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Preface

The world was in a very unstable state before this Festschrift. It waited,
impatiently, for a lightest touch to explode with thousands of messages flown
across the globe. The messages have turned into stories, and the stories have
turned into this book.

As the reader is undoubtedly aware, this book is dedicated to Alex Yakovlev
on the occasion of his 60th birthday, but let us not confuse the occasion with
the underlying cause, which is: everybody loves Alex! His open mind, infectious
enthusiasm, and positive thinking are driving the community, and we – his stu-
dents, colleagues and friends – thank him here, in writing.

It is important to note that not everyone was able to complete their writing
in time to be included into the first edition of the book. But fear not: as a self-
appointed editor I declare this book fully asynchronous and unbounded. Let us
celebrate the variability of the contributions with respect to their completion
time (which is likely to follow Alex’s favourite long-tail distribution), as well as
their topic and length, and welcome new contributors, who will become part of
future editions of the book1.

One of the many lessons I learned from Alex is that ‘when’ is just as important
as ‘what’ and ‘why’. We present our stories to Alex on his 60th anniversary;
at best, I can only half understand the magnitude of this number in my 30s,
therefore let me delegate the task of arguing that “60 is not just a number” to
a philosopher in our community:

Professor Alex Yakovlev.
The days of our years are threescore years and ten. Respect our fore-

fathers, as you become one. Marvel at their wise words and institutions;
the giant shoulders to our improbable but superlative technical edifice.
The next 40yrs will be as exciting as the last, but you will not lead its
charge. Time now to set aside personal aspiration and firm the shoul-
der for those who follow. As life takes you to this new and scary place,
remember you are not alone in the dark.

Though ships that pass, I am very pleased to have known, shared and
laughed with you o’er years beyond number. And equally pleased to count
you friend and colleague.

60 is not just a number; it’s the end of childhood.

Ian Phillips (ARM)

I would like to thank everyone who contributed to this book, sent their words of
encouragement and support, and helped with the editing. And with no further
ado, ladies and gentlemen, I invite you to join Alex and turn this page.

Andrey Mokhov
July 2016, Newcastle

1 Please contact me by email andrey.mokhov@ncl.ac.uk if you would like to contribute
a paper or for any other queries.
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Resilient Bundled-Data Design: Motivation,

Results to Date, and Remaining Challenges⋆

Peter A. Beerel1 and Ney L. V. Calazans2

1 University of Southern California - Los Angeles, California, USA,
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2 Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre, Brazil,
ney.calazans@pucrs.br

Abstract. The periodic nature of the global clock in traditional syn-
chronous designs forces circuits to be margined for the worst possible case
of process, voltage, temperature, and data conditions. This constrains the
silicon to operate at worst-case frequencies and at conservative supply
voltages. Resilient architectures promise to remove these margins, by
detecting and correcting timing errors when they occur, thereby creat-
ing the potential to achieve real average-case operation. However, syn-
chronous resilient schemes previously proposed can suffer from multiple
issues, including being susceptible to metastability and requiring often
complex changes to the architecture to support replay-based recovery
from timing errors. These problems respectively lead to circuit failures
and/or incur high timing penalties when errors occur. This paper re-
views a recently proposed resilient bundled-data template called Blade
that is robust to metastability issues, requires no replay-based logic, and
has low timing error penalties. It also describes some open issues and
new research opportunities this template presents, including automation
problems to target average-case operation, specific circuit optimizations
to minimize resiliency overhead, and the need for new test procedures to
tune delay lines and screen out bad chips.

1 Introduction and Related Work

Traditional synchronous designs must incorporate timing guardbands to ensure
correct operation under worst-case delays caused by process, voltage, and tem-
perature (PVT) variations as well as data-dependency [6]. This is particularly
important in low-power low-voltage designs, as performance uncertainty due to
PVT variations grows from around 50% at nominal supply to around 2,000%
in the near-threshold domain [14]. To address this problem, many synchronous
design techniques for resilient circuits have been proposed that address delay
variations. For example, canary FFs predict when the design is close to a setup
timing failure (see e.g., [41]). Designs can then adjust their supply voltage or
clock frequency either statically or dynamically to ensure correct operation at

⋆ This is an extended and updated version of an ECCTD 2015 invited paper on the
same topic.
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the edge of failure. The adverse impact of variations on hold margins are signif-
icantly more challenging to manage because changing the clock frequency and
voltage does not typically resolve hold problems and thus these must be very
conservatively managed. Hold constraints are typically resolved by preemptively
adding hold buffers to all "short" paths in the design. Unfortunately, at low
voltages, the number of hold buffers needed can be much larger than at nominal
voltages, because the increased delay variation causes: (1) clock uncertainty to
grow; (2) a larger fraction of paths to be identified as potentially short, due
to the possible decrease in delays resulting from variability; and (3) the hold
buffers themselves possibly being unexpectedly fast. All these margins translate
into considerable increases in energy consumption.

Several research groups have explored adding a degree of timing resiliency

into the design to detect and then recover from setup violations [9, 12, 25, 27].
There are two general approaches: architecturally dependent, or "replay-based"
approaches, and architecturally independent. The former includes Razor II [12]
and the Intel approach described in [6]. The problem with these approaches is
that they work much like pulsed latch circuits: the wider the pulse, the more
resiliency is obtained, at the cost of worsening hold time margins [15]. More-
over they require synchronizers in the control path, incurring long delays to
identify whether an error occurred, and demand complex replay and recovery
mechanisms [6,12,27]. Granted, the area overhead of these can be amortized by
reusing existing recovery logic (e.g., for resuming after a mispredicted branch),
but the techniques remain architecturally invasive and thus a design challenge.
In contrast, architecturally independent approaches like Bubble Razor [15] and
TIMBER [9] require no architectural changes and can be automatically gener-
ated from standard RTL specifications. The flow involves replacing flip-flops with
retimed latches that have non-overlapping clocks, mitigating hold time problems.
Bubble Razor, for example, avoids replay and recovery by immediately stalling
neighboring stages via clock gating, and solves timing errors on the fly and lo-
cally. However, the template assumes that metastability can be resolved within
one clock period, which is often unrealistic and leads to poor mean-time-between-
failures rates [3]. More recent work [25] proposes to borrow time only from the
following stage by quickly boosting its supply voltage to accommodate for the
borrowed time. Unfortunately, this approach requires fast error detection and
dynamically adjustable supply voltages which limits its applicability.

Different asynchronous templates have also been proposed to address the
excessive margining problem (e.g., [42]). Quasi-delay-insensitive (QDI) templates
use completion signal logic which makes them robust to delay variations at the
cost of increased area (often 4x larger than synchronous counterparts or even
more) and high switching activity due to a return to zero paradigm (e.g., [16,
38]). Bundled-data templates (e.g., micropipelines [39]) use delay lines matched
to single-rail combinational logic, providing a low area, low switching activity
asynchronous solution (e.g., [10]). However, the delay lines must be implemented
with sufficiently large margins in the presence of on-chip variations [11], reducing
the advantages of this approach. Researchers have proposed different solutions
to mitigate these margins, such as duplicating the bundled-data delay lines [8],
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constraining the design to regular structures such as PLAs [24] and using soft
latches [28]. Others have suggested current-based completion sensing techniques
(e.g., [1, 29]) that rely on analog current sensors, which can be prohibitively
power hungry.

This work focuses on a recently proposed asynchronous design template that
couples the architectural benefits of resilient techniques with the flexibility of
asynchronous bundled-data pipelines. The template, called Blade, minimizes
hold time issues, requires no replay-based logic, and is supported by an au-
tomatic translation flow from synchronous RTL specifications. It is not only safe
from metastability issues but also takes advantage of the low average metasta-
bility resolution times, which leads to low timing error penalties compared to
synchronous alternatives. It thus provides significantly higher potential perfor-
mance and voltage scaling power benefits.

The paper reviews Blade principles and operation, comparing and contrasting
the approach to synchronous alternatives. Its recent application to the design
of a MIPS OpenCore processor illustrates techniques to reduce overheads and
maximize performance and power benefits. The paper also discusses the range of
designs for which this design style is likely to provide the biggest overall benefit,
as well as some of the open problems that must be solved to maximize the
opportunity to use Blade and make the method commercially attractive.

2 The Blade Bundled-Data Architecture

As Figure 1 shows, pipeline stages in Blade use single-rail logic followed by Tran-
sition Detector with Time Borrowing (TDTB) error detecting latches (EDLs)
[6,32], Q-Flops [35], and two reconfigurable delay lines. The stage-to-stage delay
line is of duration δ and controls when the TDTB goes transparent and begins
to propagate data at the output of the combinational logic to the next stage. Ac-
cording to the timing diagram depicted in Figure 2, the asynchronous controller
speculatively assumes data at the output of the TDTB latch is stable and trig-
gers the request to the next stage via the standard bundled data request channel
consisting of R.req and R.ack. The second delay line is of duration ∆ and defines
a time window during which late transitions that violate this assumption (i.e.
timing errors) are allowed, which is called the timing resiliency window (TRW).
While ∆ is elapsing, CLK is high (i.e. the Data Latch is transparent).

Error detecting latches are responsible for triggering an error if a timing
violation occurs during the TRW. While there are several EDL implementations
(e.g., [6,9,15,32]), Blade employs a custom design [32] based on TDTB latches [6].
The basic design requirement is this component triggers an error on its E output
in response to any transition or glitch during the TRW that is significant enough
to also propagate to its data output [32]. In this way, no timing violation is
missed.

In addition to the push data channel L, Blade uses a second pull error channel

formed by signals RE.req and RE.ack to manage potential timing violations.
Near the end of the TRW, after receiving a request on the RE.req signal, the
controller will trigger a signal that directs the Q-Flop to sample the E signal,
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Fig. 1. The Blade architecture typical stage structure.

determining whether or not a timing error occurred during the TRW. If an error
did not occur RE.ack is immediately asserted, else ∆ is triggered and only after
that RE.ack is asserted. Because the setup time of the TDTB Error Latch may
be violated, the E signal may be metastable during sampling. To cope with this,
the Q-Flop has a built-in metastability filter that guarantees metastability does
not propagate to its Err output. In fact, this output is intentionally made a
dual-rail signal that only becomes valid after the Q-Flop has safely determined
if an error occurred or not. The controller simply waits for this to happen before
acknowledging the error channel request via the RE.ack signal. This ensures that
metastability, while possibly causing an instantaneous cycle slowdown, does not
propagate to the main control path. This is in stark contrast to synchronous
schemes, which must wait for a fixed, larger metastability resolution time set to
guarantee a sufficiently large mean time between failures (MTBF).

There are two main delay lines that affect the performance of Blade, δ and
∆. Compared to a traditional synchronous circuit, with clock period C, we set
C = δ+∆. The TRW (defined by ∆) must be large enough to capture even the
worst-case datapath delay. However, a trade off in setting these values emerges,
as increasing ∆ allows δ to be smaller and the system to operate faster if no
timing violations (errors) occur; on the other hand, the shorter stage-to-stage
delay means that more transitions will occur while the latch is transparent,
thereby increasing the frequency of errors that force subsequent pipeline stages
to be delayed by the now larger ∆ value. The optimal ∆ depends greatly upon
the amount of total variation (due to data and PVT variations) that can be
expected in the design, and can range from 20% to over 60% [18] of the stage
total delay. This is in contrast to Bubble Razor whose optimal error rate is
less than 5% percent [15] and synchronous replay-based Razor schemes whose
optimal error rate is less than 1% [7].

When ∆ is sufficiently smaller than δ, the next stage has time to check
whether the previous stage has an error before it makes its own latch transpar-
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Fig. 2. Typical timing diagram for the Blade template.

ent, delaying the transparency phase if the previous stage had an error. Stage
clocks will thus remain non-overlapping, as illustrated in Figure 2, making it easy
to satisfy hold times. This is again in contrast to most synchronous resiliency
schemes that make meeting hold time margins harder. Supporting larger values
of ∆ (w.r.t. δ) is also possible and is beneficial when data/process yield high
variability. However, the result is that the transparency phases of neighboring
stages clocks will overlap, and this may cause hold time issues similar to those
seen in synchronous approaches (see [15] for an encompassing analysis). Man-
aging these hold time issues in synchronous resiliency approaches is particularly
challenging, as they cannot be fixed by slowing down the clock. Accordingly,
hold times need to margined to a higher degree than setup times. As mentioned
earlier, these hold margins are typically satisfied by adding hold buffers to the
datapath, but the higher margins may make the number of added buffers im-
practically large for designs with high variability. In contrast, an asynchronous
solution like Blade can easily add an additional programmable delay line to the
backward control path, actively managing the degree of transparency overlap,
which makes such extra margins unnecessary. In both cases the flexibility of the
asynchronous solution makes managing hold time issues far more practical.

Lastly, note that Blade also uses programmable delay lines, because under
significant PVT variations it may be difficult to achieve the optimal TRW, which
captures the delay of all worst-case paths via static design analysis and optimiza-
tion. Programmable delay lines allow customizing the actual delay post-silicon.
In particular, the authors expect that during chip characterization delay lines
are analyzed and optimally configured for every chip produced, subject to some
quantization error. In particular, quantization errors in δ may lead to a non-
optimal expected error rate, but the overall performance will remain close to
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optimal [18]. Any additional margin needed to account for worst-case paths un-
der PVT variations can be added only to the ∆ delay line. Given the average
frequency of timing violations can be in the range of 20%-40%, the impact of
the added margin is only experienced 20-40% of the time, greatly reducing the
percentage drop in performance. This is in contrast to non-resilient bundled-data
designs (e.g., [10]) in which the added margin affects performance 100% of the
time. As an example, a 10% increase in variation due to PVT can result in up
to 30% margin penalty in synchronous designs; however, even considering a 40%
rate of timing violations, the computed performance impact on Blade is less than
13% [19].

3 Preliminary CAD Flow

The authors’ teams developed a preliminary flow to automatically convert single
CLK domain, synchronous RTL designs to the Blade template using industry
standard synthesis tools. The flow consists of various Tcl and shell scripts that
drive the tools and a library of custom cells (e.g., the TDTB error latch), needed
to make the template efficient.

In addition, to further reduce area and power overheads of the error de-
tection logic, two microarchitectural optimizations are used. First, not every
pipeline stage need be error-detecting, and non error-detecting stages can time
borrow. Time-borrowing stages permit data to pass through the latch during the
entire time it is transparent without flagging violations. The authors found that
alternating between error-detecting and time-borrowing stages can work well as
this effectively halves the overhead of error detection logic while still providing
sufficient resiliency. Secondly, only latches that terminate near-critical paths [19]
need to be error detecting, further reducing the number of EDLs in the entire
design.

As Figure 3 illustrates, the flow has five main steps:

1) Synchronous Synthesis: The synchronous RTL is synthesized to a flip-flop
(FF-based) design for given clock.

2) FF to Latch Conversion: FFs are converted to master-slave latches by syn-
thesizing the design using a fake library of standardized D flip-flops (DFFs)
that can be easily mapped to standard cell latches.

3) Latch Retiming: The latch-based netlist is retimed using a target TRW,
where the combined path delay constraint of any two stages equals the given
clock period. The purpose is to split the critical path in two parts, which
enables hiding inter-stage Blade handshaking overheads.

4) Resynthesis: The retimed netlist is then resynthesized to reduce the num-
ber of TDTBs and increase performance of the final resilient netlist. In par-
ticular, re-synthesizing the logic happens such that the delay to a subset of
latches is sufficiently fast to guarantee that data is stable before the latches
go transparent (i.e., is not near-critical). This means that the latches do
not need to be error-detecting, reducing the EDL overhead, and potentially
reduces the error rate at the expense of increasing the datapath logic area.
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Fig. 3. The Blade design flow.

Targeting latches that cause the most errors in typical applications can lead
to significant reductions in error rates with marginal increase in area. In [19]
the authors employ a simple brute-force search, but more powerful means
of identifying which subset of latches to speed up is an interesting area of
future work.

5) Blade Conversion: The resynthesized latch-based netlist is then converted
to the Blade template, by removing clock trees and replacing these with
Blade controllers. The control logic, delay lines, and error detection logic
are also inserted to create a final Blade netlist. There are many ways to
implement the control logic [5]; using burst-mode specifications was explored
in [19].

The authors’ preliminary pre-P&R flow was tested and evaluated on a 3-stage
version of Plasma [33], a MIPS OpenCore CPU, targeting a 28nm FD-SOI tech-
nology. The gate-level Blade design was compared to the equivalent synchronous
design, and post-synthesis results demonstrate that for an area overhead of 8.4%,
the Blade version of Plasma achieves a 19% average performance boost with a
timing resiliency window of 30%. Out of the 8.4% area overhead, 32% is due
to the use of EDLs and to the FF to latch conversion. With the removal of
synchronous PVT margins, it led to an estimated 30%-40% improvement in
performance [19].
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4 Recent Developments and Open Research Problems

The technology is being commercialized by Reduced Energy Microsystems [34],
a semi-conductor start-up company co-founded by William Koven, Dylan Hand,
and Eleazar Vega-Gonzalez. They recently designed and fabricated a Blade-based
design for light-weight encryption cyphers [20] and have plans on using Blade to
build energy-efficient processors for the Internet of Things market. The success
of the commercialization of Blade, however, will likely require solving several
research challenges which we outline here.

4.1 Scope and Scale of Design

REM’s recent work involved extending the flow illustrated in Figure 3 to start
from a synthesizable-subset of SystemVerilogCSP [36] and include back-end
place-and-route. In particular, they leveraged the USC-developed tool CSP2RTL
to automatically decompose CSP designs into blocks of synthesized uncondi-
tional logic surrounded by efficient SEND/RECEIVE primitives. This tool al-
lows asynchronous designers to couple the benefits of hierarchical decomposition
and conditional communication with resilient pipelined designs and is based on
a similar framework used for industrial-scale QDI designs [4].

Interestingly, the work in [20] represents just the beginning of what is pos-
sible when the scope of synthesizable CSP specifications is expanded. For ex-
ample, we envision supporting arbitration in CSP where the CSP2RTL tool
would automatically insert arbitrated merge blocks to enable the automatic de-
sign of complex routers and NoC designs. Moreover, we believe we can support
mixed-timing interfaces in SystemVerilogCSP for which the tool will automati-
cally insert clock-domain-crossing circuits. This will enable seamless integration
of resilient bundled-data blocks within otherwise synchronous designs.

4.2 Area and Energy Efficiency

A CSP-based resilient design flow can support energy-efficient hardware design
for a large variety of applications, but the added complexity associated with
hierarchical design and conditional communication must be managed. In par-
ticular, over-decomposition can lead to increased overheads in terms of extra
pipeline stages, excess error-detecting logic, and more delay lines and control
logic. To properly navigate this increased design space, high-level energy and
power estimation tools that guide decomposition will be important. In addition,
the use of slack-less controllers such as in [20] can often provide much of the
benefits of conditionality without the area overhead of a distinct pipeline stage.
This design exploration should be guided by a notion of average-performance
and average-energy consumption that considers the probabilities implicit in the
conditional communication and the probabilities associated with error-rates at
each error-detecting pipeline stage. In particular, understanding the implication
of clustering latches into pipeline stages will likely be critical for a comprehen-
sive flow that can accommodate industry-scale applications. Too few pipeline
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stages and the design would loose the benefits of average-case data whereas too
many pipeline stages would lead to too high overhead. Finding the right balance
is likely design and use-case specific and will demand new tools to guide the
design.

Even for simple RTL-based resilient bundled-data designs, numerous ad-
vances in area and power efficiency will likely be essential to the success of
the technology. In particular, the design of the delay line and error-detecting
logic is critical to efficiency. We expect one of the significant advantages of this
design style is its ability to naturally support dynamic voltage scaling [21, 40].
Unlike a synchronous design in which adjusting voltages often requires stalling
the pipeline for many clock cycles while the clock source is reconfigured, bundled-
data circuits can be designed to automatically adapt to voltage scaling. If the de-
lay line tracks the delay of the combinational logic, it need not be re-programmed
when the supply voltage is changed. To support this strategy, we recently pro-
posed a framework for delay line design [40] in which we minimize average energy
subject to two-sided voltage scaling constraints. In fact, we anticipate we will
need to build a library of delay elements and a CAD tool that chooses which
delay elements to use based on an analysis of the likely critical path of a pipeline
stage and its voltage scaling properties.

Minimizing the cost of error-detecting logic latches is also important. There
are two distinct approaches to this problem. The first approach is re-synthesis in
which new constraints are added to the logic synthesis / physical design to make
certain latches non-critical, thereby saving the overhead of making them error-
detecting. In [23], we developed a geometric programming based mathematical
algorithm that guides re-synthesis to minimize the total area of the design. We
have found that this often reduces error rates, but explicitly modeling and con-
sidering average-case performance is interesting future work. Moreover, we are
exploring resilient-aware, latch-based retiming. Recall that the Blade CAD flow
described above involves replacing FFs with a pair of latches and retiming of the
slave latches to create a balanced latch based design. This balance aids in hiding
the performance overhead of the asynchronous control and mitigating hold-time
problems. Commercial tools support retiming of sequential elements, includ-
ing latches, but the results are often sub-optimal for resilient designs as their
retiming algorithm does not understand the inherent trade-off associated with
near-critical paths and the error-detecting/non-error-detecting latch at which the
path ends. The second approach is to design efficient multi-bit error-detecting
latches. Amortizing the cost of memorizing whether an error occurs can lead to
significant benefits in terms of area and power [22].

