tiered, the number of accesses increases further. Since each memory access re
quires at least one CPU cycle, so many accesses will saturate the memory bandwidth and increase 
the instruction execution time to unacceptable limits. 

This problem is addressed in two ways. The first is by adding a high-speed cache that is 
searched before each memory access. Machines may support separate data and instruction caches or 
a single cache for both. Getting data from the cache is much faster than accessing main memory. On 
many machines (especially older ones), the cache is addressed by physical memory. It is completely 
managed by the hardware and is transparent to the software. Cache access takes place after the ad
dress translation, so that the benefits are modest. Many newer architectures such as Hewlett
Packard's PA-RISC [Lee 89] use a virtually addressed cache, which allows the cache search to pro
ceed in parallel with address translation. This approach greatly improves performance, but has a 
number of cache consistency problems, which must be dealt with by the kernel (see Section 15.13). 

The second approach to reducing memory accesses is an on-chip translation cache, called a 
translation lookaside buffer (I'LB). The TLB is an associative cache of recent address translations. 
TLB entries are similar to page table entries and contain address translation and protection informa
tion. They may also have a tag that identifies the process to which the address belongs. The cache is 
associative in the sense that the lookup is content-based rather than index-based-the virtual page 
number is searched for simultaneously in all the TLB entries. 

The MMU usually controls most TLB operations. When it cannot find a translation in the 
TLB, it looks it up in the software address maps (such as the page tables) and loads it into a TLB 
entry. The operating system also needs to cooperate in some situations. If the kernel changes a page 
table entry, the change is not automatically propagated to the TLB's cached copy of the entry. The 
kernel must explicitly purge any TLB entry that it invalidates, so that the MMU will reload it from 
memory when the page is next accessed. For example, the kernel may write-protect a page in re
sponse to an explicit user request (through the mprotect system call). It must purge any old TLB 



13.3 Hardware Requirements 413 

entry that maps to this page, or else the process would still be able to write to the page (since the old 
mapping allowed writes). 

The hardware defines the way i'n which the kernel can operate on the TLB. It may either 
provide explicit instructions for loading or invalidating TLB entries, or such functions may occur as 
a byproduct of certain instructions. On some systems (such as the MIPS R3000), the hardware uses 
only the TLBs, and any page tables or other maps are managed solely by the kernel. On such sys
tems, the operating system is involved on each TLB miss and must load the correct translation into 
the TLB. 

Although all MMUs must provide the same basic functionality, the way in which they do so 
may vary a lot. The MMU architecture dictates the virtual and physical page size, the types of pro
tection available, and the format of the address translation entries. On machines with hardware
supported page tables, the MMU defines the page table hierarchy and the registers that map the page 
tables. It also defines the division of labor between itself and the kernel, and the extent of the ker
nel's role in manipulating the address and translation caches. With that in mind, we now look at 
three different architectures, with an emphasis on their impact on UNIX memory management im
plementation. 

13.3.2 The Intel 80x86 

The Intel 80x86 has been one of the major platforms for System V-based UNIX versions. It has a 4-
gigabyte address space (hence, 32-bit addresses), with a page size of 4096 bytes, and support for 
both segmentation and paging [Intel 86]. Figure 13-5 describes the steps in address translation. Each 
virtual address consists of a 16-bit segment selector and a 32-bit offset. The segmentation layer 
converts this to a 32-bit linear address, which is further translated to a physical address by the pag
ing layer. Paging may be disabled by clearing the high-order bit of a control register called CRO. In 
that case, the linear address is the physical address. 

The process address space may contain up to 8192 segments. Each segment is described by a 
segment descriptor, which holds base, size, and protection information. Each process has its own 
local descriptor table (LDT), with one entry for each of its segments. There is also a systemwide 

virtual address ,,-----------------------, 
' 
' ' L__..,.:::-_J 

segment 
descriptor table 

page table 

Figure 13-5. Address translation on the Intel 80x86. 



414 Chapter 13 Virtual Memory 

global descriptor table (GDT), which has entries for the kernel code, data, and stack segments, plus 
some special objects including the per-process LDTs. When translating a virtual address, the MMU 
uses the segment selector to identify the correct segment descriptor, either from the GDT or from 
the current LDT (depending on a bit in the selector). It makes sure the offset is less than the segment 
size and adds it to the segment base address to obtain the linear address. 

UNIX implementations on the x86 use segmentation only for memory protection, kernel en
try, and context switching [Robb 87]. It hides the notion of segmentation from user processes, who 
see a flat address space. To achieve this, the kernel sets up all user segments with base address 0 and 
a large size that excludes only the high end of virtual memory, which is reserved for kernel code and 
data. Code segments are protected as read-only and data as read-write, but both refer to the same 
locations. Each LDT also refers to some special segments-a call gate segment for system call entry 
and a task state segment (TSS) to save the register context across a context switch. 

The x86 uses a two-level page table scheme (Figure 13-6). The 4-kilobyte page size implies 
that a process may have up to one million pages. Rather than having one huge page table, the x86 
uses a number of small page tables for each process. Each page table is one page in size, and thus 
holds I 024 PTEs. It maps a contiguous region 4 megabytes in size, aligned at a 4-megabyte bound
ary. Hence a process may have up to 1024 page tables. Most processes, however, have sparse ad
dress spaces and use only a few page tables. 

Each process also has a page directory, which contains PTEs that map the page tables them
selves. The directory is one page in size and holds 1024 PTEs, one for each page table. The page 

page directory of 
~ current process 

31 

physical address 

one of the page 
tables of current 

process 

11 0 

Figure 13-6. Address translation on Intel x86. 



13.3 Hardware Requirements 415 

directory is the level-1 page table, and the page tables themselves are the level-2 tables. The rest of 
this discussion uses the terms page directory and page table instead of level-1 and level-2 tables. 

The control register CR3 stores the physical page number of the current page directory in its 
20 high-order bits. Hence it is also known as the PDBR (Page Directory Base Register). Virtual ad
dresses on the 80x86 can be broken into 3 parts. The top 10 bits contain the DIR field, which be
comes the index into the page directory. This is combined with the page number from CR3 to give 
the physical address of the page directory entry for the appropriate page table. The next 1 0 bits 
contain the PAGE field, which stores the virtual page number relative to the start of that region. This 
is used as an index in the page table to get the desired PTE, which in turn contains the physical page 
number of the desired page. This in turn is combined with the low-order 12 bits of the virtual ad
dress, which contain the byte offset in the page, to yield the physical address. 

Each page table entry contains the physical page number, protection field, and valid, refer
enced, and modified bits (Figure 13-7). The protection field has two bits-one to specify read-only 
(bit clear) or read-write (bit set) access and another to specify if the page is a user page (bit clear) or 
supervisor (bit set). When the process is running in kernel mode, all pages are accessible read-write 
(write protection is ignored). In user mode, supervisor pages are inaccessible regardless of the read
write bit setting, which only applies to user pages. Since both page directory entries as well as page 
table entries have protection fields, access must be permitted by both entries. 

The support for the referenced bit simplifies the kernel's task of monitoring page usage. The 
CR3 register needs to be reset on each context switch so that it points to the page directory of the 
new process. 

The TLB in the x86 architecture is never directly accessed by the kernel. The entire TLB, 
however, is flushed automatically whenever the PDBR is written to, either explicitly by a move in
struction or as an indirect result of a context switch. The UNIX kernel flushes the TLB whenever it 
invalidates a page table entry (for example, when reusing a page). 

The x86 supports four privilege levels or protection rings, of which UNIX uses only two. 
The kernel runs in the innermost ring, which is the most privileged. This allows it to execute privi
leged instructions (such as those that modify MMU registers) and to access all segments and all 
pages (user and supervisor). User code runs in the outermost, least privileged ring. It may execute 
only nonprivileged instructions and access only the user pages in its own segments. The call gate 

31 12 6 5 2 1 0 

PFN 

PFN Page Frame Number 
D Dirty 
A Accessed (Referenced) 
U User (0) I Supervisor (1) 
W Read (0) I Write (1) 
P Present (valid) 

Figure 13-7. Intel x86 page table entry. 



416 Chapter 13 Virtual Memory 

segment allows the user to make system calls. It puts the system into the inner ring and transfers 
control to a location specified in the call gate, which is under control of the kernel. 

13.3.3 The IBM RS/6000 

The IBM RS/6000 [Bako 90] is a reduced instruction set computer (RlSC) machine that runs AIX, 
IBM's System V-based operating system. Its memory architecture has two interesting features-it 
uses a single, flat, system address space, and it uses an inverted page table for address translation. 
Hewlett-Packard's PA-RlSC [Lee 89] is another system with these features. 

The problem with a regular page table, which is indexed by virtual address, is that its size is 
proportional to that of the virtual address space, which may be extremely large for some processes. 
Many modem systems allow 64-bit addresses, resulting in even larger address spaces. Conse
quently, the page tables can become too large for the available physical memory. One solution, 
adopted by systems such as the Intel x86, is to have hierarchical page tables. Even so, for large 
processes the kernel must support paging of the page tables themselves. 

The inverted page table provides another way of bounding the total physical memory re
quired to maintain address translation information. Such a table has one entry for each page in 
physical memory and maps physical page numbers to virtual addresses. Since physical memory is 
much smaller than the total virtual memory of all processes in the system, the inverted page table is 
very compact. The MMU, however, needs to translate virtual addresses, which an inverted table 
cannot do directly. Hence the system must provide other data structures for virtual to physical ad
dress translation, as described in the following paragraphs. 

The RS/6000 uses two types of virtual addresses. There is a single, flat, system virtual ad
dress space with 52-bit addresses. The total size of this space is 252, or approximately 4 * 1015 , 

bytes. Each process uses 32-bit addresses, and the per-process address space maps into parts of the 
system address space, as shown in Figure 13-8. The virtual and physical page size is 4096 bytes, 
which is the same as the default disk block size. The 32-bit process virtual address is divided into 3 
parts-a 4-bit segment ID, a 16-bit page index, and a 12-bit offset in the page. Thus the address 
space comprises 16 segments, and each segment is 256 megabytes in size. 

The RS/6000 has 16 segment registers, which are loaded with the segment descriptors of the 
current process. Each segment is assigned a specific role. Segment 1 holds user program text. Seg
ment 2 is the private data segment of the process. It holds the user data, heap, and stack, and the 
kernel stack and u area of the process. Segments 3-1 0 are shared segments, used for shared memory 
and mappings to files (see Section 14.2). Segment 13 holds shared text, such as that loaded from 
shared memory. The rest of the segments are for kernel use only. They are shared by all processes, 
but can be accessed only in kernel mode. Segment 0 holds the kernel text, 11 and 12 hold memory 
management structures, and 14 holds kernel data structures. Segment 15 is reserved for I/0 ad
dresses. 

Figure 13-9 shows the translation from process to system virtual address. The segment ID 
identifies the segment register, which is 32 bits in size. It contains a 24-bit segment index, which 
forms the 24 high-order bits of the system virtual address. This is combined with the 16-bit virtual 
page index from the process virtual address to form the virtual page number in the system address 
space. This must be further translated to obtain the physical page number. 



13.3 Hardware Requirements 

0 

15 

system 

_, . ic\•.ct#E.'i~V !.<.. 
process A process B 

kernel text ~ kernel text 
user text 

~ 
user text 

Io ri v data 

~ 
_l:l_r i v data 

shared data shared data 
shared data shared data 
shared data shared data 
shared data shared data 
shared data shared data 
shared data shared data 
shared data shared data 
shared data shared data 
VM data ~VMdot• VM data VM data 
shared text ~ shared text 
kernel data ~ kernel data 
l/0 l/0 

1:·¥1';'·· 

·· ~···"" ~ 1 01\1 •··~'~'··· ·;;&:?¥.' ~ 

Figure 13-8. RS/6000 address spaces. 

process virtual address 

segment 
registers 

system segment index 

physical address 

Figure 13-9. RS/6000 address translation-part 1. 

417 

0 

15 



418 Chapter 13 Virtual Memory 

As explained earlier, the RS/6000 does not maintain a direct virtual to physical address 
translation map. Instead, it maintains an inverted page table called the page frame table (P FT), with 
one entry for each physical page. The system uses a hashing technique to translate virtual addresses, 
as shown in Figure 13-10. A data structure called the hash anchor table (HAT) contains information 
used to convert a system virtual page number to a hash value, which points to a linked list of PFT 
entries. Each PFT entry contains the following fields: 

• The virtual page number to which it maps. 
• A pointer to the next entry in the hash chain. 
• Flags such as valid, referenced, and modified. 
• Protection and locking information. 

The RS/6000 uses the HAT to locate the hash chain and traverses the chain till it finds an entry for 
the desired virtual page number. The index of the entry in the PFT equals the physical page number, 
which is 20 bits in size. This is combined with the 12-bit page offset from the process virtual ad
dress to obtain the physical address. 

This translation process is slow and expensive and should not be required for each memory 
access. The RS/6000 maintains two separate TLBs-a 32-entry instruction TLB and a 128-entry 
data TLB. In normal operation, these buffers should take care of most address translation, and the 
hashed lookup is required only when there is a TLB miss. In addition, the RS/6000 has separate data 
and instruction caches. The data cache is 32 or 64 kilobytes in size, and the instruction cache is 8 or 
32 kilobytes, depending on the individual system model [Chak 94]. These caches are virtually ad-

system virtual page number 

Page Frame Table 

physical page 
number 
physical address 

Figure 13-10. RS/6000 address translation-part 2. 



13 .3 Hardware Requirements 419 

dressed; therefore, address translation is not required when there is a cache hit. Virtually addressed 
caches require kernel involvement to address some consistency problems. These issues are de
scribed in Section 15.13. 

13.3.4 The MIPS R3000 
The MIPS R3000 is a RISC system and has been a platform for SVR4 UNIX as well as Digital 
Equipment Corporation's ULTRIX (a 4.2BSD-based system). It has an unusual MMU architecture 
[Kane 88] in that there is no hardware support for page tables. The only address translations per
formed by the hardware are those defined by the on-chip TLB. 

This has far-reaching implications on the division of memory management tasks and the in
terface between the hardware and the kernel. In the Intel x86 architecture, for instance, the structure 
of the TLB entry is opaque to the kernel. The only operations allowed are invalidation of single en
tries keyed by virtual address or of the entire TLB. In contrast, the MIPS architecture makes the 
format and contents of the TLB entry public to the kernel and allows operations to read, modify, and 
load specific entries. 

The virtual address space itself is divided into four segments, as shown in Figure 13-11. The 
kuseg, spanning the first two gigabytes, contains the user address space. The other three segments 
are accessible only in kernel mode. ksegO and ksegl each map directly to the first 512 megabytes of 
physical memory, thus requiring no TLB mapping. Of these, ksegO uses the data/instruction caches, 
but ksegl does not. The top gigabyte is devoted to kseg2, which is the mapped, cacheable kernel 
segment. Addresses in kseg2 can be mapped to any physical memory location. 

Figure 13-12 describes the MMU registers and the format of the TLB entry. The MIPS page 
size is fixed at 4 kilobytes; thus the virtual address is divided into a 20-bit virtual page number and a 
12-bit offset. The TLB contains 64 entries, and each entry is 64 bits in size. The entryhi and en
trylo registers have the same format as the high and low 32 bits of the TLB entry, respectively, and 
are used to read and write a TLB entry. The VPN (virtual page number) and PFN (physical frame 
number) fields allow translation of virtual to physical page numbers. The PI D field acts as a tag, as
sociating each TLB entry with a process. This PID, which is 6 bits in size, can take the values 0 

address 
0 translation 

any 
kuseg data and 

instruction 
, 0 .. , , 

caches ' .. , .. " 
20000000 , , , , .. , , , , 

80000000 ksegO . , , , .. , , ______________ .., , 
AOOOOOOO kseg1 , , any , ______________ _, 

cooooooo address kseg2 translation 
FFFFFFFF maxphys 

Figure 13-11. MIPS R3000 virtual address space. 



420 Chapter 13 Virtual Memory 

I EntryHi Register Entrylo Register I 
' 

physical address 

Figure 13-12. MIPS R3000 address translation. 

through 63, and is not the same as the traditional process ID. Each process that may have active 
TLB entries will be assigned a tlbpid between 0 and 63. The kernel sets the PI D field in the entry hi 
register to the tlbpid of the current process. The hardware compares it to the corresponding field in 
the TLB entries, and rejects translations that do not match. This allows the TLB to contain entries 
for the same virtual page number belonging to different processes without conflict. 

The N (no-cache) bit, if set, says that the page should not go through the data or instruction 
caches. The G (global) bit specifies that the PID should be ignored for this page. If the V (valid) bit is 
clear, the entry is invalid, and if the D (dirty) bit is clear, the entry is write-protected. Note that there 
is neither a referenced bit nor a modified bit. 

In translating kuseg or kseg2 addresses, the virtual page number is compared with all TLB 
entries simultaneously. If a match is found and the G bit is clear, the PID of the entry is compared 
with the current tlbpid, stored in the entry hi register. If they are equal (or if the G bit is set) and the 
V bit is set, the PFN field yields the valid physical page number. If not, a TLBmiss exception is 
raised. For write (store) operations, the D bit must be set, or else a TLBmod exception will be 
raised. 

Since the hardware provides no further facilities (such as page table support), these excep
tions must be handled by the kernel. The kernel will look at its own mappings, and either locate a 
valid translation or send a signal to the process. In the former case, it must load a valid TLB entry 
and restart the faulting instruction. The hardware imposes no requirements on whether the kernel 
mappings should be page table-based and what the page table entries should look like. In practice, 
however, UNIX implementations on MIPS use page tables so as to retain the basic memory man
agement design. The format of the entrylo register is the natural form of the PTEs, and the eight 
low-order bits, which are unused by hardware, may be used by the kernel in any way. 

The lack of referenced and modified bits places further demands on the kernel. The kernel 
must know which pages are modified, since they must be saved before reuse. This is achieved by 
write-protecting all clean pages (clearing the D bit in their TLBs ), so as to force a TLBmod excep
tion on the first write to them. The exception handler can then set the D bit in the TLB and set ap-



13.4 4.3BSD -A Case Study 421 

propriate bits in the software PTE to mark the page as dirty. Reference information must also be 
collected indirectly, as shown in Section 13.5.3. 

This architecture leads to a larger number of page faults, since every TLB miss must be 
handled by the software. The need to track page modifications and references causes even more 
page faults. This is offset by the speed gained by a simpler memory architecture, which allows very 
fast address translation when there is a TLB cache hit. Further, the faster CPU speed helps keep 
down the cost of the page fault handling. Finally, the unmapped region ksegO is used to store the 
static text and data of the kernel. This increases the speed of execution of kernel code, since address 
translations are not required. It also reduces contention on the TLB, which is needed only for user 
addresses and for some dynamically allocated kernel data structures. 

13.4 4.3850- A Case Study 

So far we have described the basic concepts of demand paging, and how hardware characteristics 
can influence the design. To understand the issues involved more clearly, we use 4.3BSD memory 
management as a case study. The first UNIX system to support virtual memory was 3BSD. Its 
memory architecture evolved incrementally over the subsequent releases. 4.3BSD was the last Ber
keley release based on this memory model. 4.4BSD adopted a new memory architecture based on 
Mach; this is described in Section 15.8. [Leff 89] provides a more complete treatment of 4.3BSD 
memory management. In this chapter, we summarize its important features, evaluate its strengths 
and drawbacks, and develop the motivation for the more sophisticated approaches described in the 
following chapters. 

Although the target platform for the BSD releases was the V AX-11, it has been successfully 
ported to several other platforms. The hardware characteristics impact many kernel algorithms, in 
particular the lower-level functions that manipulate page tables and the translation buffer. Porting 
BSD memory management has not been easy, since the hardware dependencies permeate through 
all parts of the system. As a result, several BSD-based implementations emulate the VAX memory 
architecture in software, including its address space layout and its page table entry format. We 
avoid a detailed description of the VAX memory architecture, since the machine is now obsolete. 
Instead, we describe some of its important features as part of the BSD description. 

4.3BSD uses a small number of fundamental data structures-the core map describes physi
cal memory, the page tables describe virtual memory, and the disk maps describe the swap areas. 
There are also resource maps to manage allocation of resources such as page tables and swap space. 
Finally, some important information is stored in the proc structure and u area of each process. 

13.4.1 Physical Memory 

Physical memory can be viewed as a linear array of bytes ranging from 0 to n, where n is the total 
amount of memory on the system. It is logically divided into pages, with the page size dependent on 
the machine architecture. This memory can be divided into three sections, as shown in Figure 13-13. 
At the low end is the nonpaged pool, which contains the kernel code and the portion of the kernel 
data that can be allocated either statically or at boot time. Since a kernel page fault can block a proc
ess in the kernel at an inconvenient point, most UNIX implementations require all kernel pages to 



422 Chapter 13 Virtual Memory 

nonpaged paged error 
pool pool buffer 

, 
' ' , ' , ' , ' , ' , ' , ' , ' , ' , 
cmap [ ] llllllllllllllllllllllllllllllllr 

(in nonpaged pool) 

Figure 13-13. Layout of physical memory. 

be nonpageable. The very high end of physical memory is reserved for error messages generated 
during a system crash. In between these two regions is the paged pool, which occupies the bulk of 
physical memory. It contains all the pages belonging to user processes, as well as dynamically allo
cated kernel pages. The latter are marked nonpageable, even though they are part of the paged pool. 

These physical pages are called page frames, and the frame holds the contents of a process 
page. The page stored in the frame can be replaced at any time by a different page, and thus we need 
to maintain information about the contents of each frame. This is done using a core map, which is 
an array of struct cmap entries, one entry for each frame in the paged pooJ.S The core map itself is 
a kernel data structure, allocated at boot time and resident in the nonpaged pool. The core map entry 
contains the following information about the frame: 

• Name- The name or identity of the page stored in the frame. The name space for a proc
ess page is described by the owner process ID, the type (data or stack), and the virtual 
page number of the page in that region. Text pages may be shared by several processes, 
and thus their owner is the text structure for that program. The core map entry stores the 
index into the process table or the text table. The name <type, owner, virtual page num
ber> allows the kernel to perform reverse address translation, that is, to locate the PTE 
corresponding to the page frame, as seen in Figure 13-14. 

• Free list- Forward and backward pointers to link free pages onto a free list. This list is 
maintained in approximate least recently used order (Section 13.5.3) and is used by the 
memory allocation routines to allocate and free physical memory. 

• Text page cache - The name of a page is meaningful only as long as the owner process 
is alive. This is okay for data and stack pages, because such pages are garbage once the 
process exits. In case of a text page, however, there is a chance that another process may 
soon try to rerun the same program. If this happens and some of the text pages are still 
resident in memory, it makes sense to reuse them instead of reading them afresh from 
disk. To identify such pages even after their owner(s) have terminated, the core map entry 
stores the disk locations (device and block number) of text pages. Such pages are also 

5 Actually, there is one cmap entry for each cluster of frames. Clusters provide the notion of a logical page composed 
of a (fixed) number of physical pages. This enhances performance by increasing the granularity of several operations 
and reducing the size of data structures such as the core map. 



13.4 4.3BSD- A Case Study 

proc [ ] 

cmap[ ] 

type= data 
owner------

, , , 

, , 

, 
VPN - - - - - - - - - - - - - - - - - ' 

type= text 
owner-----
VPN 

, , , 

, , 

, , , , 

, ' page table 

Figure 13-14. Physical to virtual address translation. 

hashed onto a set of hash queues (based on device and block number) for quick retrieval. 
The disk location may either identify the page in the executable file or on the swap device. 

• Synchronization - A set of flags synchronizes access to the page. The page is locked 
while moving it to or from the disk. 

13.4.2 The Address Space 

423 

BSD virtual memory uses the V AX-11 address space model. The V AX-11 is a 32-bit machine with 
a 512-byte page size. Its 4-gigabyte address space is divided into four regions of equal size. The first 
gigabyte is the PO (program) region, which contains the text and data sections of the process. This is 
followed by the P1 (control) region, which contains the user stack, the u area, and the kernel stack. 
Next is the SO (system) region, which contains the kernel text and data. The fourth region is re
served and not supported by current VAX hardware. This scheme allows for easy growth of each 
region, without arbitrary gaps in the address space. 

The VAX hardware supports page tables and uses them directly for virtual address transla
tion. The page tables serve multiple purposes. The kernel uses them to describe the address space of 
a process (the proc structure holds a summary description, including the location and size of the 
page tables), as well as to store information about how the pages must be initialized (see Section 
13.4.3). To do so, the kernel manipulates those bits in the PTE that are not used by the hardware. 

There is a single system page table that maps the kernel text and data, and each process has 
two page tables to map its PO (text and data) and P1 (user stack, u area, etc.) regions. The system 
page table is contiguous in physical memory. Each user page table is contiguous in system virtual 
memory and is mapped by a set of contiguous PTEs in the Userptmap section of the system page 
table. The kernel uses a resource map, composed of a set of <base, size> pairs, to describe the free 
portions of Userptmap. Allocation from this map is done on a first-fit basis. Under heavy load, this 
map may become too fragmented, and a process may not find enough contiguous PTEs to map its 



424 Chapter 13 Virtual Memory 

page tables. In such a case, the kernel invokes the swapper to swap out a process in an attempt to 
free up space in Userptmap (see Section 0). 

Can page tables be shared? In particular, if two processes are running the same program, can 
they share the page table for the text region? This is generally possible, and many variants of UNIX 
allow such sharing. BSD UNIX, however, has subtle problems with this approach. Each process 
must have a single page table for the PO region, which must be contiguous in system virtual address 
space and, hence, be described by a contiguous set of system PTEs in Userptmap. Since the data re
gion is not shared, only a part of the PO page table is sharable. Because each process has its own set 
of Userptmap entries, the PTEs for the page table pages for the text region must point to the same 
set of pages. This in tum means that the beginning of the data region page table must start on a new 
page and be described by a new PTE in Userptmap. This requires the data region to be aligned on a 
64K boundary. 

Such a requirement would have resulted in an incompatible, user-visible change. To avoid 
that, BSD requires each process to have its own text page table. If multiple processes share a text 
region, their text page table entries need to be kept in sync. For example, if one of the processes 
brings a page into memory, that change must be propagated to the PTE for that page in all processes 
sharing that region. Figure 13-15 shows how the kernel locates all the page tables mapping a par
ticular text region. 

13.4.3 Where Is the Page? 

At any time, a particular page of a process may be in one of the following states: 

• Resident- The page is in physical memory, and the page table entry contains its physi
cal page frame number. 

• Fill-on-demand - The page has not yet been referenced by the process and must be 
brought into memory when first accessed. There are two types of fill-on-demand pages: 

ct stru 
em ap -------------~ 

struct 
text 

l 
struct 
proc 

I 

i 

x_caddr I 

p_xlink 

page 
tables 

struct 
proc 

I 

i 
p_xlink struct 

proc 

I 

i 
Figure 13-15. Multiple mappings for a text page. 



13.4 4.3BSD- A Case Study 

• Fill-from-text- Text and initialized data pages are read in from the executable file 
upon first access. 

• Zero-fill- Uninitialized data, heap, and stack pages are created and filled with ze
ros when required. 

• Outswapped - These are pages that have once been read into memory and subsequently 
paged out to make room for other pages. These pages may be recovered from their swap 
area locations. 

425 

The kemel must maintain sufficient information about all nonresident pages, so that it can 
bring them in when needed. For swapped out pages, it must store their locations on the swap device. 
For zero-fill pages, the kemel only needs to recognize them as such. For fill-from-text pages, it must 
determine their location in the filesystem. This can be done by the file system routines that read the 
disk block array in the inode. That, however, is inefficient, since it frequently requires accessing 
other disk blocks (indirect blocks) to locate the page. 

A better approach is to store all such translations in memory management data structures 
when the program is initially invoked. This allows a single pass through the block array in the inode 
and the indirect blocks to locate all the text and initialized data pages. This could be done using a 
second table tha.t maps all the nonresident pages. The disk block descriptor table in SVR3 UNIX 
provides this functionality. This solution, however, involves significant memory overhead, requiring 
an additional table essentially the same size as the page table. 

The 4.3BSD solution relies on the fact that, except for the protection and valid bits, the rest 
of the fields in the page table entry are not examined by the hardware unless the valid bit is set. 
Since all nonresident pages have the valid bit clear, those fields can be replaced by other informa
tion that tracks these pages. Figure 13-16(a) shows the hardware-defined format of the V AX-11 

(a) V AX-11 page table entry format 
31 26 20 0 

I@ROT lfnu.s-~dj Page Frame Number (PFN) 
valid modified 

(b) Ordinary page table entry 
31 2625 20 0 

Page Frame Number (PFN) 

jill-on-demand 

fill-from-text (1) or zero-fill (0) 

Filesystem Block Number 
31 26 23 0 

(c) Fill-on-demand page table entry 

Figure 13-16. 4.3BSD page table entry format. 



426 Chapter 13 Virtual Memory 

page table entry. 4.3BSD uses bit 25, which is not used by the hardware, to define fill-on-demand 
entries, described as follows. 

For ordinary page table entries (Figure 13-16(b)), the fill-on-demand bit is clear. When the 
bit is set, it indicates that the page is a fill-on-demand page (valid bit must be clear) and that the 
page table entry is a special, fill-on-demand entry with a different set of fields (Figure 13-16(c)). 
Instead of the page frame number and the modified bit, such an entry stores a jilesystem block num
ber and a bit specifying if the page is fill-from-text (bit set) or zero-fill (bit clear). For a fill-from
text page, the device number is obtained from the text structure for that program. 

The treatment of outswapped pages is different. The PTEs for such pages have the valid and 
jill-on-demand bits clear and the page frame number set to zero. The kernel maintains separate swap 
maps to locate these pages on the swap device, as explained in Section 13.4.4. 

13.4.4 Swap Space 

Swap space is required for two reasons. First, if we need to swap out an entire process, all its pages 
must be saved to disk. Second, individual pages of a process may need to be removed from main 
memory, and we need a place to save them. One or more logical disks, or partitions, are reserved for 
this use. These partitions are raw, that is, they do not contain a filesystem. 4BSD allows swap parti
tions on multiple disks, in order to improve paging performance. These partitions are logically inter
leaved to act as a single swap partition. This balances the swapping load evenly on all partitions. 
The location of a page in swap space is specified by a pseudodevice number representing the logical 
swap partition and the offset on that device. This is converted internally to the appropriate physical 
partition and the offset in that partition. 

Strictly speaking, swap space needs to be allocated only for pages that need to be paged out. 
Such an aggressive policy can result in memory overcommit, causing a process to run out of swap 
space at an arbitrary point in time. If, for instance, that were to happen during normal program exe
cution, it might hang or terminate the program unexpectedly. To avoid that, 4.3BSD enforces a very 
conservative swap allocation policy. When a process starts up, the kernel allocates all the swap 
space necessary for its data and stack regions. Swap space is allocated in large chunks, so there is 
room for some expansion, but if the regions grow larger than that, more swap space must be allo
cated before allowing the region to grow. This ensures that swap space exhaustion only occurs at 
well-defined points, when a region is being created or expanded. 

Text pages (and unmodified data pages) do not need to be swapped out, since they can be 
retrieved from the executable file. This is a problem in the BSD implementation, since the location 
of the block in the file is stored in the fill-on-demand PTE. Once the page is brought into memory, 
that information is overwritten by the page frame number. As a result, retrieving the page from the 
file involves recomputing its location and, perhaps, accessing one or more indirect blocks. This is 
prohibitively expensive, and to avoid that, such pages are saved on swap as well. If multiple proc
esses are running the same program, only a single copy of the text region needs to be on swap. Since 
the text region is fixed in size, swap space for it can be allocated in one contiguous chunk. This al
lows several adjacent pages to be read together in a single disk operation. 

The kernel records swap space allocation in per-region dmap structures. The first chunk allo
cated to a region is of size dmmi n (typically 16 kilobytes). Each subsequent chunk is twice the size 



13.5 4.3BSD Memory Management Operations 

data region 

0 
1-----l 

dmmin 

2 * dmmin 

swap space 

Figure 13-17. Recording swap space in a dma p • 

427 

of the previous one, until the size reaches dmmax (typically 0.5 to 2 megabytes). Thereafter, all 
chunks are of size dmmax. The dmap structure (Figure 13-17) is an array of fixed size, with each ele
ment of the array containing the start address of that chunk on the swap device. The index of that 
element (along with dmmi n and dmmax) translates into the size of the chunk. The (fixed) size of the 
dmap array places a hard limit on the maximum permissible size of the data or stack region. The u 
area holds the maps for the data and stack regions. The text region is mapped differently, since its 
size is fixed. Regardless of the number of processes sharing it, only one copy of the text needs to be 
saved on disk, and hence the swap map is part of the text structure. Allocation is done in chunks of 
fixed size dmtext (usually 512 kilobytes); the last chunk may be only partially full. 

13.5 4.3850 Memory Management Operations 

Let us now examine the algorithms for some of the important memory management operations in 
4.3BSD-process creation, page fault handling, page replacement, and swapping. 

13.5.1 Process Creation 

The fork system call creates a new (child) process, whose address space is a duplicate of that of the 
parent. This involves several memory management operations: 

• Swap space- The first step is to allocate swap space for the data and stack regions of the 
child. The amount of swap space given to the child equals that held by the parent at this 
time. If swap allocation fails,fork returns an error. 

• Page tables - The kernel must first allocate contiguous PTEs in Userptmap to map the 
page tables for this process. If this fails, the system resorts to swapping another process 
out in order to free up room in Userptmap. The system PTEs are initialized by allocating 
physical pages from the memory free list. 

• U area - A new u area is allocated and initialized by copying the u area of the parent. In 
order to directly access fields in the child's u area, the kernel maps it to a special map in 
system space called Forkmap. 



428 Chapter 13 Virtual Memory 

• Text region -The child is added to the list of processes sharing the text structure used 
by the parent, and the page table entries for the text region are copied from the parent. 

• Data and stack- Data and stack must be copied one page at a time. For pages that are 
still fill-on-demand, only the PTEs need to be copied. The rest of the pages are duplicated 
by allocating physical memory for them and copying the pages from the parent. If the 
page in the parent's space has been swapped out, it must be read in from swap and then 
copied. The child's PTEs are set to point to the new copies of these pages. All newly cop
ied pages are marked modified, so that they will be saved to swap before reuse. 

The fork operation is expensive, largely due to all the copying involved in the last step. 
Copying all the entire data and stack regions seems wasteful, considering that most processes will 
either exit or call exec to invoke a new program soon after forking, thus discarding the whole ad
dress space. 

There have been two major approaches to reduce this overhead. The first is called copy-on
write, which was adopted by System V UNIX. Here, the child and parent refer to a single copy of 
the data and stack pages, whose protections are changed to read-only. If either tries to modify any of 
the pages, we get a protection fault. The fault handler recognizes the situation and makes a new 
copy of that page, changes the protections back to read-write, and updates the PTEs in the parent 
and the child. This way, only those pages modified by either the parent or child need to be copied, 
reducing the cost of process creation. 

Implementing copy-on-write requires reference counts maintained on a per-page basis, 
which was one of the reasons it was not adopted by BSD UNIX. Instead, BSD provides an alternate 
system call named vfork (virtual fork), which addresses the problem in a different way. 

vfork is used when the fork is expected to be soon followed by an exit or exec. Instead of 
duplicating the address space, the parent passes its own space to the child and then sleeps until the 
child execs or exits. When that happens, the kernel wakes up the parent, who recaptures the space 
from the child. The only resources created for the child are the u area and the proc structure. The 
passing of the address space is accomplished by simply copying the page table registers from the 
parent to the child. Not even the page tables need to be copied. Only the PTEs mapping the u area 
need to be changed. 

vfork is extremely lightweight and a lot faster than copy-on-write. Its drawback is that it al
lows the child to modify the contents or size of the parent's address space. The burden lies on the 
programmer to ensure that vfork is properly used. 

13.5.2 Page Fault Handling 

There are two types of page faults-validation and protection. Validation faults occur either if there 
is no PTE for that page (bounds error) or if the PTE is marked invalid. Protection faults occur if the 
type of access desired is not permitted by the protections on the page. If a user tries to access a page 
for which the PTE is both invalid and protected, a protection fault will occur. (It makes no sense to 
service the validation fault if the attempted access was to be disallowed anyway.) 

For both faults, the system saves enough state required to restart the instruction and then 
passes control to a fault handling routine in the kernel. For a bounds error, the process is usually 
terminated by a signal, unless the error was due to user stack overflow. In that case, the kernel calls 



13.5 4.3BSD Memory Management Operations 429 

a routine to grow the stack automatically. Protection errors likewise result in a signal to the process; 
systems implementing copy-on-write must check for that scenario, and handle such protection faults 
by making a new writable copy of that page. For all other cases, a routine called pagei n () is called 
to handle the fault. 

pagei n () is passed the faulting virtual address, from which it obtains the PTE. If the page is 
resident (the PTE is not fill-on-demand, and the page frame number is not zero), the cmap entry for 
that page is also obtained. Together, these contain information about the state of the page and gov
ern the actions of pagein(). Figure 13-18 shows the basic pagein() algorithm. There are seven 
different scenarios: 

I. The PTE may have simply been marked invalid for referenced bit simulation, as explained 
in Section 13.5.3. This is the case when the page is resident, and the cmap entry is not 
marked free. pagei n () simply sets the valid bit and returns. 

2. The page is resident and on the free list. This is similar to case 1, except that the cmap entry 
is marked free. pagei n () resets the valid bit and removes the cmap entry from the free list. 

3. For a text page, another process could have started a read on the page. This happens if two 
processes sharing a text region fault on the same page around the same time. The second 
process finds that the page frame number is nonzero, but the core map entry is marked 
locked and in-transit. pagei n () will set the wanted flag and block the second process, 
which will sleep on the address (see Section 7.2.3) of the text structure for this page. 
When the first process unlocks the page after it has been read in, it will wake up the sec
ond process. Because the second process may not run immediately after being awakened, 
it cannot assume the page is still in memory and must begin the search all over again. 

4. Text pages could be in memory even though the PTE does not have a page frame number 
for them. This would happen if they were left behind by another process that terminated a 
short while back. Such pages can be located by searching the appropriate hash queue using 
the <device, block number> pair as a key. Iffound, the page can be removed from the free 
list and reused. 

In the remaining cases, the page is not in memory. After determining its location, pagei n () must 
first allocate a page from the free page list and then read in the page as follows: 

5. The page is on the swap device. The fill-on-demand bit is clear, the page frame number is 
zero, and case 4 does not apply. The swap maps are consulted to locate the page on swap, 
and the page is read in from the swap device. 

6. Zero-fill pages are handled by filling the newly allocated page with zeroes. 
7. The page is fill-from-text and was not found on the hash queue (case 4). It is read in from 

the executable file. This read occurs directly from the file to the physical page, bypassing 
the buffer cache. This may cause a consistency problem if the disk copy of the page is ob
solete. Hence the kernel searches the buffer cache for this page, and if found, flushes the 
cache copy to disk before reading it in to the process page. This solution requires two disk 
copy operations and is inefficient, but was retained for historical reasons. It would be bet
ter to copy directly from the buffer cache if the page was found there. 

In cases 5 and 6, the new page is marked as modified, so it will be saved on swap before reuse. 



sleep on text struct No 

0 
start over when 

woken up 

0 

set valid bit 

Yes 

take page off 
free list 

Figure 13-18. The pagei n () algorithm. 

No 

~ 
page in 

buffer cache? 

"--- / 
No 

0 

Yes 

allocate new 
page 

fill it with 

~ 
0 

I 

1 
mark page 
modified ) 

-1>
w 
0 

() 
::r 
"' "0 

~ 
;:;::; 

< 
~· 
e:. 
~ 
"' 3 
0 

..:1 



13.5 4.3BSD Memory Management Operations 431 

13.5.3 The Free Page List 

Frequently, the kernel must bring a new page into memory. Once memory is full, this requires dis
placing a page that is currently in memory. 4.3BSD uses a global replacement policy to choose the 
pages to remove. 

Obviously, the best candidates for reuse are pages that will never be needed again, such as 
data and stack pages of terminated processes. Such pages should always be used ahead of poten
tially useful pages. If no such pages can be found, the principle of locality suggests that pages 
should be reclaimed in LRU order. Recently used pages are more likely to be needed soon, com
pared to those that have not been used for a while. 

Given these criteria, it is impractical to search for a proper candidate at the time we need the 
page. It is far better to maintain a list of reusable pages and take pages from this list whenever 
needed. The list should be kept well populated at all times and should be ordered in such a way that 
the head of the list contains the best candidates. Ideally, we want to keep all garbage pages at the 
head of this free list, followed by some useful pages in LRU order. The BSD kernel maintains such 
a list, and the system parameters mi nfree and max free determine the minimum and maximum de
sired size of this list. The current size of this list is described by the variable freemem. 

There is a practical problem with maintaining strict LRU ordering. It requires the list to be 
reordered on each reference to a page, which could happen on each instruction that accesses a user 
address. This would be prohibitively expensive, and 4.3BSD chooses an effective compromise. It 
replaces the least recently used policy by a not recently used policy [Baba 81 ]. A page is eligible to 
be freed if it has not been recently referenced. 

Such a policy can be implemented by making two passes over each page, a certain time 
apart. The first pass turns off the referenced bit for the PTE of that page. The second pass checks the 
referenced bit, and if it is still off, the page is eligible to be freed, since it has not been referenced in 
the time between the two passes. The algorithm used is called the two-handed clock. The cmap table 
is treated as a circular (wraparound) table and two pointers (hands) are maintained a fixed distance 
(number of cmap entries) apart (see Figure 13-19). These pointers advance together. The front hand 
turns off the referenced bit, and the back hand checks this bit. If the bit is still off, the page has not 
been referenced since the front hand set the bit and hence is eligible to be freed. If this page is dirty, 
it must be saved on swap before freeing. 

Some architectures, such as the V AX-11 and the MIPS R3000, do not support a referenced 
bit in the hardware. This can be overcome by simulating the referenced bit in software. To do this, 
the front hand turns off the valid bit in the PTE, forcing a page fault if the page is referenced. The 
page fault handler recognizes the situation (case I in the previous section) and simply sets the valid 
bit back. Thus, if the back hand finds the valid bit is off, it means that the page has not been refer
enced in the interim and is a candidate to be freed. This does have an overhead in that extra page 
faults are generated simply to track this reference information. 

A separate process called the pagedaemon (always process 2) is responsible for page re
placement. This allows pages to be written out to swap without blocking an innocent process. Fur
ther, since the pagedaemon is writing out pages belonging to other processes, it must first map those 
pages into its own address space. Pages are written directly to swap, without going through the 
buffer cache, using a special set of swap buffer headers. The writes are performed asynchronously, 



432 Chapter 13 Virtual Memory 

hand spread 

Figure 13-19. The two-handed clock. 

so the pagedaemon can continue to examine other pages in the meantime. When the writes com
plete, the completion routine puts these pages onto a cleaned list, from which they are returned to 
the free memory list by a routine called cleanup(). 

13.5.4 Swapping 

Although the paging system works admirably most of the time, it can break down under heavy load. 
The major problem, called thrashing, occurs when there is not enough memory to contain the 
working sets of the active processes. This may happen because there are too many active processes 
or because their access patterns are too random (and hence their working sets are too large). This 
results in a sharp increase in the page fault rate. When the pages are faulted in, they replace other 
pages that were part of the working set of an active process, which escalates the problem further. 
The situation can worsen until the system is spending most of its time in page fault handling, and 
the processes can make little progress. 

This problem may be addressed by reducing the number of active processes, thus controlling 
the system load. Processes that are "deactivated" may not be scheduled to run. It then makes sense 
to free up as much of the memory used by such processes as possible, if necessary, by copying data 
to the swap space. This operation is known as swapping the process out. When the load on the sys
tem reduces, the process may be swapped back in. 

A special process called the swapper monitors the system load, and swaps processes in and 
out when needed. During system initialization, the kernel creates a process with PID 0, which fi
nally calls sched (), the central function of the swapper. Process 0 thus becomes the swapper. It 
sleeps most of the time, but wakes up periodically to check the system state and takes further action 
if required. The swapper will swap out a process in the following cases: 



13.6 Analysis 

• Userptmap fragmentation- A process may be unable to allocate contiguous PTEs in 
Userptmap to map its page tables, if the Userptmap is too full or too fragmented. This 
may occur during fork, exec, or region growth. In such a case, the swapper will swap out 
an existing process to try to make room in Userptmap. 

• Memory shortfall - The variable freemem stores the number of clusters on the free list. 
When freemem remains below desired limits for a period of time, it is an indication of 
paging system overload, and the swapper is invoked. 

• Inactive processes - If a process has been inactive for a long time (more than 20 sec
onds), it is likely to remain inactive and may be swapped out. For example, a user may 
have gone home without logging off, leaving an inactive shell process. Although its resi
dent pages will eventually be swapped out anyway, swapping the whole process out frees 
up other important resources, such as Userptmap entries. 

433 

How does the swapper choose the process to swap out? The ideal candidate is a process that 
has been sleeping for more than 20 seconds. Otherwise, the swapper selects the four largest proc
esses, and of these, swaps out the one that has been resident in memory the longest. The other three 
will be swapped out in turn if we still need more memory. 

The swapper must perform the following tasks when swapping out a process: 

1. Allocate swap space for the u area, kernel stack, and page tables. 
2. Detach the process from its text region. If no other process is sharing this region, the text 

must be swapped out as well. 
3. Save the resident data and stack pages on swap, then the page tables, and finally the u area 

and kernel stack. 
4. Release the system PTEs in Userptmap that map the page tables for this process. 
5. Record the swap location of the u area in the proc structure. 

When one or more processes are swapped out, the swapper periodically checks if it is pos
sible to bring them back in. This depends on there being enough free memory and enough room in 
Userptmap. If several processes have been swapped out, the swapper assigns them a swapin priority 
based on their size, nice value (see Section 5.4.1), how long they have been swapped out, and for 
how long they had been asleep. The process with the highest swapin priority is chosen to be 
swapped in. 

The swapin procedure is basically the reverse of swapout. The process is attached to the text 
region and PTEs are allocated in Userptmap to map its page tables. Physical memory is allocated 
for the u area, kernel stack, and page tables, which are then read in from swap. The swap allocation 
for these regions is released. The process is then marked runnable and put on the scheduler queue. 
The data and stack pages will be paged in as required when the process runs. 

13.6 Analysis 

The BSD memory management design provides powerful functionality using a small number of 
primitives. The only hardware requirement is demand-paging support (since segmentation is not 
used). There are, however, several important shortcomings and drawbacks to keep in mind: 



434 Chapter 13 Virtual Memory 

• There is no support for execution of remote programs (across a network). This is because 
there is no support in the vanilla BSD file system for accessing remote files. If the file 
system provides this facility, the extensions to the memory subsystem are simple. 

• There is no support for sharing of memory, other than read-only sharing of the text region. 
In particular, there is no equivalent of the System V shared memory facility. 

• vfork is not a true substitute for fork, and the lack of copy-on-write hurts the performance 
of applications that rely extensively on fork. In particular, daemons and other server appli
cations that fork a child process for each incoming request are heavily impacted. 

• Each process must have its own copy of the page table for a shared text region. This not 
only wastes space, but also requires keeping these page tables synchronous by migrating 
changes made by one process to the corresponding PTEs of other processes sharing the 
text. 

• There is no support for memory-mapped files. Section 14.2 discusses this facility in detail. 
• There is no support for shared libraries. 
• There is a problem with debugging a program that is being run by multiple processes. If 

the debugger deposits a breakpoint in the program, it modifies the corresponding text 
page. This modification is seen by all processes running this program, which can have un
expected results. To avoid that, the system disallows putting breakpoints in a shared text 
and disallows new processes from running a program that is being debugged. These solu
tions are obviously unsatisfactory. 

• The BSD implementation reserves enough swap space in advance to page out every single 
page in the process address space. Such a policy ensures that a process can run out of swap 
space only when it tries to grow (or infork or exec) and not arbitrarily in the middle of 
execution. This conservative approach requires a large amount of swap space on the sys
tem. From another perspective, the swap space on the system limits the size of the pro
grams you can run. 

• There is no support for using swap space on remote nodes, which is required for facilities 
such as diskless operation. 

• The design is heavily influenced by and optimized for the VAX architecture. This makes it 
less suitable for the wide range of machines to which UNIX has been ported. Further, the 
machine dependencies are scattered all over the code, making the porting effort even 
greater. 

• The code is not modular, so it is difficult to add features and change individual compo
nents or policies. For example, storing the filesystem block number in invalid (fill-on
demand) PTEs prevents a clean separation of the address translation and the page fetch 
tasks. 

Despite these shortcomings, the 4.3BSD design provides a sound foundation for the modem 
memory architectures-such as those of SVR4, 4.4BSD, and Mach-described in the following 
chapters. These architectures have retained many of the BSD methods, but they have changed the 
underlying design in order to provide more functionality and address many of the limitations of the 
BSD approach. 



13.7 Exercises 435 

The 4.3BSD architecture was sensible for the systems available in the 1980s, which typically 
had slow CPUs and small memories, but relatively large disks. Hence the algorithms were opti
mized to reduce memory consumption at the cost of doing extra I/0. In the 1990s, typical desktop 
systems have large memories and fast processors, but relatively small disks. Most user files reside 
on dedicated file servers. The 4.3BSD memory management model is not suitable for such systems. 
4.4BSD introduced a new memory architecture based on that of Mach. This is described in Section 
15.8. 

13.7 Exercises 

1. Which of the objectives listed in Section 13.2.1 can be met by a system that used swapping as 
the only memory management mechanism? 

2. What are the advantages of demand paging compared with segmentation? 
3. Why do UNIX systems use anticipatory paging? What are its drawbacks? 
4. What are the benefits and drawbacks of copying text pages to the swap area? 
5. Suppose an executable program resides on a remote node. Would it be better to copy the 

entire image to the local swap area before executing it? 
6. The hardware and the operating system cooperate to translate virtual addresses. How is the 

responsibility divided? Explore how the answer to this question varies for the three 
architectures described in Section 13.3. 

7. What are the benefits and drawbacks of a global page replacement policy as compared with a 
local policy? 

8. What steps can a programmer take to minimize the working set of an application? 
9. What are the advantages of inverted page tables? 

10. Why does the MIPS 3000 cause a large number of spurious page faults? What are the 
advantages of this architecture that offset the cost of processing these additional faults? 

11. Suppose a 4.3BSD process faults on a page that is both nonresident and protected (does not 
permit the type of access desired). Which case should the fault handler check for first? What 
should the handler do? 

12. Why does the core map manage only the pages in the paged pool? 
13. What do we mean by the name of a page? Does a page have just one name? What are the 

different name spaces for pages in 4.3BSD? 
14. What is the minimum amount of swap space a 4.3BSD system must have? What is the 

advantage of having an extremely large swap area? 
15. What are the factors that limit the maximum amount of virtual address space a process may 

have? Why, if at all, is it important for a process to be thrifty in its use of virtual memory? 
16. Is it better to distribute the swap space over multiple physical disks? Why or why not? 
17. Why is a pure LRU policy unsuitable for page replacement? 
18. Early BSD releases [Baba 81, Leff89] used a one-handed clock algorithm, which turned off 

referenced bits in the first pass, and swapped out pages whose referenced bits were still off in 
the second pass. Why is this algorithm inferior to the two-handed clock? 



