Introduction to AWS Security Processes

June 2016

(Please consult http://aws.amazon.com/security/ for the latest version of this paper)

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS' current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS' products or services, each of which is provided "as is" without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

Table of Contents

Introduction	5
Shared Security Responsibility Model	5
AWS Security Responsibilities	6
Customer Security Responsibilities	7
AWS Global Security Infrastructure	7
AWS Compliance Programs	8
Physical and Environmental Security	9
Fire Detection and Suppression	9
Power	9
Climate and Temperature	9
Management	10
Storage Device Decommissioning	10
Business Continuity Management	10
Availability	10
Incident Response	10
Company-Wide Executive Review	11
Communication	11
AWS Access	11
Account Review and Audit	11
Background Checks	12
Credentials Policy	12
Secure Design Principles	12
Change Management	12
Software	12
Infrastructure	13
AWS Account Security Features	13
AWS Credentials	14
Passwords	15
AWS Multi-Factor Authentication (AWS MFA)	15
Access Keys	
Key Pairs	
X.509 Certificates	
Individual User Accounts	18

Secure HTTPS Access Points	19
Security Logs	19
AWS Trusted Advisor Security Checks	20
Networking Services	20
Amazon Elastic Load Balancing Security	20
Amazon Virtual Private Cloud (Amazon VPC) Security	22
Amazon Route 53 Security	28
Amazon CloudFront Security	29
AWS Direct Connect Security	32
Appendix – Glossary of Terms	33
Document Revisions	44
Jun 2016	44
Nov 2014	44
Nov 2013	44
May 2013	45

Introduction

Amazon Web Services (AWS) delivers a scalable cloud computing platform with high availability and dependability, providing the tools that enable customers to run a wide range of applications. Helping to protect the confidentiality, integrity, and availability of our customers' systems and data is of the utmost importance to AWS, as is maintaining customer trust and confidence. This document is intended to answer questions such as, "How does AWS help me protect my data?" Specifically, AWS physical and operational security processes are described for the network and server infrastructure under AWS' management, as well as service-specific security implementations.

Shared Security Responsibility Model

When using AWS services, customers maintain complete control over their content and are responsible for managing critical content security requirements, including:

- What content they choose to store on AWS
- Which AWS services are used with the content
- In what country that content is stored
- The format and structure of that content and whether it is masked, anonymised or encrypted
- Who has access to that content and how those access rights are granted, managed and revoked

Because AWS customers retain control over their data, they also retain responsibilities relating to that content as part of the AWS "shared responsibility" model. This shared responsibility model is fundamental to understanding the respective roles of the customer and AWS in the context of the Cloud Security Principles.

Under the shared responsibility model, AWS operates, manages, and controls the components from the host operating system and virtualization layer down to the physical security of the facilities in which the services operate. In turn, customers assume responsibility for and management of their operating system (including updates and security patches), other associated application software, as well as the configuration of the AWS-provided security group firewall. Customers should carefully consider the services they choose, as their responsibilities vary depending on the services they use, the integration of those services into their IT environments, and applicable laws and regulations. It is possible to enhance security and/or meet more stringent compliance requirements by leveraging technology such as host-based firewalls, host-based intrusion detection/ prevention, and encryption. AWS provides tools and information to assist customers in their efforts to account for and validate that controls are operating effectively in their extended IT environment. More information can be found on the AWS Compliance center at http://aws.amazon.com/compliance.

Figure 1: AWS Shared Security Responsibility Model

The amount of security configuration work you have to do varies depending on which services you select and how sensitive your data is. However, there are certain security features, such as individual user accounts and credentials, SSL/TLS for data transmissions, and user activity logging, that you should configure no matter which AWS service you use. For more information about these security features, see the "AWS Account Security Features" section below.

AWS Security Responsibilities

AWS is responsible for protecting the global infrastructure that runs all of the services offered in the AWS cloud. This infrastructure is comprised of the hardware, software, networking, and facilities that run AWS services. Protecting this infrastructure is AWS' number one priority, and while you can't visit our data centers or offices to see this protection firsthand, we provide several reports from third-party auditors who have verified our compliance with a variety of computer security standards and regulations (for more information, visit (aws.amazon.com/compliance).

Note that in addition to protecting this global infrastructure, AWS is responsible for the security configuration of its products that are considered managed services. Examples of these types of services include Amazon DynamoDB, Amazon RDS, Amazon Redshift, Amazon Elastic MapReduce, Amazon WorkSpaces, and several other services. These services provide the scalability and flexibility of cloud-based resources with the additional benefit of being managed. For these services, AWS will handle basic security tasks like guest operating system (OS) and database patching, firewall configuration,

and disaster recovery. For most of these managed services, all you have to do is configure logical access controls for the resources and protect your account credentials. A few of them may require additional tasks, such as setting up database user accounts, but overall the security configuration work is performed by the service.

Customer Security Responsibilities

With the AWS cloud, you can provision virtual servers, storage, databases, and desktops in minutes instead of weeks. You can also use cloud-based analytics and workflow tools to process your data as you need it, and then store it in the cloud or in your own data centers. Which AWS services you use will determine how much configuration work you have to perform as part of your security responsibilities.

AWS products that fall into the well-understood category of Infrastructure as a Service (IaaS), such as Amazon EC2 and Amazon VPC, are completely under your control and require you to perform all of the necessary security configuration and management tasks. For example, for EC2 instances, you're responsible for management of the guest OS (including updates and security patches), any application software or utilities you install on the instances, and the configuration of the AWS-provided firewall (called a security group) on each instance. These are basically the same security tasks that you're used to performing no matter where your servers are located.

AWS managed services like Amazon RDS or Amazon Redshift provide all of the resources you need in order to perform a specific task, but without the configuration work that can come with them. With managed services, you don't have to worry about launching and maintaining instances, patching the guest OS or database, or replicating databases - AWS handles that for you. However, as with all services, you should protect your AWS Account credentials and set up individual user accounts with Amazon Identity and Access Management (IAM) so that each of your users has their own credentials and you can implement segregation of duties. We also recommend using multi-factor authentication (MFA) with each account, requiring the use of SSL/TLS to communicate with your AWS resources, and setting up API/user activity logging with AWS CloudTrail. For more information about additional measures you can take, refer to the <u>AWS Security Resources</u> webpage.

AWS Global Security Infrastructure

AWS operates the global cloud infrastructure that you use to provision a variety of basic computing resources such as processing and storage. The AWS global infrastructure includes the facilities, network, hardware, and operational software (e.g., host OS, virtualization software, etc.) that support the provisioning and use of these resources. The AWS global infrastructure is designed and managed according to security best practices as well as a variety of security compliance standards. As an AWS customer, you can be assured that you're building web architectures on top of some of the most secure computing infrastructure in the world.

AWS Compliance Programs

Amazon Web Services Compliance enables customers to understand the robust controls in place at AWS to maintain security and data protection in the cloud. As systems are built on top of the AWS cloud infrastructure, compliance responsibilities will be shared. By tying together governance-focused, audit-friendly service features with applicable compliance or audit standards, AWS Compliance enablers build on traditional programs; helping customers to establish and operate in an AWS security control environment. The IT infrastructure that AWS provides to its customers is designed and managed in alignment with security best practices and a variety of IT security standards, including:

- SOC1/SSAE16/ISAE3402 (formerly SAS 70)
- <u>SOC2</u>
- SOC3
- FISMA
- FedRAMP
- DODSRG Levels 2 and 4
- PCIDSSLevel1
- EU Model Clauses
- ISO 9001 / ISO 27001 / ISO 27017 / ISO 27018
- ITAR
- IRAP
- FIPS 140-2
- MLPS Level 3
- MTCS

In addition, the flexibility and control that the AWS platform provides allows customers to deploy solutions that meet several industry-specific standards, including:

- Criminal Justice Information Services (CJIS)
- Cloud Security Alliance (<u>CSA</u>)
- Family Educational Rights and Privacy Act (<u>FERPA</u>)
- Health Insurance Portability and Accountability Act (HIPAA)
- Motion Picture Association of America (MPAA)

AWS provides a wide range of information regarding its IT control environment to customers through white papers, reports, certifications, accreditations, and other third-party attestations. More information is available in the Risk and Compliance whitepaper available at http://aws.amazon.com/compliance/.

Physical and Environmental Security

AWS' data centers are state of the art, utilizing innovative architectural and engineering approaches. AWS has many years of experience in designing, constructing, and operating large-scale data centers. This experience has been applied to the AWS platform and infrastructure. AWS data centers are housed in nondescript facilities. Physical access is strictly controlled both at the perimeter and at building ingress points by professional security staff utilizing video surveillance, intrusion detection systems, and other electronic means. Authorized staff must pass two-factor authentication a minimum of two times to access data center floors. All visitors and contractors are required to present identification and are signed in and continually escorted by authorized staff.

AWS only provides data center access and information to employees and contractors who have a legitimate business need for such privileges. When an employee no longer has a business need for these privileges, his or her access is immediately revoked, even if they continue to be an employee of Amazon or Amazon Web Services. All physical access to data centers by AWS employees is logged and audited routinely.

Fire Detection and Suppression

Automatic fire detection and suppression equipment has been installed to reduce risk. The fire detection system utilizes smoke detection sensors in all data center environments, mechanical and electrical infrastructure spaces, chiller rooms and generator equipment rooms. These areas are protected by either wet-pipe, double-interlocked pre-action, or gaseous sprinkler systems.

