
Lambda Architecture for Batch and Real-
Time Processing on AWS with Spark

Streaming and Spark SQL

May 2015

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 2 of 12

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which is subject to change without notice. Customers are responsible for making

their own independent assessment of the information in this document and any

use of AWS’s products or services, each of which is provided “as is” without

warranty of any kind, whether express or implied. This document does not create

any warranties, representations, contractual commitments, conditions or

assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and

liabilities of AWS to its customers are controlled by AWS agreements, and this

document is not part of, nor does it modify, any agreement between AWS and its

customers.

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 3 of 12

Contents

Abstract 4

Introduction 4

Components of Lambda Architecture on AWS 7

Amazon Kinesis and KCL 8

Amazon EMR 8

Amazon S3 8

Spark Streaming 8

Spark SQL 9

Deploying Lambda Architecture on AWS 9

Streaming Data to Amazon Kinesis 10

Real-Time Processing Using Spark Streaming 11

Batch Processing Using Spark SQL 11

Cleaning up the Software Stack 12

Conclusion 12

Contributors 12

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 4 of 12

Abstract
Enterprises need to grow and manage their global computing infrastructures

rapidly and efficiently while simultaneously optimizing and managing capital

costs and expenses. Today, many architects and developers are looking for cloud

solutions that integrate batch processing with real-time data processing. Lambda

architecture is a data-processing design pattern to handle massive quantities of

data and integrate batch and real-time processing within a single framework.

This design pattern can be implemented on AWS.

Lambda architecture is distinct from and should not be confused with the “AWS

Lambda” compute service. It is a software pattern that unifies real-time

processing with batch processing within a single framework.

This white paper is intended for Amazon Web Services (AWS) Partner Network

(APN) members, IT infrastructure decision-makers, and administrators. In this

paper, you will learn which artifacts to use and how to configure infrastructure

details, such as compute instances, bootstrap actions, storage, security, and

networking. After reading it, you should have a good idea of how to set up and

deploy the components of a typical Lambda architecture on AWS.

Introduction
When processing large amounts of semi-structured data, there is always a delay

between the point when data is collected and its availability in dashboards. Often

the delay results from the need to validate or at least identify coarse data. In some

cases, however, being able to react immediately to new data is more important

than being 100 percent certain of the data’s validity.

The AWS tool most frequently used to deal with large volumes of semi-structured

or unstructured data is Amazon Elastic MapReduce (Amazon EMR). Stream or

real-time processing, the processing of a constant flux of data, in real time, is

possible with a Lambda Architecture solution that includes Amazon Kinesis,

Amazon Simple Storage Service (Amazon S3), Spark Streaming, and Spark SQL

on top of an Amazon EMR cluster.

http://aws.amazon.com/lambda/
http://aws.amazon.com/lambda/
http://en.wikipedia.org/wiki/Lambda_architecture

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 5 of 12

A Lambda Architecture approach mixes both batch and stream (real-time) data

processing. It is divided into three processing layers: the batch layer, serving

layer, and speed layer, as shown in the following figure.

Figure 1: Lambda Architecture

All new data (in JSON format) is sent both to the batch layer (Amazon Kinesis,

Amazon EMR, Amazon S3) and to the speed layer (Amazon Kinesis, Amazon

EMR, Spark Streaming). In the batch layer, new data is appended to the master

data set, a set of files that contains information that is not derived from any other

information. It is an immutable, append-only set of data stored in an Amazon S3

bucket. The batch layer precomputes query functions continuously in a while

(true) loop. This process is analogous to extract, transform, and load (ETL)

processing performed on Amazon EMR by Spark SQL.

Batch layer: The results of the batch layer are called batch views and are stored

on Amazon S3 as a tab-separated value file.

Serving layer: This layer indexes the batch views produced by the batch layer.

Basically, the serving layer is a scalable database that swaps in new batch views as

they become available. Due to the latency of the batch layer, the results from the

serving layer are always out-of-date by a few hours.

Speed layer: The speed layer compensates for the high latency of updates to the

serving layer. It uses a fast, in-memory Spark engine to process data that has not

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 6 of 12

been processed in the last batch of the batch layer. This layer produces the real-

time views that are always up-to-date; it stores them in databases for both read

and write operations. The speed layer is more complex than the batch layer due

to the fact that the real-time views are continuously discarded as data makes its

way through the batch and serving layers.