436 Chapter 13 Virtual Memory 

13.8 References 

[Baba 79] 

[Baba 81] 

[Bach 86] 

[Bako 90] 

[Bela 66] 

[Chak 94] 

[Coll91] 
[DEC 80] 
[Denn 70] 

[Intel 86] 
[Kane 88] 
[Lee 89] 

[Leff89] 

Babaoglu, 0., Joy, W.N., and Porcar, J., "Design and Implementation of the 
Berkeley Virtual Memory Extensions to the UNIX Operating System," Technical 
Report, CS Division, EECS Department, University of California, Berkeley, CA, 
Dec. 1979. 
Babaoglu, 0., and Joy, W.N., "Converting a Swap-Based System to Do Paging in an 
Architecture Lacking Page-Referenced Bits," Proceedings of the Eighth ACM 
Symposium on Operating Systems Principles, Dec. 1981, pp. 78-86. 
Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, Englewood 
Cliffs, NJ, 1986. 
Bakoglu, H.B., Grohoski, G.F., and Montoye, R.K., "The IBM RISC System/6000 
Processor: Hardware Overview," IBM Journal of Research and Development, Vol. 
34, Jan. 1990. 
Belady, L.A., "A Study of Replacement Algorithms for Virtual Storage Systems," 
IBM Systems Journal, Vol. 5, No.2, 1966, pp. 78-101. 
Chakravarty, D., Power RISC System/6000-Concepts, Facilities, and Architecture, 
McGraw-Hill, 1994. 
Collinson, P., "Virtual Memory," SunExpert Magazine, Apr. 1991, pp. 28-34. 
Digital Equipment Corporation, VAX Architecture Handbook, Digital Press, 1980. 
Denning, P.J., "Virtual Memory," Computing Surveys, Vol. 2, No. 3, Sep. 1970, pp. 
153-189. 
Intel Corporation, 80386 Programmer's Reference Manual, 1986. 
Kane, G., Mips RISC Architecture, Prentice-Hall, Englewood Cliffs, NJ, 1988. 
Lee, R.B., "Precision Architecture," IEEE Computer, Vol. 21, No. 1, Jan. 1989, pp. 
78-91. 
Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S., The Design and 
Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, Reading, 
MA, 1989. 

[Robb 87] Robboy, D., "A UNIX Port to the 80386," UNIX Papers for UNIX Developers and 
Power Users, The Waite Group, 1987, pp. 400-426. 

[SPARC 91] SPARC International, SPARC Architecture Manual Version 8, 1991. 



14 

The SVR4 VM Architecture 

14.1 Motivation 

In SunOS 4.0, Sun Microsystems introduced a memory management architecture called VM (for 
Virtual Memory). The previous versions of SunOS were based on the BSD memory management 
model, which had all the limitations described in the previous chapter. In particular, SunOS wished 
to provide support for memory sharing, shared libraries, and memory-mapped files, which was not 
possible without major changes to the BSD design. Moreover, since SunOS ran on several different 
hardware platforms (Motorola 680x0, Intel386 and Sun's own SPARC systems), it needed a highly 
portable memory architecture. The VM architecture became very successful. Later, when a joint 
team of engineers from AT&T and Sun Micro systems set out to design SVR4 UNIX, they based the 
SVR4 memory management on this design, rather than on the regions architecture that existed in 
SVR3. 

The concept ofjile mapping is central to the VM architecture. The term file mapping is used 
to describe two different but related ideas. At one level, file mapping provides a useful facility to 
users, allowing them to map part of their address space to a file and then use simple memory access 
instructions to read and write the file. It can also be used as a fundamental organizational scheme in 
the kernel, which may view the entire address space simply as a collection of mappings to different 
objects such as files. The SVR4 architecture incorporates both aspects of file mapping. 1 Before 

1 These two ideas are independent. HP-UX 9.x, for instance, has user-level file mapping while retaining the traditional 
kernel organization. AIX 3.1, in contrast, uses file mapping as its fundamental 1/0 strategy, but does not export it to 
the user level (no mmap system call). 

437 



438 Chapter 14 The SVR4 VM Architecture 

moving to the VM design itself, we discuss the notion of memory-mapped files and why it is useful 
and important. 

14.2 Memory-Mapped Files 

The traditional way of accessing files in UNIX is to first open them with the open system call and 
then use read, write, and !seek calls to do sequential or random 110. This method is inefficient, as it 
requires one system call (two for random access) for each 110 operation. Moreover, if several proc
esses are accessing the same file, each maintains copies of the file data in its own address space, 
needlessly wasting memory. Figure 14-1 depicts a situation where two processes read the same page 
of a file. This requires one disk read to bring the page into the buffer cache and one in-memory copy 
operation for each process to copy the data from the buffer to its address space. Furthermore, there 
are three copies of this page in memory-one in the buffer cache, plus one in the address space of 
each process. Finally, each process needs to make one read system call, as well as an !seek if the 
access was random. 

Now consider an alternative approach, where the processes map the page into their address 
space (Figure 14-2). The kernel creates this mapping simply by updating some memory manage
ment data structures. When process A tries to access the data in this page, it generates a page fault. 
The kernel resolves it by reading the page into memory and updating the page table to point to it. 
Subsequently, when process B faults on the page, the page is already in memory, and the kernel 
merely changes B's page table entry to point to it. 

This illustrates the considerable benefits of accessing files by mapping them into memory. 
The total cost for the two reads is one disk access. After the mappings are set up, no further system 
calls are necessary to read or write the data. Only one copy of the page is in memory, thus saving 
two pages of physical memory and two in-memory copy operations. Reducing the demands on 
physical memory yields further benefits by reducing paging operations. 

disk 

~ !:·~~ tabl" 

A ',, 

buffer 
cache 

pageable 
physical 

' ' ' 

Figure 14-1. Two processes read the same page in traditional UNIX. 



14.2 Memory-Mapped Files 

page tables 

~------,, ~------
A ',, B 

' ' ' ' ' 
pageable', 
physical '',,, 
memory ' 

disk 

Figure 14-2. Two processes map the same page into their address space. 

439 

What happens when a process writes to a mapped page? A process may establish two types 
of mappings to files-shared and private. For a shared mapping, modifications are made to the 
mapped object itself. The kernel applies all changes directly to this shared copy of the page and 
writes them back to the file on disk when the page is flushed. If a mapping is private, any modifica
tion results in making a private copy of the page, to which the changes are applied. Such writes do 
not modify the underlying object; that is, the kernel does not write back the changes to the file when 
flushing the page. 

It is important to note that private mappings do not protect against changes made by others 
who have shared mappings to the file. A process receives its private copy of a page only when it at
tempts to modify it. It therefore sees all modifications made by other processes between the time it 
establishes the mapping and the time it tries to write to the page. 

Memory-mapped file 1/0 is a powerful mechanism that allows efficient file access. It cannot, 
however, fully replace the traditional read and write system calls. One major difference is the 
atomicity of the 1/0. A read or write system call locks the inode during the data transfer, guarantee
ing that the operation is atomic. Memory-mapped files are accessed by ordinary program instruc
tions, so at most one word will be read or written atomically. Such access is not governed by tradi
tional file locking semantics, and synchronization is entirely the responsibility of the cooperating 
processes. 

Another important difference is the visibility of changes. If several processes have shared 
mappings to a file, changes made by one are immediately visible to all others. This is starkly differ
ent from the traditional model, where the other processes must issue another read to see these 
changes. With mapped access, a process sees the contents of a page as they are at the time of access, 
not at the time the mapping was created. 

These issues, however, relate more to an application's decision to use mapped access to 
files. They do not detract from the merits and desirability of this mechanism. In fact, 4.3 BSD 
specified an interface for the mmap system call to perform file mapping, but did not provide an im
plementation. The next section describes the semantics of the mmap interface. 



440 Chapter 14 The SVR4 VM Architecture 

14.2.1 mmap and Related System Calls 

To map a file into memory, it must first be opened using the traditional open system call. This is 
followed by a call to mmap [UNIX 92], which has the following syntax: 

paddr = mmap (addr, 1 en, prot, flags, fd, offset); 

This establishes a mapping between the byte range2 [offset, offset+ 1 en) in the file represented 
by fd, and the address range [paddr, paddr+ 1 en) in the calling process. The flags include the 
mapping, which may be MAP _SHARED or MAP _PRIVATE. The caller may set prot to a combination of 
PROT_ READ, PROT_ WRITE, and PROT_ EXECUTE. Some systems, whose hardware does not support 
separate execute permissions, equate PROT_ EXECUTE to PROT_ READ. 

The system chooses a suitable value for paddr. paddr will never be 0, and the mapping will 
not overlay existing mappings. mmap ignores the addr parameter unless the caller specifies the 
MAP _FIXED flag.3 In that case, paddr must be exactly the same as addr. If addr is unsuitable (it ei
ther is not page-aligned or does not fall in the range of valid user addresses), mmap returns an error. 
The use of MAP _FIXED is discouraged, for it results in non-portable code. 

mmap works on whole pages. This requires that offset be page-aligned. If MAP _FIXED has 
been specified, addr should also be page-aligned. If 1 en is not a multiple of the page size, it will be 
rounded upward to make it so. 

The mapping remains in effect until it is unmapped by a call to 

munmap {addr, .len); 

or by remapping the address range to another file by calling mmap with a MAP_ RENAME flag. Protec
tions may be changed on a per-page basis by 

mprotect (addr, len, prot); 

14.3 VM Design Principles 

The VM architecture [Ging 87] centers around the notion of a memory object, which is a software 
abstraction of a mapping between a region of memory and a backing store. The system uses several 
types of backing stores, such as swap space, local and remote files, and frame buffers. The VM 
system would like to treat these objects identically and perform the same set of operations on them, 
such as fetching a page from or flushing a page to the backing store. In contrast, each different type 
of backing store may implement these operations differently. Hence, the system defines a common 
interface, and each backing store provides its own implementation of it. 

2 We follow the standard convention for specifying ranges: square brackets indicate inclusive boundaries, while paren
theses indicate exclusive boundaries. 

3 This is true of current implementations. The semantics of the call do specify that mmap will use addr as a hint if 
MAP FIXED is not set. 



14.4 Fundamental Abstractions 

Note: This chapter uses the word object in two different ways. A 
memory object represents a mapping, while a data object represents 
a backing store item, such as a file. The meaning is usually clear from 
the context; where it might be ambiguous, we specifically use the 
terms memory object or data object. 

441 

The VM architecture is object-oriented. Section 8.6.2 explains the basic concepts of object
oriented design as they apply to UNIX systems. Using this terminology, the common interface to 
the memory object constitutes an abstract base class [Elli 90]. Each type of memory object 
(differentiated by its backing store type) is a derived class, or subclass, of the base class. Every 
specific mapping is an instance, or object, of the corresponding subclass. 

The address space of a process comprises a set of mappings to different data objects. The 
only valid addresses are those that are mapped to an object. The object provides a persistent backing 
store for the pages mapped to it. The mapping renders the object directly addressable by the process. 
The mapped object itself is neither aware of nor affected by the mapping. 

The file system provides the name space for memory objects and mechanisms to access their 
data. The vnode layer allows the VM subsystem to interact with the file system. The relationship 
between memory objects and vnodes is many-to-one. Each named memory object is associated with 
a unique vnode, but a single vnode may be associated with several memory objects. Some memory 
objects, such as user stacks, are not associated with files and do not have names. They are repre
sented by the anonymous object. 

Physical memory serves as a cache for data from the mapped objects. The kernel attempts to 
hold the most useful pages in physical memory, so as to minimize paging activity. 

The memory is page-based, and the page is the smallest unit of allocation, protection, ad
dress translation, and mapping. The address space, in this context, is merely an array of pages. The 
page is a property of the address space, not of the data object. Abstractions such as regions may be 
implemented at a higher level, using the page as a fundamental primitive. 

The VM architecture is independent of UNIX, and all UNIX semantics such as text, data, 
and stack regions are provided by a layer above the basic VM system. This allows future non-UNIX 
operating systems to use the VM code. To make the code portable to other hardware architectures, 
VM relegates all machine dependencies to a separate hardware address translation (HAT) layer, 
which is accessed via a well-defined interface. 

Whenever possible, the kernel uses copy-on-write to reduce in-memory copy operations and 
the number of physical copies of a page in memory. This technique is necessary when processes 
have private mappings to an object, since any modifications must affect neither the underlying data 
object nor other processes sharing the page. 

14.4 Fundamental Abstractions 

The VM architecture [Mora 88] uses five fundamental abstractions to describe the memory subsys
tem: 

• page (struct page) 



442 Chapter 14 The SVR4 VM Architecture 

• address space (struct as) 
• segment (struct seg) 
• hardware address translation (struct hat) 
• anonymous page (struct anon) 

These abstractions present object-oriented interfaces to each other, as well as to the rest of the ker
nel. Section 8.6.2 provides an introduction to the basic concepts of object-oriented systems. The 
VM system interacts closely with the file system through the vnode layer (see Section 8.6) and with 
the swap devices through the swap layer. Figure 14-3 shows the basic relationships between these 
layers. 

14.4.1 Physical Memory 

As in the 4.3BSD implementation, physical memory is divided into paged and non-paged regions. 
The paged region is described by an array of page structures, each describing one logical page 
(cluster of hardware pages). The page structure, shown in Figure 14-4, differs slightly from the 
BSD cmap structure. Because physical memory is essentially a cache of memory object pages, the 
page structure must contain standard cache management information. It also contains information 
required by the address translation mechanism. 

Each page is mapped to some memory object, and each such object is represented by a 
vnode. Hence the name, or identity, of a physical page is defined by a <vnode, offset> tuple, which 
specifies the offset of the page in the object represented by the vnode. This allows a page to have a 
unique name even if it is being shared by several processes. The page structure stores the offset and 
a pointer to the vnode. 

Every page is on several doubly linked lists, and the page structure uses three pairs of point-

Figure 14-3. The SVR4 VM architecture. 

Swap 
Device 



14.4 Fundamental Abstractions 443 

/ vnode ptr 

offset in the vnode 

hash chain pointers 

pointers for vnode page list 

pointers for free list or 1/0 list 

flags 

'-.hat-related information ./ 

Figure 14-4. The page structure. 

ers for this purpose. To find a physical page quickly, pages are hashed based on the vnode and off
set, and each page is on one of the hash chains. Each vnode also maintains a list of all pages of the 
object that are currently in physical memory, using a second pair of pointers in the page structure. 
This list is used by routines that must operate on all in-memory pages of an object. For instance, if a 
file is deleted, the kernel must invalidate all in-memory pages of the file. The final pair of pointers 
keeps the page either on afree page list or on a list of pages waiting to be written to disk. The page 
cannot be on both lists at the same time. 

The page structure also maintains a reference count of the number of processes sharing this 
page using copy-on-write semantics. There are flags for synchronization (locked, wanted, in-transit) 
and copies of modified and referenced bits (from the HAT information). There is also a HAT
dependent field, which is used to locate all translations for this page (Section 14.4.5). 

The page structure has a low-level interface comprising routines that find a page given the 
vnode and offset, move it onto and off the hash queues and free list, and synchronize access to it. 

14.4.2 The Address Space 

Figure 14-5 provides a high-level description of the data structures that describe the virtual address 
space of a process. The address space (struct as) is the primary per-process abstraction and pro
vides a high-level interface to the process address space. The proc structure for each process con
tains a pointer to its as structure. An as contains the header for a linked list of the mappings for the 
process, each of which is described by a seg structure. The mappings represent non-overlapping, 
page-aligned address ranges and are sorted by their base address. The hat structure is also part of 
the as structure. The as also contains a hint to the last segment that had a page fault, as well as other 
information such as synchronization flags and the sizes of the address space and resident set. 

The as layer supports two basic sets of operations. The first consists of operations performed 
on the entire address space, including: 

• as_ all oc (), used by fork and exec to allocate a new address space. 
• as free (),called by exec and exit to release an address space. 
• as_ d up () , used by fork to duplicate an address space. 



444 

struct proc 

p_as 

struct as 

segment list 
hint 

struct hat 

seg_vn ops 

struct segops 

I ,,_ .. ., I 

Chapter 14 The SVR4 VM Architecture 

size 

struct 
segvn_data 

struct 
segvn_data 

---------------' 
struct 
segvn_data 

_______________ , 

struct seg 

, , 
, 

, , 

, , , 

, 

, , , 
, , 

, , , 

, , , 
, 

virtual 
address 
space 

text 

data 

stack 

u area 

Figure 14-5. Describing the process address space. 

The second set of functions operate on a range of pages within the as. They include the fol
lowing: 

• as_ map() and as_ unmap (), to map and unmap memory objects into the as (called by 
mmap, munmap, and several other routines). 

• as_ setprot () and as_ checkprot (), called by mprotect to set and check protections on 
parts of the as. 

• as_ fa u 1 t ( ) , the starting point for page fault handling. 
• as_ faul ta (),used for anticipatory paging (fault ahead). 

Many of these functions are implemented by determining the mapping or mappings affected 
and calling lower-level functions in the mappings interface, which is described in the next section. 

14.4.3 Address Mappings 

The address space comprises a set of memory objects, which represent mappings between backing 
store items and process address regions. Each such mapping is called a segment and is represented 
by a seg structure. This term, however, is confusing, since these segments are not related to the 
hardware-recognized segments of segmented memory architectures. In the VM architecture, a seg-



14.4 Fundamental Abstractions 445 

ment is a memory object-a contiguous range of virtual addresses of a process mapped to a con
tiguous byte range in a data object, with the same type of mapping (shared or private). 

All segments present an identical interface to the rest of the VM subsystem. In object
oriented terminology, this interface defines an abstract base class. There are several types of seg
ments, and each specific segment type is a derived class, or subclass, of the base class. The VM 
system also provides a set of generic functions to allocate and free a segment, attach it to the address 
space, and unmap it. 

The seg structure contains the public, or type-independent, fields of the segment, such as the 
base and size of the address range it maps, and a pointer to the as structure to which it belongs. All 
segments of an address space are maintained on a doubly linked list sorted by base address 
(segments may not overlap). The as structure has a pointer to the first segment, and each seg struc
ture has forward and backward pointers to keep it on this list. 

The seg structure has a pointer to a seg_ ops vector, which is a set of virtual functions that 
define the type-independent interface of the segment class. Each specific subclass, that is, each 
segment type, must implement the operations in this vector. The seg structure contains a pointer 
(s _data) to a type-dependent data structure, which holds private, type-dependent data of this seg
ment. This structure is opaque to the rest of the kernel and is only used by the type-dependent func
tions that implement the segment operations. 

The operations defined in seg_ ops include the following: 

• dup, to duplicate a mapping. 
• fault andfaulta, to handle page faults for this segment. 
• setprot and checkprot, to set and check protections. 
• unmap, to unmap the segment and free all its resources. 
• swapout, called by the swapper to swap out a segment. 
• sync, to flush all pages of the segment back to the underlying data object. 

Each segment also has a create routine. Although this routine is type-dependent, it is not ac
cessed via the seg_ ops vector, because it must be called before the segment, and hence the seg_ ops 
vector, is initialized. The kernel knows the names and calling syntax of all create routines (the ar
guments to the create routine may also differ for each segment type) and calls the appropriate one 
for the segment it wants to create. 

Note the distinction between a virtual function and its specific implementation by a subclass. 
For example,faulta is a virtual function, defining a generic operation on a segment. There is no ker
nel function called faul ta (). Each subclass or segment type has a different function to implement 
this operation-for example, the segment type seg_vn provides the function segvn _ faul ta (). 

14.4.4 Anonymous Pages 

An anonymous page is one that has no permanent storage. It is created when a process first modifies 
a page that has a MAP _PRIVATE mapping to an object. The VM system must make a private copy of 
this page for the process, so that the modifications do not change the underlying object. Any subse
quent access to this page must be resolved to the private copy, not to the original page. Such 



446 Chapter 14 The SVR4 VM Architecture 

anonymous pages can be discarded when the process terminates or unmaps the page. Meanwhile, 
they may be saved on the swap device if necessary. 

Anonymous pages are widely used by all segments that support private mappings. For ex
ample, although initialized data pages are initially mapped to the executable file, they become 
anonymous pages when first modified. The swap layer provides the backing store for anonymous 
pages. 

A related but distinct concept is that of the anonymous object. There is a single anonymous 
object in the entire system. It is represented by the NULL vnode pointer (or in some implementa
tions, by the file /dev/zero) and is the source of all zero-filled pages. The uninitialized data and 
stack regions of the process are MAP _PRIVATE mappings to the anonymous object, while shared 
memory regions are MAP_ SHARED mappings to it. 

When a page mapped to the anonymous object is first accessed, it becomes an anonymous 
page, regardless of whether the mapping was shared or private. This is because the anonymous ob
ject does not provide backup storage for its pages, so the kernel must save them to the swap device. 

The struct anon represents an anonymous page. It is opaque to the other components of the 
VM system and is manipulated solely by a procedural interface. Because an anonymous page may 
be shared, the anon structures are reference-counted. A segment that has an anonymous page merely 
holds a reference to the anon structure for that page. If the mapping is private, then each segment 
holds a separate reference to that page. If the mapping is shared, then the segments share the refer
ence itself. Sharing of anonymous pages is discussed further in Section 14.7.4. 

The anon layer exports a procedural interface to the rest of VM. It includes the following 
.functions: 

• anon_ dup () duplicates references to a set of anonymous pages. This increments the refer
ence count of each anon structure in the set. 

• anon_ free() releases references to a set of anonymous pages, decrementing reference 
counts on its anon structures. If the count falls to zero, it discards the page and releases the 
anon structure. 

• anon _private() makes a private copy of a page and associates anew anon structure with it. 
• anon_ zero () creates a zero-filled page and associates an anon structure with it. 
• anon _get page() resolves a fault to an anonymous page, reading it back from swap if 

necessary. 

14.4.5 Hardware Address Translation 

The VM system isolates all hardware-dependent code into a single module called the HAT 
(hardware address translation) layer, which it accesses through a well-defined, procedural interface. 
The HAT layer is responsible for all address translation. It must set up and maintain the mappings 
required by the MMU, such as page tables and translation buffers. It is the sole interface between 
the kernel and the MMU, and conceals the details of the memory architecture from the rest of the 
kernel. 



14.4 Fundamental Abstractions 447 

The HAT layer's primary data structure is the struct hat, which is part of the as structure 
of each process. While this positioning underscores the one-to-one relationship between an address 
space and its set of hardware mappings, the HAT layer is opaque to the as layer and the rest of the 
VM system. It is accessed through a procedural interface, which includes three types of functions: 

• Operations on the HAT layer itself, such as: 
• hat_ all oc() and hat_free(), to allocate and free the hat structures. 
• hat_ d up (), to duplicate the translations during fork. 
• hat_swapin() and hat_swapout(), to rebuild and release the HAT information 

when a process is swapped in or out. 

• Operations on a range of pages of a process. If other processes share these pages, their 
translations are unaffected by these operations. They include: 
• hat_ chgprot () to change protections. 
• hat_unload() to unload or invalidate the translations and flush the corresponding 

TLB entries. 
• hat_ mem load() and hat_ devl oad () load the translation for a single page. The latter 

is used by seg_ dev to load translations to device pages. 

• Operations on all translations of a given page. A page can be shared by several processes, 
each having its own translation to it. These operations include: 
• hat _pageun load() unloads all translations for a given page. This involves opera

tions such as invalidating its PTE and flushing its TLB entry. 
• hat _pagesync () updates modified and referenced bits in all translations for the 

page, using the values in its page structure. 

All information managed by the HAT layer is redundant. It may be discarded at will and re
built from the information available in the machine-independent layer. The interface makes no as
sumption about what data is retained by the HAT layer and for how long. The HAT layer is free to 
purge any translation at any time-if a fault occurs on that address, the machine-independent layer 
will simply ask the HAT layer to reload the translation. Of course, rebuilding the HAT information 
is expensive, and the HAT layer avoids doing this as much as possible. 

The hat structure is highly machine-dependent. It may contain pointers to page tables and 
other related information. To support operations such as hat _pageun load(), the HAT layer must 
be able to find all translations to a page, including those belonging to other processes sharing the 
page. To implement this, the HAT layer chains all translations for a shared page on a linked list, and 
stores a pointer to this list in the HAT-dependent field of the page structure (Figure 14-6). 

The reference port for SVR4 is on the Intel80x86 architecture [Bala 92). Its HAT layer uses 
a data structure called a mapping chunk to monitor all translations for a physical page. Each active 
page table entry has a corresponding mapping chunk entry. Because non-active translations do not 
have mapping chunk entries, the size of the mapping chunk is much less than that of the page table. 
Each physical page has a linked list of mapping chunk entries, one for each active translation to the 
page. The struct page holds a pointer to this mapping chain. 



448 

struct 
page 

(halt 1) 
I 
I 
I 

~-----------------------~ 

(ha
1
t 2) 
I 
I 
I 

I 
y 

physical 
page 

Chapter 14 The SVR4 VM Architecture 

Figure 14-6. Locating all translations to a page. 

14.5 Segment Drivers 

There are several different segment types. The collection of routines and private data that implement 
each segment type is called its segment driver. The initial implementation included the following 
four segment types: 

• seg_vn Mappings to regular files and to the anonymous object. 
• seg_ map Kernel internal mappings to regular files. 
• seg_dev Mappings to character devices (frame buffers, etc.). 
• seg_ kmem Miscellaneous kernel mappings. 

Later implementations added a seg_u driver for mapping the u area and a seg_objs driver to 
map kernel objects into user space. Specific implementations may add other drivers, such as seg_ kp 
for multithreaded systems. seg_vn and seg_map are the most commonly used drivers. 

The segment driver must implement all functions defined in the segment interface (Section 
14.4.3). The driver is free to merge adjacent segments of the same type or break a segment into 
smaller segments, if dictated by efficiency considerations. Moreover, while a segment typically has 
the same protections for all its pages, the drivers permit protections to be specified on a per-page 
basis. 

14.5.1 seg_ vn 
The vnode segment-also known as seg_vn-maps user addresses to regular files and to the anony
mous object. The latter is represented by the NULL vnode pointer, or by the file /dev/zero, and 
maps zero-fill regions such as uninitialized (bss) data and the user stack. Initial page faults to such 
pages are handled by returning a zero-filled page. The text and initialized data regions are mapped 
to the executable file using the seg_vn driver. Additional seg_vn segments may be created to handle 
shared memory and files explicitly mapped with the mmap system call. 

Figure 14-7 describes the data structures associated with vnode segments. Each vnode seg
ment maintains a private data structure to store additional information used by the driver. This in
cludes: 



14.5 Segment Drivers 449 

• Current and maximum protections for the pages of the segment. 
• Mapping type (shared or private). 
• Pointer to the vnode of the mapped file. This provides access to all the vnode operations 

on the file [Klei 86]. 
• Offset of the beginning of the segment in the file. 
• Anonymous map pointer, for modified pages of private mappings (see Section 14.7.2). 
• Pointer to a per-page protections array, if all pages do not have the same protection. 

The maximum protections are set when the segment is initially mapped, depending on the 
protections required and the mode in which the file was opened. For example, a file initially opened 
in read-only mode cannot then be mapped MAP _PRIVATE with PROT_ WRITE protection, even if the 
user has write permission to the file. The current protections are initially set equal to the maximum 
protections. Subsequently, they may be changed by calling mprotect, but they may never exceed the 
maximum protections. 

Because mprotect may be called for any range of pages, it is possible for some pages of a 
segment to have protections that differ from those of the segment. The per-page protections array 
maintains this information and also allows locking of individual pages in memory (via mlock). The 
kernel ensures that the protections on any page cannot exceed the maximum protections of the seg
ment. 

The per-page protections are not unique to seg_vn. All segments that support mmap and 
mprotect use the same mechanism. 

14.5.2 seg_map 

UNIX files may be accessed in three ways-demand paging of executable files, direct access to 
mmap 'ed files, and read or write calls to open files. The first case is similar to the second, since the 

: {Q] anonymous 
- pages of 

segment 

per-page 
protections 

vnodeops 

I 

~ resident pages 
W_Uoffile 

Figure 14-7. Data structures associated with a vnode segment. 



450 Chapter 14 The SVR4 VM Architecture 

kernel maps the text and data segments to the executable file, and the subsequent access is analo
gous to that of mmap'ed files. In both cases, the kernel uses the memory subsystem and page faults 
to access the data. 

Treating read and write system calls differently from mmap'ed access can lead to inconsis
tency. Traditionally, the read system call reads the data from the disk into the block buffer cache, 
and from there to the process address space. If another process mmaps the same file, there will be 
two copies of the data in memory--one in the buffer cache and another in a physical page mapped 
into the address space of the second process. If both processes modify the file, the results will be 
unpredictable. 

To avoid this problem, the VM system unifies the treatment of all three access methods. 
When a user issues a read system call on an open file, the kernel first maps the required pages of the 
file into its own virtual address space using the seg_ map driver, then copies the data to the processes 
address space. The seg_ map driver manages its own virtual address space as a cache, so only re
cently accessed mappings are in memory. This allows the VM system to subsume the role of the 
buffer cache, which now becomes largely redundant. It also allows full synchronization of all types 
of access to a file. 

There is only one seg_ map segment in the system. It belongs to the kernel and is created 
during system initialization. The driver provides two additional functions-segmap _getmap () to 
map part of a vnode to a virtual address, and segmap _release() to release such a mapping, writing 
data back to disk if modified. The role of these functions is similar to that of the traditional bread() 
and bre 1 se ()/bwri te () functions of the buffer cache, and is further described in Section 14.8. The 
seg_map driver is an optimized version of the vnode driver, providing quick but transitory map
pings of files to the kernel. 

14.5.3 seg_dev 

The seg_ dev driver maps character devices that implement an mmap interface. It is commonly used 
to map frame buffers, physical memory, kernel virtual memory, and bus memory. It only supports 
shared mappings. 

14.5.4 seg_kmem 
This driver maps portions of kernel address space such as kernel text, data, and bss regions and dy
namically allocated kernel memory. These mappings are non-paged, and their address translations 
do not change unless the kernel unrnaps the object (for example, when releasing dynamically allo
cated memory). 

14.5.5 seg_kp 
The seg_ kp driver allocates thread, kernel stack, and light-weight process (lwp) structures for mul
tithreaded implementations such as Solaris 2.x (see Section 3.6). These structures may be from 
swappable or non-swappable regions of memory. seg_ kp also allocates red zones to prevent kernel 
stack overflow. The red zone is a single write-protected page at the end of a stack. Any attempt to 
write to this page results in a protection fault, thus protecting neighboring pages from corruption. 



14.6 The Swap Layer 451 

14.6 The Swap Layer 

The anon layer manages anonymous pages and resolves page faults on them. It must maintain in
formation necessary to locate the page. If the page is in memory, the anon structure stores a pointer 
to its page structure. If it has been swapped out, it must be retrieved from its backing store, which is 
managed by the swap layer. The swap x1ate() routine manages the mapping between anon struc
tures and outswapped pages. 

A system may be configured with several swap devices. Each is usually a local disk parti
tion, but could also be a remote disk or even a file. A swap device may be added or removed dy
namically, using the system call 

where cmd is SC_ADD or SC_REMOVE,4 and arg is a pointer to a swapres structure. This structure 
contains the pathname of the swap file (for a local swap partition, this would be the device special 
file) and the location and size of the swap area in this file. 

The kernel sets up a swapi nfo structure for each swap device and adds it to a linked list 
(Figure 14-8). It also allocates an array of anon structures, with one element for each page on the 
device. The swapi nfo structure contains the vnode pointer and starting offset of the swap area, as 
well as pointers to the beginning and end of its anon array. Free anon structures in the array are 
linked together, and the swapi nfo structure has a poi~ter to this list. Initially, all elements are free. 

Segments must both reserve and allocate swap space. When the kernel creates a segment that 
potentially will require swap space (typically, all writable private mappings), it reserves as much 
space as necessary (usually, equal to the size of the segment). The swap layer monitors the total 
available swap space and reserves the required amount from this pool. This does not set aside spe
cific swap pages; it merely ensures that the reserved space will be available if and when needed. 

This reservation policy is conservative. It requires that processes always reserve backing 
store for all anonymous memory, even though they may never use all of it. If the system will be 
used for large applications, it needs a large swap device. On the other hand, the policy guarantees 
that failures due to memory shortage only occur synchronously, that is, during calls such as exec 
and mmap. Once a process has set up its address space, it will always have the swap space it needs, 
unless it attempts to grow. 

A segment allocates swap space on a per-page basis, whenever it creates a new anonymous 
page. Allocations may only be made against a previous reservation. The swap_ a 11 oc () routine al
locates a free swap page and associates it with the anonymous page through an anon structure. It 
attempts to distribute the load evenly on the swap devices, by allocating from a different device af
ter every few pages. 

In SVR4, the position of the anon structure in the anon array equals the position of the swap 
page on the corresponding swap device. swap_ a 11 oc () returns a pointer to the anon structure. This 
pointer serves as the name of the anonymous page, since it can be used to locate the page on swap. 

4 There are two other commands-SC _LIST and SC _ GETNSWP-for administrative purposes. 



452 Chapter 14 The SVR4 VM Architecture 

lswapinfo~ struct anon [ ] 

( + •r --.1 
vnode IRIFIOIFIFIRIFIO offset 
start - ___j i I I 

I I 

end I I 

I I I 

free list I I 
I . -

next I 
I 

s 
struct 

, _________ 
--------

l wapinfo 
struct struct 

page page swap device 

Key 

~ resident [!] free ~ outswapped 

Figure 14-8. Swap layer data structures. 

The anon array, and its relation to the swap device, are internal to the swap layer. The anon 
layer deals with a procedural interface, calling swap_ all oc () and swap_ free() to allocate and free 
the anon structure, and swap_xlate() to return the vnode and offset ofthe swap page correspond
ing to an anon structure. It then uses the VOP ~GETPAGE operation on the vnode to retrieve the page 
from swap. 

Segments that use anonymous memory refer to the anon structures indirectly. They maintain 
an anon reference array, which contains pointers to anon structures. The array has one element for 
each page in the segment. If a page is not anonymous (that is, if it is still managed by the segment 
driver), the corresponding entry is NULL. This permits operations to be performed on a range of 
pages, some of which may be anonymous. 

Swap devices may be dynamically added or removed while the system is running. Adding a 
device increases the total available swap space, and removing a device decreases it. When removing 
a device, any pages currently stored on that device must be copied to another device, and new anon 
structures must be allocated for them. The remove operation fails if the other swap devices have in
sufficient room to relocate these pages. 

The segments that own these pages, however, continue to refer to the old anon structures, 
and there is no way to trace back these references. Hence the anon structure has a field that stores a 
pointer to the new anon structure that maps the page. The anon structure also stores its reference 
count, and a pointer to the page structure if the page is resident or to the next free element if the 
anon structure is free. 

14.7 VM Operations 

Having described the data structures and interfaces that encapsulate the major VM abstractions, we 
now show how these components interact to provide the memory management functionality. 



14.7 VM Operations 453 

14.7.1 Creating a New Mapping 

New regions are mapped into an address space either during exec, or when the process explicitly 
calls mmap. exec or mmap locates the vnode of the file being mapped and invokes its VOP _MAP 
function. 5 VOP _MAP performs file system specific argument checking. It then checks if the process 
has another mapping for this address range (as it might, if called from mmap), and if so, calls 
as_ unmap () to delete that mapping. Finally, it calls as_ map() to map the file into the address space. 
as_ rna p () allocates a s eg structure and calls the appropriate create routine to initialize the segment. 

The mmap call ensures that permissions never exceed those with which the file was opened. 
This means that the user cannot modify a file through a shared mapping if the file was originally 
opened in read-only mode. The seg structure records the maximum permissions the segment can 
have. Functions such as mprotect that modify permissions check this field. 

The exec system call establishes private mappings for the text, data, and stack regions.6 It 
maps text and initialized data to the executable file, and bss data and stack to the anonymous object. 
It may also set up additional mappings to shared library regions. The text region is mapped with 
PROT_ READ and PROT_ EXECUTE protections, so any attempt to write to it generates a fault. The data 
regions are writable, but pages of initialized data that have not yet been modified may be shared by 
all processes running the program. 

The as_ unmap () and as_ free() functions remove the mappings. as_ unmap (), called by 
munmap, frees a range of addresses, which may include one or more partial or full segments. 
as_ free(), called by exit, releases the entire address space. Both operate by looping through the 
involved segments and calling routines in the segment layer to unmap the pages. 

14.7.2 Anonymous Page Handling 
Anonymous pages are created in two situations: 

• When a process first writes to a page that is mapped MAP _PRIVATE either to a file or to the 
anonymous object. This includes dirty pages of text, data, stack, and other explicitly cre
ated private mappings. 

• On the first access to a shared memory page. This case is discussed in Section 14.7.6. 

When a private mapping is initially created, the hardware translations for its pages are set to 
read-only. This is because changes to such pages must not modify the underlying data object. Hence 
the kernel must trap the first write to such a page and detach its mapping to the file. Because this 
removes the backup store for the page, the kernel must make alternative arrangements by allocating 
a backup location on the swap device. The page now becomes an anonymous page. 

Figure 14-9 describes how the vnode segment implements anonymous pages. The private 
data structure of the segment contains a pointer to an anon_ map structure. The anon_ map contains a 

5 VOP MAP, along with VOP GETPAGE and VOP PUTPAGE, was added to the vnodeops vector to support the VM system. 
These are virtual functio~s, as described in Section 8.6.2. The actual function invoked depends on the filesystem to 
which the vnode belongs. 

6 For ELF format files, exec maps in the interpreter that is specified in the program header. The interpreter, in tum, 
maps in the actual program. 



454 Chapter 14 The SVR4 VM Architecture 

pointer to, and the size of, an anon reference array, which has one entry for each page of the seg
ment. Each entry is a reference to the anon structure for the corresponding page, or NULL if that 
page is not yet anonymous. The anon structure locates the page in physical memory or on the swap 
device and contains a count of the number of references to it. When the reference count falls to zero, 
the page and the anon structure may be deallocated. 

These data structures are not created along with the segment. Rather, they are created and 
initialized when needed, that is, on the first write to a page in that segment. This lazy approach is 
beneficial, because many vnode segments may never create anonymous pages (text pages, for in
stance, are never modified unless the program is being debugged and the debugger deposits a break
point). By delaying the work, the kernel may avoid it altogether. 

The first attempt to write to a privately mapped page causes a protection fault. The fault 
handler recognizes the situation, for the mapping type is MAP _PRIVATE and the segment protections 
are not read-only (as opposed to protections in the hardware address translation for the page, which 
have been deliberately set to read-only so as to trap this write attempt). It allocates an anon struc
ture, thus allocating swap space (since each anon structure corresponds to a unique page on the 
swap device). It creates a reference to the anon structure (Section 7.9 explains object references in 
more detail) and stores it in the corresponding element of the anon reference array. 

The handler then makes a new copy of the page, using a newly allocated physical page. It 
stores the pointer to the page structure for this page in the anon structure. Finally, the handler calls 
the HAT layer to load a new translation for the page, which is write-enabled, and translates to the 
new copy. All further modifications thus occur to this private copy of the page. 

Some special cases require additional processing. If this is the first anonymous page created 
for the segment, the handler allocates and initializes the anon_ map and the anon reference array. 
Also, if the faulting page was not in memory, the handler reads it in from its backing storage. 

The kernel may eventually move this page to the swap device. This may cause the process to 
fault on it again. This time, the fault handler discovers that the segment has a reference to the anon 
structure for this page and uses it to retrieve the page from the swap device. 

anon_map 

anon 
reference 

array 

swap device 
anon array 

struct page [ ] 

swap disk 

L_____J ----au 
Figure 14-9. Anonymous pages of a vnode segment. 



14.7 VM Operations 455 

When a process forks, all its anonymous pages are shared copy-on-write with the child. The 
parent and the child have their own anon_ map and anon reference array, but they refer to the same 
anon pages. This is described further in the next section. 

14.7.3 Process Creation 

The fork system call, after allocating and initializing the proc structure, calls the as_ dup () function 
to duplicate the parent's address space. as_dup() first calls as_alloc() to allocate a new as 
structure for the child. It then goes through its segment list, and for each segment, invokes the dup 
operation of its driver to duplicate it. 

The segment duplication starts by allocating a new seg structure, and a structure to hold the 
type-dependent private data. Many of the fields, such as base address, size, vnode pointer, offset, 
and protections are copied from the parent. In particular, the child inherits the seg_ ops pointer and 
the mapping type from the parent. Mappings to text, data, and stack are MAP _PRIVATE in the parent 
and the child. Any MAP_ SHARED mapping in the parent remains so in the child, preserving UNIX in
heritance rules for shared memory regions. Other fields, such as the pointer to the as, are initialized 
to appropriate values in the child. 

For MAP _PRIVATE mappings, the anon _map must be duplicated in a manner that allows copy
on-write sharing of the anon pages. The first step is to call hat_ chgprot () to write-protect all anon 
pages. This ensures that any attempt to modify these pages by either the parent or the child will re
sult in a page fault. The fault handler will make a new copy of that page and enable writes to it. 

Once hat_chgprot() returns, the segment driver calls anon_dup() to duplicate the 
anon_ map. anon_ dup () allocates a new anon_ map and anon reference array. It clones all the refer
ences in the array by copying the pointers and incrementing the reference counts of the associated 
anon structures. Figure 14-10 describes the situation after a segment has been duplicated. 

After all segments have been duplicated, as_ dup () calls hat_ dup () to duplicate the hat 
structure and translation information. hat_dup() may allocate new page tables for the child and 
initialize them by copying from the parent. 

This way, fork duplicates the address space without copying the pages themselves. It only 
copies the mappings and page tables. Although this seems to eliminate the need for vfork, SVR4 
retains it for several reasons. First, vfork is even faster than copy-on-write, because it does not even 
copy the mappings. Second, several programs rely on the semantics of vfork, which allow the child 
to modify the parent address space. Eliminating vfork would break these programs. While vfork is 
not native to System V UNIX, it is incorporated in SVR4 along with the VM architecture. 

14.7.4 Sharing Anonymous Pages 

The anon_ dup () function, called during fork, duplicates the references to all anonymous pages of 
the parent, so that they are shared copy-on-write by both parent and child. Even though anon_ dup () 
operates on an entire segment, the sharing occurs on a per-page basis. 

Figure 14-10 showed the state of a segment in the parent and child and the corresponding 
anon structures after the completion of anon_dup(). Figure 14-11 describes the same objects after 
some time has elapsed. During this time, the child has modified pages 0 and 1 of that segment. Page 



456 Chapter 14 The SVR4 VM Architecture 

,------- -p~~~~-~~ A------,, swap device :''- ---- -p~~~~-~~ -B--- ---, 
anon 

reference 

, ______________________ ,' 

anon array ' anon 

reference 

'----------------------' 
Figure 14-10. Sharing anonymous pages (part 1). 

0 was initially not an anonymous page. When the child modified it, the kernel allocated a new anon 
structure and physical page, and added a reference to it in the child's anon reference array. Because 
the parent has not modified that page, it is still mapped to the vnode in the parent's address space. 

Page 1, in contrast, was an anonymous page shared by both parent and child. It therefore had 
a reference count of 2. Since the mapping was private, the modifications by the child could not be 
applied to the shared copy. Thus the kernel made a new copy of the page and allocated a new anon 
structure for it. The child released its reference on the original anon structure and obtained a refer
ence to the new one. As a result, the parent and the child now reference different anon structures for 
that page, and each has a reference count of 1. 

This shows the sharing is indeed on a per-page basis. At this instance, as shown in Figure 
14-11 , the parent and the child are sharing the anonymous pages for pages 2 and 4 of the segment, 
but not for pages 0, 1, or 3. 

anon 
reference 

'----------------------' 
I , 

anon array anon 

reference 

'----------------------' 

Figure 14-11. Sharing anonymous pages (part 2). 



14.7 VM Operations 457 

14.7.5 Page Fault Handling 

The trap() routine is invoked for both protection and validation faults. It determines the type of 
fault, the type of access (read/write), the as structure ofthe faulting process, and calls as_fault() 
to handle the fault. as_ fault() locates the segment containing the faulting address and invokes the 
fault operation of its driver. To facilitate this task, the as layer sorts the segments in order of in
creasing base address and also maintains a pointer to the last segment that had a fault. This pointer 
is used as a hint to begin the search, as the locality of reference principle suggests the next fault will 
also be in the same segment. 

The actual fault handling differs for each segment type, and we restrict this discussion to the 
common case of vnode segments. The seg_vn driver's fault handler is segvn _fault(). It converts 
the fault address to a logical page number in the segment, which it uses as an index into the 
anon_ map and into the per-page protections array, if one exists. 

Protection faults are triggered by the protection settings in the hardware address translation 
entry and may be either real or spurious. segvn _fault() distinguishes the two types by checking 
the information in the segment's private data. The real protections for the page are contained in its 
entry in the per-page protection array, or if that is NULL, then in the segment's protection informa
tion. If this information confirms that access must be denied, segvn _fault() notifies the process 
by sending it a SIGSEGV signal. 

Spurious protection faults are caused when the hardware has deliberately disabled protec
tions in the hardware address translation for this page, in order to implement copy-on-write sharing 
or reference-bit simulation (see Section 13.5.3). For such faults, as well as for all validation faults, 
the further actions of segvn _fault() are based on the state of the page: 

• If there is an anon_ map entry, it calls anon_getpage () to obtain the anonymous page. 
anon_getpage() may find the page already in memory (in which case, the anon structure 
points to it) or may read it in from the swap device. 

• If there is no anon_ map entry for this page, and the segment is mapped to a file, it calls the 
VOP _ GETPAGE operation on the file's vnode. VOP _ GETPAGE may find the page already in 
memory (by searching the hash queues) or may read it in from disk. 

• If there is no anon_ map entry for this page, and the segment is mapped to the anonymous 
object, it calls anon_zero () to return a zero-filled page. 

Many special cases are handled in VOP _ GETPAGE and anon_getpage ().If the page is on the 
free page list, it must be reclaimed from this list. If the page has been marked invalid to perform ref
erence-bit simulation, it is reclaimed by simply turning on the valid bit. If the page is in transit, the 
caller must wait for the I/0 to complete. Text pages still in memory from previous invocations of 
the program may be retrieved by searching the hash queues based on <vnode, offset>. Any cluster
ing or prepaging (read-ahead) is also handled in these routines. 

At this point, the page is in memory, and segvn_ fault() has a pointer to it. It now checks 
for the copy-on-write case. This is identified when 

1. there is a write access attempted to a private mapping, 
2. the segment protections (or per-page, if different) permit writes, and 
3. (a) the page has no anon structure, or 

(b) its anon structure has more than one reference. 



458 Chapter 14 The SVR4 VM Architecture 

Case 3(a) involves a private mapping to a file, where modifications must be made to a pri
vate copy of the page. Case 3(b) deals with copy-on-write sharing of anonymous pages, as occurs 
after afork. In either case, the fault handler calls anon_private() to make a private copy of the 
page. 

Finally, the handler calls hat_memload() to load the new translation for the page into the 
hardware translation structures (page tables and TLBs). 

14.7.6 Shared Memory 

System V provides a shared memory mechanism as part of its interprocess communication (IPC) 
facility (see Section 6.3.4). After a process allocates a shared memory region, it and other cooperat
ing processes may attach the region to a location in their address space. Each process may attach the 
region to a different address, and a process may also attach the same region to multiple locations in 
its address space. Once attached, the processes read and write to the region using ordinary memory 
access instructions, and any change made by one process is instantly visible to all processes sharing 
the region. The region remains in existence until it is explicitly removed, even if no processes are 
attached to it. This allows a process to create a shared memory region, leave data in it, and exit; an
other process could attach to this region at some point in the future and retrieve this information. 

In this section, we describe how the VM architecture implements shared memory. Each 
shared memory region is represented by a vnode segment that is mapped MAP_ SHARED to the 
anonymous object. Because the mapping is shared, all modifications are applied to the single, 
shared copy of the data, and hence are immediately visible to all processes. The anonymous object, 
however, does not provide backing store for these pages. Hence, when the pages are first written to, 
they are converted to anonymous pages and backed up on the swap device. 

This form of sharing is fundamentally different from the copy-on-write sharing of anony
mous pages between parent and child. In that situation, the two processes held separate references to 
the anon structures, and the sharing occurred at the individual page level. 

Figure 14-12 describes the implementation of shared memory. The region is represented by 
a single anon_ map, shared by all processes that have attached the region to their address space. Each 
process maintains its own seg structure for the region, which contains the base address, protections, 
and other pertinent information. The anon_ map itself is reference counted-each process holds a 
reference to it, and the IPC subsystem retains another reference in a data structure associated with 
the region. 

The IPC reference is created when the shared memory region is first allocated, and released 
when the region is explicitly deleted (by the IPC_RMID command to the shmctl system call). This 
ensures that the region does not disappear automatically when no processes have attached it. 

The anon_ map holds references to individual anonymous pages. When the reference count of 
the anon_ map reaches zero (that is, when all processes have detached the region from their address 
spaces, and the region has been deleted), the kernel first releases all anonymous pages and then the 
anon reference array and the anon_ map. 



14.7 VM Operations 

, 
I 
I 

------------
Process A', 

, ___________ .. 

anon_map 

'i:ir~ce~~-c--, 

.... ___________ ... 

anon 
reference 

Figure 14-12. Implementing shared memory. 

14.7.7 Other Components 

Free Page Pool 

swap device 
anon array 

ref= 1 

ref= 1 

ref= 1 

459 

The basic treatment is the same as that in BSD-a separate pagedaemon process implementing the 
two-handed clock algorithm (see Section 13.5.3). This has been adapted to the VM architecture. The 
following points must be noted: 

• The front hand calls hat_pagesync() to turn off reference and modify bits in the hat 
structures. 

• Dirty pages are flushed to disk by VOP _PUTPAGE, which handles any clustering. 
• hat pageun 1 oad () is called to invalidate pages that are moved to the free list. 
• Reference-bit simulation must be performed if necessary. 

Swapping 

When a UNIX system boots, the initialization code creates the swapper process. This is a system 
process with no user context. Its PID is zero, and it executes a routine called sched (). It executes 
this routine forever (or until the system crashes or is shut down) and is normally asleep. It is awak
ened once every second, and also if certain other events occur. 

When the swapper wakes up, it checks the amount of free memory and decides whether to 
perform any swapping activity. If the free memory is less than a tunable parameter named 



460 Chapter 14 The SVR4 VM Architecture 

t_gpgslo, the swapper swaps out a process. To choose a process to swap out, it invokes the 
scheduling priority class-dependent C L _ SWAPOUT operation of each class, which returns a candidate 
from that priority class (see Section 5.5). Similarly, the priority class routine CL _SWAP IN chooses the 
process to be swapped back in when sufficient memory is available. 

The swapper swaps out a process by calling as swapout (), which cycles through each 
segment and calls the swapout operation for each segment. The segment driver in turn must write 
out all in-memory pages of the segment to the backing store. Most segments are of type seg_vn and 
use the segvn _ swapout () routine to implement this operation. Finally, the swapper swaps out the u 
area of the process. 

To swap in a process, the swapper simply swaps in its u area. When the process eventually 
runs, it will fault in other pages as needed. 

14.8 Interaction with the Vnode Subsystem 

The file system provides the backing store for a large number of VM segments. Hence the VM sub
system constantly interacts with the file system to move data between files and memory. Con
versely, the file system uses memory-mapped access to implement the read and write system calls. 
This section describes the interface between the VM and file subsystems, as well as some interest
ing problems that arise during its implementation. 

14.8.1 Vnode Interface Changes 
In systems such as 4.3BSD, the memory management data structures contain information about the 
physical locations of the file blocks (in the fill-on-demand page table entries). The drawback of this 
approach is that it compromises the modularity and independence of the file and VM subsystems. 
The VM architecture relegates all file system specific details to the vnode layer, accessing files 
solely through the procedural interface of the vnode. To enable this, SVR4 adds three operations to 
the vnode interface: VOP _MAP, VOP _ GETPAGE, and VOP _PUT PAGE. 

VOP _MAP is called from mmap to perform file-system-dependent initialization and parameter 
checking. It verifies, for instance, that the file being mapped is not locked and that the mapping does 
not extend beyond the end of the file. The file system may also choose to read in the information 
required to translate logical file offsets to physical block numbers (from the inode and indirect 
blocks), for reasons that are discussed below. 

VOP _ GETPAGE is called whenever the VM system must obtain pages from a file. The pages 
may still be in memory, but the VM system may not have a translation for them. VOP _GETPAGE will 
first look for the pages in memory. The kernel keeps all in-core pages in a global hash table, keyed 
by <vnode, offiet>. It enters the page in the table when bringing it into memory and removes it 
from the table when reassigning or invalidating it. Although each file system implements 
VOP _ GETPAGE differently, they all use a common function to search the hash table. If a page is not in 
the hash table, VOP _ GETPAGE reads it in from the file in a file-system-dependent manner. A local file 
system such as uft might determine the disk location from the inode and indirect blocks of the file, 
while a remote file system such as NFS might fetch the page from a server. 



14.8 Interaction with the Vnode Subsystem 461 

Because VOP _ GETPAGE handles all file accesses, it is able to perform optimizations such as 
read-ahead. Moreover, since each file system knows its optimal transfer size and disk layout details, 
it may perform an optimization called k/ustering, 7 wherein it reads additional physically adjacent 
pages in the same disk 1/0 operation when suitable. It may also perform vnode operations such as 
updating the access or modify times of the underlying inode. 