While most of the circuit design research has focused on super and near-
threshold design, another important domain for Blade designs may be sub-
threshold operation, particularly for the sub-set of the market in which per-
formance is not important. Sub-threshold design, however, introduces new chal-
lenges in guaranteeing reasonable static noise margins and minimizing leakage
currents. Fortunately, techniques to achieve efficient sub-threshold designs for
synchronous circuits are well-known [2]. Using these techniques to design ef-
ficient efficient asynchronous control circuits, delay lines, and error-detecting
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latches for the sub-threshold operation is an interesting and important area of
research.

Finally, numerous researchers have developed bundled-data design flows us-
ing commercially-supported physical design tools [11, 16, 17] and REM has de-
veloped a prototype flow for Blade circuits [20]. To extend these to complex
Blade designs, however, a few more enhancements will be necessary. First, new
standard-cells must be designed, including efficient error-detecting latches and
mutual exclusion elements. In addition, supporting the non-standard timing con-
straints and trade-offs associated with the introduction of programmable delay
lines in complex Blade designs is novel and challenging. A naïve implementation
can lead to a quadratic explosion of delay lines between interacting Blade stages.
Instead, an intelligent sharing of delay lines is needed to guarantee using only a
linear number of delay lines and this sharing should be guided by a variety of
factors.

4.3 Design for Test, Debug, and Manufacturability

Traditional synchronous testing methodologies are based on an implicit assump-
tion of statically controlled voltages and clocks and that the associated control
logic is minimal (an on-chip PLL and off-chip voltage regulator). Traditional test
methodologies have thus focused on the max-delay constraints in the core digital
logic and relied on functional tests to cover the control logic. However, bundled-
data resilient designs are more complex as they have programmable delay lines
in every pipeline stage and have error-detecting logic that indicates when setup
failures occur. One recent study explored the testability of the Blade template
and found while many faults were implicitly testable by the error-detecting logic,
other faults led to excessive errors or disabled the error-detecting capability of
the circuit [26]. The complex nature of testing these circuits warrants the study
of a holistic test methodology that encompasses new resiliency-aware fault mod-
els, test coverage, test generation, and design for test. This will include test
methods for optimally tuning the programmable delay lines based perhaps on in

situ error rate monitoring, as well as means to identify and discard chips with
delay variations too large to correct.

5 Discussion and Conclusions

Asynchronous design has become an increasingly attractive alternative to syn-
chronous design in several applications for a variety of reasons. For example, Intel
showed that high-performance quasi-delay-insensitive (QDI) design is sufficiently
robust and effective for high performance networking chips [13]. Moreover, the
challenges of managing a global clock in large neuromorphic chips, have driven
IBM [31] and Stanford [30] to adopt an asynchronous mostly QDI interconnect.
Other academic researchers have found that built-in flow-control in bundled-
data network-on-chips lead to significant benefits in terms of latency and area
compared to synchronous counterparts [16]. However, efforts to commercialize
bundled-data pipelines for processors demonstrated only marginal performance
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benefits [10]. We hope that adding resiliency opens the door for much larger
performance advantages to a broader range of applications.

Generally speaking, the range of architectures and applications for which re-
siliency adds value depends on two factors: the overhead one can expect from
the error-detecting latches and the variance of the data and PVT dependent
delays [37]. The benefits of a resilient design are higher when the fraction of
combinational to sequential area is large, because the relative overheads of the
TDTBs is smaller. Thus, resilient design favors less pipelined designs. Moreover,
an architecture where the difference between average and worst-case delay is
large will likely benefit more than a well balanced architecture and even more
likely if the worst-case paths are rarely executed [37]. For example, architectures
that involve complex logic with rarely executed long carry chains will benefit
more than balanced designs consisting of many regular structures (e.g., memo-
ries). Fortunately, there are many architectural decisions that can be made to
favor timing resilient templates [37].

Lastly, it is important to emphasize that the advantages of asynchronous
resilient designs are difficult to approximate in synchronous architectures. In
particular, asynchronous resilient designs adapt to the quite low average-case
time it takes for metastability to resolve, which in principle can be unbounded.
In contrast, the periodic nature of the clock forces synchronous alternatives to
be designed for a much larger fixed resolution time, set by an acceptable MTBF.
This difference enables our solution to be architecturally-independent, whereas
existing robust synchronous solutions are forced to be based on recover and
replay logic to obtain reasonable MTBF.

Thus, we believe asynchronous resiliency is a promising research direction
to obtain efficient designs which adapt to the combination of PVT and data
variations and naturally supports voltage scaling. We believe that a good initial
market for this technology is the Internet of Things market, but the higher energy
efficiency may very well be attractive to more general computing domains.
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Abstract. Asynchronous circuits have been proposed for many years and have 
successfully shown their robustness to delay variations making them a key solu-
tion for digital and mixed-signal circuits. More specifically, asynchronous cir-
cuits have demonstrated their efficiency in solving control, arbiter and interfac-
es issues. In order to make them more widely adopted, modeling and synthesis 
of asynchronous circuits have been proposed through different methodologies 
that we will firstly detail and discuss in this paper. We will then demonstrate the 
use of these specific methodologies for the synthesis and design of digital and 
analog-to-digital interfaces. The overall paper aims at providing a study and 
analysis of specific interfaces and their dedicated controllers for synchroniza-
tion and energy management applications while discussing the asynchronous 
community positioning accordingly. 

Keywords: Asynchronous circuits, controllers, interfaces, digital, analog, mod-
elling, synthesis, verification, STGs, Petri Nets. 

1 INTRODUCTION: TOOLS TO SOLVE INTERFACES 
ISSUES 

This is now a cliché to say that there is a lack of tools for the design and verification 
of asynchronous circuits. But is that true? Not really, if we consider how challenging 
it is to enumerate all the tools that were developed and/or are still in use: Sis, Assas-
sin, Forcage, Meat, Verdect, Syn, Versify, Tangram, Balsa, Teak, Cast, NCL, Ack, 
Tast, Pipefitter, Chp2Vhdl, Verilog2Stg, Desynch, Class, Haste, Tiempo-Tools, Petri-
fy, Minimalist, Proteus, 3D… 

So, why are there so many of them, and why people are complaining about a lack 
of tool? This is probably because there is still no consensus, neither about a modeling-
language nor about a circuit-style. Therefore, many modeling languages and many 
asynchronous circuit styles are in use, not giving the opportunity of visible ones to 
emerge. 
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Prof. Yakovlev vision is focused, the language has to be suited to model, verify 
and synthesize asynchronous controllers, i.e. control circuits that are reactive to their 
input signals and able to drive their output signals, following a formal specification of 
concurrency, causality and choice. With this respect, a high level language is not nec-
essary, there’s no need for communicating processes, nor channels, but instead there 
is the need for modeling signals’ behavior formally using concurrency and choice at a 
very fine grain. Exit Tangram, Balsa, CHP, HDLs, etc. and welcome Petri Nets [1] 
[2], STGs [3], or FSMs, even if there might be some links between them [4]. The 
spectrum of formalisms being narrowed, what is the appropriate graph based method-
ology and the supporting modeling language? PN, STGs, FSMs all target speed inde-
pendent circuits which are robust enough to accommodate the variations the control-
lers have to resist, but they are not equivalent with respect to their ability to efficiently 
model and synthesize controllers. 

Prof. Yakovlev and his team contributed to a major evolution of these graph-based 
approaches with the introduction of CPOG [5], because it prevents the designer from 
explicitly enumerating all the signal events and their traces together with their causal 
relations. CPOG is based on a description of the scenarios, i.e. the events traces, using 
a compact functional form. The signal encodings are specified apart, thus simplifying 
the controller’s behavioral specification, and at the same time enabling synthesizing 
the controller with different encodings but keeping the same structural specification. 
Both aspects brought significant improvements to the modeling and design of asyn-
chronous controllers. 

So, now it’s fine, let’s develop design tools using all the concurrency theory, the 
computer science and electrical engineering knowledge and skills underneath, in order 
to apply and prove that all this research is solving relevant real and physical problems. 
With this respect Prof. Yakovlev vision is very wide, especially in the domain of in-
terfaces we want to focus on in this paper. He proposed the specification, implementa-
tion and verification of many arbiters, synchronizers and controllers for the communi-
cation between digital circuits both synchronous and asynchronous, or between digital 
and analog circuits, and also controllers dedicated to phase encodings and analog 
circuits, etc… 

Prof. Yakovlev scientific contribution is significant and well recognized; it was 
used and continues to inspire many works in different domains, such as the design of 
interfaces we choose to briefly address in this paper, because it illustrates very well 
the broad scientific knowledges involved. 

2 DIGITAL INTERFACES FOR SYNCHRONIZATION 

In advanced digital systems with nowadays large System-on-Chips and multicore 
architectures, one of the primary concern is the interconnect infrastructure, and how 
to implement efficient system communication for on-chip or off-chip communication. 
With tens of cores, hundreds of different clocks, and due to the always larger delay in 
wires compared to delay in gates, communication architecture and its clean imple-
mentation is a great challenge. Deep pipelining must be implemented to transport 
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information from one die side to its other side. It is more costly to exchange data than 
performing computation.  

In this context, Prof. Yakovlev was a precursor and very early applied his 
knowledge of asynchronous controller design to the design of generic and abstract 
interfaces to implement system interfaces. In [6], he early proposed the model and 
design of controllers to implement system communication of arbitrary protocols. It 
was applied to a simple fifo interface but claimed to be generic for application to any 
kind of interfaces: “a unified solution to the problem of synthesizing logic implemen-
tations from abstract specifications. Although easily applied to control circuits, it is 
suitable for all types of interface hardware”. It is worth to notice how abstract models 
can help to derive logic interfaces implemented in asynchronous logic. Prof. Ya-
kovlev studied many kind of interfaces, such as [7] proposing system communication 
using STG, allowing reader & writer to indefinitely wait for an answer, compared to 
earlier work using fundamental mode : such interfaces was then latency insensitive (at 
protocol and system level) and Speed Independent or QDI at signal level. In [8], the 
proposed asynchronous interfaces could cope with various timing and protocol inter-
faces.  

One of the primary aspects of system communication is obviously synchronization: 
a clean synchronization of low level signals must be performed to ensure robust 
communication. On this domain, Alex Yakovlev has made on the long time a very 
wide study of synchronization and its formalization, both at electrical level with the 
study of synchronizer cell elements, and at logical level with the design of a full range 
of asynchronous arbiters, using various specification methods and proposing different 
services. He proposed for instance flat arbiters [9], priority arbiters [10], and parallel 
multi-resource arbiters [11], among many other ones. More recently, he also proposed 
opportunistic merge elements, as a way to efficiently control asynchronous events 
within a switch cap converter. One can notice that smart digital interface implement-
ing synchronization may also be required for efficient control of the analog domain, 
as it will be presented in section III. 

These contributions on interface synchronization and arbiter design have been a 
regular source of inspiration for the design of large scale system level interconnects. 
In the 2000’s, the Network-on-Chip paradigm has been introduced and many flavors 
where proposed, in conjunction with the Globally Asynchronous Locally Synchro-
nous (GALS) paradigm as early introduced by D. Chapiro. The NoC architecture 
offers first of all a clear separation of computation and communication, compared to 
previous bus-based topologies, and NoC perfectly fits the GALS paradigm, where 
computations (core, accelerators, etc…) are implemented using synchronous methods 
while system communication are implemented using asynchronous methods. Many 
flavors of GALS NoCs are then possible: either multi-synchronous, or meso-
chronous, or fully asynchronous, using either FIFO like interfaces or pausable clocks 
interfaces. Many asynchronous Network-on-Chip have been introduced and imple-
mented, such as Chain, QNoC, Mango, ANOC, Hermes-A and more recently a 2-
phase bundle-data NoC. 

For the CEA-LETI ANOC architecture, the proposal is based on wormhole packet 
switching, it includes virtual channels for Quality of Service, while routers and links 
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are implemented using Quasi Delay Insensitive logic with 4-phase / 4-rail protocol for 
robust system communications. The early arbiters design within the ANOC router 
were initiated by early works from Marc Renaudin and by priority arbiters [9] from 
Prof. Yakovlev proposal. Within CEA-LETI, a full series of circuit demonstrators 
have been developed using ANOC protocol, which was continuously improved by 
adding new features, such as on-chip and off-chip NoC interfaces, Design-for-Test 
wrapper, automatic router power down using activity detection, integration of DVFS 
scheme within NoC units, and with an automated flow for timing analysis and physi-
cal implementation. An extensive comparative study showed a clear benefit of ANOC 
versus its synchronous counterparts with a gain in power consumption by a ratio of 5. 

For NoC topologies, a challenge is the design of efficient and robust NoC links us-
ing dense encodings. Alex Yakovlev proposed original contributions on protocol sig-
naling for system communication. For instance in [12], he proposed a novel self-
timed communication protocol based upon phase-modulation of a reference signal. 
The reference and the data are sent on the same transmission lines and the data can be 
recovered observing the sequence of events on the same lines phase, offering a com-
pact code, while being robust to faults. In the same period, for system communication, 
people tried also to extend and optimize the existing 2-phase protocol (for reduced 
number of transitions compared to 4-phase), but using denser codes. For examples, 
the LETS code offers a generic solution for 2-phase multi-rail codes, their protocols 
and their associated protocol converters. More recently, a 1-of-T multi-rail code was 
proposed for 2phase signaling with efficient 2-phase/4-phase protocol converters. 

 
These few examples of asynchronous protocols and corresponding protocol con-

verters can be applied to 3D architecture. 3D technology using so-called Through-
Silicon-Via (TSV) offer a new paradigm for further system integration, with strong 
benefits in terms of yield and system partitioning, power reduction due to shorter 
connections, and a full spectrum of new architecture by using heterogeneous technol-
ogies (logic, memory, NVM, MEMs, etc). Again, in such 3D architecture, scalable 
and modular system communication is a challenge, and it can be elegantly imple-
mented as an asynchronous 3D Network-on-Chip, by offering power efficient and 
robust 3D asynchronous communications without any global 3D clocking. 

To conclude this section, asynchronous logic offers an efficient way to implement 
digital interfaces at system level. GALS has still a long story to play. The main design 
challenges are still the same: synchronization, arbitration, protocol communication 
and signaling. Detailed modeling of the interfaces is mandatory to ensure reliability 
and robust design. More automation would help but due to the large spectrum of all 
these interfaces, it will be difficult [16]. Even if mature solutions exist, research can 
always be carried-on on these complex topics to continue innovation on protocol sig-
naling and associated control schemes! 
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3 MIXED-SIGNAL AND ANALOG INTERFACES 

Interfaces issues are more and more problematic today with the advent of power man-
agement circuit techniques and mixed-signal systems of the Internet-of-Things (IoT). 
In the first case, voltage and frequency generators are analog circuits, integrated on-
chip, but controlling digital circuits. They require internal control loops and also need 
to be efficiently interfaced with digital blocks. IoT systems, on their side, are mixed-
signal circuits in which many different interfaces are managed. In that kind of circuit, 
analog information is coming from sensors, wireless transfer or even energy harvest-
ers. In that context, Prof. Yakovlev proposed many novel solutions from mixed-signal 
circuit workflow using asynchronous control [13] to Buck-boost DC-DC converters 
controls [14] and specific efficient IT controller called opportunistic merge element 
[15]. In the following we will discuss some of these works and put in perspective our 
current works using energy efficient asynchronous design. 

3.1 The advent of mixed-signal circuits 

To start with, it is obvious to say that, today, most of our circuits are mixed-signal. 
We use to call mixed-signal, a circuit which contains an analog and a digital part, 
interfaced with Analog-to-Digital or Digital-to-Analog converters. The reality is more 
complex: small digital circuits are necessary to control analog blocks. It can be im-
plemented as control loops or finite-state-machines. Prof. Yakovlev proposed a 
framework for the design of mixed-signal systems with asynchronous control [13]. It 
enables formal verification of AMS systems with asynchronous control and the work-
flow is efficiently demonstrated on a buck-boost converter. In our lab, we implement-
ed in 2007 an integrated micro battery charger which can be charged by a thermo-
generator's DC/DC output or by an HF converter. The power supply manager consist-
ed in a specific unit along with an asynchronous finite state machine to manage priori-
ty between the two different sources. Electrical simulations were performed but no 
framework was available at that time to formally verify our circuit’s functionality. 
This could have been solved by Prof. Yakovlev work and the proposed AMS method-
ology [13] and would have improved a lot our verification step. 

3.2 Power management circuits and limitations 

One of the main mixed-signal components in today’s circuits is related to power man-
agement and more precisely to voltage generation. Prof. Yakovlev demonstrated that 
power control can significantly benefit from the use of asynchronous logic [14]. They 
demonstrated how to design and verify a speed-independent multi-phase buck-boost 
converter. It has been shown to be extremely robust to the changes in power demand. 
In the same topic, in our lab, we first tried to get rid of classical synchronous DC-DC 
converter by proposing a Vdd-Hopping solution based on voltage dithering. In this 
scheme, two or three supply voltages are available on chip and delivered through 
power switches to the digital block. The main advantage is very high power efficiency 
as it only consumes during transitions. To avoid any undershoots and overshoots on 

155 x 238 mm

Applications of Asynchronous Controllers       19



the digital block power supply, a local control loop is implemented. It was originally 
designed using synchronous logic, but we finally realized that an asynchronous loop 
would have probably been more robust to voltage changes as demonstrated by Prof. 
Yakovlev in a paper entitled “Design and Verification of Speed-Independent Multi-
phase Buck Controller”. Another interesting application of asynchronous circuits at 
the interface of power supply and energy harvesters is presented in our lab in 2010. 
An asynchronous state-machine controls the energy levels between different energy 
sources (Photo-voltaic, Thermoelectric, etc.). The control is based on voltage level 
crossings on capacitances representing the energy level of the sources. We are still 
working on this topic today as, ideally; it could bring infinite energy autonomy to IoT 
circuits and systems making them fully energy-driven (similarly to asynchronous 
data-driven circuits). 

3.3 Low power IoT circuits and systems 

We have just discussed interfaces and control for mixed-signal circuits related to 
power management issues. In addition, in emerging IoT systems, many analog sen-
sors have to interface with digital controllers. Events coming from these sensors are 
purely asynchronous and it would be inefficient in terms of energy to continuously 
sample them as they can occur in very different time scales. An efficient solution is to 
handle these events as asynchronous Interrupts (ITs) computed by an asynchronous IT 
controller (IT-Ctrl) as shown in our very recent works. An asynchronous IT-Ctrl man-
ages all the peripherals events and sends the priority number to a decoder. Interrup-
tions are sorted by interruption numbers with the highest priority on interrupt number 
0 and weakest priority on interrupt number 31. This scheme is interesting in terms of 
wake-up as, due to its asynchronous implementation, it immediately reacts on an in-
coming interrupt. However, the priority could be treated in a different way to improve 
this controller’s energy efficiency. Indeed, Prof. Yakovlev’s work proposes an ele-
ment named opportunistic merge element which could greatly improve our IT control-
ler performances. This innovative asynchronous component merges two or more re-
quest-acknowledge channels into one and is allowed to opportunistically send re-
quests if they arrive close to each other. Our future works aim at improving our cur-
rent IT controller with the help of an opportunistic scheme as described [15] by Prof. 
Yakovlev work. 

4 CONCLUSION 

We have discussed in this paper interfaces issues in digital and mixed-signal circuits. 
These interfaces can be implemented between synchronous domains or between ana-
log to digital and digital to analog parts of circuits. They are also seen as a key issue 
between synchronous and asynchronous timing domains. We have shown how Prof 
Yakovlev’s work has been focused, in part, to solve these issues by proposing many 
different methodologies and innovative implementation schemes. Our aim has been to 
put in perspective our own work with respect to his research all along the paper and to 
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show that most of our proposals are complementary or could have been even greatly 
improved by Prof Yakovlev’s proposals. 
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A Community of Asynchronauts:

20+ Years of the ASYNC Conference

Erik Brunvand

School of Computing
University of Utah

Salt Lake City, UT 84112

Abstract. Since its founding in 1994, the IEEE Symposium on Asyn-
chronous Circuits and Systems has been a premiere venue for publishing
results from the asynchronous research community. Perhaps more impor-
tantly, it has also been an annual meeting where people gather, form and
renew friendships, and build a strong sense of community. In this paper
I will give a brief history of the ASYNC Symposium with a special focus
on the social events that have contributed so much to the tremendous
sense of community we enjoy among asynchronous researchers.

1 Introduction

Researchers interested in asynchronous circuits and systems have always been
a bit on the fringe of the computer engineering world. Although there were
interesting examples of asynchronous approaches in the early days of computer
design, the codification of a synchronous design style, and the subsequent support
for that design style in computer-aided design tools, resulted in the vast majority
of digital systems using a synchronous timing regime. In spite of that inertia, an
intrepid group of researchers has continued to be intrigued by the possibilities of
asynchronous approaches, both in terms of design (at circuit and system levels)
and analysis/theory.

