
Migrating Applications
to AWS

Guide and Best Practices

December 2016

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents
Introduction 1

Overview of Migrating Data-Centric Applications to AWS 1

Migration Steps & Tools 2

Development Environment Setup Prerequisite 4

Step 1: Migration Assessment 4

Step 2: Schema Conversion 9

Step 3: Conversion of Embedded SQL and Application Code 15

Step 4: Data Migration 18

Step 5: Testing Converted Code 21

Step 6: Data Replication 21

Step 7: Deployment to AWS and Go-Live 25

Best Practices 27

Schema Conversion Best Practices 27

Application Code Conversion Best Practices 29

Data Migration Best Practices 29

Data Replication Best Practices 30

Testing Best Practices 31

Deployment and Go-Live Best Practices 31

Post-Deployment Monitoring Best Practices 32

Conclusion 33

Abstract
The AWS Schema Conversion Tool (SCT) and AWS Data Migration Service

(AWS DMS) are essential tools used to migrate an on-premises database to

Amazon Relational Database Service (Amazon RDS). The goal of this

whitepaper is to acquaint you with the benefits and features of these tools and to

walk you through the steps required to migrate a database to Amazon RDS.

Both schema and data migration processes are discussed, regardless of whether

your target database is PostgreSQL, MySQL, Aurora, MariaDB, Oracle, or SQL

Server.

Amazon Web Services – Migrating Applications to AWS

Page 1

Introduction
Customers worldwide increasingly look at the cloud as a way to address their

growing needs to store, process, and analyze vast amounts of data. AWS

provides a modern, scalable, secure, and performant platform to address

customer requirements. AWS makes it easy to develop applications deployed to

the cloud using a combination of database, application, networking, security,

compute, and storage services.

One of the most time-consuming tasks involved in moving an application to

AWS is migrating the database schema and data to the cloud. The AWS Schema

Conversion Tool (SCT) and AWS Database Migration Service (AWS DMS) are

invaluable tools to make this migration easier, faster, and less error-prone.

Amazon Relational Database Service (Amazon RDS) is a managed service that

makes it easier to set up, operate, and scale a relational database in the cloud. It

provides cost-efficient, resizable capacity for an industry-standard relational

database and manages common database administration tasks. The simplicity

and ease of management of Amazon RDS appeals to many customers who want

to take advantage of the disaster recovery, high availability, redundancy,

scalability, and time-saving benefits the cloud offers. Amazon RDS currently

supports the MySQL, Aurora, MariaDB, PostgreSQL, Oracle, and Microsoft SQL

Server database engines.

In this guide, we will discuss how to migrate applications developed for Oracle

and SQL Server onto an RDS instance in the AWS Cloud using the AWS SCT

and AWS DMS. The guide will cover all major steps of application migration:

database schema and data migration, SQL code conversion, and application

code re-platforming.

Overview of Migrating Data-Centric

Applications to AWS
Developing applications that integrate with AWS is fast and easy. Although you

can develop these applications from scratch, there is often a need to take

existing databases and applications and move them to the AWS Cloud.

Amazon Web Services – Migrating Applications to AWS

Page 2

The process of moving applications that were originally developed to run on-

premises and need to be remediated for Amazon RDS is called migration.

During the migration process, a database application might be migrated

between two databases of the same engine type (a homogenous migration; for

example, Oracle Ą Oracle, SQL Server Ą SQL Server, etc.) or between two

databases that use different engine types (a heterogeneous migration; for

example, Oracle Ą PostgreSQL, SQL Server Ą MySQL, etc.). In this guide, we

look at common migration scenarios regardless of the database engine, and

touch on specific issues related to certain examples of heterogeneous

conversions.

Migration Steps & Tools
Application migration to AWS involves multiple steps, regardless of the

database engine:

1. Migration assessment analysis

2. Schema conversion to a target database platform

3. SQL statement and application code conversion

4. Data migration

5. Testing of converted database and application code

6. Setting up replication and failover scenarios for data migration to the

target platform

7. Setting up monitoring for a new production environment and go live with

the target environment

Figure 1: Seven steps for application migration to AWS

Each application is different and may require extra attention to one or more of

these steps. For example, a typical application contains the majority of complex

data logic in database-stored procedures, functions, etc. Other applications are

heavier on logic in the application, for example, ad hoc queries to support

Amazon Web Services – Migrating Applications to AWS

Page 3

search functionality. On average, the percentage of time spent in each phase of

the migration effort for a typical application breaks down as shown in Table 1.

Table 1: Percentage of time spent in each migration phase

Step Percentage of Overall Effort

Migration Assessment 2%

Schema Conversion 30%

Embedded SQL and

Application Code Conversion

15%

Data Migration 5%

Testing 45%

Data Replication 3%

Go Live 5%

Note: Percentages for data migration and replication are based on

man-hours for configuration, and do not include hours needed for the

initial load.

To make the migration process faster, more predictable, and cost effective, AWS

provides the following tools and methods to automate migration steps:

¶ AWS Schema Conversion Tool (AWS SCT)1 – a desktop tool that

automates conversion of database objects from different database

migration systems (Oracle, SQL Server, MySQL, PostgreSQL) to different

RDS database targets (Aurora, PostgreSQL, Oracle, MySQL, SQL Server).

This tool is invaluable during the Migration Assessment, Schema

Conversion, and Application Code Conversion steps.