The VOP _PUT PAGE operation is called to flush potentially dirty pages back to the file. Its ar
guments include a flag that specifies whether the write-back is synchronous or asynchronous. When 
VOP _PUTPAGE is called by the pagedaemon to free some memory, a deadlock can occur. 
VOP _PUTPAGE needs to determine the physical location of the pages on disk. To do so, it may have 
to read in an indirect block (see Section 9.2.2), which it cannot do because no memory is available. 

One way to avoid this deadlock is to store the translation information from the indirect 
blocks in memory as long as a file is mapped. This also improves performance of both 
VOP _ GETPAGE and VOP _PUTPAGE, since they avoid having to read in the indirect blocks from disk. 
However, locking the information in memory incurs considerable space overhead. 

14.8.2 Unifying File Access 
The relationship between the memory and file subsystems is symbiotic. The file system provides the 
backing store for VM segments, and VM provides the implementation of file access (Figure 14-13). 
When a user issues a read or write system call on a file, the kernel temporarily maps that part of the 
file into its own address space using the seg_ map segment, faults the data in, and then copies it to or 

,~-----------------------------,, 
: user process : 
' data access file access 

(page fault) (read, write) 

'-----i-------------------------- - . 
Vop WRITE 

high-level as fault ~ _ 
-1 ~ vnode ops ... -

I aslayer ~ 

VOP READ 
file subsystem 

se~map_fault seg_mapl 

I 
VOP_GETPAGE, low-level 

seg_vn I 
VOP PUTPAGE vnode ops 

segvn_fault 
I 
1 

VM subsystem 

disk 

Figure 14-13. Relationship between file and VM subsystems. 

7 This should not be confused with clustering, which refers to the logical grouping of adjacent physical pages in memory. 



462 Chapter 14 The SVR4 VM Architecture 

from the user's address space. The seg_ map driver reads file system blocks into paged memory; the 
buffer cache is no longer required for this purpose. This extends the mapped file access semantics to 
traditional access methods. Such a unified treatment of files eliminates consistency problems that 
may occur when the same file is accessed in different ways at the same time. 

The seg_map driver is simply an optimized version of the vnode driver, providing quick but 
transitory mappings of files to the kernel. Figure 14-14 describes the data structures used. The pri
vate data (struct segmap _data) for the segment consists of pointers to an array of struct smap 
entries, as well as to a hash table and to a list of free smap entries. Each smap entry contains pointers 
to keep it on the hash queue and free list, the vnode pointer and offset for the page it represents, and 
a reference count that monitors how many processes are currently accessing the entry. 

Each smap represents one page ofthe segment. The kernel virtual address of the page is de
termined by 

addr = b5l~e + entrynum * MAXBSIZE; 

where base is the starting address of the seg_map segment, entrynum is the index of the smap in the 
array, and MAXBSIZE is the (machine-dependent) size of each page. Because several file systems 
with different block sizes may coexist on the machine, one page in this segment may correspond to 
one file system block, several blocks, or part of a block. 

When a process issues a read system call, the file system determines the vnode and offset for 
the data, and calls segmap _getmap () to establish a mapping for the page. segmap _getmap () checks 
the hash queues to find if a mapping already exists; if so, it increments the reference count for the 
smap. If there is no mapping, it allocates a free smap and stores the vnode pointer and offset in it. 
Finally, it returns the virtual address of the page represented by the smap. 

The file system next calls ui amove() to copy the data from the page to the user address 
space. If the page is not in physical memory, or if its translation is not loaded in the HAT, a page 

segmap_ops segmap_data 

smap hash table 

Figure 14-14. seg_map data structures. 



14.8 Interaction with the Vnode Subsystem 463 

fault occurs, and the fault handler calls segmap_fault() to handle it. segmap_fault() calls the 
VOP _ GETPAGE operation of the file system to bring the page into memory and then calls 
hat_memload() to load a translation for it. 

After copying the data to user space, the file system calls segmap_release() to return the 
smap entry to the free list (unless it has another reference). In case of a write system call, seg
map _re 1 ease() also writes the page back to the file, usually synchronously. The page remains 
mapped to the same vnode and offset until it is reassigned. This caches the translation, so the page 
may be found quickly the next time. 

This may appear to be a complex set of operations merely to read a page from a file. How
ever, it is necessary, because the role of the seg_ map functions is to integrate file access through 
read and write system calls with mapped access. This ensures that even when a file is accessed si
multaneously through both methods, only one copy of the page is in memory, and the behavior is 
consistent. 

The VOP _ GETPAGE operation performs the real work of fetching the page from the file. The 
page may already be in memory, as the seg_ map hash table finds only those pages that are mapped 
into the seg_map segment (that is, those pages that have been recently accessed through read and 
write system calls). VOP _ GETPAGE retrieves the page, either from memory or from the file, as de
scribed in Section 14.8.1. 

An important requirement of unifying file access is to have a single name space for file and 
process pages. Traditional UNIX implementations identify a file system buffer by the <device, 
block number> pair. The VM architecture uses the <vnode, offiet> pair to defme its name space, 
and a global hash table to find a page by name. When disk access is needed, VM calls the file sys
tem to translate the name to the on-disk location of the page. 

The buffer cache is not completely eliminated. We still need it to cache file system metadata 
(superblocks, inodes, indirect blocks and directories), which cannot be represented in the <vnode, 
offiet> name space. A small buffer cache is retained exclusively for these pages. 

14.8.3 Miscellaneous Issues 

The page size may not be the same as the file system block size. Indeed, there may be several differ
ent file systems with different block sizes on the same machine. The VM system deals only with 
pages; it asks the file system to bring pages into memory and to write them out to disk. It is the 
vnode object manager's (file system's) task to read pages from disk. This may involve reading one 
block, several blocks, or part of a block. If the file does not end on a page boundary, the vnode man
ager must zero out the remainder of the last page. 

The VM system deals with a name space defmed by the <vnode, offiet> pair. Thus, for each 
disk access, the file system must translate the offsets to the physical block number on disk. If the 
translation information (indirect blocks, etc.) is not in memory, it must be read from disk. When this 
occurs as part of a pageout operation, VOP _PUTPAGE must be careful to avoid deadlocks. Deadlock 
may occur if there is no free memory to read in the indirect block that has information about where 
the dirty page must be written. 



464 Chapter 14 The SVR4 VM Architecture 

14.9 Virtual Swap Space in Solaris 

The SVR4 implementation of the swap layer has several drawbacks. The total anonymous memory 
that may be allocated in the system is limited to the total physical swap space. The backing store for 
a page is chosen randomly from the available swap space and cannot be changed thereafter unless 
the swap device is removed. The implementation does not allow intelligent swap space manage
ment, which would optimize paging and swapping. 

To address these limitations, Solaris 2.x introduced the notion of a virtual swap space 
[Char 91]. The following were its primary goals: 

• To increase the available swap space by including physical memory. 
• To allow dynamic reallocation of swap locations. 

To achieve this, Solaris introduced a new file system called swapfs, which provides a virtual back
ing store to the anon layer. This section describes the important features of the Solaris swap layer. 

14.9.1 Extended Swap Space 
Like SVR4, Solaris requires clients of anonymous memory to reserve all swap space at segment 
creation time.8 In Solaris, however, the available space comprises all physical swap devices plus 
most of the available physical memory. A part of physical memory is kept aside to ensure that there 
will always be room to allocate kernel data structures. This allows Solaris to run with less swap 
space than SVR4. 

Reservations against physical memory are permitted only when the space on the swap de
vices is exhausted. Any memory reserved for swapping is wired down (made nonpageable). When 
swap space is released, the system first releases any reservations made against main memory. Thus 
main memory is reserved as a last resort and freed as soon as possible. 

Once reservations are made against main memory, the system may create anonymous pages 
that have no physical backing store. The swapfs provides names for these pages, as described in the 
following section. Because they are wired down, they cannot be paged out, and hence do not need 
physical swap space. 

14.9.2 Virtual Swap Management 

When a process tries to create an anonymous page, it must allocate swap space for it. Unlike reser
vation, the allocation assigns a specific swap location, or name, to the page. In SVR4, the location is 
always on a physical swap device. The position of the anon structure in the anon array for that de
vice equals the position of the page on the swap device. Hence, the address of the anon structure 
implicitly serves as the name of the page. The swap layer routine swap_ all oc () assigns the swap 
location and returns a pointer to the corresponding anon structure. 

In Solaris, swap_ all oc () assigns a virtual swap location to the page. It manages a single, 
system-wide, virtual file and allocates swap space from that file. The name of a virtual swap page is 

8 Reserving swap space does not set aside a specific area on a swap device; it merely guarantees that the space will be 
available somewhere when required. 



14.9 Virtual Swap Space in Solaris 465 

described by the vnode of the virtual file and the offset of the page in that file. Instead of per-device 
anon arrays, swap_ a 11 oc () dynamically allocates anon structures. It explicitly stores the name 
( <vnode, offset> pair) of the page in the anon structure, instead of inferring it from the address of 
the structure. Note that to this point, the routine has not allocated and bound any physical swap 
space to this page (Figure 14-15(a)). 

The page needs physical swap space only when it must be paged out. At that time, the 
pageout daemon obtains the name of the page and calls the VOP _PUTPAGE operator of the corre
sponding vnode. For an anonymous page, this invokes the corresponding swapfs routine, with the 
vnode and offset in the virtual file as arguments. This routine performs the following actions: 

1. Calls the swap layer to allocate backing store for this page. 
2. Calls the VOP _PUTPAGE operator of the physical swap device to write out the page. 
3. Writes the new name of the page (the vnode and offset of the physical swap page) into 

both the anon and the page structures for the page (Figure 14-15(b)). 

Eventually the page will be freed from main memory. Later, it may be read back from swap 
if needed, using the new information in the anon structure (Figure 14-15(c)). 

Because swapfs allows allocations against main memory, it may not be able to find physical 

anon reference 
array 

f---+ 

anon reference 
array 

f---+ 

anon reference 
array -

struct anon struct page 

swapfs_vp - swapfs_vp 
swapfs_off swapfs_off 

(a) Initial creation of anonymous page 

struct anon struct page -swapvp swapvp 
swap offset swap offset 

(b) After a pageout operation 

swap 
device 

swap 
device 

struct anon ------------- -------- 0 
swapvp 
swap offset 

(c) After page is freed from memory 

swap 
device 

Figure 14-15. Allocating virtual and physical swap space. 



466 Chapter 14 The SVR4 VM Architecture 

swap space for a pageout operation. In that case, it simply wires down the page in memory and does 
not mark it as clean. 

14.9.3 Discussion 

The Solaris implementation allows the system to run with very little swap space (as low as 20% of 
main memory) without degrading performance. This is very useful when disk space is limited. 

The Solaris framework allows enhancements to perform intelligent swap management. For 
instance, it is possible to have the pagedaemon batch its anonymous page writes. This permits the 
swap layer to allocate contiguous swap space for them and write them out in a single I/0 operation. 
Alternatively, swapfs could define a separate vnode for each client process. It could then organize 
the backing store such that pages of the same process are allocated close together on the same de
vice, resulting in better paging performance. 

14.10 Analysis 

The VM architecture is vastly different from the 4.3BSD memory management architecture. On one 
hand, it seems more complex, with a greater number of basic abstractions and data structures. On 
the other hand, the separation of responsibility within the different layers results in cleaner inter
faces between the components. The bottom line, however, is functionality and performance. What 
have we gained with this approach, and at what cost? The VM architecture has the following major 
advantages: 

• The design is highly modular, with each major component represented by an object
oriented interface that encapsulates its functionality and hides its inner implementation 
from the rest of the system. This brings with it the traditional advantages of object
oriented methods-each component may be easily modified or enhanced, and support for 
new functionality or new machines may be added fairly easily. One such example is the 
addition of a seg_ u driver to manage u area allocation. 

• In particular, isolating the hardware translation functionality into the HAT layer has made 
the architecture highly portable. It has already been ported successfully to many different 
systems, including Motorola 680x0, Intel80x86, SPARC, AT&T 3B2, and IBM 370/XA. 

• The architecture supports various forms of sharing---copy-on-write sharing of individual 
pages, MAP_ SHARED mappings to the anonymous object for traditional shared memory re
gions, and shared access to files through the mmap interface. This sharing reduces the 
overall contention on physical memory and eliminates excess disk 1/0 to maintain multi
ple copies of the same page in memory. 

• The mmap interface is particularly powerful, not only because of the sharing capabilities it 
offers, but also because it allows direct access to file data without system call overhead. 

• Though shared libraries are not explicitly part of the kernel, they can be supported easily 
by mapping them into the process address space. 

• Because the VM architecture uses vnode operations for all file and disk accesses, it can 
take advantage of all the benefits of the vnode interface. In particular, the VM system does 



14.10 Analysis 

not require special code to support the execution of files on remote nodes. Swap devices, 
likewise, may be specified on remote nodes, thus supporting truly diskless operation. 

• Integrating the buffer cache with the VM system provides an automatic tuning of physical 
memory. In traditional architectures, the size of the buffer cache was fixed when the ker
nel was built at approximately 10% of physical memory. In reality, the ideal size of the 
buffer cache depends on how the system is used. An I/O-intensive system such as a file 
server requires a large buffer cache. A system used primarily for timesharing applications 
would prefer a small buffer cache, with much of the memory used for process pages. Even 
for a single machine, the ideal cache size varies in time as the usage pattern changes. The 
VM architecture dynamically changes the allocation of memory between process pages 
and file pages to reflect the actual demands on memory, and thus effectively addresses the 
needs of the users at all times. 

• The problem with breakpoints in a shared text region (see Section 13.6) is solved neatly, 
because the text region is mapped MAP _PRIVATE. When a debugger tries to set a break
point by calling ptrace, the kernel makes a private copy of that page for the process and 
writes the breakpoint instruction to that copy. This ensures that other processes running 
this program do not see the breakpoint. 

467 

Although the advantages are impressive, they are not without cost. There are several important 
shortcomings of this design, primarily related to performance: 

• The VM system has to maintain a lot more information about its fundamental abstractions. 
This results in many more data structures, and those having BSD counterparts are often 
larger in size. For example, the page structure is over 40 bytes in size, as opposed to the 
16-byte cmap structure in BSD. This means that the VM system uses up more memory to 
maintain its own state, leaving less memory for user processes. 

• The VM system does not save text and unmodified data pages to swap. Instead, it reads 
them back from the executable file when needed. This reduces the total swap space 
needed, and saves the expense of swapping out such pages. On the other hand, reading a 
page back from file is slower than retrieving it from swap, because of the greater overhead 
of the file system code and, in some cases, the need to read additional metadata blocks to 
locate the page. The effect of this policy on overall performance depends on how often 
such pages are retrieved. 

• The algorithms are more complex and slower. The layering of components involves more 
function calls, many of them indirect via function table lookups. This has an impact on 
overall system performance. For example, [Chen 90] finds that function calls add a 20% 
overhead to page fault handling. 

• The VM system has abandoned the BSD practice of computing disk addresses of all fill
from-text pages during exec, and storing them in the PTEs. This means that each disk ad
dress may have to be computed individually when there is a page fault on that page. If the 
indirect blocks for that file are no longer in physical memory, they must be read from disk. 
This slows down the demand paging of text and initialized data pages. 

• The object-oriented method results in invariant interfaces to its abstractions, flexible 
enough to allow vastly different implementations of the underlying objects. This means, 



468 Chapter 14 The SVR4 VM Architecture 

however, that the system is not tuned for a specific implementation. Optimizations such as 
those in the preceding paragraph are not possible in SVR4. 

• Copy-on-write may not always be faster than anticipatory copying. When a page is shared 
copy-on-write, more page faults are generated, and the TLB entry also needs to be flushed 
when the page is initially write-protected. If pages need to be copied anyway, it is surely 
more efficient to do it directly rather than waiting for copy-on-write faults. 

• Swap space is allocated on a per-page basis, randomly on the swap devices. This loses the 
clustering and pre-paging benefits of a BSD-like approach, which allocates contiguous 
chunks of swap space for each process. In contrast, the BSD approach wastes the unused 
space in each chunk. 

These drawbacks are all performance-related and may be compensated for by the perform
ance benefits of the new facilities such as memory sharing and file mapping. On balance, with the 
rapid increase in CPU speeds and memory sizes, performance considerations take are less important 
than functionality, and in that regard the VM architecture provides substantial advantages. 

14.11 Performance Improvements 

When the VM architecture was initially ported from SunOS to SVR4, it performed poorly compared 
to the regions architecture of SVR2 and SVR3 UNIX. In particular, it was observed that the VM 
system had a much higher page fault rate for typical multiuser benchmarks. A detailed analysis 
[Chen 90] suggested several enhancements, which were incorporated into SVR4. 

14.11.1 Causes of High Fault Rates 

One major problem concerns the treatment of hardware address translation maps. In the VM archi
tecture, these maps are associated with an address space, not with individual segments. A segment 
may begin at any page boundary, and multiple segments may share a single translation map. Hence 
it is impossible for two processes to share the map, since they would have to share all segments 
mapped by it. 

Because a page may be mapped by multiple translations, any change to the mapping must 
propagate to all translations. There are two types of changes, and both are propagated differently. 
The first is a valid-to-invalid change, which occurs, for instance, when the pagedaemon invalidates 
a page for reference-bit simulation (see Section 13.5.3). VM propagates this change immediately to 
all translations for the page, since failure to do so can lead to incorrect behavior. 

The second type is an invalid-to-valid change. Suppose two processes are sharing a page that 
is currently not in memory. When the first process faults on the page, the fault handler brings the 
page into memory and establishes a valid translation to it for that process. The VM system adopts a 
lazy approach and does not propagate this change to the second process. If and when the second 
process faults on the same page, the handler will find the page in memory and create a valid transla
tion at that time. 

The advantage of the lazy approach (often called the principle of lazy evaluation) is that by 
deferring the task, we may avoid it altogether. The second process may never access the page, or 



14.11 Performance Improvements 469 

may do so only after it has been paged out again. The drawback is that there are many more page 
faults. Many of these faults are spurious-the page is actually in memory, but the faulting process 
does not have a valid translation for it. 

The original VM implementation also uses a lazy approach to initialize the translation maps. 
Unlike BSD, which allocates and initializes all page tables during fork or exec, VM defers the task 
as far as possible. It initializes each translation map entry only when the process first faults on that 
page. Likewise, it allocates each page of the map only when it is first needed. While this method 
eliminates some amount of work, it incurs many more page faults. 

The lazy approach is beneficial if the total overhead of the extra page faults is less than the 
time saved by eliminating unnecessary operations. Under VM, the fault overhead is fairly large. 
Measurements on the AT&T 3B2/400 show that the cost of a spurious validation fault (one where 
the page is already in memory, but the system does not have a valid translation for it) is 3.5 milli
seconds in the VM architecture, but only 1.9 milliseconds in the regions architecture. The difference 
is largely due to the modular design of VM, which results in many more function calls and longer 
code paths. 

A similar tradeoff occurs in copy-on-write sharing during fork. Here, the objective is to copy 
only those pages that are modified by either the parent or the child. To do so, VM defers copying 
any page until the parent or the child faults on it. The drawback, once again, is that this causes addi
tional page faults. On the 3B2, the cost of handling the protection fault and copying the page is 4.3 
milliseconds, while that of copying alone is only 1 millisecond. Hence, for copy-on-write to be 
beneficial, less than one in four pages should need to be copied. If more than 114 of the in-memory 
pages are modified after a fork, it would have been better to copy all of them in advance. 

The benchmarks also show that the initial VM implementation causes about three times the 
number of faults as the regions architecture. The critical activities are fork and exec, which are re
sponsible for most of the address space set up and memory sharing. To reduce the fault rate, it is 
important to examine the paging behavior of these calls in typical situations. 

Three important enhancements were made to VM based on these factors. They are described 
in the following section. 

14.11.2 SVR4 Enhancements to the SunOS VM Implementation 
The first and most beneficial change is to allocate and initialize the child's address translation maps 
infork. Even though the child is likely to exec soon, in reality it always executes some user-level 
code (I/0 redirection, closing some descriptors, etc.) between fork and exec, causing a few spurious 
page faults. The cost of these faults far exceeds that of building and copying the translation maps. 

The second change is to partly initialize the translation maps during exec. Each segment is 
associated with a vnode, which maintains a linked list of all in-memory pages that belong to it. In 
the new version, exec traverses this list and initializes all translation map entries that map these 
pages. It also allocates any translation map pages required for these entries. This eliminates the spu
rious page faults caused by the lazy mapping approach. 

In effect, this method estimates the working set of a segment by equating it to the number of 
pages of its vnode that are already in memory. Some of this work may be unnecessary, because the 



470 Chapter 14 The SVR4 VM Architecture 

process may not access those pages while they are in memory. The overall benefit, again, is due to 
the fact that the cost of setting up the mappings is less than that of the page faults avoided. 

The final change applies to copy-on-write sharing. Here, since the cost of copying all the 
pages is very high (which is why we do copy-on-write in the first place), it is important to guess 
which pages will need to be copied regardless. Copy-on-write occurs primarily because of fork, 
which is mostly called by the shells to implement command execution. An analysis of the memory 
access patterns of the different shells (sh, csh, ksh, etc.) shows that a single shell process will fork 
several times and will use fork in a similar way each time. The same variables are likely to be 
modified after each fork operation. In terms of pages, the pages that experience copy-on-write faults 
after one fork will probably do so after the next. 

When a copy-on-write page is modified, it becomes an anonymous page. This provides an 
easy optimization. In the new implementation, fork examines the set of anonymous pages of the 
parent and physically copies each page that is in memory. It expects this set to be a good predictor 
of the pages that will be modified (and have to be copied) after the fork. The pre-copying eliminates 
the overhead of the copy-on-write faults. 

14.11.3 Results and Discussion 

These improvements substantially reduced the number of page faults. Table 14-1 [Chen 90] shows 
that with these enhancements, the fault rate is much lower than in the initial VM implementation, 
and also much lower than in the regions architecture. 

The lazy evaluation strategy is widely used in SVR4 as well as in Mach. As this work 
shows, however, its benefits are questionable. It is important to use this approach carefully and only 
where it is efficient to do so. 

14.12 Summary 

This chapter describes the SVR4 VM architecture. It has several advanced features and functional
ity, and provides many forms of memory inheritance and sharing required for sophisticated applica
tions. It must, however, be carefully optimized to yield good performance. The modem tendency is 
to concentrate on adding functionality and expect upgrades to faster hardware to compensate for the 
performance. 

Kernel memory allocation in SVR4 is discussed in Section 12.7. The SVR4 treatment of 

Table 14-1. Page faults with a multiuser benchmark on various implementations 

Implementation spurious protection 
validation faults faults 

SVR3 regions architecture 1172 1306 
VM architecture, initial port 3040 1098 
VM with fork enhancement 1116 1273 
VM with fork and exec enhancements 840 1122 
VM with fork; exec, and copy-on-write changes 640 142 



14.14 References 471 

translation buffer consistency is described in Section 15.11. The Mach memory management archi
tecture, which has several parallels to SVR4 VM, is also discussed in Section 15.2. 

14.13 Exercises 

1. In what ways is mapped file access semantically different from access through read and write 
system calls? 

2. Can mmap semantics be preserved by a distributed file system? Explain the effects of 
mapping files exported by NFS, RFS, and DFS servers. 

3. What are the differences between the page structure in SVR4 and the cmap structure in 
4.3BSD? 

4. Why does the as structure have a hint to the segment that had the last page fault? 
5. What is the difference between an anonymous page and the anonymous object? 
6. Why do anonymous pages not need a permanent backing store? 
7. Why is there only one seg_map segment in the system? 
8. SVR4 delays the allocation of swap pages until the process creates an anonymous page, while 

4.3BSD pre-allocates all swap pages during process creation. What are the benefits and 
drawbacks of each approach? 

9. Does each mmap call create a new segment? Is it always a vnode segment? 
10. When do processes share an anon_ map? 
11. Why does the shared memory IPC structure acquire a reference to the anon_ map for the 

segment? 
12. What support does the file system provide to the VM subsystem? 
13. Why does SVR4 not use the block buffer cache for file data pages? 
14. Why do both SVR4 and Solaris reserve swap space at segment creation time? 
15. In what situations does SVR4 use anticipatory paging? What are its benefits and drawbacks? 
16. What is lazy evaluation? When does SVR4 use lazy evaluation? 
17. What are the benefits and drawbacks of copy-on-write? 

14.14 References 

[Bala 92] Balan, R., and Gollhardt, K., "A Scalable Implementation of Virtual Memory HAT 
Layer for Shared Memory Multiprocessor Machines," Proceedings of the Summer 
1992 USENIXTechnical Conference, Jun. 1992, pp. 107-115. 

[Char 91] Chartock, H., and Snyder, P., "Virtual Swap Space in SunOS," Proceedings of the 
Autumn 1991 European UNIX Users' Group Conference, Sep. 1991. 

[Chen 90] Chen, D., Barkley, R.E., and Lee, T.P., "Insuring Improved VM Performance: Some 
No-Fault Policies," Proceedings of the Winter 1990 USENIX Technical Conference, 
Jan. 1990,pp. 11-22. 

[Elli 90] Ellis, M.A., and Stroustrup, B., The Annotated C++ Reference Manual, Addison
Wesley, Reading, MA, 1990. 



472 Chapter 14 The SVR4 VM Architecture 

[Ging 87] Gingell, R.A., Moran, J.P., and Shannon, W.A., "Virtual Memory Architecture in 
SunOS," Proceedings of the Summer 1987 USENIX Technical Conference, Jun. 
1987, pp. 81-94. 

[Klei 86] Kleiman, S.R., "Vnodes: An Architecture for Multiple File System Types in Sun 
UNIX," Proceedings of the Summer 1986 US EN/X Technical Conference, Jun. 1986, 
pp. 238-247. 

[Mora 88] Moran, J.P., "SunOS Virtual Memory Implementation," Proceedings of the Spring 
1988 European UNIX Users Group Conference, Apr. 1988. 

[UNIX 92] UNIX System Laboratories, Operating System API Reference, UNIX SVR4.2, UNIX 
Press, Prentice-Hall, Englewood Cliffs, NJ, 1992. 



15 

More Memory 
Management Topics 

15.1 Introduction 

This chapter discusses three important topics. The first is the Mach virtual memory architecture, 
which has some unique features such as the ability to provide much of the functionality through 
user-level tasks. The second is the issue of translation lookaside buffer consistency on multiproces
sors. The third is the problem of using virtually addressed caches correctly and efficiently. 

15.2 Mach Memory Management Design 

The Mach operating system was developed in the mid-1980s at Carnegie-Mellon University, 
and its memory architecture evolved at about the same time as the SunOS/SVR4 VM design de
scribed in Chapter 14. While these two systems used very different terminology to describe their 
fundamental abstractions, they have many similarities in their goals, design, and implementation. 
Many VM objects and functions of SVR4 have almost identical counterparts in Mach. The follow
ing sections describe the design of the VM subsystem in Mach 2.5. The changes to this design in 
Mach 3.0 are relatively minor and not relevant to our description. 

Due to the similarity of the Mach and SVR4 memory architectures, we avoid a lengthy ex
planation of all features of the Mach VM design. Instead, we present a comparative analysis and fo
cus on those features of Mach VM that have no equivalent in SVR4. 

473 



474 Chapter 15 More Memory Management Topics 

15.2.1 Design Goals 

Similar to SVR4, the Mach VM design is motivated by the limitations of 4.3BSD memory architec
ture, which is heavily influenced by the VAX hardware and hence is difficult to port. Moreover, the 
4.3BSD functionality is primitive and restricted to demand-paging support. It lacks mechanisms for 
memory sharing other than read-only sharing of text segments. Finally, 4.3BSD memory manage
ment cannot be extended to a distributed environment. Although Mach provides full binary com
patibility with 4.3BSD UNIX, it aims to support a richer set of features, including the following: 

• Copy-on-write and read-write sharing of memory between related and unrelated tasks. 
• Memory-mapped file access. 
• Large, sparsely populated address spaces. 
• Memory sharing between processes on different machines. 
• User control over page replacement policies. 

Mach separates all machine-dependent code into a small pmap layer. This makes it easy to port 
Mach to a new hardware architecture, since only the pmap layer needs to be rewritten. The rest of 
the code is machine-independent and is not modeled after any specific MMU architecture. 

An important objective in the Mach VM design is to push much of the VM functionality out 
of the kernel. From its conception, Mach was intended to evolve into a microkernel architecture, 
with much of the traditional kernel functionality provided by user-level server tasks. Hence Mach 
VM relegates functions such as paging to external (user-level) tasks. 

Finally, Mach integrates the memory management and interprocess communication (IPC) 
subsystems, to gain two advantages. The location-independence of Mach IPC (see Section 6.9) al
lows virtual memory facilities to be transparently extended to a distributed environment. Section 
15.5.1 shows one example of how a user-level program can provide shared memory between appli
cations on different machines. Conversely, the copy-on-write sharing supported by the VM subsys
tem allows fast transfer of large messages. 

This discussion makes frequent references to the five fundamental abstractions of Mach, 
namely tasks, threads, ports, messages, and memory objects. A task is a collection of resources in
cluding an address space and some ports, in which one or more threads may run. A thread is a con
trol point in a program; it is an executable and schedulable entity that runs within a task. Mach rep
resents a UNIX process as a task with a single thread. Mach tasks and threads are described in 
Section 3.7. Aport is a protected queue of messages. Many tasks may hold send rights to a port, but 
only one task has the right to receive messages from it. A message is a typed collection of data. Its 
size ranges from a few bytes to an entire address space. Mach ports and messages are described in 
Section 6.4. Memory objects provide the backing store for virtual memory pages and are described 
in this chapter. 

15.2.2 Programming Interface 

Mach supports a large number of operations related to memory management, which may be divided 
into four basic categories [Rash 88]: 



15.2 Mach Memory Management Design 

• Memory allocation - A user may allocate one or more pages of virtual memory by 
calling vm_allocate for zero-filled pages or vm_map for pages backed by a specific mem
ory object (for example, a file). This does not consume resources immediately, since Mach 
does not allocate physical pages until they are first referenced. The vm _deallocate call re
leases virtual memory pages. 

• Protection - Mach supports read, write, and execute permissions for each page, but their 
enforcement depends on the hardware. Many MMUs do not recognize execute permis
sions. On such systems, the hardware will allow execute access to any readable page. Each 
page has a current and maximum protection. Once set, the maximum protection may only 
be lowered. The current protection may never exceed the maximum protection. The 
vm _protect call modifies both types of protections. 

• Inheritance - Each page has an inheritance value, which determines what happens to 
that page when the task creates a child task using task_create. This attribute can take one 
of three values (Figure 15-1): 

VM_INHERIT_NONE The page is not inherited by the child and does not appear in 
its address space. 

VM_ INHERIT_ SHARE The page is shared between the parent and child. Both tasks 
access a single copy of the page, and changes made by one are 
immediately visible to the other. 

VM _INHERIT_ COPY The child gets its own copy of the page. Mach implements this 
using copy-on-write, so the data is actually copied only if and 
when the parent or the child tries to modify the page. This is 
the default inheritance value of newly allocated pages. 

The vm _inherit call modifies the inheritance value of a set of pages. It is important to note 
that this attribute is independent of how the task is currently sharing the page with others. 
For example, task A allocates a page, sets its inheritance to VM_ INHERIT_ SHARE, and then 
creates child task B. Task B sets the page's inheritance to VM_INHERIT_COPY and then 
creates task C. The page is thus shared read-write between A and B, but copy-on-write 
with C (Figure 15-2). This is in contrast to SVR4, where the inheritance method is identi
cal to the current mapping type (shared or private) for the page in that process. 

parent 

VM INHERIT NONE - -
VM INHERIT SHARE - -
VM INHERIT COPY - -

private page 

shared page 

copy-on-write 
page 

child 

VM INHERIT SHARE 

VM INHERIT COPY - -

Figure 15-1. Inheriting pages through task_create. 

475 



476 Chapter 15 More Memory Management Topics 

copy-on-write 

1+------"a:.::.cc""e"'"s s"----1 tas k C 

'1:::=::===:::;::=::::±1 virtual 
copy 

Figure 15-2. Multiple sharing modes on same page. 

• Miscellaneous - The vm _read and vm _write calls allow a task to access pages belonging 
to other tasks. They are typically used by de buggers and profilers. The vm _regions call 
returns information about all the regions of the address space, and the vm _statistics call 
returns statistical data related to the virtual memory subsystem. 

15.2.3 Fundamental Abstractions 

Mach has been designed in an object-oriented manner, and its basic abstractions are represented by 
objects that are accessed by a well-defined interface. Figure 15-3 gives a high-level view of the im
portant memory management primitives. The highest level object is the address map, described by 
the struct vm_map. It holds a doubly linked list of address map entries and a hint pointing to the 
last entry that resolved a page fault. Each address map entry (struct vm _map_ entry) describes a 
contiguous region of virtual memory that has the same protection and inheritance properties, and is 
managed by the same memory object. 

memory 
object port 

vm_map 

resident 
page list 

Figure 15-3. Objects that describe the Mach address space. 



15.2 Mach Memory Management Design 477 

The vm object provides the interface to the pages of a memory object. The memory object 
[Y oun 87] is an abstract object representing a collection of data bytes on which several operations, 
such as read and write, are defined. These operations are executed by the data manager, or pager, 
for that object. The pager is a task (user or kernel level) that manages one or more memory objects. 
Examples of memory objects are files, databases, and network shared memory servers (Section 
15.5.1). 

The memory object is represented by a port owned by the object's pager (that is, the pager 
has the receive rights to this port). The vm object has a reference, or send right, to this port and can 
use it to communicate with the memory object. This is described in more detail in Section 15.4.3. 
The vm object also maintains a linked list of all the resident pages of the memory object. This list 
speeds up operations such as deallocating the object or invalidating or flushing all of its pages. 

Each memory object is associated with a unique vm object. If two tasks map the same mem
ory object into their address space, they share the vm object, as described in Section 15.3. The vm 
object maintains a reference count to implement the sharing. 

The similarity with SVR4 is striking. The vm_map corresponds to the struct as, and the 
vm_map_entry corresponds to struct seg. The pager's role is like that of the segment driver 
(except that the pager is implemented as a separate task), while the vm object and memory object 
together describe a specific data source such as a file. An important difference is the lack of a per
page protections array. If a user changes protections on a subset of pages of a region (the word re
gion refers to the address range represented by an address map entry), Mach splits the region into 
two' different regions mapped to the same memory object. Other operations, likewise, could result 
in the merging of adjacent regions. 

There are two other important data structures-the resident page table and the pmap. The 
resident page table is an array (struct vm _page[]) with one entry for each physical page. The size 
of a physical page is some power-of-two multiple of the hardware page size. Physical memory is 
treated as a cache for the contents of memory objects. The name space for these pages is described 
by the <object, offset> pair, which specifies the memory object the page belongs to and its starting 
offset in that object. Each page in this table is kept on three lists: 

• A memory object list chains all pages of the same object and speeds up object deallocation 
and copy-on-write operations. 

• Memory allocation queues maintained by the paging daemon. The page is on one of three 
queues-active, inactive, orfree. 

• Object/offset hash chains for fast lookup of a page in memory. 

The vm_page[] array is very similar to the page[] array in SVR4. Finally, each task has a 
machine-dependent pmap structure (analogous to SVR4's HAT layer) that describes the hardware
defined virtual-to-physical address translation map. This structure is opaque to the rest of the system 
and is accessed by a procedural interface. The pmap interface assumes only a simple, paged MMU. 
The following are some of the functions it supports: 

• pmap_create() is called when the system begins using a new address space. It creates a 
new pmap structure and returns a pointer to it. 

1 Or three different regions, if the subset is in the middle of the range of pages mapped by this region. 



478 Chapter 15 More Memory Management Topics 

• pmap_reference() and pmap_destroy() increment and decrement reference counts on 
pmap objects. 

• pmap _enter() and pmap _remove() enter and remove address translations. 
• pmap _remove_ a 11 () removes all translations for a physical page. Since a page may be 

shared by multiple tasks (or be mapped to multiple addresses in the same task), it may 
have several translations. 

• pmap _copy _on _write() lowers protections of all translations of that page to read-only. 
• pmap_activate() and pmap_deactivate() are called during context switches to change 

the active pmap for the processor. 

15.3 Memory Sharing Facilities 

Mach supports read-write and copy-on-write sharing between related and unrelated tasks. Tasks in
herit memory from their parent during task_create. This allows a task to share regions of its mem
ory with its descendants. Unrelated tasks can share memory by mapping a region of their address 
space to the same memory object. Each of these facilities is described in this section. 

15.3.1 Copy-on-Write Sharing 

Copy-on-write sharing occurs when task_create duplicates a region marked as VM_INHERIT_COPY. 
Although this requires the child task to have its own separate copy of the region, the kernel opti
mizes the operation by not copying the page immediately. When either the parent or the child tries 
to modify a page in this region, it triggers a kernel trap. At that time, the kernel makes a copy of that 
page, and changes the address maps so that each process references its own personal copy of the 
page. This way, only those pages that are modified by either parent or child need to be copied, sav
ing the kernel a lot of work. 

The kernel implements such sharing by having the corresponding vm_map_entry in both 
tasks reference the same vm_object. It also sets a flag in the vm_map_entry to indicate that there
gion is shared copy-on-write. Finally, it calls pmap _copy_ on_ write() to write-protect the region 
for both the parent and the child, so as to trap any attempts to modify the pages. Figure 15-4 de
scribes a typical scenario. Task A has created task B, and they both share a memory region copy-on
write. The region has three pages, currently managed by the shared vm object. 

When either task attempts to modify a page, it results in a page fault, since the protections 
had been lowered to read-only. The fault handler allocates a new physical page and initializes it by 
copying from the faulting page. Furthermore, the handler must set up new mappings, so that each 
task references its own copy of that page while continuing to share the unmodified pages. 

Mach uses a concept called shadow objects to implement such mappings. Figure 15-5 de
scribes the situation after task A has modified page I and task B has modified page 3. Each task gets 
a shadow object, which manages the modified pages of that task. The shadow objects point back to 
the object that they shadow, which in this case is the original object. 



15.3 Memory Sharing Facilities 479 

Figure 15-4. Copy-on-write inheritance. 

To resolve a page fault, the kernel searches the shadow chain from the top down. Thus task 
A finds its page 1 from its shadow object, but pages 2 and 3 from the original object. Likewise, task 
B finds page 3 in its shadow object, but pages 1 and 2 from the original object. 

As a task creates other children, it can build up a long chain of shadow objects. This not only 
wastes resources, but also slows down page fault handling since the kernel must traverse several 
shadow links. Mach therefore has algorithms to detect such situations and collapse shadow chains 

task A task 8 

vm_map_entry vm_map_entry 

shadow objects 

Figure 15-5. Shadow objects manage modified pages. 



480 Chapter 15 More Memory Management Topics 

when possible. If all the pages managed by an object appear in objects above it in the chain, that 
object can be destroyed. This compaction method, however, is inadequate; if some of the pages of 
an object have been swapped out, the object cannot be deleted. 

Copy-on-write sharing is also used for large message transfers. A task can send a message 
containing out-of-line memory (see Section 6.7.2). Applications use this facility to transfer a large 
amount of data without physically copying it if possible. The kernel maps such pages into the ad
dress space of the new process by creating a new vm_map_entry, which shares the pages copy-on
write with the sender. This is similar to copy-on-write sharing between parent and child. 

One important difference is that while data is in transit, the kernel temporarily maps the data 
into its own address space. To do so, it creates a vm_map_entry in the kernel map and shares the 
pages with the sender. When the data has been mapped to the receiver's address space, the kernel 
destroys this temporary mapping. This protects against changes made to the data by the sender be
fore the receiver retrieves the message. It also guards against other events such as termination of the 
sender. 

15.3.2 Read-Write Sharing 

Read-write sharing occurs when task_create duplicates a region marked as VM _INHERIT_ SHARED. In 
this case, there is a single copy of this region, and any change is automatically visible to all proc
esses sharing the page. This includes changes to the data, as well as to protections and other attrib
utes. The latter may result in splitting the region into multiple subregions; each such region will be 
shared read-write by the tasks sharing the original region. 

task A -task_ create()+ task B 

vm_map_entry vm_map_entry 

Figure 15-6. Read-write shared memory. 



15.4 Memory Objects and Pagers 481 

Since this is a fundamentally different form of sharing, the kernel needs a different way to 
implement it. Mach uses the notion of a share map to describe a read-write shared region. A share 
map is itself a vm_ rna p structure, with a flag set to denote that it describes shared memory and a ref
erence count of the number oftasks sharing it. It contains a list ofvm_map_entrys; initially, the list 
contains a single entry. 

Figure 15-6 illustrates the implementation of share maps. It requires that a vm_map_entry 
may point either to a vm _object or to a share map. In this example, the shared region contains three 
pages, initially with read and write permissions enabled. Subsequently, one of the tasks calls 
vmyrotect to make page 3 read-only. This splits the region into two, as shown in Figure 15-7. 
Share maps allow such operations on shared regions to be implemented easily. 

15.4 Memory Objects and Pagers 

A memory object is a specific source of data, such as a file. A pager is a task that manages one or 
more memory objects and interacts with the kernel to move data between the object and physical 
memory. The interaction between the kernel, the pager, and user tasks takes place using well
defined, procedural interfaces. 

15.4.1 Memory Object Initialization 
To access the data in a memory object, a user task must first acquire send rights to the port repre-

vm_map 
.---------; ref_cnt = 2 

shared 

Figure 15-7. Splitting a shared memory region. 



482 Chapter 15 More Memory Management Topics 

senting that object. It obtains the rights from the object's pager, since only the owner of a port may 
issue rights to it. This step is outside the scope of the VM subsystem and may involve some other 
interaction between the user task and the pager (and possibly other entities as well). For instance, 
the vnode pager2 manages file system objects and provides a facility for user tasks to open files by 
name. When a user opens a file, the pager returns a send right to the port representing that file. 

Once a task acquires a port (to acquire a port means to acquire send rights to it), it maps the 
memory object into its address space, using the system call 

vm_map (pager_task, base_addr, size, mask, 
flag, memory object port, offset, 
copy, cur_prot, max=prot, inheritance); 

This is similar to the mmap call in SVR4. It maps the byte range [offset, offset+ size) in 
the memory object to the address range [base_addr, base_addr +size) in the calling task. The 
flag specifies whether the kernel may map the object to a different base address. The function re
turns the actual address to which the object was mapped. 

The first time an object is mapped, the kernel creates two additional ports for the object-a 
control port, used by the pager to make cache management requests of the kernel, and a name port, 
which identifies the object to other tasks who may retrieve information about the object using the 
vm _regions call. The kernel owns these ports, and holds both send and receive rights to them. It 
then calls 

inemory_object_init (memory_object_port, 
control_port, 
name port, 
page=size); 

to ask the pager to initialize the memory object. This way, the pager acquires send rights to the re
quest and name ports. Figure 15-8 describes the resulting setup. 

15.4.2 Interface between the Kernel and the Pager 

Once these channels have been established, the kernel and the pager use them to make requests of 
each other. Each request is made as a remote procedure call, by sending a message containing the 
parameters of the request to a port. The kernel sends messages to the pager through the memory 
object port, while the pager sends messages to the kernel using the pager reply port. A set of high
level functions provides a procedural interface to this message exchange. Some of the calls used by 
the kernel to communicate with the pager are: 

memory_object_data_request (memory_object_port, 
control port, offset, 
length,-desired_access); 

2 Earlier releases of Mach used an inode pager and mapped the file with a vm_allocate_with_pager call [Teva 87]. 
The vnode pager was introduced to support the vnode/vfs interface [Klei 86). 



15.4 Memory Objects and Pagers 

,,--------- ... , 
I ' 
1 I 

I 

user task .. _________ , 

memory 
object port 

pager 
request port 

pager 
name port 

Figure 15-8. Communication with the pager. 

memory-cibj~ct _data_wri te (in~mory~ object _port, 
· #ihtrol pqrt, offset, 

... / · · >~~~~ •. d~ta .... count); ·· 

· .. m·.· .. · ·.e· .. · m·· · .. o· r·· .. y· · .. _ •.•. '·.•·•o• ....••.••.•. "'.·.·······.·.·.······.········.• ..•. e •..•. ·.·.•·,·····.···c· .•..•••• t.•.·.•····-··'· ...•••... d .. •. a·.t· ..•. ·a·· •.•. :_·.· ..•.•..•. u•.·.······.n·.'. ·.····]···.·•·o··· .c ... k··· >(Im•••••••.e•:•:•·m·······o•••••··r· ··y·············o·· ··.btJ• ··e······c·· •.. t · po .• ,.r .. ··•t < i Ui:J ·>··> .. : .··· :•· ·: ... ·.. .• ·:·;····· 

··'·'·.········~~h·:~~:-~~·~; ~:~ i ;ci~~~'~·) •. ;.• .• : .... ·• 

483 

The kernel provides an interface used by the pager for cache management. It includes the 
following functions: 

memory:_Q~J~¢k data_pl"ovi d~q (contrpl port, .()ffset, data, 
··. ·. .,.,.. \/ · · · .·.· ·· data~~olint, l<)ipkjv~Tue)r 

.. ,. ~~mo ry£S~.~··~st J1' &c k2r~qu es·t········ ••••••••••·••••••••,•t·c6·h·t~B1·~po rt· ········s~¥~·:t.,' , ...•. s·~··~e • 
shol.lld clean, should flush, 
lock value, reply pott); 

~. .· ..... ·.~ 

memory_ob~~ct~ set.:.. att ri butesi (control port, objett ready, 
may -'cache_ objeci { copy Jt ra tegy l; • 

memqry<·Qh3~ct data unavatl~bJ~ {control port · < · · .. 
········ ··· · .. ·· .. - - · ·.,. · · · .. · ... ·························· ·. dff~~k.~si ze); 

Each of these functions results in an asynchronous message. If the kernel makes a request of 
the pager, the pager responds by sending another message, using a kernel interface function. The 
following subsection shows some of the interactions between the kernel and the pager. 



484 Chapter 15 More Memory Management Topics 

15.4.3 Kernel-Pager Interactions 
There are four primary areas of interaction between the kernel and the pager: 

• Page faults - When handling a page fault, the kernel traverses the address map to locate 
the appropriate vm object, which contains a reference to the memory object that can pro
vide the required data. It then issues a memory_ object_ data _request() call, specifying 
the desired range of pages and type of access. The pager returns the data to the kernel by 
calling memory_object_data_provided(), giving it a pointer to the data in the pager's 
address space. The pager decides how to supply the required data-for instance, by getting 
it from a file or some network-based storage. 

• Pageouts - When the kernel decides to write back a dirty page, it sends the page to the 
pager by calling memory_object_data_write(). When the pager has successfully saved 
the page, it calls vm _deallocate to release the cache resources. 

• Protection- The kernel may request additional permissions to the page (such as write 
access to a page that is currently read-only) by calling memory_ object_ data_ un 1 oc k (). 
Conversely, the pager may call memory_object_lock_request() to lower the access 
permissions on a page (for example, make a page read-only). 

• Cache management- The pager calls memory_object_lock_request() with the 
shoul d_fl ush flag to ask the kernel to invalidate its cached copy of the data, writing back 
any modifications. If the pager calls memory_object_lock_request() with the 
should_ clean flag, it asks the kernel to write back any modified pages in the given range, 
but the kernel may continue to use the cached data. In both cases, the kernel responds by 
calling memory_ object_ data_ write(), just as for pageouts. 

15.5 External and Internal Pagers 

The kernel-pager interface is very different from traditional implementations. Mach pagers are sepa
rate kernel or user-level tasks, and the kernel and the pager interact via message passing. Although 
this may seem cumbersome and complex, it offers some important advantages. User tasks can im
plement a variety of pagers to cater to different kinds of secondary storage objects. Although SVR4 
also allowed multiple segment drivers, the kernel had explicit knowledge and control of each one. 
There was no way to add user-defined segment drivers. In Mach, the kernel has no specific knowl
edge of user-level pagers. It simply accesses the pagers through the vm objects. 

Message passing brings with it the advantages of location transparency and extensibility. The 
pager task does not have to be on the same machine. It could run on any remote node on the network 
and be represented on the local machine by proxy ports for the memory objects. This allows Mach 
memory management to be extended to a multiple-processor configuration where machines share 
some of their memory via message passing. The next subsection describes such an example. 

Pagers implemented as user tasks are known as external pagers. Mach also provides a de
fault pager, which is internal (that is, implemented as a kernel task).3 This pager manages all tempo-

3 It is possible to have even the default pager run as a user task. [Golu 91] describes such an implementation. 



15.5 External and Internal Pagers 485 

rary memory objects, which have no permanent backing store. These objects may be divided into 
two types: 

• Shadow objects, containing modified pages of regions that are shared copy-on-write. 
• Zero-fill regions, such as stacks, heaps, and uninitialized data. Zero-fill regions are created 

by the call 

vm~allocate (target_task, address, size, flag); 

The kernel creates the default pager during system initialization by calling memory object
- create(). The objects it manages have no initial memory. The first time such pages are -accessed, 
the kernel calls memory object data request(), and the pager returns memory object data-

unavai 1 able(), to indicate thatthe p;ge must be zero-filled. - -

15.5.1 A Network Shared Memory Server 
The network shared memory server has been frequently used to illustrate the versatility of the exter
nal pager interface. The server is a user-level task that allows a set of pages in its address space to be 
shared by client tasks anywhere on the network. It provides data to the clients when they page fault 
and synchronizes access to the shared data, making sure modifications made by one client are seen 
by all others. The clients must perceive no difference between sharing memory with other tasks on 
the same machine, or on different machines. 

Memory sharing on a single machine is straightforward. There is only a single copy of the 
data, so that any changes made by one client are automatically and immediately visible to all others. 
Sharing data between tasks on different machines is complicated, since there may be copies of the 
same page on each machine, making it difficult to synchronize changes. 

Let us consider the interactions that occur when two tasks on two different computers share 
a single page. The shared memory server may reside on either of these machines, or on a third ma
chine. Figure 15-9 describes how the clients initially map the object into their address spaces. Each 

' --noaa-A.---· -- .,-oae·s--- · ' 
' ' 

task T1 task T2 
shared 

I 
memory 

I 

0®: server : 0® 

:Pit ~ 
I I 
I I 

I I 

I I 

I I 

I I 

' , ' 
, 

' ------------ ' ' ------------ -
Figure 15-9. Two clients connect to the network shared memory server. 



486 Chapter 15 More Memory Management Topics 

client task has the following interactions with the server: 

1. The client acquires the memory object port from the server. 
2. The client calls vm _map to map the object into its address space. 
3. The kernel calls memory_object_init() to send a new object initialization message to 

the server. This gives the server the send rights to a control port to which the kernel 
listens. 

4. The server calls memory_ object_ set_ attribute() to inform the kernel that the object is 
ready. 

5. The kernel completes the vm_map call and resumes the client. 

Step 5 does not have to wait for step 4 to occur, but the client will not be able to access the 
data (attempted access will block) until the object is ready. Figure 15-10 shows what happens when 
task T1 tries to write to the page: 

1. Task T1 write-faults, invoking the fault handler in the kernel. 
2. The kernel calls memory_object_data_request() to request the server for a writable 

copy of the page. 
3. The server returns the page via memory_ object_ data_provi ded (). 
4. The kernel updates the address translation tables of task T1 and resumes it. 

Task T1 can now modify the page. The server does not know yet of the changes made to the 
page. Consider what happens if task T2 now wants to read this page (Figure 15-11): 

1. Task T2 read-faults and invokes the fault handler in kernel B. 
2. Kernel B calls memory_ object_ data _request() to ask the server for a read-only copy of 

the page. 
3. The server knows that node A has a writable copy of the page. So it calls 

memory_object_lock_request(), specifying the control port of kernel A, the 
shoul d_cl ean flag, and a lock_val ue ofVM_PROT_WRITE.4 

,--- -noct'e-A----, 
I 
I 

task T1 

.. ____________ .. 

shared 
memory 
server 

, ---node-s-----, 
I 
I 

task T2 

.. ____________ .,. ' 

Figure 15-10. Task T1 tries to write to the page. 

4 If, instead, task T2 were trying to write to the page, the server would use the should_ flush flag, asking kernel A to 
invalidate its copy of the page. 