Like researchers in many “niche” areas, their results were sometimes not
appreciated by the larger research community, and often had to struggle to be
recognized at the larger conferences and journals. As sometimes happens, when
the critical mass of research becomes great enough in an area, this spawns a new
conference series devoted more specifically to that area of study.

In the case of asynchronous design, this critical mass was reached in the early
1990’s. Leading up to this point researchers such as Chuck Seitz at Caltech [36,
39, 38], Charles Molnar, Tom Chaney and Wes Clark at Washington University
in Saint Louis [13, 12, 14, 25], Steven Unger at Columbia [49, 50], and Victor
Varshavsky at the St. Petersburg Electrical Engineering Institute [51–53] were
doing foundational work from the late 1960’s to the early 1980’s, without the
benefit of a specific conference venue.

One standout conference series that included a nice set of early asynchronous
and self timed papers was the Caltech Conference on VLSI which would become
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the Advanced Research in VLSI (ARVLSI) conference series. The very first Cal-
tech Conference in 1979, for example, had three seminal papers on asynchronous
subjects [45, 48, 37] and the 1983 version of that conference included another set
of important papers on asynchronous circuits and systems [16, 17, 40].

In the 1980’s researchers such as Alain Martin at Caltech [19–21], Bob Sproull
and Ivan Sutherland at Caltech and Carnegie Mellon University [41, 47, 15], and
Theresa Meng at Stanford [23, 22, 24] were extending the work of earlier pio-
neers, and they, along with the pioneers, were producing a new generation of
asynchronous researchers including Peter Beerel [2, 3, 1], Erik Brunvand [10, 7–
9], Chris Myers [27, 28, 26], Steven Nowick [29–31], and Ken Stevens [44, 42, 43],
Kees van Berkel [4–6], Alex Yakovlev [54, 18, 55] , and many others (note that ref-
erences chosen in this section are specifically the early works from these selected
researchers).

With the backdrop of the expanding world of asynchronous and self-timed
research, the time was right for a conference devoted to this research area.

2 Pre-history: HICSS 1993

The first foray into thinking about a discipline-specific conference was to propose
and organize a special session on Asynchronous and Self-Timed Circuits and
Systems at an existing conference. Erik Brunvand and Ganesh Gopalakrishnan
from the University of Utah took up the challenge and organized just such a
special session at the 1993 Hawaiian International Conference on System Sciences
(HICSS) (see Figure 1). This conference had the double benefit of being open to
such a special session on a niche topic, and also being held in Maui, Hawaii in
January. The conference “mini-track” was a huge success with 14 papers accepted
and presented by most of the leading researchers in the area. In fact, the Hawaiian
conference organizers were apparently not prepared for the success of the mini-
track, and for the avid nature of the asynchronous research community. The
conference session was held in a tiny room that was overflowing with attendees
anxious to participate in the session and hear about the research. The organizers
of the conference were apparently thinking that people would be at the beach
rather than listen to papers on such a topic! But the interest and enthusiasm was
clear. That session was enough to encourage the organizers to think in grander
terms and organize a whole conference dedicated to the subnect of asynchronous
and self-timed circuits and systems research.

3 Async 1994: Salt Lake City, UT, USA

The first official IEEE Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems was organized and held in November 1994 in Salt Lake City
at the University of Utah. The conference was primarily organized by: General
Chairs Erik Brunvand (University of Utah), Al Davis (University of Utah), and
Program Chairs Ganesh Golpalakrishnan (University of Utah) and Steven Now-
ick (Columbia University). The name for the conference was a bit of a mouthful,
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Fig. 1. The proceedings cover, and the session contents, for the Special Session on
Asynchronous and Self-Timed Circuits and Systems at the 1993 Hawaiian International
Conference on Systems Science held on Maui, Hawaii.

but chosen to echo the name of the premiere VLSI conference of the day, the
conference on Advanced Research in VLSI (ARVLSI). The Async conference
name was eventually shortened to remove the “Advanced Research in” portion
of the name.

The conference was organized with support from the IEEE Technical Com-
mittee on VLSI - support that it continues to have to this day. It was also started
with a small grant from the National Science Foundation to support student at-
tendance at the conference, and also non-monetary support from IFIP Working
Groups 10.2 and 10.5. The November time frame of the original conference was
designed to be loosely compatible with the International Conference on Com-
puter Aided Design (ICCAD) so that attendees could plausibly come to both
conferences one after the other, ICCAD being held in November 1994 in Santa
Clara, California.

The program committee for the first Async conference in 1994 reads like a
“who’s who” of asynchronous and self-timed researchers at the time: Graham
Birtwistle, Steven Burns, Raul Camposano, Tam-Anh Chu, David Dill, Steven
Furber, Luciano Lavagno, Bill Lin, Alain Martin, Teresa H.-Y. Meng, Charles
Molnar, Martin Rem, Jens Sparsø, Robert Sproull, Pasupathi (Subra) Subra-
manyam, Jan Tijmen Udding, Steven Unger, Kees van Berkel, Peter Vanbekber-
gen, and Alex Yakovlev. The conference registration fee for IEEE members was
$225, and students could register for $65. The conference included 25 refereed
papers and one invited paper. The keynote speaker was Ivan Sutherland (Sun
Microsystems).

Perhaps the most memorable keepsake from this first Async conference was
the “Async wallet card” (see Figure 2). This card, given to all conference atten-
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Fig. 2. The front and back sides of the wallet card given to Async 1994 attendees. This
card was designed and produced by Al Davis and Erik Brunvand.

dees, was designed and produced by Al Davis and Erik Brunvand back in the
day when color printing and laminating had to happen at a commercial printing
shop. The card featured a list of the most common asynchronous advantages
that we had seen repeated in virtually every paper, along with humorous “ad-
vantages” not often cited in papers. For many years afterwards at future Async
conferences a challenge was given by Ivan Sutherland to hold up your Async
wallet card if you still had it with you.

Although there was no organized outing at this first Async conference, it was
definitely a starting point for the community of Asynchronauts. Friendships and
research collaborations initiated at this very first Async conference persist to
this day. From my clearly biased perspective, it was a rousing success!

4 Async 1996: Aizu, Japan

Although the continuation of any new conference is not a sure thing, the success
of the first Async Symposium meant that this conference series would definitely
continue. For the second conference, a group of Russian ex-pats who had found an
academic home, for the moment at least, in Aizu-Wakamatsu, Japan, would host
the second conference, along with their Japanese colleagues. The General Chair
for the second conference was Tosiyasu Kunii, a largely ceremonial position for
a senior researcher at the University of Aizu. The actual Conference Chairs were
Takashi Nanya (Tokyo Institute of Technology) and Alex Kondratyev (University
of Aizu). The Program Chairs were Luciano Lavagno (Polytecnico di Torino)
and Alexander Taubin (University of Aizu). There were 24 papers accepted, and
two embedded (invited) talks by Rajit Manohar (Caltech) and Alain Martin
(Caltech), and Steve Furber (Univrsity of Manchester).
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Fig. 3. Dinner group from the conference excursion to the Japanese baths at Async
1996. Attendees in this photo are (clockwise from left): Takashi Nanya, Chris Myers,
(unknown - perhaps Peter Beerel?), Bill Richardson, Steve Furber, Erik Brunvand, and
Doug Edwards

While the symposium format did not change much, the time frame did. Hav-
ing the first conference in November was an attempt to let attendees amortize
travel to Async 1994 and to ICCAD 1994. This didn’t make as much sense for a
conference held in Japan, and the organizers wanted to move to a spring confer-
ence schedule. So, the second conference was held from March 18-21 1996. The
year-and-a-half gap meant that there would be no Async 1995 in the series, but
the conference would actually be on-schedule for its second year.

One major social outing for the second conference was having the conference
banquet in a Japanese bath. The conference attendees enthusiastically embraced
the opportunity to experience this Japanese tradition. After washing carefully,
the attendees soaked in hot baths, recovered in cool baths, and donned tradi-
tional Japanese robes for dinner at the baths. This was possibly the most relaxed
collection of researchers ever assembled at a conference banquet!

After the conference a second outing was organized to a local ski area. Many
conference participants assembled at the ALTS Bandai Resort near Aizu. The
skiing conditions were good, but quite spring-like including a short bout of rain
on the slopes, but great fun was had by all the skiers in the group. The resort’s
ski rental facilities, however, were greatly stressed by a group of large western
visitors all requesting large ski boot sizes! The rental facility ran out of large ski
boots and had to have more boots shipped in from a nearby resort.
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5 Async 1997: Eindhoven, The Netherlands

The third Async conference was held in another hotbed of asynchronous research:
The Netherlands. Starting with Martin Rem [33–35] there had been a flurry of
papers from Dutch researchers that had been influential especially in the area of
synthesizing circuits from program descriptions. The third conference was held in
Eindhoven, The Netherlands, from April 7-10, 1997, with cooperation from Eind-
hoven University of Technology and Philips Research Labs where some of the
Dutch researchers had landed. The conference General Chair was Martin Rem
(Eindhoven University of Technology) with Co-Chair Peter Hilbers (Eindhoven
University of Technology). The Program Chairs were Kees van Berkel (Philips
Research Laboratories) and Mark Josephs (South Bank University, UK). The
conference included 25 accepted papers and a set of five invited keynote lectures
from Cees Niessen (Philips Research Labs), Roger Brockett (Harvard Univer-
sity), Steve Furber (University of Manchester), Ivan Sutherland (Sun Microsys-
tems), and Hiroaki Terada (Osaka University). The conference banquet was held
at the Philips Evoluon: a Philips showcase housed in a building shaped like a
flying saucer (really!).

Fig. 4. Pre-conference outing during Async 1997. Attendees are (from left): Erik Brun-
vand, Ken Yun, and Ken Stevens.

The conference was actually held at a conference center in Veldhoven, a
small town close to Eindhoven. The conference center had all the facilities for
the conference under one roof including a fascinating set of sports and recre-
ation facilities. The recreation opportunities included swimming, sauna, darts,
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billiards, and a wonderful 9-pin bowling alley. This style of bowling is a Euro-
pean version, played since medieval times, and is quite different from the North
American 10-pin bowling. There are, as you might expect, nine pins, arranged
in a diamond shape and having strings on the top of each pin to hoist them
back to their starting positions. The ball is 16cm in diameter and has no finger
holes. Async conference attendees were enthusiastic bowlers, especially after a
few drinks, in the evenings at Async 1997.

6 Async 1998: San Diego, CA, USA

Returning to the United States, the fourth Async conference was held in SanDiego,
California from March 30-April 2 1998. The General Chair was David Dill (Stan-
ford University) and the Program Co-Chairs were Peter Beerel (University of
Southern California) and Ken Yun (University of California, San Diego). The
conference program featured 23 papers, and keynotes by Steven Unger (Columbia
University), Ivan Sutherland (Sun Microsystems), and Mark Horowitz (Stanford
University). The conference social events included a visit to Qualcom, a respected
high tech company headquartered in San Diego, a visit to the historic Hotel del
Coronado, a San Diego landmark, and a California beach party for the confer-
ence banquet. This conference also marks many attendees’ first encounter with
a San Diego delicacy that was relatively unknown at the time, but has since
become a wide success, the “fish taco.”

Fig. 5. Included in the conference registration at Async 1998 was a pair of “Async
socks” with the C-element control circuit for a micropipeline and the conference date.
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A standout souvenir from the Async 1998 conference was the “Async socks”
given to each conference attendee (see Figure 5). These socks were sponsored by
Sun Microsystems and featured Async98 and a series of C-elements organized
into a micropipeline-style two-phase control circuit [47]. This basic circuit struc-
ture of “half-cocked” C-elements connected into a FIFO-like circuit would be-
come a common theme in future Async conference logos with some characteristic
glyph representing the conference location taking the place of the C-element.

Fig. 6. Winners of the Best Paper Award at Async 1999 posing with their trophy:
“Sync: the evil dragon that must be destroyed” (based on an original sculpture by
Gaud́ı). They are (from left) Rakefet Kol, Chris Myers, Ken Stevens, Ran Ginosar,
and Peter Beerel. Not shown are additional authors Shai Rotem and Ken Yun. (pho-
tographer unknown)

7 Async 1999: Barcelona, Spain

In 1999 the Async conference moved back to Europe to Barcelona, Spain from
April 18-22. the General Chairs were Jordi Cortadella (Universitat Politècnica
de Catalunya) and Mark Josephs (South Bank University). The Program Chairs
were Steven Nowick (Columbia University) and Alex Yakovlev (University of
Newcastle upon Tyne). The program consisted of 21 papers and keynotes from
Richard Lyon (Apple Computer), Mike Gordon (Cambridge University), and
Wesley Clark (Washington University). Dr. Clark’s lecture, entitled “Asynchronous
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Macromodules Were a Pain to Build but a Joy to Use” was especially memo-
rable. The Macromodules project at Washington University in St. Louis, MO,
USA in the 1960’s involved the design and implementation of shoebox sized
asynchronous computing modules connected through asynchronous interconnec-
tions [32, 46]. They were large physical versions of what we would imagine as
VLSI circuit modules today, and were used to build many examples of “... ar-
bitrarily large and complex computers that work.” [32] Dr. Clark even brought
some original macromodules to the conference to show.

While in Barcelona the conference attendees were treated to not only won-
derful Catalan food, but tours of the city showing off some of the famous sites,
including many sites designed by perhaps the most famous Catalan artist An-
toni Gaud́ı (although painter Joan Miró might dispute that claim). The city of
Barcelona has many wonderful buildings and sculptures that were designed by
Gaud́ı in his characteristic flamboyant style. The Best Paper award at Async
1999 was a small reproduction of Gaud́ı’s famous lizard sculpture. The original
lizard sculpture is found in Parc Güell in Barcelona and is known locally as “El
Drac” (The Dragon). It was made in collaboration with another artist, Joseph
Maria Jujo, out of concrete and ceramic tiles. For the Best Paper award, the
smaller version was christened “Sync, the evil dragon that must be destroyed”
(See Figure 6).

8 Async 2000: Eilat, Israel

Ran Ginosar (Technion) organized the 2000 Async conference as General Chair in
Eilat, Israel. The Program Chairs were Steve Furber (University of Manchester)
and Mike Kishinevsky (Intel). The conference program featured 20 papers and
keynote addresses by Avinoam Kolodny (Intel), Shimon Even (Technion), and
Udi Shapiro (Weizmann Institute of Science). The conference also presented a
full day of hands-on tool demos showing off a set of tools that would come to
be seen as hugely influential in the asynchronous research community: ATACS
by Chris Myers (University of Utah), Petrify by Jordi Cortadella (Universitat
Politècnia de Catalunya), Minimalist by Steven Nowick (Columbia University),
and Balsa by Doug Edwards (University of Manchester).

As exciting as the tool demos and conference program were, perhaps the
highlights of the Israel conference were the location in Eilat, and the excursions
organized for conference attendees. Eilat is a resort town at the southern tip of
Israel on the Red Sea. The conference hotels were essentially right on the beach,
and the scuba and snorkeling opportunities were tremendous. The conference
banquet was held at an undersea restaurant where the windows from the dining
tables looked out to an underwater scene with curious fishes looking back at the
dinner guests.

On Friday after the conference there was a one-day excursion to the ancient
city of Petra in neighboring Jordan. This 2000 year old city (established as early
as 312 BCE) was the capital of the Arab Nabataens. The buildings in Petra are
carved out of living rock in the sandstone cliffs of the Petra valley (Figure 8).
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Fig. 7. A reunion at Async 2000 in Eilat, Israel of some members of the asynchronous
research group of Victor Varshavsky. From left: Alex Kondratyev, Alexander Taubin,
Mike Kishinevsky, Victor Varshavsky, Alex Yakovlev, and Masha Yakovlev. (photog-
rapher unknown)

Fig. 8. Images from the excursion to Petra, Jordan during Async 2000. On the left is a
building from the archeological site of Petra. On the right are attendees Hans Jacobsen
and Erik Brunvand in the narrow canyon (the Siq) leading to the main Petra city.
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Amazingly, this spectacular site (a UNESCOWorld Heritage Site since 1985) was
unknown to the western world until 1812 when word of the city was spread by
a Swiss explorer. In a poem by John William Burgon Petra was described as “a
rose-red city half as old as time.” [11] The conference attendees who went on this
excursion were awed by the city, and slightly worried as the buses were driving
back to the border with Israel trying to make sure they reached the border before
sundown and the beginning of the Jewish sabbath when the border would close
(the buses made it with minutes to spare).

The second excursion was a two-day tour of the “best of” Israel featuring the
Dead Sea (see Figure 9 with some Async attendees “floating like a cork” in the
Dead Sea), the ancient fortress of Masada (the last stronghold of ancient Israel
that fell to the Romans in 70 CE), and Jerusalem (Holy city to at least three
major world religions: Judaism, Christianity, and Islam). The conference time
of Spring 2000 was a calm time in the Middle East and was a perfect time for
the conference, and the Asynchronauts to visit.

Fig. 9. Async 2000 conference attendees floating in the Dead Sea. The floaters are, in
the front row (left to right) Kees van Berkel and Charlie Molnar, and in the back row
Jo Ebergen and (unknown). (photo by Jo Ebergen)

9 Async 2001: Salt Lake City, UT, USA

In 2001 the Async conference returned to Salt Lake City and the University
of Utah. This was the first time that a location for the conference had been
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repeated, and the conference organization included some familiar names from
the original 1994 conference. The General Chair was Erik Brunvand, and the
Program Co-Chairs were Chris Myers and Al Davis (all from the University
of Utah). Other names in the 2001 Symposium Committee that were also in
the original 1994 Committee included Ganesh Gopalakrishnan (Finance Chair)
and Steven Nowick (Best Paper Chair). The conference program included 20
papers and keynotes from Bill Athas (Apple Computer), Kevin Normoyle (Sun
Microsystems), and Ajay Koche (Agilent Laboratories) (who had attended the
original 1994 conference as a student). In the Message from the Chairs it was
noted that the original conference name (IEEE Symposium on Advanced Re-
search in Asynchronous Circuits and Systems) was meant to evoke the history
of the highly influential Advanced Research in VLSI (ARVLSI) conference series.
For this occasion in 2001 the ARVLSI conference was co-located with Async 2001
with Async being the first two days (March 12-13, 2001, a shared day in the mid-
dle (March 14) and then ARVSI taking over for the final two days (March 15-16).
The banquet on Wednesday March 13 was combined for the both conferences.
Ironically, 2001 was also the year that the Async Steering Committee voted to
shorten the official name of the Async conference to leave out the “Advanced
Research” description. This was also, sadly, the final offering of the venerable
ARVLSI conference.

Fig. 10. The multi-colored scarf given to conference attendees in Salt Lake City at
Async 2001. This scarf proved very valuable for finding other Asynchronauts during
the ski outing to Park City Mountain Resort. The combined logo shows that Async
was co-located with the 2001 Conference on Advanced Research in VLSI (ARVLSI).

155 x 238 mm

A Community of Asynchronauts         33



The conference attendees at Async 2001 were given a multi-colored scarf with
the logos of both Async 2001 and ARVLSI 2001 conferences (Figure 10). These
scarves were greatly appreciated by the attendees and proved to be a valuable
way of identifying conference skiers during the ski excursion. The Wednesday
afternoon excursion took skiers and sightseers to the resort town of Park City,
Utah, just 40min from the conference site. Good skiing was had by all with no
rain this time (see the 1996 excursion description...).

Fig. 11. Trail map from Park City Mountain resort - site of the ski excursion from
Async 2001.

10 Async 2002: Manchester, U.K.

In 2002 the conference was held in Manchester, U.K. organized by General Chair
Steve Furber (University of Manchester) and Program Co-Chairs Marly Roncken
(Intel) and Simon Moore (University of Cambridge). The program consisted of 21
papers and keynotes by Robin Saxby (ARM Ltd.), Russel Cowburn (University
of Durham), Nick Foggin (Orange), Andrew Lines (Fulcrum Microsystems), and
Uri Cummings (Fulcrum Microsystems). The conference signature gift was an
“Async umbrella” with the conference logo. Sadly, in some sense, the weather at
the conference (April 8-11, 2002) was beautiful and sunny with no need for an
umbrella!

The conference banquet was held at the Manchester Museum of Science in
the “steam hall” surrounded by large, impressive steam engines, many of which
were fired up and running earlier in the visit. The other notable exhibit was the
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faithful replica of the Manchester Small-Scale Experimental Machine (SSEM),
nicknamed “Baby,” and arguably the worlds first stored program computer. The
Baby was designed and built in Manchester in 1948 as a testing interface for the
Williams Tube CRT-based memory system also being developed at the time. In
1998 a working replica of the SSEM was built to celebrate the 50th anniversary
of the running of its first program. The banquet speaker at Async 2002, Chris
Burton, described the rebuilding effort and demonstrated the Baby replica in op-
eration. Interestingly, he related that the most difficult part of the reconstruction
was not finding the vacuum tubes or the other electrical components, but finding
original examples of the metal racks that housed the Baby. Apparently almost
all such racks had been scrapped after the project was originally completed. The
final rack used in the reconstruction had been found in a local farmer’s barn
being used to hold farm equipment.