Power

The data center electrical power systems are designed to be fully redundant and maintainable without impact to operations, 24 hours a day, and seven days a week. Uninterruptible Power Supply (UPS) units provide back-up power in the event of an electrical failure for critical and essential loads in the facility. Data centers use generators to provide back-up power for the entire facility.

Climate and Temperature

Climate control is required to maintain a constant operating temperature for servers and other hardware, which prevents overheating and reduces the possibility of service outages. Data centers are conditioned to maintain atmospheric conditions at optimal levels. Personnel and systems monitor and control temperature and humidity at appropriate levels.

Management

AWS monitors electrical, mechanical, and life support systems and equipment so that any issues are immediately identified. Preventative maintenance is performed to maintain the continued operability of equipment.

Storage Device Decommissioning

When a storage device has reached the end of its useful life, AWS procedures include a decommissioning process that is designed to prevent customer data from being exposed to unauthorized individuals. AWS uses techniques detailed NIST 800-88 ("Guidelines for Media Sanitization as part of the decommissioning process").

Business Continuity Management

AWS' infrastructure has a high level of availability and provides customers the features to deploy a resilient IT architecture. AWS has designed its systems to tolerate system or hardware failures with minimal customer impact. Data center Business Continuity Management at AWS is under the direction of the Amazon Infrastructure Group.

Availability

Data centers are built in clusters in various global regions. All data centers are online and serving customers; no data center is "cold." In case of failure, automated processes move customer data traffic away from the affected area. Core applications are deployed in an N+1 configuration, so that in the event of a data center failure, there is sufficient capacity to enable traffic to be load-balanced to the remaining sites.

AWS provides you with the flexibility to place instances and store data within multiple geographic regions as well as across multiple availability zones within each region. Each availability zone is designed as an independent failure zone. This means that availability zones are physically separated within a typical metropolitan region and are located in lower risk flood plains (specific flood zone categorization varies by Region). In addition to discrete uninterruptable power supply (UPS) and onsite backup generation facilities, they are each fed via different grids from independent utilities to further reduce single points of failure. Availability zones are all redundantly connected to multiple tier-1 transit providers.

You should architect your AWS usage to take advantage of multiple regions and availability zones. Distributing applications across multiple availability zones provides the ability to remain resilient in the face of most failure modes, including natural disasters or system failures.

Incident Response

The Amazon Incident Management team employs industry-standard diagnostic procedures to drive resolution during business-impacting events. Staff operators

provide 24x7x365 coverage to detect incidents and to manage the impact and resolution.

Company-Wide Executive Review

Amazon's Internal Audit group regularly reviews AWS resiliency plans, which are also periodically reviewed by members of the Senior Executive management team and the Audit Committee of the Board of Directors.

Communication

AWS has implemented various methods of internal communication at a global level to help employees understand their individual roles and responsibilities and to communicate significant events in a timely manner. These methods include orientation and training programs for newly hired employees; regular management meetings for updates on business performance and other matters; and electronic means such as video conferencing, electronic mail messages, and the posting of information via the Amazon intranet.

AWS has also implemented various methods of external communication to support its customer base and the community. Mechanisms are in place to allow the customer support team to be notified of operational issues that impact the customer experience. A "Service Health Dashboard" is available and maintained by the customer support team to alert customers to any issues that may be of broad impact. The "AWS Security Center" is available to provide you with security and compliance details about AWS. You can also subscribe to AWS Support offerings that include direct communication with the customer support team and proactive alerts to any customer impacting issues.

AWS Access

The AWS Production network is segregated from the Amazon Corporate network and requires a separate set of credentials for logical access. The Amazon Corporate network relies on user IDs, passwords, and Kerberos, while the AWS Production network requires SSH public-key authentication through a bastion host.

AWS developers and administrators on the Amazon Corporate network who need to access AWS cloud components must explicitly request access through the AWS access management system. All requests are reviewed and approved by the appropriate owner or manager.

Account Review and Audit

Accounts are reviewed every 90 days; explicit re-approval is required or access to the resource is automatically revoked. Access is also automatically revoked when an employee's record is terminated in Amazon's Human Resources system. Windows and UNIX accounts are disabled and Amazon's permission management system removes the user from all systems.

Page 11 of 45

Requests for changes in access are captured in the Amazon permissions management tool audit log. When changes in an employee's job function occur, continued access must be explicitly approved to the resource or it will be automatically revoked.

Background Checks

AWS has established formal policies and procedures to delineate the minimum standards for logical access to AWS platform and infrastructure hosts. AWS conducts criminal background checks, as permitted by law, as part of pre- employment screening practices for employees and commensurate with the employee's position and level of access. The policies also identify functional responsibilities for the administration of logical access and security.

Credentials Policy

AWS Security has established a credentials policy with required configurations and expiration intervals. Passwords must be complex and are forced to be changed every 90 days.

Secure Design Principles

AWS' development process follows secure software development best practices, which include formal design reviews by the AWS Security Team, threat modeling, and completion of a risk assessment. Static code analysis tools are run as a part of the standard build process, and all deployed software undergoes recurring penetration testing performed by carefully selected industry experts. Our security risk assessment reviews begin during the design phase and the engagement lasts through launch to ongoing operations

Change Management

Routine, emergency, and configuration changes to existing AWS infrastructure are authorized, logged, tested, approved, and documented in accordance with industry norms for similar systems. Updates to AWS' infrastructure are done to minimize any impact on the customer and their use of the services. AWS will communicate with customers, either via email, or through the <u>AWS Service Health Dashboard</u> (when service use is likely to be adversely affected).

Software

AWS applies a systematic approach to managing change so that changes to customer-impacting services are thoroughly reviewed, tested, approved, and well-communicated. The AWS change management process is designed to avoid unintended service disruptions and to maintain the integrity of service to the customer. Changes deployed into production environments are:

- Reviewed: Peer reviews of the technical aspects of a change are required.
- Tested: Changes being applied are tested to help ensure they will behave as expected and not adversely impact performance.

 Approved: All changes must be authorized in order to provide appropriate oversight and understanding of business impact.

Changes are typically pushed into production in a phased deployment starting with lowest impact areas. Deployments are tested on a single system and closely monitored so impacts can be evaluated. Service owners have a number of configurable metrics that measure the health of the service's upstream dependencies. These metrics are closely monitored with thresholds and alarming in place. Rollback procedures are documented in the Change Management (CM) ticket.

When possible, changes are scheduled during regular change windows. Emergency changes to production systems that require deviations from standard change management procedures are associated with an incident and are logged and approved as appropriate.

Periodically, AWS performs self-audits of changes to key services to monitor quality, maintain high standards, and facilitate continuous improvement of the change management process. Any exceptions are analyzed to determine the root cause, and appropriate actions are taken to bring the change into compliance or roll back the change if necessary. Actions are then taken to address and remediate the process or people issue.

Infrastructure

Amazon's Corporate Applications team develops and manages software to automate IT processes for UNIX/Linux hosts in the areas of third-party software delivery, internally developed software, and configuration management. The Infrastructure team maintains and operates a UNIX/Linux configuration management framework to address hardware scalability, availability, auditing, and security management. By centrally managing hosts through the use of automated processes that manage change, AWS is able to achieve its goals of high availability, repeatability, scalability, security, and disaster recovery. Systems and network engineers monitor the status of these automated tools on a continuous basis, reviewing reports to respond to hosts that fail to obtain or update their configuration and software.

Internally developed configuration management software is installed when new hardware is provisioned. These tools are run on all UNIX hosts to validate that they are configured and that software is installed in compliance with standards determined by the role assigned to the host. This configuration management software also helps to regularly update packages that are already installed on the host. Only approved personnel enabled through the permissions service may log in to the central configuration management servers.

AWS Account Security Features

AWS provides a variety of tools and features that you can use to keep your AWS Account and resources safe from unauthorized use. This includes credentials for access control, HTTPS endpoints for encrypted data transmission, the creation of separate IAM user accounts, user activity logging for security monitoring, and Trusted Advisor security checks. You can take advantage of all of these security tools no matter which AWS

Page 13 of 45

services you select.

AWS Credentials

To help ensure that only authorized users and processes access your AWS Account and resources, AWS uses several types of credentials for authentication. These include passwords, cryptographic keys, digital signatures, and certificates. We also provide the option of requiring multi-factor authentication (MFA) to log into your AWS Account or IAM user accounts. The following table highlights the various AWS credentials and their uses:

Credential Type	Use	Description
Passwords	AWS root account or IAM user account login to the AWS Management Console	A string of characters used to log into your AWS account or IAM account. AWS passwords must be a minimum of 6 characters and may be up to 128 characters.
Multi-Factor Authentication (MFA)	AWS root account or IAM user account login to the AWS Management Console	A six-digit single-use code that is required in addition to your password to log in to your AWS Account or IAM user account.
Access Keys	Digitally signed requests to AWS APIs (using the AWS SDK, CLI, or REST/Query APIs)	Includes an access key ID and a secret access key. You use access keys to digitally sign programmatic requests that you make to AWS.
Key Pairs	 SSH login to EC2 instances CloudFront signed URLs Windows instances 	To log in to your instance, you must create a key pair, specify the name of the key pair when you launch the instance, and provide the private key when you connect to the instance. Linux instances have no password, and you use a key pair to log in using SSH. With Windows instances, you use a key pair to obtain the administrator password and then log in using RDP.