15.6 Page Replacement 

,----noCie_A ____ ., 
task T1 

... ____________ .. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

shared 
memory 
server 

~,----node-s----, 

task T2 

.. ____________ ,. 

Figure 15-11. Task T2 tries to read the page. 

4. Kernel A reduces the permissions on the page to read-only and writes back the modified 
page to the server via memory_ object_ data_ write(). 

5. Now the server has the most recent version of this page. It sends it to kernel B via 
memory_object_data_provided(). 

6. Kernel B updates the address translation tables and resumes task T2. 

487 

Obviously, this is a slow process. If the two tasks frequently modify the page, they will re
peatedly go through this iteration, resulting in numerous IPC messages, repeatedly copying the page 
from one node to another. Much of this overhead is inherent in the problem of synchronizing data 
across a network. Note that each write fault causes the page to be copied over the network twice
first from the other client to the server, then from the server to the faulting client. We could think of 
reducing this to a single copy operation if the server could somehow ask one client to directly send 
the page to another. That, however, would break the modularity of the design and lead to quite 
complex interactions if there are more than two clients. Obviously, having the server reside on one 
of the clients would eliminate one copy operation and also reduce other message traffic on the net
work. 

In spite of these shortcomings, the example illustrates how the close coupling of message 
passing and memory management allows us to build powerful and versatile applications. Another 
example [Subr 91] is an external pager that manages discardable pages, used by applications that 
perform their own garbage collection. The pager receives information from client tasks regarding 
which pages are discardable and influences page replacement by preflushing such pages. This frees 
up more memory for useful pages in the system. 

15.6 Page Replacement 

The Mach page replacement algorithm is different from those of SVR4 and 4.3BSD, both of which 
use the two-handed clock method (see Section 13.5.3). The algorithm is called FIFO with second 
chance [Drav 91]. It uses three FIFO (first-in, first-out) lists-active, inactive, and free-as shown 
in Figure 15-12. 



488 Chapter 15 More Memory Management Topics 

active list 

inactive list 

free list 

Figure 15-12. Page replacement. 

Pages migrate from one list to another in the following ways: 

1. The first reference to a page results in a page fault. The fault handler removes a page from 
the head of the free list and initializes it with the appropriate data (either fills it with zeroes 
or gets the data from the memory object). It then puts the page at the tail of the active list. 
Eventually, the page migrates to the head of this list, as pages ahead of it become inactive. 

2. Whenever the free memory falls below a threshold value (vm _page_ free_ min), the 
pagedaemon is awakened. It moves some pages from the head of the active list to the tail 
of the inactive list. It turns off the reference bit in the hardware address translation 
mappings for these pages. 

3. The pagedaemon also examines a number of pages at the head of the inactive list. Pages 
whose reference bits are set are returned to the tail of the active list. 

4. If the pagedaemon finds a page whose reference bit is still clear, the page has not been 
referenced while on the inactive queue and can be moved to the tail of the free list. If the 
page is dirty, it is first written back to its memory object. 

5. If the page is referenced while on the free list, it may still be reclaimed. In this case, it 
goes back to the tail of the active list. Otherwise, it will migrate to the head of the free list 
and eventually be reused. 

On systems that do not support reference bits in the hardware, Mach simulates reference in
formation by invalidating the mappings for the page, just as in BSD. Further, several parameters 
determine the amount of work done by the page daemon each time it awakens. These are described 
in Table 15-1. 

Although the data structures and algorithms are somewhat different from the two-handed 
clock method used by SVR4 and 4.3BSD, the effect is somewhat similar. The inactive list is 
equivalent to the pages between the front and back hands. In the above description, step 2 is analo
gous to the function of the front hand, which clears the reference bits on pages to be scanned. The 



15.7 Analysis 489 

Table 15-1. Machpagedaemon parameters 

Parameter Usage Default value (pages) 

vm_page_free_min Wake up pagedaemon when 25 + physmem/100 
number of pages on free list 
falls below this value. 

vm_page_free_target Move pages from inactive to 30 + physmem/80 
free list until free list reaches 
this size. 

vm_page_free_reserved Number of free pages reserved 15 
for the pagedaemon. 

vm_page_inactive_target Move pages from active to physmem * 2/3 
inactive list till inactive list 
reaches this size. 

function of the back hand is performed in steps 3 and 4, which examine the pages at the head of the 
inactive queue. 

The major difference is in how the pagedaemon selects the active pages to move to the inac
tive queue. In the clock algorithm, the pages are picked sequentially based on their location in 
physical memory and not on their usage pattern. In Mach, the active list is also FIFO, so that the 
pagedaemon selects those pages that were activated the earliest. This is an improvement over the 
clock algorithm. 

Mach does not provide alternative replacement policies. Some applications, such as data
bases, do not exhibit strong locality of reference and may find LRU-like policies inappropriate. 
[McNa 90] suggests a simple extension to the external pager interface that would permit a user-level 
task to choose its own replacement policy. 

15.7 Analysis 

Mach has a well-designed VM architecture with several advanced features. Much of its functionality 
is similar to that of SVR4, such as copy-on-write sharing, memory-mapped file access, and support 
for large, sparse, address spaces. Similar to SVR4, it also is based on an object-oriented approach, 
using a small set of objects that present a modular programming interface. It cleanly separates the 
machine-independent and dependent parts of the code and isolates the machine-dependent code in 
the pmap layer, which is accessed through a narrow, well-defined interface. When porting to a new 
hardware architecture, only the pmap layer needs to be rewritten. 

Moreover, Mach VM offers many features not found in SVR4. It provides more flexible 
memory sharing facilities, by separating the notions of sharing and inheritance. It integrates memory 
management and interprocess communication. IPC uses VM to allow large messages (up to the en
tire address space of a task) to be transferred efficiently using copy-on-write. VM uses IPC to pro
vide location independence for its objects and to extend the VM facilities to a distributed environ
ment. In particular, user-level tasks may manage the backing store for memory objects, and the 
kernel communicates with these tasks through IPC messages. This coupling creates a highly flexible 



490 Chapter 15 More Memory Management Topics 

environment, allowing multiple user-level (external) pagers to coexist and provide different types of 
paging behavior. The network shared memory manager is an excellent example of how this inter
face may be used to add new functionality. 

There are, however, some important drawbacks, many of them similar to those of SVR4. 
The VM system is larger, slower, and more complex than the BSD design. It uses more and larger 
data structures. Hence it consumes more physical memory for itself, leaving less available for the 
processes. Since the design keeps machine-dependent code to a minimum, it cannot be properly op
timized for any particular MMU architecture. 

In addition, the use of message passing adds considerable overhead. The cost is reduced in 
some cases by optimizing kernel-to-kernel message transfers. Overall, though, message passing is 
still a lot more expensive than simple function calls. Except for the network shared memory man
ager, external pagers are not used commonly. This raises questions about whether the external pager 
interface is useful enough to justify its high cost. Digital UNIX, the major commercial UNIX sys
tem based on Mach, does not support external pagers and does not export the Mach VM interface. 
Its VM subsystem has diverged from Mach in many respects. 

15.8 Memory Management in 4.4850 

In Section 13.4, we describe the 4.3BSD memory management model. This design is effective for 
the machines on which it was meant to run. When 4.3BSD was designed, a typical computer was a 
large, centralized time-sharing system that several users accessed concurrently through terminals 
connected by serial lines. It had a lot of local disk space (a few hundred megabytes), but a slow 
processor (1-2 mips) and small, expensive memory (4 megabytes was considered large). While 
UNIX supported networking, remote file systems had not yet become popular, and most systems 
used local disks for file systems and swap space. The 4.3BSD virtual memory model optimized 
memory consumption at the expense of extra storage or I/0. 

This situation had changed dramatically by the early 1990s, when 4.4BSD was being devel
oped. The typical user had exclusive use of a desktop workstation with a large memory (32 megabytes 
was not unusual) and fast processor (tens ofmips). On the other hand, the proliferation of network file 
systems such as NFS allowed users to store their files on centralized file servers, and the workstation 
had either a small local disk or no disk at all. The 4.3BSD memory management design was quite un
suitable for this environment, and hence 4.4BSD replaced it with a new model [McKu 95]. 

The internal VM framework of 4.4BSD is based on that of Mach. Its external interface, 
however, is more like that of SVR4. Rather than exporting the notions of external pagers and mem
ory objects, 4.4BSD provides an mmap system call, whose syntax is similar to that of SVR4 (see 
Section 14.2): 

paddr = mmap (addr, 1 en, prot, f1 ags, fd, off); 

This establishes a mapping between the locations [paddr, paddr+ 1 en) in the process and the byte 
range [off, off+1en) in the file represented by fd. 5 As in SVR4, addr suggests what address to 

5 We follow the standard convention for specifying ranges: square brackets indicate inclusive boundaries, while paren
theses indicate exclusive boundaries. 



15.8 Memory Management in 4.4BSD 491 

map the file to, and prot specifies protections (combination of PROT_ READ, PROT WRITE, and 
PROT _EXECUTE). The flags MAP _SHARED, MAP _PRIVATE, and MAP _FIXED have the same meaning as 
inSVR4. 

The 4.4BSD mmap has a few additional features. The flags argument must contain either 
MAP _FILE (mapping to a file or device) or MAP_ ANON (mapping to anonymous memory). There are 
two additional flags-MAP_ INHERIT, which specifies that the mapping should be retained after an 
exec system call, and MAP _HASSEMAPHORE, which specifies that the region may contain a semaphore. 

Processes may share memory in two ways. They may map the same file into their address 
space, in which case the file provides the initial contents and backing store for the region. Alterna
tively, a process may map an anonymous region, associate a file descriptor with it, and pass the de
scriptor to other processes that wish to attach to the region. This avoids the overhead of a mapped 
file, and the descriptor is used only for naming. 

4.4BSD allows fast synchronization between processes by allowing semaphores to be placed 
in a shared memory region. In traditional UNIX systems, processes use semaphores to synchronize 
access to shared memory (see Section 6.3). Manipulating semaphores requires system calls, which 
impose a lot of overhead and negate most of the performance benefits of shared memory. 4.4BSD 
reduces this overhead by placing semaphores in shared memory regions. 

Empirical studies show that in most applications that use synchronization, when a process 
tries to acquire a shared resource, it finds the resource unlocked in a majority of cases. If cooperat
ing processes place semaphores in a shared memory region, they can try to acquire the semaphore 
without making a system call, provided the system supports an atomic test-and-set or equivalent 
instruction (see Section 7.3.2). Only if the resource is locked does the process need to make a sys
tem call to wait for the resource to be unlocked. The kernel checks the semaphore again and blocks 
the process only if the semaphore is still locked. Likewise, a process freeing the resource can release 
the semaphore at the user level. It then checks if other processes are waiting for the resource; if so, it 
must make a system call to awaken them. 

4.4BSD provides the following interface for semaphore management. The shared memory 
region containing the semaphore must be created with the MAP _HASSEMAPHORE flag. A process can 

where semis a pointer to the semaphore and wait is a boolean that is set to true if the caller wants to 
block on the semaphore. On return, v a 1 u e is zero if the process has acquired the semaphore. To re
lease a semaphore, a process calls 

Systems that have an atomic test-and-set instruction implement mset and mclear as user-
level functions. To block and unblock on the semaphore, 4.4BSD provides the calls: 

msfeep {~~m);· 

checks the semaphore, and blocks the caller if sem is still locked. The call 



492 Chapter 15 More Memory Management Topics 

mwalceup (~~m>; 
wakes up at least one process blocked on this semaphore and does nothing if there are no blocked 
processes. 

The semaphore interface in the System V IPC facility (see Section 6.3) is quite different 
from this. System V allows a set of semaphores to be manipulated in a single system call. The ker
nel ensures that all operations in a single call are committed atomically. This interface can be im
plemented in 4.4BSD by associating a single guardian semaphore with each such set. For any op
eration on the set, the process always starts by acquiring the guardian semaphore. It then checks if it 
can complete the desired operations; if not, it releases the guardian semaphore and blocks on one of 
the semaphores that it could not acquire. When it wakes up, it must repeat the whole process. 

15.9 Translation Lookaside Buffer (TLB) Consistency 

Memory traffic would be excessive if the processor had to access in-memory page tables for each 
address translation. Hence most MMUs contain a translation lookaside buffer (I'LB), which is a 
cache of recent address translations. The TLB is implemented in hardware and consists of a small 
number of entries (typically, 64 to 256), each of which maps a virtual page to a physical page. The 
MMU checks this cache during each address translation operation. If it finds the translation in the 
cache, it can avoid looking up the in-memory address translation maps, which are costly to access. 

The TLB is an associative cache, that is, the MMU simultaneously searches all the entries in 
the cache, trying to find one that matches the given virtual address. The entry contains the corre
sponding physical page number, as well as protection information about the page. The specific for
mat of the entry is machine-dependent. Section 13.3 describes the format and access semantics of 
TLBs in the MIPS R3000, IBM RS6000, and Intel 80386 architectures. 

The TLB supports two basic operations-load, and invalidate or purge. A TLB entry is 
loaded when there is a cache miss. On most architectures, this operation is performed by the hard
ware, which has explicit knowledge of the location and format of the second-order translation maps 
(such as page tables on many systems, or inverted page tables on systems such as IBM's RS6000). 
The MMU hardware locates the page table entry and loads a TLB entry for it before completing the 
address translation. The kernel is neither involved in nor aware of this operation. 

Certain architectures, notably the MIPS R3000 [Kane 88], perform a software reload. On 
such systems, the MMU knows only about the TLB and generates a fault on each TLB miss. The 
kernel manages address translation maps, and the hardware neither knows about them nor defines 
their structure. Typically, the kernel uses traditional page tables, but this is not a requirement. When 
the MMU generates a TLB miss fault, the kernel must locate the translation and explicitly load a 
TLB entry containing the correct information. 

All MMUs offer some way to invalidate TLB entries in software. The kernel may modify a 
page table entry for a variety of reasons, such as to change its protection or to invalidate it due to a 
pageout. This makes the associated TLB entry inconsistent, and it must be invalidated or purged 
from the cache. There are three ways in which the kernel may flush a TLB entry: 



15.9 Translation Lookaside Buffer (TLB) Consistency 

• Invalidate a single TLB entry, identified by the virtual address. If the TLB has no entry for 
that address, nothing is done. The TBIS (Translation Buffer Invalidate Single) instruction 
on the V AX-11 is an example of this method. 

• Invalidate the entire TLB cache. For instance, the Intel 80386 flushes the entire TLB any 
time the Page Directory Base Register (PDBR) is written to, either explicitly by a move 
instruction, or indirectly during a context switch. The V AX-11 's TBIA (Translation 
Buffer Invalidate All) instruction has the same effect. 

• Load a new TLB entry, overwriting the previous entry for that address if one exists. This 
method is used by architectures such as the MIPS R3000, which allow software reloading 
of the TLB. 

15.9.1 TLB Consistency on a Uniprocessor 

493 

On uniprocessor systems, the TLB is easy to manage. There are several events that may invalidate 
one or more TLB entries, such as: 

• Protection change - A user may call mprotect to raise or lower protections on an ad
dress range. The kernel may change the protections on a page, either to simulate reference 
bits or to implement copy-on-write. 

• Pageout- When a page is removed from physical memory, the kernel must invalidate all 
page table and TLB entries that refer to it. 

• Context switch - When the kernel switches to a new process, all TLB entries for the old 
process become invalid. The entries mapping kernel addresses remain valid, since the ker
nel is shared by all processes. Some architectures support tagged TLBs, where each entry 
has a tag that identifies the process to which it belongs. For such systems, the TLBs are 
not invalidated by a context switch, since the new process will have a different tag. 

• exec - When a process execs another program, all TLBs that map its old address space 
become invalid. The same virtual addresses now refer to pages of the new image. 

TLB flushing is expensive, and the kernel tries to minimize its overhead in many ways. An 
important consideration is whether the inconsistency is benign. For instance, suppose the kernel re
duces the protections on a page, changing it from read-only to read-write. The TLB entry is now 
inconsistent with the page table entry, but it is not necessary to invalidate it. In the worst case, the 
user will attempt to write to the page and find that the TLB entry still shows the page as read-only. 
At that time, the fault handler (or hardware) can reload a new TLB entry with the correct protec
tions. By postponing the reload until absolutely necessary, we may often avoid it altogether (for in
stance, when the TLB entry is flushed by another event such as a context switch). 

In situations involving multiple pages, the kernel may have to choose between flushing the 
entire TLB cache, and flushing a number of entries individually. The former is faster in the short 
run, since the whole cache is usually flushed in a single instruction. It might, however, lead to many 
more TLB misses, making it more expensive in the long run. The optimal solution usually depends 
on the number of entries that must be flushed. 



494 Chapter IS More Memory Management Topics 

15.9.2 Multiprocessor Issues 
Maintaining TLB consistency on a shared-memory multiprocessor is a much more complex prob
lem. Although all processors share main memory, each has its own TLB. Problems arise when one 
processor changes an entry in a page table that may be active on another processor. The latter may 
have a copy of that entry in its TLB and hence may continue to use the obsolete mapping. It is es
sential to propagate the change to the TLBs of any processor that may be using the page table. 

A few machines synchronize TLBs in hardware. The IBM System/370, for instance, has an 
ipte instruction, which atomically changes the page table entry and flushes it from all TLBs in the 
system. More typically, the hardware provides no support for automatic synchronization of the dif
ferent TLBs.·Most systems do not even allow one processor to invalidate TLB entries on another. 

There are many situations in which a change to one page affects TLBs on several processors: 

• The page is a kernel page. 
• The page is shared by multiple processes, each running on a different processor. 
• On multithreaded systems, different threads of the same process may be running concur

rently on different processors. If one thread modifies a mapping, all threads must see the 
change. 

A related situation is where a process on one processor modifies the address space of a proc
ess running on another processor. Here, even though the change is to a single TLB, it is on a differ
ent processor from the one that initiated the change. 

In the absence of hardware support, the kernel must solve the problem in software, using a 
notification mechanism based on cross-processor interrupts. For the purpose of this discussion, we 
defme the terms initiator and responder. The initiator is the processor that modifies a mapping, 
thereby invalidating some remote TLBs. The responder is a remote processor that potentially holds 
a TLB for this mapping. The initiator sends an interrupt to the responder, who in tum invalidates the 
appropriate TLB. 

The situation is complicated because we need to do two things at once--change the page 
table entry and invalidate the TLB entry. Suppose the responder flushes its TLB entry before the 
initiator changes the PTE. The process running on the responder may attempt to access the page in 
between, causing the hardware to reload the invalid TLB entry. Reversing the order also leads to 
problems. If the initiator first changes the PTE, the responder may write back an (obsolete) TLB 
entry to the page table in order to update reference or modify bits. 

In order to perform the operation consistently, the responder must wait (in a busy loop) for 
the initiator to update the PTE before flushing its TLB. In the following section, we see the TLB 
synchronization algorithm used by Mach. 

15.1 0 TLB Shootdown in Mach 

The Mach TLB shootdown algorithm [Blac 89] involves a complex set of interactions between the 
initiator and the responder. The term shootdown refers to invalidating a TLB on another processor. 
To implement it, Mach uses a set of per-processor data structures: 



15.10 TLB Shootdown in Mach 

• An active flag, which shows whether the processor is actively using some page table. If 
this flag is clear, the processor is participating in shootdown and will not access any 
modifiable pmap entry. (The pmap is the hardware address translation map for a task and 
usually consists of page tables.) 

• A queue of invalidation requests. Each request specifies a mapping that must be flushed 
from the TLB. 

• A set of currently active pmaps. Each processor usually has two active pmaps-the kernel 
pmap and that of the current task. 

495 

Each pmap is protected by a spin lock, which serializes operations on it. Each pmap also has 
a list of processors on which the pmap is currently active. 

The kernel invokes the shootdown algorithm when one processor makes a change to an ad
dress translation that may invalidate TLB entries on other processors. Figure 15-13 illustrates the 
case of a single responder. The initiator first disables all interrupts and clears its own active flag. 
Next, it locks the pmap and posts TLB flush requests to every processor on which the pmap is ac
tive. It then sends cross-processor interrupts to those processors and waits for them to be acknowl
edged. 

When the responder receives the interrupt, it also disables all interrupts. It then acknowl
edges the interrupt by clearing its active flag and spin-waits for the initiator to unlock the pmap. 
Meanwhile, the initiator has been waiting for all the relevant processors to become inactive. When 
they have all acknowledged the interrupt, the initiator flushes its own TLB, changes the pmap, and 
unlocks it. The responders now get out of their spin loop, process their request queue, and flush all 
obsolete TLBs. Finally, both the initiator and the responders reset their active flags, reenable inter
rupts, and resume normal operation. 

15.10.1 Synchronization and Deadlock Avoidance 

The shootdown algorithm uses several synchronization mechanisms, and the precise order of the 
operations is important [Rose 89]. It is important to disable all interrupts, otherwise a device inter
rupt can idle multiple processors for a long time. The lock on the pmap prevents two processors 
from simultaneously initiating shootdowns for the same pmap. The interrupts must be disabled be
fore locking the page table, or a processor may deadlock when it receives a cross-processor interrupt 
(for another active pmap) while holding a lock. 

The initiator clears its own active flag before locking the pmap, to avoid some deadlock 
conditions. Suppose two processors, Pl and P2, attempt to modify the same pmap. Pl disables in
terrupts, locks the pmap, and sends an interrupt to P2. Meanwhile, P2 disables interrupts and blocks 
on the same lock. Now we have a deadlock, since Pl is waiting for P2 to acknowledge the interrupt, 
and P2 is waiting for Pl to release the pmap. 

Clearing the active flag effectively acknowledges interrupts before they arrive. In the above 
example, Pl will not block, since P2 clears its flag before trying to lock the pmap. When Pl un
locks the pmap, P2 will resume and process the flush request posted by Pl. 

The shootdown algorithm has a subtle effect on all resource locking. It requires a consistent 
policy about whether interrupts are disabled before acquiring a lock. Suppose processor Pl holds a 
resource with interrupts enabled, P2 tries to acquire it with interrupts disabled, and P3 initiates a 



496 

disable all interrupts 
clear own active flag 

lockpmap 
post flush requests 

send CP interrupts 

wait till active flags cleared 
' 
' ' 

change pmap 
flush own TLB 

unlockpmap 

set active flag 
enable interrupts 

Chapter 15 More Memory Management Topics 

receive CP interrupt 
disable all interrupts 

clear own active flag 

wait till pmap unlocked 

' ' 

process flush requests 
invalidate TLB entries 

set own active flag 
enable interrupts 

Figure 15-13. Mach TLB shootdown algorithm. 

shootdown with Pl and P2 as responders. P3 sends cross-processor interrupts to Pl and P2, and 
blocks till they are acknowledged. Pl acknowledges its interrupt and blocks until the pmap is re
leased. P2 is blocked on the lock with interrupts disabled and hence does not see or respond to the 
interrupt. As a result, we have a three-way deadlock. To prevent this, the system must enforce a 
fixed interrupt state for each lock: Either a lock should always be acquired with interrupts disabled 
or always with interrupts enabled. 

15.10.2 Discussion 

The Mach TLB shootdown algorithm solves a complex problem while making no assumptions 
about hardware features, other than support for cross-processor interrupts. It is, however, expensive, 
and does not scale well. All responders must busy-wait while the initiator changes the pmap. On a 
large multiprocessor with tens or hundreds of CPUs, shootdown can idle several processors at once. 

The complexity is necessary due to two reasons. First, many MMUs write back TLB entries 
to the page tables automatically to update modified and referenced bits. This update overwrites the 



15.11 TLB Consistency in SVR4 and SVR4.2 UNIX 497 

entire pmap entry. Second, the hardware and software page sizes are often different. Hence when the 
kernel changes the mapping of a single page, it may have to change several pmap entries. These 
changes must appear atomic to all processors. The only way to accomplish this is to idle all proces
sors that may be using the pmap while making the change. 

Many other TLB shootdown algorithms have been suggested and implemented. The next 
section describes some ad hoc solutions to reducing the frequency of TLB flushes. Other methods 
depend on some hardware characteristics that simplify the problem. For instance, [Rose 89] de
scribes an efficient algorithm for the IBM Research Parallel Processor Prototype (RP3) [Pfis 85]. It 
uses the facts that the RP3 does not automatically write back TLB entries to main memory and that 
the large hardware page size (16 kilobytes) makes it unnecessary for a software page to span multi
ple hardware pages. Other research [Tell 88] suggests modifications to MMU architectures to assist 
in TLB shootdown. 

15.11 TLB Consistency in SVR4 and SVR4.2 UNIX 

The Intel Multiprocessor Consortium, comprising a group of computer companies, developed 
SVR4/MP, a version ofSVR4 for the Intel family of multiprocessors. Subsequently, UNIX Systems 
Laboratories released SVR4.2/MP, a version of SVR4.2 that provided support for multiprocessors 
as well as for lightweight processes. In this section, we describe the TLB consistency algorithms of 
both releases. 

15.11.1 SVR4/MP 
The Mach shootdown algorithm solves the general TLB synchronization problem as efficiently as 
possible, while making no assumptions about hardware characteristics (other than the availability of 
cross-processor interrupts) or about the nature of the event that necessitates the shootdown. The 
SVR4/MP approach is to analyze the events leading to shootdowns and find better ways of handling 
them. There are four types of events that require TLB synchronization: 

1. A process shrinks its address space, either by calling brk or sbrk or by releasing a region 
of memory. 

2. The pagedaemon invalidates a page, either to free it or to simulate reference bits. 
3. The kernel remaps a system virtual address to another physical page. 
4. A process writes to a page that is shared copy-on-write. 

In SVR4/MP, the hardware automatically flushes the TLB on each context switch [Peac 92]. 
Hence, case 1 is not a problem, unless the operating system supports multithreaded processes 
(which this release ofSVR4/MP does not). SVR4/MP provides optimizations for cases 2 and 3. 

To reduce TLB flushes in case 2, the pagedaemon batches a number of invalidate operations 
and flushes all TLBs in a single operation. This amortizes the cost of the global TLB flush over a 
number of page invalidations. 

The major cause ofTLB synchronization in SVR4 is the seg_map driver, used to support the 
read and write system calls. The kernel implements these calls by mapping the file into its own ad
dress space and then copying the data to the user process. It manages the seg_ map segment to dy-



498 Chapter 15 More Memory Management Topics 

namically map and unmap file pages into its address space. As a result, the physical mapping of 
virtual addresses in this segment changes frequently. Since all processes share the kernel, it must en
sure that such addresses are not accessed through obsolete mappings in the TLBs on other processors. 

To track stale TLBs, the SVR4/MP kernel maintains a global generation count, as well as a 
local generation count for each processor. When a processor flushes its local TLB, it increments the 
global counter and copies the new value into its local counter. When seg_ map releases the mapping 
for a page, the kernel tags the address with the global generation count. When seg_ map reallocates 
the address to a new physical page, the kernel compares the saved generation count with the local 
counter of each processor. If any local counter has a lower value than the saved counter, the TLB 
may have stale entries, and the kernel performs a global TLB flush. Otherwise, all processors have 
done a local flush since this address was invalidated, and hence no stale TLBs exist for this page. 

The SVR4/MP optimization for this situation is based on the assumption that once a 
seg_ map mapping is invalidated, the kernel will not access that address until it is reallocated to a 
new physical address. To minimize the need for flushing, pages released by seg_map are reused in a 
first-in, first-out order. This increases the time between freeing and reallocating an address, making 
it more probable that other processors will flush their TLBs in the meantime. 

15.11.2 SVR4.2/MP 

SVR4.2/MP is a multiprocessor, multithreaded release of SVR4.2. Its TLB shootdown policies and 
implementation [Bala 92] have some features in common with the SVR4/MP work described in 
Section 15.11.1, but provide several important enhancements. All interactions with the TLB are re
stricted to the HAT layer (see Section 14.4), which is machine-dependent. The reference port for 
SVR4.2/MP is to the Intel 386/486 architecture, but the TLB consistency algorithms and interfaces 
are designed to be easily portable. 

As in SVR4/MP, the kernel has complete control over its own address space, and hence can 
guarantee that it will not access invalid kernel mappings (such as those released by the seg_ map 
segment). Hence the kernel may use a lazy shootdown policy for TLBs that map kernel addresses. 
SVR4.2/MP, however, supports lightweight processes (lwps, described in Section 3.2.2), and it is 
possible for multiple lwps of the same process to be running concurrently on different processors. 
Since the kernel does not control the memory access patterns of user processes, it uses an immediate 
shootdown policy for invalid user TLBs. 

The global shootdowns used in SVR4/MP do not scale well for a system with a large num
ber of processors, since the whole system idles while the shootdown proceeds. Hence SVR4.2/MP 
maintains a processor list for each hat structure. The hat of the kernel address space has a list of all 
on-line processors, since the kernel is potentially active on all of them. The hat of each user process 
has a list of all processors on which the process is active (an lwp of the process is running on it). 
This list is accessed through the following interface: 

• hat_online() and hat_offline() add and remove CPUs to the list in the kernel hat 
structure. 

• hat_asload (as) adds the processor to the list in the hat structure of the address space 
as and loads the address space into the MMU. 



15.11 TLB Consistency in SVR4 and SVR4.2 UNIX 

• hat_asunload (as, flags) unloads the MMU mappings for this process and removes 
the processor from the list of this as. The flags argument supports a single flag, which 
indicates whether the local TLB must be flushed after unloading the mappings. 6 

499 

The kernel also uses an object called a cookie, which is visible only to the HAT layer. It may 
be implemented either as a timestamp or as a generation count (the reference port uses a timestamp), 
and must satisfy the condition that newer cookies are always greater in value. The routine 
hat _getshootcooki e () returns a new cookie, whose value is a measure of the age of the TLB. The 
kernel passes the cookie to the hat_ shootdown () routine, which is responsible for shootdown of 
kernel TLBs. If any other CPU has an older cookie, its TLB may be stale and needs to be flushed. 

The following subsections explain how the kernel implements the lazy and immediate 
shootdown algorithms. 

15.11.3 Lazy Shootdowns 

As in SVR4/MP, the kernel uses lazy shootdown for seg_map pages. SVR4.2/MP also uses the lazy 
policy for the seg_ kmem driver, which manages dynamically allocated kernel memory. When these 
drivers invalidate a page, they delay the shootdown until the page is about to be reused by the ker
nel. The seg_ map driver, for instance, invalidates a page only when its reference count has gone 
down to zero, which means that no other process can access that page. Hence it is safe to let the 
stale and invalid translations for these pages remain in the TLBs. The kernel returns the page to a 
free list and calls hat _getshootcooki e () to associate a new cookie with the page.? 

When the kernel is going to reuse the page, it passes the cookie to hat_shootdown (),which 
compares it to the cookies on all the other CPUs. Any CPU having an older cookie has a TLB that is 
stale with respect to this page and is a candidate for shootdown. 

The hat_shootdown () routine executes in the context of the initiator. It first acquires a 
global spinlock, so that only one shootdown can proceed at a time. It then sends cross-processor in
terrupts to all processors with an older cookie. Once each responding processor has begun process
ing the request, the initiator releases the spinlock and completes the reassignment of the page. 

The responders do not need to wait for any synchronization upon receiving the interrupt. 
They simply flush their TLBs and resume normal processing. Since the initiator modifies the trans
lations before the shootdown, any subsequent access to the page by the responder will load a valid 
TLB entry. The cross-processor interrupt runs at the highest interrupt priority level. No other inter
rupts should be allowed, since a deadlock can occur if a handler causes another shootdown. 

The synchronization involved in this algorithm is simpler and more efficient than in the 
Mach shootdown algorithm. This is because the SVR4.2/MP kernel can guarantee not to access an 
invalid page, an assumption that Mach does not make. 

6 The Intel context switch implementation does not ask hat_ a sun 1 oad () to flush the TLB, since the TLB is flushed 
anyway after the new u area is mapped in. 

7 The treatment of seg_kmem pages is somewhat different. These pages are managed by a bitmap that is divided into 
zones (by default, a zone is 128 bits in size). A cookie is associated with each zone, and is set when an address in the 
zone is freed. 



500 Chapter 15 More Memory Management Topics 

15.11.4 Immediate Shootdowns 

When the kernel invalidates a user PTE, it must immediately shootdown the TLBs on all processors 
on which the process may be active. This is because the kernel has no control over the user's mem
ory access pattern and cannot guarantee that the user will not attempt to access invalid pages. The 
algorithm, too, is more complex, since the responders must wait until the initiator modifies the 
PTEs before returning from the interrupt. 

The SVR4.2/MP user TLB synchronization algorithm is essentially similar to that of Mach. 
The kernel uses an additional synchronization counter, which acts as a semaphore shared by the ini
tiator and the responders. Figure 15-14 describes the sequence of operations. 

When the kernel must invalidate a user PTE on a processor, it first locks the hat structure 
and then acquires the global spinlock (to avoid conflicts with other shootdowns). Next, it sends a 
cross-processor interrupt to each processor that shares this address space (using the list in the hat). 
When the responders receive the interrupt, they enter a loop waiting for the synchronization counter 
to be incremented. 

When all the responders have begun looping, the initiator modifies the page table entries for 
the operation and then increments the synchronization counter. The responders exit the loop, flush 
their TLBs, and return from the interrupt. Finally, the initiator performs a local TLB flush and un
locks the spinlock and the hat structure. 

This algorithm is further optimized for the Intel architecture in the case where the initiator 
must modify multiple PTEs in the same address space, such as when a process unmaps a segment. 
The 386 has a two-level page table (see Section 13.3.2), with the Ievell page table containing PTEs 
for the level 2 tables. In the multiple PTE case, the initiator simply invalidates the appropriate en
tries in the Ievell table, before incrementing the synchronization counter. 

This allows the responders to complete their part of the shootdown and resume normal proc
essing without waiting for the initiator to modify all the PTEs. If an lwp on the responder tries to 
access an invalid page, it will cause a page fault, since the Ievel-l PTE is invalid. The fault handler 
blocks, since the hat structure is still locked by the initiator. Thus, the responder will be unable to 
access invalid translations until the initiator has finished its work and loaded the correct mappings. 
This optimization, while elegant, is highly Intel-specific, and only applies in certain situations. 

Another case that would normally require immediate shootdowns is in the pageout opera
tion. Prior to SVR4.2/MP, the pagedaemon used a global replacement policy. It would scan anum
ber of pages in the global pool and clear the reference bit (to collect reference information) or mod
ify bit (after cleaning the page). Both these operations required a global shootdown. SVR4.2/MP has 
replaced this algorithm with one that uses local working set aging. The process to be aged is seized (all 
its lwps except the one running on the initiator are switched out) while the aging is performed. When 
the lwps are switched back in, the 386 context switch mechanism automatically flushes the TLB. 

15.11.5 Discussion 

SVR4/MP and SVR4.2/MP seek to optimize the TLB shootdown by taking advantage of the unique 
features of the hardware. Moreover, they treat each shootdown situation differently, taking advan
tage of the synchronization inherent in the functions that trigger the shootdown. 



15.12 Other TLB Consistency Algorithms 

lock hat structure 
acquire global spinlock 

send CP interrupts 

wait for acknowledgement 
' 

modifY ptes 

increment counter 

flush own TLB 
unlock global spinlock 
unlock hat structure 

receive CP interrupt 

wait till counter incremented 

flush own TLB 

Figure 15-14. User TLB synchronization in SVR4.2/MP. 

501 

This approach achieves better performance than that of Mach, which uses a single, simple 
algorithm for all machines and all situations. However, the SVR4 approach is more difficult to port, 
since there are many dependencies on hardware and software specifics. For instance, the MIPS 
R3000, with its support for tagged TLB entries, presents a different set of problems, since there is 
no automatic TLB flush on each context switch. Section 15.12 presents a solution specific to such 
an architecture. 

In brief, we again see a tradeoff between using a single solution that applies universally and 
using several ad hoc methods that tackle each situation optimally. 

15.12 Other TLB Consistency Algorithms 

A multiprocessor version of SVR3 for the MIPS R3000 target [Thorn 88] provided yet another 
software solution for the TLB consistency problem. The MIPS architecture [Kane 88] features 
tagged TLBs (see Section 13.3.4). Each TLB entry has a 6-bit tag called TLBpid, which identifies 
the address space that owns the translation. This has some important consequences. There is no need 
to flush the TLB on a context switch, since the new process has a different TLBpid. As a result, a 
process may leave behind TLB entries on any processor on which it runs. If it later runs on the same 
processor again, it can reuse those entries, unless they have been flushed or individually replaced in 
the meantime. 



502 Chapter 15 More Memory Management Topics 

Such a system needs to correctly handle the shrinking of an address space. Suppose a proc
ess runs first on processor A and then on processor B. While running on B, it shrinks its data region 
and flushes the invalid TLB entries on B. If it later runs on A again, it can access invalid pages 
through stale TLB entries left behind on A. 

To solve this problem, the kernel assigns a new TLBpid to the process when it shrinks its 
address space. This automatically invalidates all its existing TLB entries on all processors.8 The 
kernel must perform a global TLB flush when it reassigns the old TLBpid to another process. It re
duces these events by reallocating TLBpids in first-in, first-out order, allowing stale entries to be 
flushed naturally. 

The MIPS implementation also handles the case where a process writes to a copy-on-write 
page. The kernel makes a new copy of that page, and assigns it to the writing process. It also flushes 
the page from the local TLB. If the process had previously run on another processor, its TLB may 
have a stale translation for the page. The kernel maintains a record of the processors on which a 
process has run. If, after writing to the copy-on-write page, the process runs on one of those proces
sors again, the kernel first flushes the TLB of that processor. 

The optimizations described in this section reduce the need for global TLB synchronization 
and may improve system performance. In particular, the seg_ map optimization is very useful, since 
kernel mappings are shared by all processors, and seg_ map is heavily used. The solutions, however, 
are ad hoc and depend on specifics of both the hardware and the operating system function that trig
gers the synchronization. There is no single general algorithm (other than that of Mach) that is 
hardware-independent and caters to all situations. 

15.13 Virtually Addressed Caches 

Just as the TLB is a cache of address translations, computers also have high-speed caches for physi
cal memory. Most machines have either separate caches for data and instruction or a common cache 
for both. Such a cache is usually 64-512 kilobytes in size and is accessed much faster than main 
memory. The cache is usually write-back, meaning that data writes change only the cache. The data 
is flushed to main memory only when the cache line needs to be replaced, perhaps to make room for 
other data. 

Traditional hardware architectures provide a physically addressed cache (Figure 15-15). The 
MMU first translates the virtual address and then accesses the physical memory. All access to 
physical memory goes through the cache. If the data is found in the cache, the MMU does not need 
to access memory. 

This has the advantage of simplicity. The hardware guarantees cache consistency, and the 
operating system is neither aware of nor responsible for the cache. The drawback is that the cache 
lookup can only happen after address translation, reducing the benefits of the cache. Moreover, if 
the TLB does not have a valid translation, the MMU has to fetch the page table entry from physical 
memory (or the cache). This requires additional cache and memory accesses. 

8 This also flushes any valid TLB entries of that process. 



15.13 Virtually Addressed Caches 

physical 
address 
cache 

~TLBmiss? 

cache...,.. physical 
miss_. memory 

Figure 15-15. A physically addressed cache architecture. 

503 

Many modem architectures use a virtually addressed cache, in some cases eliminating the 
TLB altogether. Figure 15-16 shows a typical scenario. The MMU first searches for the virtual ad
dress in the c~che. If found, there is no need to look further. If the data is not in the cache, the MMU 
proceeds with[ the address translation and obtains the data from physical memory. 

It is al~o permissible to have both a virtual address cache and a TLB. In such architectures, 
such as the MJPS R4000 [MIPS 90] and the Hewlett-Packard PA-RISC [Lee 89], the MMU simul
taneously searbhes the cache and the TLB. This has even better performance, at the cost of architec
tural complexity. 

A virtual address cache is composed of a number of cache lines, each of which maps a num
ber of contiguous bytes of memory. For instance, the Sun-3 [Sun 86] has a 64-kilobyte cache made 
up of 16-byte lines. The cache is indexed by virtual address, or optionally, by a combination of vir
tual address and a process ID or context /D. Since many virtual addresses (both from the same and 
different address spaces) map to the same cache line, the line must contain a tag that identifies the 
process and virtual address to which it maps. 

Using the virtual address as a retrieval index has one important consequence-an alignment 
factor may be defined for the cache, such that if two virtual addresses differ by that value, they both 
map to the same cache line. This alignment factor usually equals the cache size or a multiple 
thereof. We use the term aligned addresses to refer to addresses that map to the same cache line. 

Although physical address caches are completely transparent to the operating system, the 
hardware cannot guarantee consistency of virtual address caches. A given physical address may map 

memory 

Figure 15-16. A virtual address cache. 



504 Chapter 15 More Memory Management Topics 

to several virtual addresses and hence to multiple cache lines, causing an internal consistency prob
lem. The write-back nature of the cache may cause main memory to become stale relative to the 
cache. There are three types of consistency problems-mapping changes or homonyms, address ali
ases or synonyms, and direct memory access (DMA) operations. 

15.13.1 Mapping Changes 
A mapping change occurs when a virtual address is remapped to a different physical address (Figure 
15-17). This may occur in the following situations: 

• Context switch - A context switch replaces one address space with that of the new proc
ess. In most architectures, the tag in the cache line identifies the process to which the line 
belongs. As a result, the context switch does not invalidate the entire cache. In many sys
tems, however, the u area is in the kernel address space. When there is a context switch, 
the kernel remaps the u area addresses to the physical pages of the u area of the new proc
ess. Since the kernel is shared, its cache entries have a special tag that is valid for all proc
esses. Hence the context switch invalidates all entries for the old u area in the cache. 

• Pageout- When the pagedaemon removes a page from memory, it invalidates all cache 
entries for that page. 

• Protection changes - Whenever the protections on a page change, the cache entries are 
affected. Protection changes may occur due to explicit mprotect calls or as a result of 
copy-on-write or reference-bit simulation by the kernel. When protections are reduced (for 
instance, when a read-only page is made writable), the change is benign and does not re
quire updating the cache. When the process tries to access the data, it will page-fault and 
the fault handler will load the correct entry in the cache. When protections are increased 
(for instance, when a read-write page is made read-only), the change must be propagated 
to any cache entries for that data. 

• Copy-on-write - When a process tries to write to a page that is currently shared copy
on-write, the kernel creates a new copy of the page, makes it writable, and changes the 
process's mappings to reference this copy. This invalidates any cache entries for this proc
ess that refer to the old page. 

cache 

-----------1 [ virt addr 1 

~ 

physical 
memory 

old page 

newpage 

Figure 15-17. Mapping change invalidates a cache entry. 

I 



15.13 Virtually Addressed Caches 505 

15.13.2 Address Aliases 

Address aliases, or synonyms, are multiple virtual addresses for the same physical address (Figure 
15-18). If a process modifies that location using one address, the change is not automatically propa
gated to the other cache line. If another process were to read the data using the other address, it 
would access stale data. Moreover, if two processes wrote to the location through the two different 
addresses, the order in which these writes will be flushed to memory is indeterminate. Synonyms 
occur due to several reasons: 

• Shared memory- When many processes share a region of memory, each maps it into its 
address space. If these addresses are unaligned, they map to different cache lines, resulting 
in synonyms. Since processes are free to map shared memory regions to any location in 
their address space, the kernel usually cannot guarantee such alignment. 

• Mmap - Processes may use mmap to map a file or memory object anywhere in their ad- _ 
dress space. If multiple processes map the same object to unaligned addresses, they create 
synonyms for it. A process may also map the same region into different parts of its ad
dress space, resulting in the same problem. 

• DVMA- Systems that support Direct Virtual Memory Access (DVMA) allow devices to 
create a new virtual address mapping for a page that already has a virtual address. This re
quires one cache flush when establishing the new mapping and another upon completion. 

15.13.3 DMA Operations 
Many devices have the ability to transfer data to and from memory without involving the CPU. This 
feature is known as Direct Memory Access or DMA (not the same as DVMA, which is described in 
Section 15.13.2). DMA transfers usually bypass the cache and directly access main memory. Al
though this has the advantage of speed, it creates a cache consistency problem. Suppose the cache 
contains some modified data that has not been flushed to main memory. A DMA read will notre
ceive these changes and, consequently, will read stale data. Likewise, a DMA write will not over
write the cache, thus making its contents stale. At a later time, the stale cache line will be 
(incorrectly) flushed to memory, destroying the new data. 

virt addr 1 

virt addr 2 

cache physical 
memory 

Figure 15-18. Synonyms lead to multiple cache entries for the same data. 



506 Chapter 15 More Memory Management Topics 

15.13.4 Maintaining Cache Consistency 

On systems with virtual address caches, the kernel must recognize events that might make the cache 
inconsistent and take some corrective action when they occur. The cache usually exports two opera
tions to the kernel-flush and purge-both of which delete or invalidate an entry from the cache. 
The flush operation also writes back any changes to main memory; the purge operation does not. 
The kernel's action depends on the situation. Let us consider some specific examples. 

When the mapping for a page changes, the kernel may have to flush all entries for that page. 
Cache flushes are expensive and must be avoided whenever possible. The kernel therefore flushes 
mappings only when they change from valid to invalid. For instance, during a context switch, the 
kernel flushes the cache entries for the u area of the old process when its mapping is invalidated. 
When the new u area is mapped in, no flushing is required, since this is an invalid-to-valid change. 

The pagedaemon invalidates a page that is to be freed. At that time, its cache entries must be 
flushed, or else a process could continue to access the cached part of the page. When new data is 
read into a free page, however, no flushing is required. 

Duringfork, many UNIX kernels map the pages of the child's u area temporarily to a region 
of kernel address space known asforkutl. The routine that usesforkutl does not explicitly release the 
mapping upon return. For virtual address cache systems, however, this routine must flush the rele
vant cache entries, since the region was implicitly unmapped. 

The easiest way to handle address aliasing is to prevent it at the hardware level [Chao 90]. 
When a process faults on a page, the kernel checks to see if there is already another mapping for that 
page. If so, it invalidates that mapping, flushes the corresponding page from the cache, and then 
creates the new mapping for the faulting process. This way, memory sharing requires repeated re
mapping and cache flushing, since only one mapping is valid at a time. 

This, however, is an expensive solution, due to the high costs of flushing the cache. In addi
tion, there is the overhead of processing the traps as shared pages are faulted back and forth between 
the tasks. We need to consider cheaper alternatives. One immediate improvement is to allow aliases 
only for read-only access. When a process tries to write to such a page, the kernel invalidates all 
other mappings for the page. 

Address aliases cause inconsistencies only when the two addresses are unaligned. Although 
UNIX allows applications to map shared memory regions or other memory objects to arbitrary, 
user-specified addresses, most applications do not rely on this feature. System calls such as shmat 
and mmap often provide options to let the kernel choose a convenient address for the mapping. 
Whenever possible, the kernel selects an aligned address, thus eliminating the cache consistency 
problem. For instance, on the Sun-3, if two addresses differ exactly by a multiple of 128 kilobytes, 
they map to the same cache entry. On this system, the kernel tries to find an address that is equal to, 
or different by a 128-kilobyte multiple from, the address of the region in other processes sharing it. 

Many UNIX implementations are even more conservative, and either eliminate such facili
ties altogether or restrict their use. For instance, many versions of Hewlett-Packard's HP-UX operat
ing system [Cleg 86] do not support mmap and only allow shared memory regions that are mapped 
to the same address in all processes. These systems implement shared text through a global shared 
virtual address segment rather than using memory mapping. SunOS [Chen 87] solves this problem 
by disabling caching on pages that may have multiple, nonaligned virtual addresses. 



15.14 Exercises 507 

DMA operations, too, must be handled differently for virtual address caches. Before starting 
a DMA read, the kernel must flush from the cache any dirty data for the pages to be read. This en
sures that main memory is not stale with respect to the cache. Similarly, in the case of a DMA write, 
the kernel must first purge any cache entries for the data to be overwritten. Otherwise, stale cache 
entries may later be written back to memory, destroying the more recent data from the DMA opera
tion. 

15.13.5 Analysis 

A virtually addressed cache may improve memory access times substantially. However, it poses a 
variety of consistency problems that must be dealt with in software. Moreover, it changes the mem
ory architecture in a fundamental way, which requires rethinking of several operating system design 
issues. Although it was designed to improve MMU performance, the cache conflicts with certain 
assumptions made by the operating system and may adversely affect overall system performance. 

Modem UNIX systems support many forms of memory sharing and mapping, such as Sys
tem V shared memory, memory-mapped file access, and copy-on-write techniques for memory in
heritance and interprocess communications. In traditional architectures, these techniques reduce the 
amount of in-memory data copying and save memory by eliminating multiple resident copies of the 
same data. This results in substantial performance improvements. 

On a virtual address cache architecture, however, such memory sharing results in synonyms. 
The operating system needs elaborate recovery procedures to ensure cache consistency, such as 
flushing the cache, making certain pages noncacheable, or eliminating or restricting certain facili
ties. These operations may reduce or eliminate any performance gains of memory sharing. 
[Chen 87] showed that while in typical benchmarks, the time taken by cache flushing was only 
0.13% of total time, certain tests raised this value to 3.0%. 

In many situations, several algorithms must be redesigned to perform efficiently on systems 
with virtual address caches. [Inou 92] describes several changes to operations in Mach and Chorus 
to address this problem. [Whee 92] describes many ways of eliminating unnecessary cache consis
tency operations, resulting in dramatic performance gains. Some of its suggestions are specific to 
the peculiarities of Hewlett-Packard's PA-RISC architecture. On that machine, the TLB lookup oc
curs in parallel with the address cache search, and the cache is tagged by the physical address. This 
allows it to detect many inconsistencies in software and take more efficient corrective measures. 

15.14 Exercises 

1. How does memory inheritance in Mach differ from that in SVR4? 
2. In the example shown in Figure 15-2, what happens if task A tries to write to the page? 
3. Why does the Mach external pager interface result in poor performance? 
4. What is the difference between a vm object and a memory object? 
5. How does the network shared memory server behave if one of its clients crashes? What 

happens if the server crashes? 
6. Why does Mach not need a per-page protections array such as the one in SVR4? 



508 Chapter 15 More Memory Management Topics 

7. Suppose a vendor wished to provide System V IPC in a system based on a Mach kernel. How 
could he or she implement the shared memory semantics? What issues need to be addressed? 

8. What are the differences and similarities between the Mach vm _map call, the 4.4BSD mmap 
call, and the SVR4 mmap call? 

9. Section 15.8 mentions a guardian semaphore to implement System V-like semaphores in 
4.4BSD. Would the guardian be allocated and managed by the kernel or a user library? 
Describe a skeletal implementation. 

10. Why is the Mach page replacement policy called FIFO with second chance? 
11. What is the benefit of having the operating system reload the TLB rather than the hardware? 
12. Suppose the TLB entry contains a hardware-supported referenced bit. How will the kernel use 

this bit? 
13. Since the UNIX kernel is nonpaged, what could lead to a change in a TLB entry for a kernel 

page? 
14. Why is TLB shootdown expensive? Why is it more expensive in Mach than in SVR4/MP or 

SVR4.2/MP? 
15. How do you think SVR4/MP and SVR4.2/MP handle TLB invalidations caused by writing a 

copy-on-write page? 
16. What additional TLB consistency problems are caused by lightweight processes? 
17. Why is lazy shootdown preferable to immediate shootdown in many cases? When is 

immediate shootdown necessary? 
18. Does an MMU with a virtually addressed cache still need a TLB? What would be the benefits 

and drawbacks? 
19. What is the difference between an address alias and a mapping change? 
20. How does the kernel ensure consistency of the TLB and the virtual address cache during an 

exec system call? 

15.15 References 

[Bala 92] Balan, R., and Golhardt, K., "A Scalable Implementation of Virtual Memory HAT 
Layer for Shared Memory Multiprocessor Machines," Proceedings of the Summer 
1992 USENIXTechnical Conference, Jun. 1992, pp. 107-115. 

[Blac 89] Black, D.L., Rashid, R., Golub, D., Hill, C., and Baron, R., "Translation Lookaside 
Buffer Consistency: A Software Approach," Proceedings of the Third International 
Conference on Architectural Support for Programming Languages and Operating 
Systems, Apr. 1989, pp. 113-132. 

[Chao 90] Chao, C., Mackey, M., and Sears, B., Mach on a Virtually Addressed Cache 
Architecture," Proceedings of the First Mach USENIX Workshop, Oct. 1990, pp. 31-
51. 