Fig. 12. Banquet talk by Chris Burton of the Computer Conservation Society at Async
2002. Chris led the rebuilding work of the Manchester SSEM - the world’s first stored
program computer - which was reconstructed for its 50th anniversary in 1998. The
replica is now on display in the Museum of Science and Industry and Chris demon-
strated the machine in operation before the banquet.

11 Async 2003: Vancouver, BC, Canada

The ninth Async conference was held in Vancouver, B.C., Canada from May
12-16, 2003. This was the first time the conference had been held in Canada,

155 x 238 mm

A Community of Asynchronauts         35



and the latest in the year the conference had been held. The General Chairs
were Mark Greenstreet (University of British Columbia) and Jo Ebergen (Sun
Microsystems). The Program Co-Chairs were Jo Ebergen (in a rare dual role) and
David Kinniment (Newcastle University). The program consisted of 21 papers
and keynotes by Fred Brooks (University of North Carolina at Chapel Hill),
Ted Williams (Morphics Technology), Barbara Chappell (Intel), and Rajiv Joshi
(IBM).

Fig. 13. The SkyRide aerial tram at Grouse Mountain taking the Async 2003 attendees
to the top of the mountain, the banquet site, and the brown bear enclosure.

The conference included two different outings: one to the Stanley Park and
the Vancouver Aquarium, and one to nearby Grouse Mountain ski resort. The
Aquarium included a huge variety of fishes and marine life including some very
friendly Beluga whales. The banquet was held at the top of Grouse Mountain,
accessed by an aerial tram ride (Figure 13). The attractions at the top of the
mountain included a large bear enclosure where a friendly (?) pair of grizzly
bears could be seen frolicking.

12 Async 2004: Crete, Greece

The 2004 conference was hosted by General Chair Christos Sotiriou (ICS-FORTH)
on the beautiful Mediterranean island of Crete from April 19-23, 2004. The Pro-
gram Co-Chairs were Ran Ginosar (Technion) and Ken Stevens (Intel). The
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Fig. 14. Banquet group at Async 2003 including Alexander Yakovlev in the center
with hand raised

conference program included 21 papers, and keynotes by Christer Svensson
(Linköping University), Martin Jenkner (Infineon Technologies), and Ad Peeters
(Handshake Solutions). The conference attendees were confronted with a diffi-
cult choice of attending conference sessions, or enjoying the lavish surroundings
of the Aldemar Knossos Royal Village Hotel.

The conference included two separate excursions: one to the Palace of Knos-
sos and visit to the FORTH research center, and one to the museum village of
Arolithos. The Palace of Knossos was the ceremonial and political centre of the
Minoan civilization and culture dating to the bronze age, 1380 – 1100 BCE. In
Greek mythology, King Minos dwelt in a palace at Knossos. He had Daedalus
construct a labyrinth; a very large maze in which to retain his son, the Mino-
taur. The Arolithos museum is a site that celebrates the tradition and history of
the Cretan way of life. Dinner there was capped off by a performance of tradi-
tional Greek music played on the Bouzouki by conference General Chair Christos
Sotirou (see Figure 16).

13 Async 2005: New York City, NY, USA

The 11th Async conference was held in the “Big Apple,” New York City, NY,
USA from March 14-16, 2005. The conference General Chairs were Steven Now-
ick (Columbia University) and José Tierno (IBM). The Program Chairs were
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Fig. 15. Greek traditional dancing at the Async 2004 banquet. Alex Yakovlev is in the
far left of this picture. (photo by Doug Edwards)

Fig. 16. Async 2004 general chair Christos Sotiriou (and friends) entertaining the
excursion attendees with some excellent Bouzouki playing.
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Prabhakar Kudva (IBM) and Rajit Manohar (Cornell University). 20 papers
were presented along with keynotes from Bob Colwell (R. E. Colwell and Asso-
ciates), Ivan Sutherland (Sun Microsystems) and Robert Drost (Sun Microsys-
tems), with an additional invited tutorial by Phil Restle (IBM Research) and
Ken Shepard (Columbia University).

Fig. 17. Banquet group from the Async 2005 Manhattan circle-cruise including on the
left, Keith Heron, and on the right, David Kinniment, Jo Ebergen, and Gaurav Gulati.

The banquet/outing for the 2005 conference was held on a boat that encircled
the island of Manhattan during dinner. Attendees were treated to spectacular
views of the city, the statue of liberty, Brooklyn Bridge, and other New York
sites. One “secret” about the cover of the Async 2005 proceedings is that if you
look in the lower right of the cover you can see two birds flying away from the
city. These birds represent the twin towers of the World Trade Center that had
come down in terrorist attacks in 2001.

14 Async 2006: Grenoble, France

The conference returned to Europe in 2006 being held in Grenoble, France and
hosted by General Chair Marc Renaudin (Institut Polytechnique de Grenoble).
The Program Co-Chairs were Alex Yakovlev (University of Newcastle upon
Tyne), and Jens Sparsø (Technical University of Denmark). The conference pro-
gram included 19 papers and keynotes by Nobuo Karaki (Seiko Epson Corp.),
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Jean-Pierre Schoellkopf (STMicroelectronics), and Ferdinand Peper (National
Institute of Information and Communications Technology, Japan). The official
conference social outing was a banquet at a local restaurant Le Chateau de la
Baume. In addition to the excellent food, one notable feature of the banquet
location was a virtual-reality golf simulator in the adjoining hall. This simulator
let attendees hit real golf balls with real golf clubs into a net and the tracking
system would tell you how far and in what direction the shot went, and show the
next picture from that location. Great fun was had by the participants, many of
whom had never before swung a golf club.

Fig. 18. The intrepid Async ski adventurers from Async 2006 at the peak of the Aiguille
du Midi ready to descend in the the Vallée Blanche.

The after-conference outing was perhaps the most memorable of any Async
outing (at least from my perspective). A group of intrepid skiers embarked on a
guided descent of the famous Vallée Blanche. This famous ski adventure involves
a tram ride to the top of the Aiguille du Midi - a 3,842 m / 12,605 ft peak in the
Mont Blanc massif within the French Alps. From there skiers descend through
the Vallée Blanche - a 20 km long, unmarked off-piste ski route which begins
very steeply from the Aiguille du Midi station and continues across crevassed
glaciated terrain. Figure 18 shows the Async group at the peak ready to start
out. The view from that peak includes alps in France, Switzerland, and Italy.
The lunch hut halfway down the Valléee Blanche (Figure 19) included superb
views of the glacier that the group had just descended, and the pathway to the

155 x 238 mm

40         Erik Brunvand



Mer du Glace, the largest glacier in France, 7km long and 200m deep and one
of the biggest attractions in the Chamonix Valley.

Fig. 19. Lunch halfway down in the Vallée Blanche at Async 2006. From left: Pe-
ter Beerel (note the 2001 Async scarf, and Async 2006 hat), John Bainbridge, Alex
Yakovlev, and Keith Heron

15 Async 2007: Berkeley, CA, USA

Async 2007 returned to North America to be held in Berkeley, California. The
General Chairs were Peter Beerel (University of Southern California) and Marly
Roncken (Intel). The Program Co-Chairs were Mark Greenstreet (University of
British Columbia) and Montek Singh (University of North Carolina at Chapel
Hill). The program included 18 papers and keynotes from James T. Kajiya (Mi-
crosoft Research), Carlo H. Sequin (University of California, Berkeley), Steven
Jacobsen (Sarcos Inc.), and Kevin Nowka (IBM). The talk by Carlo Sequin was
especially appreciated by attendees as he talked about “Thinking Outside the
Box in Geometry and Art” including many examples of how mathematical func-
tions can be the basis for sculpture and how the then-new capabilities of 3D
printing could be used to teach 3D geometry (see Figure 20).

The conference banquet was held in the Steinhart Aquarium, echoing a pre-
vious banquet from Vancouver also held in an aquarium. The post-confernece
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Fig. 20. A crowd at Async 2007 gathers around keynote speaker Carlos Sequin after
his talk about geometric modeling for 3D printing.

outing was to the nearby city of San Fransisco featuring transportation on the fa-
mous cable cars. The tour started from the cable car turntable at Powell/Market
Street in San Fransisco. Turntables are the endpoints of a cable car line. After
the cable car has arrived, the passengers get off, and then the cable car is pushed
onto the turntable and turned around 180 degrees by human power.

16 Async 2008: Newcastle, UK

The 14th conference returned to the U.K., this time being held in Newcastle and
hosted by General Chair Alex Yakovlev (University of Newcastle upon Tyne).
Conference Program Co-Chairs were Jordi Cortadella (Universitat Politcnica de
Catalunya) and Alexander Taubin (Boston University). One notable feature of
the 2008 conference is that for the first time Async was co-located with the
emerging Networks on Chip Symposium (NoCS) hosted by Co-General Chairs
Alex Yakovlev and John Bainbridge (Silistix). These two conferences were truly
co-located with Async and NoCS sessions intermingled during each day of the
combined conferences (April 7-11, 2008). The Async program consisted of 15 pa-
pers invited tutorials by David Kinniment (Newcastle University), Sachin S. Sap-
atnekar (University of Minnesota), and Mike Kishinevsky (Intel), and keynotes
(shared by Async and NoCS) by Ad Peeters (Handshake Solutions), Arjan Bink
(Handshake Solutions), David May (University of Bristol), Asen Asenov (Uni-
versity of Glasgow), Ian H. White (University of Cambridge), and Richard V.
Penty (University of Cambridge).
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Fig. 21. Ivan Sutherland “carries coal to Newcastle” at Async 2008 presenting a gift
of coal to conference general chair Alex Yakovlev

One notable event at the conference was Ivan Sutherland “carrying coal to
Newcastle” and presenting it to conference General Chair Alex Yakovlev (Fig-
ure 21). This phrase is an idiom describing a foolhardy or pointless action. It
refers to the fact that historically the economy of Newcastle upon Tyne was heav-
ily dependent on the distribution and sale of coal and therefore any attempt to
bring coal to Newcastle from elsewhere for profit would be doomed to failure.

The major social event at the 2008 conference was an excursion to the open-
air museum of Beamish. This museum preserves an example of everyday life in
urban and rural North East England at the height of the industrial revolution
in the early 20th century. It includes a mixture of translocated, original and
replica buildings; a huge collection of artifacts, working vehicles and equipment;
as well as livestock and costumed interpreters. Async attendee Simon Moore was
intrigued by one of the historic coal cars advertising “S. Moore & Co” as the
proprietors (Figure 22).

17 Async 2009: Chapel Hill, NC, USA

In 2009, from May 17-20, the conference was held in North Carolina in the
college town of Chapel Hill. The General Chair was Montek Singh (University
of North Carolina, Chapel Hill). The Program Co-Chairs were Ran Ginosar
(Technion) and Luciano Lavagno (Politecnico di Torino). The program featured
21 papers and keynotes by David Tennenhouse (New Venture Partners), Bill
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Fig. 22. Simon Moore finds a long-lost relative in the coal business in the Beamish
open air museum during the Async 2008 excursion.

Dally (NVIDIA Research), and Chuck Seitz (Myricom, Inc.). The first social
event was, unfortunately, rained out. The plan was for the conference attendees
to attend a baseball game of the local minor-league baseball team the Durham
Bulls. Unfortunately, that game, and the social event, had to be cancelled.

The second outing was much more successful - a trip to Fearrington Village -
a mixed-use community located on farmland dating back to the 18th century in
Pittsboro, North Carolina. Started in 1974, the community has grown to include
over 1800 residents, an award-winning country inn and restaurant (The Fear-
rington House), and a variety of shops. The conference banquet was held in the
Fearrington House and included entertainment by a local Bluegrass music trio.
It turns out that Async Steering Committee Chair (at the time) Erik Brunvand
plays in a Bluegrass band in Salt Lake City, Utah, and convinced the band to
let him join the group on upright bass for two songs (see Figure 24). Along with
the band, Prof. Brunvand sang two songs - “Walking the Dog,” and “On and
On” - Bluegrass songs that both Brunvand and the band knew. The conference
attendees were somewhat astonished to see this impromptu performance!

18 Async 2010: Grenoble, France

In 2010 (May 3rd through 6th) the conference returned again to Grenoble,
France. This time the General Co-Chairs were Pascal Vivet (Cae-Leti) and Marc
Renaudin (Tiempo). The Program Co-Chairs were Alex Yakovlev (University of
Newcastle upon Tyne) and Ken Stevens (University of Utah). The conference
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Fig. 23. Async 2009 attendees relaxing before the banquet at Fearrington Village. On
the right, Alex Yakovlev and Chuck Seitz. On the left (from the left) Hao Zheng, Ian
Jones, Steven Nowick, and Jens Sparsø.

Fig. 24. Async 2009 attendee (and Async Conference Steering Committee Chair at
the time) Erik Brunvand joins the Bluegrass band after the banquet at Fearrington
Village. He played two songs with the band: “Walking the Dog,” and “On and On.”
This image is a capture from a video of the performance (thus the blur). (videographer
unknown)
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was once again co-located with NoCS. The Async 2010 program featured 17
papers and there were three (shared) keynotes: Mohamad Sawan (University of
Montreal), Keren Bergman (Columbia University), and Alessandro Cremonesi
(STMicroelectronics).

Fig. 25. Asynchronauts at the Async 2010 conference in Grenoble. From left: Ran
Ginosar, Erik Brunvand, Ken Stevens, Alex Yakovlev, and Pascal Vivet.

The main social event at the conference itself was dinner at La Bastille - a
small fortified mountain located at the crossroad of three valleys. The route we
took to the restaurant was the famous “bubbles” of Grenoble - the connected set
of five spherical gondolas whisking conference attendees from the center of town
to the top of the mountain. Because the conference was held in May, there was
no skiing to be had this time. Instead a post-conference sightseeing excursion
was planned including the Chartreuse monastery and the Voiron Cave where the
monks produce traditional liqueurs.

19 Async 2011: Ithaca, NY, USA

In 2011 the 17th Async conference returned to the state of New York in the USA,
but this time was held at Cornell University in Ithaca. the General Chair was Erik
Brunvand (University of Utah) and Program Co-Chairs were John Bainbridge
(Silistix) and Ian Jones (Oracle Labs). The conference program consisted of
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11 accepted papers, with keynotes from David Albonesi (Cornell University),
and Yannis Tsividis (Columbia University). The program was filled out with
three invited industrial papers that addressed current industrial approaches to
leveraging asynchrony.

Fig. 26. Async 2011 conference attendees at the conference banquet. From left: Alex
Yakovlev, Jens Sparsø, Ivan Sutherland and Peter Beerel (facing away).

The main social event at the conference (April 27-29) was dinner at a local
winery. With good food and good wine, the conference attendees were put into
an excellent mood with an evening full of socializing.

20 Async 2012: Lyngby, Denmark

In 2012 General Chair Jens Sparsø (Technical University of Denmark) hosted
the conference in Lyngby, Denmark. Program Co-Chairs were Pascal Vivet (Cea-
Leti) and Montek Singh (University of North Carolina at Chapel Hill). The
conference program included 18 regular papers, and keynotes by Kwabena Boa-
hen (Stanford University), Steve Furber (Univrsity of Manchester), and Mogens
Balsby (Oticon). The conference was co-located (for a third time) with the NoCS
conference - this time having the two conferences run back to back with Async
on May 7-9 and NoCS from May 9-11. Tutorials were also held on the day before
the main conference and were presented by Eslam Yahya (American University
in Cairo), Laurent Fesquet (TIMA), and Marc Renaudin (Tiempo).
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Fig. 27. Async conference regular Montek Singh makes sure that no wine is left over
after the Async 2011 banquet . . .

The conference outing/banquet involved a boat tour of Copenhagen followed
by dinner. With drinks flowing on the boat before dinner, attendees arrived
in a good mood for dinner. There were also opportunities to explore beautiful
Copenhagen as the hotels were located in Copenhagen with a short bus ride in
the morning to arrive at the conference site in Lyngby.

21 Async 2013: Santa Monica, CA, USA

2013 brought the conference back to California in the USA - this time in Santa
Monica in the Los Angeles area. Santa Monica is on the Pacific and enjoys won-
derful weather, and seaside activities including a famous pier with amusements.
The conference was hosted by General Chair Peter Beerel (University of South-
ern California) from May 19-22. The Program Co-Chairs were Tomohiro Yoneda
(National Institute of Informatics, Japan) and Ran Ginosar (Technion). The
program consisted of 22 papers and keynotes by Vivek De (Intel), and Jeanne
Trinko Mechler (IBM). The conference also featured talks by three representa-
tives from asynchronous-related startup companies on the state of their chips:
Michel Lawrence from Octasic Inc, Richard Terrill from Wave Semiconductor,
and Chuck Moore from Green Arrays, Inc.

The banquet was in a restaurant on the beach and featured a talk by Erik
Brunvand on the folklore of “hacking” - specifically featuring the on-line legend
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Fig. 28. A portrait of the Async conference steering committee taken at the Async
2012 conference in Lyngby, Denmark. From left - Front row: Ian Jones, Steven Nowick,
Jens Sparsø, Marly Roncken, and Rajit Manohar. Second row: Montek Singh, Mark
Greenstreet, Andrew Lines, John Banbridge, and Peter Beerel. Third row: Pascal Vivet,
Alex Yakovlev, Tomohiro Yoneda, Erik Brunvand, and Mark Renaudin. (photo by Peter
Beerel)

Fig. 29. Async 2012 attendees enjoy the boat ride around Copenhagen. From left: Alex
Yakovlev, Montek Singh, and Ivan Sutherland.
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of “Mel, a real programmer.” This is a story that has been circulated on the
network starting with the USENET in the 1980’s about what it means to be a
“real programmer” and features a hero named Mel who played some amazing
tricks on a drum-memory based machine called the LGP-30 in the early days of
computers.

Fig. 30. Conference attendees at Async 2013 in Santa Monica, Alex Yakovlev and Ran
Ginosar, enjoy (?) a shot of fresh squeezed wheat grass - a quintessential California
treat. (photo by Ran Ginosar)

22 Async 2014: Potsdam, Germany

Milos Krstic (IHP) and Eckhard Grass (IHP and Humboldt University) hosted
the 20th Async conference as Co-General Chairs in Potsdam Germany from May
12-14, 2014. The Program Co-Chairs were Marly Roncken (Portland State Uni-
versity) and Andreas Steininger (Vienna University of Technology). The program
consisted of 12 papers and keynotes from Jan Rabey (University of California,
Berkeley), Joseph Sylvester Chang (Nanyang Technology University, Singapore),
and Paul Mitcheson, (Imperial College, London). In addition to regular papers
and keynotes, the conference included industry reports about the latest impacts
of asynchronous design concepts in industrial products and prototypes, and a
“Fresh Ideas” session to provide a forum for controversial statements and un-
conventional ideas that are not yet fully explored.
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Fig. 31. Excitement at the pre-conference reception at Async 2014 in Potsdam, Ger-
many. Sandy Brunvand’s hair catches fire in the bar while posing for pictures with
(from left) Ivan Sutherland, Marly Roncken, Sandy Brunvand, and Graham Birtwistle.
Photo is a still from a video (thus the blur).

Fig. 32. Async 2014 conference attendees (from left): Alex Yakovlev, Marly Roncken,
Marios Elia, and Luciano Lavagno.
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The conference outing/banquet started with a boat trip covering seven lakes
surrounding Potsdam with a view on historical and natural attractions. This trip
Included a buffet dinner with local German culinary specialties, on the boat. At
the dinner, Erik Brunvand gave a presentation on “Twenty Years of Async”
which provided a history of, and reminiscences about, 20 years of the IEEE
Symposium on Asynchronous Circuits and Systems - and was the impetus for
this very article.

23 Async 2015: Silicon Valley, CA, USA

In some ways it is surprising that it took 21 iterations of the conference be-
fore it found its way to the heart of Silicon Valley. For the 21st conference,
General Chair Ian Jones (Oracle Labs) organized the conference in Silicon Val-
ley - Mountain View, California to be precise. Program Co-Chairs were Jens
Sparsø (Technical University of Denmark) and Eslam Yahya (Benha University,
Egypt). The conference program consisted of 18 papers, two industrial short
papers, nine “Fresh Ideas” papers. There were also three keynotes by Bob Ian-
nucci (Carnegie Mellon University, Silicon Valley), Paul Cunningham and Steev
Wilcox (Cadence), and Ron Ho (Altera).

Fig. 33. The venue at Async 2015 in Silicon Valley was the Portuguese Cultural Center
in Mountain View, California - a great old building with oak walls and benches along
the sides.

The conference was held from May 4-6 near downtown Mountain View in the
S.F.V Lodge. This is a Portuguese Heritage Center with a lovely main auditorium
featuring old oak floors, walls, and benches (see Figure 33). Afternoon treats were
provided by an old-fashioned ice-cream truck (see Figure 34). The conference
banquet was at a restaurant in downtown Mountain View - a surprisingly quaint
downtown area in the middle of bustling Silicon Valley.