X.509 Certificates	 Digitally signed SOAP requests to AWS APIs SSL server certificates for HTTPS 	X.509 certificates are only used to sign SOAP-based requests (currently used only with Amazon S3). You can have AWS create an X.509 certificate and private key that you can download, or you can upload your own certificate by using the Credential Report .
--------------------	---	---

You can download a Credential Report for your account at any time from the Security Credentials page. This report lists all of your account's users and the status of their credentials - whether they use a password, whether their password expires and must be changed regularly, the last time they changed their password, the last time they rotated their access keys, and whether they have MFA enabled.

For security reasons, if your credentials have been lost or forgotten, you cannot recover them or re-download them. However, you can create new credentials and then disable or delete the old set of credentials.

In fact, AWS recommends that you change (rotate) your access keys and certificates on a regular basis. To help you do this without potential impact to your application's availability, AWS supports multiple concurrent access keys and certificates. With this feature, you can rotate keys and certificates into and out of operation on a regular basis without any downtime to your application. This can help to mitigate risk from lost or compromised access keys or certificates. The AWS IAM API enables you to rotate the access keys of your AWS Account as well as for IAM user accounts.

Passwords

Passwords are required to access your AWS Account, individual IAM user accounts, AWS Discussion Forums, and the AWS Support Center. You specify the password when you first create the account, and you can change it at any time by going to the Security Credentials page. AWS passwords can be up to 128 characters long and contain special characters, so we encourage you to create a strong password that cannot be easily guessed.

You can set a password policy for your IAM user accounts to ensure that strong passwords are used and that they are changed often. A password policy is a set of rules that define the type of password an IAM user can set. For more information about password policies, go to Managing Passwords in Using IAM.

AWS Multi-Factor Authentication (AWS MFA)

AWS Multi-Factor Authentication (AWS MFA) is an additional layer of security for accessing AWS services. When you enable this optional feature, you will need to provide a six-digit single-use code in addition to your standard user name and password credentials before access is granted to your AWS Account settings or AWS services and resources. You get this single-use code from an authentication device that you keep in your physical possession. This is called multi-factor authentication because more than one authentication factor is checked before access is granted: a password (something you know) and the precise code from your authentication device (something you have). You can enable MFA devices for your AWS Account as well as for the users you have created under your AWS Account with AWS IAM. In addition, you add MFA protection for access across AWS Accounts, for when you want to allow a user you've created under one AWS Account to use an IAM role to access resources under another AWS Account. You can require the user to use MFA before assuming the role as an additional layer of security.

AWS MFA supports the use of both hardware tokens and virtual MFA devices. Virtual MFA devices use the same protocols as the physical MFA devices, but can run on any mobile hardware device, including a smartphone. A virtual MFA device uses a software application that generates six-digit authentication codes that are compatible with the Time- Based One-Time Password (TOTP) standard, as described in RFC 6238. Most virtual MFA applications allow you to host more than one virtual MFA device, which makes them more convenient than hardware MFA devices. However, you should be aware that because a virtual MFA might be run on a less secure device such as a smartphone, a virtual MFA might not provide the same level of security as a hardware MFA device.

You can also enforce MFA authentication for AWS service APIs in order to provide an extra layer of protection over powerful or privileged actions such as terminating Amazon EC2 instances or reading sensitive data stored in Amazon S3. You do this by adding an MFA-authentication requirement to an IAM access policy. You can attach these access policies to IAM users, IAM groups, or resources that support Access Control Lists (ACLs) like Amazon S3 buckets, SQS queues, and SNS topics.

It is easy to obtain hardware tokens from a participating third-party provider or virtual MFA applications from an AppStore and to set it up for use via the AWS website. More information about <u>AWS MFA</u> is available on the AWS website.

Access Keys

AWS requires that all API requests be signed—that is, they must include a digital signature that AWS can use to verify the identity of the requestor. You calculate the digital signature using a cryptographic hash function. The input to the hash function in this case includes the text of your request and your secret access key. If you use any of the AWS SDKs to generate requests, the digital signature

calculation is done for you; otherwise, you can have your application calculate it and include it in your REST or Query requests by following the directions in our documentation.

Not only does the signing process help protect message integrity by preventing tampering with the request while it is in transit, it also helps protect against potential replay attacks. A request must reach AWS within 15 minutes of the time stamp in the request. Otherwise, AWS denies the request.

The most recent version of the digital signature calculation process is Signature Version 4, which calculates the signature using the HMAC-SHA256 protocol. Version 4 provides an additional measure of protection over previous versions by requiring that you sign the message using a key that is derived from your secret access key rather than using the secret access key itself. In addition, you derive the signing key based on credential scope, which facilitates cryptographic isolation of the signing key.

Because access keys can be misused if they fall into the wrong hands, we encourage you to save them in a safe place and not embed them in your code. For customers with large fleets of elastically scaling EC2 instances, the use of IAM roles can be a more secure and convenient way to manage the distribution of access keys. IAM roles provide temporary credentials, which not only get automatically loaded to the target instance, but are also automatically rotated multiple times a day.

Key Pairs

Amazon EC2 uses public—key cryptography to encrypt and decrypt login information. Public—key cryptography uses a public key to encrypt a piece of data, such as a password, then the recipient uses the private key to decrypt the data. The public and private keys are known as a *key pair*.

To log in to your instance, you must create a key pair, specify the name of the key pair when you launch the instance, and provide the private key when you connect to the instance. Linux instances have no password, and you use a key pair to log in using SSH. With Windows instances, you use a key pair to obtain the administrator password and then log in using RDP.

Creating a Key Pair

You can use Amazon EC2 to create your key pair. For more information, see <u>Creating Your Key Pair Using Amazon EC2</u>.

Alternatively, you could use a third-party tool and then import the public key to Amazon EC2. For more information, see <u>Importing Your Own Key Pair to Amazon EC2</u>. Each key pair requires a name. Be sure to choose a name that is easy to

remember. Amazon EC2 associates the public key with the name that you specify as the key name.

Amazon EC2 stores the public key only, and you store the private key. Anyone who possesses your private key can decrypt your login information, so it's important that you store your private keys in a secure place. The keys that Amazon EC2 uses are 2048-bit SSH-2 RSA keys. You can have up to five thousand key pairs per region.

X.509 Certificates

X.509 certificates are used to sign SOAP-based requests. X.509 certificates contain a public key and additional metadata (like an expiration date that AWS verifies when you upload the certificate), and is associated with a private key. When you create a request, you create a digital signature with your private key and then include that signature in the request, along with your certificate. AWS verifies that you're the sender by decrypting the signature with the public key that is in your certificate. AWS also verifies that the certificate you sent matches the certificate that you uploaded to AWS.

For your AWS Account, you can have AWS create an X.509 certificate and private key that you can download, or you can upload your own certificate by using the Security Credentials page. For IAM users, you must create the X.509 certificate (signing certificate) by using third-party software. In contrast with root account credentials, AWS cannot create an X.509 certificate for IAM users. After you create the certificate, you attach it to an IAM user by using IAM.

In addition to SOAP requests, X.509 certificates are used as SSL/TLS server certificates for customers who want to use HTTPS to encrypt their transmissions. To use them for HTTPS, you can use an open-source tool like OpenSSL to create a unique private key. You'll need the private key to create the Certificate Signing Request (CSR) that you submit to a certificate authority (CA) to obtain the server certificate. You'll then use the AWS CLI to upload the certificate, private key, and certificate chain to IAM.

You'll also need an X.509 certificate to create a customized Linux AMI for EC2 instances. The certificate is only required to create an instance-backed AMI (as opposed to an EBS-backed AMI). You can have AWS create an X.509 certificate and private key that you can download, or you can upload your own certificate by using the Security Credentials page.

Individual User Accounts

AWS provides a centralized mechanism called AWS Identity and Access Management (IAM) for creating and managing individual users within your AWS Account. A user can be any individual, system, or application that interacts with AWS resources, either programmatically or through the AWS Management

Console or AWS Command Line Interface (CLI). Each user has a unique name within the AWS Account, and a unique set of security credentials not shared with other users. AWS IAM eliminates the need to share passwords or keys, and enables you to minimize the use of your AWS Account credentials.

With IAM, you define policies that control which AWS services your users can access and what they can do with them. You can grant users only the minimum permissions they need to perform their jobs. See the AWS Identity and Access Management (AWS IAM) section below for more information.

Secure HTTPS Access Points

For greater communication security when accessing AWS resources, you should use HTTPS instead of HTTP for data transmissions. HTTPS uses the SSL/TLS protocol, which uses public-key cryptography to prevent eavesdropping, tampering, and forgery. All AWS services provide secure customer access points (also called API endpoints) that allow you to establish secure HTTPS communication sessions.

Several services also now offer more advanced cipher suites that use the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) protocol. ECDHE allows SSL/TLS clients to provide Perfect Forward Secrecy, which uses session keys that are ephemeral and not stored anywhere. This helps prevent the decoding of captured data by unauthorized third parties, even if the secret long-term key itself is compromised.

Security Logs

As important as credentials and encrypted endpoints are for preventing security problems, logs are just as crucial for understanding events after a problem has occurred. And to be effective as a security tool, a log must include not just a list of what happened and when, but also identify the source. To help you with your after-the-fact investigations and near-realtime intrusion detection, AWS CloudTrail provides a log of requests for AWS resources within your account for supported services. For each event, you can see what service was accessed, what action was performed, and who made the request. CloudTrail captures information about every API call to every supported AWS resource, including sign-in events.

Once you have enabled CloudTrail, event logs are delivered every 5 minutes. You can configure CloudTrail so that it aggregates log files from multiple regions into a single Amazon S3 bucket. From there, you can then upload them to your favorite log management and analysis solutions to perform security analysis and detect user behavior patterns. By default, log files are stored securely in Amazon S3, but you can also archive them to Amazon Glacier to help meet audit and compliance requirements.

