

Managing Your AWS Infrastructure
at Scale

Shaun Pearce

Steven Bryen

February 2015

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 2 of 32

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s current
product offerings and practices as of the date of issue of this document, which are
subject to change without notice. Customers are responsible for making their own
independent assessment of the information in this document and any use of AWS’s
products or services, each of which is provided “as is” without warranty of any kind,
whether express or implied. This document does not create any warranties,
representations, contractual commitments, conditions or assurances from AWS, its
affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its
customers are controlled by AWS agreements, and this document is not part of, nor
does it modify, any agreement between AWS and its customers.

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 3 of 32

Contents
Abstract 4	

Introduction 4	

Provisioning New EC2 Instances 6	

Creating Your Own AMI 7	

Managing AMI Builds 9	

Dynamic Configuration 12	

Scripting Your Own Solution 12	

Using Configuration Management Tools 16	

Using AWS Services to Help Manage Your Environments 22	

AWS Elastic Beanstalk 22	

AWS OpsWorks 23	

AWS CloudFormation 24	

User Data 24	

cfn-init 25	

Using the Services Together 26	

Managing Application and Instance State 27	

Structured Application Data 28	

Amazon RDS 28	

Amazon DynamoDB 28	

Unstructured Application Data 29	

User Session Data 29	

Amazon ElastiCache 29	

System Metrics 30	

Amazon CloudWatch 30	

Log Management 31	

Amazon CloudWatch Logs 31	

Conclusion 32	

Further Reading 32	

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 4 of 32

Abstract
Amazon Web Services (AWS) enables organizations to deploy large-scale application
infrastructures across multiple geographic locations. When deploying these large, cloud-
based applications, it’s important to ensure that the cost and complexity of operating
such systems does not increase in direct proportion to their size.

This whitepaper is intended for existing and potential customers—especially architects,
developers, and sysops administrators—who want to deploy and manage their
infrastructure in a scalable and predictable way on AWS.

In this whitepaper, we describe tools and techniques to provision new instances,
configure the instances to meet your requirements, and deploy your application code.
We also introduce strategies to ensure that your instances remain stateless, resulting in
an architecture that is more scalable and fault tolerant. The techniques we describe
allow you to scale your service from a single instance to thousands of instances while
maintaining a consistent set of processes and tools to manage them.

For the purposes of this whitepaper, we assume that you have knowledge of basic
scripting and core services such as Amazon Elastic Compute Cloud (Amazon EC2).

Introduction
When designing and implementing large, cloud-based applications, it’s important to
consider how your infrastructure will be managed to ensure the cost and complexity of
running such systems is minimized. When you first begin using Amazon EC2, it is easy
to manage your EC2 instances just like regular virtualized servers running in your data
center. You can create an instance, log in, configure the operating system, install any
additional packages, and install your application code. You can maintain the instance by
installing security patches, rolling out new deployments of your code, and modifying the
configuration as needed. Despite the operational overhead, you can continue to manage
your instances in this way for a long time.

However, your instances will inevitably begin to diverge from their original specification,
which can lead to inconsistencies with other instances in the same environment. This
divergence from a known baseline can become a huge challenge when managing large
fleets of instances across multiple environments. Ultimately, it will lead to service issues
because your environments will become less predictable and more difficult to maintain.

The AWS platform provides you with a set of tools to address this challenge with a
different approach. By using Amazon EC2 and associated services, you can specify and
manage the desired end state of your infrastructure independently of the EC2 instances
and other running components.

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 5 of 32

For example, with a traditional approach you would alter the configuration of an Apache
server running across your web servers by logging in to each server in turn and
manually making the change. By using the AWS platform, you can take a different
approach by changing the underlying specification of your web servers and launching
new EC2 instances to replace the old ones. This ensures that each instance remains
identical; it also reduces the effort to implement the change and reduces the likelihood of
errors being introduced.

When you start to think of your infrastructure as being defined independently of the
running EC2 instances and other components in your environments, you can take
greater advantage of the benefits of dynamic cloud environments:

• Software-defined infrastructure – By defining your infrastructure using a set of
software artifacts, you can leverage many of the tools and techniques that are used
when developing software components. This includes managing the evolution of your
infrastructure in a version control system, as well as using continuous integration (CI)
processes to continually test and validate infrastructure changes before deploying
them to production.

• Auto Scaling and self-healing – If you automatically provision your new instances
from a consistent specification, you can use Auto Scaling groups to manage the
number of instances in an EC2 fleet. For example, you can set a condition to add
new EC2 instances in increments to the Auto Scaling group when the average
utilization of your EC2 fleet is high. You can also use Auto Scaling to detect impaired
EC2 instances and unhealthy applications, and replace the instances without your
intervention.

• Fast environment provisioning – You can quickly and easily provision consistent
environments, which opens up new ways of working within your teams. For example,
you can provision a new environment to allow testers to validate a new version of
your application in their own, personal test environments that are isolated from other
changes.

• Reduce costs – Now that you can provision environments quickly, you also have the
option to remove them when they are no longer needed. This reduces costs because
you pay only for the resources that you use.

• Blue-green deployments – You can deploy new versions of your application by
provisioning new instances (containing a new version of the code) beside your
existing infrastructure. You can then switch traffic between environments in an
approach known as blue-green deployments. This has many benefits over traditional
deployment strategies, including the ability to quickly and easily roll back a
deployment in the event of an issue.

To leverage these advantages, your infrastructure must have the following capabilities:

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 6 of 32

1. New infrastructure components are automatically provisioned from a known, version-
controlled baseline in a repeatable and predictable manner

2. All instances are stateless so that they can be removed and destroyed at any time,
without the risk of losing application state or system data

The following figure shows the overall process:

Figure 1: Instance Lifecycle and State Management

The following sections outline tools and techniques that you can use to build a system
with these capabilities. By moving to an architecture where your instances can be easily
provisioned and destroyed with no loss of data, you can fundamentally change the way
you manage your infrastructure. Ultimately, you can scale your infrastructure over time
without significantly increasing the operational overhead associated with it.