Queries are resolved by merging the batch and real-time views, which you can do

with a Spark application, AWS Services like DynamoDB, RDS, Redshift, Amazon

EMR running HBase, and open-source tools. Because the batch views are always

recomputed completely, it is therefore possible to adjust the granularity of the

data in function of its age. Another benefit of recomputing data from scratch is

that if the batch or real-time views are corrupt, as the main data set is append-

only, it is easy to restart and recover from the unstable state. Lastly, the end user

can always query the latest version of the data, which is available from the speed

layer.

One well-developed approach to merging real-time data with historical data is to

use Hadoop and Apache Storm together. Each engine produces a table in the

serving database; applications can issue a query, which merges those results, as

shown in the following figure.

Figure 1: Traditional Approach to Lambda Architecture

The downside to traditional Lambda Architecture is that you must maintain the

code required to produce the query result in two, complex, distributed systems.

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 7 of 12

Components of Lambda Architecture on

AWS
Amazon EMR simplifies big data processing, providing a managed Hadoop

framework that makes it easy, fast, and cost-effective for you to distribute and

process vast amounts of your data across dynamically scalable Amazon EC2

instances. The application can be written in high-level programming languages

like Java, Scala, or Python.

The following figure shows a Lambda Architecture on AWS.

Figure 3: Lambda Architecture on AWS

Real-time data flows to the system through Amazon Kinesis. It then gets

aggregated and stored in an Amazon S3 bucket. Thus, all historical data resides

on Amazon S3.

This suggested architecture includes a speed layer with Spark Streaming on an

Amazon EMR cluster, which consumes data from Amazon Kinesis streams. The

batch layer with Spark SQL on an Amazon EMR cluster consumes data from

Amazon S3. Both of these components are part of the same code base, which can

be invoked as required, thus reducing the overhead of maintaining multiple code

bases.

This section describes each component of the Lambda Architecture.

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 8 of 12

Amazon Kinesis and KCL
Amazon Kinesis is a fully managed service that can store and process terabytes of

streaming data. With Amazon Kinesis, developers can continuously capture data

from hundreds of thousands of sources, including website clickstreams, financial

transaction data, social media feeds, server logs, and more. You can use the

Amazon Kinesis Client Library (KCL) to develop stream-processing applications.

Those applications can, in turn, consume the Amazon Kinesis streams and take

action on real-time data to power real-time dashboards, implement real-time

business logic, generate alerts, and ingest data to other services, such as Amazon

S3, Amazon Redshift, and more.

KCL handles complex issues like adapting to changes in stream volume, load

balancing streaming data, coordinating distributed worker services, and

processing data with fault tolerance. KCL helps developers integrate Amazon

Kinesis with services such as Amazon DynamoDB, Amazon Redshift, and

Amazon S3.

Amazon EMR
Amazon EMR provides users with Hadoop, an open-source framework that you

can use to distribute and process data across a resizable cluster of Amazon Elastic

Compute (Amazon EC2) instances. Amazon EMR also can run distributed

frameworks, such as Apache Spark, which provides an advanced execution engine

for fast in-memory computing.

Amazon S3
Amazon S3 provides developers with secure and durable object storage.

Spark Streaming
Spark Streaming, an extension of the Spark API, can be installed on an Amazon

EMR cluster through bootstrapping. It enables fault-tolerant stream processing

of live-data streams. Data is ingested from Amazon Kinesis and processed using

complex algorithms. The machine learning and graph-processing algorithms in

Spark can be applied on data streams. Processed data can be pushed out to

dashboards, file systems like HDFS, and Amazon S3.

http://aws.amazon.com/kinesis
https://github.com/awslabs/amazon-kinesis-client
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
https://github.com/awslabs/emr-bootstrap-actions/tree/master/spark

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 9 of 12

Spark SQL
Like Spark Streaming, Spark SQL is also an extension of the Spark API and can

be installed on Amazon EMR cluster through bootstrapping. It allows relational

queries expressed in SQL or HiveQL to be executed in Spark code with integrated

APIs in Python, Scala, or Java. This integration means you can run SQL queries

alongside complex analytical algorithms.

Deploying Lambda Architecture on AWS
The first deployment step is to set up an Amazon EMR cluster with the Spark

API. Run the following command, which will create a three-node Amazon EMR

cluster, install Spark, and create an SBT package.