¶ AWS Database Migration Service (DMS)2 – a service for data migration

to and from AWS database targets. AWS DMS can be used for a variety of

replication tasks, including continuous replication to offload reads from a

primary production server for reporting or ETL (extract, transform,

load); continuous replication for high availability; database

consolidation; and temporary replication for data migrations. In this

guide, we focus on the replication needed for data migrations. This

service dramatically reduces time and effort during the Data Migration

and Data Replication Setup steps.

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://aws.amazon.com/dms/

Amazon Web Services – Migrating Applications to AWS

Page 4

Now let’s look at each step in detail and see how these tools can help you

migrate your application to AWS much faster and easier.

Development Environment Setup Prerequisite

To prepare for the migration, you will need to set up a development

environment to use for the iterative migration process. In most cases, it is

desirable to have the development environment mirror the production

environment. Therefore, this environment will most likely be on premises or

running on an Amazon Elastic Compute Cloud (EC2) instance.3 Download and

install the AWS SCT on a server in the development environment.4

If you are interested in changing database platforms, the New Project Wizard

can help you determine the most appropriate target platform for the source

database. See Step 1: Migration Assessment in this guide for more information.

Procure an RDS database instance to serve as the migration target and any

necessary EC2 instances to run migration-specific utilities. At this point, you

might want to engage AWS Professional Services for help setting up and

configuring your AWS environment.

Step 1: Migration Assessment

During Migration Assessment , a team of skilled system architects reviews

the architecture of the existing application, produces an assessment report that

includes a network diagram with all the application layers, identifies the

application and database components that will not be automatically migrated,

and estimates the effort for manual conversion work. Although migration

analysis tools exist to speed the evaluation, the bulk of the assessment is

conducted by internal staff or with help from Professional Services. This effort is

usually 2% of the whole migration effort.

One of the key tools in the assessment analysis is the Database M igration

Assessment Report . This report provides important information about the

conversion of the schema from your source database to your target RDS

database instance. More specifically, the Assessment Report does the following:

¶ Identifies schema objects (e.g., tables, views, stored procedures, triggers,

etc.) in the source database and the actions that are required to convert

https://aws.amazon.com/ec2/
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html

Amazon Web Services – Migrating Applications to AWS

Page 5

them (Action Items) to the target database (including fully automated

conversion, small changes like selection of data types or attributes of

tables, and rewrites of significant portions of the stored procedure)

¶ Recommends the best target engine, based on the source database and

the features used

¶ Recommends other AWS services that can substitute for missing features

¶ Recommends unique features available in RDS that can save the

customer licensing and other costs

¶ Recommends re-architecting for the cloud, e.g., shard a very large

database into multiple RDS instances

Now let’s look at examples of the report’s three key sections:

¶ An Executive Summary, which provides key migration metrics and helps

you choose the best target database engine for your particular application

Figure 2: Executive Summary in Assessment Report

¶ A graph that visualizes the schema objects and number of conversion

issues (and their complexity) required in this migration project

Amazon Web Services – Migrating Applications to AWS

Page 6

Figure 3: Graph of conversion statistics

Amazon Web Services – Migrating Applications to AWS

Page 7

¶ A detailed list of all conversion Action Items and their references in the

database code

Figure 4: Action Items and references

The Database Migration Assessment Report shows conversion Action Items

with three levels of complexity:

Simple - can be completed in less than 1 hour

Medium - can be completed in 1 to 4 hours

Significant - can require 4 or more hours to complete

Using the detailed report provided by the AWS SCT, skilled architects can

provide a much more precise estimate for the efforts required to complete

migration of the database schema code. For more information about how to

configure and run the Database Migration Assessment Report, see the AWS SCT

manual.5

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.AssessmentReport.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.AssessmentReport.html

Amazon Web Services – Migrating Applications to AWS

Page 8

It is helpful to know that all results of the Assessment Report calculations and

the summary of conversion Action Items are also saved inside the AWS SCT.

Figure 5: Summary of conversion Action Items in AWS SCT

This will become quite handy in the actual schema conversion step, which we’ll

consider next.

Tips

¶ Before running the Assessment Report, you can restrict the database

objects to evaluate by checking/unchecking the desired nodes in the

source database tree.

¶ After running the initial Assessment Report, save it as a .pdf file, then

open the file in a viewer such as Adobe Acrobat Reader to view the entire

Database Migration Assessment Report. You can navigate the

Assessment Report more easily if you convert it to a Microsoft Word

document to take advantage of Word’s Table of Contents Navigation

pane.

Amazon Web Services – Migrating Applications to AWS

Page 9

Step 2: Schema Conversion

The Schema Conversion step consists of translating the data definition

language (DDL) for tables, partitions, and other database storage objects from

the syntax and features of the source database to the syntax and features of the

target database.

Schema conversion in the AWS SCT is a two-step process:

1. Convert the schema.

2. Apply the schema to the target database.

AWS SCT also converts procedural application code in triggers, stored

procedures, and functions from feature-rich languages (e.g., PLSQL, T-SQL) to

the simpler procedural languages of MySQL and PostgreSQL. Schema

conversion typically accounts for 30% of the whole migration effort.

The AWS SCT automatically creates DDL scripts for as many database objects

on the target platform as possible. For the remaining database objects, the

conversion Action Items describe why the object cannot be converted

automatically and the recommended manual steps needed to convert the object

to the target platform. References to articles that discuss the recommended

solution on the target platform are included when available.