Provisioning New EC2 Instances
A number of external events will require you to provision new instances into your
environments:

• Creating new instances or replicating existing environments

• Replacing a failed instance in an existing environment

• Responding to a “scale up” event to add additional instances to an Auto Scaling
group

• Deploying a new version of your software stack (by using blue-green deployments)

Some of these events are difficult or even impossible to predict, so it’s important that the
process to create new instances into your environment is fully automated, repeatable,
and consistent.

The process of automatically provisioning new instances and bringing them into service
is known as bootstrapping. There are multiple approaches to bootstrapping your
Amazon EC2 instances. The two most popular approaches are to either create your own

EC2 Instance
Version Control System

1

Durable Storage

2

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 7 of 32

Amazon Machine Image (AMI) or to use dynamic configuration. We explain both
approaches in the following sections.

Creating Your Own AMI
An Amazon Machine Image (AMI) is a template that provides all of the information
required to launch an Amazon EC2 instance. At a minimum it contains the base
operating system, but it may also include additional configuration and software. You can
launch multiple instances of an AMI, and you can also launch different types of instances
from a single AMI.

You have several options when launching a new EC2 instance:

• Select an AMI provided by AWS

• Select an AMI provided by the community

• Select an AMI containing pre-configured software from the AWS Marketplace1

• Create a custom AMI

If launching an instance from a base AMI containing only the operating system, you can
further customize the instance with additional configuration and software after it has
been launched. If you create a custom AMI, you can launch an instance that already
contains your complete software stack, thereby removing the need for any run-time
configuration. However, before you decide whether to create a custom AMI, you should
understand the advantages and disadvantages.

Advantages of custom AMIs

• Increases speed – All configuration is packaged into the AMI itself, which
significantly increases the speed in which new instances can be launched. This is
particularly useful during Auto Scaling events.

• Reduces external dependencies – Packaging everything into an AMI means that
there is no dependency on the availability of external services when launching new
instances (for example, package or code repositories).

• Removes the reliance on complex configuration scripts at launch time – By
preconfiguring your AMI, scaling events and instance replacements no longer rely on
the successful completion of configuration scripts at launch time. This reduces the
likelihood of operational issues caused by erroneous scripts.

Disadvantages of custom AMIs

1 https://aws.amazon.com/marketplace

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 8 of 32

• Loss of agility – Packaging everything into an AMI means that even simple code
changes and defect fixes will require you to produce a new AMI. This increases the
time it takes to develop, test, and release enhancements and fixes to your
application.

• Complexity – Managing the AMI build process can be complex. You need a process
that enables the creation of consistent, repeatable AMIs where the changes between
revisions are identifiable and auditable.

• Run-time configuration requirements – You might need to make additional
customizations to your AMIs based on run-time information that cannot be known at
the time the AMI is created. For example, the database connection string required by
your application might change depending on where the AMI is used.

Given these advantages and disadvantages, we recommend a hybrid approach: build
static components of your stack into AMIs, and configure dynamic aspects that change
regularly (such as application code) at run time.

Consider the following factors to help you decide what configuration to include within a
custom AMI and what to include in dynamic run-time scripts:

• Frequency of deployments – How often are you likely to deploy enhancements to
your system, and at what level in your stack will you make the deployments? For
example, you might deploy changes to your application on a daily basis, but you
might upgrade your JVM version far less frequently.

• Reduction on external dependencies – If the configuration of your system
depends on other external systems, you might decide to carry out these
configuration steps as part of an AMI build rather than at the time of launching an
instance.

• Requirements to scale quickly – Will your application use Auto Scaling groups to
adjust to changes in load? If so, how quickly will the load on the application
increase? This will dictate the speed in which you need to provision new instances
into your EC2 fleet.

Once you have assessed your application stack based on the preceding criteria, you can
decide which elements of your stack to include in a custom AMI and which will be
configured dynamically at the time of launch.

The following figure shows a typical Java web application stack and how it could be
managed across AMIs and dynamic scripts.

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 9 of 32

Figure 2: Base, Foundational, and Full AMI Models

In the base AMI model, only the OS image is maintained as an AMI. The AMI can be an
AWS-managed image, or an AMI that you manage that contains your own OS image.

In the foundational AMI model, elements of a stack that change infrequently (for
example, components such as the JVM and application server) are built into the AMI.

In the full stack AMI model, all elements of the stack are built into the AMI. This model is
useful if your application changes infrequently, or if your application has rapid auto-
scaling requirements (which means that dynamically installing the application isn’t
feasible). However, even if you build your application into the AMI, it still might be
advantageous to dynamically configure the application at run time because it increases
the flexibility of the AMI. For example, it enables you to use your AMIs across multiple
environments.

Managing AMI Builds
Many people start by manually configuring their AMIs using a process similar to the
following:

1. Launch the latest version of the AMI
2. Log in to the instance and manually reconfigure it (for example, by making package

updates or installing new applications)
3. Create a new AMI based on the running instance

EC2 Instance

OS

JVM

OS Users & Grps

Tomcat

Apache

App Frameworks

Application Code

Ba
se

 A
M

I
Bo

ot
st

ra
pp

in
g

Co
de

App Config

EC2 Instance

OS

JVM

OS Users & Grps

Tomcat

Apache

App Frameworks

Application Code

Fo
un

da
tio

na
l A

M
I

Bo
ot

st
ra

pp
in

g
Co

de

App Config

EC2 Instance

OS

JVM

OS Users & Grps

Tomcat

Apache

App Frameworks

Application Code

Fu
ll s

ta
ck

 A
M

I
Bo

ot
st

ra
pp

in
g

Co
de

App Config

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 10 of 32

Although this manual process is sufficient for simple applications, it is difficult to manage
in more complex environments where AMI updates are needed regularly. It’s essential to
have a consistent, repeatable process to create your AMIs. It’s also important to be able
to audit what has changed between one version of your AMI and another.