24 Async 2016: Porto Alegre, Brazil

In 2016 the conference found its way for the first time to South America - hosted
by General Chair Ney L. V. Calazans (PUCRS, Brazil) in Porto Alegre, Brazil
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Fig. 34. Async 2015 conference attendees Montek Singh and Erik Brunvand enjoy an
ice cream treat from the afternoon break at the conference.

from May 8-11. The Program Chairs were Peter Beerel (University of Southern
California) and Julian J. H. Pontes (ARM). The program consisted of 12 regular
track papers, four industrial track papers, and eight “Fresh Ideas” papers. The
keynote speakers were Patrick Groeneveld (Synopsys), and Paulo A. dal Fabro
(Chipus Microelectronics).

Sadly, this is the first Async conference that I personally was not able to
attend. Up until this point there were only two researchers who had attended
every Async conference: Peter Beerel and Erik Brunvand. With the 2016 con-
ference that list has narrowed to only one stalwart conference attendee who has
been at every single conference. Peter Beerel is now the sole member of that
club.

25 Conclusions

When I, along with colleagues, started this conference series in 1994 (or 1993
if you count the HICSS special session) I had no way of knowing whether it
would be a long-lasting conference series, or run its course in a few years. It is
immensely gratifying that the conference is, if not growing, at least still vital
and healthy some 23 years later. The conference series has had a wonderful
core of researchers, some of whom have been involved from the very start. If we
look at the Organizing and Program Committees from the very first conference
in 1994, we can see the following names still on the conference committee in
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Fig. 35. Web splash screen for the 2016 Async conference in Porto Alegre, Brazil

Fig. 36. Erik Brunvand modeling some Async conference swag from over the years.
Included are a scarf from Async 2001 (Salt Lake City), an umbrella from Async 2002
(Manchester), an insulated cup from Async 2005 (New York City), a hat from Async
2006 (Grenoble), and a rain jacket from Async 2008 (Newcastle).
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some capacity in 2016: Erik Brunvand, Luciano Lavagno, Alain Martin, Steven
Nowick, Jens Sparsø, and Alex Yakovlev.

The conference has also attracted a growing corps of younger researchers
interested in the field, and who have made good connections at the conference,
and found mentors and collaborators there for their research.

Strong research collaborations and strong friendships have been forged over
the many years of this conference. It truly seems like one of the friendliest and
congenial of the research conferences of which I am familiar. Through the Async
conference series we have developed and maintained a community of Asynchro-
nauts that has remained close throughout the years. Perhaps there is no better
legacy for a conference series than that.

Acknowledgments. The IEEE Symposium on Asynchronous Circuits and Sys-
tems would not be the congenial conference series that it is without the support
of a great many wonderful researchers, academics, students, and supporters.
Photographs not otherwise credited are by Erik Brunvand (or Erik Brunvand’s
camera).
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Abstract. A choice of synchroniser may be crucial for the correct op-
eration of a GALS circuit. GALS NOCs currently require thousands
of synchronisers to communicate information accross clock boundaries.
Carefully designed synchronisers are capable of mitigating the effects of
metastability errors within a chips lifetime. An arbitrary choice of syn-
chroniser, however, may be affected by metastability or timing issues
early on in a chips lifetime, resulting in detrimental side-effects and ulti-
mately failure. This, however, is largely dependent on the circuit design.
This paper models GALS communication circuits using xMAS models to
investigate the potential side-effects of different types of synchroniser on
a variety of xMAS circuits. Different xMAS models are analysed to quan-
tify and classify the level of robustness and the exposure to side-effects
based on the synchroniser selection.

Keywords: xMAS models, GALS, Synchronisers, Verification

1 Introduction

Whilst there has been a lot of interest in researching new architectures for
GALS [1][2][3], there have been few attempts at providing synthesis solutions
for GALS communication. Thus, generation of GALS from specifications has
been limited to hardware description languages such as Verilog, VHDL, Sys-
temC [4][5] or synchronous programming languages such as C or ESTEREL [6].
Models for communication logic in the past have relied on standard languages,
e.g. Verilog, which require a significant amount of ”glue logic” to connect com-
munication primitives together. This kind of modelling tends to be unwieldy
and non-intuitive. xMAS [7][8][9][10][11] represents a significant improvement in
the representation and modelling of communication systems. It provides a set
of graphical communication primitives which are more natural and their higher
level of abstraction enables them to be easily understood.

Circuit Petri nets [12] provide a natural means for translation of the xMAS
equations and they are also well suited to the visualisation of distributed mod-
els of local machines in terms of concurrency. For verification they capture a
complete knowledge in the unfolding hence providing a represention of the full
causality. In [13] basic techniques for GALS synthesis to Circuit Petri nets for
xMAS were presented offering some distinct advantages: they are well suited to
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the visualisation of distributed models of local machines in terms of concurrency
and for verification they capture a complete knowledge in the unfolding hence
providing a representation of the full causality. Basic techniques for GALS veri-
fication were also presented including unfolding to occurrence nets and deadlock
analysis.

In [13] an additional xMAS synchroniser primitive was introduced to provide
a synchronisation wrapper for synthesising a range of ”glue” solutions e.g. asyn-
chronous, mesochronous, etc. The system is capable of detecting the side-effects
of synchronisation problems through unfolding and verification and signalling a
potential shutdown. To improve metastability MTBF, designers can take spe-
cific measures. For example, they can change the metastability settling time by
adding extra register stages to synchronization register chains. The timing slack
on each additional register-to-register connection is added to the metastabil-
ity settling time value. Designers commonly use two registers to synchronize a
signal, but some companies recommend using a standard of three registers for
better metastability protection. However, adding a register adds an additional
latency stage to the synchronization logic, so arises a trade-off between logic
and robustness. Also the choice of a specific synchroniser can have a significant
impact depending on the particular design.

This paper models GALS communication circuits using xMAS models to
investigate the potential side-effects of different types of synchroniser on a variety
of xMAS circuits. An arbitrary choice of synchroniser may cause metastability
problems and another may not. This, however, is largely dependent on the circuit
design. Different xMAS models are analysed to quantify and classify the level of
robustness and the exposure to side-effects based on the synchroniser selection.

The main contributions of this work are:

– Analysis of deadlocks in xMAS models due to synchronisers;
– investigaton of the potential side-effects of different types of synchroniser

using a variety of xMAS circuits;
– testing the level of robustness of a design based on synchroniser selection.

2 xMAS modelling

2.1 xMAS Primitives

xMAS models are based on a set of communication primitives which have inputs
and outputs and which can be glued together according to the equations which
define them [7]. There are eight communication primitives altogether and these
are depicted in Fig. 1.

The Source and the Sink primitives are used for inputting and outputting
information in the form of packets or tokens. These are the ports of the xMAS
model which allow the model to be interfaced to its environment. The equations
governing the Source and Sink are shown below
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Source Switch Merge Function QueueSink Fork Join

Fig. 1. xMAS primitives.

Source:

o.irdy = oracle or pre(o.irdy and not o.trdy)

o.data = e

Sink:

i.trdy = oracle or pre(i.trdy and not i.irdy)

The Source is parameterised by a constant expression e : α. Each cycle, it
non-deterministically attempts to send a packet e through its output port o :
α. In the equations pre is the standard synchronous operator that returns the
value of its (Boolean) argument in the previous cycle and the value zero in the
first cycle. The signals irdy and trdy stand for initiator ready to send and target
ready to receive. The Source and the Sink have a number of different types of
operation:

– eager - always ready to send or receive packets;
– dead - never ready to send or receive packets;
– non− deterministic - the value of the oracle is set randomly.

The Fork and Join primitives are the basic synchronisation primitives. The
equations governing the Fork and Join are shown below:

Fork:

a.irdy = i.irdy and b.trdy a.data = f(i.data)

b.irdy = i.irdy and a.trdy b.data = g(i.data)

i.trdy = a.trdy and b.trdy

Join:

a.trdy = o.trdy and b.irdy

b.trdy = o.trdy and a.irdy

o.irdy = a.irdy and b.irdy

o.data = h(a.data, b.data)

A Fork coordinates the input i and outputs a, b so that a transfer only takes
place when the input is ready to send and the outputs are ready to receive. A
Join primitive operates as the inverse of the fork in which the roles of the irdy
and trdy signals are reversed.

The Switch and Merge primitives are used for routing and selection of packets
or tokens through the xMAS circuit. The Switch primitive is governed by the
following equations:
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Switch:

a.irdy = i.irdy and s(i.data)

b.irdy = i.irdy and not s(i.data)

a.data = i.data b.data = i.data

i.trdy = (a.irdy and a.trdy) or (b.irdy and b.trdy)

Informally, the Switch applies s to a packet x at its input, and if s(x) is true,
it routes the packet to port a, and otherwise it routes it to port b.

The Merge primitive is used for modelling arbitration by selecting one packet
among multiple competing input packets.

Merge:

a.trdy = mg and o.trdy and a.irdy

b.trdy = not mg and o.trdy and b.irdy

o.irdy = a.irdy or b.irdy

o.data = a.data if mg and a.irdy

b.data if not mg and b.irdy

A merge has multiple input ports and one output port. Requests for a shared
resource are modelled by sending packets to a merge, and a grant is modelled
by the selected packet. A local Boolean state variable mg is used to ensure
fairness [7].

The Function primitives are used for representing functions. The xMAS equa-
tions for the function are shown below.

Function:

o.irdy = i.irdy o.data = f(i.data)

i.trdy = o.trdy

In xMAS storage is implemented by queues. The equations for the queue are
shown below.

Queue:

hd = if (o.irdy and o.trdy) then inc(pre(hd))

else pre(hd)

tl = if (i.irdy and i.trdy) then inc(pre(tl))

else pre(tl)

where inc(x) = if x=k-1 then 0 else x+1

o.irdy = not qempty i.trdy = not qfull

For j = 0 to k-1

memj = if (i.irdy and i.trdy and j=pre(tl))

then i.data else pre(memj)

The queue is characterised by a non-negative integer k that indicates the
capacity of the queue. It has one input port i which is connected to the target
end of a channel that is used to write data into the queue. Likewise the output
of the queue is connected to the initiating end of the channel that reads data
out of the queue. The elements in the queue are stored in an array called mem
of size k. These are indexed by head (hd) and tail (tl) pointers used for reading
and writing.
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2.2 GALS Asynchronous Primitive

We have developed a modelling tool in Workcraft [14] for graphical entry of
xMAS diagrams. It incorporates an xMAS module for constructing the xMAS
models. In addition to the symbols for all the basic primitives a new asyn-
chronous synchronisation primitive has been added to the basic set of primitives
shown in Fig. 2. The primitive is used for inserting asynchronous ”glue” compo-
nents in communication channels that cross clock domains. The interface signals
are defined using the xMAS format so that it can be interfaced to other xMAS
primitives.

Fig. 2. xMAS synchronisation primitive.

A synchronisation primitive is used for communication between two islands.
The synchronisation primitive accepts a variable number of send signals, i1.irdy ..
in.irdy, from the incoming primitives from one island and returns the required
number of receive signals, i1.trdy .. in.trdy. Similarly it communicates with the
target island by issuing the required number of send signals, o1.irdy .. on.irdy and
by accepting the required number of receive signals, o1.trdy .. on.trdy. The new
asynchronous primitive is generic and incorporates a number of synchronisation
schemes. A black box is used to house the specific implementation style used for
synchronisation, which is designed to accommodate different GALS implemen-
tation styles: asynchronous, mesochronous, pausible clocking, etc.

2.3 Synchroniser modelling

For modelling synchronisers [15] inWorkcraft the user connects the communi-
cating GALS modules by means of synchronisation primitives and subsequently
from a selection menu chooses the implementation style for each synchroniser.
This enables the user to make a decision with regard the internal details based
on the GALS style that is required. The GALS style is chosen from a selection
of available GALS implementation schemes [16]

The basic synchroniser schemes provided by the tool are as follows:
asynchronous - an implementation based on the use of synchronisers to transfer
signals arriving from an outside timing domain to the local timing domain e.g.
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Fig. 3. Asynchronous synchronisation.

two flip-flops to synchronise signal with local clock; mesochronous - an imple-
mentation in which clocks are derived from the same source and the bounds
on the frequencies of communicating blocks are exploited to meet the timing
requirements; pausible - an implementation based on ring oscillators in which
each locally synchronous block generates its own clock with a ring oscillator.

An implementation style that is provided for the asynchronous scheme is
shown in Fig. 3. The implementation in Fig. 3 uses a FIFO and synchroniser
circuits to transfer signals between the global timing domain and the local tim-
ing domain. In this implementation the FIFO buffer handshake signals may be
asserted at any time relative to the transmitter or receiver clocks. The imple-
mentation uses two flip-flops to synchronise a signal with the local clock. To
account for the synchronisers delay, the wait signal generated by the gates pre-
vents the transmitter from sending until the FIFO buffer status following the
previous write operation has propagated through the synchroniser.

The synchroniser is used to synchronise the asynchronous communication
signal with the local clock. The synchroniser circuit, which is a two-flop syn-
chroniser, is designed to protect the communication signal when it synchronises
with the clock from metastability errors. If the synchroniser and clock edges
arrive too close together the synchroniser can become metastable with a proba-
bility which is related to Mean Time Before Failure (MTBF) [15].

The MTBF for a specific signal transfer, or all the transfers in a design, can
be calculated using information about the design and the device characteristics.
The MTBF of a synchroniser chain is calculated with the following formula and
parameters:

etMET /C2

C1 · fCLK · fDATA
(1)

where the C1 and C2 constants depend on the device process and operating
conditions; fCLK is the clock frequency of the receiving clock domain; fDATA

is the toggling frequency of the input data signal and the tMET parameter is
the metastability settling time. For a synchroniser chain tMET is the sum of the
output timing slacks for each register in the chain.
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The overall design MTBF can be determined by the MTBF of each synchro-
niser chain in the design. The failure rate for a synchroniser is 1/MTBF , and
the failure rate for the entire design is calculated by adding the failure rates for
each synchroniser chain, as follows:

Failratedesign =
1

MTBFdesign
=

nochains∑

n=1

1

MTBFi
(2)

For the two-flop synchroniser a failure could result in the addition of a clock
cycle to the latency.

For each implementation style details of the clocking are entered by the
user. Inside the tool menus are provided which allow the clocking details to be
modified for each synchroniser. Frequencies are set as relative values to reflect
changes across module boundaries. The clocking details entered are used later
in the verification. Potential synchronisation problems due to metastability are
exploited in the unfolding by varying or altering the clock cycles. This is used
as a margin of error for the two-flop synchroniser to investigate the effect of a
change in the latency.

3 Modelling of deadlocks in Synchronisers

The modelling of the GALS circuits and deadlock analysis is conducted us-
ing the Workcraft tool. In [13] we described a methodology and approach
for analysing deadlocks in GALS communication circuits using an unfolding
algorithm. In [14] the analysis method has been augmented using deadlock
relations which are derived from Communication Structured Occurrence Nets
CSONs [17].

For unfolding the GALS model is mapped to Structured Occurrence nets
and the local modules LN are mapped to ordinary occurrence nets. The GALS
unfolding enables mapping by assigning occurrence nets to divisions correspond-
ing to local module boundaries; occurrence nets are generated automatically for
each local module and the individual ONs are subsequently connected using
communication channels.

3.1 Deadlock relations

Deadlock relations are derived from the nets. The advantage of deadlock relations
is they are more compact and they can be used inside the tool to relay critical
information to the user in the form of statements about the type and causality of
the blocking i.e. which queue is the source of the blocking for another queue in a
particular module. Deadlock relations can be specified either locally or globally.

Deadlock relations can be defined in terms of queue blocking or idleness.
A queue which is found to be blocked in local module LA may cause a queue
to be blocked in LB . Correspondingly a queue which is found to be idle in
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local module LA may cause a queue to be idle in LB . The following definitions
introduce deadlock relations for local queue blocking and local queue idleness.

Definition 1 A blocking deadlock relation occurs locally between two queues on

the same path in module LA if a queue q1LA is blocked thereby causing a queue

that precedes it q2LA to be blocked. This relation is expressed as follows q2LA
B
←

q1LA .

Definition 2 An idle deadlock relation occurs locally between two queues on the

same path in module LA if a queue q1LA is idle thereby causing a queue that

follows it q2LA to be idle. This relation is expressed as follows q1LA
I
→ q2LA .

For the GALS models the process can be extended to analyse which queue
in a local module causes blocking or idleness in a synchroniser. The following
definitions introduce the different types of deadlock relations for synchronisers.

Definition 3 A blocking deadlock relation occurs between a synchroniser S and

queue that precedes it in module LA connecting the queue if the synchroniser is

blocked thereby causing the connecting queue q1LA to be blocked. This is expressed

using the relation q1LA
B
← S1. The reverse relation of this can be expressed using

S1
B
← q1LA .

Definition 4 An idle deadlock relation occurs between a synchroniser and a

queue in module LB that follows it connecting the synchroniser if the synchro-

niser is idle thereby causing the connecting queue q1LB to be idle. This is ex-

pressed using the relation S1
I
→ q1LB . The reverse relation of this can be ex-

pressed using q1LB
I
→ S1.

The above relations can be chained together. The following equations show
examples of chained relations. Equation (3) shows a deadlock relation between a
synchroniser S0 and its two connecting queues Q1 and Q2 from local modules LA

and LB . Equation (4) shows an internal local blocking relation between queues
Q2 and Q3 in module LB , in conjunction with blocking relations between the
synchroniser S0 and corresponding local connecting queues.

q1LA
I

→ S0
I

→ q2LB (3)

q1LA
B

← S0
B

← (q2LB
B

← q3LB ) (4)

The following definitions are used to define deadlock relations for queues
which are connected on the same path.
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Definition 5 A bde is a set of queues connected via the same communication

path in which contiguous communicating queue pairs exhibit blocking deadlock

relations.

Definition 6 An ide is a set of queues connected via the same communication

path in which contiguous communicating queue pairs exhibit idle deadlock rela-

tions.

Equation (3), above, is an example of an ide relation and equation (4) is an
example of a bde relation.

Using the deadlock relations a relational map is generated to show complete
instances of deadlock activity inside the model. This is achieved by deriving
all the deadlock relations from the unfolding to analyse the activity across the
channel links and internally inside the local modules. This is expressed in terms
of sets of blocking bde equations and idle ide equations. A complete set of bde
and ide equations is generated by the analyser.

Indirect relations can also be formed between ide and bde providing rela-
tional links between blocking and idle paths. Here the queues on an ide and
bde may not be in direct communication with each other but may be influenced
by the communication links between. The causality between an ide and a bde
is established by analysing the corresponding cross-communication links via the
net. Using this information it is possible to analyse a number of unique solutions
and trace the set of the original source(s) of the deadlocks.

Applying the relational model it becomes practicable to query the effects be-
tween different queues and synchronisers. The querying process uses transitivity
to establish links between specific queues. Transitivity may be applied to equa-
tion (3), for example, to produce equation (5), reflecting the relation between
q1LA and q2LB :

q1LA
I
→ S0 · S0

I
→ q2LB =⇒ q1LA

B
→ q2LB (5)

Hence, it becomes possible using the relational model to query directly point-
to-point causality between queues in different modules.

3.2 Modelling of deadlocks due to synchroniser problems

Deadlocks related to the synchroniser can be split into two types: (i) direct i.e.
the deadlock is due to a synchroniser handshake failure. This can be caused by
an error in the synchroniser or its environment due to handshake problems [18].
(ii) indirect: i.e. timing problems due to the latency. This is a result of setup time
and metastability problems which can result in latency mismatch and subsequent
functional errors in the adjoining modules.
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Direct deadlock The example below is based on a direct deadlock error caused
by a synchroniser S0. In this example module LB communicates with two mod-
ules LA and LC via asynchronous channels. LB transmits packets to LA. As
a result of a synchronisation handshake error in synchroniser S0, S0 fails to
communicate with LB causing it to become idle resulting in a shutdown in com-
munication between LA and LB . However, due to its design LB only partially
shuts down and still manages to communicate packets with LC .

Fig. 4. Direct deadlock example.

The equation showing the synchroniser deadlocks are shown below.

S0
I

→ (q2
I

→ q3
I

→ q4
I

→ q5)LA (6)

q5LA
I

→ S1
I

→ q6LB (7)

Here an indirect idle deadlock occurs in S1 due to the chain of ide deadlock
relations.

Indirect deadlock The example below, in Fig. 5, is based on deadlock due
to timing mismatch issues caused by a synchroniser. Module LA communicates
with LB accross an asynchronous channel. LB merges its own internal source
with the incoming stream from LA and a switch is used to filter all external
packets upwards and all native packets downwards. All sources in the example
are eager.

The circuit on the right requires a specific relative timing between the infor-
mation flows to operate properly. Specifically the feedback from q8LB and q9LB

are used to limit the upward and downward packet flow so that the upward and
downward transfers become balanced. Queue q4LB represents a common chan-
nel. Due to the setup and MTBF time window for the synchroniser being larger
than the restricted flow limit will allow, the common channel as a consequence
will sequence too many native packets. Thus, when q9LB is emptied this channel
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Fig. 5. Synchroniser deadlock example.

becomes blocked. If the synchroniser is removed or replaced by an ordinary queue
the balance requirements of the circuit are met so it will operate according to
the flow requirements. The deadlock is indirectly caused by the synchroniser due
to latency problems with setup and MTBF resulting in downstream functional
errors. The equations related to the deadlock are.

q9LB
I

→ q6LB
I

→ q7LB (8)

(q0LB
B

← q1LB )
B

← S
B

← (q4LB
B

← q5LB ) (9)

An indirect relation between (8) and (9) via the join means that when q9 is
emptied q5 becomes blocked.