[Chen 87] Cheng, R., "Virtual Address Cache in UNIX," Proceedings of the Summer 1987 
USENIX Technical Conference, Jun. 1987, pp. 217-224. 



15.15 References 509 

[Cleg 86] 

[Drav 91] 

[Golu 91] 

[Inou 92] 

[Kane 88] 
[Klei 86] 

[Lee 89] 

[McKu 95] 

[McNa 90] 

[MIPS 90] 
[Peac 92] 

[Pfis 85] 

[Rash 88] 

[Rose 89] 

[Subr 91] 

[Sun 86] 

Clegg, F.W., Ho, G.S.-F., Kusmer, S.R., and Sontag, J.R., "The HP-UX Operating 
System on HP Precision Architecture Computers," Hewlett-Packard Journal, Vol. 
37, No. 12, 1986, pp. 4-22. 
Draves, R.P., "Page Replacement and Reference Bit Emulation in Mach," 
Proceedings of the Second USENIX Mach Symposium, Nov. 1991, pp. 201-212. 
Golub, D.B., and Draves, R.P., "Moving the Default Memory Manager Out of the 
Mach Kernel," Proceedings of the Second USENIX Mach Symposium, Nov. 1991, 
pp. 177-188. 
Inouye, J., Konuru, R., Walpole, J., and Sears, B., "The Effects of Virtually 
Addressed Caches on Virtual Memory Design and Performance," Operating Systems 
Review, Vol. 26, No.4, Oct. 1992, pp. 14-29. 
Kane, G., Mips RISC Architecture, Prentice-Hall, Englewood Cliffs, NJ, 1988. 
Kleiman, S.R., "Vnodes: An Architecture for Multiple File System Types in Sun 
UNIX," Proceedings of the Summer 1986 USENIX Technical Conference, Jun. 1986, 
pp. 238-247. 
Lee, R.B., "Precision Architecture," IEEE Computer, Vol. 21, No. 1, Jan. 1989, pp. 
78-91. 
McKusick, M.K., "A New Virtual Memory Implementation for Berkeley UNIX," 
Computing Systems, Vol. 8, No. 1, Winter 1995. 
McNamee, D., and Armstrong, K., "Extending the Mach External Pager Interface to 
Accommodate User-Level Page Replacement," Proceedings of the First Mach 
USENIX Workshop, Oct. 1990, pp. 17-29. 
MIPS Computer Systems Inc., MIPS R4000 Preliminary Users Guide, 1990. 
Peacock, J.K., Saxena, S., Thomas, D., Yang, F., and Yu, W., "Experiences from 
Multithreading System V Release 4," Proceedings of the Third USENIX Symposium 
on Distributed and Multiprocessor Systems (SEDMS III), Mar. 92, pp. 77-91. 
Pfister, G.F., Brantley, W.C., George, D.A., Harvey, S.L., Kleinfelder, W.J., 
McAuliffe, K.P., Melton, E.A., Norton, V.A., and Weiss, J., "The IBM Research 
Parallel Prototype (RP3): Introduction and Architecture," Proceedings of the 1985 
International Conference on Parallel Processing, IEEE Computer Society, 1985, pp. 
764-771. 
Rashid, R.F., Tevanian, A., Young, M., Golub, D., Black, D., Bolosky, W., and 
Chew, J., "Machine-Independent Virtual Memory Management for Paged Uni
processor and Multiprocessor Architectures," IEEE Transactions on Computing, vol. 
37, no. 8, Aug. 1988, pp. 896-908. 
Rosenburg, B.S., "Low-Synchronization Translation Lookaside Buffer Consistency 
in Large-Scale Shared-Memory Multiprocessors," Eleventh ACM Symposium on 
OperatingSystemsPrinciples, Nov.1987,pp.137-146. 
Subramanian, I., "Managing Discardable Pages with an External Pager," 
Proceedings of the Second USENIX Mach Symposium, Nov. 1991, pp. 201-212. 
Sun Microsystems, Inc., "Sun-3 Architecture: A Sun Technical Report," Aug. 1986. 



510 Chapter 15 More Memory Management Topics 

[Tell88] Teller, P., Kenner, R., and Snir, M., "TLB Consistency on Highly Parallel Shared 
Memory Multiprocessors," Proceedings of the Twenty-First Annual Hawaii Inter
national Conforence on System Sciences, IEEE Computer Society, 1988, pp. 184-192. 

[Teva 87] Tevanian, A., Rashid, R.F., Young, M.W., Golub, D.B., Thompson, M.R., Bolosky, 
W., and Sanzi, R., "A UNIX Interface for Shared Memory and Memory Mapped 
Files Under Mach," Technical Report CMU-CS-l-87, Department of Computer 
Science, Carnegie-Mellon University, Jul. 1987. 

[Thorn 88] Thompson, M.Y., Barton, J.M., Jermoluk, T.A., and Wagner, J.C., "Translation 
Lookaside Buffer Synchronization in a Multiprocessor System," Proceedings of the 
Winter 1988 USENIXTechnical Conference, Jan. 1988, pp. 297-302. 

[Whee 92] Wheeler, R., and Bershad, B.N., "Consistency Management for Virtually Indexed 
Caches," Proceedings of the Fifth International Conference on Architectural Support 
for Programming Languages and Operating Systems, Oct. 1992. 

[Youn 87] Young, M.W., Tevanian, A., Rashid, R.F., Golub, D.B., Eppinger, J., Chew, J., 
Bolosky, W., Black, D., and Baron, R., "The Duality of Memory and 
Communication in the Implementation of a Multiprocessor Operating System," 
Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, 
Nov. 1987, pp. 63-76. 



16 

Device Drivers and 110 

16.1 Introduction 

The I/0 subsystem handles the movement of data between memory and peripheral devices such as 
disks, printers, and terminals. The kernel interacts with these devices through device drivers. A 
driver controls one or more devices and is the only interface between the device and the rest of the 
kernel. This separation hides the intricacies of the device hardware from the kernel, which can ac
cess the device using a simple, procedural interface. 

A comprehensive discussion of device drivers is beyond the scope of this book. Many books 
[Paja 92, Egan 88] devote themselves exclusively to this topic. Moreover, each UNIX vendor pub
lishes detailed manuals [Sun 93] that explain how to write drivers for their platforms. This chapter 
simply provides an overview of the UNIX device driver framework. It deals primarily with the 
SVR4 interfaces, discusses their strengths and drawbacks, and describes some alternative ap
proaches. It also describes the 1/0 subsystem, which is the part of the operating system that imple
ments the device-independent processing ofl/0 requests. 

16.2 Overview 

A device driver is part of the kernel-it is a collection of data structures and functions that controls 
one or more devices and interacts with the rest of the kernel through a well-defined interface. In 
many ways, though, a driver is different and separate from the core components of the kernel. It is 
the only module that may interact with the device. It is often written by a third-party vendor, usu-

511 



512 Chapter 16 Device Drivers and !10 

ally, the vendor of the device itself. It does not interact with other drivers, and the kernel may access 
it only through a narrow interface. There are many benefits to such an approach: 

• We can isolate device-specific code in a separate module. 
• It is easy to add new devices. 
• Vendors can add devices without kernel source code. 
• The kernel has a consistent view of all devices and accesses them through the same inter

face. 

Figure 16-1 illustrates the role of the device driver. User applications communicate with pe
ripheral devices through the kernel using the system call interface. The 1/0 subsystem in the kernel 
handles these requests. It, in tum, uses the device driver interface to communicate with the devices. 

Each layer has a well-defined environment and responsibilities. User applications need not 
know whether they are communicating with a device or an ordinary file. A program that writes data 
to a file should be able to write the same data to a terminal or serial line without modification or re
compilation. Hence the operating system provides a consistent, high-level view of the system to 
user processes. 

The kernel passes all device operations to the I/0 subsystem, which is responsible for all 
device-independent processing. The I/0 subsystem does not know the characteristics of individual 
devices. It views devices as high-level abstractions manipulated by the device driver interface and 
takes care of issues such as access control, buffering, and device naming. 

The driver itself is responsible for all interaction with the device. Each driver manages one 
or more similar devices. For example, a single disk driver may manage a number of disks. It alone 
knows about the hardware characteristics of the device, such as the number of sectors, tracks, and 
heads of a disk, or the baud rates of a serial line. 

The driver accepts commands from the 1/0 subsystem through the device driver interface. It 
also receives control messages from the device, which include completion, status, and error notifi
cations. The device usually gets the driver's attention by generating an interrupt. Each driver has an 
interrupt handler, which the kernel invokes when it fields the appropriate interrupt. 

kernel 

____ L~~~~~~~~~~~~~~~~~~~~~QQ~~~~~i~!~~~~~~~-~~~~~~~~~~~~~~~~~~----
device driver interface 

Figure 16-1. Role of a device driver. 



16.2 Overview 513 

16.2.1 Hardware Configuration 

Device drivers are, by nature, extremely hardware-dependent. The driver framework takes into ac
count how the CPU interacts with the device. Figure 16-2 is a simplistic view of the hardware setup 
in a typical system. The system bus is a high-speed, high-bandwidth interconnect, to which the 
CPU, MMU, and device controllers are attached. The Intel 80486 machines, for example, have ISA 
(Industry Standard Architecture) or EISA (Extended Industry Standard Architecture) buses.I On 
some machines, peripheral devices are connected to a separate I/0 bus such as a MASSBUS or 
UNIBUS, which in turn is attached to the system bus through an adapter. 

We can view a device as comprising two components-an electronic part, which is called a 
controller or adapter, and a mechanical part, which is the device itself. The controller is normally a 
printed circuit board that attaches to the computer and connects to the bus. A typical desktop com
puter may have a disk controller, a graphics card, an I/0 card, and perhaps a network interface card. 

Each controller may have one or more devices attached to it. The devices are usually of like 
type, but not necessarily so. For instance, a SCSI (Small Computer Systems Interface) controller 
[ANSI 92a] can control hard disks, floppy drives, CD-ROM (read-only compact disks) drives, and 
tape drives. 

The controller has a set of Control and Status Registers (CSRs) for each device. Each device 
may have one or several CSRs, and their functions are completely device-dependent. The driver 
writes to the CSRs to issue commands to the device and reads them to obtain completion status and 
error information. These registers are very different from other general-purpose registers. Writing to 
a control register directly results in some device action, such as initiating disk I/0 or performing a 
form-feed on a printer. Reading a status register may also have side effects, such as clearing the 
register. Hence the driver will not get the same results if it reads a device register twice in succes-

controllers 

Figure 16-2. Hardware configuration in a typical system. 

1 Many 80486 machines also have a PCI (Peripheral Components Interconnect) local bus. 



514 Chapter 16 Device Drivers and 1/0 

sion. Likewise, if it tries to read a register to which it has just written, the value read may be quite 
different from what was written. 2 

The I/0 space of a computer includes the set of all device registers, as well as frame buffers 
for memory-mapped devices such as graphics terminals. Each register has a well-defined address in 
the I/0 space. These addresses are usually assigned at boot time, using a set of parameters specified 
in a configuration file used to build the system. The system might assign a range of addresses to 
each controller, which in turn might allocate space for each device it manages. 

There are two ways in which I/0 space is configured in a system. On some architectures 
such as the Intel 80x86, the I/0 space is separate from main memory and is accessed by special I/0 
instructions (such as i nb and outb). Others, such as the Motorola 680x0, use an approach called 
memory-mapped device J/0. This approach maps I/0 registers into a part of main memory and uses 
ordinary memory access instructions to read and write the registers. 

Likewise, there are two ways of transferring data between the kernel and the device, and the 
method used depends on the device itself. We can classify devices into two categories based on their 
data transfer method-Programmed I/0 (PIO) and Direct Memory Access (DMA). PIO devices re
quire the CPU to move data to or from the device one byte at a time. Whenever the device is ready 
for the next byte, it issues an interrupt. If a device supports DMA, the kernel may give it the loca
tion (source or destination) of the data in memory, the amount of data to transfer, and other relevant 
information. The device will complete the transfer by directly accessing memory, without CPU in
tervention. When the transfer completes, the device will interrupt the CPU, indicating that it is ready 
for the next operation. 

Typically, slow devices such as modems, character terminals, and line printers are PIO de
vices, while disks and graphics terminals are DMA devices. Some architectures such as the SPARC 
also support Direct Virtual Memory Access (DVMA), where the device interacts directly with the 
MMU to transfer data to virtual addresses. In such a case, a device may directly transfer data to an
other device without going through main memory. 

16.2.2 Device Interrupts 

Devices use interrupts to get the attention of the CPU. Interrupt handling is highly machine
dependent, but we can discuss a few general principles. Many UNIX systems define a set of inter
rupt priority levels (ipls). The number of ipls supported is different for each system. The lowest 
ipl is zero; in fact, all user code and most of the normal kernel code runs at ipl 0. The highest ipl 
is implementation-dependent: Some common values are 6, 7, 15, and 31. Ifthe ipl of an arriving 
interrupt is lower than the current ipl of the system, the interrupt is blocked until the system ipl 
falls below that of the pending interrupt. This allows the system to prioritize different types of 
interrupts. 

Each device interrupts at a fixed ipl; usually, all devices on a single controller have the same 
ipl. When the kernel handles an interrupt, it first sets the system ipl to that of the interrupt, so as to 
block further interrupts from that device (as well as others of the same or lower priority). Moreover, 

2 A single register could server as a control and status register, allowing both reads and writes. 



16.2 Overview 515 

some kernel routines raise the ipl temporarily to block certain interrupts. For instance, the routine 
that manipulates the queue of disk block buffers raises the ipl to block out the disk interrupts. Oth
erwise, a disk interrupt may occur while the queue is in an inconsistent state, confusing the disk 
driver. 

The kernel uses a set of routines to manipulate the ipl. For instance, s p l tty () raises the ipl 
to that of the terminal interrupt. The s p l x () routine lowers the ipl to a previously saved value. 
These routines are usually implemented as macros for efficiency. 

Usually all interrupts invoke a common routine in the kernel and pass it some information 
that identifies the interrupt. This routine saves the register context, raises the ipl of the system to 
that of the interrupt, and calls the handler for that interrupt. When the handler completes, it returns 
control to the common routine, which restores the ipl to its previous value, restores the saved regis
ter context, and returns from the interrupt. 

How does the kernel identify the correct interrupt handler? This depends on whether the 
system supports vectored or polled interrupts. In a completely vectored system, each device pro
vides a unique interrupt vector number, which is an index into an interrupt vector table. The entries 
in the table are pointers to the appropriate interrupt handlers. 

On some systems, the interrupt may only supply the ipl. Alternatively, it may supply a vec
tor, but multiple devices may map to the same vector. In either case, the kernel may have to decide 
which of several interrupt handlers to invoke. It maintains a linked list of all handlers that share the 
same ipl (or the same vector). When an interrupt arrives, the common routine loops through the 
chain and polls each driver. The driver in turn checks if the interrupt was generated by one of its 
devices. If so, it handles the interrupt and returns success to the common routine. If not, it returns 
failure, and the common routine polls the next device. 

It is possible to combine the two methods. Systems that support vectoring may also access 
the handlers through a linked list. This provides an easy way of dynamically loading a device driver 
into a running system. It also allows vendors to write override drivers, which are installed at the 
front of the linked list. Such a driver sits between the device and its default driver. It selectively 
traps and handles certain interrupts, and it passes the rest on to the default driver. 

Interrupt handling is the most important task of the system, and the handler executes in pref
erence to any user or system processing. Since the handler interrupts all other activity (except for 
higher priority interrupts), it must be extremely quick. Most UNIX implementations do not allow 
interrupt handlers to sleep. If a handler needs a resource that might be locked, it must try to acquire 
it in a nonblocking way. 

These considerations influence what work the interrupt handler must do. On one hand, it 
must be short and quick, and hence do as little as possible. On the other hand, it must do enough 
work to make sure the device does not idle under a heavy load. For instance, when a disk 1/0 opera
tion completes, the disk interrupts the system. The handler must notify the kernel of the results of 
the operation. It must also initiate the next 1/0 if a request is pending. Otherwise, the disk would 
idle until the kernel regained control and started the next request. 

Although these mechanisms are common to a large number of UNIX variants, they are far 
from universal. Solaris 2.x, for instance, moves away from the use of ipls except in a small number 
of cases. It uses kernel threads to handle interrupts and allows such threads to block if needed (see 
Section 3.6.5). 



516 Chapter 16 Device Drivers and J/0 

16.3 Device Driver Framework 

In this section, we describe the framework for writing device drivers for UNIX. This includes the 
interface between the driver and the rest of the kernel, and the 1/0 subsystem's view of the devices 
and drivers. 

16.3.1 Classifying Devices and Drivers 

The 1/0 subsystem manages the device-independent part of all 1/0 operations. It needs a high-level, 
procedural view of devices. From its perspective, a device is a black box that supports a standard set 
of operations. Each device implements these operations differently, but the 1/0 subsystem is not 
concerned with that. In object-oriented terms (see Section 8.6.2), the driver interface forms an ab
stract base class, and each driver is a subclass, or specific implementation, of it. In practice, a single 
interface is not appropriate for all devices, since they vary greatly in functionality and access meth
ods. UNIX therefore divides devices into two types-block and character-and defines a different 
interface for each. 

A block device stores data and performs I/0 in fixed-size, randomly accessible blocks. The 
block size is usually 512 bytes or a power-of-two multiple thereof. Examples of block devices are 
hard disks, floppy drives, and CD-ROM drives. Only block devices may contain a UNIX file sys
tem. The kernel interacts with block device drivers using buf structures, which encapsulate all de
tails of the I/0 operation. 

Traditionally, the block drivers transferred data to and from an area of memory called the 
buffer cache (see Section 9.12). Each block of the cache has a buf structure associated with it. In 
modem UNIX systems, the memory subsystem provides much of the functionality of the buffer 
cache, and the latter is reduced both in size and in importance. Consequently, block devices do most 
of their I/0 to paged memory. Nonetheless, block drivers continue to use buf structures to describe 
I/0 operations. These structures are dynamically associated with the memory location of the data 
and passed to the driver. When the block driver reads or writes a buffer, it uses either a block in the 
buffer cache or an extent of memory described by a buf structure. This is further described in Sec
tion 16.6. 

A character device can store and transfer arbitrary-sized data. Some character devices may 
transfer data one byte at a time, generating an interrupt after every byte. Others may perform some 
internal buffering. The kernel interprets the data as a continuous byte-stream that is accessed se
quentially. The character device is not randomly addressable and does not permit a seek operation. 
Examples of character devices are terminals, printers, the mouse, and sound cards. 

Not all devices fall neatly into one of these categories. In UNIX, every device that does not 
have the properties of a block device is classified as a character device. Some devices do no I/0 at 
all. The hardware clock, for example, is a device whose job is merely to interrupt the CPU at fixed 
intervals, typically 100 times per second. Memory-mapped screens are randomly addressable, yet 
are treated as character devices. Some block devices, such as disks, also provide a character device 
interface, since that is more efficient for certain operations. 

A driver does not have to control a physical device. It may simply use the driver interface to 
provide special functionality. The mem driver, for example, allows users to read or write locations in 



16.3 Device Driver Framework 517 

physical memory. The null device is a bit-sink-it only allows writes and simply discards all data 
written to it. The zero device is a source of zero-filled memory. Such devices are called pseudode
vices. 

One important advantage of a pseudodevice driver is that it is often the only way a third
party vendor can add functionality to a UNIX kernel. UNIX drivers support a general-purpose entry 
point called ioctl. This may be invoked with an arbitrary number of driver-specific commands. This 
allows a pseudodevice driver to provide a rich set of kernel functions to the user, without actually 
modifying the kernel itself. 

Modem UNIX systems support a third class of drivers, called STREAMS drivers. 
STREAMS drivers typically control network interfaces and terminals, and replace character drivers 
used in earlier implementations for such devices. For compatibility reasons, the STREAMS driver 
interface is derived from that of character drivers, as described in Section 16.3.3. 

16.3.2 Invoking Driver Code 

The kernel invokes the device driver in several ways: 

• Configuration - The kernel calls the driver at boot time to check for and initialize the 
device. 

• 1/0 - The I/0 subsystem calls the driver to read or write data. 
• Control - The user may make control requests such as opening or closing the device, or 

rewinding a tape drive. 
• Interrupts - The device generates interrupts upon I/0 completion, or other change in its 

status. 

The configuration functions are called only once, when the system boots. The I/0 and control func
tions are synchronous operations. They are invoked in response to specific user requests and run in 
the context of the calling process. The block driver strategy routine is an exception to this (see Sec
tion 0). Interrupts are asynchronous events-the kernel cannot predict when they will occur, and 
they do not run in the context of any specific process. 

This suggests partitioning the driver into two parts, usually called the top half and the bot
tom half The top half contains the synchronous routines, and the bottom half contains the asyn
chronous routines. Top-half routines execute in process context. They may access the address space 
and the u area of the calling process, and may even put the process to sleep if necessary. Bottom
half routines run in system context and usually have no relation to the currently running process. 
They are therefore not allowed to access the current user address space or the u area. Also, they are 
not allowed to sleep, since that may block an unrelated process. 

The two halves of the driver need to synchronize their activities with each other. If an object 
is accessed by both halves, then the top-half routines must block interrupts (by raising the ipl) while 
manipulating it. Otherwise, the device might interrupt while the object is in an inconsistent state, 
with unpredictable results. 

In addition to the kernel accessing the driver, the driver may invoke kernel functions to carry out 
tasks such as buffer management, access control, and event scheduling. This part of the interface is de
scribed in Section 16.7. Before that, we discuss the specifics of the block and character driver interfaces. 



518 Chapter 16 Device Drivers and J/0 

16.3.3 The Device Switches 
The device switch is a data structure that defines the entry points each device must support. There 
are two types of switches-struct bdevsw for block devices and struct cdevsw for character de
vices. The kernel maintains a separate array for each type of switch, and each device driver has an 
entry in the appropriate array. If a driver provides both a block and a character interface, it will have 
an entry in both arrays. 

Example 16-1 describes typical switch data structures: 

struct bdevsw { 
i nt (*d open) (); 
i nt (*d.-.-cl ose) (); 
int (*d-strategy}(); 
int (*d-size)(); 
int (djhalt)(); 

bdevsw[]; 

struct cdevsw { 
int {*d,open)(); 
int {*d-close)(); 
i nt (*d-read)(); 
int {*d-write}{); 
int {*d-ioctl)(); 
int (*d-mmap}{); 
int {*d-segmap)(); 
int {*d~xpoll)(); 
int {*d=xhalt)(); 
struct streamtab* d_str; 

cdevsw[]; 

Example 16-1. Block and character device switches. 

The switch defines the abstract interface. Each driver provides specific implementations of 
these functions. The next subsection describes each entry point. Whenever the kernel wants to per
form an action on a device, it locates the driver in the switch table and invokes the appropriate 
function of the driver. For example, to read data from a character device, the kernel invokes the 
d _read () function of the device. In the case of a terminal driver, this might dereference to a routine 
called t tread (). This is further described in Section 16.4.6. 

Device drivers follow a standard naming convention for the switch functions. Each driver 
uses a two-letter abbreviation to describe itself. This becomes a prefix for each of its functions. For 
instance, the disk driver may use the prefix dk and name its routines dkopen(), dkclose(), 
dkstrategy(), and dksize(). 



16.3 Device Driver Framework 519 

A device may not support all entry points. For instance, a line printer does not normally al
low reads. For such entry points, the driver can use the global routine nodev (), which simply re
turns the error code ENODEV. For some entry points, the driver may wish to take no action. For in
stance, many devices perform no special action when closed. In such a case, the driver may use the 
global routine null dev (),which simply returns 0 (indicating success). 

As mentioned earlier, STREAMS drivers are nominally treated and accessed as character 
device drivers. They are identified by the d _ s t r field, which is NULL for ordinary character drivers. 
For a STREAMS driver, this field points to a struct streamtab, which contains pointers to 
STREAMS-specific functions and data. Chapter 17 discusses STREAMS in detail. 

16.3.4 Driver Entry Points 

We now describe the device functions accessed through the device switch: 

d_open() 

d_cl ose() 

d_strategy() 

d_size() 
d_read() 
d_write() 
d_ioctl() 

d_segmap(} 

Called each time the device is opened, and may bring device on-line or 
initialize data structures. Devices that require exclusive access (such as 
printers or tape drives) may set a flag when opened and clear it when 
closed. If the flag is already set, d _open() may block or fail. Common to 
both block and character devices. 
Called when the last reference to this device is released, that is, when no 
process has this device open. May shutdown device or take it off-line. A 
tape driver may rewind the tape. Common to both block and character de
vices. 
Common entry point for read and write requests to a block device. So 
named since the driver may use some strategy to reorder pending requests 
to optimize performance. Operates asynchronously-if the device is busy, 
this routine merely queues the request and returns. When the I/0 com
pletes, the interrupt handler will dequeue the next request and start the 
next I/0. 
Used for disk devices, to determine the size of a disk partition. 
Reads data from a character device 
Writes data to a character device 
Generic entry point for control operations to a character device. Each 
driver may define a set of commands invoked through its ioctl interface. 
The arguments to this function include cmd, an integer that specifies which 
command to execute, and arg, a pointer to a command-specific set of ar
guments. This is a highly versatile entry point that supports arbitrary op
erations on the device. 
Maps the device memory into the process address space. Used by mem
ory-mapped character devices to set up the mapping in response to the 
mmap system call. 



520 

d_mmap() 

d_xpoll () 

d _ xha lt () 

Chapter 16 Device Drivers and 110 

Not used if the d_ segmap () routine is supplied. If d_ segmap is NULL, the 
mmap system call on a character device calls spec_segmap{), which in 
turn calls d _ mma p () . Checks if specified offset in device is valid and re
turns the corresponding virtual address. 
Polls the device to check if an event of interest has occurred. Can be used 
to check if a device is ready for reading or writing without blocking, if an 
error condition has occurred, and so on. 
Shuts down the devices controlled by this driver. Called during system 
shutdown or when unloading a driver from the kernel. 

The switch structures vary a little between different UNIX versions. Some variants, for in
stance, expand the block device switch to include functions such as d _ i oct 1 (), d _read(), and 
d _write (). Others include functions for initialization or for responding to bus resets. 

Except for d_xhalt() and d_strategy(), all of the above are top-half routines. d_xhalt() 
is called during shutdown and, hence, cannot assume any user context or even the presence of inter
rupts. It therefore must not sleep. 

The d _strategy() operation is special for several reasons. It is frequently invoked to read 
or write buffers that are not relevant to the calling process. For instance, a process trying to allocate 
a free buffer finds that the first buffer on the freelist is dirty, and invokes the strategy routine to 
flush it to disk. Having issued the write, the process allocates the next free buffer (assuming it is 
clean) and proceeds to use it. It has no further interest in the buffer that is being written, nor does it 
need to wait for the write to complete. Moreover, disk I/0 operations are often asynchronous (as in 
this example), and the driver must not block the caller. 

Hence d _strategy() is treated as a bottom-half routine. It initiates the l/0 operation and 
returns immediately without waiting for I/0 completion. If the device is busy when the request ar
rives, d_ strategy() simply adds the request to an internal queue and returns. Eventually, other 
bottom-half routines invoked from the interrupt code will dequeue and execute the request. If the 
caller needs to wait for the I/0 to complete, it does so outside the d _ strategy () routine. 

The driver entry points for interrupt handling and initialization are typically not accessed 
through the switch table. Instead, they are specified in a master configuration file, which is used to 
build the kernel. This file contains an entry for each controller and driver. The entry also contains 
information such as the ipl, interrupt vector number, and the base address of the CSRs for the driver. 
The specific contents and format of this file are different for each implementation. 

SVR4 defines two initialization routines for each driver-init and start. Each driver registers 
these routines in the io_init[] and io_start[] arrays, respectively. The bootstrapping code in
vokes all init functions before initializing the kernel and all start functions after the kernel is initial
ized. 

16.4 The 1/0 Subsystem 

The I/0 subsystem is the portion of the kernel that controls the device-independent part of I/0 op
erations and interacts with the device drivers to handle the device-dependent part. It is also respon-



16.4 The 1/0 Subsystem 521 

sible for device naming and protection, and for providing user applications with a consistent inter
face to all devices. 

16.4.1 Major and Minor Device Numbers 
The name space of devices describes how different devices are identified and referenced. There are 
three different name spaces for UNIX devices. The hardware name space identifies devices by the 
controller they are attached to and the logical device number on that controller. The kernel uses a 
numbering scheme to name devices. Users require a simple and familiar name space and use file 
system pathnames for this purpose. The 1/0 subsystem defmes the semantics of the kernel and user 
name spaces and performs the mapping between them. 

The kernel identifies each device by the device type (block or character), plus a pair of num
bers, called the major and minor device numbers. The major device number identifies the type of 
device, or more specifically, the driver. The minor device number identifies the specific instance of 
the device. For example, all disks may have major number 5, and each disk will have a different mi
nor number. Block and character devices have their own independent sets of major numbers. Thus 
major number 5 for block devices may refer to the disk driver, while that for character devices may 
refer to line printers. 

The major number is the index of that driver in the appropriate switch table. In the previous 
example, if the kernel wants to invoke the open operation of a disk driver, it locates entry number 5 
of bdevsw [] and calls its d _open() function. Usually, the major and minor numbers are combined 
into a single variable of type dev _ t. The high-order bits contain the major number, and the low
order bits contain the minor number. The getmaj or() and getmi nor() macros extract the respec
tive parts. The code in the previous example looks something like this: 

(*bdevsW[S¢tl1Jajor(d~vH~d. open) {q~v~.••·· 
.. :.· ....... :-.. -.:-.:.:-·.·/":·:.·:··.· ··.· .. ·._.·.;. .· ... -·· .. · -:·:. .... ·.·· .. ·.;.· ... : .... ;-:"::·:::.:"·::::.-:· 

The kernel passes the device number as an argument to the driver's d_ open() routine. The 
device driver maintains internal tables to translate the minor device number to specific CSRs or 
controller port numbers. It extracts the minor number from dev and uses it to access the correct device. 

A single driver may be configured with multiple major numbers. This is useful if the driver 
manages different types of devices that perform some common processing. Likewise, a single de
vice may be represented by multiple minor numbers. For example, a tape drive may use one minor 
number to select an auto-rewind mode and another for no-rewind mode. Finally, if a device has both 
a block and a character interface, it uses separate entries in both switch tables, and hence separate 
major numbers for each. 

In earlier UNIX releases, dev _ t was a 16-bit field, with 8 bits each for the major and minor 
numbers. This imposed a limit of 256 minor devices for a major device type, which was too restric
tive for some systems. To circumvent that, drivers used multiple major device numbers that mapped 
to the same major device. Drivers also used multiple major numbers if they controlled devices of 
different types. 

Another problem is that the switch tables may grow very large if they contain entries for 
every possible device, including those that are not connected to the system or whose drivers are not 



522 Chapter 16 Device Drivers and 110 

linked with the kernel. This happens because vendors do not want to customize the switch table for 
each different configuration they ship, and hence tend to throw everything into the switches. 

SVR4 makes several changes to address this problem. The dev _ t type is 32 bits in size, 
usually divided into 14 bits for a major number and 18 for a minor number. It also introduces the 
notion of internal and external device numbers. The internal device numbers identify the driver and 
serve as indexes into the switches. The external device numbers form the user-visible representation 
of the device and are stored in the i _ rdev field of the inode of the device special file (see Section 
16.4.2). 

On many systems, such as the Intel x86, the internal and external numbers are identical. On 
systems that support autoconfiguration, such as the AT&T 3B2, the two are different. On these sys
tems, the bdevsw[] and cdevsw[] are built dynamically when the system boots and only contain 
entries for the drivers that are configured into the system. The kernel maintains an array called 
MAJOR[], which is indexed by the external major number. Each element of this array stores the cor
responding internal major number. 

The mapping between external and internal major numbers is many-to-one. The kernel pro
vides the macros etoimajor () and i toemaj or() to translate between the two numbers. The Hoe
major() macro must be called repeatedly to generate all possible major numbers. There are also 
two minor numbers. For instance, if a driver supports two external major numbers with eight de
vices on each, they would internally map to minor numbers 0 to 15 for the single internal major 
number. 

The getmajor () and getmi nor() macros return internal device numbers. The getemajor() 
and getemi nor() macros return external device numbers. 

16.4.2 Device Files 

The <major, minor> pair provides a simple and effective device name space for the kernel. At the 
user level, however, it is quite unusable: users do not wish to remember a pair of numbers for each 
device. More important, users want to use the same applications and commands to read or write 
both to ordinary files and to devices. The natural solution is to use the file system name space to de
scribe devices as well as files. 

UNIX provides a consistent interface to files and devices by introducing the notion of a de
vice file. This is a special file located anywhere in the file system and associated with a specific de
vice. By convention, all device files are maintained in the directory /dev or a subdirectory thereof. 

To users, a device file is not much different from an ordinary file. A user can open and close 
the device file, read or write to it, and even seek to a specific offset (only a few devices allow 
seeks). The shell can redirect stdin, stdout, or stderr to a device file. These operations translate to 
action on the device that the file represents. For instance, writing some data to the file /dev/lpr has 
the effect of printing the data on the line printer. 

Internally, the device file is quite different from ordinary files. It has no data blocks on disk, 
but it does have a permanent inode in the file system in which it is located (usually, the root file 
system). The di_mode field of the inode shows that the file type is either IFBLK (for block devices) 
or I FCHR (for character devices). Instead of the list of block numbers, the inode contains a field 
called d i _ rdev, which stores the major and minor numbers of the device it represents. This allows 



16.4 The 1/0 Subsystem 523 

the kernel to translate from the user-level device name (the pathname) to the internal device name 
(the <major, minor> pair). The translation mechanism is further described in the next section. 

The device file cannot be created in the usual way. Only a superuser may create a device file, 
using the privileged system call 

mlcn.od (Pcat~, mqd~~. dev); 

where path is the pathname of the special file, mode specifies the file type (IFBLK or IFCHR) and 
permissions, and dev is the combined major and minor device number. The mknod call creates a 
special file and initializes the di _mode and di _rdev fields of the inode from the arguments. 

Unifying the file and device name space has great advantages. Device I/0 uses the same set 
of system calls as file I/0. Programmers may write applications without worrying about whether the 
input or output is to a device or to a file. Users see a consistent view of the system and may use de
scriptive character-string names to reference devices. 

Another important benefit is access control and protection. Some operating systems such as 
DOS allow all users unrestricted access to all devices, whereas some mainframe operating systems 
allow no direct access to devices. Neither scheme is satisfactory. By unifying the file system and 
device name space, UNIX transparently extends the file protection mechanism to devices. Each de
vice file is assigned the standard read/write/execute permissions for owner, group, and others. These 
permissions are initialized and modified in the usual way, just as for files. Typically, some devices 
such as disks are directly accessible only by the superuser, while others such as tape drives may be 
accessed by all. 

16.4.3 The specfs File System 

Modem UNIX systems use some form of the vnode/vfs interface [Klei 86], which allows multiple 
file system types in the same kernel. This approach associates an in-core object called a vnode with 
every open file. The interface defines a set of abstract operations on each vnode, and each file sys
tem supplies its own implementation of these functions. The v _ op field in the vnode points to a 
vector of pointers to these functions. For example, the vnode of a ufs (UNIX file system) file points 
to a vector called ufsops, which contains pointers to the ufs functions such as ufs 1 ookup (), 
ufsc1 ose (),and ufs 1 ink(). Section 8.6 describes this interface in detail. 

Such a system needs a special way of handling device files. The device file itself resides on 
the root file system which, for the purposes of our discussion, may be assumed to be a ufs system. 
Thus its vnode is a ufs vnode and points to ufsops. Any operations on this file will be handled by 
the ufs functions. 

This, however, is not the correct behavior. The device file is not an ordinary ufs file, but a 
special file that represents the device. All operations on the file must be implemented by corre
sponding action on the device, usually through the device switch. We therefore need a way to map 
all access to the device file to the underlying device. 

SVR4 uses a special file system type, called specfs, for this purpose. It implements all vnode 
operations by looking up the device switch and invoking the appropriate functions. The specfs 
vnode has a private data structure called an snode (actually, the vnode is part of the snode). The I/0 



524 Chapter 16 Device Drivers and UO 

subsystem must ensure that, when a user opens a device file, he or she acquires a reference to the 
specft vnode, and all operations to the file are routed to it. 

To see how this happens, let us take an example where a user opens the file /devllp. The di
rectory /dev is in the root file system, which is of type uft. The open system call translates the path
name by repeatedly calling ufs _1 ookup (),first to locate the vnode for dev, then the vnode for lp. 
When ufs _1 ookup 0 obtains the vnode forlp, it finds that the file type is I FCHR. It then extracts the 
major and minor device numbers from the inode and passes them to a routine called speevp (). 

The specft file system keeps all snodes in a hash table, indexed by the device numbers. 
speevp 0 searches the hash table and, if the snode is not found, creates a new snode and vnode. The 
snode has a field called s _rea 1 vp, in which speevp 0 stores a pointer to the vnode of /devllp. Fi
nally, it returns a pointer to the specft vnode to ufs_1ookup0, which passes it back to the open 
system call. Hence open sees the specft vnode and not the vnode of the file /devllp. The specft 
vnode shadows the vnode of /devllp, and its v _ op field points to the vector of specft operations 
(such as spee_read 0 and spee_wri teO), which in turn call the device driver entry points. Figure 
16-3 illustrates the resulting configuration. 

Before returning, open invokes the VOP _OPEN operation on the vnode, which calls 
s pee_ open () in the case of a device file. The s pee_ open () function calls the d _open () routine of 
the driver, which performs the necessary steps to open the device. The term snode refers to shadow 
node. In effect, the specft vnode shadows the "real" vnode and intercepts all operations on it. 

16.4.4 The Common snode 

The specft system as described so far is incomplete and not quite correct. It assumes a one-to-one 
relationship between device files and the underlying devices. In practice, it is possible to have sev
eral device files, each representing the same device (their d i _ rdev fields will have the same value). 
These files may be in the same or different file systems. 

This creates several problems. The device close operation, for instance, must be invoked 
only when the last open descriptor to the device is closed. Suppose two processes open the device 
using different device files. The kernel should be able to recognize the situation and call the device 
close operation only after both files are closed. 

Figure 16-3. Data structures after opening /devllp. 



16.4 The 1/0 Subsystem 525 

Another problem involves page addressing. In SVR4, the name of a page in memory is de
fined by the vnode that owns the page and the offset of the page in the file. For a page associated 
with a device (such as memory-mapped frame buffers or disk blocks accessed through the raw inter
face), the name is ambiguous if multiple files refer to the same device. Two processes accessing the 
device through different device files could create two copies of the same page in memory, resulting 
in a consistency problem. 

When we have multiple file names for the same device, we can classify device operations 
into two groups. Most of the operations are independent of the file name used to access the device, 
and thus can be funneled through a common object. At the same time, there are a few operations 
that depend on the file used to access the device. For instance, each file may have a different owner 
and permissions; therefore, it is important to keep track of the "real" vnode (that of the device file) 
and route those operations to it. 

The specft file system uses the notion of a common snode to allow both types of operations. 
Figure 16-4 describes the data structures. Each device has only one common snode, created when 
the device is first accessed. There is also one snode for each device file. The snodes of all files rep
resenting the same device share the common snode and reference it through the s _ commonvp field. 

The first time a user opens a device file for a particular device, the kernel creates an snode 
and a common snode. Subsequently, if another user opens the same file, it will share these objects. 
If a user opens another file that represents the same device, the kernel will create a new snode, 
which will reference the common snode through its s _ commonvp field. The common snode is not 
directly associated with a device file; hence, its s _rea 1 vp field is NULL. Its s _ commonvp field 
points to itself. 

,---- -P1-- ---

struct snode 
(common snode) 

Figure 16-4. The common snode. 



526 Chapter 16 Device Drivers and 1/0 

16.4.5 Device Cloning 

In many cases, a user wants to open an instance of a device, but does not particularly want a specific 
minor number. For example, network protocols are usually implemented as device drivers and, if 
there are multiple active connections using the same protocol, each uses a different minor device 
number. A user who wants to establish such a connection does not care which minor number is 
used-any unused number will do. Although he or she could loop through all valid numbers 
searching for an unused one, that should not be the user's responsibility. It is desirable that the user 
specify that he wants any arbitrary minor device and that the kernel find an available device num
ber. 

This is achieved by the notion of device cloning. When a user opens a device file, the kernel 
initializes the snode and calls the s pee_ open() routine. s pee_ open() calls the d _open() entry 
point of the driver, passing it a pointer to the device number, stored in the s _ dev field of the snode. 
One way a device can support cloning is by reserving one or more minor numbers for cloning. 
When a user opens a device file using such a number, the d _open() routine generates an unused 
minor number for this instance of the device. It modifies the s dev field of the snode to reflect the 
new minor number (using the pointer passed to it) and updates internal data structures to reflect this 
mapping. In this way, multiple users can open the device by supplying the reserved minor number. 
The driver will return a different minor number (hence, a different logical instance of the device) to 
each caller. 

In SVR4, most drivers that use cloning (e.g., network protocols and pseudoterminals) are 
implemented as STREAMS drivers. SVR4 provides special cloning support for STREAMS devices, 
using a dedicated clone driver. There is one device file for each STREAMS device that supports 
cloning. Its major device number is that of the clone device, and its minor number equals the major 
device number of the real device. 

For instance, suppose the clone driver has major number 63. Then the device file /dev/tcp 
may represent all TCP (transmission control protocol) streams. If the TCP driver has a major device 
number 31, then the /dev/tcp file will have major number 63 and minor number 31. When a user 
opens /dev/tcp, the kernel allocates an snode and calls spee_open(). spee_open() invokes the 
d_ open operation of the clone driver (implemented by the el no pen() routine), passing it a pointer 
to the device number (hence, a pointer to the s _ dev field of the snode ). 

el no pen() extracts the minor number (31, in this example) and indexes it into edevsw[] to 
locate the TCP driver itself. It then invokes the d _open operation of that driver, passing it the 
pointer to the device number, and a CLONEOPEN flag. In our example, this results in a call to the 
tcpopen () function. When tcpopen () sees the CLONEOPEN flag, it generates an unused minor de
vice number and writes it back into the snode. This gives the user a unique TCP connection without 
having to guess which minor number to use. 

16.4.6 1/0 to a Character Device 

The 1/0 subsystem plays a very small role in performing 1/0 to a character device. The driver does 
most of the work itself. When a user process first opens a character device, the kernel creates an 
snode and a common snode for it, as well as a struct file that references the snode. When the 



16.5 The poll System Call 527 

user makes a read system call, for example, the kernel dereferences the file descriptor to access the 
struet file and, from it, the vnode of the file (which is part of the snode of the device). It per
forms some validation, such as making sure the file is open for reading. It then invokes the 
VOP _READ operation on the vnode, which results in a call to s pee_ read(). 

The s pee_ read() function checks the vnode type and finds that it is a character device. It 
looks up the edevsw[] table, indexing by the major device number (which is stored in v_rdev). If 
the device is a STREAMS device, it calls strread() to perform the operation. For a character de
vice, it calls the d _read() routine of the device, passing it the u i o structure containing all the pa
rameters of the read, such as the destination address in the user space and the number of bytes to be 
transferred. 

Since d _read() is a synchronous operation, it can block the calling process if the data is not 
immediately available. When the data arrives, the interrupt handler wakes up the process, which 
copies it to user space. d_read() calls the kernel function uiomove() to copy data to user space. 
u i amove() must verify that the user has write access to the locations to which the data is being 
copied. Otherwise, a careless or malicious user could overwrite his or her text segment, or even the 
kernel address space. When the transfer completes, the kernel returns the count of bytes actually 
read to the user. 

16.5 The poll System Call 

The poll system call allows a user to multiplex I/0 over several descriptors. Consider a server pro
gram that opens several network connections, each represented by a device file. It acquires a differ
ent file descriptor for each connection. If it wants to wait for an incoming message on a specific 
connection, it issues a read on that descriptor. The read system call will block the server until data 
arrives, then wake it up and return the data. 

Suppose the server wants to wait for a message to arrive at any connection. Now the read 
system call is ineffective, since a read on one descriptor may block even though data is available on 
other connections. The server must use the poll system call, which allows it to wait simultaneously 
for events on a set of descriptors and return when any event occurs. Its syntax is 

poll (fds, .nfds, timeout); 

where fds points to an array of size nfds, whose elements are described by 

struet po 11 fd 
int fd; 

} ; 

short events; 
short revents; 

I* file descriptor *! 
!*events ofinterest *I 
!* returned events *! 

For each descriptor, events specifies which events are of interest to the caller, and on return, 
revents contains the events that have occurred. Both values are bitmasks. The types of defined 
events include POLLIN (data may be read without blocking), POLLOUT (data may be written without 



528 Chapter 16 Device Drivers and 1/0 

blocking), POLLERR (an error has occurred on the device or stream), POLLHUP (a hang-up has oc
curred on the stream), and others. Hence, in normal usage, poll checks if a device is ready for I/0 or 
has encountered an error condition. 

poll examines all the specified descriptors. If any event of interest has occurred, it returns 
immediately after examining all descriptors. If not, it blocks the process until any interesting event 
occurs. When it returns, the revents field of each poll fd shows which, if any, of the events of in
terest have occurred on that descriptor. poll also returns if timeout milliseconds expire, even if no 
events have occurred. If timeout is 0, poll returns immediately. If timeout is INFTIM or -1, poll 
returns only when an event of interest occurs (or the system call is interrupted). The return value of 
poll equals the number of events that have occurred, or 0 if the call times out, or -1 if it fails for 
another reason. 

In our example, the server can issue a poll system call, specifying the POLLIN flag for each 
descriptor. When the call returns with a value greater than 0, the server knows that a message has 
arrived on at least one connection and examines the poll fd structures to find which ones. It can 
then read the message from that descriptor, process it, and poll again for new messages. 

16.5.1 pol/Implementation 
Although the descriptors passed to poll may refer to any files, they are normally used for character 
or STREAMS devices, and we focus on this case here. The tricky part of poll is to block a process 
in such a way that it can be woken up when any one of a set of events occurs. To implement this, 
the kernel uses two data structures-pollhead and polldat. The struct pollhead is associated 
with a device file. It maintains a queue of poll da t structures. Each poll da t structure identifies a 
blocked process and the events on which it is blocked. A process that blocks on multiple devices has 
one s truct poll dat for each device, and they are chained together as shown in Figure 16-5. 

The poll system call first loops through all the specified descriptors and invokes the 
VOP _POLL operation on the associated vnodes. The syntax for this call is 

error= VOP_POLL (vp, events, anyyet, &revents, &php); 

where vp is a pointer to the vnode, events is a bitmask of the events to poll for, and anyyet is the 
number of events of interest already detected by the poll system call on other descriptors. On return, 
revents contains the set of events that has already occurred and php contains a pointer to a s truct 
poll head. 

In the case of a character device, the VOP _POLL operation is implemented by spec _poll (), 
which indexes the cdevsw [] table and calls the d _ xpo ll () routine of the driver. This routine 
checks if a specified event is already pending on the device. If so, it updates the revents mask and 
returns. If no event is pending and if anyyet is zero, it returns a pointer to the poll head structure 
for the device. Character drivers typically allocate a poll head for each minor device they manage. 

On return from VOP _POLL on a device, poll checks revents and anyyet. If both are zero, no 
events of interest are pending on the devices checked so far. poll obtains the poll head pointer from 
php, allocates a poll dat structure, and adds it to the poll head's queue. It stores a pointer to the 



16.5 The poll System Call 529 

pol/heads polldat structures 

Figure 16-5. poll implementation. 

proc structure and the mask of events for this device in the po 11 dat, and chains it to other po 11 dat 
structures for the same process. 

If a device returns a nonzero value in revents, it means an event is already pending and poll 
does not need to block the process. In this case, poll removes all the po 11 da t structures from the 
po 11 head queues and frees them. It increments anyyet by the number of events set in revents. 
When it polls the next device, the driver will find anyyet to be nonzero and will not return a po 11 -
head structure. 

If no specified event is pending on any device, poll blocks the process. The drivers, mean
while, maintain information about the events on which any process is waiting. When such an event 
occurs, the driver calls po 11 wakeup(), passing it the event and the pointer to the po 11 head for that 
device. poll wakeup() goes through the poll dat queue in the po 11 head and wakes up every proc
ess waiting for that event. For each such process, it also traverses its po 11 dat chain and removes 
and releases each po 11 da t from its po 11 head queue. 

Each file system and device must implement polling. Ordinary file systems such as ufs and 
s5fs do so by calling the kernel routine fs _po 11 (),which simply copies the flags from events into 
revents, and returns. This causes poll to return immediately without blocking. Block devices usu
ally do the same thing. STREAMS devices use a routine called s t rpo 11 (), which implements 
polling for any generic stream. 

16.5.2 The 4.3850 select System Call 
4.3BSD provides a select system call that is functionally very similar to poll. The user calls select to 
wait for multiple events, using the syntax 

select {Qfi;l~ •.. ·r~agfds. wri tefds,·· exc¢ptt4s; tiroeol!t); 

where readfds, wri tefds, and exceptfds are pointers to descriptor sets for read, write, and ex
ception events respectively. In 4.3BSD, each descriptor set is an integer array of size nfds, with 
nonzero elements specifying descriptors whose events are of interest to the caller. For example, a 



530 Chapter 16 Device Drivers and 1/0 

user wishing to wait for descriptors 2 or 4 to be ready for reading will set elements 2 and 4 in 
readfds and clear all other elements in the three sets. 

The timeout argument points to a struct timeval, which contains the maximum time to 
wait for an event. If this time is zero, the call checks the descriptor and returns immediately. If 
timeout itself is NULL, the call blocks indefinitely until an event occurs on a specified descriptor. 
Upon return, select modifies the descriptor sets to indicate the descriptors on which the specified 
events have occurred. The return value of select equals the total number of descriptors that are 
ready. 

Most modem UNIX systems support select, either as a system call or as a library routine. 
Many of these implement the descriptor set in different ways, most commonly as a bitmask. To hide 
the details of the implementation, each system provides the following POSIX-compliant macros to 
manipulate descriptor sets: 

FD"'""SET (fd, fdset) 
FO...;CLR (fd, fdset) 
FD_lSSET (fd, fdset) 
FD _ZERO (fdset) 

/*sets descriptor fd in set· fdset */ 
/*clears fdin fdset */ 
/*checks if fd is setin fdset */ 
I* clears all descriptors in fdset *I 

The constant FD_SETSIZE defines the default size of the descriptor set. It equals 1024 on most sys
tems (including SVR4). 

The implementation of select is similar to that of poll in some respects. Each descriptor of 
interest must correspond to an open file, otherwise the call fails. An ordinary file or a block device 
is always considered ready for 1/0, and select is really useful only for character device files. For 
each such descriptor, the kernel calls the d _select routine of the appropriate character driver (the 
BSD counterpart of the d_ xpo ll entry point, to check if the descriptor is ready. If not, the routine 
records that the process has selected an event on the descriptor. When the event occurs, the driver 
must arrange to wake up the process, which then checks all descriptors once again. 

The 4.3BSD implementation of select is complicated by the fact that the drivers can record 
only a single selecting process. If multiple processes select on the same descriptor, there is a colli
sion. Checking for and handling such collisions may results in spurious wakeups. 

16.6 Block 1/0 

I/0 to block devices requires a lot more involvement of the I/0 subsystem. There are two 
types of block devices-those that contain a UNIX file system, and raw or unformatted devices. 
The latter are only accessed directly through their device files. Although formatted devices may also 
be used in this way, they are normally accessed as a result ofi/0 to the files resident on them. Sev
eral different events may result in block I/0. These include: 

• Reading or writing to an ordinary file. 
• Reading or writing directly to a device file. 
• Accessing memory mapped to a file. 
" Paging to or from a swap device. 



16.6 Block 110 531 

Figure 16-6 describes the various stages in the handling of a block read operation (the algo
rithm for writes is similar). In all cases, the kernel uses the page fault mechanism to initiate the read. 
The fault handler fetches the page from the vnode associated with the block. The vnode, in turn, 
calls the d _strategy () routine of the device driver to read the block. 

A file may reside in many different places-on a local hard disk, on local removable media 
such as a CD-ROM or floppy disk, or on another machine on the network. In the last case, I/0 oc
curs through network drivers, which are often STREAMS devices. This section only considers files 
on local hard disks. It begins by describing the buf structure, then examines the different ways in 
which the I/0 subsystem accesses the block devices. 