One way to achieve this is to manage the customization of a base AMI by using
automated scripts. You can develop your own scripts, or you can use a configuration
management tool. For more information about configuration management tools, see the
Using Configuration Management Tools section in this whitepaper.

Using automated scripts has a number of advantages over the manual method.
Automation significantly speeds up the AMI creation process. In addition, you can use
version control for your scripts/configuration files, which results in a repeatable process
where the change between AMI versions is transparent and auditable.

This automated process is similar to the manual process:

1. Launch the latest version of the AMI
2. Execute the automated configuration using your tool of choice
3. Create a new AMI image based on the running instance

You can use a third-party tool such as Packer2 to help automate the process. However,
many find that this approach is still too time consuming for an environment with multiple,
frequent AMI builds across multiple environments.

If you use the Linux operating system, you can reduce the time it takes to create a new
AMI by customizing an Amazon Elastic Block Store (Amazon EBS) volume rather than a
running instance. An Amazon EBS volume is a durable, block-level storage device that
you can attach to a single Amazon EC2 instance. It is possible to create an Amazon
EBS volume from a base AMI snapshot and customise this volume before storing it as a
new AMI. This replaces the time taken to initialize an EC2 instance with the far shorter
time needed to create and attach an EBS volume.

In addition, this approach makes use of the incremental nature of Amazon EBS
snapshots. An EBS snapshot is a point-in-time backup of an EBS volume that is stored
in Amazon S3. Snapshots are incremental backups, meaning that only the blocks on the
device that have changed after your most recent snapshot are saved. For example, if a
configuration update changes only 100 MB of the blocks on an 8 GB EBS volume, only
100 MB will be stored to Amazon S3.

2 https://packer.io

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 11 of 32

To achieve this, you need a long running EC2 instance that is responsible for attaching a
new EBS volume based on the latest AMI build, executing the scripts needed to
customize the volume, creating a snapshot of the volume, and registering the snapshot
as a new version of your AMI. For example, Netflix uses this technique in their open
source tool called aminator.3

The following figure shows this process.

Figure 3: Using EBS Snapshots to Speed Up Deployments

1. Create the volume from the latest AMI snapshot
2. Attach the volume to the instance responsible for building new AMIs
3. Run automated provisioning scripts to update the AMI configuration
4. Snapshot the volume
5. Register the snapshot as a new version of the AMI

3 https://github.com/Netflix/aminator

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 12 of 32

Dynamic Configuration
Now that you have decided what to include into your AMI and what should be
dynamically configured at run time, you need to decide how to complete the dynamic
configuration and bootstrapping process. There are many tools and techniques that you
can use to configure your instances, ranging from simple scripts to complex, centralized
configuration management tools.

Scripting Your Own Solution
Depending on how much pre-configuration has been included into your AMI, you might
need only a single script or set of scripts as a simple, elegant way to configure the final
elements of your application stack.

User Data and cloud-init
When you launch a new EC2 instance by using either the AWS Management Console or
the API, you have the option of passing user data to the instance. You can retrieve the
user data from the instance through the EC2 metadata service, and use it to perform
automated tasks to configure instances as they are first launched.

When a Linux instance is launched, the initialization instructions passed into the instance
by means of the user data are executed by using a technology called cloud-init. The
cloud-init package is an open source application built by Canonical. It’s included in
many base Linux AMIs (to find out if your distribution supports cloud-init, see the
distribution-specific documentation). Amazon Linux, a Linux distribution created and
maintained by AWS, contains a customized version of cloud-init.

You can pass two types of user data, either shell scripts or cloud-init directives, to
cloud-init running on your EC2 instance. For example, the following shell script can
be passed to an instance to update all installed packages and to configure the instance
as a PHP web server:

#!/bin/sh
yum update -y
yum -y install httpd php php-mysql
chkconfig httpd on
/etc/init.d/httpd start

The following user data achieves the same result, but uses a set of cloud-init
directives:

#cloud-config

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 13 of 32

repo_update: true
repo_upgrade: all

packages:
 - httpd
 - php
 - php-mysql

runcmd:
 - service httpd start
 - chkconfig httpd on

AWS Windows AMIs contain an additional service, EC2Config, that is installed by AWS.
The EC2Config service performs tasks on the instance such as activating Windows,
setting the Administrator password, writing to the AWS console, and performing one-
click sysprep from within the application. If launching a Windows instance, the
EC2Config service can also execute scripts passed to the instance by means of the user
data. The data can be in the form of commands that you run at the cmd.exe prompt or
Windows PowerShell prompt.

This approach works well for simple use cases. However, as the number of instance
roles (web, database, and so on) grows along with the number of environments that you
need to manage, your scripts might become large and difficult to maintain. Additionally,
user data is limited to 16 KB, so if you have a large number of configuration tasks and
associated logic, we recommend that you use the user data to download additional
scripts from Amazon S3 that can then be executed.