Occasionally, the easiest conversion for an object is to remove syntax from the

source database that doesn’t apply to the target database. For example, when

converting from SQL Server to MySQL, the SET NOCOUNT ON statement is

commonly used in stored procedures and has no equivalent in MySQL. In this

example, it is safe to remove the source syntax that has no chance of converting

successfully. Source database changes are saved only within the AWS SCT

project file and are never propagated to the source database.

The translated DDL for database objects is also stored in the AWS SCT project

file—both the DDL that is generated automatically by the AWS SCT and any

custom or manual DDL for objects that could not convert automatically. The

AWS SCT can also generate a DDL script file per object; this may come in handy

for source code version control purposes.

Amazon Web Services – Migrating Applications to AWS

Page 10

You have complete control over when the DDL is applied to the target database.

For example, for a smaller database you can run the Convert Schema

command to automatically generate DDL for as many objects as possible, then

write code to handle manual conversion Action Items, and lastly apply all of the

DDL to create all database objects at once. For a larger database that takes

weeks or months to convert, it can be advantageous to generate the target

database objects by executing the DDL selectively to create objects in the target

database as needed.

In Step 6: Data Replication in this guide, we discuss how you can also speed up

the data migration process by applying secondary indexes and constraints as a

separate step, after the initial data load. By selecting or unselecting objects from

the target database tree, you can save DDL scripts separately for tables and their

corresponding foreign keys and secondary indexes. You can then use these

scripts to generate tables, migrate data to those tables without performance

slowdown, and then apply secondary indexes and foreign keys after the data is

loaded.

The schema conversion step is an iterative process, which might take significant

efforts depending on the source database. The AWS SCT will automatically

convert a considerable number of objects and will convert source SQL dialect to

the target one. In cases where the AWS SCT can’t achieve automatic conversion,

a recommendation will be provided. These recommendations need to be

handled manually by a database developer to achieve the desired code for the

target database.

After the Database Migration Assessment Report is created, the AWS SCT offers

two views of the project: Main View and Assessment Report View.

Tips for Navigating the AWS SCT in the Assessment Report View

¶ Select a code object from the source database tree on the left (see Figure

6) to view the source code, DDL, and mappings to create the object in the

target database.

Note: Source code for tables is not displayed in the AWS SCT; however, the

DDL to create tables in the target database is displayed. The AWS SCT

displays both source and target DDL for other database objects.

Amazon Web Services – Migrating Applications to AWS

Page 11

¶ Click the chevron (¤) next to an issue or double-click the issue message

to expand the list of affected objects. Select the affected object to locate it

in the source and target database trees, and view or edit the DDL script.

¶ Source database objects with an associated conversion Action Item are

indicated with an exclamation icon:

¶ When viewing the source SQL for some objects, such as procedures, the

AWS SCT highlights the lines of code that require manual intervention to

convert to the target platform. Hovering over or double-clicking the

highlighted source code will display the corresponding Action Item. Also

note that the target SQL includes comments with the Issue # for Action

Items to be resolved.

Figure 6: AWS S CT in the Assessment Report View

Schema Mapping Rules

The AWS SCT allows you to create custom schema transformations and

mapping rules to use during the conversion. Schema mapping rules can

standardize the target schema naming convention, apply internal naming

conventions, correct existing issues in the source schema, etc. Transformations

are applied to the target database, schema, table, or column DDL and currently

include the following:

¶ Rename

¶ Add prefix

Amazon Web Services – Migrating Applications to AWS

Page 12

¶ Add suffix

¶ Remove prefix

¶ Remove suffix

¶ Replace prefix

¶ Replace suffix

¶ Convert uppercase

¶ Convert lowercase

¶ Move to (tables only)

¶ Change data type (columns only)

New transformations and mapping rules are being added to the AWS SCT with

each release to increase the robustness of this valuable feature.

For example, Figure 7 depicts a schema mapping rule that has been applied to

standardize a table name and correct a typo. Notice the Source Name to Target

Name mapping.

Figure 7: Schema mapping rule in AWS SCT

You can create as many schema mapping rules as you need by choosing

Settings , and then Mapping Rules from the AWS SCT menu.

Amazon Web Services – Migrating Applications to AWS

Page 13

Figure 8 : Creating schema mapping rules

After schema mapping rules are created, you can export them for use by AWS

DMS during the Data Migration step. Schema mapping rules will be exported in

JavaScript Object Notation (JSON) format. Later in Step 4: Data Migration, we

will examine how AWS DMS can take advantage of this mapping.

Tips

¶ Before applying individual SQL objects to the target, examine the SQL for

the object carefully to ensure that any dependent objects have already

been created. For example, creation of the table depends on a custom

address sequence and a function to generate new RowGUIDs (see Figure

9). These objects should be applied to the target database before

generating the table. An error will occur if dependent objects are not

generated first.

Amazon Web Services – Migrating Applications to AWS

Page 14

Figure 9: Custom address sequence and function to generate new RowGUID

¶ After an object’s schema is converted, the object’s icon in the target tree

on the right side of the AWS SCT project window will move to the bottom

of the tree and display a red checkmark:

¶ After an object is applied to the database, the object’s icon in the target

tree on the right side of the AWS SCT project window will display a blue

“saved” icon:

¶ After an object’s schema is converted, rerunning Schema Conversion on

the object will replace previously modified code. Be sure to save the AWS

SCT project frequently to avoid accidentally overwriting a previously

modified schema.