16.6.1 The buf Structure 

The buf structure forms the only interface between the kernel and the block device driver. When the 
kernel wants to read or write to the device, it invokes the d_strategy() routine of the driver, pass
ing it a pointer to a struct buf. This structure contains all the information required for the I/0 op
eration, such as: 

• Major and minor numbers of the target device 
• Starting block number of the data on the device 
• Number of bytes to be transferred (which must be a multiple of the sector size) 
• The location of the data (source or destination) in memory 
• Flags that specify whether the operation is a read or a write, and whether it is synchronous 
• Address of a completion routine to be called from the interrupt handler 

When the 1/0 completes, the interrupt handler writes status information in the buf structure 
and passes it to the completion routine. The completion status includes the following information: 

• Flags that indicate that the I/0 is complete, and whether it was successful 
• An error code, if the operation failed 
• The residual byte count, that is, the number of bytes not transferred 

The buf structure is also used by the block buffer cache, to hold administrative information 

read read block access page in 
Initiate read ordinary device mmap'ed from swap 

file directly file device 

Handle page fault as fault() 

segmap fault{) segvn fault() 

Fetch from vnode VOP GETPAGE 

spec getpage() I ufs getpage() I ... 
Fetch from disk d strategy() 

Figure 16-6. Different ways of initiating a block device read. 



532 Chapter 16 Device Drivers and 1/0 

about a cached block. In modem UNIX systems such as SVR4, the buffer cache only manages file 
metadata blocks, such as those containing inodes or indirect blocks (see Section 9.2.2). It caches the 
most recently used blocks, in the expectation that they are more likely to be needed again soon, be
cause of the locality of reference principle (see Section 13.2.6). A struct buf is associated with 
each such block; it contains the following additional fields used for cache management: 

• A pointer to the vnode of the device file. 
• Flags that specify whether the buffer is free or busy, and whether it is dirty (modified). 
• The aged flag, which is explained in the following paragraph. 
• Pointers to keep the buffer on an LRU freelist. 
• Pointers to chain the buffer in a hash queue. The hash table is indexed by the vnode and 

block number. 

The aged flag requires elaboration. When a dirty buffer is released, the kernel puts it at the 
end of the freelist. Eventually, it migrates to the head of the list, unless it is accessed in the interim. 
When the buffer reaches the head of the list, a process may try to allocate it and notice that it must 
be written back to disk first. Before issuing the write, it sets the aged flag on the buffer, indicating 
that the buffer has already traversed the freelist. Such an aged buffer must be reused before buffers 
that have been put on the freelist for the first time, since the aged buffers have been unreferenced for 
a longer time. Hence, when the write completes, the interrupt handler releases the aged buffer to the 
head of the freelist instead of the tail. 

16.6.2 Interaction with the Vnode 

The kernel addresses a disk block by specifying a vnode, and an offset in that vnode. If the 
vnode represents a device special file, then the offset is physical, relative to the start of the device. If 
the vnode represents an ordinary file, the offset is logical, relative to the start of the file. 

Hence a data block of an ordinary file can be addressed in two ways-either by its file vnode 
and logical offset, or by the device vnode and physical offset. The latter is used only when a user 
directly accesses the underlying device. This could lead to two aliases for the same block in the ker
nel, resulting in two different copies of the block in memory. To avoid such inconsistencies, direct 
access to the block device file must be restricted to when the file system is not mounted. 

Since each block is associated with a vnode (of a file or the device), the kernel channels all 
block 1/0 through the vnode (except for raw 1/0, which we discuss in Section 16.6.4). The vnode 
provides two operations for this purpose-VOP _ GETPAGE to fetch a page and VOP _PUT PAGE to flush 
it to disk. These correspond to the functions spec_getpage() and spec_putpage() for a device 
file, ufs_getpage() and ufs_putpage() for a ufs file, and so on. 

This mechanism ensures consistency when a file is being accessed by multiple processes in 
different ways. In particular, it is possible for one process to map a file into memory, while another 
is accessing it through read and write system calls. To make sure the kernel sees a consistent view 
of the file, both access paths converge at the vnode. 

The ufs_getpage() function, for example, checks to see if the page is already in memory, 
by searching a global hash table based on vnode and offset. If not, it calls the ufs _ bmap () routine to 
convert the logical block number in the file to the physical block number on the disk. It then allo-



16.6 Block 1/0 533 

cates a page in which to read the block and associates a buf structure with it. It obtains the disk's 
device number from the file's inode (which it accesses through the vnode). Finally, it calls the 
d_strategy() routine of the disk driver to perform the read, passing it a pointer to the buf, and 
waits for the read to complete (the calling process sleeps). When the 1/0 completes, the interrupt 
handler wakes up the process. ufs _get page() also takes care of some other details, such as issuing 
read-aheads when necessary. 

In the case when the block does not contain file data, it is associated with the vnode of the 
device file. Hence the s pee _get page() function is invoked to read the block. It too searches mem
ory to check if the block is already there, and issues a disk read otherwise. Unlike a regular file, 
spec _get page() does not need to convert from logical to physical block numbers, since its block 
numbers are already device-relative. 

16.6.3 Device Access Methods 

As discussed earlier, many different activities result in block 1/0. Let us discuss each of them in 
tum, and examine the code path through the kernel. 

Pageout Operations 

Every page in the pageable part of memory has a struct page associated with it. This structure has 
fields to store the vnode pointer and offset that together name the page. The virtual memory subsys
tem initializes the fields when the page is first brought into memory. 

The pagedaemon periodically flushes dirty pages to disk. It chooses the pages to flush based 
on their usage patterns (following a not recently used algorithm, described in Section 13.5.2), so as 
to keep the most useful pages in memory. There are several other kernel operations that result in 
writing pages out to disk, such as swapping out an entire process or callingftync for a file. 

To write a page back to disk, the kernel locates the vnode from the page structure and in
vokes its VOP _PUT PAGE operation. If the page belongs to a device file, this results in a call to 
spec_putpage(), which obtains the device number from the vnode and calls the d_strategy() 
routine for that device. 

If the page belongs to an ordinary file, the operation is implemented by the corresponding 
file system. The ufs_putpage() function, for example, writes back pages of uft files. It calls 
ufs_bmap() to compute the physical block number, then calls the d_strategy() routine for the 
device (getting the device number from the inode, which it accesses through the vnode ). 
ufs _put page() also handles optimizations such as clustering, where it gathers adjacent dirty pages 
and writes them out in the same 1/0 request. 

Mapped 110 to a File 

A process could map a file or part of a file to a segment of its address space using the mmap system 
call. Moreover, when exec loads a program, it maps the text and data into the process address space. 
Section 14.2 describes memory-mapped files in detail. Once the mapping has been established, 
when a process tries to read a page that is not already in memory (or not mapped in the hardware 
address translation tables), it causes a page fault. Since file-mapped pages belong to vnode seg-



534 Chapter 16 Device Drivers and 110 

ments (seg_vn), the fault is handled by the s egvn _fault() routine. It invokes the VOP _ GETPAGE op
eration on the vnode of the file, which is pointed to by the private data of the segment. 

Likewise, when a process modifies a page to which it has a shared mapping, the page must 
be written back to the underlying file. This usually happens when the pagedaemon flushes the page, 
as previously described. 

Ordinary File 110 

In SVR4, reads and writes to an ordinary file go through the seg_ map driver. When a user invokes 
the read system call, for example, the kernel dereferences the file descriptor to get the file struc
ture, and from it the vnode of the file. It invokes the VOP _READ operation on the vnode, which is 
implemented by a file-system-dependent function, such as ufs _read() for ufs files. ufs _read() 
performs the read as follows: 

1. Calls segmap _getmap () to create a kernel mapping for the required range of bytes in the 
file. This function returns the kernel address to which it maps the data. 

2. Calls u i amove () to transfer the data from the file to user space. The source address for the 
transfer is the kernel address obtained in the previous step. 

3. Calls segmap _release() to free the mapping. The seg_map driver caches these mappings 
in LRU order, in case the same pages are accessed again soon. 

If the page is not already in memory, or if the kernel does not have a valid hardware address 
translation to it, u i amove () causes a page fault. The fault handler determines that the page belongs 
to the seg_ map segment, and calls segmap _fault() to fetch the page. segmap _fault() invokes the 
VOP _ GETPAGE operation on the vnode, which retrieves the page from disk if necessary, as described 
above. 

Direct I/0 to Block Device 

A user may directly access a block device, assuming he or she has the appropriate permissions, by 
issuing read or write system calls to its device file. In such a case, the kernel dereferences the file 
descriptor to access the file structure, and from that, the vnode. It then invokes the VOP _READ or 
VOP _WRITE operation on the vnode, which in this case, calls the spec _read() or spec_ write() 
functions. These functions operate much like the corresponding ufs functions, calling seg
map _getmap (), ui amove(), and finally segmap _release(). Hence the actual I/0 occurs as a result 
of page faults or page flushes, just as in the previous cases. 

Alternatively, a user could map a block device into its address space with the mmap system 
call. In that case, reads to mapped locations would cause page faults, which would be handled by the 
seg_vn (vnode segment) driver. The segvn _fault() routine would invoke the VOP _ GETPAGE opera
tion on the vnode, which would result in a call to spec _get page(). This would call the 
d_strategy() routine of the device, if the page is not already in memory. Writes would be simi
larly handled by spec _put page(). 



16.7 The DDI/DKI Specification 535 

16.6.4 Raw 1/0 to a Block Device 

The problem with read and write system calls is that they copy the data twice--once between the 
user space and the kernel, and once between the kernel and the disk. This allows the kernel to cache 
the data, which is beneficial for typical applications. For applications that want to perform large data 
transfers to or from the disk, and whose access patterns do not benefit from caching, such an ap
proach is inefficient and slow. 

One alternative is to use mmap to map the data into the address space. While this eliminates 
the extra copy, its semantics are different from those of read and write system calls. Moreover, the 
mmap system call is a relatively new feature, not available on all implementations. UNIX provides a 
facility called raw I/0, which permits unbuffered access to block devices. It too avoids the extra 
copy, thus providing high performance. It is widely available, even on implementations that do not 
support mmap. 

To allow raw I/0, the block device must also present a raw, or character interface. Hence it 
must have an entry in the character device switch. Applications perform raw I/0 by issuing read or 
write system calls to the associated character device, which result in calling the d_read () or 
d_ write() routines of that device. These routines directly call the kernel function phys i ock (), 
which does the following: 

1. Validates the I/0 parameters, such as making sure the I/0 does not start beyond the end of 
the device. 

2. Allocates a buf structure from a freelist. 
3. Calls as_ fa u l t () to fault in the user pages involved in the operation. 
4. Locks the user pages in memory so they cannot be paged out. 
5. Calls the d_strategy() routine of the associated block device. The character driver 

passes the device number as an argument to phys i oc k (). 
6. Sleeps until the I/0 completes. 
7. Unlocks the user pages. 
8. Returns the results of the operation (transfer count, error status, etc.) to the caller. 

16.7 The DDI/DKI Specification 

Even though device drivers are part of the kernel, they are usually written independently by device 
vendors, frequently without access to the kernel source code. This is possible due to the switch
based, procedural interface between the kernel and the driver. To develop a driver for a UNIX ker
nel, the vendor simply supplies an implementation of the interface, which includes the switch func
tions, interrupt handler, and configuration and initialization functions. Entries are added to the ap
propriate configuration files (such as conf.c, which contains the bdevsw [] and cdevsw [] tables) 
and the kernel is rebuilt, linking the driver with the set of kernel object files provided by the operat
ing system vendor. 

The preceding sections discussed this part of the interface in detail. However, the interface 
described so far is incomplete, since it only covers the calls made by the kernel to the driver. The 
driver, too, must invoke several kernel functions to access services such as data transfer, memory 



536 Chapter 16 Device Drivers and 1/0 

allocation, and synchronization. Moreover, since multiple, independently written drivers coexist in 
the kernel and may be active concurrently, it is important that they not interfere with each other or 
with the kernel. 

To reconcile the goals of independent driver development and peaceful coexistence, the in
terface between the kernel and the driver must be rigorously defined and regulated. To achieve this, 
SVR4 introduced the Device-Driver Interface/Driver-Kernel Interface (DDIIDKI) specification 
[UNIX 92b ], which formalizes all interactions between the kernel and the driver. 

The interface is divided into several sections, similar to the organization of the UNIX man 
pages. These sections are: 

• Section 1 describes the data definitions that a driver needs to include. The way in which 
the kernel accesses this information is implementation-specific and depends on how it 
handles device configuration. 

• Section 2 defines the driver entry point routines. It includes the functions defined in the 
device switches, as well as interrupt handling and initialization routines. 

• Section 3 specifies the kernel routines that the driver may invoke. 
• Section 4 describes the kernel data structures that the driver may use. 
• Section 5 contains the kernel #define statements that a driver may need. 

The interface is divided into three parts: 

• Driver-kernel - This is the largest part of the interface. It includes the driver entry 
points and the kernel support routines. 

• Driver-hardware - This part describes routines that support interactions between the 
driver and the device. These routines are highly machine-dependent, but many of them are 
defined in the DDI/DKI specification. 

• Driver-boot - This part deals with how a driver is incorporated into the kernel. It is not 
contained in the DDI/DKI specification, but is described in various vendor-specific device 
driver programming guides [Sun 93]. 

The specification also describes a number of general-purpose utility functions that provide 
services such as character and string manipulation. These are not considered a part of the DDI/DKI 
interface. 

Each function in the interface is assigned a commitment level, which may be 1 or 2. A 
Ievel-l function will remain in future revisions of the DDI/DKI specification and will only be 
modified in upward-compatible ways. Hence code written using Ievel-l functions will be portable to 
future SVR4 releases. The commitment to support level-2 routines, however, is limited to three 
years after a routine enters level 2. Each such routine has an entry date associated with it. After three 
years, new revisions of the specification may drop the routine entirely or modify it in incompatible 
ways. 

A Ievel-l routine may contain some features that are defined as level-2. Further, the entire 
routine may be moved to level 2 in a new release of the specification (for example, the rmi nit() 
function, discussed in Section 16.7.2). The date of that release becomes the entry date for that rou
tine, and it will continue to be supported as defined for a minimum of three more years. 



16.7 The DDI/DKI Specification 537 

16.7.1 General Recommendations 

The DDI/DKI specification makes a number of recommendations that help ensure the portability of 
drivers across different releases of SVR4: 

• Drivers should not directly access system data structures, in particular the u area. Earlier 
versions of UNIX often required drivers to access the u area to read information such as 
the base address and byte count for a data transfer, or to return status and error values. As 
a result, the driver depended on the structure of the u area and had to be modified or re
built if the structure changed. SVR4 removes all such dependencies and passes informa
tion between the kernel and the driver through the data structures defined in section 4. 

• While accessing section 4 structures, drivers should not access fields that are not described 
in the specification. These fields may not be supported in future releases. 

• Drivers should not define arrays of the structures defined in section 4. Such arrays are not 
portable if the size of the structure changes in a future release. The i avec and u i o struc
tures are two exceptions to this rule. 

• Some structure fields comprise a bitmask of flags. Drivers should only set or clear flags in 
such masks and never directly assign a value to the field. This is because the actual im
plementation may contain flags not listed in the specification. 

• Structures intended to be opaque to the application are not specified in section 4, but are 
mentioned in the description of the routines that use them. Drivers should not access any 
members of such structures and should only use them by reference, passing pointers to 
them to those kernel routines. 

• Drivers should use the section 3 functions to read or modify section 4 structures whenever 
possible. This protects the driver from changes made to the structures in future revisions. 

• The driver should include the file ddi.h after all the system include files, but before any 
driver-specific include files. This is because many functions in the specification are im
plemented as macros by the rest of the kernel. The ddi.h file undefines the macros, forcing 
the drivers to use the function call forms of these routines, which are more portable. In
cluding driver-specific files after ddi.h ensures that the driver only uses the DDI/DKI in
terface. 

• The driver should declare as static any private routines or global variables that are used 
only by the driver. 

16.7.2 Section 3 Functions 

Section 3 forms the bulk of the DDI/DKI specification and contains kernel functions used by the 
device drivers. These routines may be divided into various functional groups: 

• Synchronization and timing - The sleep(} and wakeup(} routines are described in 
Section 2.5 .1. The del ay () function blocks a process for a specified amount of time. The 
time out(} and unt i me out(} routines allow scheduling of tasks and are described in Sec
tion 5.2.1. 



538 Chapter 16 Device Drivers and l/0 

• Memory management - The kmem _all oc () and kmem _free() routines handle kernel 
memory allocation. The rminit(), rmalloc(), and rmfree() routines manage resource 
maps. These functions are described in Chapter 12. The functions physmap(} and phys
mapfree () allocate and release virtual address mappings for physical addresses. 

• Buffer management- geteb l k () allocates a buffer, while bre l se () releases one. The 
driver calls biowait() to wait for 110 completion, and the interrupt handler calls bio
done () to wake up waiting processes and release the buffer. 

• Device number operations- The getemaj or() and getemi nor() functions extract the 
external major and minor device numbers from a dev _ t. The i toemaj or() and etoi mi
nor () functions provide the translation between external and internal major numbers. 

• Direct memory access - A set of machine-specific functions support DMA operations. 
The specification describes functions supported for the IBM PC-AT compatible architec
tures. 

• Data transfers- The uiomove() move function copies data between kernel and user 
space or between two areas in kernel space. It is capable of scatter-gather 110 in any one 
direction. For instance, it can gather data from multiple user buffers into a single kernel 
buffer (see Figure 16-7). It uses a u i o structure to describe the parameters of the transfer. 
The copyi n () and copyout () routines transfer data between a driver buffer and a user 
buffer. Machine-specific routines, such as i nb () and outb (),move data into or out of 110 
space on architectures that do not support memory-mapped I/0 (such as the Intel x86). 

• Device polling- Routines to support device polling include ph all oc () and ph free () to 
allocate poll head structures and poll wakeup() to wake up polling processes. 

• STREAMS - A number of routines support STREAMS device drivers. These are de
scribed in Chapter 17. 

• Utility routines - The interface describes a set of string manipulation functions such as 
strcpy(} and strlen(), byte manipulation functions such as bcopy(}, bcmp() and 
bzero (), error handling functions such as ASSERT() and cmn _err(), and convenience 
functions such as max () and min (). 

16.7 .3 Other Sections 

Section 1 specifies that each driver must define a prefix, which it must use for all its global func
tions and data structures. The prefix is specified in the implementation-dependent configuration file 
and allows the kernel to identify the driver entry points. For example, a disk driver may define the 
prefix dk, and name its functions dkopen(), dkclose(}, and so on. The section also specifies that 
the driver must define a global variable called prefixdevfl ag and describes the flags that may be set 
in this variable. Some of the flags are: 

D DMA 
D TAPE 
D NOBRKUP 

The driver supports direct memory access. 
The driver controls a tape device. 
The driver understands page lists, so the kernel does not need to break up a 
multipage transfer into multiple requests. 



16.8 Newer SVR4 Releases 

;-

struct uio 

uio iov 

uio iovcnt = 3 

arguments to 
uiomove(} 

addr 

nbytes 

uio offset rwflag = UIO WRITE 

... 

iov base -

iov len -

iov base -

iov 1 en -
iov base 

iov 1 en -

array of 
iovec's 

-
'-- uiop 

~------------------~ , ' 

::=R I ' I 

I I 
I 
I 

----+- I 
I 

I I 

I -+< I -----:- I 

I I 

I I 

I I 

:...} 
I 

I 

' 
I , 

' '------------------~ 
data in user or 
kernel space 

-·-·-·-·-· 

~ 

-·-·-·-·-· 

destination buffe r 
in kernel space 

Figure 16-7. Data transfer using u i orne v e () . 

539 

Finally, the section describes the preflxi nfo structure that must be supplied by STREAMS drivers. 
Section 2 specifies the driver entry points described earlier in this chapter. These include all 

the switch functions, as well as the interrupt routine and the initialization functions preflxi nit () 
and preflxstart (). 

Section 4 describes data structures shared between the kernel and the drivers. These include 
the buf structure, described in Section 16.6.1, and the uio and iovec structures, described in Sec
tion 8.2.5. The rest of the structures are used by STREAMS (see Chapter 17) and by the machine
specific DMA interface. 

Section 5 contains the relevant kernel #define values. These include errno values (error 
codes), STREAMS messages, and signal numbers. 

16.8 Newer SVR4 Releases 

The initial SVR4 release has been followed by several upgrades that have added important new 
functionality. SVR4/MP added multiprocessor support, SVR4.1/ES added enhanced security, and 
SVR4.2 added support for dynamic loading of drivers.3 Each of these features has affected the 
driver-kernel interface and placed new requirements on driver developers. 

3 Some vendors provided loadable drivers long before SVR4. Sun Microsystems, for instance, had them in Sun0S4.1. 
OSF/1 has this feature as well. 



540 Chapter 16 Device Drivers and I/0 

16.8.1 Multiprocessor-Safe Drivers 
Traditional single-threaded drivers do not work correctly in a symmetric multiprocessing (SMP) 
kernel. These drivers assume that they have exclusive access to data structures and that blocking 
interrupts is sufficient to protect these structures [Goul 85]. Such drivers need extensive modifica
tion to become multiprocessor-safe (MP-safe). They need to protect most global data by using mul
tiprocessor synchronization primitives. In particular, they also need to protect device registers, since 
they could be simultaneously accessed by different instances of the driver. 

The requirements for parallelizing device drivers (making them MP-safe) are no different 
from parallelizing the rest of the kernel. Section 7.10 discusses these issues in detail. To support 
such an effort, the kernel must export its multiprocessor synchronization primitives to the device 
drivers. In addition, it may modify or replace many interface functions that are not MP-safe, or 
place restrictions on their use. 

SVR4/MP makes several changes to the DDI/DKI interface. First, it adds a set of functions 
that allow driver writers to use its new synchronization facilities. SVR4/MP provides three types of 
multiprocessor locks-basic locks, read-write locks, and sleep locks. These locks are not recursive, 
and a driver will deadlock if it tries to acquire a lock that it already holds. If a basic or read-write 
lock cannot be acquired immediately, the caller may wait either by blocking or by spinning, depend
ing on the implementation. SVR4/MP also provides synchronization variables, which are similar to 
condition variables, described in Section 7.7. 

SVR4/MP adds a set of functions to section 3 of DDI/DKI to allocate and manipulate the 
different synchronization objects. It also places new restrictions on several existing functions. In 
many cases, the restriction is that the function not be called while holding some or all types of locks. 

In some cases, SVR4/MP replaces a non-MP-safe function with an equivalent MP-safe 
function with a slightly different interface. For example, the time out() function is replaced by 
i timeout (), which takes an additional argument that specifies the interrupt priority level at which 
the specified function must be invoked. It also adds a function called dt i me out(), which will in
voke the given function on a specific processor. The interface retains the time out() function for 
compatibility, but moves it to level2 (effective October 8, 1991). Hence the commitment to support 
timeout() expired on October 8, 1994. 

Finally, SVR4/MP adds a D _ MP flag to the prefixdevfl ag of the driver. Drivers that set this 
flag declare themselves to be multiprocessor-safe. If the D _ MP flag is not set, the kernel serializes, or 
single-threads, all operations of the driver. For instance, it may associate a global lock with the 
driver and acquire it before calling any of the driver's routines. 

16.8.2 SVR4.1/ES Changes 
SVR4.1/ES adds enhanced security features to the UNIX kernel. The main change to the driver in
terface is the addition of three flags to the prefzxdevfl ag variable. These flags are: 

D NOSPECMACDATA The driver does not perform mandatory access control checking dur
ing data transfers and does not update the access time in inodes. 

D INITPUB Devices controlled by this driver may be accessed by nonprivileged 
processes. This flag may be later modified by a security system call. 



16.8 Newer SVR4 Releases 541 

D _ RDWEQ Device accesses require strict equality under the mandatory access 
control policy. 

16.8.3 Dynamic Loading and Unloading 

Traditionally, the UNIX kernel is compiled and linked statically. Once the system boots, it is not 
possible to modify the kernel, except for minor patches applied by debugging tools. This approach 
is rigid and limiting. It encourages people to throw in every possible module and driver while 
building the kernel, even though they are unlikely to be used. This results in an unnecessarily large 
kernel. because the kernel is usually not pageable, it uses up a great amount of physical memory. 
Any change to the kernel, such as upgrading a driver or adding a new driver requires building a new 
kernel, then rebooting a system. While this may be only a minor inconvenience for an individual 
workstation, it may be intolerable for a major commercial installation where high availability is 
critical. It also slows down the driver development cycle, which requires constant debugging and 
reloading of the driver. 

Several modem versions ofUNIX support dynamic loading of kernel modules. This means a 
module (collection of objects) may be added to or removed from a running kernel. Dynamic loading 
requires a runtime loader that performs final relocation and binding of addresses when the module is 
loaded. This has several advantages. The system may boot with a small kernel, which contains only 
a few, essential modules. It may add new modules when they are needed and remove them when 
they are no longer in use. To upgrade a module, it is only necessary to disable the current version of 
the module in the kernel, unload it, and load the new version. The entire system does not have to be 
rebooted. 

Dynamic loading may be used for several different types of modules. Those supported in 
SVR4.2 are: 

• Device drivers. 
• Host bus adapter and controller drivers. 
• STREAMS modules. 
• File systems. 
• Miscellaneous modules, such as those containing common code shared by multiple dy

namically loaded modules. 

Although the mechanisms and considerations for dynamic loading are similar for all these 
types, this section concentrates on device drivers. Loading a driver into a running kernel requires 
several operations: 

1. Relocation and binding of the driver's symbols. The runtime loader is responsible for this. 
2. Driver and device initialization. 
3. Adding the driver to the device switch tables, so that the kernel can access the switch 

routines. 
4. Installing the interrupt handler, so that the driver can respond to device interrupts. 

Likewise, unloading a driver requires undoing most of these tasks-releasing memory allocated 
to the driver, performing shutdown operations on the driver and device, uninstalling the interrupt 



542 Chapter 16 Device Drivers and 110 

handler and the switch table entries, and removing all references to the driver from the rest of the 
kernel. 

SVR4.2 provides a set of facilities to perform all the above tasks. It adds the following rou
tines to the DDIIDKI specification: 

prefu: _1 oad () 
This section 2 routine must be provided by the driver. It performs driver initialization, and 
the kernel invokes it when the driver is loaded. It handles the tasks usually performed by 
the init and start routines, since those functions are not invoked when a driver is dynami
cally loaded. It allocates memory for private data, initializing various data structures. It 
then calls the mod_ drvattach () routine to install the interrupt handler and, finally, initial
izes all devices associated with this driver. 

prefu: _ un 1 oad () 
This section 2 routine must be provided by the driver. The kernel invokes it to handle 
driver cleanup when unloading the driver. Typically, it undoes the actions of the pre
fix _1 oad () routine. It calls mod_ drvdetach () to disable and uninstall interrupts for this 
driver, releases memory it had allocated, and performs any necessary shutdown on the 
driver or its devices. 

mod_drvattach() 
This is a kernel-supplied, section 3 routine. It installs the interrupt handler for the driver 
and enables interrupts from the driver's devices. It must be called from prefix _1 oad () 
with a single argument, a pointer to the driver's prefixattach _info structure. This struc
ture is defined and initialized by the kernel's configuration tools when the driver is con
figured. It is opaque to the driver, and the driver must not attempt to reference any of its 
fields. 

mod_ drvdetach () 
This is a kernel-supplied, section 3 routine, which disables interrupts to the driver and 
uninstalls its interrupt handler. It must be called from prefix un 1 oad () with the prefixat
tach _info pointer as an argument. 

Wrapper Macros 

The DDI/DKI specification supplies a set of macros that generate wrapper code for a load
able module. There is one macro for each type of module, as follows: 

MOD DRV WRAPPER for device drivers 
MOD HDRV WRAPPER for Host Bus Adapter drivers 
MOD STR WRAPPER for STREAMS modules 
MOD FS WRAPPER for file systems 
MOD MISC WRAPPER for miscellaneous modules 



16.9 Future Directions 

Each macro takes five arguments. For MOD _DRV _WRAPPER, the syntax is 

MOD.:...QRV_:.WRAPPER (prefix, load, unload, halt, desc); 

where prefix is the driver prefix, load and unload are the names of the pre
fix _load ()and prefix_ unload() routines, halt is the name of the driver's prefix_ halt() 
routine, if any, and desc is a character string that describes the module. The wrapper code 
arranges to call prefix _load() when the driver is loaded and prefix_ unload() when the 
driver is unloaded. The moddefs.h file defines the wrapper macros. 

543 

There are two ways in which a driver may be loaded into the SVR4.2 kernel [UNIX 92a]. A 
user, typically the system administrator, may explicitly load and unload the driver using the mod
load and rnoduload system calls. Alternatively, the system may automatically load the driver on first 
reference. For instance, the kernel loads a STREAMS module (see Section 17.3.5) the first time it is 
pushed onto a stream. If a module remains inactive for a time greater than a tunable parameter 
called DEF_UNLOAD_DELAY, it becomes a candidate for unloading. The kernel may unload such a 
module automatically if there is a memory shortage. Modules may override DEF _UNLOAD _DELAY by 
specifying their own unload delay value in the configuration file. 

The SVR4.2 dynamic loading facility is powerful and beneficial, but it has some limitations. 
It requires explicit support in the driver; hence, older drivers cannot use this facility transparently. 
[Konn 90] describes a version of dynamic loading that does not suffer from these limitations. It al
lows transparent loading of the driver when first opened, and optionally, transparent unloading on 
the last close. When the system boots, it inserts a special open routine in the cdevsw[] and 
bdevsw[] for all major numbers that have no driver configured. When the device is first opened, 
this routine loads the driver, then calls the driver's real open routine. Since the loading process up
dates the device switch table, subsequent opens will directly call the driver's open routine. Like
wise, the autounload on close feature uses a special close routine that is installed in the device 
switch entry if the driver specifies an autounload flag in the configuration file. This routine first calls 
the real close routine, then checks to see if all the minor devices are closed. If so, it unloads the driver. 

The [Konn 90] implementation is transparent to the driver, since it uses the driver's init and 
start routines instead of special load and unload routines. It works with well-behaved drivers that 
satisfy certain requirements. The driver should not have any functions or variables directly refer
enced by the kernel or other drivers. On the last close, it should perform complete cleanup and leave 
no state behind. This includes releasing any kernel memory, canceling pending timeouts, and so on. 

16.9 Future Directions 

One of the limitations of the UNIX device driver framework is that it offers little support for sharing 
code between drivers. Any given class of devices, such as ethernet controllers or hard disks, has 
several different manufacturers, each with their own controller board or chip. Only a fraction of the 
driver code, however, is controller or ASIC-dependent.4 The rest is dependent on the class of the 
device and the specifics of the processor and operating system on which it runs. 

4 ASIC stands for Application-Specific Integrated Circuit. 



544 Chapter I 6 Device Drivers and 1/0 

In spite of this, each device manufacturer must provide his or her own drivers. Each must 
implement all the entry points for the driver, which constitute a very high-level interface. Each 
driver contains not only the ASIC-dependent code, but also the high-level, ASIC-independent code. 
As a result, different drivers of the same device class duplicate much of the functionality. This leads 
to a lot of wasted effort and also increases the size of the kernel unnecessarily. 

UNIX has addressed this problem in several ways. STREAMS provides a modular way of 
writing character drivers. Each stream is built by stacking a number of modules together, each 
module performing a very specific operation on the data. Drivers can share code at the module level, 
since multiple streams may share a common module. 

SCSI devices offer another possibility for code sharing. A SCSI controller manages many 
different types of devices, such as hard and floppy disks, tape drives, audio cards, and CD-ROM 
drives. Each SCSI controller has a number of controller-specific features and thus requires a differ
ent driver. Each device type, too, has different semantics and hence must be processed differently. If 
we have m different types of controllers and n different types of device, we may have to write m x n 
drivers. 

It is preferable, however, to divide the code into a device-dependent and a controller
dependent part. There would be one device-dependent module for each device type, and one control
ler-dependent driver for each controller. This requires a well-defined interface between the two 
pieces, with a standard set of commands that is understood by each controller and issued by each 
device-dependent module. 

There are several efforts to create such a standard. SVR4 has released a Portable Device In
terface (PDI), consisting of the following: 

• A set of section 2 functions that each host bus adapter must implement. 
• A set of section 3 functions that perform common tasks required by SCSI devices, such as 

allocating command and control blocks. 
• A set of section 4 data structures that are used by the section 3 functions. 

Two other interfaces aimed at a similar layering are SCSI CAM (Common Access Method) 
[ANSI 92b], supported by Digital UNIX [DEC 93] and ASPI (Adaptec SCSI Peripherals Interface), 
popular in the personal computer world. 

The I/0 subsystem in Mach 3.0 [Fori 91] extends such layering to all devices on a case-by
case basis. It optimizes the code sharing for each device class, providing device-independent mod
ules to implement the common code. It also moves the device-independent processing to the user 
level, thereby reducing the size of the kernel. It also provides location transparency by implement
ing device interactions as IPC (interprocess communication) messages. This allows users to trans
parently access devices on remote machines. This interface, however, is incompatible with the 
UNIX driver framework. 

16.10 Summary 

This chapter examines the device driver framework and how the I/0 subsystem interacts with the 
devices. It describes the SVR4 DDI/DKI specification, which allows vendors to write drivers that 



16.12 References 545 

will be portable across future SVR4 releases. In addition, it describes several recent features in the 
driver framework, such as support for multiprocessors and dynamic loading and interfaces for shar
ing code between drivers. 

16.11 Exercises 

I. Why does UNIX use device switch tables to channel all device activity? 
2. What is the difference between DMA and DVMA? 
3. When is it necessary to poll the devices rather than rely on interrupts? 
4. Why are pseudodevices such as mem and null implemented through the device driver 

framework? 
5. Give some examples of hardware devices that are not used for I/0. Which functions of the 

driver interface do they support? 
6. Give some examples of hardware devices that do not map well to the UNIX driver framework. 

What aspects of the interface are unsuitable for these devices? 
7. Why do top-half routines need to protect data structures from bottom-half routines? 
8. What are the advantages of associating a device special file with each device? 
9. How does the specfs file system handle multiple files associated with the same device? 

10. What is the use of the common snode? 
II. What functionality must the driver implement to support cloning? Give some examples of 

devices that provide this feature. 
I2. In what ways is 1/0 to a character device treated differently than 1/0 to a block device or a 

file? 
13. What are the differences in functionality between the poll and select system calls? Describe 

how each may be implemented as a library function using the other and the problems that may 
arise in doing so. 

I4. What does it mean for a device to support memory mapped access? What kind of devices 
benefit from this functionality? 

I5. The DDI/DKI specification discourages direct access to its data structures and requires drivers 
to use a procedural interface instead. Why? What are the advantages and drawbacks of using 
function calls to access fields of a data structure? 

I6. What are the main problems in writing a multiprocessor-safe driver? 
I7. What are the benefits of loadable drivers? What problems must the driver writer be careful to 

avoid? 

16.12 References 

[ANSI 92a] American National Standard for Information Systems, Small Computer Systems 
Interface-2 (SCSI-2), X3.13I-I99X, Feb. I992. 



546 

[ANSI 92b] 

[DEC 93] 

[Egan 88] 

[Fori 91] 

[Goul85] 

[Klei 86] 

[Konn 90] 

[Paja 92] 
[Sun 93] 
[UNIX 92a] 

[UNIX 92b] 

Chapter 16 Device Drivers and I/0 

American National Standard for Information Systems, SCSI-2 Common Access 
Method: Transport and SCSI Interface Module, working draft, X3T9.2/90-186, rev. 
3.0, Apr. 1992. 
Digital Equipment Corporation, Guide to Writing Device Drivers for the SCSI/CAM 
Architecture Interfaces, Mar. 1993. 
Egan, J.I., and Texeira, T.J., Writing a UNIX Device Driver, John Wiley & Sons, 
1988. 
Forin, A., Golub, D., and Bershad, B.N., "An I/0 system for Mach 3.0," Technical 
Report CMU-CS-91-191, School of Computer Science, Carnegie Mellon 
University, Oct. 1991. 
Gould, E., "Device Drivers in a Multiprocessor Environment," Proceedings of the 
Summer 1992 USENIXTechnical Conforence, Jun. 1992, pp. 357-360. 
Kleiman, S.R., "Vnodes: An Architecture for Multiple File System Types in Sun 
UNIX," Proceedings of the Summer 1986 Usenix Technical Conference, Jun. 1986, 
pp. 238-247. 
Konnerth, D., Bartel, E., and Adler, 0., "Dynamic Driver Loading for UNIX System 
V," Proceedings of the Spring 1990 European UNIX Users Group Conference, Apr. 
1990, pp. 133-138. 
Pajari, G., Writing UNIX Device Drivers, Addison-Wesley, Reading, MA, 1992. 
Sun Microsystems, Writing Device Drivers, Part No. 800-5117-11, 1993. 
UNIX System Laboratories, Device Driver Programming-UNIX SVR4.2, UNIX 
Press, Prentice-Hall, Englewood Cliffs, NJ, 1992. 
UNIX System Laboratories, Device Driver Reference-UNIX SVR4.2, UNIX Press, 
Prentice-Hall, Englewood Cliffs, NJ, 1992. 



17 

STREAMS 

17.1 Motivation 

The traditional device driver framework has many flaws. First, the kernel interfaces with the drivers 
at a very high level (the driver entry points), making the driver responsible for most of the process
ing of an 1/0 request. Device drivers are usually written independently by device vendors. Many 
vendors write drivers for the same type of device. Only part of the driver code is device-dependent; 
the rest implements high-level, device-independent 1/0 processing. As a result, these drivers dupli
cate much of their functionality, creating a larger kernel and greater likelihood of conflict. 

Another shortcoming lies in the area of buffering. The block device interface provides rea
sonable support for buffer allocation and management. However, there is no such uniform scheme 
for character drivers. The character device interface was originally designed to support slow devices 
that read or wrote one character at a time, such as teletypewriters or slow serial lines. Hence the 
kernel provided minimal buffering support, leaving that responsibility to individual devices. This 
resulted in the development of several ad hoc buffer and memory management schemes, such as the 
clists used by traditional terminal drivers. The proliferation of such mechanisms resulted in ineffi
cient memory usage and duplication of code. 

Finally, the interface provides limited facilities to applications. 1/0 to character devices re
quires read and write system calls, which treat the data as a FIFO (first-in, first-out) byte stream. 
There is no support for recognizing message boundaries, distinguishing between regular data and 
control information, or associating priorities to different messages. There is no provision for flow 
control, and each driver and application devises ad hoc mechanisms to address this issue. 

547 



548 Chapter 17 STREAMS 

The requirements of network devices highlight these limitations. Network protocols are de
signed in layers. Data transfers are message- or packet-based, and each layer of the protocol per
forms some processing on the packet and then passes it to the next layer. Protocols distinguish be
tween ordinary and urgent data. The layers contain interchangeable parts, and a given protocol may 
be combined with different protocols in other layers. This suggests a modular framework that sup
ports layering and allows drivers to be built by combining several independent modules. 

The STREAMS subsystem addresses many of these problems. It provides a modular ap
proach to writing drivers. It has a fully message-based interface that contains facilities for buffer 
management, flow control, and priority-based scheduling. It supports layered protocol suites by 
stacking protocol modules to function as a pipeline. It encourages code sharing, as each stream is 
composed of several reusable modules that can be shared by different drivers. It offers additional 
facilities to user-level applications for message-based transfers and separation of control informa
tion from data. 

Originally developed by Dennis Ritchie [Rite 83], STREAMS is now supported by most 
UNIX vendors and has become the preferred interface for writing network drivers and protocols. 
Additionally, SVR4 also uses STREAMS to replace the traditional terminal drivers, as well as the 
pipe mechanism. This chapter summarizes the design and implementation of STREAMS and ana
lyzes its strengths and shortcomings. 

17.2 Overview 

A stream is a full-duplex processing and data transfer path between a driver in kernel space and a 
process in user space. STREAMS is a collection of system calls, kernel resources, and kernel utility 
routines that create, use, and dismantle a stream. It is also a framework for writing device drivers. It 
specifies a set of rules and guidelines for driver writers and provides the mechanisms and utilities 
that allow such drivers to be developed in a modular manner. 

Figure 17-1 describes a typical stream. A stream resides entirely in kernel space, and its op
erations are implemented in the kernel. It comprises a stream head, a driver end, and zero or more 
optional modules between them. The stream head interfaces with the user level and allows applica
tions to access the stream through the system call interface. The driver end communicates with the 
device itself (alternatively, it may be a pseudodevice driver, in which case it may communicate with 
another stream), and the modules perform intermediate processing of the data. 

Each module contains a pair of queues-a read queue and a write queue. The stream head 
and driver also contain such a queue pair. The stream transfers data by putting it in messages. The 
write queues send messages downstream from the application to the driver. The read queues pass 
them upstream, from the driver to the application. Although most messages originate at the stream 
head or the driver, intermediate modules may also generate messages and pass them up or down the 
stream. 

Each queue may communicate with the next queue in the stream. For example, in Figure 
17-1, the write queue of module 1 may send messages to the write queue of module 2 (but not vice
versa). The read queue of module 1 may send messages to the read queue of the stream head. A 
queue may also communicate with its mate, or companion queue. Thus, the read queue of module 2 



17.2 Overview 549 

user space 
.-------"'-'------, --- - - - - - - - - - - - -

kernel space 

I i 
downstream 

1 
upstream 

I 

driver end 

Figure 17-1. A typical stream. 

may pass a message to the write queue of the same module, which may then send it downstream. A 
queue does not need to know whether the queue it is communicating with belongs to the stream 
head, the driver end, or another intermediate module. 

Without further explanation, the preceding description shows the advantages of this ap
proach. Each module can be written independently, perhaps by different vendors. Modules can be 
mixed and matched in different ways, similar to combining various commands with pipes from a 
UNIX shell. 

Figure 17-2 shows how different streams may be formed from only a few components. A 
vendor developing networking software may wish to add the TCPIIP (Transmission Control Proto
col/Internet Protocol) suite to a system. Using STREAMS, he develops a TCP module, a UDP (User 
Datagram Protocol) module, and an IP module. Other vendors who make network interface cards 
independently write STREAMS drivers for ethernet and token ring. 

Once these modules are available, they may be configured dynamically to form different 
types of streams. In Figure 17-2(a), a user has formed a TCPIIP stream that connects to a token ring. 
Figure 17-2(b) shows a new combination, featuring a UDPIIP stream connected to an ethernet 
driver. 

STREAMS supports a facility called multiplexing. A multiplexing driver can connect to 
multiple streams at the top or bottom. There are three types of multiplexors-upper, lower, and two
way. An upper, or fan-in, multiplexor can connect to multiple streams above it. A lower, or fan-out, 
multiplexor can connect to multiple streams below it. A two-way multiplexor supports multiple 
connections both above and below it. 



550 Chapter 17 STREAMS 

(a) (b) 

Figure 17-2. Reusable modules. 

By writing the TCP, UDP, and IP modules as multiplexing drivers, we can combine the 
above streams into a single compound object that supports multiple data paths. Figure 17-3 shows a 
possible layout. TCP and UDP act as upper multiplexors, while IP serves as a two-way multiplexor. 
This allows applications to make various kinds of network connections and enables several users to 
access any given combination of protocols and drivers. The multiplexor drivers must manage all the 
different connections correctly and route the data up or down the stream to the correct queue. 

IP 

Figure 17-3. Multiplexing streams. 



17.3 Messages and Queues 551 

17.3 Messages and Queues 

STREAMS uses message passing as its only form of communication. Messages transfer data be
tween applications and the device. They also carry control information to the driver or a module. 
Drivers and modules generate messages to inform the user, or each other, of error conditions or un
usual events. A queue may handle an incoming message in several ways. It may pass it to the next 
queue, either unchanged or after some processing. The queue may schedule the message for de
ferred processing. Alternatively, it may pass the message to its mate, thus sending it back in the op
posite direction. Finally, a queue may even discard the message. 

In this section, we describe the structure and function of messages, queues, and modules. 

_Note.- ~~(en~ed. fu~#~~f~tqt Type~: •SV84 .··~s~s f~rge~ siz~"sfor 
severalfunc(qment(Jl.£la;tatyJJ.f!S' F:or exan:zp(e,.•the .. dev · t·.·type• isl6 
bits in SVR3, but 32 bits in SVR.4' The new t)lpes are. called Extended · 
Fundamental- Types. {EFT), Likewise; many structures. in• SVR4 • pon_; 
tain additionalfi~li!s tfqt are ap$ent Tn S~R3. When these chif.n~es 
affect· public .. data str..uci~res-.and Jnt~rfaces, .. they -·create. _• backWard 
compatibility prob(erns, prevenfi']g interoperability with.· drive.rs and 
modules written for e(lqie.rreteases. To ease this transition; STIR4 · 
provides a compilatidl'l optiqn that allows q system. to be built using 
the old data types. Whe~ compi{ed withoyiEFT,. these fieldS are 
packed differently to ensure.thattheo!ddriverSwork correctly._Sonie 
fields. areplac.ed in differentstfyctures ·depending on the · cdmpilatipiJ •· 
option. In some cases, .. ceftif.i~ litru(;tur~s are used onlyfdr one com pi~ 
latio.n option..Supportf~rt~~··?W~~ta typesmaynot be.in"clud~djni 
future·releases. This chapfer qss~'[Jes.•the· system Ufesthe••11eW data .. 
types. 

17 .3.1 Messages 

The simplest message consists of three objects-a struct msgb (or type mb1 k_t), a struct datab 
(type db 1 k _ t), and a data buffer. A multipart message may be constructed by chaining such triplets 
together, as shown in Figure 17-4. In the msgb, the b _next and b _prev fields link a message onto a 
queue, while b _cant chains the different parts of the same message. The b _ datap field points to the 
associated datab. 

Both the msgb and the datab contain information about the actual data buffer. The db _base 
and db _1 i m fields of the da tab point to the beginning and end of the buffer. Only part of the buffer 
may contain useful data, so the b rptr and b wptr fields of the msgb point to the beginning and 
end of the valid data in the buffe; The a 11 ocb () routine allocates a buffer and initializes both the 
b _rptr and b _ wptr to point to the beginning of the buffer (db _base). As a module writes data into 
the buffer, it advances b _ wpt r (always checking against db _1 i m). As a module reads data from the 
buffer, it advances b_rptr (checking that it does not read past b_wptr), thus removing the data 
from the buffer. 



552 Chapter I 7 STREAMS 

struct datab 
db f 

struct msgb db base 
______. b next - db 1 im - b_prev - db ref 

b datap db _type ... 
b rptr 

b_wptr 

r-b cont active part of 

b band ... buffer 

data buffer 

datab ~ 
msgb 

active part 

data buffer 

Figure 17-4. A STREAMS message. 

Allowing multipart messages (each a msgb-datab-data buffer triplet) has many advantages. 
Network protocols are layered, and each protocol layer usually adds its own header or footer to a 
message. As the message travels downstream, each layer may add its header or footer using a new 
message block and link it to the beginning or end of the message. This way, it is unnecessary for 
higher-level protocols to know about lower-level protocol headers or footers or leave space for them 
while allocating the message. When messages arrive from the network and travel upstream, each 
protocol layer strips off its header or footer in reverse order by adjusting the b _rpt r and b _ wpt r 
fields. 

The b _band field contains the priority band of the message and is used for scheduling (see 
Section 0). Each datab has a db_ type field, which contains one of several message types defined 
by STREAMS. This allows modules to prioritize and process messages differently based on their 
type. Section 17.3.3 discusses message types in detail. The db_ f field holds information used for 
message allocation (see Section 17.7). The db _ref field stores a reference count, which is used for 
virtual copying (see Section 17.3.2). 

17.3.2 Virtual Copying 

The datab is reference counted, and its db _ref field is used for that purpose. Multiple msgb's may 
share a single datab, thus sharing the data in the associated buffer. This allows efficient virtual 



17.3 Messages and Queues 553 

datab 

/ db ref = 2 ~ 
msgb msgb 

b_rptr b_rptr 

"' / b_wptr 

~/~/ 
b_wptr 

' ' ' ' ' ' ' ' ' ' 

Figure 17-5. Two messages sharing a datab. 

copying of the data. Figure 17-5 shows an example where two messages share a datab. Both share 
the associated data buffer, but each maintains its independent read and write offset into it. 

Normally, such a shared buffer is used in read-only mode, for two independent writes to it 
may interfere with each other. Such semantics, however, must be enforced by the modules or drivers 
processing these buffers. STREAMS is neither aware of nor concerned with how or when modules 
read or write the buffers. 

One example of the use of virtual copying is in the TCPIIP protocol. The TCP layer provides 
reliable transport, and hence must ensure that every message reaches its destination. If the receiver 
does not acknowledge the message within a specified period of time, the sender retransmits it. To do 
so, it must retain a copy of each message it sends until the message is acknowledged. Physically 
copying every message is wasteful, hence TCP uses the virtual copying mechanism. When the TCP 
module receives a message to send downstream, it calls the STREAMS routine dupmsg (), which 
creates another msgb that references the same datab. This results in two logical messages, each ref
erencing the same data. TCP sends one message downstream, while holding on to the other. 

When the driver sends the message and releases the msgb, the datab and data buffer are not 
freed, because the reference count is still non-zero. Eventually, when the receiver acknowledges the 
message, the TCP module frees the other msgb. This drops the reference count on the datab to zero, 
and STREAMS releases the datab and the associated data buffer. 

17 .3.3 Message Types 

STREAMS defines a set of message types, and each message must belong to one of these. The 
db_ type field in the datab identifies the type. The type of a message relates to its intended purpose 
and its queuing priority. Based on the type, messages may be classified as normal or high-priority. 
High-priority messages are queued and processed before normal messages. Section 17.4.2 describes 
message priority in greater detail. 
SVR4.2 defines the following normal message types [USL 92a]: 

M BREAK 
M CTL 

Sent downstream; asks the driver to send a break to the device. 
Intermodule control request. 



554 

M DATA 
M DELAY 
M IOCTL 
M PASSFP 
M PROTO 
M RSE 
M SETOPTS 
M SIG 

Ordinary data sent or received by system calls. 
Requests a real-time delay on output. 

Chapter 17 STREAMS 

Control message; generated by ioctl commands to a stream. 
Passes a file pointer. 
Protocol control message. 

Reserved. 
Sent upstream by modules or drivers to set stream head options. 
Sent upstream by a module or driver; asks the stream head to send a signal 
to the user. 

The following are the high-priority message types: 

M COPYIN 
M COPYOUT 
M ERROR 
M FLUSH 
M HANGUP 
M IOCACK 
M IOCNACK 
M IOCDATA 
M_PCPROTO, 
M PCSIG 
M PCRSE 
M READ 
M START 
M STARTI 
M STOP 
M STOPI 

Sent upstream; asks stream head to copy data in for an ioctl. 

Sent upstream; asks stream head to copy data in for an ioctl. 
Sent upstream; reports error condition. 
Asks module to flush a queue. 

Sent upstream; sets hangup condition on stream head. 
ioctl acknowledgment; sent upstream. 

Negative ioctl acknowledgment; sent upstream. 
Sends ioctl data downstream. 
High-priority version of M _PROTO. 
High-priority version of M _ S I G. 
Reserved. 
Read notification; sent downstream. 
Restart stopped device output. 
Restart stopped device input. 
Suspend output. 
Suspend input. 

The message type allows modules to recognize special processing requirements of a message 
without having to understand its contents. For multipart messages, the first datab contains the type 
of the entire message. There is one exception to this rule. When an application uses a high-level 
service interface (such as TPI. the Transport Provider Interface), its data messages consist of a sin
gle M_PROTO block, followed by one or more M_DATA blocks in the same message. 

17.3.4 Queues and Modules 

Modules are the building blocks of the stream. Each module comprises a pair of queues-a read 
queue and a write queue. Figure 17-6 illustrates the queue data structure. It has the following impor
tant fields: 

q_qinfo 
q_first,q_last 

Pointer to a qi nit structure (described in the following paragraph) 
Pointers to manage a doubly linked list of messages queued for de
ferred processing. 



17.3 Messages and Queues 

module2 

struct qinit 

' \ 

w R , message 1 message 2 ; 

q_next 
q_hiwat,q_lowat 

q_link 

q_ptr 

'\ I '\ I , ____________ , , ____________ , 

Figure 17-6. The queue structure. 