Leveraging EC2 Metadata
When you configure a new instance, you typically need to understand the context in
which the instance is being launched. For example, you might need to know the
hostname of the instance or which region or Availability Zone the instance has been
launched into. The EC2 metadata service can be queried to provide such contextual
information about an instance, as well as retrieving the user data. To access the
instance metadata from within a running instance, you can make a standard HTTP GET
using tools such as cURL or the GET command. For example, to retrieve the host name
of the instance, you can make an HTTP GET request to the following URL:

http://169.254.169.254/latest/meta-data/hostname

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 14 of 32

Resource Tagging
To help you manage your EC2 resources, you can assign your own metadata to each
instance in addition to the EC2 metadata that is used to define hostnames, Availability
Zones, and other resources. You do this with tags. Each tag consists of a key and a
value, both of which you define when the instance is launched.

You can use EC2 tags to define further context to the instance being launched. For
example, you can tag your instances for different environments and roles, as shown in
the following figure.

Figure 4: Example of EC2 Tag Usage

As long as your EC2 instance has access to the Internet, these tags can be retrieved by
using the AWS Command Line Interface (CLI) within your bootstrapping scripts to
configure your instances based on their role and the environment in which they are
being launched.

Putting it all Together
The following figure shows a typical bootstrapping process using user data and a set of
configuration scripts hosted on Amazon S3.

i-1bbb2637
environment = production

role = web

i-f2871ade
environment = dev

role = app

Key Value

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 15 of 32

Figure 5: Example of an End-to-End Workflow

This example uses the user data as a lightweight mechanism to download a base
configuration script from Amazon S3. The script is responsible for configuring the system
to a baseline across all instances regardless of role and environment (for example, the
script might install monitoring agents and ensure that the OS is patched).

This base configuration script uses the CLI to retrieve the instances tags. Based on the
value of the “role” tag, the script downloads an additional overlay script responsible for
the additional configuration required for the instance to perform its specific role (for
example, installing Apache on a web server). Finally, the script uses the instances
“environment” tag to download an appropriate environment overlay script to carry out the

EC2 API Amazon EC2 Instance Amazon S3 Bucket

Base Configuration

User Data

Server Role Overlay
Scripts

Environment Overlay
Scripts

Retrieve and process User
Data

Download base config and
execute

EC2 Metadata Service

Retrieve server role from
EC2 API, download and

execute appropriate script

Retrieve server
environment from EC2

API, download and
execute appropriate script

Bootstrap
Complete

Receive user data and
expose via metadata

service

describe-tags

describe-tags

Instance
Launch
Request

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 16 of 32

final configuration for the environment the instance resides in (for example, setting log
levels to DEBUG in the development environment).

To protect sensitive information that might be contained in your scripts, you should
restrict access to these assets by using IAM Roles.4

Using Configuration Management Tools
Although scripting your own solution works, it can quickly become complex when
managing large environments. It also can become difficult to govern and audit your
environment, such as identifying changes or troubleshooting configuration issues. You
can address some of these issues by using a configuration management tool to manage
instance configurations.

Configuration management tools allow you to define your environment’s configuration in
code, typically by using a domain-specific language. These domain-specific languages
use a declarative approach to code, where the code describes the end state and is not a
script that can be executed. Because the environment is defined using code, you can
track changes to the configuration and apply version control. Many configuration
management tools also offer additional features such as compliance, auditing, and
search.

Push vs. Pull Models
Configuration management tools typically leverage one of two models, push or pull. The
model used by a tool is defined by how a node (a target EC2 instance in AWS) interacts
with the master configuration management server.

In a push model, a master configuration management server is aware of the nodes that it
needs to manage and pushes the configuration to them remotely. These nodes need to
be pre-registered on the master server. Some push tools are agentless and execute
configuration remotely using existing protocols such as SSH. Others push a package,
which is then executed locally using an agent. The push model typically has some
constraints when working with dynamic and scalable AWS resources:

• The master server needs to have information about the nodes that it needs to
manage. When you use tools such as Auto Scaling, where nodes might come and
go, this can be a challenge.

• Push systems that do remote execution do not scale as well as systems where
configuration changes are offloaded and executed locally on a node. In large

4 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 17 of 32

environments, the master server might get overloaded when configuring multiple
systems in parallel.

• Connecting to nodes remotely requires you to allow specific ports to be allowed
inbound to your nodes. For some remote execution tools, this includes remote SSH.

The second model is the pull model. Configuration management tools that use a pull
system use an agent that is installed on a node. The agent asks the master server for
configuration. A node can pull its configuration at boot time, or agents can be
daemonized to poll the master periodically for configuration changes. Pull systems are
especially useful for managing dynamic and scalable AWS environments. Following are
the main benefits of the pull model:

• Nodes can scale up and down easily, as the master does not need to know they
exist before they can be configured. Nodes can simply register themselves with the
server.

• Configuration management masters require less scaling when using a pull system
because all processing is offloaded and executed locally on the remote node.

• No specific ports need to be opened inbound to the nodes. Most tools allow the
agent to communicate with the master server by using typical outbound ports such
as HTTPS.

Chef Example
Many configuration management tools work with AWS. Some of the most popular are
Chef, Puppet, Ansible, and SaltStack. For our example in this section, we use Chef to
demonstrate bootstrapping with a configuration management tool. You can use other
tools and apply the same principles.

Chef is an open source configuration management tool that uses an agent (chef-client)
to pull configuration from a master server (Chef server). Our example shows how to
bootstrap nodes by pulling configuration from a Chef server at boot time.