In addition to CloudTrail's user activity logs, you can use the Amazon CloudWatch Logs feature to collect and monitor system, application, and custom log files from your EC2 instances and other sources in near-real time. For example, you can monitor your web server's log files for invalid user messages to detect unauthorized login attempts to your guest OS.

AWS Trusted Advisor Security Checks

The AWS Trusted Advisor customer support service not only monitors for cloud performance and resiliency, but also cloud security. Trusted Advisor inspects your AWS environment and makes recommendations when opportunities may exist to save money, improve system performance, or close security gaps. It provides alerts on several of the most common security misconfigurations that can occur, including leaving certain ports open that make you vulnerable to hacking and unauthorized access, neglecting to create IAM accounts for your internal users, allowing public access to Amazon S3 buckets, not turning on user activity logging (AWS CloudTrail), or not using MFA on your root AWS Account. You also have the option for a Security contact at your organization to automatically receive a weekly email with an updated status of your Trusted Advisor security checks. The AWS Trusted Advisor service provides four checks at no additional charge to all users, including three important security checks: specific ports unrestricted, IAM use, and MFA on root account. And when you sign up for Business- or Enterprise-level AWS Support, you receive full access to all Trusted Advisor checks.

Networking Services

Amazon Web Services provides a range of networking services that enable you to create a logically isolated network that you define, establish a private network connection to the AWS cloud, use a highly available and scalable DNS service and deliver content to your end users with low latency at high data transfer speeds with a content delivery web service.

Amazon Elastic Load Balancing Security

Amazon Elastic Load Balancing is used to manage traffic on a fleet of Amazon EC2 instances, distributing traffic to instances across all availability zones within a region. Elastic Load Balancing has all the advantages of an on-premises load balancer, plus several security benefits:

- Takes over the encryption and decryption work from the Amazon EC2 instances and manages it centrally on the load balancer
- Offers clients a single point of contact, and can also serve as the first line of defense against attacks on your network
- When used in an Amazon VPC, supports creation and management of security groups associated with your Elastic Load Balancing to provide additional networking and security options

Supports end-to-end traffic encryption using TLS (previously SSL) on those
networks that use secure HTTP (HTTPS) connections. When TLS is used, the TLS
server certificate used to terminate client connections can be managed centrally
on the load balancer, rather than on every individual instance.

HTTPS/TLS uses a long-term secret key to generate a short-term session key to be used between the server and the browser to create the ciphered (encrypted) message. Amazon Elastic Load Balancing configures your load balancer with a predefined cipher set that is used for TLS negotiation when a connection is established between a client and your load balancer. The pre-defined cipher set provides compatibility with a broad range of clients and uses strong cryptographic algorithms. However, some customers may have requirements for allowing only specific ciphers and protocols (such as PCI, SOX, etc.) from clients to ensure that standards are met. In these cases, Amazon Elastic Load Balancing provides options for selecting different configurations for TLS protocols and ciphers. You can choose to enable or disable the ciphers depending on your specific requirements.

To help ensure the use of newer and stronger cipher suites when establishing a secure connection, you can configure the load balancer to have the final say in the cipher suite selection during the client-server negotiation. When the Server Order Preference option is selected, the load balancer will select a cipher suite based on the server's prioritization of cipher suites rather than the client's. This gives you more control over the level of security that clients use to connect to your load balancer.

For even greater communication privacy, Amazon Elastic Load Balancer allows the use of Perfect Forward Secrecy, which uses session keys that are ephemeral and not stored anywhere. This prevents the decoding of captured data, even if the secret long-term key itself is compromised.

Amazon Elastic Load Balancing allows you to identify the originating IP address of a client connecting to your servers, whether you're using HTTPS or TCP load balancing. Typically, client connection information, such as IP address and port, is lost when requests are proxied through a load balancer. This is because the load balancer sends requests to the server on behalf of the client, making your load balancer appear as though it is the requesting client. Having the originating client IP address is useful if you need more information about visitors to your applications in order to gather connection statistics, analyze traffic logs, or manage whitelists of IP addresses.

Amazon Elastic Load Balancing access logs contain information about each HTTP and TCP request processed by your load balancer. This includes the IP address and port of the requesting client, the backend IP address of the instance that processed

the request, the size of the request and response, and the actual request line from the client (for example, GET http://www.example.com: 80/HTTP/1.1). All requests sent to the load balancer are logged, including requests that never made it to backend instances.

Amazon Virtual Private Cloud (Amazon VPC) Security

Normally, each Amazon EC2 instance you launch is randomly assigned a public IP address in the Amazon EC2 address space. Amazon VPC enables you to create an isolated portion of the AWS cloud and launch Amazon EC2 instances that have private (RFC 1918) addresses in the range of your choice (e.g., 10.0.0.0/16). You can define subnets within your VPC, grouping similar kinds of instances based on IP address range, and then set up routing and security to control the flow of traffic in and out of the instances and subnets.

AWS offers a variety of VPC architecture templates with configurations that provide varying levels of public access:

- **VPC with a single public subnet only.** Your instances run in a private, isolated section of the AWS cloud with direct access to the Internet. Network ACLs and security groups can be used to provide strict control over inbound and outbound network traffic to your instances.
- **VPC with public and private subnets.** In addition to containing a public subnet, this configuration adds a private subnet whose instances are not addressable from the Internet. Instances in the private subnet can establish outbound connections to the Internet via the public subnet using Network Address Translation (NAT).
- VPC with public and private subnets and hardware VPN access. This configuration adds an IPsec VPN connection between your Amazon VPC and your data center, effectively extending your data center to the cloud while also providing direct access to the Internet for public subnet instances in your Amazon VPC. In this configuration, customers add a VPN appliance on their corporate data center side.
- VPC with private subnet only and hardware VPN access. Your instances
 run in a private, isolated section of the AWS cloud with a private subnet whose
 instances are not addressable from the Internet. You can connect this private
 subnet to your corporate data center via an IPsec VPN tunnel.

You can also connect two VPCs using a private IP address, which allows instances in the two VPCs to communicate with each other as if they are within the same network. You can create a VPC peering connection between your own VPCs, or with a VPC in another AWS account within a single region.

Security features within Amazon VPC include security groups, network ACLs, routing tables, and external gateways. Each of these items is complementary to providing a Page 22 of 45

secure, isolated network that can be extended through selective enabling of direct Internet access or private connectivity to another network. Amazon EC2 instances running within an Amazon VPC inherit all of the benefits described below related to the guest OS and protection against packet sniffing.

Note, however, that you must create VPC security groups specifically for your Amazon VPC; any Amazon EC2 security groups you have created will not work inside your Amazon VPC. Also, Amazon VPC security groups have additional capabilities that Amazon EC2 security groups do not have, such as being able to change the security group after the instance is launched and being able to specify any protocol with a standard protocol number (as opposed to just TCP, UDP, or ICMP).

Each Amazon VPC is a distinct, isolated network within the cloud; network traffic within each Amazon VPC is isolated from all other Amazon VPCs. At creation time, you select an IP address range for each Amazon VPC. You may create and attach an Internet gateway, virtual private gateway, or both to establish external connectivity, subject to the controls below.

API Access: Calls to create and delete Amazon VPCs, change routing, security group, and network ACL parameters, and perform other functions are all signed by your Amazon Secret Access Key, which could be either the AWS Account's Secret Access Key or the Secret Access key of a user created with AWS IAM. Without access to your Secret Access Key, Amazon VPC API calls cannot be made on your behalf. In addition, API calls can be encrypted with SSL to maintain confidentiality. Amazon recommends always using SSL-protected API endpoints. AWS IAM also enables a customer to further control what APIs a newly created user has permissions to call.

Subnets and Route Tables: You create one or more subnets within each Amazon VPC; each instance launched in the Amazon VPC is connected to one subnet. Traditional Layer 2 security attacks, including MAC spoofing and ARP spoofing, are blocked.

Each subnet in an Amazon VPC is associated with a routing table, and all network traffic leaving the subnet is processed by the routing table to determine the destination.

Firewall (Security Groups): Like Amazon EC2, Amazon VPC supports a complete firewall solution enabling filtering on both ingress and egress traffic from an instance. The default group enables inbound communication from other members of the same group and outbound communication to any destination. Traffic can be restricted by any IP protocol, by service port, as well as source/destination IP address (individual IP or Classless Inter-Domain Routing (CIDR) block).

The firewall isn't controlled through the guest OS; rather, it can be modified only through the invocation of Amazon VPC APIs. AWS supports the ability to grant granular access to different administrative functions on the instances and the firewall, therefore enabling you to implement additional security through separation

of duties. The level of security afforded by the firewall is a function of which ports you open, and for what duration and purpose. Well-informed traffic management and security design are still required on a per-instance basis. AWS further encourages you to apply additional per-instance filters with host-based firewalls such as IPtables or the Windows Firewall.