Pointer to the next queue upstream or downstream. 
High- and low-watermarks for the amount of data the queue may 
hold, and are used for flow control (Section 17.4.3). 
Pointer used to link the queue to a list of queues that need to be 
scheduled (Section 0). 
Pointer to a data structure that holds private data for the queue. 

555 

The q_ q i n f o field points to a q i n i t structure, which encapsulates the procedural interface 
to the queue. Figure 17-7 shows the data structures accessed through q_qinfo. Each queue must 
supply four procedures-put, service, open, and close. These are the only functions required for 
other STREAMS objects to be able to communicate with the queue. The module_info structure 
contains default high and low watermarks, packet sizes, and other parameters for the queue. Some 

struct queue struct qinit struct module info 

q_qinfo /' qi putp 
qi srvp 
qi qopen 
qi qclose struct module s tat 
qi minfo - r--

I qi mstat 

Figure 17-7. Objects accessed through q_ qi nfo. 



556 Chapter 17 STREAMS 

of these fields are also present in the queue structure. This enables users to override these parame
ters dynamically by changing the values in the queue, without destroying the defaults saved in the 
module_ info. The module_stat object is not directly used by STREAMS. Each module is free to 
perform its own statistics gathering using fields in this object. 

The subsequent sections discuss the queue procedures in detail. In brief, the open and close 
procedures are called synchronously by processes opening and closing the stream. The put proce
dure performs immediate processing of a message. If a message cannot be processed immediately, 
the put procedure adds the message to the queue's message queue. Later, when the service proce
dure is invoked, it will perform delayed processing of these messages. 

Each queue must provide a put procedure, 1 but the service procedure is optional. If there is 
no service procedure, the put procedure cannot queue messages for deferred processing, but must 
immediately process each message and send it to the next module. In the simplest case, a queue will 
have no service procedure, and its put procedure will merely pass the message to the next queue 
without processing it. 

Note: There is some confusion in terminology because the word queue 
refers both to the queue object and to the queue of messages con
tained within it. This book uses the term queue to refer to the queue 
object, and message queue to refer to the linked list of messages in the 
queue. 

17.4 Stream 1/0 

The stream performs I/0 by passing messages from one queue to another. A user process writes to 
the device using the write or putmsg system calls. The stream head allocates a message (a msgb, da
tab, and data buffer) and copies the data into it. It then sends it downstream to the next queue, and 
eventually the data reaches the driver. Data from the device arrives asynchronously, and the driver 
sends it upstream toward the stream head. A process receives data through read and getmsg calls. If 
there is no data available at the stream head, the process blocks. 

A queue passes a message to the next queue in the stream by calling putnext (). The 
putnext () function identifies the next queue through the q_ next field, and invokes the put proce
dure of that queue. A queue should never directly call the next queue's put procedure, as the q_ next 
field is internal to the queue and may be implemented differently in future releases. A queue may 
send a message in the reverse direction by passing it to its mate. The read queue, for example, does 
so by calling 

WR(q}->put (WR(q), msgp); 

Stream I/0 is asynchronous. The only place where an I/0 operation may block the process is 
at the stream head. The put and service procedures of the module and driver are non-blocking. If the 

I Except for multiplexors (see Section 17.8.3) 



17.4 Stream 1/0 557 

put procedure cannot send the data to the next queue, it places the message on its own message 
queue, from where it may be retrieved later by the service procedure. If the service procedure re
moves a message from the queue and discovers that it cannot process it at this time, it returns the 
message to the queue and tries again later. 

These two functions complement each other. The put procedure is required for processing 
that cannot wait. For instance, a terminal driver must immediately echo the characters it receives, or 
else the user will find it unresponsive. The service procedure handles all non-urgent actions, such as 
canonical processing of incoming characters. 

Because neither procedure is allowed to block, they must ensure that they do not call any 
routine that may block. Hence STREAMS provides its own facilities for operations such as memory 
allocation. For instance, the all ocb () routine allocates a message. If it cannot do so for any reason 
(it may not find a free msgb, datab, or data buffer), it returns failure instead of blocking. The caller 
then invokes the bufca ll () routine, passing a pointer to a callback function. bufca ll () adds the 
caller to a list of queues that need to allocate memory. When memory becomes available, 
STREAMS invokes the callback function, which usually calls the stream's service routine to retry 
the call to all ocb (). 

The asynchronous operation is central to the design of STREAMS. On the read side 
(upstream), the driver receives the data via device interrupts. The read-side put procedures run at 
interrupt level, and hence cannot afford to block. The design could have allowed blocking in the 
write-side procedures, but that was rejected in the interest of symmetry and simplicity. 

The service procedures are scheduled in system context, not in the context of the process that 
initiated the data transfer. Hence blocking a service procedure could put an innocent process to 
sleep. If, for example, a user shell process is blocked because an unrelated transfer cannot complete, 
the results would be unacceptable. Making all put and service procedures non-blocking solves these 
problems. 

The put and service procedures must synchronize with each other while accessing common 
data structures. Because the read-side put procedure may be called from interrupt handlers, it may 
interrupt the execution of either service procedure, or of the write-side put procedure. Additional 
locking is required on multiprocessors, since the procedures may run concurrently on different proc
essors [Garg 90, Saxe 93]. 

17.4.1 The STREAMS Scheduler 

When the put procedure defers the processing of data, it calls putq () to place the message onto the 
queue and then calls qenab l e () to schedule the queue for servicing. qenab l e () sets the QENAB flag 
for the queue and adds the queue to the tail of the list of queues waiting to be scheduled. If the 
QENAB flag is already set, qenab l e () does nothing, since the queue has already been scheduled. Fi
nally, qenab l e () sets a global flag called qrunfl ag, which specifies that a queue is waiting to be 
scheduled. 

STREAMS scheduling is implemented by a routine called runqueues () and has no relation 
to UNIX process scheduling. The kernel calls runqueues () whenever a process tries to perform an 
1/0 or control operation on a stream. This allows many operations to complete quickly before a 



558 Chapter 17 STREAMS 

context switch occurs. The kernel also calls run queues() just before returning to user mode after a 
context switch. 

The runqueues () routine checks if any streams need to be scheduled. If so, it calls 
queuerun (),which scans the scheduler list, and calls the service procedure of each queue on it. The 
service procedure must try to process all the messages on the queue, as described in the next section. 

On a uniprocessor, the kernel guarantees that all scheduled service procedures will run be
fore returning to user mode. Because any arbitrary process may be running at the time, the service 
procedures must run in system context and not access the address space of the current process. 

17.4.2 Priority Bands 

Many network protocols support the notion of out-of-band data [Rago 89], which consists of urgent, 
protocol-specific control information that must be processed before regular data. This is distinct 
from high-priority messages recognized by their message types. For example, the TELNET protocol 
provides a Synch mechanism to regain control of a process by sending an urgent message. Usually, a 
special data mark denotes the end of out-of-band data (also called expedited data) in a stream. 

STREAMS treats out-of-band messages as ordinary data messages, as their treatment is 
protocol-dependent. However, it provides a feature called priority bands, which allows modules to 
prioritize messages and process them in order of priority. Specific protocols may use these bands to 
implement different classes of data messages. 

Priority bands apply only to normal message types. Each such message is assigned a band 
priority value between 0 and 255. Band 0 is default, and most protocols only use bands 0 and 1. 
High-priority message types (such as M _PC PROTO) have no band priority and are considered to be 
more urgent than all band priority messages. 

Within a queue, STREAMS maintains separate queues for each priority band in use. To do 
so, it uses a set of qband structures, one for each priority band. STREAMS allocates qband struc
tures dynamically when needed. When putq () queues a message, STREAMS adds it to the tail of 
the list on the appropriate qband structure (allocating a new qband if needed). When the service 
procedure retrieves a message from the queue by calling getq (), STREAMS returns a message 
from the highest-priority band that has a pending message. 

Hence the service procedure first processes all pending high-priority messages, then the 
normal messages in order of band priority. Within each priority band, it processes the messages in 
FIFO order. 

17.4.3 Flow Control 
The simplest flow control is no flow control. Consider a stream where each module has only a put 
procedure. As data passes through the stream, each queue processes the data and sends it to the next 
by calling putnext (). When data reaches the driver end, the driver sends it to the device immedi
ately. If the device cannot accept data, the driver discards the message. 

Although this is an acceptable method for some devices (trivially, the null device can be 
implemented this way), most applications cannot afford to lose data because the device is not ready, 
and most devices cannot always be ready for data. This requires that the stream be ready for a 



17.4 Stream 1/0 559 

queues messages 

Figure 17-8. Flow control between two queues. 

blockage in one or more of its components and handle the situation correctly without blocking a put 
or service procedure. 

Flow control is optional in a queue. A queue that supports flow control interacts with the 
nearest modules on either side that also support it. A queue without flow control has no service pro
cedure. Its put procedure processes all messages immediately and sends them along to the next 
queue. Its message queue is not used. 

A queue that supports flow control defines low- and high-water marks, which control the 
total amount of data that may be queued to it. These values are initially copied from the mod
ule_ info structure (which is statically initialized when compiling the module), but may be changed 
later by ioctl messages. 

Figure 17-8 shows the operation of flow control. Queues A and C are flow-controlled, while 
queue B is not. When a message arrives at queue A, its put procedure is invoked. It performs any 
immediate processing that is necessary on the data and calls putq (). The putq () routine adds the 
message to the queue A's own message queue, and puts queue A on the list of queues that need to 
be serviced. If the message causes the queue A's high-water mark to be exceeded, it sets a flag indi
cating that the queue is full. 

At a later time, the STREAMS scheduler selects queue A and invokes its service procedure. 
The service procedure retrieves messages from the queue in FIFO order. After processing them, it 
calls canput () to check if the next flow-controlled queue can accept the message. The can put() 
routine chases the q_ next pointers until it finds a queue that is flow-controlled, which is queue C in 
our example. It then checks the queue's state and returns TRUE if the queue can accept more mes
sages or FALSE if the queue is full. Queue A's service procedure behaves differently in the two 
cases, as shown in Example 17-1. 

if (canput {q->q next}} 
putnext {q, mp); 

else 
putbq {q, mp); 

Example 17-1. Message handling in the service procedure. 



560 Chapter I 7 STREAMS 

If can put () returns TRUE, queue A calls putnext (),which passes the message to queue B. 
This queue is not flow-controlled and immediately processes the message and passes it to queue C, 
which is known to have room for the message. 

If can put() returns FALSE, queue A calls putbq () to return the message to its message 
queue. The service procedure now returns without rescheduling itself for servicing. 

Eventually, queue C will process its messages and fall below its low watermark. When this 
happens, STREAMS automatically checks if the previous flow-controlled queue (A in this example) 
is blocked. If so, it reschedules the queue for servicing. This operation is known as back-enabling a 
queue. 

Flow control requires consistency on the part ofthe module writer. All messages of the same 
priority must be treated equally. If the put procedure queues messages for the service procedure, it 
must do so for every message. Otherwise, messages will not retain their sequencing order, leading 
to incorrect results. 

When the service procedure runs, it must process every message in the queue, unless it can
not do so due to allocation failures or because the next flow-controlled queue is full. Otherwise, the 
flow control mecha..'lism breaks down, and the queue may never be scheduled. 

High-priority messages are not subject to flow control. A put procedure that queues ordinary 
messages may process high-priority messages immediately. If high-priority messages must be 
queued, they are placed in front of the queue, ahead of any ordinary messages. High-priority mes
sages retain FIFO ordering with respect to one another. 

17.4.4 The Driver End 

The driver end is like any module, but with a few important differences. First, it must be prepared to 
receive interrupts. This requires it to have an interrupt handler and make the handler known to the 
kernel, in a machine-dependent manner. Devices generate interrupts upon receiving incoming data. 
The driver must package the data into a message and arrange to send it upstream. When the driver 
receives a message coming down from the stream head, it must extract the data from the message 
and send it to the device. 

Drivers usually implement some form of flow control, as most devices require it. In many 
cases, especially for incoming data, the driver resorts to dropping messages when it cannot manage 
the load. Hence, if the driver cannot allocate a buffer, or if its queues overflow, it silently discards 
incoming or outgoing messages. It is the responsibility of applications to recover correctly from 
dropped packets. Higher-level protocols such as TCP ensure reliable transport by retaining a copy of 
each message until it reaches its destination; if the receiver does not acknowledge the message 
within a certain period of time, the protocol retransmits it. 

The driver end also differs from the module in the way it is opened and initialized. 
STREAMS drivers are opened by the open system call, while modules are pushed onto streams by 
ioctl calls. Section 17.5 describes these operations in detail. 



17.4 Stream 1/0 561 

17.4.5 The Stll'eam Head! 

The stream head is responsible for system call handling. It is also the only part of the stream where 
an I/0 operation may block the calling process. While each module or driver has its own put, serv
ice, open, and close procedures, all stream heads share a common set of routines internal to 
STREAMS. 

A process writes data to a stream using the write or putmsg system calls. The write system 
call allows only ordinary data to be written and does not guarantee message boundaries. It is useful 
for applications that have a byte-stream view of the stream. The putmsg system call allows the user 
to supply a control message and a data message in one call. STREAMS combines them into a single 
message whose first datab has type M _PROTO and the next has the type M _DATA. 

In either case, the stream head copies the data from the user address space into STREAMS 
messages and then calls can put() to see if the stream has room for the data (the next flow
controlled module or driver is not full). If so, it sends the data downstream by calling putnext () 
and returns control to the caller. If can put() returns FALSE, the calling process blocks on the 
stream head until the head is back-enabled by the next flow-controlled module. 

Hence, when the write or putmsg system call returns, the data has not necessarily reached the 
device. The caller is guaranteed that the data has safely been copied into the kernel and has either 
reached the device or been queued at a module or driver. 

A process reads data from the stream using read or getmsg. The read system call only reads 
ordinary data. A module may send a M_SETOPTS message to the stream head, asking it to treat 
M _PROTO messages as ordinary data. After this, the read call reads the contents of both M _DATA and 
M _PROTO messages. In any case, the read system call does not preserve message boundaries or re
turn information about message types. It is primarily used when the application has a byte-stream 
view of the data. 

The getmsg system call, in contrast, retrieves both M _PROTO and M _OAT A messages. It pre
serves message boundaries and returns the two types of messages in separate return arguments. If an 
incoming message consists of an M _PROTO block followed by one or more M _DATA blocks, getmsg 
will separate the two parts correctly. 

In either case, if data is already available at the stream head, the kernel extracts it from the 
message, copies it into user space, and returns control to the caller. If there is no message waiting at 
the head, the kernel blocks the caller until a message arrives. Several processes may attempt to read 
from the same stream. If no message is waiting, all will block. When a message arrives, the kernel 
will give it to one of these processes. The interface does not define which process will receive the 
message. 

When a message reaches the stream head, the kernel checks if a process is waiting for it. If 
so, the kernel copies the message into the process's address space and wakes up the process, which 
then returns from the read or getmsg. If no process is waiting, the kernel queues the message at the 
stream head. If the stream head's queue becomes full, further messages will be queued at the preced
ing flow-controlled queue, and so on. 



562 Chapter 17 STREAMS 

17.5 Configuration and Setup 

This section examines the steps required to configure a STREAMS driver or module into the system 
and to create and set up a stream in a running kernel. STREAMS configuration consists of two 
phases. First, when the kernel is built, the STREAMS modules and drivers must be linked with the 
kernel, and the appropriate kernel routines must know how to find them. Second, the appropriate 
device files must be created and set up so that applications may access streams as they access ordi
nary files. STREAMS setup is dynamic and occurs when a user opens a stream and pushes modules 
onto it. 

17.5.1 Configuring a Module or Driver 

STREAMS modules and drivers are usually written by device vendors, independently of the kernel. 
They must then be linked with the rest of the kernel, such that the kernel knows how to access them. 
STREAMS provides a complete set of facilities to achieve this. 

Each STREAMS module must supply three configuration data structures--rnodul e _info, 
qi nit, and streamtab. Figure 17-9 describes their contents and relationship. The streamtab 
structure is the only publicly visible object; the others are usually declared as static, and hence are 
not visible outside the module. 

The streamtab contains pointers to two qinit structures-one for the read queue, and one 
for the write queue. The other two fields are only used by multiplexing drivers, to store pointers to 
an additional queue pair. The q i nit structure contains pointers to the set of functions (open, close, 
put, and service) that forms the procedural interface to the queue. The open and close routines are 
common to the module and are defined only in the read queue. All queues have a put routine, but 
only flow-controlled queues have a service routine. The q i n i t structure also contains a pointer to a 
mod u 1 e _ i n f o structure for the queue. 

qinit 
qi putp 
qi srvp 

streamtab qi qopen 
qi qclose module info 

st rdi nit qi minfo mi idnum 

st wrinit ... mi idname 
mi minpsz 

st muxrinit qinit mi maxpsz 
st muxwinit qi putp mi hiwat 

qi srvp mi lowat 
qi qopen 
qi qclose 
qi minfo 
... 

Figure 17-9. Data structures for configuring a module or driver. 



17.5 Configuration and Setup 563 

The modu 1 e _info structure contains default parameters of the module. When the module is 
first opened, these parameters are copied into the queue structure. A user may override them by sub
sequent ioctl calls. Each queue may have its own module info structure, or both may share a single 
object, as in the previous example. -

The rest of the configuration is different for modules and drivers. Many UNIX systems use 
an fmodsw[] table to configure STREAMS modules. Each entry in the table (Figure 17-lO(a)) com
prises a module name and a pointer to the streamtab structure for the module. Modules, therefore, 
are identified and referenced by name. The module name should be the same as the mi _ i dname in 
the module_ info structure, though STREAMS does not enforce this. 

STREAMS device drivers are identified through the character device switch table. Each 
cdevsw entry has a field called d_str, which is NULL for ordinary character devices. For 
STREAMS devices, this field contains the address of the s t reamtab structure for the driver (Figure 
17-10(b)). To complete the configuration, it is necessary to create the appropriate device files, with 
the major number equal to the index of the driver in the cdevsw[] array (except for clone opens, 
which are described in Section 17.5.4). STREAMS drivers must handle device interrupts and need 
an additional mechanism to install their interrupt handlers into the kernel. This procedure is system
dependent. 

Once the driver or module is configured, it is ready to be used by applications when the ker
nel is booted. The following subsections describe how that happens. 

fmodsw[ ] 

f name 

(a) STREAMS modules 

cdevsw[ ] 
indexed by ,-r-----=--=-----.., 

major 
device 
numb~~------.--~ 

(b) STREAMS drivers 

Figure 17-10. Module and driver configuration. 



564 Chapter I 7 STREAMS 

17.5.2 Opening a Stream 
A user opens a stream by opening the corresponding device file. The first time a user opens a par
ticular STREAMS device, the kernel translates the pathname and discovers that it is a character de
vice file. It calls specvp (), which allocates and initializes an snode and a common snode for this 
file (as described in Section 16.4.4). It then invokes the VOP _OPEN operation on the vnode (the 
vnode associated with the common snode acts as the vnode for this stream), which is handled by the 
spec_ open() function. spec_ open() indexes the cdevsw[] array using the major device number 
and finds that the device is a streams device (d_str !=NULL). It then calls the stropen() routine, 
passing it pointers to the vnode and to the device number, as well as the open flags and credentials. 
When called for a new stream (one that is not already open), s t ropen () performs the following ac
tions: 

I. Allocates a queue pair for the stream head. 
2. Allocates and initializes a struct stdata, which represents a stream head. 
3. Sets the stream head queues to point to the strdata and stwdata objects, which are 

qi nit structures (for the read and write queue respectively) that contain the genenc 
stream head functions. 

4. Stores the vnode pointer in the sd_vnode field ofthe stdata structure. 
5. Stores a pointer to the stream head in the vnode ( v _stream field). 
6. Stores a pointer to the streamtab structure for this driver (obtained from the cdevsw 

entry) in the sd_streamtab field ofthe stream head. 
7. Makes the private data pointer (q_ptr) of the stream head queues point to the stdata 

structure. 
8. Calls qattach () to set up the driver end, as described in the following paragraph. 
9. Pushes any autopush modules specified by the device onto the stream by calling 

qat tach(). This is described in the next section. 

Figure 17-11 shows the relevant data structures after s t ropen () returns. 
The qattach () function attaches a module or driver below the stream head by performing 

the following actions: 

1. Allocate a queue pair and link it below the stream head. 
2. Locate the streamtab structure, via the cdevsw[] array for a driver or the fmodsw[] array 

for a module. 
3. From the streamtab, obtain the read and write qinit structures and use them to initialize 

the q_ q i n f o fields of the queue pair. 
4. Finally, call the open procedure of the module or driver. 

Now suppose another user opens the same stream, either through the same device file or 
through another device file that has the same major and minor numbers (the common snode handles 
the latter case). The kernel discovers that the v_stream field of the common snode's vnode is not 
NULL, but points to the stdata structure of the stream. This indicates that the stream is already 
open, and s t ropen () simply calls the open procedure of the stream driver and every module in the 
stream, to inform them that another process has opened the same stream. 



17.5 Configuration and Setup 565 

v stream 
v_ops - spec_vnops [ ] 

... ~ <troamhoad common 
snode ~ sd_strtab 

sd vnode strdata 
-

stwdata 
... 

q_qinfo q_qinfo qinit 

qinit 
q_ptr q_ptr-
. . . ... 

strtab 

q_qinfo q_qinfo 
q_ptr q_ptr 
. . . ... qinit qinit 

(write (read 
driver end queue) queue) 

Figure 17-11. Data structures after stropen (). 

17.5.3 Pushing Modules 

A user may push a module onto an open stream by making an ioctl call with the I _PUSH command. 
The kernel allocates a queue pair and calls qat tach() to add it to the stream. qat tach() initializes 
the module by locating its strtab entry from the fmodsw[] table. It links the module into the 
stream immediately below the stream head and calls its open procedure. 

A user may remove a module from the queue using the I _POP ioctl command. This always 
removes the module nearest to the stream head. Thus modules are popped in last-in, first-out (LIFO) 
order. 

STREAMS provides an autopush mechanism, using ioctl commands for a special driver 
called the STREAMS administrative driver (sad(8)) . Using this, an administrator may specify a set 
of modules to push onto a given stream when it is first opened. The s t ropen () routine checks if 
autopush has been enabled for the stream, and finds and pushes all specified modules in order. 

There are two other common mechanisms for pushing modules onto a stream. One is to 
provide library routines that open the stream and push the correct modules onto it. Another is to 
start up a daemon process during system initialization to perform this task. Thereafter, whenever 
applications open the device file , they will be connected to the same stream, with all the right mod
ules already pushed onto it. 



566 Chapter 17 STREAMS 

17 .5.4 Clone Devices 

Section 16.4.5 described the notion of device cloning. The principle is that certain device types may 
have multiple, equivalent instances. Each instance of that device needs a unique minor device num
ber. When a user wants to open such a device, he does not care which instance of the device he 
opens, as long as it is not one that is already open. Instead of the user trying to find an unused minor 
device number, it is better if the driver could supply one for him. 

Cloning is used mostly by STREAMS devices such as network protocols and pseudotermi
nals. Hence STREAMS provides a clone driver, which automates the cloning of STREAMS de
vices. The clone device has its own major device number and is implemented as a STREAMS 
driver. It provides one device file for each STREAMS device that supports cloning. Its major device 
number is that of the clone device, and its minor number equals the major device number of the real 
device. 

For instance, suppose the clone driver has a major number of 63. The device file /dev/tcp 
may represent all TCP (transmission control protocol) streams. If the TCP driver has a major device 
number of 31, then the /dev/tcp file will have a major number of 63 and a minor number of 31. 
When a user opens /dev/tcp, the kernel allocates an snode and a common snode, then calls 
s pee_ open (). s pee_ open () invokes the d _open operation of the clone driver, passing it a pointer 
to the device number (hence, a pointer to the s _ dev field of the common snode ). 

The c 1 nopen () routine implements the d _open operation for the clone driver. c 1 nopen () 
extracts the minor number (31, in this example) from s_dev and indexes it into cdevsw[] to locate 
the TCP driver. It then invokes the d_ open operation of this driver, passing it a CLONEOPEN flag and 
the device number. In our example, this results in a call to the tcpopen () function. When 
tcpopen () sees the CLONEOPEN flag, it generates an unused minor device number and writes it back 
to the snode. 

When c 1 nopen () returns, s pee_ open() discovers that a clone open had occurred. Because 
the common snode was the one associated with the clone device (/dev/tcp), spec_ open() must al
locate a new vnode and snode for this connection. It initializes the v stream field of the new vnode 
to point to the stream head and copies the new major and minor device numbers (from s _ dev) into 
the new vnode and snode. It then calls stropen ()to open the new stream. 

Finally, spec_open() zeroes the v_stream field of the original common snode (that associ
ated with /dev/tcp ). This makes it appear as though the device had never been opened. Subse
quently, if another process tries to open /dev/tcp, the kernel performs the same series of operations 
and builds a new stream and device number for it. This gives the user a unique TCP connection 
without having to guess which minor number to use. 

17.6 STREAMS ioct/s 

STREAMS needs special mechanisms to deal with ioctls. Though some ioctl commands are handled 
entirely at the stream head, others are targeted at the driver or at intermediate modules. These are 
converted to messages and sent downstream. This causes problems in two areas-process synchro
nization and data transfer between user and kernel space. 



17.6 streamS ioctls 567 

The stream head is responsible for synchronization. If it can handle the command itself, it 
does so synchronously and in process context, and there is no problem. If the stream head must send 
the command downstream, it blocks the process and sends down an M_ I OCT L message containing 
the command and its parameters. When a module handles the command, it returns the results in an 
M _ IOCACK message. If no module or driver can handle the message, the driver generates an 
M_IOCNACK message. When the stream head receives either ofthese messages, it wakes up the proc
ess and passes the results to it. 

The data movement problem is concerned with the exchange of arguments and results be
tween the user program and the module or driver that handles the ioctl. When a user issues an ioctl 
command to an ordinary character device, the driver processes the command in the context of the 
calling process. Each ioctl command is usually accompanied by a parameter block, whose size and 
contents are command-specific. The driver copies the block from user space into the kernel, proc
esses the command, and copies the results to user space. 

This method breaks down for STREAMS drivers and modules. The module receives the 
command as an M _ IOCTL message, asynchronous to the process and in system context. Because the 
module does not have access to the process's address space, it cannot copy in the parameter block, 
or copy the results back to the user space. 

STREAMS provides two ways of overcoming this problem. The preferred solution involves 
a special type of ioctl command called I_ STR. The other method handles ordinary ioctl commands 
and is necessary to maintain compatibility with older applications. It is called transparent ioctl 
handling, as it does not require modification of existing applications. 

17.6.1 I_STR ioctl Processing 

The normal syntax of the ioctl system call is 

ioctl (fd, cmd, arg); 

where fd is the file descriptor, cmd is an integer that specifies a command, and arg is an optional, 
command-specific value, which often contains the address of a parameter block. The driver inter
prets the contents of arg based on the cmd and copies the parameters from user space accordingly. 

A user may issue a special STREAMS ioctl message by specifying the constant I_ STR as the 
cmd value, and setting a rg to point to a s t ri oct 1 structure, which has the following format: 

struct strioctl { 
i nt i c_cmd; 

} ; 

int ic_timeout; 
i nt i c_l en; 
char *ic_dp; 

I* the actual command to issue *I 
I* timeout period *I 
I* length of parameter block *I 
I* address of parameter block *I 

If the stream head cannot handle the ioctl, it creates a message of type M _ IOCTL and copies 
the i c cmd value into it. It also extracts the parameter block (specified by i c 1 en and i c dp) from 
user space and copies it into the message. It then passes the message downstr~am. When the module 



568 Chapter 17 STREAMS 

that handles the command receives the message, it contains all the information required to process 
the command. If the command requires data to be returned to the user, the module writes it into the 
same message, changes the message type toM_ IOCACK, and sends it back upstream. The stream head 
will copy the results to the parameter block in user space. 

Hence the stream head passes the message downstream until it reaches a module that can 
recognize and handle it. That module sends back an M _ IOCACK message to the stream head, indicat
ing that the command was successfully intercepted. If no module can recognize the message, it 
reaches the driver. If the driver cannot recognize it either, it sends back aM_ IOCNACK message, upon 
which the stream head generates an appropriate error code. 

This solution is efficient, but imposes some restrictions on the commands it can handle. It 
will not work with older applications that do not use I_ STR commands. Moreover, since the stream 
head cannot interpret the parameters, they must be contained directly in the parameter block. For 
example, if one parameter is a pointer to a string stored elsewhere in user space, the stream head 
will copy the pointer but not the string. Hence it is essential to have a general solution that will work 
in all cases, even if it is slower or less efficient. 

17.6.2 Transparent ioctls 

Transparent ioctls provide a mechanism to handle the data copying problem for commands that do 
not use the I_ STR framework. When a process issues a transparent ioctl, the stream head creates an 
M_IOCTL message and copies into it the cmd and arg parameters. Usually, the arg value is a pointer 
to a parameter block, whose size and contents are known only to the module that handles the com
mand. The stream head sends the message downstream and blocks the calling process. 

When the module receives the message, it sends back an M _COPY IN message, passing the size 
and location (same as arg) of the parameter block. The stream head wakes up the process that had is
sued the ioctl, to handle the M_COPYIN message. The process creates a new message of type 
M _ IOCARGS, copies the data from user space into it, sends the message downstream, and blocks again. 

When the module receives the M _ IOCARGS message, it interprets the parameters and proc
esses the message. In some cases, the module and the stream head may need to exchange several 
messages to read in all parameters correctly. For example, if one of the parameters is a pointer to a 
string, the module sends an additional message to extract the string itself. 

Finally, the module receives all the parameters it needs and services the message. If results 
must be written back to the user, the module issues one or more M _ COPYOUT messages, passing back 
the results and specifying the location to which they must be written. Each time, the stream head 
wakes up the process, which writes them to its address space. When all results have been copied, the 
module sends an M _I OCAC K message, and the stream head wakes up the process for the last time and 
completes the ioctl call. 

17.7 Memory Allocation 

STREAMS memory management has very special requirements, and hence is not handled by the 
regular kernel memory allocator. Modules and drivers constantly use messages and require an effi-



17.7 Memory Allocation 569 

cient mechanism to allocate and free them. put and service procedures must be non-blocking. If the 
allocator cannot supply the memory immediately, they must handle the situation without blocking, 
perhaps by retrying at a later time. In addition, many STREAMS drivers allow direct memory ac
cess (DMA) from device buffers. STREAMS allows such memory to be directly converted into 
messages instead of copying it into main memory. 

The main memory management routines are a 11 ocb (), freeb () , and freemsg (). The 
syntax for a 11 ocb () is 

mp = allocb (size, pri}; 

a 11 ocb () allocates a msgb, a datab, and a data buffer at least size bytes long; it returns a 
pointer to the msgb. It initializes them so that the msgb points to the datab, which contains the be
ginning and end of the data buffer. It also sets the b_rptr and b_wptr fields in the msgb to point to 
the beginning of the data buffer. The pri argument is no longer used and is retained only for back
ward compatibility. The freeb () routine frees a single msgb, while freemsg () traverses the b _ cont 
chain, freeing all msgbs in the message. In both cases, the kernel decrements the reference count of 
the associated databs. If the count falls to zero, it also releases the datab and the data buffer to 
which it points. 

Allocating three objects individually is inefficient and slow. STREAMS provides a faster 
solution using a data structure called mdbb 1 ock. Each mdbb 1 ock is 128 bytes in size and includes a 
msgb, a datab, and a pointer to a release handler, which is discussed in the next section. There
maining space in the structure may be used for a data buffer. 

Let us examine what happens when a module calls a 11 ocb () to allocate a message. a 1-
1ocb() calls kmem_alloc() to allocate a struct mdbb1ock, passing it the NO_SLP flag. This en
sures that kmem _a 11 oc () returns an error instead of blocking if the memory is not available imme
diately. If the allocation succeeds, a 11 ocb () checks if the requested size is small enough to fit into 
the mdbb 1 ock. If so, it initializes the structure and returns a pointer to the msgb within it Figure 
17-12. Hence a single call to kmem _a 11 oc () provides the msgb, da tab, and data buffer. 

If the requested size is larger, a 11 ocb () calls kmem _a 11 oc () once more, this time to allocate 
the data buffer. In this case, the extra space in the mdbb 1 ock is not used. If either call to 
kmem _a 11 oc () fails, a 11 ocb () releases any resources it had acquired and returns NULL, indicating 
failure. 

The module or driver must handle an a 11 ocb () failure. One possibility is to discard the data 
with which it is working. This approach is used by many network drivers when they are unable to 
keep pace with incoming traffic. Often, though, the module wants to wait until memory is available. 
Because put and service procedures must be non-blocking, it must find another way of waiting for 
memory. 

STREAMS provides a routine called bufca 11 () to handle this situation. When a module 
cannot allocate a message, it calls bufca 11 (),passing it a pointer to a callback function and the size 
of the message it wanted to allocate. STREAMS adds this callback to an internal queue. When suf
ficient memory becomes available, STREAMS processes this queue and invokes each callback 
function on it. 



570 Chapter 17 STREAMS 

struct mdbblock 
- b_rptr b datab -r-
- b_wptr ... (msgb) 

pointer to release handler 
128 bytes < [ db buf db ref ... (datab) 

data buffer 

Figure 17-12. Small message allocation. 

Often, the callback function is the service procedure itself. The callback may not, however, 
assume that enough memory is indeed available. By the time the callback runs, other activity may 
have depleted the available memory. In that case, the module typically reissues the bufca 11 (). 

17.7 .1 Extended STREAMS Buffers 

Some STREAMS drivers support I/0 cards containing dual-access RAM (also called dual-ported 
RAM). The card has memory buffers which may be accessed both by the device hardware and by the 
CPU. Such a buffer may be mapped into the kernel or user address space, allowing an application to 
access and modify its contents without copying it to or from main memory. 

STREAMS drivers place their data into messages and pass them upstream. To avoid copying 
the contents of the I/0 card's buffers, STREAMS provides a way to use them directly as the data 
buffer of the message. Instead of using a 11 ocb (), the driver calls a routine called esba 11 oc (), 
passing it the address of the buffer to be used. STREAMS allocates a msgb and datab (from a 
mdbb 1 ock), but not a data buffer. Instead, it uses the caller-supplied buffer and adjusts the msgb and 
datab fields to reference it. 

This causes a problem when the buffer is freed. Normally, when a module calls freeb () or 
freemsg (),the kernel frees the msgb, datab, and the data buffer (assuming no other references to 
the datab). The kmem_free() routine releases these objects and recovers the memory. Driver
supplied buffers, however, cannot be released to the general memory pool since they belong to the 
I/0 card. 

Hence esba 11 oc () takes another parameter, which is the address of a release handler func
tion. When the message is freed, the kernel frees the msgb and datab, and calls the release handler 
to free the data buffer. The handler takes the necessary actions to mark the buffer as free, so that the 
I/0 card may reuse it. The syntax for esba 11 oc () is 

mp. = esbal1oc (base, size, pri, free_rtnp}; 



17.8 Multiplexing 571 

where base and size describe the buffer to be used, and free _rtnp is the address of the release 
handler. The pri argument is for compatibility only and is not used in SVR4. esba 11 oc () returns a 
pointer to the msgb. 

17.8 Multiplexing 

STREAMS provides a facility called multiplexing, which allows multiple streams to be linked to a 
single stream, called a multiplexor. Multiplexing is restricted to drivers and is not supported for 
modules. There are three types of multiplexors-upper, lower, and two-way. An upper multiplexor 
connects multiple streams at the top to a single stream at the bottom. It is also known as a fan-in, or 
M-to-1, multiplexor. A lower multiplexor, also called fan-out or 1-to-N, connects multiple lower 
stream below a single upper stream. A two-way, or M-to-N, multiplexor supports multiple streams 
above and below. Multiplexors may be combined in arbitrary ways to form complex configurations, 
such as the one shown earlier in Figure 17-3. 

STREAMS provides the framework and some support routines for multiplexing, but the 
drivers are responsible for managing the multiple streams and routing data appropriately. 

17.8.1 Upper Multiplexors 
Upper multiplexing is simply a result of opening multiple minor devices to the same driver. 
STREAMS provides no special support except the processing in the open and close system calls. 
Any driver that supports multiple minor devices is an upper multiplexor. 

The first time a user opens a particular STREAMS device, the kernel creates a stream for it 
and references it through the snode and common snode. Subsequently, if another (or the same) 
process opens the same device file, the kernel finds that the file is already streaming (a stream is set 
up), and the new process uses the same stream. The same holds if the second process opens a differ
ent device file having the same major and minor device numbers. The kernel recognizes that the 
same device is being opened (since it will go through the same common snode), and the two proc
esses will share the same stream. So far, we have no multiplexing. 

If, however, the second process uses a different minor device number, the kernel will create 
a separate stream for it, and also a separate snode and common snode. Since the two streams have 
the same major device number, they will be handled by the same driver. The open procedure of the 
driver will be called twice, once for each stream. The driver will manage two sets of queues, per
haps with different modules pushed on them. When data comes in from the device, the driver exam
ines the data and decides which stream should receive it. The decision is usually based on informa
tion contained in the data, or on which port on the controller card the data arrived. 

For example, Figure 17-13 describes an ethernet driver acting as an upper multiplexor. The 
two streams may contain different modules. For instance, one stream may be using an IP module 
and another an ICMP module. When data arrives from the network, the driver examines its contents 
to decide which stream should receive the data. 

STREAMS provides no special support for upper multiplexors. The driver maintains data 
structures to keep track of the streams connected to it. It stores pointers to the different read queues, 



572 Chapter 17 STREAMS 

Figure 17-13. An upper multiplexor. 

so that it can send the data to any stream. It manages its own flow control, since STREAMS does not 
provide flow control for multiplexors. 

17 .8.2 lower Multiplexors 

A lower multiplexor driver is a pseudodevice driver. Instead of controlling a physical device, it in
terfaces with one or more streams below it. To build such a configuration, a user creates the upper 
and lower streams, and links the upper stream to each of the lower streams. STREAMS provides 
special ioctl commands called I_ LINK and I_ UNLINK to set up and dismantle lower multiplexors. 

Consider a system that has both an ethemet and an FDDI card, and a STREAMS driver for 
each. The system could implement the IP layer as a multiplexing driver and connect it to both net
work interfaces. Example 17-2 shows how such a configuration is built. 

fd enet =open {"/dev/enet", 0 RDWR); 
fd-fddi =open ("/dev/fddi", 0-RDWR); 
fd-ip =open {"/dev/ip", 0 RDWR); 
ioctl (fd ip, I LINK, fd enet); 
ioctl (f(ip, (LINK, f(fddi); 

Example 17-2. Building a lower multiplexor. 

The example omits the statements to check the return values and handle errors. The first 
three statements open the enet (ethemet),fddi, and ip drivers, respectively. Next, the user links the 
ip stream onto the enet stream and then onto thefddi stream. Figure 17-14 shows the resulting con
figuration. 

The next section examines the process of setting up the lower multiplexor in detail. 

17.8.3 Unking Streams 

A lower multiplexor driver must provide two queue pairs, as opposed to a single pair for ordinary 
STREAMS drivers. The two pairs are called upper and lower. In the streamtab structure for a 



17.8 Multiplexing 573 

Figure 17-14. An IP driver as a lower multiplexor. 

multiplexor, the st_rdinit and st_wrinit fields reference the qinit structures for the upper 
queue pair, while the st_muxrinit and st_muxwinit fields point to the lower queue pair. In the 
queues, only some procedures are required. The upper read queue must contain the open and close 
procedures. The lower read queue must have a put procedure, and so must the upper write queue. 
All other procedures are optional. 

Figure 17-15 describes the ip and enet streams before the I_LINK command. The strdata 
and stwdata are shared by all stream heads and contain the read and write qi nit structures, re
spectively. Only the ip driver has a lower queue pair, and it is not used as yet. 

Now let us look at what happens when the user issues the first I LINK command. The 
st ri oct l () routine does the initial processing of all'ioctl requests. For the I ..=-LINK case, it takes the 
following actions: 

1. Checks that both upper and lower streams are valid and that the upper stream is a 
multiplexor. 

2. Checks the stream for cycles. A cycle could occur if the lower stream was already 
connected above the upper stream, directly or indirectly. STREAMS fails any I_ LINK call 
that results in such a cycle. 

3. Changes the queues in the enet stream head to point to the lower queue pair of the ip 
driver. 

4. Zeroes out the q_pt r fields in the enet stream head, so that they no longer point to. its 
stdata structure. 

5. Creates a l i n kb l k structure, containing pointers to the queues to be linked. These are 
q_ top, which points to the write queue of the ip driver, and q_bot, which points to the 
write queue of the enet stream head. The l in kb l k also contains a link ID, which later may 
be used in routing decisions. STREAMS generates a unique link ID for each connection 
and also passes it back to the user as the return value of the I_ LINK ioctl. 

6. Sends the l i nkbl k downstream to the ip driver in an M_IOCTL message and waits for it to 
return. 

Figure 17-16 shows the connections after the I_ LINK completes. The heavy arrows show the 
new connections set up by STREAMS. 



574 Chapter 17 STREAMS 

I .. .. 
'I strdata I stwdata I, 

I 

I stdata I I I stdata I ip strtab enet strtab 
q_qinfo q_qinfo st rdinit st rdinit q_qinfo q_qinfo 
q_qptr q_qptr- - - q_qptr q_qptr-
... ... st winit st winit . .. . .. 

st muxrini st muxrini 

st muxwini st muxwini 1 
q_qinfo q_qinfo [---> 

ip upper 
q_qinfo q_qinfo 

I 
ri nit enet 

I 
ip upper wi nit 
winit 

4 
enet 

ip lower .__ ri nit 
I ip driver I rinit qi nit I enet driver I 

ip lower - structures 
win it 

Figure 17-15. ip and enet streams before linking. 

The ip driver manages other details of the multiplexor configuration. It maintains data 
structures describing all streams connected below it and, when it receives the M _I OCT L message, 
adds an entry for the enet stream to them. This entry, at a minimum, must contain the lower queue 
pointer and link ID (from the 1 inkbl k structure passed in the message), so it can pass messages 
down to the lower stream. In the next section, we describe the data flow through the multiplexor. 

17.8.4 Data Flow 
The fddi stream is linked below the ip driver just like the enet stream. The ip driver receives a sec
ond M _ IOCTL message and adds an entry for the fddi stream. Once the configuration is set up, it 
must be able to route incoming and outgoing messages correctly. 

When a user sends data downstream, the ip driver must decide whether the data should be 
sent to the ethemet or the FDDI interface. This decision may be based on the destination IP address 
of the packet, if the two interfaces are serving different subnets. It then looks up the address of the 
write queue of the appropriate lower stream in its private data structures. It then calls can put() to 
make sure the lower stream can accept the message and, if so, sends it down by calling the put pro
cedure of the lower write queue. 

The plumbing set up by STREAMS takes care of the upstream routing. When data comes in 
over the ethemet or the FDDI, the driver sends it upstream. When it reaches the stream head, it is 
handled by the put procedure of the stream head's read queue. This queue, however, now points to 



17.8 Multiplexing 575 

I I stdata I 1 
q_qinfo q_qinfo strdata stwdata 
q_qptr q_qptr -
... . .. 

11 
T 
I l I stdata 

I ip upper ip upper q_qinfo q_qinfo q_qinfo q_qinfo 
ri nit winit q_qptr q_qptr ... . .. 

ip lower ip lower ... ... 
ri nit winit 

I ip driver I t t r .. 
enet 

I<- q_qi nfo q~qiofl winit ... 
enet 

ri nit 

I enet driver 

Figure 17-16. IP and enet streams after linking. 

the q in it structure of the lower read queue of the multiplexor. Hence the message is processed by 
the ip driver, which sends it up toward the ip stream head. 

STREAMS does not directly support flow control for multiplexors. Hence the ip driver must 
handle any flow control it requires. 

17.8.5 Ordinary and Persistent Links 

Ordinarily, a link stays in place until the last open instance of that stream is closed. Alternatively, a 
user may explicitly unlink a stream below a multiplexor by using the I_ UNLINK ioctl command, 
passing it the link ID returned by I_ LINK. 

For a multiplexor configuration, the stream to the upper driver is the controlling stream for 
that configuration. For a multilevel configuration involving several multiplexors, the controlling 
stream for each multiplexor at each level must be linked under the next higher level multiplexor. If 
the streams are set up correctly in this way, the final close of the topmost controlling stream dis
mantles the entire configuration. 

Consider a complex configuration such as the one described in Figure 17-3. It is desirable to 
set up this configuration once and for all and to leave it in place indefinitely for applications to use. 
One way to do it is to have a daemon process open and link all the streams and push any required 



576 Chapter 17 STREAMS 

modules. This daemon process then blocks indefinitely, holding an open descriptor to the control
ling streams. This prevents the setup from being dismantled when no other process is using it. 

Other processes may now use this configuration by issuing open calls to the topmost drivers 
(TCP or UDP in the example of Figure 17-3). These are typically clone devices and opening them 
creates new minor devices and, correspondingly, new streams to the same driver. 

This solution requires a process to be dedicated to keeping the streams open. It does not 
protect the system against accidental death of that process. STREAMS provides an alternative solu
tion, using the !_PLINK and I_PUNLINK commands in place of !_LINK and !_UNLINK. !_PLINK 
creates persistent links, which remain active even if no process has the stream open. Such a link 
must be explicitly removed by I_PUNLINK, passing it the link ID returned by !_PLINK. 

17.9 FIFOs and Pipes 

One of the benefits of STREAMS is that it offers a simple way of implementing FIFO files and 
pipes. Section 6.2 described FIFOs and pipes from an interprocess communications perspective. 
This section shows how SVR4 implements these objects and the advantages of this approach. 

17.9.1 STREAMS FIFOs 
FIFO files are also called named pipes. A user creates a FIFO by the mknod system call, passing it 
the pathname, permissions, and the S _I FIFO flag. The file may reside in a directory of any ordinary 
file system such as s5fs or ufs. Once created, any process that knows its name may read or write the 
file, as long as it has the appropriate permissions. The file continues to exist until explicitly deleted 
through the unlink system call. I/0 to the file obeys first-in, first-out semantics. Thus, once opened, 
the file behaves a lot like a pipe. 

SVR4 uses a separate file system type calledfifofs to handle all operations on the FIFO file. 
It uses a stream with a loopback driver to implement the functionality. When a user calls mknod to 
create a FIFO, the kernel parses the pathname to obtain the vnode of the parent directory. It then in
vokes the VOP _CREATE operation on the parent vnode, to create a file in that directory. It sets the 
I F I FO flag in the in ode, which marks it as a FIFO file. 

Figure 17-17 describes how SVR4 sets up a FIFO. To use the FIFO, a process must first 
open it. When the open system call sees the IFI FO flag in the inode, it calls specvp (),which in turn 
calls the fifofs routine fi fovp (). This routine creates afifonode, which is much like an snode. The 
vnode contained in the fifonode points to the vector offifofs operations.fifofs returns this vnode to 
the open call, so that all further references to the file use the fifofs operations. 

The open system call then invokes the VOP _OPEN operation on the new vnode. This results in 
a call to the fifo_ open() routine. Since the file is being opened for the first time, there is no stream 
associated with it. fifo_ open creates a new stream head, and simply connects its write queue to its 
read queue. It stores the pointer to the stream head (struct stdata) in the v_stream field of the 
vnode. On subsequent opens, fifo_ open() will find that the stream already exists, and all users 
will share access to the stream. 



17.9 FIFOs and Pipes 

vnode of v_op 
FIFO file v rdev 

ufs _ vnodeops [ ] 

file descriptor 
table in u area 

f vnode 

struct f;le fn rent 
fn went 
fn_open 

struct t;fonode 

Figure 17-17. STREAMS-based FIFO. 

FIFO stream 

577 

Whenever a user writes data to the FIFO, the stream head sends it down the write queue, 
which immediately sends it back to the read queue, where the data waits until it is read. Readers re
trieve data from the read queue and block at the stream head if no data is available. When no proc
esses have the FIFO open, the stream is dismantled. The stream will be rebuilt if the FIFO is opened 
again. The FIFO file itself persists until explicitly unlinked. 

17.9.2 STREAMS Pipes 

The pipe system call creates an unnamed pipe. Prior to SVR4, data flow in the pipe was unidirec
tional. The pipe call returned two file descriptors, one for writing and the other for reading. SVR4 
reimplemented pipes using STREAMS. The new approach allows bidirectional pipes. 

As before, pipe returns two file descriptors. In SVR4, however, both are open for reading 
and writing. Data written to one descriptor is read from the other, and vice versa. This is achieved 
by using a pair of streams. The pipe system call creates two fifonodes and a stream head for each of 
them. It then fixes the queues such that the write queue of each stream head is connected to the read 
queue of the other. Figure 17-18 describes the resulting configuration. 

This approach has some important advantages. The pipe is now bidirectional, which makes it 
much more useful. Many applications require bidirectional communication between processes. Prior 
to SVR4, they had to open and manage two pipes. Moreover, implementing the pipe via streams 
allows many more control operations on it. For instance, it allows the pipe to be accessed by unre
lated processes. 

The C library routine fattach provides this functionality [Pres 90]. Its syntax is 



578 Chapter 17 STREAMS 

fifo_vnodeops[ ] 
v_op 

~ 
v_op 

v stream v stream 

fn_realvp fn_realvp 
fn mate fn mate 
fn rent fn rent 
fn went fn went 
fn_open fn_open 

struct struct 
fifonode fifonode 

Figure 17-18. STREAMS-based pipe. 

where fd is a file descriptor associated with a stream, and path is the pathname of a file owned by 
the caller (or the caller must be root). The caller must have write access to the file. fattach uses a 
special file system called namefs and mounts an instance of this file system onto the file represented 
by path. Unlike other file systems, which may only be mounted on directories, namefs allows 
mounting on ordinary files. On mounting, it binds the stream file descriptor fd to the mount point. 

Once so attached, any reference to that pathname accesses the stream bound to it. The asso
ciation persists until removed by fdetach, at which time the pathname is bound back to the original 
file associated with it. Frequently,fattach is used to bind one end of a pipe to a filename. This al
lows applications to create a pipe and then dynamically associate it with a filename, thus providing 
unrelated processes with access to the pipe. 

17.10 Networking Interfaces 

STREAMS provides the kernel infrastructure for networking in System V UNIX. Programmers 
need a higher-level interface to write network applications. The sockets framework, introduced in 
4.lcBSD in 1982, provides comprehensive support for network programming. System V UNIX 
handles this problem through a set of interfaces layered on top of STREAMS. These include the 
Transport Provider Interface (TPJ), which defines the interactions between transport providers and 
transport users, and the Transport Layer Interface (TLI), which provides high-level programming 
facilities. Since the sockets framework came long before STREAMS, there are a large number of 
applications that use it. To ease the porting of these applications, SVR4 added support for sockets 
through a collection of libraries and STREAMS modules. 



17.10 Networking Interfaces 579 

17.10.1 Transport Provider Interface (TPI) 

A transport provider is a network module such as TCP that implements layer 4 (transport layer) of 
the OSI protocol stack [ISO 84]. A transport user is an application such as the file transfor protocol 
(ftp), which uses the module. TPI is built on top of STREAMS, and defines the format and contents 
of messages that govern interactions between the transport provider and the transport user. 

TPI messages originate both from the application and from the transport provider. Each 
message is contained in a STREAMS message block oftype M_PROTO or M_PCPROTO. The first field 
of the message is its TPI message type. This type determines the format and contents of the rest of 
the message. For instance, the application issues aT_ BIND_ REQ message to bind the stream to a port. 
It contains the port number to which the stream must be bound, as well as other parameters specific 
to the request. The transport provider replies by sending aT _BIND_ACK message, which contains the 
results of the operation. 

Similarly, TPI defmes the format for sending data up or down the stream. The application 
creates a message headed by a T_DATA_REQ or T_UNITDATA_REQ block, followed by one or more 
M_DATA blocks containing the body ofthe message. The header contains the destination address and 
port number in protocol-specific format. When data comes in over the network, the transport pro
vider prepends a header, which is a T_DATA_IND or T _UNITDATA_IND message block.2 

The role of TPI is to standardize interactions between the transport provider and the trans
port :.~ser. For instance, an application uses the same message to bind to a port, whether using a TCP 
or a UDP connection. This allows a greater degree of transport independence. TPI does not, how
ever, provide a simple programming interface. That is taken care of by sockets and the transport 
layer interface. 