¶ After an object’s schema is converted, select the database node from the

Source tree on the left to return to the list of remaining conversion Action

Items.

¶ If an error occurs while applying an object to the target database, check

the error log for details. To find the location of the error log, choose

Settings , and then choose Global Settings from the AWS SCT menu.

Amazon Web Services – Migrating Applications to AWS

Page 15

Step 3: Conversion of Embedded SQL and

Application Code

After you convert the database schema, the next step is to address any custom

scripts with embedded SQL statements (e.g., ETL scripts, reports, etc.) and the

application code so that they work with the new target database. This includes

rewriting portions of application code written in Java, C#, C++, Perl, Python,

etc., that relate to JDBC/ODBC driver usage, establishing connections, data

retrieval, and iteration. AWS SCT will scan a folder containing application code,

extract embedded SQL statements, convert as many as possible automatically,

and flag the remaining statements for manual conversion actions. Converting

embedded SQL in application code typically accounts for 15% of the whole

migration effort.

Some applications are more reliant on database objects, such as stored

procedures, while other applications use more embedded SQL for database

queries. In either case, these two efforts combined typically account for around

45%, or almost half, of the migration effort.

The workflow for application code conversion is similar to the workflow for the

database migration:

1. Run an assessment report to understand the level of effort required to

convert the application code to the target platform.

2. Analyze the code to extract embedded SQL statements.

3. Allow the AWS SCT to automatically convert as much code as possible.

4. Work through the remaining conversion Action Items manually.

5. Save code changes.

The AWS SCT uses a two-step process to convert application code:

1. Extract SQL statements from the surrounding application code.

2. Convert SQL statements.

An Application Conversion Project is a child of a Database Migration Project.

One Database Migration Project can include one or more application conversion

subprojects; for example, there may be a frontend GUI application conversion,

an ETL application conversion, and a reporting application conversion. All three

Amazon Web Services – Migrating Applications to AWS

Page 16

applications can be attached to the parent Database Migration Project and

converted in the AWS SCT.

The AWS SCT can also standardize parameters in parameterized SQL

statements to use named or positional styles, or keep parameters as they are. In

the following example, the original application source code used the Named

(:name) style, and Positional(?) style has been selected for the application

conversion. Notice that AWS SCT replaced the named parameter “:id” with a

positional “?” during conversion.

Figure 10: AWS SCT replaced Named style with Positional style

The application conversion workspace makes it easy to view and modify

embedded SQL code and track changes that are yet to be made. Parsed SQL

scripts and snippets appear in the bottom pane alongside their converted code.

Selecting one of these parsed scripts highlights it in the application code so you

can view the context, and the parsed script will appear in the bottom left

quadrant, as shown in Figure 11.

Amazon Web Services – Migrating Applications to AWS

Page 17

Figure 11: Selecting a parsed script highlights it in the application code

The embedded SQL conversion process consists of the following iterative steps:

1. Analyze the selected code folder to extract embedded SQL.

2. Convert the SQL to the target script. If the AWS SCT is able to convert

the script automatically, it will appear in the bottom right quadrant. Any

manual conversion code can also be entered here.

3. Apply the converted SQL to the source code base, swapping out the

original snippet for the newly converted snippet.

4. Save the changes to the source code. A backup of the original source code

will be saved to your AWS SCT working directory with an extension of

“.old”.

Tips

¶ Click the green checkmark to the right of the Parsed SQL Script to

validate the Target SQL script against the target database.

Amazon Web Services – Migrating Applications to AWS

Page 18

¶ AWS SCT can only convert or make recommendations for the SQL

statements that it was able to extract. The Application Assessment

Report contains a SQL Extraction Actions tab at the top. This tab lists

conversion Action Items where AWS SCT detected SQL statements but

was not able to accurately extract and parse them. Drill down through

these issues to identify application code that needs to be manually

evaluated by an application developer and converted manually, if needed.

¶ Drill into the issues on either the SQL Extraction Actions or the SQL

Conversion Actions tab to locate the file and line number of the

conversion item, then double-click the occurrence to view the extracted

SQL.

Step 4: Data Migration

After the schema and application code are successfully converted to the target

database platform, it is time to migrate data from the source database to the

target database. You can easily accomplish this by using AWS DMS. After the

data is migrated, you can perform testing on the new schema and application.

Because much of the data mapping and transformation work has already been

done in AWS SCT and AWS DMS manages the complexities of the data

migration for you, configuring a new Data Migration Service is typically 5% of

the whole migration effort.

Important: AWS SCT and AWS DMS can be used independently. For

example, AWS DMS can be used to synchronize homogeneous databases

between environments, such as refreshing a test environment with production

data. However, the tools are integrated so that the schema conversion and data

migration steps can be used in any order. Later in this guide we will look into

specific scenarios of integrating these tools.

AWS DMS works by setting up a replication server that acts as a middleman

between the source and target databases. AWS DMS migrates data between

source and target instances and tracks which rows have been migrated and

which rows have yet to be migrated. This instance is referred to as the AWS

DMS replication instance, as shown in Figure 12.