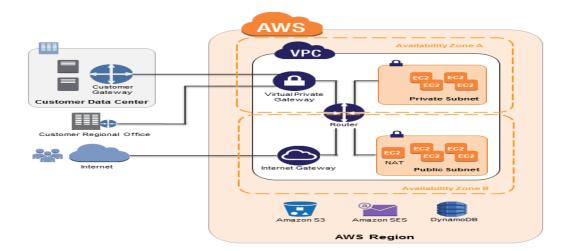
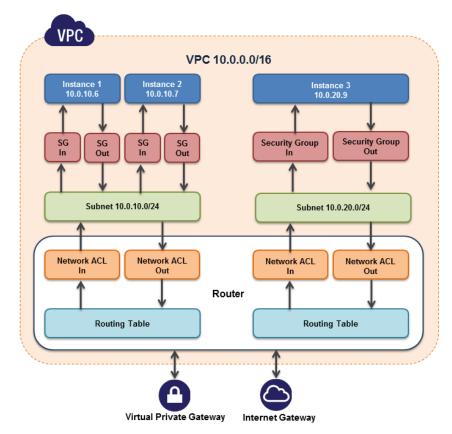



Figure 5: Amazon VPC Network Architecture

Network Access Control Lists: To add a further layer of security within Amazon VPC, you can configure network ACLs. These are stateless traffic filters that apply to all traffic inbound or outbound from a subnet within Amazon VPC. These ACLs can contain ordered rules to allow or deny traffic based upon IP protocol, by service port, as well as source/destination IP address.

Like security groups, network ACLs are managed through Amazon VPC APIs, adding an additional layer of protection and enabling additional security through separation of duties. The diagram below depicts how the security controls above inter-relate to enable flexible network topologies while providing complete control over network traffic flows.

Figure 6: Flexible Network Topologies

Virtual Private Gateway: A virtual private gateway enables private connectivity between the Amazon VPC and another network. Network traffic within each virtual private gateway is isolated from network traffic within all other virtual private gateways. You can establish VPN connections to the virtual private gateway from gateway devices at your premises. Each connection is secured by a pre-shared key in conjunction with the IP address of the customer gateway device.

Internet Gateway: An Internet gateway may be attached to an Amazon VPC to enable direct connectivity to Amazon S3, other AWS services, and the Internet. Each instance desiring this access must either have an Elastic IP associated with it or route traffic through a NAT instance. Additionally, network routes are configured (see above) to direct traffic to the Internet gateway. AWS provides reference NAT AMIs that you can extend to perform network logging, deep packet inspection, application-layer filtering, or other security controls.

This access can only be modified through the invocation of Amazon VPC APIs. AWS supports the ability to grant granular access to different administrative functions on the instances and the Internet gateway, therefore enabling you to implement additional security through separation of duties.

Dedicated Instances: Within a VPC, you can launch Amazon EC2 instances that are physically isolated at the host hardware level (i.e., they will run on single-tenant hardware). An Amazon VPC can be created with 'dedicated' tenancy, so that all instances launched into the Amazon VPC will utilize this feature. Alternatively, an Amazon VPC may be created with 'default' tenancy, but you can specify dedicated tenancy for particular instances launched into it.

Elastic Network Interfaces: Each Amazon EC2 instance has a default network interface that is assigned a private IP address on your Amazon VPC network. You can create and attach an additional network interface, known as an elastic network interface (ENI), to any Amazon EC2 instance in your Amazon VPC for a total of two network interfaces per instance. Attaching more than one network interface to an instance is useful when you want to create a management network, use network and security appliances in your Amazon VPC, or create dual-homed instances with workloads/roles on distinct subnets. An ENI's attributes, including the private IP address, elastic IP addresses, and MAC address, will follow the ENI as it is attached or detached from an instance and reattached to another instance. More information about Amazon VPC is available on the AWS website: http://aws.amazon.com/vpc/

Additional Network Access Control with EC2-VPC

If you launch instances in a region where you did not have instances before AWS launched the new EC2-VPC feature (also called Default VPC), all instances are automatically provisioned in a ready-to-use default VPC. You can choose to create additional VPCs, or you can create VPCs for instances in regions where you already had instances before we launched EC2-VPC.

If you create a VPC later, using regular VPC, you specify a CIDR block, create subnets, enter the routing and security for those subnets, and provision an Internet gateway or NAT instance if you want one of your subnets to be able to reach the Internet. When you launch EC2 instances into an EC2-VPC, most of this work is automatically performed for you. When you launch an instance into a default VPC using EC2-VPC, we do the following to set it up for you:

- Create a default subnet in each Availability Zone
- Create an Internet gateway and connect it to your default VPC
- Create a main route table for your default VPC with a rule that sends all traffic destined for the Internet to the Internet gateway
- Create a default security group and associate it with your default VPC
- Create a default network access control list (ACL) and associate it with your default VPC
- Associate the default DHCP options set for your AWS account with your default VPC

In addition to the default VPC having its own private IP range, EC2 instances launched in a default VPC can also receive a public IP.

Page 26 of 45

The following table summarizes the differences between instances launched into EC2-Classic, instances launched into a default VPC, and instances launched into a non-default VPC.

Characteristic	EC2-Classic	EC2-VPC (Default VPC)	Regular VPC
Public IP address	Your instance receives a public IP address.	Your instance launched in a default subnet receives a public IP address by default, unless you specify otherwise during launch.	Your instance doesn't receive a public IP address by default, unless you specify otherwise during launch.
Private IP address	Your instance receives a private IP address from the EC2-Classic range each time it's started.	Your instance receives a static private IP address from the address range of your default VPC.	Your instance receives a static private IP address from the address range of your VPC.
Multiple private IP addresses	We select a single IP address for your instance. Multiple IP addresses are not supported.	You can assign multiple private IP addresses to your instance.	You can assign multiple private IP addresses to your instance.
Elastic IP address	An EIP is disassociated from your instance when you stop it.	An EIP remains associated with your instance when you stop it.	An EIP remains associated with your instance when you stop it.
DNS hostnames	DNS hostnames are enabled by default.	DNS hostnames are enabled by default.	DNS hostnames are disabled by default.
Security group	A security group can reference security groups that belong to other AWS accounts.	A security group can reference security groups for your VPC only.	A security group can reference security groups for your VPC only.
Security group association	You must terminate your instance to change its security group.	You can change the security group of your running instance.	You can change the security group of your running instance.
Security group rules	You can add rules for inbound traffic only.	You can add rules for inbound and outbound traffic.	You can add rules for inbound and outbound traffic.

Tenancy	Your instance runs on shared hardware; you cannot run an instance on single-tenant hardware.	You can run your instance on shared hardware or single-tenant hardware.	You can run your instance on shared hardware or single-tenant hardware.
---------	--	---	---

Note that security groups for instances in EC2-Classic are slightly different than security groups for instances in EC2-VPC. For example, you can add rules for inbound traffic for EC2-Classic, but you can add rules for both inbound and outbound traffic to EC2-VPC. In EC2-Classic, you can't change the security groups assigned to an instance after it's launched, but in EC2-VPC, you can change security groups assigned to an instance after it's launched. In addition, you can't use the security groups that you've created for use with EC2-Classic with instances in your VPC. You must create security groups specifically for use with instances in your VPC. The rules you create for use with a security group for a VPC can't reference a security group for EC2-Classic, and vice versa.

Amazon Route 53 Security

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) service that answers DNS queries, translating domain names into IP addresses so computers can communicate with each other. Route 53 can be used to connect user requests to infrastructure running in AWS – such as an Amazon EC2 instance or an Amazon S3 bucket – or to infrastructure outside of AWS.

Amazon Route 53 lets you manage the IP addresses (records) listed for your domain names and it answers requests (queries) to translate specific domain names into their corresponding IP addresses. Queries for your domain are automatically routed to a nearby DNS server using anycast in order to provide the lowest latency possible. Route 53

makes it possible for you to manage traffic globally through a variety of routing types, including Latency Based Routing (LBR), Geo DNS, and Weighted Round-Robin (WRR) —all of which can be combined with DNS Failover in order to help create a variety of low-latency, fault-tolerant architectures. The failover algorithms implemented by Amazon Route 53 are designed not only to route traffic to endpoints that are healthy, but also to help avoid making disaster scenarios worse due to misconfigured health checks and applications, endpoint overloads, and partition failures.

Route 53 also offers Domain Name Registration — you can purchase and manage domain names such as example.com and Route 53 will automatically configure default DNS settings for your domains. You can buy, manage, and transfer (both in and out) domains from a wide selection of generic and country-specific top-level domains (TLDs). During the registration process, you have the option to enable privacy protection for your domain. This option will hide most of your personal

Page 28 of 45

information from the public Whois database in order to help thwart scraping and spamming.

Amazon Route 53 is built using AWS' highly available and reliable infrastructure. The distributed nature of the AWS DNS servers helps ensure a consistent ability to route your end users to your application. Route 53 also helps ensure the availability of your website by providing health checks and DNS failover capabilities. You can easily configure Route 53 to check the health of your website on a regular basis (even secure web sites that are available only over SSL), and to switch to a backup site if the primary one is unresponsive.

Like all AWS Services, Amazon Route 53 requires that every request made to its control API be authenticated so only authenticated users can access and manage Route 53. API requests are signed with an HMAC-SHA1 or HMAC-SHA256 signature calculated from the request and the user's AWS Secret Access key. Additionally, the Amazon Route 53 control API is only accessible via SSL-encrypted endpoints. It supports both IPv4 and IPv6 routing.

You can control access to Amazon Route 53 DNS management functions by creating users under your AWS Account using AWS IAM, and controlling which Route 53 operations these users have permission to perform.

Amazon CloudFront Security

Amazon CloudFront gives customers an easy way to distribute content to end users with low latency and high data transfer speeds. It delivers dynamic, static, and streaming content using a global network of edge locations. Requests for customers' objects are automatically routed to the nearest edge location, so content is delivered with the best possible performance. Amazon CloudFront is optimized to work with other AWS services, like Amazon S3, Amazon EC2, Elastic Load Balancing, and Amazon Route 53. It also works seamlessly with any non-AWS origin server that stores the original, definitive versions of your files.