The example is based on the following assumptions:

• You have configured a Chef server

• You have an AMI that has the AWS command line tools installed and configured

• You have the chef-client installed and included into your AMI

First, let’s look at what we are going to configure within Chef. We’ll create a simple Chef
cookbook that installs an Apache web server and deploys a ‘Hello World’ site. A Chef
cookbook is a collection of recipes; a recipe is a definition of resources that should be
configured on a node. This can include files, packages, permissions, and more. The
default recipe for this Apache cookbook might look something like this:

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 18 of 32

Cookbook Name:: apache
Recipe:: default

Copyright 2014, YOUR_COMPANY_NAME

All rights reserved - Do Not Redistribute

package "httpd"

#Allow Apache to start on boot
service "httpd" do
 action [:enable, :start]
end

#Add HTML Template into Web Root
template "/var/www/html/index.html" do
 source "index.html.erb"
 mode "0644"
end

In this recipe, we install, enable, and start the HTTPD (HTTP daemon) service. Next, we
render a template for index.html and place it into the /var/www/html directory. The
index.html.erb template in this case is a very simple HTML page:

<h1>Hello World</h1>

Next, the cookbook is uploaded to the Chef server. Chef offers the ability to group
cookbooks into roles. Roles are useful in large-scale environments where servers within
your environment might have many different roles, and cookbooks might have
overlapping roles. In our example, we add this cookbook to a role called ‘webserver’.

Now when we launch EC2 instances (nodes), we can provide EC2 user data to
bootstrap them by using Chef. To make this as dynamic as possible, we can use an EC2
tag to define which Chef role to apply to our node. This allows us to use the same user
data script for all nodes, whichever role is intended for them. For example, a web server
and a database server can use the same user data if you assign different values to the
‘role’ tag in EC2.

We also need to consider how our new instance will authenticate with the Chef server.
We can store our private key in an encrypted Amazon S3 bucket by using Amazon S3

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 19 of 32

server side encryption,5 and we can restrict access to this bucket by using IAM roles.
The key can then be used to authenticate with the Chef server. The chef-client uses a
validator.pem file to authenticate to the Chef server when registering new nodes.

We also need to know which Chef server to pull our configuration from. We can store a
pre-populated client.rb file in Amazon S3 and copy this within our user data script. You
might want to dynamically populate this client.rb file depending on environment, but for
our example we assume that we have only one Chef server and that a pre-populated
client.rb file is sufficient. You could also include these two files into your custom AMI
build.

The user data would look like this:

#!/bin/bash
cd /etc/chef

#Copy Chef Server Private Key from S3 Bucket
aws s3 cp s3://s3-bucket/orgname-validator.pem orgname-
validator.pem

#Copy Chef Client Configuration File from S3 Bucket
aws s3 cp s3://s3-bucket/client.rb client.rb

#Change permissions on Chef Server private key.
chmod 400 /etc/chef/orgname-validator.pem

#Get EC2 Instance ID from the Meta-Data Service
INSTANCE_ID=`curl -s http://169.254.169.254/latest/meta-
data/instance-id`

#Get Tag with Key of ‘role’ for this EC2 instance
ROLE_TAG=$(aws ec2 describe-tags --filters "Name=resource-
id,Values=$INSTANCE_ID" "Name=key,Values=role" --output
text)

#Get value of Tag with Key of ‘role’ as string
ROLE_TAG_VALUE=$(echo $ROLE_TAG | awk 'NF>1{print $NF}')

#Create first_boot.json file dynamically adding the tag
value as the chef role in the run-list
echo "{\"run_list\":[\"role[$ROLE_TAG_VALUE]\"]}" >
first_boot.json

5 http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 20 of 32

#execute the chef-client using first_boot.json config
chef-client -j first_boot.json

#daemonize the chef-client to run every 5 minutes
chef-client -d -i 300 -s 30

As shown in the preceding user data example, we copy our client configuration files from
a private S3 bucket. We then use the EC2 metadata service to get some information
about the instance (in this example, Instance ID). Next, we query the Amazon EC2 API
for any tags with the key of ‘role,’ and dynamically configure a Chef run-list with a Chef
role of this value. Finally, we execute the first chef-client run by providing the
first_boot.json options, which include our new run-list. We then execute chef-client once
more; however, this time we execute it in a daemonized setup to pull configuration every
5 minutes.

We now have some re-usable EC2 user data that we can apply to any new EC2
instances. As long as a ‘role’ tag is provided with a value that matches a role on the
target Chef server, the instance will be configured using the corresponding Chef
cookbooks.

Putting it all Together
The following figure shows a typical workflow, from instance launch to a fully configured
instance that is ready to serve traffic.

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 21 of 32

Figure 6: Example of an End-to-End Workflow

EC2 API

EC2 API

Amazon EC2 Instance Amazon S3 Bucket

User Data

Chef config files

Retrieve and process User
Data

Download private key and
client.rb from S3 bucket

EC2 Metadata Service

Retrieve server role from
EC2 API

Configure first_boot.son to
use chef role with tag

value

Bootstrap
Complete

Receive user data and
expose via metadata

service

describe-tags

describe-tags

Instance
Launch
Request

Pull Config from Chef
Server and configure

instance

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 22 of 32

Using AWS Services to Help Manage Your
Environments
In the preceding sections, we discussed tools and techniques that systems
administrators and developers can use to provision EC2 instances in an automated,
predictable, and repeatable manner. AWS also provides a range of application
management services that help make this process simpler and more productive. The
following figure shows how to select the right service for your application based on the
level of control that you require.

Figure 7: AWS Deployment and Management Services

In addition to provisioning EC2 instances, these services can also help you to provision
any other associated AWS components that you need in your systems, such as Auto
Scaling groups, load balancers, and networking components. We provide more
information about how to use these services in the following sections.

AWS Elastic Beanstalk
AWS Elastic Beanstalk allows web developers to easily upload code without worrying
about managing or implementing any underlying infrastructure components. Elastic
Beanstalk takes care of deployment, capacity provisioning, load balancing, auto scaling,
and application health monitoring. It is worth noting that Elastic Beanstalk is not a black
box service: You have full visibility and control of the underlying AWS resources that are
deployed, such as EC2 instances and load balancers.