Amazon Web Services – Migrating Applications to AWS

Page 19

Figure 12: AWS DMS replication instance

AWS DMS provides a wizard to walk through the three main steps of getting the

data migration service up and running:

1. Set up a replication instance.

2. Define connections for the source and target databases.

3. Define data replication tasks.

To perform a database migration, AWS DMS must be able to connect to the

source and target databases and the replication instance. AWS DMS will

automatically create the replication instance in the specified AWS Virtual

Private Cloud (VPC). The simplest database migration configuration is when the

source and target databases are also AWS resources (Amazon EC2 or Amazon

RDS) in the same VPC. For more information, see Setting Up a Network for

Database Migration in the AWS Database Migration Service User Guide.6

You can migrate data in two ways:

¶ As a full load of existing data

¶ As a full load of existing data, followed by continuous replication of data

changes to the target

For example, an initial data migration to a static database might be appropriate

for a test environment or a smaller database, while ongoing replication might be

required for a larger production migration with a near-zero downtime

threshold. If the application can tolerate an outage window long enough to

migrate all data, the full load option is easier to set up and manage, but requires

preventing users from changing data while the data is being migrated. For more

information on ongoing replication, see Step 6: Data Replication in this guide.

AWS DMS can be configured to drop and recreate the target tables or truncate

existing data in the target tables before reloading data. AWS DMS will

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.VPC.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.VPC.html

Amazon Web Services – Migrating Applications to AWS

Page 20

automatically create the target table on the target database according to the

defined schema mapping rules with primary keys and required unique indexes,

then migrate the data. AWS DMS will not create foreign keys, secondary

indexes, most unique indexes, or other database objects such as stored

procedures, views, functions, packages, etc. This is where the AWS SCT feature

of saving SQL scripts separately for various SQL objects can be used, or these

objects can be applied to the target database directly via the AWS SCT Apply to

Database command after the initial load.

Data can be migrated as-is (such as when the target schema is identical or

compatible with the source schema), AWS DMS can use Schema Mapping Rules

exported from the AWS SCT project, or custom mapping rules can be defined in

AWS DMS via JSON. For example, the following JSON renames a table from

“tbl_departmnet” to “department” and creates a mapping between these two

tables.

{

 "rules": [

 {

 "rule - type": "selection",

 "rule - id": "1",

 "rule - name": "1",

 "object - locator": {

 "schema - name": "HumanResources",

 "table - name": "%"

 },

 "rule - action": "include"

 },

 {

 "rule - type": "transformation",

 "rule - id": "2",

 "rule - name": "Rename tbl_Departmnet",

 "rule - action": "rename",

 "rule - target": "table",

 "object - locator": {

 "schema - name": "HumanResources",

 "table - name": "tbl_Departmnet"

 },

 "value": "Department"

 }

]

Amazon Web Services – Migrating Applications to AWS

Page 21

}

Tips

¶ For more information on AWS replication instance types and their

capacities, see Replication Instances for AWS Database Migration Service

in the AWS Database Migration Service User Guide.7

¶ Schema mapping rules can be created in AWS SCT, then exported in

JSON format appropriate for AWS DMS custom mappings.

Step 5: Testing Converted Code

After schema and application code has been converted and the data successfully

migrated onto the AWS platform, it is time for a thorough testing of the

migrated application. The focus of this testing is to ensure correct functional

behavior on the new platform. Although best practices vary, it is generally

accepted to aim for as much time in the testing phase as in the development

phase, which is about 45% of the overall migration effort.

The goal of testing should be two-fold: exercising critical functionality in the

application and verifying that converted SQL objects are functioning as

intended. An ideal scenario would be to load the same test dataset into the

original source database, load the converted version of the same dataset into the

target database, and perform the same set of automated system tests in parallel

on each system. The outcome of the tests on the converted database should be

functionally equivalent to the source. Data rows affected by the tests should also

be examined independently for equivalency. Analyzing the data independently

from application functionality will verify there are no data issues lurking in the

target database that are not obvious in the user interface (UI).

Step 6: Data Replication

Although a one-time full load of existing data is relatively simple to set up and

run, many production applications with large database backends cannot tolerate

a downtime window long enough to migrate all the data in a full load. For these

databases, AWS DMS can use a proprietary Change Data Capture (CDC) process

to implement ongoing replication from the source database to the target

database. AWS DMS manages and monitors the ongoing replication process

with minimal load on the source database, without platform-specific

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.ReplicationInstance.html

Amazon Web Services – Migrating Applications to AWS

Page 22

technologies, and without components that need to be installed on either the

source or target. Due to CDC’s ease-of-use, setting up data replication typically

accounts for 3% of the overall effort.

CDC offers two ways to implement ongoing replication:

¶ Migrate existing data and replicate ongoing changes - implements

ongoing replication by:

a. (Optional) Creating the target schema.

b. Migrating existing data and caching changes to existing data as it is

migrated.

c. Applying those cached data changes until the database reaches a

steady state.

d. Lastly, applying current data changes to the target as soon as they are

received by the replication instance.

¶ Replicate data changes only – replicate data changes only (no schema)

from a specified point in time. This option is helpful when the target

schema already exists and the initial data load is already completed. For

example, using native export/import tools, ETL, or snapshots might be a

more efficient method of loading the bulk data in some situations. In this

case, AWS DMS can be used to replicate changes from when the bulk

load process started to bring and keep the source and target databases in

sync.

AWS DMS takes advantage of built-in functionality of the source database

platform to implement the proprietary CDC process on the replication instance.

This allows AWS DMS to manage, process, and monitor data replication with

minimal impact to either the source or target databases. The following sections

describe the source platform features used by the DMS replication instance’s

CDC process.

MS SQL Server Sources

Replication . Replication must be enabled on the source server and a

distribution database that acts as its own distributor configured.