For the same circuit a mesochronous synchroniser can be substituted in place
of the asynchronous synchroniser and the synchroniser will only deadlock with
a level of probability which is significantly lower. The level of robustness of the
implementation of the mesochronous case can be approximated based on an
estimate of the relative timing gap in relation to metastability.

This estimate is measured in terms of the following equation:

nochains∑

n=1

1

k · e−(t′·n)/ti
(10)

where t′ · n provides a measure of the relative timing gap.

4 Analysis and experiments

A set of experiments was conducted using a variety of xMAS circuits and different
synchronisers. Verification proceeds by searching for direct deadlocks or those
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Table 1. xMAS Verification Results [k=2]

Example i s n asynch dlk lrb time(s)

PC1 4 4 34 asynch 2 0 0.291

PC2 3 1 30 asynch 1 0 0.430

PC3 3 1 30 mesoch 0 0.055 0.341

Agent1 6 2 50 asynch 2 0 0.402

Agent2 6 2 50 mesoch 0 0.028 0.360

Agent3 6 2 52 mesoch 0 1.515 0.368

Mesh1 8 4 104 asynch 4 0 1.550

Mesh2 8 8 104 asynch 0 0.007 1.628

Mesh3 16 12 228 asynch 0 0.004 5.770

due to setup problems which are reported immediately if they are present. In
the presence of deadlocks the level of robustness is set to 0. In the absence of
deadlocks the level of robustness is measured in terms of a metric based on the
metastability gap. The level of robustness of the designs was measured based
on its relative level to the circuit and the choice of synchroniser. A trade-off is
possible in certain cases based on the choice of synchroniser versus the level of
robustness.

To limit the verification effort experiments were conducted using a mixed-
mode consisting of eager and non-deterministic. In this mode the sources are
varied between eager and non-deterministic. This mode is significant because it is
faster than full non-deterministic which in conjunction with a non-deterministic
limit generates a more efficient unfolding leading to faster verification in which
the analysis can be performed more efficiently. The experiments were conducted
using an Intel Core i7 3.4GHz processor.

For the experiments a number of different xMAS circuits were tested. The
results of the verification are shown in Table 1. The results are shown in terms
of the queue size k = 2, the number of sources i, the number of synchronisers
s, the number of xMAS primitives n, the type of GALS implementation, the
number of synchroniser deadlocks dlk, the level of robustness lrb, and the time
in seconds it takes to calculate the results.

The first set of experiments are producer consumer examples. These are
basic communication examples using point-to-point communication only. The
first example calculates a direct deadlock in 0.291s. The second example PC2
uses an asynchronous synchroniser has 1 deadlock due to setup problems and
its level of robustness is 0. The third example PC3 which uses a mesochronous
synchroniser for the same design, is deadlock free, and, therefore, its level of
robustness is is estimated. This appears as 0.055 in Table 1.

The next set of experiments, shown in Table 1, are agent examples in which
the GALS modules are structurally designed so that varying numbers of commu-
nicating agents communicate with each other. The first example uses an asyn-
chronous synchroniser has 2 deadlocks due to setup problems. The second ex-
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Table 2. xMAS Verification Results [k=3]

Example i s n asynch dlk lrb time(s)

PC1 4 4 34 asynch 2 0 0.452

PC2 3 1 30 asynch 1 0 1.135

PC3 3 1 30 mesoch 0 0.055 1.062

Agent1 6 2 50 asynch 2 0 1.165

Agent2 6 2 50 mesoch 0 0.028 1.129

Agent3 6 2 52 mesoch 0 1.515 1.142

Mesh1 8 4 104 asynch 4 0 4.520

Mesh2 8 8 104 asynch 0 0.007 4.692

Mesh3 16 12 228 asynch 0 0.004 18.532

ample Agent2 uses a mesochronous synchroniser has 0 deadlocks and its level
of robustness is 0.028. The third example Agent3 which uses two mesochronous
synchronisers is deadlock free but the level of robustness is much higher 1.515
due to the estimate for the metastability gap being larger.

Finally, the examples Mesh1 to Mesh4 are mesh structures comprising more
than 100 nodes. These were split into two sizes using more complex structures
consisting of many intra-modular and inter-modular loops. The number of syn-
chronisation units was varied for each experiment. These experiments were used
to test the scalability of the verification. The results for the experiments show
the level of robustness is much lower for an increase in the number of synchro-
nisation units used. For the larger examples it takes significantly longer to test
the level of robustness to synchronisation problems.

Table 2 shows results for the same set of experiments using a different queue
size [k=3] which shows a comparison of times.

5 Conclusions

We have provided a GALS synthesis and verification environment for xMAS.
This has been used for analysing problems caused by synchronisation. It is based
on unfolding and deadlock analysis which allows for both checking and visuali-
sation of different types of synchroniser deadlocks. A unique deadlock analysis
approach using relations has been described for verifying the examples.

The verification approach is flexible and adaptable to the timing of alternate
GALS implementations. Different GALS synchronisers can be selected based on
the chosen implementation style. The approach taken enables the investigaton
of the potential side-effects of different types of synchroniser using a variety of
xMAS circuits. The approach allows for testing the level of robustness of a design
based on synchroniser selection.
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Analytical Derivation of the Reliability Metric for

Digital Circuits

A. Bystrov and M. A. Abufalgha

Newcastle University

1 Summary of the method

Two traditional approaches to evaluation of digital circuit reliability are Monte
Carlo simulations and physical testing of a prototype, both being quite expensive
and unsuitable for circuit optimisation in the course of logic synthesis. There-
fore, a new method is proposed, which is based on two levels of characterisation:
the platform-level stochastic interference model and the circuit-level model for
“translation” of the former model into the reliability metric of the digital circuit.
The platform-level interference model is fixed for a design library and environ-
mental conditions. For example, it may include a probability density function

(PDF) of neutron energy, and a model of the current pulse in the transistor as a
function of the neutron energy, transistor size, type, source-drain voltage, tem-
perature, etc. Its purpose is to represent the interference, possibly expressed in
non-electrical terms (e.g. particle energy distribution), as electrical effects (e.g.
pulses of current having their magnitude, duration and arrival time stochasti-
cally described). This is done just once and is universal for every block in a
SoC.

The translation model is the core idea of the method. This model converts
the stochastic description of the electrical interference, e.g. the current pulse
caused by neutron strike, into the probability of error at the circuit output.
This is done by finding the critical values for the interference parameter, e.g. the
parameters of the above current pulse, beyond which the parameter causes an
error, e.g. an incorrect output value written into a flip-flop. The critical values are
found by a series of analogue simulation runs on the circuit, but not the Monte
Carlo method. Then, in the knowledge of the critical values of the interference
parameter, it becomes possible to analytically recalculate the stochastic model
of the interference into the probability of an output error or correct operation
(reliability).

This method can be combined with the analysis of performance and en-
ergy consumption of a circuit, thus contributing to the methodology of energy-
modulated computing, whose major problem is provision of reliable operation
under randomly modulated, i.e. unreliable, power supply. First results of the pro-
posed method are obtained. They show that a complex tradeoff exists between
energy, performance and reliability of digital circuits, and that the traditional
dynamic voltage-frequency scaling can be improved by taking the reliability into
account.
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2 Circuit under test

In this paper only a simple form of a combinational circuit is considered – a long
chain of inverters. It is intended to mimic a single path through an arbitrary
logic circuit used as a part of a synchronous clocked automaton operating under
voltage-frequency scaling. The frequency is chosen as a performance metric. It
is determined for each value of the voltage supply V dd by simulating the circuit
and measuring the propagation delay, no margins added. The circuit includes
205 identical inverters implemented with UMC 90nm foundry design kit, all
transistors are 80nm in length (standard for this library), pull-down transistor
is 400nm, pull-up is 800nm (these values as similar to those used in a commer-
cial standard-cell library), standard threshold voltage, standard use V dd = 1V .
Between the inverters there are wires, whose parasitic capacitance we simulate
as 2fF capacitors (typical capacitance of a short interconnect wire). In our ex-
periments we estimate the reliability of only four inverters in this long chain,
as illustrated in Figure 1, then show that the values for all of them are very
similar, while a minor difference is observed only in the last stage. Therefore,
the reliability of all inverters in the path, except the last one, can be accepted
to be the same.

I1 I199 I205

2fF 2fF 2fF 2fF 2fF 2fF 2fF 2fF

Out
I101I2

SET injection

Figure 1: Circuit under test

3 Fault model

A strike of a neutron is chosen as the cause of faults in our example. The neu-
tron penetrates silicon and may collide with an atom, thus producing secondary
charged ions and, eventually, the holes and electrons around the sensitive part
of a transistor, known as error zone [15]. The holes and the electrons injected
in the material around a transistor flow towards the PN junctions, recombine
and create a current pulse, which in the circuit of a logic gate, to which the
transistor in question belongs, presents itself as a pulse of voltage at the gate
output. This is a very crude overview of a complex physical process studied in
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[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. The flow of neutrons can be modelled as a
stochastic energy distribution by a classical Maxwell-Boltzmann PDF and the
rate [15].

After the model for the primary cause of errors have been specified, one
has to “translate” its model into the pulses of voltage on wires. In this work a
method described in [16] is used. In this method the effect of a neutron strike
is modelled as a dependent current source included into a BSIM4 Spice model
of a MOSFET transistor. A result of application of this method is a number of
families of waveforms for the voltage at the output of an inverter for a range
of V dd voltages and a range of values of neutron energy. The particle energy is
expressed as a metric of linear energy transfer (LET) [1,11,12,13,14,15]; this is
because we are interested not in the neutrons themselves, but rather in the effect
of their interaction with the transistor. The pulses of voltage at the gate outputs
caused by neutron strikes are called single event transients (SET), because they
are temporary logic errors resolving themselves after a short interval of time.
The simulated families of SETs for different LET and V dd is shown in Figure 2.

(a) V dd = 1.0V , LET=5, 15, 25, 50, 75, 100(the widest)

(b) V dd = 0.4V , LET=5, 15, 25, 50, 75, 100(the widest)

Figure 2: Two families of SETs for different LET and Vdd values
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Constructing a fault model is an important stage of the reliability estimation
method, because this model provides the primary information which is sub-
sequently converted into the probabilities of error or absence of such, i.e. the
reliability. As one can see, this model is specific to the technology [15] and the
stochastic description of the neutron flux. In the same time, it is not aware of
the logic circuit constructed with the gates. Therefore, this is the platform-level
stochastic interference model, a characterisation stage performed just once for a
given technology library and radiation conditions, and is not repeated for each
particular design utilising the technology library. This stage is expensive, be-
cause it requires conducting physical experiments in order to determine various
parameters involved in modelling the SET as in [15].

4 Analytical calculation of reliability

This section describes the core of the method which does not require Monte Carlo
simulations for gaining statistics on the output errors. Instead, the stochastic
fault model is converted into the reliability value through the properties of a
circuit.

The first objective of this stage is to find whether an SET (e.g. on of those
shown in Figure 2) would cause an output error of the whole circuit comprising
multiple gates (a long chain of inverters in our example) or not. The second
objective is to calculate the probability of error-free operation or reliability.

An output error is defined as a single event upset (SEU) [1,2,17], which is
an effect of an SET if the latter becomes latched in a flip-flop connected to the
output of the combinational circuit with the SET on it. A difficulty here is that
not all SETs result in an SEU. Some SETs disappear before the clock signal, or
appear too late w.r.t. it. Furthermore, the magnitude of an SET may be below
the threshold of the flip-flop sampling the output, its duration may be insufficient
or it may disappear while propagating through the path due to individual stages
exhibiting inertial delay behaviour, and suppressing the short duration pulses.

The first objective is achieved by identifying a vector of parameters of the
interference (in this experiment it is a SET characterised with two parameters
– the LET and arrival time) and simulating the circuit in order to determine
the critical values of this vector, which separate the erroneous from error-free
behaviour at the output. We repeat this for different V dd and arrival time values
in order to see how reliability changes under voltage-frequency scaling (the clock
period is adjusted to the propagation delay under each V dd value).

In Figure 3 the critical values of the interference vector are displayed for
V dd = 1V and the faulty stage number 101; the clock period defined as a
propagation delay without any margins is 4.06ns. It is easy to adjust the results
to any timing margins used in a particular design, but it is not included in this
paper. For the other stages in the path the diagrams are very similar, just shifted
left for the low stage numbers and right for the high numbers.

The second objective is achieved by using the graph in Figure 3 to calculate
the probability Perr of the system being in the error zone. For this we use the
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Figure 3: Critical values of the interference vector

PDF function fx for LET xLET and the PDF function ft for SET arrival time ta;
the former known from the fault model, the latter having uniform distribution
due to asynchronous nature of SET events. Perr in (1) is calculated for a single
clock cycle.

Perr =

∫∫

error zone fx(xLET ) · ft(ta) · dxLET · dta
∫ T

t=0

∫

∞

eLET=0
fx(xLET ) · ft(ta) · dxLET · dta

. (1)

The integrals in (1) are computed numerically. Note, the PDF of the arrival
time is constant, i.e. ft(ta) = 1/T · rSET , where T is the clock period, and rSET

is a constant representing SET rate. Instead of the infinite integration limit for
eLET we choose 100, as the probability of exceeding this limit is negligible [18,19].
The PDF for LET is defined as Maxwell–Boltzmann formula (2).

fx =

√

2

π
·

x2
LET e

−x2

LET
/(2a2)

a3
, (2)

with the constant a a calculated as 25.06.

This is for the probability of error when an SET is injected in the stage
101 of the path. The same procedure was repeated for the other stages, and
the computed figures were the same apart from the last five stages, where the
probability of error was gradually reduced towards the end, and the last stage
produced 10%-20% lower error probability (depending on V dd). For low SET
rates it is reasonable to assume that not more than a single SET can take place
in the path in any particular clock cycle, which leads to the formula (1) being
applicable to the path error, and rSET becomes the SET rate in the path. The
reliability can be calculated as absence of error, i.e. Preliability = 1− Perr.
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5 Results

The above method was applied under a range of V dd values, the error proba-
bilities were calculated and plotted in Figure 4(a). The SET rate was chosen as
rSET = 20h−1, i.e. 20 neutrons per hour hitting one of the inverters in the path,
which is abnormally high, as such a rate is usually applied to the whole chip
rather than a small circuit. It is interesting that the error probability is reduced
if SET is injected in the last stage. This is an effect of the SET expanding when
propagating along the path. This expansion only happens when SET is long, i.e.
the LET causing it is high. There is no path attached to the last stage, hence
no expansion, and lower error probability as a result. It is seen in Figure 4(b),
which plots the transient pulse duration for a range of V dd values and point of
SET injection.

(a) Error probability

(b) Transient pulse duration

Figure 4: Error probability and transient pulse duration vs. V dd
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Note that in these diagrams the probability of error is calculated per a single
clock cycle, rather than per second of operation. This metric is relevant to com-
pletion of fixed computational tasks. If this metric is changed to the probability
of error per unit of time, then the figures for low voltages will look by far better
– it is a common oversight in low-power design.

A 3D diagram in Figure 5 depicts a three way trade-off between energy,
reliability and performance, which is one of main results in this paper. It shows
that in the low-energy corner both the reliability and performance drop rapidly,
which results in a recommendation to avoid this corner. A similar diagram can
be generated for any design and without lengthy Monte Carlo simulations and
used for selecting an operating point.

Figure 5: Energy-reliability-performance tradeoff

6 Conclusions

Two main achievements reported in this paper are a new method of analyti-
cal derivation of reliability metric for digital circuits, and a tree-way energy-
reliability-performance tradeoff demonstrated by by the above method.

The reliability metric is derived without extremely expensive Monte Carlo
simulations or physical experiments, which makes its inclusion into ECAD logic
synthesis tools possible. This method is possibly a future enabler for achieving
the reliability closure on a system at an early design stage, similar to how the
timing closure is addressed.
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The method includes two stages. At the first stage the technology library
is characterised under a chosen interference model, e.g. a neutron flux with a
particular energy distribution, and then “translated” into the electrical domain
as an SET model. This is done just once and not repeated for each circuit in
the project. At the second stage critical values for the vector of interference
parameters are derived for a particular circuit under test by a limited number of
simulations. The critical values are the border between the erroneous and error-
free operation. Then, the probability of error or absence of it, i.e. the reliability,
is calculated.

The explored three-way tradeoff is extending the traditional static or dynamic
voltage-frequency scaling concepts by adding the reliability metric. It will help to
select the operating point for circuits. It is also an enabler for a new generation of
power management which controls the reliability dynamically – power or energy
reliability management, PRM or ERM.
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From Digital Timing Diagrams to

Natural Language and Back

Josep Carmona

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Digital Timing Diagrams have been and are and effective
visualization aid for the understanding of a digital circuit. However, in
case of complex circuits, the interplay between signals and the corre-
sponding hidden dependencies may be missed. In this paper we consider
the textual representation of digital timing diagrams, as an alternative
way of describing a digital circuit. We provide ideas on how to trans-
form a digital timing diagram into a textual description, and the (more
challenging) opposite problem: obtaining a digital timing diagram from
a textual description.

1 Introduction

I will always remember the first time I met Alex Yakovlev: Newcastle, (very
cold) winter of 1998, my (at that time, future) PhD. advisor Jordi Cortadella
took me to the ACID workshop to convince me to do a PhD. with him on asyn-
chronous circuits synthesis. The first night I discovered two important things:
first, the warm character of Alex and his family, who hosted me in a great din-
ner, which remarkably included dancing at the end. Since then I have met Alex
in several conferences, and have collaborated with his group in different topics
(asynchronous circuits, theory of regions, process mining). And the second thing
I discovered ... Jordi is a great dancer!!!

In this paper I sketch some recent ideas I had about the use of Natural
Language Processing (NLP) techniques to support the analysis and elicitation of
timing diagrams. I shall tell a secret: my very first paper was on NLP techniques,
but at some point I got into the dark side of formal methods and never went
back to NLP. It is funny that I recently got again attracted for working on the
NLP area.

A digital timing diagram is a representation of a set of signals in the time
domain. A timing diagram can contain many rows, usually one of them being
the clock (but we do not deal always with clocks, as Alex knows very well).
It is a tool that is ubiquitous in digital electronics, hardware debugging, and
digital communications. Besides providing an overall description of the timing
relationships, the digital timing diagram can help find and diagnose digital logic
hazards.
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2 Motivating Example

Let us consider the following textual description of the timing diagram of Fig-
ure 1.

Example 1 (Asynchronous Circuit). The circuit contains signals A, B and C.
First, signal A goes high, which causes signal B to go high. Then, the rising of
signals B and C causes signal C to go low. Afterwards, the rising of signal C
causes signals A and B to go high. Then the falling of signal A causes signal B
to go low.

C

A

B

Fig. 1: Timing Diagram of an Asynchronous Circuit

Also, an alternative would be to describe the same behavior in a clocked way,
as depicted in Figure 2:

Example 2 (Clocked Circuit). The synchronous circuit contains signals A, B and
C. First, signal A goes high, which causes signal B to go high in the next clock
edge. Then, the rising of signals B and C causes signal C to go low two clock
cycles afterwards. In the next clock cycle, the rising of signal C causes signals A
and B to go high one cycle afterwards. One clock cycle later, the falling of signal
A causes signal B to go low.

CLK

C

A

B

Fig. 2: Synchronous version of the circuit of Fig. 1

Next sections would illustrate how to go from the textual to the graphical
description and back.

3 From Timing Diagrams to Natural Language

There are several formal descriptions of digital timing diagrams. We take a simple
one, which is used by the tool TimingDrawer [1]. For instance, the timing diagram
shown in Fig. 2 is simply specified with the following instructions:
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Fig. 3: Parsing for a sentence of the timing diagram textual description.

CLK=clock;C=0;A=0;B=0.

# Dependency from previous A edge to new value of B

A=1.

A=>B=1;

# Dependency from multiple signals

C=1.A=0;B=0.

C,B=>C=0.

# Dependency to multiple signals

C=1.

C=>A=1,B=1.

# Vertical dependency

A=0.

A=>B=0.

Given a text file in the previous format, one can generate a textual expla-
nation by: i) parsing the file in order to get a tree-like structure of the timing
diagram, and ii) traversing the tree to generate the corresponding explanation
in natural language, using template sentences that may be instantiated with the
real names found in the tree.

4 From Natural Language to Timing Diagrams

The opposite problem to the one faced in the previous section is a challenging
one: given a text describing the main behavior of a digital timing diagram, derive
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Fig. 4: Semantic Graph for a sentence of the timing diagram textual description.

a formal representation (e.g., the one used by TimingDrawer) of it. Inspired by
the approach presented in [2] to obtain process diagrams from textual descrip-
tions, Natural Language Processing (NLP) techniques can be used to tackle this
problem.

Likewise it is done in [2] for the case of process diagrams, the generation
of a digital timing diagram can be done in three steps. However, given the
narrower focus considered in this paper, some of the steps can be significantly
simplified. Below we provide an informal description of each one of the three
steps considered.