Amazon CloudFront requires every request made to its control API be authenticated so only authorized users can create, modify, or delete their own Amazon CloudFront distributions. Requests are signed with an HMAC-SHA1 signature calculated from the request and the user's private key. Additionally, the Amazon CloudFront control API is only accessible via SSL-enabled endpoints.

There is no guarantee of durability of data held in Amazon CloudFront edge locations. The service may from time to time remove objects from edge locations if those objects are not requested frequently. Durability is provided by Amazon S3, which works as the origin server for Amazon CloudFront holding the original, definitive copies of objects delivered by Amazon CloudFront. If you want control over who is able to download content from Amazon CloudFront, you can enable the service's private content feature. This feature has two

components: the first controls how content is delivered from the Amazon CloudFront edge location to viewers on the Internet. The second controls how the Amazon CloudFront edge locations access objects in Amazon S3. CloudFront also supports Geo Restriction, which restricts access to your content based on the geographic location of your viewers.

To control access to the original copies of your objects in Amazon S3, Amazon CloudFront allows you to create one or more "Origin Access Identities" and associate these with your distributions. When an Origin Access Identity is associated with an Amazon CloudFront distribution, the distribution will use that identity to retrieve objects from Amazon S3. You can then use Amazon S3's ACL feature, which limits access to that Origin Access Identity so the original copy of the object is not publicly readable.

To control who is able to download objects from Amazon CloudFront edge locations, the service uses a signed-URL verification system. To use this system, you first create a public-private key pair, and upload the public key to your account via the AWS Management Console. Second, you configure your Amazon CloudFront distribution to indicate which accounts you would authorize to sign requests – you can indicate up to five AWS Accounts you trust to sign requests. Third, as you receive requests you will create policy documents indicating the conditions under which you want Amazon CloudFront to serve your content. These policy documents can specify the name of the object that is requested, the date and time of the request, and the source IP (or CIDR range) of the client making the request. You then calculate the SHA1 hash of your policy document and sign this using your private key. Finally, you include both the encoded policy document and the signature as query string parameters when you reference your objects. When Amazon CloudFront receives a request, it will decode the signature using your public key. Amazon CloudFront will only serve requests that have a valid policy document and matching signature.

Note that private content is an optional feature that must be enabled when you set up your CloudFront distribution. Content delivered without this feature enabled will be publicly readable.

Amazon CloudFront provides the option to transfer content over an encrypted connection (HTTPS). By default, CloudFront will accept requests over both HTTP and HTTPS protocols. However, you can also configure CloudFront to require HTTPS for all requests or have CloudFront redirect HTTP requests to HTTPS. You can even configure CloudFront distributions to allow HTTP for some objects but require HTTPS for other objects.

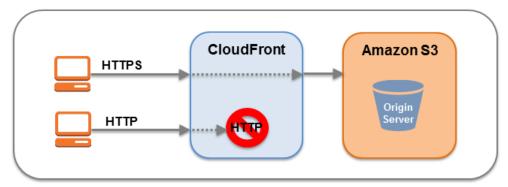


Figure 7: Amazon CloudFront Encrypted Transmission

You can configure one or more CloudFront origins to require CloudFront fetch objects from your origin using the protocol that the viewer used to request the objects. For example, when you use this CloudFront setting and the viewer uses HTTPS to request an object from CloudFront, CloudFront also uses HTTPS to forward the request to your origin.

Amazon CloudFront supports the TLSv1.1 and TLSv1.2 protocols for HTTPS connections between CloudFront and your custom origin webserver (along with SSLv3 and TLSv1.0) and a selection of cipher suites that includes the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) protocol on connections to both viewers and the origin. ECDHE allows SSL/TLS clients to provide Perfect Forward Secrecy, which uses session keys that are ephemeral and not stored anywhere. This helps prevent the decoding of captured data by unauthorized third parties, even if the secret long-term key itself is compromised.

Note that if you're using your own server as your origin, and you want to use HTTPS both between viewers and CloudFront and between CloudFront and your origin, you must install a valid SSL certificate on the HTTP server that is signed by a third-party certificate authority, for example, VeriSign or DigiCert.

By default, you can deliver content to viewers over HTTPS by using your CloudFront distribution domain name in your URLs; for example, https://dxxxxx.cloudfront.net/image.jpg. If you want to deliver your content over HTTPS using your own domain name and your own SSL certificate, you can use SNI Custom SSL or Dedicated IP Custom SSL. With Server Name Identification (SNI) Custom SSL, CloudFront relies on the SNI extension of the TLS protocol, which is supported by most modern web browsers. However, some users may not be able to access your content because some older browsers do not support SNI. With Dedicated IP Custom SSL, CloudFront dedicates IP addresses to your SSL certificate at each CloudFront edge location so that CloudFront can associate the incoming requests with the proper SSL certificate.

Amazon CloudFront access logs contain a comprehensive set of information about requests for content, including the object requested, the date and time of the request, Page **31** of **45**

the edge location serving the request, the client IP address, the referrer, and the user agent. To enable access logs, just specify the name of the Amazon S3 bucket to store the logs in when you configure your Amazon CloudFront distribution.

AWS Direct Connect Security

With AWS Direct Connect, you can provision a direct link between your internal network and an AWS region using a high-throughput, dedicated connection. Doing this may help reduce your network costs, improve throughput, or provide a more consistent network experience. With this dedicated connection in place, you can then create virtual interfaces directly to the AWS cloud (for example, to Amazon EC2 and Amazon S3).

With AWS Direct Connect, you bypass Internet service providers in your network path. You can procure rack space within the facility housing the AWS Direct Connect location and deploy your equipment nearby. Once deployed, you can connect this equipment to AWS Direct Connect using a cross-connect. Each AWS Direct Connect location enables connectivity to the geographically nearest AWS region. You can access all AWS services available in that region. AWS Direct Connect locations in the US can also access the public endpoints of the other AWS regions using a public virtual interface.

Using industry standard 802.1q VLANs, the dedicated connection can be partitioned into multiple virtual interfaces. This allows you to use the same connection to access public resources such as objects stored in Amazon S3 using public IP address space, and private resources such as Amazon EC2 instances running within an Amazon VPC using private IP space, while maintaining network separation between the public and private environments.

AWS Direct Connect requires the use of the Border Gateway Protocol (BGP) with an Autonomous System Number (ASN). To create a virtual interface, you use an MD5 cryptographic key for message authorization. MD5 creates a keyed hash using your secret key. You can have AWS automatically generate a BGP MD5 key or you can provide your own.

Further Reading

https://aws.amazon.com/security/security-resources/

Introduction to AWS Security Processes

Overview of AWS Security - Storage Services

Overview of AWS Security - Database Services

Overview of AWS Security - Compute Services

Overview of AWS Security - Application Services

Overview of AWS Security - Analytics, Mobile and Application Services

Overview of AWS Security – Network Services

Appendix - Glossary of Terms

Access Key ID: A string that AWS distributes in order to uniquely identify each AWS user; it is an alphanumeric token associated with your Secret Access Key.

Access control list (ACL): A list of permissions or rules for accessing an object or network resource. In Amazon EC2, security groups act as ACLs at the instance level, controlling which users have permission to access specific instances. In Amazon S3, you can use ACLs to give read or write access on buckets or objects to groups of users. In Amazon VPC, ACLs act like network firewalls and control access at the subnet level.

AMI: An Amazon Machine Image (AMI) is an encrypted machine image stored in Amazon S3. It contains all the information necessary to boot instances of a customer's software.

API: Application Programming Interface (API) is an interface in computer science that defines the ways by which an application program may request services from libraries and/or operating systems.

Archive: An archive in Amazon Glacier is a file that you want to store and is a base unit of storage in Amazon Glacier. It can be any data such as a photo, video, or document. Each archive has a unique ID and an optional description.

Authentication: Authentication is the process of determining whether someone or something is, in fact, who or what it is declared to be. Not only do users need to be authenticated, but every program that wants to call the functionality exposed by an AWS API must be authenticated. AWS requires that you authenticate every request by digitally signing it using a cryptographic hash function.

Auto Scaling: An AWS service that allows customers to automatically scale their Amazon EC2 capacity up or down according to conditions they define.

Availability Zone: Amazon EC2 locations are composed of regions and availability zones. Availability zones are distinct locations that are engineered to be insulated from

failures in other availability zones and provide inexpensive, low latency network connectivity to other availability zones in the same region.

Bastion host: A computer specifically configured to withstand attack, usually placed on the external/public side of a demilitarized zone (DMZ) or outside the firewall. You can set up an Amazon EC2 instance as an SSH bastion by setting up a public subnet as part of an Amazon VPC.

Bucket: A container for objects stored in Amazon S3. Every object is contained within a bucket. For example, if the object named photos/puppy.jpg is stored in the johnsmith bucket, then it is addressable using the URL: http://johnsmith.s3.amazonaws.com/photos/puppy.jpg.

Certificate: A credential that some AWS products use to authenticate AWS Accounts and users. Also known as an X.509 certificate. The certificate is paired with a private key.

CIDR Block: Classless Inter-Domain Routing Block of IP addresses.

Client-side encryption: Encrypting data on the client side before uploading it to Amazon S3.

CloudFormation: An AWS provisioning tool that lets customers record the baseline configuration of the AWS resources needed to run their applications so that they can provision and update them in an orderly and predictable fashion.