Transaction log s. The source database must be in Full or Bulk Recovery

Mode to enable transaction log backups.

Amazon Web Services – Migrating Applications to AWS

Page 23

Oracle Sources

BinaryReader or LogMiner . By default, AWS DMS uses LogMiner to

capture changes from the source instance. For data migrations with a high

volume of change and/or large object (LOB) data, using the proprietary Binary

Reader may offer some performance advantages.

ARCHIVELOG . The source database must be in ARCHIVELOG mode.

Supplemental Logging . Supplemental logging must be turned on in the

source database and in all tables that are being migrated.

PostgreSQL Sources

Write -Ahead Logging (WAL). In order for AWS DMS to capture changes

from a PostgreSQL database:

1. The wal_level must be set to logical.

2. max_replication_slots must be >= 1.

3. max_wal_senders must be >= 1.

Primary Key . Tables to be included in CDC must have a primary key.

MySQL Sources

Binary Logging . Binary logging must be enabled on the source database.

Automatic backups . Automatic backups must be enabled if the source is a

MySQL, Aurora, or MariaDB Amazon RDS instance.

SAP ASE (Sybase) Sources

Replication . Replication must be enabled on the source, but RepAgent must

be disabled.

For additional information, including prerequisites and security configurations

for each source platform, refer to the appropriate link in the Sources for Data

Migration for AWS Database Migration Service section of the AWS Database

Migration Service User Guide.8

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

Amazon Web Services – Migrating Applications to AWS

Page 24

Most of the configuration for ongoing data replication is done in the Task

Settings pane, as shown in Figure 13.

Figure 13: Configuring ongoing data replication

There are two settings that are important to note for ongoing replication:

¶ Target table preparation mode:

o Do Nothing . Existing target schema and data remain intact.

o Drop Table on Target . Target tables are dropped and recreated

according to defined mapping rules.

o Truncate . Target tables are truncated but schema remains intact.

¶ Stop task after full load completes :

o Donôt stop. AWS DMS will not take advantage of secondary indexes

to apply cached updates that occurred during the initial full load. This

setting is appropriate when most data changes are inserts and deletes,

with few updates.

o Stop Before Applying Cached Changes . AWS DMS will stop the

replication task after the initial load but before applying cached data

changes that occurred during the load. This enables a database

administrator (DBA) to apply secondary indexes that allow updates to

perform better. This is appropriate when the workload includes a high

ratio of updates to inserts and deletes. Once the cached changes are

Amazon Web Services – Migrating Applications to AWS

Page 25

applied and the target database has reached a steady state, additional

indexes, constraints, and foreign keys should be applied before the

migrated database goes live.

o Stop After Applying Cached Changes . AWS DMS will stop the

replication task after all cached data changes are applied and the

target database has reached a steady state. At this time, all secondary

indexes, constraints and foreign keys should be applied before the

migrated database goes live.

Step 7: Deployment to AWS and Go-Live

Test the data migration of the production database to ensure that all data can be

successfully migrated during the allocated cutover window. Monitor the source

and target databases to ensure that the initial data load is completed, cached

transactions are applied, and data has reached a steady state before cutover.

Design a simple rollback plan for the unlikely event that an unrecoverable error

occurs during the Go-Live window. The AWS SCT and AWS DMS work together

to preserve the original source database and application, so the rollback plan

will mainly consist of scripts to point connection strings back to the original

source database.

Post-Deployment Monitoring

AWS DMS monitors the number of rows inserted, deleted, and updated, as well

as the number of DDL statements issued per table while a task is running. You

can view these statistics for the selected task on the Table Statistics tab.

Figure 14: Viewing table statistics

Amazon Web Services – Migrating Applications to AWS

Page 26

If logging is enabled for the task, review the Amazon CloudWatch Logs for any

errors or warnings. You can enable logging for a task during task creation under

Task Settings .

Figure 15: Enabling logging for a task during creation

The most relevant metrics can be viewed for the selected task on the Task

Monitoring tab.

Figure 16: Relevant metrics for a task

Amazon Web Services – Migrating Applications to AWS

Page 27

Additional metrics are available from the Amazon CloudWatch Logs dashboard,

accessible from the link on the Task Monitoring tab, or by navigating in the

AWS Console to Services , choosing CloudWatch , and then choosing DMS .

Best Practices
This section presents best practices for each of the seven major steps of

migrating applications to AWS.

Schema Conversion Best Practices

¶ Save the Database Migration Assessment Report. After running

the initial Database Migration Assessment Report, save it as a .csv and a

.pdf. As conversion Action Items are completed, they may no longer

appear in the Database Migration Assessment report if it gets

regenerated. Saving the initial Assessment Report can serve as a valuable

project management tool, such as providing a history of conversion tasks

and tracking the percentage of tasks completed. The .csv version will also

come in handy because it can be imported into Excel for ease-of-use,

such as the ability to search, filter, and sort conversion tasks by type, SQL

object, level of effort, etc. Saving the Database Migration Assessment

report as .csv will generate two files: a summary report and a detailed

report. The .pdf version can be viewed and navigated easily in any .pdf

reader, such as Adobe Acrobat.

¶ For most conversions, apply DDL to the target database i n the

following order to avoid dependency errors :

o Sequences

o Tables

o Views

o Procedures

Functions should be applied to the target database in order of

dependency. For example, a function might be referenced in a table

column; therefore, the function must be applied before the table to avoid

a dependency error. Another function might reference a table; therefore,

the table must be created first.