Elastic Beanstalk supports deployment of Java, .NET, Ruby, PHP, Python, Node.js, and
Docker on familiar servers such as Apache, Nginx, Passenger, and IIS. Elastic
Beanstalk provides a default configuration, but you can extend the configuration as
needed. For example, you might want to install additional packages from a yum
repository or copy configuration files that your application depends on, such as a
replacement for httpd.conf to override specific settings.

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 23 of 32

You can write the configuration files in YAML or JSON format and create the files with a
.config file extension. You then place the files in a folder in the application root named
.ebextensions. You can use configuration files to manage packages and services, work
with files, and execute commands.

For more information about using and extending Elastic Beanstalk, see AWS Elastic
Beanstalk Documentation.6

AWS OpsWorks
AWS OpsWorks is an application management service that makes it easy to deploy and
manage any application and its required AWS resources. With AWS OpsWorks, you
build application stacks that consist of one or many layers. You configure a layer by
using an AWS OpsWorks configuration, a custom configuration, or a mix of both. AWS
OpsWorks uses Chef, the open source configuration management tool, to configure
AWS resources. This gives you the ability to provide your own custom or community
Chef recipes.

AWS OpsWorks features a set of lifecycle events—Setup, Configure, Deploy, Undeploy,
and Shutdown—that automatically run the appropriate recipes at the appropriate time on
each instance. AWS OpsWorks provides some AWS-managed layers for typical
application stacks. These layers are open and customizable, which means that you can
add additional custom recipes to the layers provided by AWS OpsWorks or create
custom layers from scratch using your existing recipes.

It is important to ensure that the correct recipes are associated with the correct lifecycle
events. Lifecycle events run during the following times:

• Setup – Occurs on a new instance after it successfully boots

• Configure – Occurs on all of the stack’s instances when an instance enters or leaves
the online state

• Deploy – Occurs when you deploy an app

• Undeploy – Occurs when you delete an app

• Shutdown – Occurs when you stop an instance

For example, the configure event is useful when building distributed systems or for any
system that needs to be aware of when new instances are added or removed from the
stack. You could use this event to update a load balancer when new web servers are
added to the stack.

6 http://aws.amazon.com/documentation/elastic-beanstalk/

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 24 of 32

In addition to typical server configuration, AWS OpsWorks manages application
deployment and integrates with your application’s code repository. This allows you to
track application versions and rollback deployments if needed.

For more information about AWS OpsWorks, see AWS OpsWorks Documentation.7

AWS CloudFormation
AWS CloudFormation gives developers and systems administrators an easy way to
create and manage a collection of related AWS resources, provisioning and updating
them in an orderly and predictable fashion. Compared to Elastic Beanstalk and AWS
OpsWorks, AWS CloudFormation gives you the most control and flexibility when
provisioning resources.

AWS CloudFormation allows you to manage a broad set of AWS resources. For the
purposes of this whitepaper, we focus on the features that you can use to bootstrap your
EC2 instances.

User Data
Earlier in this whitepaper, we described the process of using user data to configure and
customize your EC2 instances (see Scripting Your Own Solution). You also can include
user data in an AWS CloudFormation template, which is executed on the instance once
it is created. You can include user data when specifying a single EC2 instance as well as
when specifying a launch configuration. The following example shows a launch
configuration that provisions instances configured to be PHP web servers:

"MyLaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : "i-123456",
 "SecurityGroups" : "MySecurityGroup",
 "InstanceType" : "m3.medium",
 "KeyName" : "MyKey",
 "UserData": {"Fn::Base64": {"Fn::Join":["",[
 "#!/bin/bash\n",
 "yum update -y\n",
 "yum -y install httpd php php-mysql\n",
 "chkconfig httpd on\n",
 "/etc/init.d/httpd start\n"
]]}}

7 http://aws.amazon.com/documentation/opsworks/

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 25 of 32

 }
}

cfn-init
The cfn-init script is an AWS CloudFormation helper script that you can use to specify
the end state of an EC2 instance in a more declarative manner. The cfn-init script is
installed by default on Amazon Linux and AWS-supplied Windows AMIs. Administrators
can also install cfn-init on other Linux distributions, and then include this into their own
AMI if needed.

The cfn-init script parses metadata from the AWS CloudFormation template and uses
the metadata to customize the instance accordingly. The cfn-init script can do the
following:

• Install packages from package repositories (such as yum and apt-get)

• Download and unpack archives, such as .zip and .tar files

• Write files to disk

• Execute arbitrary commands

• Create users and groups

• Enable/disable and start/stop services

In an AWS CloudFormation template, the cfn-init helper script is called from the user
data. Once it is called, it will inspect the metadata associated with the resource passed
into the request and then act accordingly. For example, you can use the following launch
configuration metadata to instruct cfn-init to configure an EC2 instance to become a PHP
web server (similar to the preceding user data example):

"MyLaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 "config" : {
 "packages" : {
 "yum" : {
 "httpd" : [],
 "php" : [],
 "php-mysql" : []
 }
 },
 "services" : {
 "sysvinit" : {
 "httpd" : {

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 26 of 32

 "enabled" : "true",
 "ensureRunning" : "true"

 }
 }
 }
 }
 }
 },
 "Properties" : {
 "ImageId" : "i-123456",
 "SecurityGroups" : "MySecurityGroup",
 "InstanceType" : "m3.medium",
 "KeyName" : "MyKey",
 "UserData": {"Fn::Base64": {"Fn::Join":["",[
 "#!/bin/bash\n",
 "yum update -y aws-cfn-bootstrap\n",
 "/opt/aws/bin/cfn-init --stack ", { "Ref" :
"AWS::StackId" }, " --resource MyLaunchConfig ",
 " --region ", { "Ref" : "AWS::Region" }, "\n",
]]}}
 }
}

For a detailed walkthrough of bootstrapping EC2 instances by using AWS
CloudFormation and its related helper scripts, see the Bootstrapping Applications via
AWS CloudFormation whitepaper.8

Using the Services Together
You can use the services separately to help you provision new infrastructure
components, but you also can combine them to create a single solution. This approach
has clear advantages. For example, you can model an entire architecture, including
networking and database configurations, directly into an AWS CloudFormation template,
and then deploy and manage your application by using AWS Elastic Beanstalk or AWS
OpsWorks. This approach unifies resource and application management, making it
easier to apply version control to your entire architecture.