./elastic-mapreduce --create --alive --name SparkCluster \

--hive-interactive --instance-type m3.xlarge \

--instance-count 3 --ami-version 3.2.1 \

--bootstrap-action

"s3://support.elasticmapreduce/spark/install-spark" \

--bootstrap-name "Install Spark"

--jar s3://elasticmapreduce/libs/script-runner/script-

runner.jar \

--args "s3://elasticmapreduce.bootstrapactions/sbt/install-

sbt"

Or

aws emr create-cluster --name SparkCluster \

--ami-version 3.2 --instance-type m3.xlarge --instance-

count 3 \

--ec2-attributes KeyName=<<MYKEY>> \

--bootstrap-actions

Path=s3://support.elasticmapreduce/spark/install-

spark,Name=Install_Spark \

--steps

Name=Install_Sbt,Jar=s3://elasticmapreduce/libs/script-

runner/script-

runner.jar,ActionOnFailure=CONTINUE,Args=s3://elasticmapred

uce.bootstrapactions/sbt/install-sbt \

https://spark.apache.org/sql/

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 10 of 12

--termination-protected

Application code can be found here. Download the code and build the package on

the Amazon EMR master node.

mkdir ~/workspace

cd ~/workspace

wget https://s3.amazonaws.com/chayel-

public/LambdaArchitecturePattern.zip

unzip LambdaArchitecturePattern.zip

sbt package

Streaming Data to Amazon Kinesis
An Amazon Kinesis producer is generating JSON data and pushing it to Amazon

Kinesis using the KCL.

// Download JAR:

wget http://chayel-

public.s3.amazonaws.com/KinesisProducer.jar

java –jar KinesisProducer.jar //Publishes 10K events to

Kinesis stream myStream

Here are the JSON streams generated by the producer:

{"zipcode":95126,"ProductName":"product2","price":16,"times

tamp":"2014-11-01 19:35:41.158"}

{"zipcode":98029,"ProductName":"product4","price":51,"times

tamp":"2014-11-01 19:35:41.323"}

{"zipcode":96194,"ProductName":"product40","price":11,"time

stamp":"2014-11-01 19:35:41.438"}

file:///C:/Users/allysona/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/FP8GYGQ2/LambdaArchitecturePattern.zip

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 11 of 12

………

Real-Time Processing Using Spark Streaming
To connect to the master node, open a terminal window and run this command:

/home/hadoop/spark/bin/spark-submit --master local[3] --

class "RealTime" /home/hadoop/workspace/target/scala-

2.10/simple-project_2.10-1.0.jar myStream

https://kinesis.us-east-1.amazonaws.com

The RealTime streaming object listens to the Amazon Kinesis stream for batch

intervals of one second and, using SQL syntax, queries the Resilient Distributed

Dataset (RDD). It then writes the data to a file (in HDFS or Amazon S3). Data is

moved to your historical location (shown in the following example as

myS3Bucket) by using the Hadoop API.

Batch Processing Using Spark SQL
Open a terminal window and run the following command:

/home/hadoop/spark/bin/spark-submit --master yarn-client --

class "Historical" /home/hadoop/workspace/target/scala-

2.10/simple-project_2.10-1.0.jar myS3Bucket

You have now configured and run all of the Lambda Architecture components.

This provides you with starting point to develop a unified application that can

integrate batch processing with real-time processing under the single code base.

Amazon Web Services – Lambda Architecture for Batch and Stream Processing on AWS May 2015

Page 12 of 12

Cleaning up the Software Stack
After you have run queries using Spark SQL, you should shut down your cluster

to avoid incurring further charges.

 Terminate your SSH session to disconnect from the master node.

 On your local machine, run the following command to terminate your

Amazon EMR cluster. Replace j-xxxxxx with the identifier of your

cluster.

elastic-mapreduce --terminate -j j-xxxxxx

 Delete any log files stored in your Amazon S3 bucket, s3://yours3bucket,

where yours3bucket is the name of the bucket you specified when you

launched the job flow. For more information, see Deleting an Object.

Conclusion
The Lambda Architecture described in this paper is a unified architectural

pattern that unifies stream (real-time) and batch processing within a single code

base. Through the use of Spark Streaming and Spark SQL APIs, you implement

your business logic function once, and then reuse the code in a batch ETL process

as well as for real-time streaming processes. In this way, you can quickly

implement a real-time layer to complement the batch-processing one. In the long

term, this architecture will reduce your maintenance overhead. It will also reduce

the risk for errors resulting from duplicate code bases.

Contributors
The following individuals and organizations contributed to this document:

 Vadim Astakhov, Amazon Web Services (AWS)

 Manjeet Chayel, Amazon Web Services (AWS)

http://docs.aws.amazon.com/AmazonS3/latest/UG/DeletinganObject.html