Amazon Web Services – Migrating Applications to AWS

Page 28

¶ Configure the AWS SCT with the memory performance settings

you need . Increasing memory speeds up the performance of your

conversion but uses more memory resources on your desktop. On a

desktop with limited memory, you can configure AWS SCT to use less

memory, resulting in a slower conversion. You can change these settings

by choosing Settings , Global Settings , and then Performance and

Memory , as shown in Figure 17.

Figure 17: Changing memory settings

¶ Apply the additional schema that AWS SCT creates to the

target database. For most conversion projects, AWS SCT will create an

additional schema in the target database named aw_[source

platform]_ext. This schema will contain SQL objects to emulate features

and functionality that are present in the source platform but not in the

target platform. For example, when converting from MS SQL Server to

PostgreSQL, the aws_sqlserver_ext schema contains sequence

definitions to replace SQL Server identity columns. Don’t forget to apply

this additional schema to the target database, as it will not have a direct

mapping to a source object.

¶ Use source code version control to track changes to target

objects (both database and application code). If bugs or data

differences are found during testing or deployment, the history of

changes will be useful for debugging.

Amazon Web Services – Migrating Applications to AWS

Page 29

Application Code Conversion Best Practices

¶ After running the initial Application Assessment Report, save

it as a .csv and a .pdf. As conversion tasks are completed, they will no

longer appear in the Application Assessment report if it gets regenerated.

Saving the initial Application Assessment Report will serve as a history of

tasks completed throughout the entire application conversion effort. The

.csv file will also come in handy because it can be imported into Excel for

ease-of-use, such as the ability to search, filter, and sort conversion tasks

by category, error description, level of effort, etc. Saving the Application

Assessment report as a .csv file will generate two files: a summary report

and a detailed report. The .pdf file can be viewed and navigated easily in

any .pdf reader, such as Adobe Acrobat.

Data Migration Best Practices

¶ Choose a replication instance class large enough to support

your database size and transactional load. By default, AWS DMS

loads eight tables at a time. On a very large replication server, such as a

dms.c4.xlarge or larger instance, you can improve performance by

increasing the number of tables to load in parallel. On a smaller

replication server, reduce the number of tables to load in parallel for

improved performance.

¶ On the target data base, d isable what isnôt needed. Disable

unnecessary triggers, validation, foreign keys, and secondary indexes on

the target databases, if possible. Disable unnecessary jobs, backups, and

logging on the target databases.

¶ Tables in the source database that do not participate in

common transactions can be allocated to different tasks . This

allows multiple tasks to synchronize data for a single database migration,

thereby improving performance in some instances.

¶ Monitor performance of the source system to ens ure it is able

to handle the load of the database migration tasks. Reducing the

number of tasks and/or tables per task can reduce the load on the source

system. Using a synchronized replica, mirror, or other read-only copy of

the source database can also help reduce the load on the source system.

Amazon Web Services – Migrating Applications to AWS

Page 30

¶ Enable logging using Amazon CloudWatch Log s. Troubleshooting

AWS DMS errors without the full logging captured in CloudWatch Logs

can be difficult and time-consuming (if not impossible).

¶ If your source data contains Binary Large Objects (BLOBs) such as an

image, XML, or other binary data, loading of these objects can be

optimized using Task Settings . For more information, see Task Settings

for AWS Database Migration Service Tasks in the AWS Database

Migration Service User Guide.9

Data Replication Best Practices

¶ Achieve best performance by not applying indexes or foreign

keys to the target database during the initial load. The initial load

of existing data is comprised wholly of inserts into the target database.

Therefore, you can get the best performance during the initial load if the

target database does not have indexes or foreign keys applied. However,

after the initial load, when cached data changes are applied, indexes can

be useful for locating rows to update or delete. Use the Stop Befor e

Applying Cached Changes Task setting to tell AWS DMS to pause

the task, allowing the creation of these indexes before the cached changes

are applied. When the existing data is done loading, the Task’s status will

update to Stopped . A DBA can then create the appropriate indexes on

the target database and resume the task before the cached changes are

applied.

¶ Similarly, apply indexes and foreign keys to the target

database before the application is ready to go live. Use the Stop

Afte r Applying Cached Changes Task setting to tell AWS DMS to

pause the task, allowing the creation of these foreign keys and indexes

after the cached changes are applied but before the application goes live

on the new target platform.

¶ For ongoing replication (such as for high availability), enable

the Multi -AZ option on the replication instance. The Multi-

AZ option provides high availability and failover support for the

replication instance.

¶ Use the AWS API or AWS command -line interface (AWS CLI)

for more advanced AWS DMS task settings . The AWS API and/or

AWS CLI offer more granular control over data replication tasks and

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.CustomizingTasks.TaskSettings.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.CustomizingTasks.TaskSettings.html

Amazon Web Services – Migrating Applications to AWS

Page 31

additional settings not currently available in the AWS Management

Console.

¶ Disable backups on the target database during the full load for

better performance. Enable them during cutover.

¶ W ait until cutover to make your target RDS instance Multi -AZ

for better performance.

Testing Best Practices

¶ Have a test environment where full regression tests of the

original application can be conducted. The “old” tests before

conversion should work the same way for the converted database. That’s

a big topic because a majority of customers don’t have those processes

well defined or automated. If you do have automated testing, it is a great

asset and simplifies the process a lot.