8 https://s3.amazonaws.com/cloudformation-examples/BoostrappingApplicationsWithAWSCloudFormation.pdf

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 27 of 32

Managing Application and Instance State
After you implement a suitable process to automatically provision new infrastructure
components, your system will have the capability to create new EC2 instances and even
entire new environments in a quick, repeatable, and predictable manner. However, in a
dynamic cloud environment you will also need to consider how to remove EC2 instances
from your environments, and what impact this might have on the service that you provide
to your users. There are a number of reasons why an instance might be removed from
your system:

• The instance is terminated as a result of a hardware or software failure

• The instance is terminated as a response to a “scale down” event to remove
instances from an Auto Scaling group

• The instance is terminated because you’ve deployed a new version of your software
stack by using blue-green deployments (instances running the older version of the
application are terminated after the deployment)

To handle the removal of instances without impacting your service, you need to ensure
that your application instances are stateless. This means that all system and application
state is stored and managed outside of the instances themselves. There are many forms
of system and application state that you need to consider when designing your system,
as shown in the following table.

State Examples

Structured application data Customer orders

Unstructured application data Images and documents

User session data Position in the app; contents of a shopping cart

Application and system logs Access logs; security audit logs

Application and system metrics CPU load; network utilization

Running stateless application instances means that no instance in a fleet is any different
from its counterparts. This offers a number of advantages:

• Providing a robust service – Instances can serve any request from any user at any
time. If an instance fails, subsequent requests can be routed to alternative instances
while the failed instance is replaced. This can be achieved with no interruption to
service for any of your users.

• Quicker, less complicated bootstrapping – Because your instances don’t contain
any dynamic state, your bootstrapping process needs to concern itself only with
provisioning your system up to the application layer. There is no need to try to

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 28 of 32

recover state and data, which is often large and therefore can significantly increase
bootstrapping times.

• EC2 instances as a unit of deployment – Because all state is maintained off of the
EC2 instances themselves, you can replace the instances while orchestrating
application deployments. This can simplify your deployment processes and allow
new deployment techniques, such as blue-green deployments.

The following section describes each form of application and instance state, and outlines
some of the tools and techniques that you can use to ensure it is stored separately and
independently from the application instances themselves.

Structured Application Data
Most applications produce structured, textual data, such as customer orders in an order
management system or a list of web pages in a CMS. In most cases, this kind of content
is best stored in a database. Depending on the structure of the data and the
requirements for access speed and concurrency, you might decide to use a relational
database management system or a NoSQL data store. In either case, it is important to
store this content in a durable, highly available system away from the instances running
your application. This will ensure that the service you provide your users will not be
interrupted or their data lost, even in the event of an instance failure.

AWS offers both relational and NoSQL managed databases that you can use as a
persistence layer for your applications. We discuss these database options in the
following sections.

Amazon RDS
Amazon Relational Database Service (Amazon RDS) is a web service that makes it
easy to set up, operate, and scale a relational database in the cloud. It allows you to
continue to work with the relational database engines you’re familiar with, including
MySQL, Oracle, Microsoft SQL Server, or PostgreSQL. This means that the code,
applications, and operational tools that you are already using can be used with Amazon
RDS. Amazon RDS also handles time-consuming database management tasks, such as
data backups, recovery, and patch management, which frees your database
administrators to pursue higher value application development or database refinements.

In addition, Amazon RDS Multi-AZ deployments increase your database availability and
protect your database against unplanned outages. This gives your service an additional
level of resiliency.

Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service offering both
document (JSON) and key-value data models. DynamoDB has been designed to
provide consistent, single-digit millisecond latency at any scale, making it ideal for high

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 29 of 32

traffic applications with a requirement for low latency data access. DynamoDB manages
the scaling and partitioning of infrastructure on your behalf. When you create a table,
you specify how much request capacity you require. If your throughput requirements
change, you can update this capacity as needed with no impact on service.

Unstructured Application Data
In addition to the structured data created by most applications, some systems also have
a requirement to receive and store unstructured resources such as documents, images,
and other binary data. For example, this might be the case in a CMS where an editor
uploads images and PDFs to be hosted on a website.

In most cases, a database is not a suitable storage mechanism for this type of content.
Instead, you can use Amazon Simple Storage Service (Amazon S3). Amazon S3
provides a highly available and durable object store that is well suited to storing this kind
of data. Once your data is stored in Amazon S3, you have the option of serving these
files directly from Amazon S3 to your end users over HTTP(S), bypassing the need for
these requests to go to your application instances.

User Session Data
Many applications produce information associated with a user’s current position within
an application. For example, as users browse an e-commerce site, they might start to
add various items into their shopping basket. This information is known as session state.
It would be frustrating to users if the items in their baskets disappeared without notice,
so it’s important to store the session state away from the application instances
themselves. This ensures that baskets remain populated, even if users’ requests are
directed to an alternative instance behind your load balancer, or if the current instance is
removed from service for any reason.

The AWS platform offers a number of services that you can use to provide a highly
available session store.