Cognito: An AWS service that simplifies the task of authenticating users and storing, managing, and syncing their data across multiple devices, platforms, and applications. It works with multiple existing identity providers and also supports unauthenticated guest users.

Credentials: Items that a user or process must have in order to confirm to AWS services during the authentication process that they are authorized to access the service. AWS credentials include passwords, secret access keys as well as X.509 certificates and multi-factor tokens.

Dedicated instance: Amazon EC2 instances that are physically isolated at the host hardware level (i.e., they will run on single-tenant hardware).

Digital signature: A digital signature is a cryptographic method for demonstrating the authenticity of a digital message or document. A valid digital signature gives a recipient reason to believe that the message was created by an authorized sender, and that it was not altered in transit. Digital signatures are used Page **34** of **45**

by customers for signing requests to AWS APIs as part of the authentication process.

Direct Connect Service: Amazon service that allows you to provision a direct link between your internal network and an AWS region using a high-throughput, dedicated connection. With this dedicated connection in place, you can then create logical connections directly to the AWS cloud (for example, to Amazon EC2 and Amazon S3) and Amazon VPC, bypassing Internet service providers in the network path.

DynamoDB Service: A managed NoSQL database service from AWS that provides fast and predictable performance with seamless scalability.

EBS: Amazon Elastic Block Store (EBS) provides block-level storage volumes for use with Amazon EC2 instances. Amazon EBS volumes are off-instance storage that persists independently from the life of an instance.

ElastiCache: An AWS web service that allows you to set up, manage, and scale distributed in-memory cache environments in the cloud. The service improves the performance of web applications by allowing you to retrieve information from a fast, managed, in-memory caching system, instead of relying entirely on slower disk-based databases.

Elastic Beanstalk: An AWS deployment and management tool that automates the functions of capacity provisioning, load balancing, and auto scaling for customers' applications.

Elastic IP Address: A static, public IP address that you can assign to any instance in an Amazon VPC, thereby making the instance public. Elastic IP addresses also enable you to mask instance failures by rapidly remapping your public IP addresses to any instance in the VPC.

Elastic Load Balancing: An AWS service that is used to manage traffic on a fleet of Amazon EC2 instances, distributing traffic to instances across all availability zones within a region. Elastic Load Balancing has all the advantages of an onpremises load balancer, plus several security benefits such as taking over the encryption/decryption work from EC2 instances and managing it centrally on the load balancer.

Elastic MapReduce (EMR) Service: An AWS service that utilizes a hosted Hadoop framework running on the web-scale infrastructure of Amazon EC2 and Amazon S3. Elastic MapReduce enables customers to easily and cost-effectively process extremely large quantities of data ("big data").

Elastic Network Interface: Within an Amazon VPC, an Elastic Network Interface is an optional second network interface that you can attach to an EC2 instance. An Elastic Network Interface can be useful for creating a management network or using network or security appliances in the Amazon VPC. It can be easily detached from an instance and reattached to another instance.

Endpoint: A URL that is the entry point for an AWS service. To reduce data latency in your applications, most AWS services allow you to select a regional endpoint to make your requests. Some web services allow you to use a general endpoint that doesn't specify a region; these generic endpoints resolve to the service's us-east-1 endpoint. You can connect to an AWS endpoint via HTTP or secure HTTP (HTTPS) using SSL.

Federated users: User, systems, or applications that are not currently authorized to access your AWS services, but that you want to give temporary access to. This access is provided using the AWS Security Token Service (STS) APIs.

Firewall: A hardware or software component that controls incoming and/or outgoing network traffic according to a specific set of rules. Using firewall rules in Amazon EC2, you specify the protocols, ports, and source IP address ranges that are allowed to reach your instances. These rules specify which incoming network traffic should be delivered to your instance (e.g., accept web traffic on port 80). Amazon VPC supports a complete firewall solution enabling filtering on both ingress and egress traffic from an instance. The default group enables inbound communication from other members of the same group and outbound communication to any destination. Traffic can be restricted by any IP protocol, by service port, as well as source/destination IP address (individual IP or Classless Inter-Domain Routing (CIDR) block).

Guest OS: In a virtual machine environment, multiple operating systems can run on a single piece of hardware. Each one of these instances is considered a guest on the host hardware and utilizes its own OS.

Hash: A cryptographic hash function is used to calculate a digital signature for signing requests to AWS APIs. A cryptographic hash is a one-way function that returns a unique hash value based on the input. The input to the hash function includes the text of your request and your secret access key. The hash function returns a hash value that you include in the request as your signature.

HMAC-SHA1/HMAC-SHA256: In cryptography, a keyed-Hash Message Authentication Code (HMAC or KHMAC), is a type of message authentication code (MAC) calculated using a specific algorithm involving a cryptographic hash function

Page 36 of 45

in combination with a secret key. As with any MAC, it may be used to simultaneously verify both the data integrity and the authenticity of a message. Any iterative cryptographic hash function, such as SHA-1 or SHA-256, may be used in the calculation of an HMAC; the resulting MAC algorithm is termed HMAC-SHA1 or HMAC-SHA256 accordingly. The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash function, on the size and quality of the key and the size of the hash output length in bits.

Hardware security module (HSM): An HSM is an appliance that provides secure cryptographic key storage and operations within a tamper-resistant hardware device. HSMs are designed to securely store cryptographic key material and use the key material without exposing it outside the cryptographic boundary of the appliance. The AWS CloudHSM service provides customers with dedicated, single-tenant access to an HSM appliance.

Hypervisor: A hypervisor, also called Virtual Machine Monitor (VMM), is computer software/hardware platform virtualization software that allows multiple operating systems to run on a host computer concurrently.

Identity and Access Management (IAM): AWS IAM enables you to create multiple users and manage the permissions for each of these users within your AWS Account.

Identity pool: A store of user identity information in Amazon Cognito that is specific to your AWS Account. Identity pools use IAM roles, which are permissions that are not tied to a specific IAM user or group and that use temporary security credentials for authenticating to the AWS resources defined in the role.

Identity Provider: An online service responsible for issuing identification information for users who would like to interact with the service or with other cooperating services. Examples of identity providers include Facebook, Google, and Amazon.

Import/Export Service: An AWS service for transferring large amounts of data to Amazon S3 or EBS storage by physically shipping a portable storage device to a secure AWS facility.

Instance: An instance is a virtualized server, also known as a virtual machine (VM), with its own hardware resources and guest OS. In EC2, an instance represents one running copy of an Amazon Machine Image (AMI).

IP address: An Internet Protocol (IP) address is a numerical label that is assigned

Page **37** of **45**

to devices participating in a computer network utilizing the Internet Protocol for communication between its nodes.

IP spoofing: Creation of IP packets with a forged source IP address, called spoofing, with the purpose of concealing the identity of the sender or impersonating another computing system.

Key: In cryptography, a key is a parameter that determines the output of a cryptographic algorithm (called a hashing algorithm). A key pair is a set of security credentials you use to prove your identity electronically and consists of a public key and a private key.

Key rotation: The process of periodically changing the cryptographic keys used for encrypting data or digitally signing requests. Just like changing passwords, rotating keys minimizes the risk of unauthorized access if an attacker somehow obtains your key or determines the value of it. AWS supports multiple concurrent access keys and certificates, which allows customers to rotate keys and certificates into and out of operation on a regular basis without any downtime to their application.

Mobile Analytics: An AWS service for collecting, visualizing, and understanding mobile application usage data. It enables you to track customer behaviors, aggregate metrics, and identify meaningful patterns in your mobile applications.

Multi-factor authentication (MFA): The use of two or more authentication factors. Authentication factors include something you know (like a password) or something you have (like a token that generates a random number). AWS IAM allows the use of a six-digit single-use code in addition to the user name and password credentials. Customers get this single-use code from an authentication device that they keep in their physical possession (either a physical token device or a virtual token from their smart phone).

Network ACLs: Stateless traffic filters that apply to all traffic inbound or outbound from a subnet within an Amazon VPC. Network ACLs can contain ordered rules to allow or deny traffic based upon IP protocol, by service port, as well as source/destination IP address.

Object: The fundamental entities stored in Amazon S3. Objects consist of object data and metadata. The data portion is opaque to Amazon S3. The metadata is a set of name-value pairs that describe the object. These include some default metadata such as the date last modified and standard HTTP metadata such as Content-Type. The developer can also specify custom metadata at the time the Object is stored.

Paravirtualization: In computing, paravirtualization is a virtualization technique that presents a software interface to virtual machines that is similar but not identical to that of the underlying hardware.

Peering: A VPC peering connection is a networking connection between two VPCs that enables you to route traffic between them using private IP addresses. Instances in either VPC can communicate with each other as if they are within the same network.

Port scanning: A port scan is a series of messages sent by someone attempting to break into a computer to learn which computer network services, each associated with a "well-known" port number, the computer provides.

Region: A named set of AWS resources in the same geographical area. Each region contains at least two availability zones.

Replication: The continuous copying of data from a database in order to maintain a second version of the database, usually for disaster recovery purposes. Customers can use multiple AZs for their Amazon RDS database replication needs, or use Read Replicas if using MySQL.

Relational Database Service (RDS): An AWS service that allows you to create a relational database (DB) instance and flexibly scale the associated compute resources and storage capacity to meet application demand. Amazon RDS is available for Amazon Aurora, MySQL, PostgreSQL, Oracle, Microsoft SQL Server, and MariaDB database engines.