17.10.2 Transport Layer Interface (TLI) 

The TLI [AT&T 89] is native to System V UNIX and was introduced in SVR3 in 1986. It provides 
a procedural interface to open and use a network connection. TLI functions are particularly suitable 
for implementing client-server interactions. They may be used both for connection-oriented and 
connectionless services. Internally, they are implemented as STREAMS operations. 

In a connection-oriented protocol (Figure 17 -19), the server opens a transport endpoint by 
calling t_open(), then binds it to a port through t_bind().It then calls t_l isten(), in which it 
blocks until a client requests a connection. Meanwhile, a client program, usually on a different ma
chine, calls t _open() and t _bind(), followed by at_ connect() to connect to the server. The cli
ent blocks in t _connect () until the connection is established. 

When the connect request arrives at the server machine, t _1 i s ten () returns, and the server 
calls t_accept(} to accept the connection. This sends a reply to the client, which returns from 
t connect(). The connection is now established. The server sits in a loop, calling t rev() to re
c~ive a client request, processing it, and calling t_snd() to send the reply. The client ~ails t_snd() 
to send a request and t _rev() to receive the reply. 

2 The T UNITDATA REQ and T UNITDATA IND types are used for datagrams, while T DATA REQ and T DATA IND are 
used for byte-stre"im data. - - - - - -



580 Chapter 17 STREAMS 

wait for connection 

~------------------------ t_connect() 

wait for connection 
I 

wait for request 
I 

t_snd() 

process request 
t_rcv () 

wait for reply 

t_snd() ----------------------- - ... f-----' 

Figure 17-19. TLI functions for a connection-oriented protocol. 

Connectionless protocols operate differently (Figure 17-20). Both the server and the client 
call t _open() and t _bind(), just as before. Since there are no connections to be made, we do not 
need t 1 is ten(), t connect(), or t accept() calls. Instead, the server sits in a loop, calling 
t rcvudata(), which blocks until a client sends a message. When a message arrives, the call re
turns to the server with the address and port number of the sender, along with the body of the mes
sage. The server processes the message and replies to the client calling t sndudata (). The client 
likewise calls t_sndudata() to send messages and t_rcvudata() to recei~e replies. 

17.10.3 Sockets 
Sockets [Leff 86], introduced in 4.1BSD in 1982, provide a programming interface, which may be 
used both for interprocess and network communications. A socket is a communication endpoint and 



17.10 Networking Interfaces 581 

wait for reply 

Figure 17-20. TLI functions for a connectionless protocol. 

represents an abstract object that a process may use to send or receive messages. Although sockets 
are not native to System V UNIX, SVR4 provides full BSD socket functionality in order to support 
the huge number of applications written using the socket interface. 

The socket interface is similar to TLI in several respects. There is almost a one-to-one corre
spondence of socket and TLI functions. Table 17-1 shows the common TLI functions and the 
equivalent socket calls. 

Table 17-1. Correspondence between TLI and socket calls 

TLI functions Socket functions Purpose 
t_ open() socket() Open a connection endpoint 
t_bind() bind() Bind endpoint to port 
t_listen() listen() Wait for a connection request 
t _connect() connect() Send a connection request 
t_accept () accept(} Accept a connection 
t_rcv () recvmsg() Receive message from connection 
t_snd() sendmsg() Send message to connection 
t_rcvudata() recvfrom() Receive message from any node 
t sndudata () sendto() Send message to specified node 

There are, however, substantial differences in the arguments to and semantics of the TLI and 
socket calls. Although TLI and STREAMS were designed to be mutually compatible, there were 



582 Chapter I 7 STREAMS 

several problems in adding sockets support to STREAMS [Vess 90]. Let us examine some of the 
important factors that cause incompatibility between the two frameworks. 

The sockets framework is procedural, not message-based. When an application calls a socket 
function, the kernel sends the data to the network by directly calling lower-level transport functions. 
It finds the transport-specific functions through a table lookup and routes the data to them. This al
lows higher layers of the socket interface to share state information with transport layers through 
global data structures. In STREAMS, each module is insulated from others and has no global state. 
Although such a modular framework has many advantages, it is difficult to duplicate some socket 
functionality that depends on shared state. 

Socket calls execute in the context of the calling process. Hence any errors can be synchro
nously reported to the caller. STREAMS processes data asynchronously, and calls such as write or 
putmsg succeed as soon as the data is copied in by the stream head. If a lower-level module gener
ates an error, it can only affect subsequent write attempts; the call that caused the error has already 
succeeded. 

Some problems are associated with the decision to implement sockets on top of TPI. Certain 
options are processed in different places by sockets than by TPI. For instance, socket applications 
specify the maximum number of unaccepted connect indications (backlog) in the 1 is ten () call, 
after the socket has been opened and bound. TPI, however, requires the backlog to be specified in 
the T _BIND_ REQ message, sent during the bind operation itself. 

17.10.4 SVR4 Sockets Implementation 

Figure 17-21 describes the implementation of sockets in SVR4. The sockets functionality is pro
vided jointly by a user-level library called socklib and a STREAMS module called sockmod. The 
two play complementary roles. The socklib library maps socket functions to STREAMS system 
calls and messages. The sockmod module mediates socklib's interactions with the transport pro
vider and supports socket-specific semantics. 

When a user calls socket to create a socket, socklib maps the arguments to the device file 
name using the SVR4 Network Selection Facility [AT&T 89]. It opens the file, thus creating a 
stream, and calls the I _PUSH ioctl to push the sockmod module just below the stream head. Once 
this configuration is set up in this way, sockmod and socklib cooperate to handle user requests. 

For example, consider what happens when the user calls connect to connect a TCP stream to 
a remote server. socklib creates a T _CONN_ REQ TPI message, and sends it downstream by calling 
putmsg. It then calls getmsg to wait for the reply. When sockmod intercepts the message, it stores 
the destination address for later use and passes the message to TCP. The TCP module processes the 
request and sends an acknowledgment upstream. When getmsg returns, socklib extracts the results 
from the message, and returns control to the application. 

Subsequently, the user may send data to the connection by calling sendmsg. Again, socklib 
sends it downstream by calling putmsg. When sockmod receives the message, it prepends a header 
containing the destination address, which it had remembered when establishing the connection. 

Both socklib and sockmod need to maintain some state about the socket. When a connec
tion is established, for example, socklib records the connection's status and destination address. 



17.11 Summary 

read, 
write 

user space 
---------------,---LL------LL--,---------------

kernelspaCe 

Figure 17-21. Implementing sockets in SVR4. 

583 

This way, it can reject sendmsg calls to unconnected sockets. If sockmod alone maintained the con
nection information, there would be no way to return the correct error status to the caller. 

Likewise, it is not sufficient to maintain state in socklib alone. This is because a process 
may create a socket and then call exec, wiping out any state maintained in socklib. The socket im
plementation detects this because exec initializes socklib to a known state. When a user tries to use 
a socket after an exec, socklib sends an ioctl to sockmod to recover the lost state. Since sockmod is 
in kernel space, its state is not wiped out by the exec call. 

There are many interesting issues and problems concerning the SVR4 sockets implementa
tion. They are discussed in detail in [Vess 90]. 

17.11 Summary 

STREAMS provides a framework for writing device drivers and network protocols. It enables a 
high degree of configurability and modularity. STREAMS does for drivers what pipes do for UNIX 
shell commands. It allows the writing of independent modules, each of which acts as a filter and 
performs some specific processing on a data stream. It then allows users to combine these modules 
in different ways to form a stream. This stream acts like a bidirectional pipe, moving data between 
the application and the device or network interface, with appropriate processing in between. 

The modular design allows network protocols to be implemented in a layered manner, each 
layer contained in a separate module. STREAMS are also used for interprocess communication, and 
SVR4 has reimplemented pipes and FIFOs using streams. Finally, many character drivers, including 
the terminal driver subsystem, have been rewritten as STREAMS drivers. Some of the recent en
hancements to STREAMS include multiprocessor support [Garg 90, Saxe 93]. 



584 Chapter 17 STREAMS 

17.12 Exercises 

1. Why does STREAMS use separate msgb and datab data structures, instead of having a single 
buffer header? 

2. What is the difference between a STREAMS module and a STREAMS driver? 
3. What is the relationship between the two queues of a module? Must they perform similar 

functions? 
4. How does the presence or absence of a service procedure affect the behavior of a queue? 
5. Both the read and the getmsg system calls may be used to retrieve data from a stream. What 

are the differences between them? For what situations is each of them more suitable? 
6. Why are most STREAMS procedures not allowed to block? What can a put procedure do if it 

cannot process a message immediately? 
7. Why are priority bands useful? 
8. Explain how and when a queue is back-enabled. 
9. What functionality does the stream head provide? Why do all stream heads share a common 

set of routines? 
I 0. Why are STREAMS drivers accessed through the cdevsw table? 
II. Why do STREAMS devices require special support for ioctl? Why can there be only one 

active ioctl on a stream? 
12. Why is it often reasonable to discard incoming network messages if there is a memory 

shortfall? 
13. What is the difference between a multiplexor and a module that is used independently in two 

different streams? 
14. Why does STREAMS not provide flow control for multiplexors? 
15. In Figure 17-14, why is the IP layer implemented as a STREAMS driver and not as a module? 
16. What are the benefits of persistent links? 
17. STREAMS pipes allow bidirectional traffic, while traditional pipes do not. Describe an 

application that takes advantage of this feature. How would you provide this functionality 
without using STREAMS pipes? 

18. What is the difference between TPI and TLI? What interactions does each of them pertain to? 
19. Compare sockets and TLI as frameworks for writing network applications. What are the 

advantages and drawbacks of each? Which features of one are not easily available in the 
other? 

20. Section 17.10.4 describes how SVR4 implements sockets on top of STREAMS. Could a 
BSD-based system implement a STREAMS-like interface using sockets? What important 
issues will need to be addressed? 

21. Write a STREAMS module that converts all newline characters to "carriage-return + line
feed" on the way up and the reverse transformation on the way down. Assume the messages 
contain only printable ASCII characters. 

22. A user may configure a stream dynamically by pushing a number of modules on the stack. 
Each module does not know what module is above or below it. How then, does a module 
know how to interpret the messages sent by the neighboring module? What restrictions does 



17.13 References 585 

this place on which modules may be stacked together and in what order? In what way does 
TPI address this problem? 

17.13 References 

[AT&T 89] American Telephone and Telegraph, UNIX System V Release 4 Network 
Programmer's Guide, 1991. 

[AT&T 91] American Telephone arid Telegraph, UNIX System V Release 4 Internals Students 
Guide, 1991. 

[Garg 90] Garg, A., "Parallel STREAMS: A Multi-Processor Implementation," Proceedings of 
the Winter 1990 USENIX Technical Conference, Jan. 1990. 

[ISO 84] International Standards Organization, Open Systems Interconnection-Basic 
Reference Model, ISO 7498, 1984. 

[Leff 86] Leffler, S., Joy, W., Fabry, R., and Karels, M., "Networking Implementation Notes-
4.3BSD Edition," University of California, Berkeley, CA, Apr. 1986. 

[Pres 90] Presotto, D.L., and Ritchie, D.M., "Interprocess Communications in the Ninth 
Edition UNIX System," UNIX Research System Papers, Tenth Edition, Vol. II, 
Saunders College Publishing, 1990, pp. 523-530. 

[Rago 89] Rago, S., "Out-of-band Communication in STREAMS," Proceedings of the Summer 
1989 USENIXTechnical Conference, Jun. 1989, pp. 29-37. 

[Rite 83] Ritchie, D.M., "A Stream Input-Output System," AT&T Bell Laboratories Technical 
Journal, Vol. 63, No.8, Oct. 1984, pp. 1897-1910. 

[Saxe 93] Saxena, S., Peacock, J.K., Verma, V., and Krishnan, M., "Pitfalls in Multithreading 
SVR4 STREAMS and Other Weightless Processes," Proceedings of the Winter 1993 
USENIX Technical Conference, Jan. 1993, pp. 85-95. 

[USL 92a] UNIX System Laboratories, STREAMS Modules and Drivers, UNIX SVR4.2, UNIX 
Press, Prentice-Hall, Englewood Cliffs, NJ, 1992. 

[USL 92b] UNIX System Laboratories, Operating System API Reference, UNIX SVR4.2, UNIX 
Press, Prentice-Hall, Englewood Cliffs, NJ, 1992. 

[Vess 90] Vessey, 1., and Skinner, G., "Implementing Berkeley Sockets in System V Release 4," 
Proceedings of the Winter 1990 USENIX Technical Conference, Jan. 1990, pp. 177-
193. 





Index 

Note: Page numbers in boldface indicate primary reference or definition 

. directory, 222, 231, 263 

.. directory, 222, 231, 263 
I, 222 
/dev, 524 
/dev/null, 101 
/dev/tty, 100, 105, 107 
/etc/exports, 294, 313 
/etc/init, 24 
/etc/inittab, 101 
/etc/passwd, 27 
/proc file system, 154, 281 
/unix, 21 
/vmunix, 21 
3BSD, 4, 403, 421 
4BSD, 4 
4.3BSD, 4 

callouts, 115 
controlling group, 104 
controlling terminal, 104 
memory management, 474 
process groups, 103 
process priority, 118 
scheduling, 118 
select, 529 
signals, 92 
virtual memory, 421 

4.4BSD, 4 
LFS, 346 
login session, 1 09 
memory management, 490 
nullfs, 368 
portal file system, 362 
semaphores, 491 
stackable file system layers, 367 
union mount, 368 
vnode interface, 256 

4.4BSD-lite, 5 

-A-
absolute pathname, 222 
abstract base class, 23 7, 441 
accept, 362 
access time, 224 
access-control list (ACL), 224, 328, 339 

AFS, 328 
adaptive locks, 212 
address aliases, 506 
address space, 19, 26,401,406 
address translation maps, 22, 405. See also page 

tables 
admission control, 145 

587 



588 

advfs, 317 
advisory file locks, 229 
advisory processor locks, 216 
AFS, 291, 323, 355 

access-control lists, 328 
cache manager, 326 
pathname lookup, 327 
security, 327 
Venus, 326 
Vice, 324 
volume, 324 

AIX, 311 
alarm, 116 
alarms, 115 

profiling, 115 
real time, 115 
virtual, 116 

allocb(), 551,569 
Amoeba operating system, 292 
Andrew File System. See AFS 
anon layer, 451, 464 
anon reference array, 454 
anon dup (), 455 
anon=getpage{), 457 
anon_map, struct, 279,458 
anonymous object, 279,441,446,458 
anonymous page, 279, 445, 453 
a. out file format, 43 
append mode, 228 
as layer, 443 
as, struct, 443 
as_ dup (), 455 
as_ fault(), 457 
ASPI (Adaptec SCSI Peripherals Interface), 544 
asynchronous I/0, 57 
AT&T, 3 
Auspex, 309 
autopush, of STREAMS modules, 565 

-B-

back-enabling of STREAMS queue, 560 
backing store, 409,440 
barrier synchronization, 141 
basic locks 

SVR4.2/MP, 213 
bdevsw, struct, 518 
Bell Telephone Laboratories, 2 
Berkeley Fast File System. See FFS 
Berkeley Software Design, Inc. (BSDI), 4 
bind_to_cpu, 143 
biod process, 296, 307 

Index 

block and character devices, 516 
block buffer cache, 200,210,269,284, 341,438,450, 

463,467,516 
block static storage (bss) region, 42 
blocking locks, 205 
bmap(), 343 
boot area, 263 
bootstrapping, 21, 263 
bound and unbound threads, 63, 67 
brk, 60 
BSD/386, 4 
BSD-LFS, 346 
buddy system memory allocator, 383 

SVR4, 386 
buf, struct, 286, 531, 532 
buffer cache. See block buffer cache 

-C-

C shell. See csh 
C threads, 55, 62, 71 
cache wiping, 287 
Calaveras file system, 3 51 
callbacks, AFS, 326 
callout thread, 13 3 
callouts, 66, 114 

4.3BSD, 115 
Carnegie-Mellon University, 6, 323 
cdevsw, struct, 235,518 
Cedar file system, 351 
ceiling protocol, 138 
change time, 224 
chdir, 222 
chmod, 225, 229 
Chorus operating system, 62 
chown, 225 
CL_PREEMPT, 123 
class, 237 

abstract base class, 23 7, 441 
public or private members, 237 
subclass, 23 7, 441 

client-server computing, II, 292 
clists, 547 
clnopen(), 526 
clock interrupt handling, 113 
clock tick, 113 

major, 114 
clone device, 526, 566 
clone driver, 526, 566 
close, 164, 225, 328 
closedir, 223 
clustering, in a file system, 343 



Index 

cmap, struct, 422 
cmask, 73 
cold threads, 52 
Common Applications Environment (CAE), 7 
common snode, 281, 524, 566 
concurrency, 52 
condition variables, 54, 66, 203 

predicate, 203 
signal and broadcast, 205 

connect, 582 
connection server, 226, 363 
context layer, 33 
context switch, 22, 112 
continuations, Mach 3.0, 76 
control and status registers, 513 
control point, 19, 52 
controlling group of terminal, I 00 

4.3BSD, 104 
SVR4, 107 

controlling terminal, 29, 100 
4.3BSD, 104 
SVR3, 100 
SVR4, 107 

convoys, 200 
copyin(), 538 
copy-on-write, 41,457, 469, 474, 478 
copyout (), 269, 538 
core file, 84 
core map, 422 
coroutines, 52 
counting semaphores, 66 
crash recovery, 339, 342 
creation mask, 225 
erect, struct, 254 
credentials, 26, 27, 53, 60, 253 

BSD, 28 
SVR3, 28 
SVR4, 28 

critical region, 36, 91, 189 
critical thread size, 57 
cross-processor interrupts, 131, 216 
csh, 87, 100, 104 
current working directory, 29, 60,222 
cylinder groups, 273 

-D-
data and instruction caches. See MMU cache 
datab, struct, 551 
dbx, 153 
DCE, 291, 329, 355 
DCE DFS. See DFS 

DCERPC, 300 
DDI/DKI specification, 535 
deadline-driven scheduling, 144 
deadlock avoidance, 209 

hierarchical locking, 209 
stochastic locking, 209 

DEC OSF/1. See Digital UNIX 
Defense Advanced Research Projects Agency 

(DARPA), 4 
demand paging, 403, 404 
derived class. See subclass 
device cloning, 526 

STREAMS, 566 
device drivers, 511 

dynamic loading, 541 
entry points, 519 
multiprocessor-safe, 540 
SVR4/MP, 540 
SVR4.1/ES, 540 

device file, 522 
device numbers, 521 

internal and external, 522 
major and minor, 235, 521 

device switch, 518 
DFS, 291, 329, 356 

authentication server, 332 
protoco I exporter, 3 3 0 
token manager, 331, 332 
tokens, 331 

DGIUX, 194 
Digital Equipment Corporation (DEC), 2 
Digital UNIX, 5 

memory management, 490 
multiprocessor scheduling support, 143 
scheduling, 142 
synchronization, 214 
threads, 72 

di node, struct, 264 
direct memory access. See DMA 
direct virtual memory access. See DVMA 
directory, 222 

current. See current working directory 
FFS, 275 
s5fs, 263 

directory name lookup cache, 250, 267 
di renter(), 257 
disk layout, 272 

FFS, 340 
SCSI, 277 

disk mirroring, 231 
disk partition. See logical disk 
disk quotas, 29, 232, 276 

589 



590 

disk striping, 23 I 
dispatch latency, 123 
dispatcher parameter table, I 26 
distributed computing, I2 
Distributed Computing Environment. See DCE 
Distributed File System. See DFS 
distributed file systems, 292 
distributed operating systems, 292 
DMA, 506, 5I4 
du command, 23 I 
dual concurrency model, 52 
dup, 226 
dup2, 226 
DVMA, 506 
dynamic loading and unloading, 54 I 
Dynix memory allocator, 390 

-E-
effective GID, 224 
effective UID, 224 
enhanced security, 27 
entry point, 43 
environment variables, 26 
Episode file system, 329, 355 
errno, 68 
esballoc(), 570 
event wait, I 98 
event waits, 205 
event -driven scheduling, I 26 
exception ports, 97 
exceptions, 2 I, 30, 88, 95 

Mach, 96 
exec, 24, 27, 28, 40, 42, 59, 96, I 54, 453 

shell scripts and, 43 
exece. See exec 
execution context, 23 
execution modes, 22 
execve. See exec 
execvp. See exec 
exit, 24, 26, 43 
exit status, 26 
exit(), 43 
exporting NFS directories, 294 
extended data representation. See XDR 
extended fundamental types, 55 I 
extended STREAMS buffers, 570 
external device number, 522 

-F-
fair-share scheduling, I 44 
Fast File System. See FFS 

fattach, 153, 577 
fcntl, 229, 233 
/detach, 153, 578 

Index 

FFS, 4, 220, 26I, 272,339,378. See also Sun-FFS 
disk layout, 340 

fg and bg commands, I 00, I 04 
Ficus file system, 367 
FIFO files, I 52,233 

STREAMS, 576 
fifofs file system, 576 
file, 22 I 

append mode, 228 
attributes, 223 
creation mask, 225 
mode flags, 224 
permissions, 224 
timestamps, 224, 225 

file descriptor, 29, 225 
passing to another process, 226 

file descriptor table, 241 
file handle, NFS, 303 
file locking, 228 

advisory, 229 
mandatory, 224, 229 

file mapping, 438 
file modes 

sgid, 28,43 
suid, 28,43 

file names, 22 I 
FFS, 275 
s5fs, 263 

file system, 229 
mounting, 229 
name space, 222 
root, 229 

file system clustering, 343 
file system consistency, 287, 339, 342 

metadata logging and, 352 
file system switch, 248, 3 I 5 
file systems 

/proc, I 54, 28 I 
4.4BSD stackable interface, 367 
Calaveras, 351 
Cedar, 35I 
Episode, 329, 355 
Ficus, 367 
fifofs, 576 
JFS, 355 
mfs, 278 
namefs, 578 
nullfs, 368 
portal, 362 



Index 

file systems (cont.) 
processor, 283 
specfs, 280, 523 
stackable, 364 
Sun-FFS, 343 
swapfs, 464 
TFS, 283, 368 
tmpfs, 279 
union mount, 368 
Veritas, 351 

fileset location database (fldb), 332 
fileset server (ftserver), 332 
filesets, 329 
fill-on-demand page, 424 
find command, 231 
flock, 229 
flow control, 558 
foreground process, 87 
fork, 24,25,39,41, 125,154,226,233,455,469 

4.3BSD, 427 
in Digital UNIX, 74 
lightweight processes and, 58 
Solaris 2.x, 70 

fork handlers, 59 
fork], in Solaris 2.x, 70 
fragments, 273 
free block list, s5fs, 266 
free space reserve, 275 
free(), 375 
freeb (), 569 
freemsg (), 569 
ftck program, 288, 310, 339, 342 
ftjlush process, 287 
fttat, 223, 231 
fsync, 346 
ftok, 164 
ftp, 291 
functionally asymmetric multiprocessing, 195, 309 

-G-

gang scheduling, 141 
getbl k(), 200 
getdents, 223 
getitimer, 116 
getmsg, 56! 
getr/imit, 61 
gettimeofday, 116 
getty program, I 0 I 
GID, 27,224 

effective, 27, 43, 224 
primary, 28 
real, 28 

saved, 28 
guardian semaphore, 492 

-H-
handoff scheduling, 140, 177 
HA-NFS, 310 
hard links, 222 
hard real-time process, 144 
hardware address translation, 409 
hardware address translation layer. See hat layer 
hardware clock interrupt, 113 
hardware context, 27 
hat layer, 446, 499 
hat, struct, 443, 447 
hat_dup(}, 455 
heap, 42 
Hewlett-Packard, 412. See also HP-UX 

PA-RISC, 412, 416 
hidden scheduling, 133 
hierarchical locking, 209 
high-resolution timers, 116 
holes, in UNIX files, 265 
hot threads, 52 
HP-UX 

virtually addressed cache, 507 
hrtsys, 116 

-1-

IBM, 323 
AIX, 311 
HA-NFS, 310 
RS/6000, 416 

i get(), 268, 270 
in-core inode, 264, 267 
indirect block, 263, 265, 461 
Information Technology Center, 323 
init process, 24, 45, 101, 109 
inode, 29, 223, 263, 342 

in-core, 264, 267 
on-disk, 263 

inode list 
s5fs, 263 

inode number, 263 
inode table, 270 
i node, struct, 267 
Intel80x86 

interrupt priorities, 32 
memory architecture, 413 
rings of execution, 22 

Intel Multiprocessor Consortium, 216, 498 
internal device number, 522 

591 



592 

inter-process communications. See !PC 
interrupt context See system context 
interrupt handler, 31, 512 
interrupt handling 

Solaris 2.x, 68 
interrupt priority level (ipl), 32, 68, 189, 514 
interrupt service routine. See interrupt handler 
interrupt stack, 3 3 
interrupt threads, Solaris 2.x, 69, 131 
interrupt vector table, 515 
interrupts, 22, 30, 31, 514 

synchronization and, 37, 189 
inverted page table, 416 
ioctl, 57, 92, 104,226,281,517,566,567,573 

I_STR, 567 
transparent, 568 

i ovec, struct, 228 
!PC, 149. See also System V IPC 

Mach, 165,474 
issig(), 85,88,95 
ITIMER_PROF, 87 
ITIMER_REAL, 87 
ITIMER_VIRTUAL, 87 

-J-

job control, 92, I 00 
journaling. See logging in file systems 
Journaling File System (JFS), 355 

-K-
Kerberos, 314, 327 
kernel, 21 
kernel memory allocator, 373 

buddy system, 383 
Dynix, 390 
fragmentation, 374 
garbage collection, 388, 397 
McKusick-Karels method, 381 
power-of-two lists, 3 79 
resource map, 376 
Solaris slab method, 392 
SVR41azy buddy method, 386 
zone method, 388 

kernel mode, 22 
kernel space, 22 
kernel stack, 23, 29 
kernel threads, 53 

Solaris 2.x, 65 
kernel-pager interface, Mach, 482 
kill, 38, 87, !50 
killpg, 150 

kmdaemon process, 388 
kmem_realloc(), 241 
ksh, 87, 100, 104 

-L--

LADDIS benchmark, 306 
lazy buddy memory allocator, 386 
lazy evaluation, 468 

Index 

least recently used policy, 224,250,285,321,410 
lightweight process. See L WP 
link, 159,225,231,276 
links 

hard, 222 
symbolic, 222, 231, 276 

listen, 362 
loadable device drivers, 541 
load-linked and store-conditional instructions, 194 
locality of reference, 410, 532 
lock granularity, 212 
lockd process, 296 
lock/, 229 
log-enhanced file system, 344 
logging in file systems, 344 

crash recovery, 353 
logical disk, 230 
logical volume. See logical disk 
login program, I 0 I 
login session 

4.3BSD, 103 
4.4BSD, 109 
SVR3, 101 
SVR4, 105 

login shell, I 0 I 
log-structured file system, 345. See also BSD-LFS 
lookuppn(), 123,248,249,253,255,267 
lost wakeups, 196 
lost+found directory, 342 
lower multiplexor, 549, 572 
/seek, 59, 227, 265 
/stat, 232, 250, 276 
LWP, 53 

fork and, 58 
lwp, struct, 65 

Solaris 2.x, 66 

-M-
Mach, 6 

continuations, 76 
exception handling, 96 
exception ports, 97 
kernel-pager interface, 482 



Index 

Mach (cont.) 
memory management, 473 
page replacement, 488 
scheduling, 139 
tasks and threads, 70 
TLB shootdown, 495 
zone memory allocator, 388 

Mach IPC, 165, 474 
backup ports, 178 
messages, 166 
netmsgserver, 98, 167, 181 
notifications, 177, 183 
port rights, 166 
port sets, 179 
port translations, 171 
ports, 166 
send-once rights, 183 

magic number, 43 
major and minor device numbers, 235, 521 
major clock tick, 114 
malloc(), 375,380,381 
mandatory file locks, 229 
mandatory file/record locking, 224 
mapping chain, 447 
mapping chunk, 447 
Massacheusetts Institute of Technology, 327 
master.d, 130 
master-slave kernels, 195 
McKusick-Karels memory allocator, 381 
memory file system (mfs), 278 
memory inheritance, Mach, 475 
memory management, 437 

4.3BSD, 474 
4.4BSD, 490 
Mach, 473 
SVR3, 437 
SVR4/Sun0S, 437 

memory management unit (MMU), 22, 400 
memory object, 440, 477 
memory sharing, Mach, 478 
memory-mapped device I/0, 514 
memory-mapped files. See file mapping 
message queues, 160 
message,Mach, 166 
message, STREAMS, 551 
metadata See file attributes 
metadata logging, 350 
metadata updates, 342 
microkernel, 6 
MIPS R3000, 413 

memory architecture, 419 
MIPS R4000, 194 

mirroring, 231 
mkdir, 231 
ml¢ program, 230, 271 
mknod, 27, 231, 233, 576 
mlock, 449 
mmap, 60, 164, 279, 440,453, 482, 507, 533. See 

also file mapping 
4.4BSD, 491 

MMUcache 
physically addressed, 503 
virtually addressed, 504 

mode switch, 23, 54 
modern UNIX systems, 17 
modify time, 224 
module, STREAMS, 548, 554 
monitors, for synchronization, 212 
Motorola 680x0, 298 
Motorola MC881 00, 194 
mount, 247, 248,278, 294, 315, 318 
mount point, 230, 248 
mount protocol, 296 
mount table, 230 
mountdprocess, 296, 303, 312 
mprotect, 412, 440,449 
msg_rcv, 169 
msg_!pc, 169 
msg_send, 169 
msgb, struct, 551 
msgct/, 155, 161 
msgget, 155, 160 
msgrcv, 160 
msgsnd, 160 
msqid_ds, struct, 160 
Mu1tics operating system, 2 
multiplexing STREAMS drivers, 549,571 
multiprocessor synchronization, 37, 195 
multiprocessor systems 

functionally asymmetric, 195 
master-slave, 195 
symmetric (SMP), 195 

multiprocessors 
NORMA, 192 
NUMA, 192 
UMA, 192 

munmap, 440 
mutual exclusion locks, 54, 66 

-N-
named pipe, 152 
namefs file system, 578 
namei (), 256,362 

593 



594 

netmsgserver, 98, 167, 181 
Network Appliance Corporation, 350 
Network File System. See NFS 
Network Information Service (NJS), 27, 300 
network lock manager (NLM), 296 
network shared memory server, 485 
network status monitor (NSM), 296 
newfs program, 230, 278, 310 
NFS, 291, 293 

file handle, 303 
pathname lookup, 303 
retransmissions cache, 308 
security, 3 12 
write-gathering, 307 

NFS mounts, 294, 303 
NFS protocol, 295 

version 3, 314 
nfs mount(), 303 
nfsdprocess, 53, 296 
nhfsstone benchmark, 306 
nice, 37 
nice value, 37, 118 
No Remote Memory Access. See NORMA systems 
Non-Uniform Memory Access. See NUMA systems 
nonvolatile memory. See NVRAM 
NORMA systems, 192 
notifications 

Mach 2.5, 177 
Mach 3.0, 183 

NS5000, 309 
nullfs file system, 368 
NUMA systems, 192 
NVRAM, 307 

-0-

object-oriented design, 236, 441 
on-disk inode, 263 
open, 123,164,225,233,240,252,524,576 
open file object, 225, 240 
Open Software Foundation (OSF), 7 
opendir, 223 
orphan processes, 24 
OSF/1, 7. See also Mach 

vnode interface, 257 
zone memory allocator, 388 

out-of-line memory, 175 

-P-
P(), 156, 197 
page, 20 

page fault, 269,405,409,411 
4.3BSD, 428 

page replacement, 409 
Mach, 488 
two-handed clock, 431 

page table entry (PTE), 410 
page tables, 22, 410 
page, s t ruct, 442 

Index 

pagedaemon, 22, 24, 53, 114,431,461,465, 501, 507, 
533 

Mach, 488 
page-level allocator, 373 
pageout daemon. See pagedaemon 
pager, 477 
parallelism, 52 
parallelization, 188 

lock granularity, 212 
param.h, 113 
partition. See logical disk 
passwd program, 28 
password database, 27 
pathname lookup, 249. See also lookuppnQ 

AFS, 327 
NFS, 303 
s5fs, 267 

pathnames, 222 
pause, 90 
PDP-7, 2 
PDP-II, 2 
per-page protections array, 449 
persistent links, STREAMS, 576 
physically addressed cache, 503 
PID, 29 
pipe, 151, 153,233, 577 
pipes, 233 

!PC and, 151 
STREAMS, 577 
SVR4, 153, 577 

pmap layer, 474 
poll, 527 
port rights, 70, 166 
port sets, 179 
port translations, 171 
port, Mach, 166 
Portable Device Interface (PDI), 544 
portal file system, 227, 362 

comparison with watchdogs, 363 
portmapper protocol, 298 
POSIX standards, 6 

1003.1 (POSIX.l), 7, 83 
PI003.4a, 62 



Index 

power-of-two memory allocator, 379. See also 
McKusick-Karels memory allocator 

pread, 10 
PREEMPT(), 123 
preemption points, 123 
primary group, 28 
priocntl, 124, 127, 129 
priocntlset, 129 
priority bands, 558 
priority inheritance, 133 
priority inversion, 65, 121, 133 
priority lending. See priority inheritance 
proc structure, 26, 28, 94, 118, 124,423,455 

Digital UNIX, 73 
Solaris 2.x, 66 

process, 19, 24, 48 
current, 22 

process context, 23 
process control block, 27, 29, 112 
process group ID, 29,99 
process group leader, 99 
process groups, 99 

4.3BSD, 103 
4.4BSD, 110 
SVR3, 100 
SVR4, 106 

process hierarchy, 29 
4.3BSD, 29 

process ID, 29 
process priority, 118 

4.3BSD, 118 
decay factor, 119 

process scheduling. See scheduling 
process state, 25 

4BSD, 26 
process table, 28 
process tracing, 26 
processor affmity, 143 
processor file system, 283 
processor sets, 71, 140 
processor status register. See processor status word 
processor status word, 27,32 
producers-consumers problem, 199 
program counter (PC), 19,27 
programmed 110 (PIO), 514 
pseudodevices, 517 
psig(), 85, 88,95 
pswtch (), 123 
pthreads, 55, 62, 75 
ptrace, 96, 153,281,467 
putmsg, 556, 561 
putnext (), 556 

pwrite, 10 

-Q-
qinit, struct, 555 
queue, in STREAMS module, 548, 554 
QuickSilver operating system, 76 

-R-
RAID, 231 
rate-monotonic scheduling, 145 
raw 1/0, 535 

595 

read, 59, 92, 151, 164,225, 227,240, 253,268,321, 
439,561 

readdir, 223 
reader-writer locks. See read-write locks 
read/ink, 232, 276 
readv, 10, 228, 253 
read-write locks, 66, 206 

SVR4.2/MP, 213 
real-time applications, 117 
real-time class, 127 
receive livelock, 146 
recursive locks, 211 
recvmsg, 226 
red zone, 450 
Reduced Instruction Set Computer (RISC) systems, 

113,416 
Redundant Arrays of Inexpensive Disks. See RAID 
reference bit simulation, 431 
reference counts, 209 

vnode, 242 
relative pathname, 222 
reliable signals, 90 
Remote File Sharing. See RFS 
remote mount, RFS, 317 
remote procedure calls, 293. See also RPC protocol 
remote system call model, 316 
rename, 216, 277, 332 
replication server (rpserver), 333 
resource locking, 35 
resource locks in SVR4/MP, 216 
resource map allocator, 376 
resource usage information, 26 
retransmissions cache, 308 
rewinddir, 223 
RFS, 291, 315 
RFS mounts, 315 
rfsys, 318 
r.fudaemon process, 320 
rmdir, 232 
mode, 302 



596 

root file system, 229 
root user account, 27 
rotational latency, 273 
rotdelay, 340, 343 
roundrobin(), 120 
RPC protocol, 296, 300 

DCE RPC, 300 
rpcgen compiler, 299,301 
RS/6000 

memory architecture, 416 

-S-
s5fs, 2, 220, 261,262, 339 
s5lookup(), 267 
saved UID and GID, 28 
scatter-gather I/0, 228, 253 
sched(), 432,459 
sched_setparam, 143 
sched_setscheduler, 142 
sched_yield, 143 
schedcpu (), 119 
scheduler activations, 64 
scheduling, 3 7 

4.3BSD, 118 
admission control, 145 
class-independent layer, 122 
Digital UNIX, 142 
event-driven, 126 
Mach, 139 
of user threads, 56 
real-time class, 127 
Solaris 2.x, 130 
SVR4, 122 
time-sharing class, 126 
tradtional UNIX, 117 

SCSI CAM, 544 
SCSI devices, 544 
SCSI disks, 277 
sdb, 153 
security 

AFS, 327 
NFS, 312 

seg, struct, 443, 445 
seg_ dev, 450 
seg_kmem, 450 
seg_kp, 450 
seg_map, 449,461,498,534 
seg_ vn, 448, 534 
segmap_fault(), 463 
segmap _getmap (), 462 
segment driver, 448 

segment, SVR4 VM, 444 
segmentation, 404 
segvn_fault(), 457 
select, 179, 529 
sem, struct, 158 
semaphores, 54 

4.4BSD, 491 
convoys, 200 
Dijkstra' s, 197 
drawbacks, 199 
event wait, 198 
for mutual exclusion, 198 
P 0 and V () operations, 156, 197 
for producers-consumers problem, 199 
System V IPC, 156 

sembuf, struct, 157 
semctl, 155, 158, 160 
semget, 155, 157, 160 
semid_ds, struct, 158 
semop, 157 
send descriptor, 319 
sendmsg, 226, 582 
send-once rights, 183 
sendsig(), 85,95 
session. See login session 
session 10, 29 
sessions architecture, SVR4, 105 
setgid, 28, 53 
setgroups, 28, 53 
setitimer, 116 
setpgid, 107 
setpgrp, 100, 102 

4.3BSD, 103 
SVR4, 106 

setr/im it, 61 
setsid, 106 
sellimeofday, 116 
setuid, 28, 53 
setuid programs, 154 
sgid mode, 224 
shadow object, 478 
shadow vnode. See snode 
share group. See fair-share scheduling 
share map, 481 
shared libraries, 42 
shared memory, 42 

distributed, 485 
SVR4 VM and, 458 
System V IPC, 162 

shell, 44 
pipes and, 152 

Index 



Index 

shell scripts 
exec and, 43 

shmat, 163, 507 
shmctl, 155 
shmdt, 163 
shmget, 155, 162 
shmid_ds, struct, 163 
SIGABRT, 86 
sigaction, 38, 45, 93 
SIGALRM, 86,87, 115,116 
sigaltstack, 93 
sigblock, 92 
SIGBUS, 86 
SIGCHLD, 38, 44, 45, 86, 93, 94 
SIGCLD, 86 
SIGCONT, 26,86,95,104 
SIGEMT, 86 
SIGFPE, 66, 86 
sighold, 91 
SIGHUP, 86, 102, 108 
SIGILL, 60, 86 
SIGINFO, 86 
SIGINT, 38, 61, 66, 86, 87, 89 
siginterrupt, 39, 85, 93 
SIGIO, 86 
SIGIOT, 86 
SIGKILL, 85, 86 
signal, 38, 91 
signal handler, 29, 85 
signals, 26, 38, 83 

4BSD, 92 
default action, 84 
in Digital UNIX, 74 
IPC and, 150 
RFS and, 321 
SVR2, 89 
SVR3, 91 
SVR4, 93 
unreliable, 89 

sigpause, 90, 91, 92, 150 
sigpending, 93 
SIGPIPE, 86 
SIGPOLL, 57, 86 
sigprocmask, 93 
SIGPROF, 86, 87, 115 
SIGPWR, 86 
SIGQUIT, 86 
sigrelse, 91 
SIGSEGV, 60,61,66,86,92 
sigsend, 87 
sigsendset, 93 
sigset, 91 

sigsetmask, 92 
sigstack, 92 
SIGSTOP, 26,66,84,85,86,95 
sigsuspend, 93 
SIGSYS, 66, 86 
SIGTERM, 86 
SIGTRAP, 86, 154 
SIGTSTP, 26, 61, 86, 109 
SIGTTIN, 26, 86, 104 
SIGTTOU, 26, 86, 104 
SIGURG, 86 
SIGUSRl, 38, 86 
SIGUSR2, 38, 86 
sigvec, 38, 92 
SIGVTALRM, 86, 87, 116 
SIGWINCH, 86 

.SIGXCPU, 86, 113 
SIGXFSZ, 86 
slab memory allocator, 392 
sleep 

interruptible, 88 
uninterruptible, 88 

sleep and wakeup, 189 
sleep channel, 138, 190 
sleep locks 

SVR4.2/MP, 214 
sleep priority, 38, 118 
sleep queues, 190 
sleep(), 26,35,37, 125,196 
slow system calls, 92 
snapshots, 350 
snode, 281, 523, 564, 566 

common, 524 
socket, 582 
sockets, 226,233,580 

SVR4, 582 
socklib, 582 
sockmod, 582 
soft real-time process, 144 
Solaris 2.x, 5 

adaptive locks, 212 
interrupt threads, 69 
scheduling, 130 
slab memory allocator, 392 
threads and L WP architecture, 65 
turnstiles, 191 
virtual swap space, 464 

spec open(), 564,566 
spec=read(), 527 
specfs file system, 280, 523 
special files, 231 
specvp(), 564 

597 



598 

spin locks, 201 
stack handoff, 78 
stack pointer (SP), 27 
stackable file systems, 364 

4.4BSD, 367 
SunSoft prototype, 366 

standard 1/0 library, 15 
stat, 223, 232, 274 
statd process, 296 
state transitions, 25 
sticky mode, 224 
stochastic locking, 209 
store-conditional. See load-linked and store 

conditional instructions 
strategy routine, of device driver, 520 
stream head, 548, 561 
STREAMS, 316, 548 

autopush modules, 565 
cloning, 566 
driver, 548, 560 
extended buffer interface, 570 
FIFO files, 576 
flow control, 558 
ioct/, 566 
linking, 572 
message, 551 
message types, 553 
module, 548, 554 
multiplexing drivers, 549 
persistent links, 576 
pipes, 226, 577 
priority bands, 558 
put procedure, 556, 558 
queue, 554 
queues, 548 
scheduler, 557 
service procedure, 556, 559 
virtual copying, 553 

STREAMS administrative driver (sad), 565 
STREAMS drivers, 517, 519 
streamtab, struct, 562 
strioctl (), 573 
striping, 23 1 
stropen (), 564 
stty command, 87 
subclass, 237,441 
suid mode, 224 
Sun Microsystems, 5 
Sun-FFS, 343 
SunOS, 5 

file clustering, 343 
file descriptor table, 241 

memory management, 437 
virtually addressed cache, 507 

superblock, 249, 263, 266 
FFS, 273 
s5fs, 266 

superuser, 27 
supplemental groups, 28 
SVR3 

controlling terminal, 100 
file system switch, 3 15 
process groups, 100 
signals, 91 

SVR4, 8 
lazy buddy memory allocator, 386 
pipes, 153, 577 
scheduling, 122 
sessions architecture, 1 05 
signals, 93 
VM architecture, 440 

SVR4.1/ES 
device drivers, 540 
security, 27 

SVR4.2/MP 
basic locks, 213 
dynamic loading of drivers, 541 
read-write locks, 213 
sleep locks, 214 
synchronization, 213 
synchronization variables, 214 
TLB consistency, 499 

SVR4/MP 
synchronization, 216 
TLB consistency, 498 

swap area, 402, 407 
4.3BSD, 426 

swap layer, 446,451,464 
swap map, 407 
swap partition. See swap area 
swap space. See swap area 
swap_alloc(), 451,464 
swapctl, 451 
swapfs file system, 464 
swapinf~ struct, 451 
swapper, 22, 24, 38, 114, 424, 459 

4.3BSD, 432 
swapping, 402 

4.3BSD, 432 
swtch (), 25, 35, 44, 120 

SVR4, 123 
symbolic links, 222, 231, 276 
symlink, 232, 276 
symmetric multiprocessing (SMP), 195 

Index 



Index 

sync, 287 
synchronization 

adaptive locks, 212 
blocking locks, 205 
deadlock avoidance, 209 
Digital UNIX, 214 
interrupts and, 35, 189 
lost wakeups, 196 
monitors, 212 
multiprocessors, 37, 195 
preemption and, 34 
read-write locks, 206 
recursive locks, 211 
sleep and, 35 
sleep and wakeup, 189 
sleep queues, 190 
SVR4.2/MP, 213 
SVR4/MP, 216 
thundering herd, 196 
of user threads, 56 

synchronization variables. See also condition variables 
SVR4.2/MP, 214 

syscall (), 31 
sysent vector, 31 
system call interface, 21 , 3 1 
system calls, 23 
system concurrency, 52 
system context, 23 
System III, 5 
system space, 22 
System V, 5 
System V file system. See s5fs 
System V Interface Definition (SVID), 6 
System V IPC, 150, 155 

message queues, 160 
resource IDs, 155 
semaphores, 156 
shared memory, 162 

System V Verification Suite (SVVS), 7 

-T-
task, Mach, 70 
task, struct, 71 
TCP!IP, 4, 363 
temporary file systems, 278 

mfs, 278 
tmpfs, 279 

temporary files, 243 
terminal 

canonical mode, 227 
test-and-set operation, 193, 20 1 

TFS, 283, 368 
thread local storage, 68 
thread, struct, 71 
thread_block(), 77 
threads, 20, 52 

bound and unbound, 63, 67 
cold, 52 
Digital UNIX, 72 
hot, 52 
Mach, 70 
scheduler activations, 64 
upcalls, 64 

threads scheduler, 62 
thundering herd, 196 
time quantum. See time slice 
time slice, 20, 112, 117 
timeout(), 114 
time-sharing class, 126 
timing wheel, 115 
TLB, 410,412,492 
TLB consistency 

Mach, 495 
on multiprocessors, 494 
on uniprocessors, 493 
SVR4.2/MP, 499 
SVR4/MP, 498 

tmpfi/e, 243 
tmpfs file system, 279 
Topaz operating system, 62 
traditional UNIX systems, 17 
Transarc Corporation, 323, 329, 355 
translation lookaside buffer. See TLB 
translucent file system. See TFS 

599 

Transmission Control Protocol/Internet Protocol. See 
TCP/IP 

Transport Layer Interface (TLI), 579 
transport provider interface (TPI), 316, 554, 579 
trap(), 457 
turnstiles, 138, 191 
two-handed clock, 431 
two-way multiplexor, 549, 571 

-U-
u area, 23, 26, 28, 89, 94, 170, 241,423 

Digital UNIX, 73 
UDP/IP, 300 
ufs, 221, 262. See also FFS 
ufs_putpage(), 344 
UID, 27,224 

effective, 27, 43,224 
real, 28 
saved, 28 



600 

UID remapping, 313 
uio, struct, 228 
uiomove(), 269,462,534 
ULTRIX, 419 
UMA systems, 192 
umask, 225 
Uniform Memory Access. See UMA systems 
uninterruptible power supply (UPS), 308 
union mount file system, 284, 368 
University of California at Berkeley, 4 
UNIX file system. See ufs 
UNIX International (UI), 7 
UNIX System Laboratories (USL), 4 
UNIX/32V, 4 
unlink, 164,225,276 
untimeout(), 114 
update daemon, 287, 341 
upper multiplexor, 549, 571 
user area See u area 
user concurrency, 52 
user credentials. See credentials 
user group ID. See GID 
user ID. See UID 
user mode, 22 
user stack, 42 
user threads, 55 

Solaris 2.x, 67 
utask, struct, 73 
uthread, struct, 73 
utimes, 225 
uucp, 291 

-V-
V operating system, 76, 292 
V(), 156, 197 
VAX-11, 3,4, 120,194,403,421 

address space, 423 
Venus, 326 
Veritas file system, 261, 287, 351, 355 
Version 7, 3 
vfork, 24, 42, 43, 428, 455 
vfs, 239 
vfs list, 230 
vfs switch. See file system switch 
VFS+, 330 
vfs, struct, 243 
VFS_MOUNT, 249 
vfsops, struct, 246 
vfssw, struct, 248 
vhangup, 104 
Vice, 324 

virtual address space, 406 
virtual file system. See vfs 
virtual functions, 237 
virtual machine, 20 
virtual memory, 22, 401. See also memory 

management 
virtual processor, 55 
virtual swap space, Solaris, 464 
virtually addressed cache, 504 

address aliases, 506 
mapping change, 505 

vm object, in Mach, 477 
vm_map, 482 
vnode, 238, 240, 267 

reference count, 242, 270 
vnode layer, 441 
vnode segment See seg_ vn 
vnode,struct, 241 
vnode/vfs interface, 220,234,261, 364 

4.4BSD, 256 
OSF/1, 257 

vnodeops,struct, 239,245 
volume, AFS, 324 
VOP _ GETPAGE, 269, 457, 460, 532 
VOP _LOOKUP, 251,255,267,304 
VOP _MAP, 460 
VOP_PUTPAGE, 459,461,532,533 
VxFS. See Veritas file system 

-W-
wait, 26, 44, 45, 92, 94, 154 
wait3, 44 
waitid, 44 
waitpid, 44, 92 
wake_one(), 35 
wakeprocs (), 35, 125 
wakeup(), 35, 190 
watchdog message channel, 360 
watchdogs, 359 

comparison with portals, 363 
directory, 3 60 

working set, 410 

Index 

write, 92, 151, 164,225,227, 240,253, 268, 322, 329, 
439,556,561 

Write-Anywhere File Layout, 350 
write-gathering, 307 
writev, 70, 228, 253 

-X-
X/Open Portability Guide, 6 
XDR, 296, 298 



Index 

XENIX, 3 
xid cache. See retransmissions cache 

-Z-

zombie processes, 45, 94 
zombie, struct, 45 
zone memory allocator, 388 

601 





r!!!!; 
THl NlW fKDNTIU 

URESH VAHALIA 

"Vahalia has g iven us a trul y original a nd 

compre h e n s ive view of the compa ra tive 

a n a to m y of the (UNlX) species:' 

"This book is a mus t fo r an~·one who needs to 

unde rstan d the difference between the , -ariou 

va ria nts of the UN IX operating s~·stem :" 

- Pe ter Sa lus, Man aging Edito r, 

Cornpufin9 System s 
- Ma rgo Seltzer, Harvard l'niversi~-

Tile New Froutiers offers the most up-to-date and comprehensi\ ·e cm·era eo 

UNIX internals available. Written for professional Ui'!IX programmer 

systems administrators, and omputer cience students. l'S/X lutmrt~L< pro

vides an in-depth look at U IX development at a h ighly accessrble le\·el 

Coverage includes features that are shaping U IX archrtectu res ol the 

nineties including urrrlti-tl!rwded kmrds, multiprocessor and rwl-trrm sptmr.<. '"'J 
distributed Jilr systems. 

This b ook examines recent adva n ces in m odern L'NIX 

syste m s. Uresh Va halia compares and,analyzes the latest feature offered 

by the most important UN IX systems and variants including: 

SVR4.x 

Solaris and SunOS 

Digital U IX 

4.4 BSD 

Mach and OSF/ 1 

The author discusses severa l important components of the kernels, 

compares their design in different UN IX variants, discusses tradeoffs. 

and presents those features that have gained wide acceptance. lear expla

nations of implementation deta ils are provided throughout with a strong 

emphasis on the practical issues. No UN IX e nthus ias t sh o uld be 

w itho ut it. 

Ab o ut the Autho r - Uresh Vahalia has developed kernel sub

systems for several UNIX variants. He has taught UN IX internals 

at many univers ities. corpora tions, and conferences. Presently he is 

building high-performance fi le and video servers for EMC 

Corporation. 

ISBN 0-13-101908-2 

90000 

PRENTI CE HALL, UPPER SADDLE RIVER, NJ 07458 9 80131 1908 

- ._._ 
== _.. z 
::2: _.. 

== ~ ' -- ,/ ..... == == z ::2: - I ~ _.. 

== Cl:l 

VAHALIA 

PRE TTI ( 

H ALL 