Amazon ElastiCache
Amazon ElastiCache makes it easy to deploy, operate, and scale an in-memory data
store in AWS. In-memory data stores are ideal for storing transient session data due to
the low latency these technologies offer. ElastiCache supports two open source, in-
memory caching engines:

• Memcached – A widely adopted memory object caching system. ElastiCache is
protocol compliant with Memcached, which is already supported by many open
source applications as an in-memory session storage platform.

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 30 of 32

• Redis – A popular open source, in-memory key-value store that supports data
structures such as sorted sets and lists. ElastiCache supports master/slave
replication and Multi-AZ, which you can use to achieve cross-AZ redundancy.

In addition to the in-memory data stores offered by Memcached and Redis on
ElastiCache, some applications require a more durable storage platform for their session
data. For these applications, Amazon DynamoDB offers a low latency, highly scalable,
and durable solution. DynamoDB replicates data across three facilities in an AWS region
to provide fault tolerance in the event of a server failure or Availability Zone outage.

To help customers easily integrate DynamoDB as a session store within their
applications, AWS provides pre-built DynamoDB session handlers for both Tomcat-
based Java applications9 and PHP applications.10

System Metrics
To properly support a production system, operational teams need access to system
metrics that indicate the overall health of the system and the relative load under which
it’s currently operating. In a traditional environment, this information is often obtained by
logging into one of the instances and looking at OS-level metrics such as system load or
CPU utilization. However, in an environment where you have multiple instances running,
and these instances can appear and disappear at any moment, this approach soon
becomes ineffective and difficult to manage. Instead, you should push this data to an
external monitoring system for collection and analysis.

Amazon CloudWatch
Amazon CloudWatch is a fully managed monitoring service for AWS resources and the
applications that you run on top of them. You can use Amazon CloudWatch to collect
and store metrics on a durable platform that is separate and independent from your own
infrastructure. This means that the metrics will be available to your operational teams
even when the instances themselves have been terminated.

In addition to tracking metrics, you can use Amazon CloudWatch to trigger alarms on the
metrics when they pass certain thresholds. You can use the alarms to notify your teams
and to initiate further automated actions to deal with issues and bring your system back
within its normal operating tolerances. For example, an automated action could initiate
an Auto Scaling policy to increase or decrease the number of instances in an Auto
Scaling group.

9 http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-tomcat-session-manager.html

10 http://docs.aws.amazon.com/aws-sdk-php/guide/latest/feature-dynamodb-session-handler.html

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 31 of 32

By default, Amazon CloudWatch can monitor a broad range of metrics across your AWS
resources. That said, it is also important to remember that AWS doesn’t have access to
the OS or applications running on your EC2 instances. Because of this, Amazon
CloudWatch cannot automatically monitor metrics that are accessible only within the OS,
such as memory and disk volume utilization. If you want to monitor OS and application
metrics by using Amazon CloudWatch, you can publish your own metrics to CloudWatch
through a simple API request. With this approach, you can manage these metrics in the
same way that you manage other, native metrics, including configuring alarms and
associated actions.

You can use the EC2Config service11 to push additional OS-level operating metrics into
CloudWatch without the need to manually code against the CloudWatch APIs. If you are
running Linux AMIs, you can use the set of sample Perl scripts12 provided by AWS that
demonstrate how to produce and consume Amazon CloudWatch custom metrics.

In addition to CloudWatch, you can use third-party monitoring solutions in AWS to
extend your monitoring capabilities.

Log Management
Log data is used by your operational team to better understand how the system is
performing and to diagnose any issues that might arise. Log data can be produced by
the application itself, but also by system components lower down in your stack. This
might include anything from access logs produced by your web server to security audit
logs produced by the operating system itself.

Your operations team needs reliable and timely access to these logs at all times,
regardless of whether the instance that originally produced the log is still in existence.
For this reason, it’s important to move log data from the instance to a more durable
storage platform as close to real time as possible.

Amazon CloudWatch Logs
Amazon CloudWatch Logs is a service that allows you to quickly and easily move your
system and application logs from the EC2 instances themselves to a centralized, durable
storage platform (Amazon S3). This ensures that this data is available even when the
instance itself has been terminated. You also have control over the log retention policy to
ensure that all logs are retained for a specified period of time. The CloudWatch Logs
service provides a log management agent that you can install onto your EC2 instances
to manage the ingestion of your logs into the log management service.

11 http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html

12 http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/mon-scripts-perl.html

Amazon Web Services – Managing Your AWS Infrastructure at Scale February 2015

Page 32 of 32

In addition to moving your logs to durable storage, the CloudWatch Logs service also
allows you to monitor your logs in near real-time for specific phrases, values, or patterns
(metrics). You can use these metrics in the same way as any other CloudWatch metrics.
For example, you can create a CloudWatch alarm on the number of errors being thrown
by your application or when certain, suspect actions are detected in your security audit
logs.

Conclusion
This whitepaper showed you how to accomplish the following:

• Quickly provision new infrastructure components in an automated, repeatable, and
predictable manner

• Ensure that no EC2 instance in your environment is unique, and that all instances
are stateless and therefore easily replaced

Having these capabilities in place allows you to think differently about how you provision
and manage infrastructure components when compared to traditional environments.
Instead of manually building each instance and maintaining consistency through a set of
operational checks and balances, you can treat your infrastructure as if it were software.
By specifying the desired end state of your infrastructure through the software-based
tools and processes described in this whitepaper, you can fundamentally change the
way your infrastructure is managed, and you can take full advantage of the dynamic,
elastic, and automated nature of the AWS cloud.

Further Reading
• AWS Elastic Beanstalk Documentation

• AWS OpsWorks Documentation

• Bootstrapping Applications via AWS CloudFormation whitepaper

• Using Chef with AWS CloudFormation

• Integrating AWS CloudFormation with Puppet