¶ In the absence of automated testing, a starting place would be

to ru n ñsmokeò tests on the old and new applications, comparing data

values and UI functionality to ensure like behavior.

¶ Apply standard practices for database -driven software testing

regardless of the migration process. Since the guts of the system

changed, the converted application needs to be fully retested.

¶ It helps tremendously to have sample test data that is used for

testing.

¶ Know your data logic and apply it to your test plan s. For

example, if you don’t have correct test data, the tests might fail or not

cover mission-critical application functionality.

¶ Test using a data set similar in size to the production dataset to

expose performance bottlenecks , such as missing or non-

performant indexes.

Deployment and Go-Live Best Practices

¶ Have a rollback plan in place should anything go wrong during

the live migration. Since the original database and application code

are still in place and not touched by AWS SCT or AWS DMS, this should

be fairly straightforward.

Amazon Web Services – Migrating Applications to AWS

Page 32

¶ Test the deployment on a staging or pre -production

environment to ensure that all needed objects, libraries, code, etc., are

included in the deployment and created in the correct order of

dependency (e.g., a sequence is created before the table that uses it).

¶ Verif y that AWS DMS has reached a steady state and all

existing data has been replicated to the new server before cutting

off access to the old application in preparation for the cutover.

¶ Verify that database maintenance jobs are in place , such as

backups and index maintenance.

¶ Turn on Multi -AZ if desired.

¶ Verify that monitoring is in place .

¶ AWS provides several services to make deployments easier

and trouble -free. If this is your first foray into AWS, check out AWS

CloudFormation,10 AWS OpsWorks,11 and AWS CodeDeploy.12 These

services are especially helpful for deploying and managing stacks

involving multiple AWS resources that must interact with each other,

such as databases, web servers, load balancers, IP addresses, VPCs, etc.

These services enable you to create reusable templates to ensure that

environments are identical. For example, while setting up the first

development environment, some tasks may have been completed

manually, either via the AWS Management Console, AWS CLI,

PowerShell, etc. Instead of tracking these items manually to ensure they

get created in the staging environment, resources in the running

development environment can be included in the template, then the

template can be used for setting up the staging and production

environments.

Post-Deployment Monitoring Best Practices

¶ Create CloudWatch Log s alarms and notifications to monitor

for unusual database activity , and send alerts to notify

production staff if the AWS instance is not performing well.

High CPU utilization, disk latency, and high RAM usage can be indicators

of missing indexes or other performance bottlenecks.

¶ Monitor l ogs and exception reports for unusual activity and errors.

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/opsworks/latest/userguide/welcome.html
https://aws.amazon.com/codedeploy/

Amazon Web Services – Migrating Applications to AWS

Page 33

¶ Determine if there are additional platform -specific metrics to

capture and monitor , such as capturing locks from the pg_locks

catalog table on the Amazon Redshift platform. Amazon Redshift also

allows viewing running queries from the AWS Management Console.

¶ Monitor instance health. CloudWatch Logs provides more metrics on

an RDS instance than an EC2 instance, and these may be sufficient for

monitoring instance health. For an EC2 instance, consider installing a

third-party monitoring tool to provide additional metrics.

Conclusion
The AWS Schema Conversion Tool (AWS SCT) and AWS Data Migration Service

(AWS DMS) make the process of moving applications to the cloud much easier

and faster than manual conversion alone. Together, they save many hours of

development during the migration effort, enabling you to reap the benefits of

AWS more quickly. In this guide, we discussed the seven steps to a successful

migration to the cloud:

1. Migration Assessment

2. Schema Conversion

3. Application Code Conversion

4. Data Migration

5. Testing

6. Data Replication

7. Go Live

We covered these time-saving features of the AWS SCT and AWS DMS:

¶ Assessment report with platform recommendations and level of effort

estimation

¶ Automatic conversion of many database objects from one database

platform to another

¶ Consistent, proven methods to emulate functionality, map data types,

and translate syntax from one platform to another

Amazon Web Services – Migrating Applications to AWS

Page 34

¶ The ability to extract and convert embedded SQL from surrounding

application code

¶ Recommendations for manual conversion, where necessary

¶ Schema mapping rules for data migration

¶ Data migration with minimal impact to source and target

¶ A Change Data Capture process for data replication that is easy to set up

and manage

¶ Ongoing data replication, minimizing downtime for a production cutover

¶ Monitoring and logging at the click of a button

Amazon Web Services – Migrating Applications to AWS

Page 35

1

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welc

ome.html

2 https://aws.amazon.com/dms/

3 https://aws.amazon.com/ec2/

4

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHA

P_SchemaConversionTool.Installing.html

5

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHA

P_SchemaConversionTool.AssessmentReport.html

6

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.VPC

.html

7

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.Rep

licationInstance.html

8 http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

9

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.Customizin

gTasks.TaskSettings.html

10 https://aws.amazon.com/cloudformation/

11 http://docs.aws.amazon.com/opsworks/latest/userguide/welcome.html

12 https://aws.amazon.com/codedeploy/

Notes

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://aws.amazon.com/dms/
https://aws.amazon.com/ec2/
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.AssessmentReport.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.AssessmentReport.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.VPC.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.VPC.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.ReplicationInstance.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Introduction.ReplicationInstance.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.CustomizingTasks.TaskSettings.html
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.CustomizingTasks.TaskSettings.html
https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/opsworks/latest/userguide/welcome.html
https://aws.amazon.com/codedeploy/