Role: An entity in AWS IAM that has a set of permissions that can be assumed by another entity. Use roles to enable applications running on your Amazon EC2 instances to securely access your AWS resources. You grant a specific set of permissions to a role, use the role to launch an Amazon EC2 instance, and let EC2 automatically handle AWS credential management for your applications that run on Amazon EC2.

Route 53: An authoritative DNS system that provides an update mechanism that developers can use to manage their public DNS names, answering DNS queries and translating domain names into IP address so computers can communicate with each other.

Secret Access Key: A key that AWS assigns to you when you sign up for an AWS Account. To make API calls or to work with the command line interface, each AWS user needs the Secret Access Key and Access Key ID. The user signs each request

with the Secret Access Key and includes the Access Key ID in the request. To help ensure the security of your AWS Account, the Secret Access Key is accessible only during key and user creation. You must save the key (for example, in a text file that you store securely) if you want to be able to access it again.

Security group: A security group gives you control over the protocols, ports, and source IP address ranges that are allowed to reach your Amazon EC2 instances; in other words, it defines the firewall rules for your instance. These rules specify which incoming network traffic should be delivered to your instance (e.g., accept web traffic on port 80).

Security Token Service (STS): The AWS STS APIs return temporary security credentials consisting of a security token, an Access Key ID, and a Secret Access Key. You can use STS to issue security credentials to users who need temporary access to your resources. These users can be existing IAM users, non-AWS users (federated identities), systems, or applications that need to access your AWS resources.

Server-side encryption (SSE): An option for Amazon S3 storage for automatically encrypting data at rest. With Amazon S3 SSE, customers can encrypt data on upload simply by adding an additional request header when writing the object. Decryption happens automatically when data is retrieved.

Service: Software or computing ability provided across a network (e.g., Amazon EC2, Amazon S3).

Shard: In Amazon Kinesis, a shard is a uniquely identified group of data records in an Amazon Kinesis stream. A Kinesis stream is composed of multiple shards, each of which provides a fixed unit of capacity.

Signature: Refers to a digital signature, which is a mathematical way to confirm the authenticity of a digital message. AWS uses signatures calculated with a cryptographic algorithm and your private key to authenticate the requests you send to our web services.

Simple Data Base (Simple DB): A non-relational data store that allows AWS customers to store and query data items via web services requests. Amazon SimpleDB creates and manages multiple geographically distributed replicas of the customer's data automatically to enable high availability and data durability.

Simple Email Service (SES): An AWS service that provides a scalable bulk and transactional email-sending service for businesses and developers. In order to maximize deliverability and dependability for senders, Amazon SES takes proactive

steps to prevent questionable content from being sent, so that ISPs view the service as a trusted email origin.

Simple Mail Transfer Protocol (SMTP): An Internet standard for transmitting email across IP networks, SMTP is used by the Amazon Simple Email Service. Customers who used Amazon SES can use an SMTP interface to send email, but must connect to an SMTP endpoint via TLS.

Simple Notification Service (SNS): An AWS service that makes it easy to set up, operate, and send notifications from the cloud. Amazon SNS provides developers with the ability to publish messages from an application and immediately deliver them to subscribers or other applications.

Simple Queue Service (SQS): A scalable message queuing service from AWS that enables asynchronous message-based communication between distributed components of an application. The components can be computers or Amazon EC2 instances or a combination of both.

Simple Storage Service (Amazon S3): An AWS service that provides secure storage for object files. Access to objects can be controlled at the file or bucket level and can further restricted based on other conditions such as request IP source, request time, etc. Files can also be encrypted automatically using AES-256 encryption.

Simple Workflow Service (SWF): An AWS service that allows customers to build applications that coordinate work across distributed components. Using Amazon SWF, developers can structure the various processing steps in an application as "tasks" that drive work in distributed applications. Amazon SWF coordinates these tasks, managing task execution dependencies, scheduling, and concurrency based on a developer's application logic.

Single sign-on: The capability to log in once but access multiple applications and systems. A secure single sign-on capability can be provided to your federated users (AWS and non-AWS users) by creating a URL that passes the temporary security credentials to the AWS Management Console.

Snapshot: A customer-initiated backup of an EBS volume that is stored in Amazon S3, or a customer-initiated backup of an RDS database that is stored in Amazon RDS. A snapshot can be used as the starting point for a new EBS volume or Amazon RDS database or to protect the data for long-term durability and recovery.

Secure Sockets Layer (SSL): A cryptographic protocol that provides security

over the Internet at the Application Layer. Both the TLS 1.0 and SSL 3.0 protocol specifications use cryptographic mechanisms to implement the security services that establish and maintain a secure TCP/IP connection. The secure connection prevents eavesdropping, tampering, or message forgery. You can connect to an AWS endpoint via HTTP or secure HTTP (HTTPS) using SSL.

Stateful firewall: In computing, a stateful firewall (any firewall that performs stateful packet inspection (SPI) or stateful inspection) is a firewall that keeps track of the state of network connections (such as TCP streams, UDP communication) traveling across it.

Storage Gateway: An AWS service that securely connects a customer's on-premises software appliance with Amazon S3 storage by using a VM that the customer deploys on a host in their data center running VMware ESXi Hypervisor. Data is asynchronously transferred from the customer's on-premises storage hardware to AWS over SSL, and then stored encrypted in Amazon S3 using AES-256.

Temporary security credentials: AWS credentials that provide temporary access to AWS services. Temporary security credentials can be used to provide identity federation between AWS services and non-AWS users in your own identity and authorization system. Temporary security credentials consist of security token, an Access Key ID, and a Secret Access Key.

Transcoder: A system that transcodes (converts) a media file (audio or video) from one format, size, or quality to another. Amazon Elastic Transcoder makes it easy for customers to transcode video files in a scalable and cost-effective fashion.

Transport Layer Security (TLS): A cryptographic protocol that provides security over the Internet at the Application Layer. Customers who used Amazon's Simple Email Service must connect to an SMTP endpoint via TLS.

Tree hash: A tree hash is generated by computing a hash for each megabyte-sized segment of the data, and then combining the hashes in tree fashion to represent ever-growing adjacent segments of the data. Amazon Glacier checks the hash against the data to help ensure that it has not been altered en route.

Vault: In Amazon Glacier, a vault is a container for storing archives. When you create a vault, you specify a name and select an AWS region where you want to create the vault. Each vault resource has a unique address.

Versioning: Every object in Amazon S3 has a key and a version ID. Objects with Page **42** of **45**

the same key, but different version IDs can be stored in the same bucket. Versioning is enabled at the bucket layer using PUT Bucket versioning.

Virtual Instance: Once an AMI has been launched, the resulting running system is referred to as an instance. All instances based on the same AMI start out identical and any information on them is lost when the instances are terminated or fail.

Virtual MFA: The capability for a user to get the six-digit, single-use MFA code from their smart phone rather than from a token/fob. MFA is the use of an additional factor (the single-use code) in conjunction with a user name and password for authentication.

Virtual Private Cloud (VPC): An AWS service that enables customers to provision an isolated section of the AWS cloud, including selecting their own IP address range, defining subnets, and configuring routing tables and network gateways.

Virtual Private Network (VPN): The capability to create a private, secure network between two locations over a public network such as the Internet. AWS customers can add an IPsec VPN connection between their Amazon VPC and their data center, effectively extending their data center to the cloud while also providing direct access to the Internet for public subnet instances in their Amazon VPC. In this configuration, customers add a VPN appliance on their corporate data center side.

WorkSpaces: An AWS managed desktop service that enables you to provision cloud-based desktops for your users and allows them to sign in using a set of unique credentials or their regular Active Directory credentials.

X.509: In cryptography, X.509 is a standard for a Public Key Infrastructure (PKI) for single sign-on and Privilege Management Infrastructure (PMI). X.509 specifies standard formats for public key certificates, certificate revocation lists, attribute certificates, and a certification path validation algorithm. Some AWS products use X.509 certificates instead of a Secret Access Key for access to certain interfaces. For example, Amazon EC2 uses a Secret Access Key for access to its Query interface, but it uses a signing certificate for access to its SOAP interface and command line tool interface.

WorkDocs: An AWS managed enterprise storage and sharing service with feedback capabilities for user collaboration.

Document Revisions

Jun 2016

- Updated compliance programs
- Updated regions

Nov 2014

- Updated compliance programs
- Updated shared security responsibility model
- Updated AWS Account security features
- Reorganized services into categories
- Updated several services with new features: CloudWatch, CloudTrail, CloudFront, EBS, ElastiCache, Redshift, Route 53, S3, Trusted Advisor, and WorkSpaces
- Added Cognito Security
- Added Mobile Analytics Security
- Added WorkDocs Security

Nov 2013

- Updated regions
- Updated several services with new features: CloudFront, DirectConnect, DynamoDB, EBS, ELB, EMR, Amazon Glacier, IAM, OpsWorks, RDS, Redshift, Route 53, Storage Gateway, and VPC
- Added AppStream Security
- Added CloudTrail Security
- Added Kinesis Security
- Added WorkSpaces Security

May 2013

- Updated IAM to incorporate roles and API access
- Updated MFA for API access for customer-specified privileged actions
- Updated RDS to add event notification, multi-AZ, and SSL to SQL Server 2012
- Updated VPC to add multiple IP addresses, static routing VPN, and VPC By Default
- Updated several other services with new features: CloudFront, CloudWatch, EBS, ElastiCache, Elastic Beanstalk, Route 53, S3, Storage Gateway
- Added Glacier Security
- Added Redshift Security
- Added Data Pipeline Security
- Added Transcoder Security
- Added Trusted Advisor Security
- Added OpsWorks Security
- Added CloudHSM Security