Step 1: Sentence Level Analysis Using NLP techniques (e.g., tokenization, pars-
ing, and similar), sentences in the input text can be analyzed to decompose
the input into phrases with clear actors (signals, in our case) and the actions
corresponding to them. Also, irrelevant or unrelated sentences are filtered. Mor-
phosyntactic analysis is one of the prominent techniques to apply, that may
derive a categorization as provided in Figure 3.

Step 2: Text Level Analysis Then the output of the previous phase is analyzed,
taking into account the relationship between signals and/or signal actions across
different phrases (a phenomena well known as anaphora resolution). For each
sentence, a semantic graph describing these relations can be obtained. Figure 4
depicts an example of the semantic graph obtained from some of the sentences
describing the digital circuit of the previous section. Nodes in this graph denote
semantic meanings of the words in the sentences, and arcs represent the semantic
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Fig. 5: VME Bus Timing Diagram.

relations between them. For instance, in Figure 4 it can be extracted that the
rise of B (arc between concept “rise” and concept “B”, with “B” as main actor
denoted by “A1”), causes signal C (arc between concept “induce” and “signal”
concept, with semantic arc “A1:Patient” denoting the signal to be the result)
to go low (arc between concept “induce” and concepts “go” and “low”, through
arcs “C-A1” and “A2”, respectively).

Step 3: Timing Diagram Generation Given the previous analyses, traversing
the corresponding data structures would allow to generate the timing diagram
corresponding to the input textual description. The idea would be to select
the meaningful nodes/arcs from the semantic graph that can be translated into
causalities in the timing diagram, generating a formal description as the one
used by TimingDrawer.

5 Discussion

In the last decades, Alex has been a key person in the field of asynchronous
circuits. One of the first works that I read from Alex was describing a VME
bus controller with Signal Transition Graphs, which are labeled Petri nets rep-
resenting the behavior of a digital circuit. The timing diagram of the read cycle
of the controller is shown in Figure 5. In my research on asynchronous circuits
(CSC encoding, synthesis), I was using this example all the time. I hope Alex
can consider this paper as a way to pay back his enormous influence on the area,
and in particular, on my work.
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Are Asynchronous ideas useful in FPGAs?
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Abstract. Professor Yakovlev has contributed to the field of asynchronous
designs and methodologies for over three decades. I have worked in the
area of reconfigurable circuits and systems for almost as long. On this
happy occasion celebrating his 60th birthday, it is fitting to make an
attempt to examine possible synergy between the two fields and reflect
upon where we might find a common intersection if one exists.
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1 Introduction

I have been looking forward to celebrate Professor Alex Yakovlev’s academic
achievements with him at his Festschrift for the past three years, ever since my
own Festschrift held in 2013 [1]. At that time, he contributed a thoughtful article
and spoke eloquently at the workshop, and I have been asking him when his own
Festschrift will take place ever since.

Although I have known Alex and admired his work for over two decades, partic-
ularly in his contributions towards the modelling of asynchronous systems using
Petri nets [2] [3]], he and I have not worked together on a project until very re-
cently. I have dabbled in asynchronous circuits in the past, but my own area of
research has, for the past two decades, been in the field of reconfigurable systems,
particularly those using FPGAs. Therefore it is obvious for me to contribute on
this happy occasion an article that focuses on both asynchronous ideas and FP-
GAs.

I have chosen to write this article completely from scratch. I want to take this
opportunity to pontificate on the subject of asynchrony in the context of con-
figurable and reconfigurable digital circuits. The nice thing about writing for a
Festschrift is that I can be less rigorous and scientific, more reflective and opin-
ionated, without the need to support my hypotheses and thoughts with objective
and experimental data. This is like a columnist writing an article for the Finan-
cial Times, such as my favourite economist Mr John Kay, whose many insightful
essays have taught me much.
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2 My journey into Asynchronous Designs

Before I attempt to relate asynchronous circuits to FPGAs, it is worth putting
my thoughts in context. My own experience in asynchronous circuits is limited.
I was first introduced to the subject when Ivan Sutherland spent a 15-months
sabbatical leave in our Research Group at Imperial College in the mid-80s. At
that time, he was working on the design of an asynchronous multiplier [4] which
also led to him developing the method of logical effort [5]. I was a young lecturer
at the time trying to establish myself in the competitive world of academia.
Through Ivan and his research assistant Ian Jones, I learned the basic principles
of asynchronous circuits, such as asynchronous FIFO, the C-element, dual-rail
signaling etc.. Subsequently, I recruited three research students to work with
me on the subject and published a few insignificant papers [6] [7] [8]. We spent
many hours debating among ourselves the pros and cons of asynchronous cir-
cuits, and through our discussions and arguments, we came to the conclusion
that we wanted to work in the area of composability of asynchronous systems.

A few years later, my friend and colleague Wayne Luk from Oxford joined
Imperial College. Mainly because of this, I moved my research to the area of
reconfigurable systems.

3 Asynchronous Reconfigurable Logic

Early attempts to put asynchronous circuits in conventional synchronous FPGAs
failed miserably. FPGA fabrics are fundamentally register-rich in architecture
and early flip-flops in FPGAs were particularly prone to metastability problems.
Asynchronous components such as the C-element could be implemented using
fine-grain architectures on those early generations of FPGA fabrics such as the
XC6200 [9] and Actel’s ACT-1 devices [10]. Unfortunately implementing reliable
asynchronous systems of reasonable size were very challenging. This prompted
researchers to design asynchronous FPGAs with special circuit elements dedi-
cated to the asynchronous design style.

There have been various attempts in designing asynchronous FPGA fabrics.
One of the earliest efforts was by Scott Hauck and Carl Ebeling [11]. Montage
was the first FPGA that included dedicated support for both asynchronous and
synchronous circuits. It even came with mapping software to support designers.
It was shortly followed by the work of Payne [12], Traver [13], Teifel [14] and
Martin [15]. As someone who has a passing interest in asynchronous circuits and
techniques, and made his research career in FPGA, I have frequently asked the
question: why asynchronous FPGAs never took traction either in industry or in
academia? The following is a brief exposition of my personal views in the matter.
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4 The potential and reality of asynchronous in

reconfigurable

On paper asynchronous circuits have many attractive features [16]. The idea of
doing away with rigid timing imposed by synchronous circuit’s clock signal can
be appealing - even liberating! However, are these potential advantages relevant
and applicable to FPGAs?

4.1 Clock skews

Potential - Eliminating the need to distribute clock signals throughout a chip
also removes the problem of clock skews. Clock networks in modern FPGAs are
complex and occupy significant amount of silicon area. Unlike ASIC designs,
FPGA devices need to accommodate arbitrary application circuits not known
to the FPGA architect at the time the clock networks are designed. The loading
on nodes in a clock tree are also not known before hand. This exacerbates the
clock skews problem even further.

Reality - Indeed handling clock skews on large FPGAs is a problem. It may be
possible to measure the skews and mitigate their effects at run-time as suggested
in [17]. The effectiveness of such an approach is unproven. However, having clocks
in FPGAs is so fundamental to the entire FPGA design flow that industry sim-
ply chooses to solve the clock skews problem, no matter how challenging. Until
recently, the approach taken has been to carefully design fixed, highly buffered,
clock tree networks and to develop accurate timing models of the reconfigurable
fabric including the programmable routing resources. The timing model is tightly
coupling to place-and-route algorithms in the CAD tools.

Recently, Altera has taken a much more radical approach to this problem [18] in
their latest Stratix-10 family of FPGAs. Instead of using fixed clock networks,
they use a highly configurable, routable approach to customize the clock net-
work based on the user’s design. This approach potentially reduces the impact
of clock skews and makes the technique scalable for future larger FPGAs. Xilinx
has taken a different approach in their Ultrascale architecture [19]. Distribution
of clocked is based on clock regions which, unlike Stratix-10, are not customiz-
able. However, the clock grid comprises of routing tracks and distribution tracks,
which provide optimal routing of the clock signals from the centre of the region
(called clock root).

Both Altera and Xilinx have successfully tackled the clock skews problem in
different ways. In both cases, clock skews will not be a show stopper as we move
into future generations of larger, faster, and denser FPGAs.

4.2 Timing closure

Potential - Any designer who has grappled with fitting a large design onto an
FPGA will tell you that timing closure is often a big headache. FPGA designs
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relies heavily on the flexible, programmable interconnect resources. The unpre-
dictability in the delays of interconnects often presents many challenges. Even a
minor change in a previously working design could require many hours of work
in order to achieve timing closure again. The self-timed nature of asynchronous
FPGAs could do away with this problem.

Reality - As size and density of FPGA devices keep increasing, achieving timing
closure is expected to be increasingly difficult. However, FPGA manufacturers
have made great strides in easing this through two advances. Xilinx has pushed
stacked silicon interconnect technology that promises to deliver much higher
capacity, higher data bandwidth and power efficiency [20]. Altera recently an-
nounced their highly pipelined Stratix-10 architecture where they include pro-
grammable pipeline registers within the routing fabric. Coupled with their CAD
tools that are designed to exploit this architectural innovation, they mitigate
the timing closure problem by simplifying circuit retiming with improved per-
formance [21].

4.3 Reduced power

Potential - Having to distribute a clock signal everywhere, even when to those
registers where the input signals remain unchanged consumes unnecessary power.
Even though clock gating helps in reducing unnecessary clock propagation to in-
active regions, the idea that data drives circuit activities can be very attractive.
FPGAs are already much larger and consume more power than their ASIC equiv-
alent. Asynchronous circuit could regain some of the power efficiency loss.

Reality - Although asynchronous circuits have the potential of consuming less
power than their synchronous counterpart, FPGAs have never really been the
technology of choice where power is the primary concern. One would not find
many FPGAs used in battery operated mobile devices. Therefore reduced power
consumption has never been a significant driver in pushing the asynchronous
agenda in FPGAs. Furthermore, the advances in process technology and the con-
tinual reduction in power supply voltages have alleviated the concern of overheat-
ing in large FPGAs. For example, using TSMC 28nm low power (HPL) process,
Xilinx has introduced three separate families of devices to meet the market’s re-
quirement: the Artix-7 devices for low power and low cost, the Kintex-7 devices
for a balance in price and performance, and the Virtex-7 devices for high perfor-
mance and high capacity [22]. In the meantime, Altera introducing Aria-10 and
Stratix-10 families of FPGAs, both claiming significant improvements in power
consumption for a given workload when compared with previous generations of
FPGAs [23].

4.4 Improved performance

Potential - It is well known that asynchronous circuits allow average-case in-
stead of worst-case performance. Synchronous FPGAs, for example, would have
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to wait for the ripple-carry chain to reach the most significant bit in an add
operation before the sum is available. Asynchronous FPGAs with its inherent
completion detection and signalling would allow on average faster operations.

Reality - The arguments for improved performance using asynchronous tech-
niques have never been proven in industrial designs. Neither Sun Microsystem’s
asynchronous Sparc processor nor AMULET, the asynchronous ARM processor,
demonstrated performance gain over their synchronous counterpart implemented
using the technology. In any case, having better average-case performance gain
is no advantage in many real-time applications where a guaranteed completion
time is more important than having faster operation some of the times. Deter-
ministic behaviour is often more desirable than indeterministic, data-dependent
delay or latency. In any case, in the world of FPGAs, advancement in process
technology, new transistor devices (e.g. FinFET transistors) and new FPGA
architectures have continued to push the boundary of FPGA performances. In
addition, the use of 2.5D and 3D integration in FPGAs significantly reduces
interconnect delays, which are particularly important for FPGA designs where
interconnect delays are often the main limitation to system level performance.

4.5 Composability and reusability

Potential - Delay insensitivity in asynchronous circuits allows the assembly and
integration of modules forming a complete digital system with ease. This pro-
motes the divide-and-conquer approach to design and allows previously designed
and verified modules to be reused with minimal effort, very much like the way
software library functions can be used in building a large programme. There-
fore asynchronous techniques permit FPGA designers easier routes to perform
reconfiguration of virtual hardware blocks even during runtime.

Reality - There have been much effort devoted to the idea of run-time reconfigura-
tion (RTR) in FPGAs so that modules could be swapped in and out of the FPGA
fabric, very much like the way we swap blocks of memory in a virtual memory
system. The asynchronous paradigm where each module is self-contained with
its own timing appears to be a perfect match to this particular vision of FPGAs.
Unfortunately RTR has not really been widely used in industry beyond design
upgrade or system retargeting. There are many reasons for this including the
overhead in reconfiguration if it is done frequently, the difficult in verification
of such a system (similar to the reason why self-modifying code is not encour-
aged in software), and the lack of good CAD tools to handle such a RTR system.

However, with ever increasing size and density in FPGAs, partial reconfiguration
is now becoming not just a reality but a necessity. Putting a working design on
an FPGA device with 2 million logic cells requires a design flow that allows com-
posability and resuability. The FPGA industry is currently solving this problem,
not with the asynchronous paradigm, but with high-level synthesis methodology.
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There is now a widespread adoption of OpenCL as the language of choice for
FPGA designs, particularly after the integration of powerful embedded CPU
into the FPGA fabrics as found in Xilinx’s and Altera’s latest family of devices.
This approach is totally opposite of that used in the asynchronous paradigm. In
asynchronous, a successful design requires high degree of skills and understand-
ing of hardware design down to the minute details. The approach taken by the
FPGA industry is to push the hardware design skills required to a minimum and
makes the FPGA fabric invisible. I personally will not bet against the scenario
that very soon one could put designs on FPGAs without touching any low level
descriptions such as Verilog or VHDL.

The introduction by Altera of highly pipelined flexible registers in its routing
resources helps this process even further [21]. Now an OpenCL compiler can deal
with the hardware compilation task without worrying about timing. The flexible
routing registers can then be allocated subsequently to optimise the performance
and the latency of a design. In my view, this is one of the most important ad-
vancements in FPGA architectures that enables effective high-level synthesis in
recent years.

4.6 Tolerance to process and environmental variations

Potential - As technology scaling continues to advance and supply voltage con-
tinues to drop, uncertainties in delays in FPGA circuits due to variations in
process, temperature, voltage and noise are beginning to post a challenge. Asyn-
chronous circuits adapts to delay variation automatically. This is particularly
significant if and when future electronic devices degrade faster with age. Older
asynchronous FPGA chips will continue to function correct with reduced speed,
while the synchronous counterpart could fail completely.

Reality - Mitigating the effect of variability with reconfigurable hardware has
been the focus of my research in recent years. Alex contributed an article at
my Festschrift on this very same topic [24]. FPGAs are inherently adaptable. It
is therefore reasonable to ask the question how could one exploit the flexibility
offered by FPGAs to mitigate the ever increasing variability factors found in
modern integrated circuits?

Asynchronous paradigm is one possibility but this does not really need the con-
figurability offered by FPGAs. The approach I have taken so far has been to
perform online measurements on FPGAs devices with embedded instrumenta-
tions. One can then exploit such information to adapt the electronic systems
in order to deal with variations by exploiting the configurability inherent in
FPGAs. For example, we have recently successful demonstrated efficient and ef-
fective circuits to measure delays and timing slacks in arbitrary circuit paths [25]
[26] and power consumption in modules within FPGAs [27]. These techniques
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are particularly suitable for FPGA based designs for the following reasons. Not
only are FPGA reconfigurable, they also come with fixed amount of hardware
resources on a chip. Provided that a design does not fill the entire chip, there
are generally spare hardware resources that one could deploy for such embedded
instrumentations. Putting the unused resources to provide better adaptation not
only improves performance, reduces power consumption, it also improves the re-
liability of the system. The challenge is in how to add such instruments without
impacting on the already complicated design flow. For this, we can learn from
the experience in the adoption of boundary scans in test. Boundary scan register
insertion in ASIC is now an automatic and, at least to the designer, a more or less
invisible process. It is my view that one day on-chip embedded instrumentations
will be the same.

5 Concluding Remarks

When I first set out to write this article, I was intending to focus on the syn-
ergy between asynchronous and reconfigurable. As I was completing the article,
I realised that my conclusion is rather negative towards asynchronous. This is
both a surprise and a disappointment. I have always found the asynchronous
paradigm rather beautiful. I also admire those who have made this their lifelong
work. However, no matter how much I want to make asynchronous ideas relevant
and useful to FPGAs, everywhere I turned, I was confronted with strong counter
arguments. The reality of industrial practices also suggests that I am probably
right.

Notwithstanding, I strongly believe that there is one aspect where the asyn-
chronous paradigm is useful to FPGAs and this is in the integration of modules
via the globally asynchronous, locally synchronous (GALS) methodology. If I
look back in the history of electronics and the one asynchronous idea that we
still use everyday is the serial communication using universal asynchronous re-
ceiver/transmitter (UART). Indeed communicates between multiple FPGAs are
already relying on the very fast serial transceivers found on all modern FPGAs.

I have attending a few conferences on asynchronous in the past. Just like the
FPGA community, the asynchronous community has spent many years search-
ing for the ”killer application” for their technology. May be the answer is that
there is no killer application, but asynchronous is still a very useful glue. The
paradigm, particularly with Alex’s original field of research into modelling using
Petri net, can act as the catalyst to many innovations in electronics.

In conclusion, while I still believe that asynchronous is useful in the field of
reconfigurable, we are still searching for this intersection between the two fields.
May be the recent effort of companies such as Achronix will show us the way. I
am still waiting.
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Event splitting:

the way to survive when regions fail

Jordi Cortadella

Department of Computer Science
Universitat Politècnica de Catalunya, Barcelona

Abstract. The theory of regions, originated from the work by Ehren-
feucht and Rozenberg, established the bridge between transition systems
and Petri nets and a path towards the friendly visualization of concurrent
behaviors. Unfortunately, not every transition system can be represented
with a Petri net in which every event corresponds to a single transition.
However, a Petri net can always be found if events can be split and
represented by multiple transitions. When applying event splitting, an
exponential space of solutions arises, each one delivering a different Petri
net. Selecting one with gracious properties is a challenge and an open
problem. This paper will informally illustrate the impact of event split-
ting using simple examples and will discuss directions of research for this
problem.

1 Motivation

Since I first met Alex Yakovlev in 1994, I have had the pleasure to share many
unforgettable experiences in our professional and personal lives. Petri nets, asyn-
chronous circuits and design automation have been permanent leitmotifs in our
academic research. Along with our endearing colleagues, Mike Kishinevsky, Alex
Kondratyev and Luciano Lavagno, we managed to solve challenging problems
and many of them ended up enhancing the functionality of petrify [4], a tool
that is still alive today.

During the nineties, our passion was to introduce automation in the design
and verification of asynchronous circuits. We had a devotion for Petri nets and
their interpretation as Signal Transition Graphs (STGs) [11]. Since logic syn-
thesis techniques required state information with explicit values for the binary
signals [5], we were often generating transition systems (TSs) from Petri nets. At
that time, we decided to use Binary Decision Diagrams [2] for representing sets
of states symbolically and handle the state explosion problem in a manageable
way.

Figure 1 shows a classical synthesis example. Figure 1a depicts the specifi-
cation of an asynchronous controller with an STG1, whereas the corresponding
TS is shown in Fig. 1b. Each state has an associated binary code with as many

1 Most drawings in this paper have been automatically generated by graphviz [9], a
tool set that can be found in www.graphviz.org.
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Fig. 1. Generation of a binary-encoded TS from an STG.

digits as signals in the system. The shadowed states represent encoding conflicts,
i.e., multiple states sharing the same binary code.

The state encoding problem was one of the many problems we had to solve for
the synthesis of asynchronous controllers [6]. We managed to find a satisfactory
solution adding new signals and transforming the TS, as shown in Fig. 2a. In
this particular example, two new internal signals, x and y, are introduced to
disambiguate the state encoding conflicts.

We were often facing problems that required transformations at the level of
TS: hiding signals, adding new state signals, reducing concurrency, etc. How-
ever, evaluating the impact of those transformations was a challenge, since the
visualization and analysis of TSs was an extremely arduous task.

The TSs we had to manage often had hundreds or thousands of states, with a
lot of concurrency embedded in their semantics. Unfortunately, we were no able
of analysing the results of the transformations with a reasonable human effort.
We were asking ourselves: why should not we be able to visualise the behaviour
of a TS as an STG? It was then when the theory of regions came into play [8, 1]
as the instrument to return to the Petri net world from a TS.
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lr-y- rr-

011010
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ra-

lr-

(a) TS without encoding conflicts.

y+

la+ x+ ra+

lr- rr-lr+ rr+

x-

ra-y-la-

(b) STG with the new signals.

Fig. 2. Specification of the asynchronous controller after solving the encoding problem.

At that time, we were fascinated by the theory proposed by Ehrenfeucht and
Rozenberg, that gave us the vehicle to synthesise STGs after manipulating our
TSs. The implementation of that theory was the genesis of petrify [7]. With
that vehicle we could generate the STG shown in Fig. 2b in which the causality
relations of the new signals could be cleanly observed and analysed.

2 Petri net synthesis is not that simple

We immediately realised that things were not as simple as expected. For a TS
to be representable as a Petri net, with each event represented by a single tran-
sition, a set of conditions must be fulfilled: the TS must be elementary [8]. In [7]
we presented a more general concept, excitation closure, that defined a set of
conditions to generate a Petri net with bisimilar behaviour [10]. A TS fulfilling
those conditions is called an Excitation-Closed TS (ECTS). Unfortunately, most
TSs are not ECTSs. A very simple example is shown in Fig. 3a.

However, the synthesis of a bisimilar Petri net is always possible by applying
event splitting, i.e., allowing each event to be represented by more than one
transition in the Petri net. For example, an event a could be represented by two
transitions with labels a0 and a1 (the subindices represent different instances of
the same label).

In the worst case, a degenerated solution consisting of a Petri net structurally
isomorphic to the TS can be constructed: each place corresponds to one state
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a
b

b

c

c
a

(a) Non-elementary TS.

a0

b1

b0

c1

c0

a1

(b) Petri net obtained after splitting all events.

Fig. 3. Synthesis of a non-elementary transition system by event splitting.

of the TS and each transition to an arc. The initial state is represented by a
marked place, as shown in Fig. 3b.

Unfortunately, this solution is quite uninteresting since it does not bring any
additional information for the analysis of the system. The obvious question that
comes to our mind is: can we minimise the number of events that need to be
split to guarantee the synthesis of a Petri net?

b1

a

b0

c

(a) Splitting event b.

b0

c0

a

c1b1

(b) Splitting events b and c.

Fig. 4. Different solutions obtained after event splitting. Arcs with double arrow
(#↔2) represent two arcs (#⇄2).

Figure 4 depicts two bisimilar solutions obtained by splitting a different set
of events. If we also consider the Petri net in Fig. 3b, we end up by having three
different solutions with the following characteristics:

Figure Places Transitions Arcs
3b 6 6 12
4a 5 4 18
4b 6 5 14

In this particular example, no solution with three transitions exists, since the
original TS is not an ECTS. By analysing the previous table it is obvious to
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realise that minimizing the number of transitions (event splits) is not always the
best choice.

Even in the case of an ECTS, event splitting can be an option to generate a
better visualisation of the behaviour. Figure 5 shows an ECTS with five events.
A bisimilar Petri net with five transitions is depicted in Fig. 6a. The intricate
relationship between places and transitions makes the analysis of this structure
very tortuous. Instead, by simply splitting event a, the Petri in Fig. 6b is ob-
tained, which clearly visualises the concurrency of events b and c and the choice
between d and e.

a

b

c

c

a

d

e

b

Fig. 5. Transition system.

d

a

b

c

e

(a) Without event splitting.

a0

b c

a1

d e

(b) Splitting event a.

Fig. 6. Two bisimilar Petri nets representing the behavior of the TS in Fig. 5.
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3 Which events to split?

Event splitting is at the core of the Petri net synthesis problem. As we can
suspect from the previous examples, the space of solutions can be exponential
on the size of the TS. An essential question is the following:

How to measure the quality of a solution after selecting a set of

events for splitting?

As shown in Fig. 6, minimising the number of transitions may not always be the
best choice, but doing a frenetic splitting may result in uninformative solutions.
There is no clear answer for such question, but some directions for exploration
are next discussed.

3.1 Minimising the number of transitions

Minimising the number of transitions is a strategy that may lead to more com-
pact models. A possible approach could consist of finding a small set of events for
splitting. This set would generate new regions to enforce the excitation closure
for all events.

Figure 7a depicts a transition system and the set of minimal regions, {r1, . . . , r6},
represented as shadowed sets of states. The excitation closure holds for all events
except e. The only pre-region of e is r4, but e is only enabled in one of the states.

c2c1

a1 a2

c2c1

b1 b2

d1 d2

r
1

r
6

r
4

r
2

r
3

r
5

e

a a

b b

d d

e

a a

b b

c cd d

e

(a) (b) (c)

...

Fig. 7. The domino effect of greedy splitting (example from [3]).

A greedy approach, as proposed in [3], would consist in creating another re-
gion that would separate the two states in r4. This could be achieved by splitting
event c into c1 and c2 (Fig. 7b).

However, this myopic view solves the problem for e but creates another prob-
lem for c1 and c2. Applying the same strategy, excitation closure for c1 and c2
could be enforced by splitting b, etc, thus unleashing a domino effect that, in this
particular case, would produce a complete event splitting, as shown in Fig. 7c.
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This example shows that using näıve strategies for splitting may result in poor
quality solutions.

An alternative approach could be proposed by globally analysing the excita-
tion closure problem and resorting to the concept of state separation from the
theory of regions [8]. This is illustrated in Fig. 8.
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s
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1
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5
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7

b b

c cd d

e

Fig. 8. New region (r7) and Petri net synthesis after splitting event a.

By analysing the set of minimal regions {r1, . . . , r6} in Fig. 7a, we can calcu-
late the pairs of non-bisimilar states that cannot be distinguished by the regions.
Two states cannot be distinguished if there is no region such that one state is in
the region and the other is not. In the example, the set of non-bisimilar pairs is:

{(s1, s2), (s3, s4), (s6, s7)}

Proposing heuristics to find set of states that separate these pairs is an interesting
direction of research.

For example, the set {s1, s3, s6} could be a good candidate, but it would re-
quire two event splits to become a region: a and d. Instead, the set {s1, s3, s5, s6}
would guarantee the same separation with only one event split. This set corre-
sponds to region r7 in Fig. 8 and leads to the Petri net on the right, in which
each place is annotated with the corresponding region.

3.2 Simplifying the structure of the Petri net

Having a nice visualisation contributes to giving a graphical intuition of the
relationship between events. For example, producing series-parallel graphs or
minimising the number of arc crossings in a picture is always a desired property
for a Petri net.

Analysing the connectivity and the causality relations between events can
help to decompose sets of states in which an event is enabled. The TS in Fig. 5
is one example. Event a has two dispersed states in which the event is enabled.
Additionally, each state is triggered by different sets of events ({b, c} in one state
and {d, e} in the other state). The separation of enabling sets and the distinction
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of trigger sets may be a criterion to split events. In this case, splitting event a

results in the Petri net shown in Fig. 6b, which has nice structural and graphical
properties.

3.3 An unexpected guest: τ

An alternative strategy to simplify the structure of a Petri net is to intention-
ally insert silent events (τ). In some cases, a new event can collect causality
information between groups of events and contribute to better visualize their
relationship.

An example is depicted in Fig. 9a, where two concurrent events (a and b)
trigger another group of three concurrent events (c, d and e). This is represented
by a two-way diamond preceding another three-way diamond. Similarly, c, d and
e trigger two events in conflict (f and g) that later trigger events a and b.

ba

a

f g

b ed

cde

c

dececd

(a) Transition system.

f

b a g

dec

(b) Petri net with bisimilar behaviour.

Fig. 9. TS with complex relationships between events.

τ d

e

a

c

bf

g

τ
τ

Fig. 10. Petri net after the insertion of τ events.

In a Petri net, a group of n concurrent events triggering another group of m
concurrent events requires a set of n×m places representing the cross product
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of relationships between pairs of events (see Fig. 9b). This situation can be anal-
ysed at the level of TS and insert silent events in strategic states that separate
relationships between multiple events.

Figure 10 depicts a Petri net exhibiting the same behaviour as the one in
Fig. 9b, but including some τ transitions. To be more precise, both Petri nets
are weakly bisimilar [10]. The following table reports a comparative study about
the structural properties of both Petri nets.

Figure Places Transitions Arcs Arcs/Nodes Arc crossings
9b 11 7 27 1.50 12
10 12 10 26 1.18 0

For a fair comparison, both layouts have been generated by graphviz. The
number of arc crossings is reported by the tool and gives an idea of the intricate-
ness of the layout. Clearly, the layout shown in Fig. 10 is much more graphically
intuitive. Quantitatively speaking, the ratio of arcs per node and the number of
arc crossings are parameters highly related to the visualisation of the layout.

4 Surprise, surprise, . . .

During a discussion on the problem of duplicate tasks in process mining, an
interesting example came up. In process mining, the goal is to obtain a formal
model from a set of behaviours represented by an event log.

Figure 11 shows a TS obtained by the event log at the left. Each one of the
traces from the log corresponds to a different trajectory in the TS. The figure
also shows a bisimilar Petri net after event splitting.

Event log

aabc

aacb

abac

acab

=⇒

a

a

aa

b

b

b

c

c

c

=⇒

a0

a1

c0

c1

a2

b

Fig. 11. TS and Petri net obtained from an event log.

It was interesting to realize that a much simpler Petri net, shown in Fig. 12,
was able to generate exactly the same language. However, there is a small sub-
tlety that differentiates them. The underlying TSs are not bisimilar, but they
still are trace equivalent.
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a

b

a

c

a

a

a

a

b

b

b

c

c

a

a c

Fig. 12. Petri net generating the same language as the event log in Fig. 11.

The previous example suggests that event splitting can be solved in differ-
ent ways depending on the equivalence that needs to be preserved during the
synthesis of a Petri net.

5 Conclusions

For many years I have had the opportunity to share many exciting discussions
about a large variety of research problems with Alex Yakovlev. After such a long
time, some of the problems we have tackled have been solved, many of them are
still open and many others are still unknown.

This paper just showed one of the open problems that will surely draw the
attention of some researchers in the near future. My only hope is that the ex-
amples shown in the paper stimulate new ideas and discussions such as the one
we had with Alex in Dresden (March 2016) when chatting about this topic and,
more in particular, about the last example shown in the previous section.
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The Scientific Craftsperson: Beauty, Engineering

and the Bohemian Researcher

Crescenzo D’Alessandro

Independent submission

Abstract. “Engineering" and "Beauty" seem to be diametrically op-
posed concepts: one concerned with hard reality, experimentation and ev-
idence; the other generally associated with subjective, culturally-shaped
experiences. And yet science and beauty are often discussed together,
and many parallels have been drawn between the two disciplines. En-
gineering solutions are often considered beautiful, at least by engineers
(think of a Phase Lock Loop, for instance) - but are they? Can the pursuit
of beauty help the engineering endeavour? What about elegance - does
this concept have any more bearing on engineering? Pushing engineering
outside its traditional boundaries, this paper attempts to show that in
spite of the dangers of aesthetic rules inevitably steering the judgement
of the clinically-minded engineer, beauty and elegance do indeed have an
often undermined, but positive effect on the practice of engineering and
these values should be nurtured instead of discounted.

1 Introduction

Science and Beauty have walked hand in hand since the beginning of civilization,
but their relationship has been a complex one, which continues to evolve through
the times. In an age where the natural, irregular, “organic” beauty of nature
dominates the everyday life of early populations, man-made precision, which
hinted at the metaphysical world of perfection of the gods, becomes “beautiful”;
this precision is expressed for example in perfect shapes and perfect colours
to replicate the unconscious beauty of nature. Both types of perfection require
refined techniques and technologies, which in turn require ever more refined
science to allow these techniques and technologies to blossom.

In an era of man-made precision, the concept of Beauty is extended and
becomes less literal. In order to progress on this, we will refer to “Beauty” as the
sense of awe and pleasure which fills us when observing (in the widest possible
sense) something. Returning to Nature we can find beauty in the exploration
and description of a Nature-puzzle to be solved and exploited, or in the awe of
discovering a sophisticated mathematical fabric underpinning the whole (set of)
Universe(s), or simply in the visually attractive patterns created by water as it
freezes over a windscreen – indeed the mathematical-physical description of such
patterns. In these examples science is either itself the source of Beauty or the
mechanism which unveils it from beneath the seemingly unpredictable behaviour
of invisible forces. What does it mean to talk about beauty in science? The
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easy descriptions of beauty as visually pleasing when applied to 3-dimensional
fractal patterns is unsatisfactory: many lay people would consider the symmetry
embedded in some mathematical functions, or the sound of a pulsar many million
light years away as “beautiful”. Often we hear that E = mc

2 is “the most beautiful
formula in physics”, but the answer to “why” will probably be very confused
and/or confusing.

Indeed, what makes it beautiful? Perhaps more importantly, is it beautiful
for everybody or could you find someone who will be prepared to say that it
is “ugly”? Does it depend on the level of understanding of the formula? And if
we talk about beauty in Science, what about beauty in Engineering: could this
combination of words be even acceptable, or are they such a dichotomy that
putting them together cancel each other out?

In this essay I will attempt to link Beauty to the scientific endeavour in
a way that allows engineering in the mix, in a pragmatic and indeed practice-
oriented way: I will show that an aesthetic assessment of each own work is, if not
pragmatically a necessity, an aspiration to keep in mind during any scientific and
engineering-related activity. In order to achieve this goal, I will define Elegance as
a precursor to Beauty, which I consider a real requirement for good engineering:
this will provide the ground on to which to build the thesis I propose.

Of course, this essay does not purport to appear as an authoritative con-
tribution in the philosophical arena: more humbly, it is a set of reflections and
musing by the author. I am indebted for the contribution of a number of peo-
ple who have read and commented on the work, particularly my long-suffering
wife Claudia, who, as an artist, has provided me with deep insights in this field
and has provided many valuable comments, and my friend Ugo Concilio. Every
responsibility for inaccuracies and misrepresentations remain however with the
author.

1.1 How not to close a discussion

This essay was conceived just after a discussion with a manager at a company
at which I was employed as a design engineer. We were discussing some circuitry
to be included into an ASIC (Application-Specific Integrated Circuit) which was
responsible for generating a Sigma-Delta modulated stream which, when low-
pass filtered, would provide the necessary voltage for a VCO (Voltage-Controlled
Oscillator) to maintain a frequency with a fixed, known fractional relationship
with respect to a reference frequency. It was a disarmingly simple device, all
digital (apart from the low-pass filter) and very small in terms of silicon area;
my task consisted in integrating this device into the rest of the IC. Discussing
some possible solutions, I mentioned that one would be very beautiful but would
need a bit of time to develop, so I will concentrate on the “rougher” basic solution:
his answer to that was, in a very serious voice which was meant to indicate that A
Very Important Concept was being imparted upon me: “We Don’t Do Beautiful”.
That exchange remained in my head, and is still there – and I think it is destined
to remain there as a “foundation memory”. My initial reaction was a vague sense
of disappointment: the reason why I do electronics is precisely because I find it
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“beautiful”; to be told that it is anything but was quite a blow! I then thought that
probably he was trying to hurrying me up with my task, so in the coming months
I managed to probe further his statement, and indeed found that it was not a
spur-of-the-moment thought, but a real conviction. I question now as I did then
the strength of that conviction: can you really become a manager of something
you don’t find beautiful – in fact he is an excellent manager, and I can’t really
believe that. But that answer hinted at something which I have experienced over
and over again: between “beauty” and quick solutions, in industry we always tend
to go for the quick solution, however inelegant (in the traditional sense) that is
(well, there are limits there, of course). We never did have a discussion about this:
the conversations I tried to start about beauty were always closed in sacrifice to
the god of Time. Instead, I went away and did what I like doing: I tried to make
sense of what I observed.

2 A Concise Treatise on Beauty

Everyone can easily put forward statements about beauty in paintings, poetry,
music, sculpture, regardless of our philosophical abilities: Croce points out in his
“Breviario di Estetica”[3] that “common people” could easily make the philoso-
pher flush with in-depth discussion on beauty and art, these two subjects being
so close to our hearts. However, relating this to science is more difficult territory:
can the scientist, often imagined in the typical Hollywoodesque white coat, crazy
hair and nerdy attitude, really produce “beauty”? And what about the engineer:
this is often seen as an even less plausible actor in the development of beauty, so
engrossed with practical issues to solve to lift his/her head to look at the world
around. The problem may stem from the romantic idea of the artist as a “damned
hero”, so embedded in our society that anything else seems rather incongruous:
in my experience, when asked to name an artist, most people would mention
artists with troubled life histories, who produced high-impact art seemingly at
the expense of their own sanity or health1.

The relationship between science and beauty has been explored by many
philosophers, and has become more relevant with the advances of physics which
have opened avenues in science towards aesthetics which were not available be-
fore. Arthur I. Miller points out that Einstein in 1905 “introduced aesthetics
into modern physics by arguing that the “profound formal distinction” scien-
tists made that particles of electrons emit waves of light was unwarranted [...]
his discovery that light could also be a particle emerged from his minimalist
aesthetic”[6]. And in mathematics in particular, aesthetics has been part of the
discourse from a very early age: Greek philosophers found beauty in the perfec-
tion of the simple formulae describing complex natural features. More recently,
Dirac famously said that “it is more important to have beauty in one’s equations
than have them fit the experiments”[4].

1 It is also my experience that those versed in art history typically make different
choices
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The first problem is to work out whether beauty and science are compatible.
In order to address this point we initially equate art and beauty, by identify-
ing producing art as the act of pursuing beauty2. Most thinkers, and indeed a
first sight most people, would introduce a necessary distinction between art and
science: Croce indicates the necessary contraposition between art-intuition and
science-classification, where art has an unconscious quality and science is fully
conscious. Indeed, Croce considers the two to be diametrically opposed and in-
compatible, relating to different “esprits”. This distinction is to me artificial and
indicates a distance from the scientific pursuit: while experimentalism is indeed
far from art when a mechanical repetition of actions (itself necessary to the ad-
vancement of science in some – most? – cases), history of science is punctuated
with examples of beautiful theories/proofs/insights which are akin, for me, to
art works. Examples include Maxwell’s equations, quantum mechanics, Fourier
transforms.

An additional pitfall which needs to be identified in order to avoid distractions
is the distinction which needs to be made between the underlying beauty of the
natural phenomenon described by a scientific theory and the beauty of the theory
itself3. The point here is to distinguish, for example, between the “beauty” of the
DNA molecule and the environment around it, which allows life to proceed from
such a system, and the theories and experiments which led to its discovery: let us,
for instance, consider the DNA molecule “beautiful” from a visual perspective,
observing the double-helix configuration as our primary focus; the danger is to
consider anything related to DNA similarly beautiful. Confusing the two (the
observed and the observation) is disastrous for our discussion, because it will lead
us into the traps of believing that science can only be beautiful “by reflection”,
i.e., like a planet which shines of the reflected light of the sun, science can only
be considered beautiful if the matter studied is itself beautiful according to some
criteria. Quite apart from being rather disheartening for those scientist who work
on “ugly” phenomena (again, according to some aesthetic criteria), it diverts us
from our quest, because it hides what is really beautiful about science, which in
my opinion transcends the subject matter of the scientific produce.

Another distraction is the identification of criteria for beauty which refer to
senses; for instance, using “symmetry” as a criteria confuses the issue because it
cannot applied to all scientific produce. I don’t mean to limit symmetry to what
is visible, as this quality can be applied abstractly to a number of mathemati-
cal representations when we extend symmetry to indicate formulae which don’t
change following rotations and translations; rather, I question the perspective
of some to draw the conclusion that “symmetry is a criterion for beauty” be-

2 This is not necessarily a satisfactory equation, but it will serve as a starting point
for the discussion. Indeed, we can use it in this context where we are not concerned
with the relationship between art and beauty; thus the equation can be useful to
introduce a shortcut between “beauty” and “the pursuit of beauty”

3 Of course, for “theory” one can substitute any scientific endeavour. I will often refer
to “solutions”, in a reference to my previous mention of the Nature-puzzle

155 x 238 mm

110         Crescenzo D'Alessandro



cause most people would consider symmetrical objects beautiful, confusing the
pleasure obtained through a visual experience with a more general idea.

It could be said that as scientific theories are representations of reality, truth-
fulness is a requirement for beauty; this, however, would draw us back into the
trap of believing that beauty can only refer to nature, again confusing the ob-
served with the observation.

So, what is beautiful? Is beauty objective – and whether it is or not, can we
identify a set of criteria to draw a line (hard or otherwise) between “beautiful”
and “ugly”? As I indicated above, “aesthetic” is a branch of philosophy with a
long history (although the term is relatively modern, and appeared in the middle
of the 18th century as the title of a work by Baumgarten); as such, many diverse
theories have been put forward to identify, precisely, “what is beauty”, from the
most intuitive idea that “beauty is something which gives you pleasure for the
senses”, which we classify as “hedonistic”, to beauty (or rather art, at one time
identified with pursuit of beauty) as expression of the divine (medieval aesthetic,
St. Augustine) or the “absolute” (Schelling, Hegel), to the modern perspective
which refutes a normative definition of beauty and instead focuses on the piece of
art itself. Alas, a proper dissertation on the subject would be beyond the focus of
this essay, and will be left to reader to investigate the history of aesthetic further.
However, it is important to mark some points in this rich history. The first
point to observe is that, while modern aesthetic attempts to refute a normative
approach4, this position is unsatisfactory for our investigation5. An observation
which we come back to is from Kant: something beautiful appears “purposive
without purpose”6, i.e. it appears to have a purpose, but no specific purpose can
be found. This point is important and will be discussed later. A more important
contribution to note for our discussion is Denis Dutton’s proposal of six universal
signatures for human aesthetic[2]:

1. Expertise or virtuosity. Technical artistic skills are cultivated, recognized,
and admired

2. Nonutilitarian pleasure. People enjoy art for art’s sake, and don’t demand
that it keep them warm or put food on the table

3. Style. Artistic objects and performances satisfy rules of composition that
place them in a recognizable style

4. Criticism. People make a point of judging, appreciating, and interpreting
works of art

5. Imitation. With a few important exceptions like abstract painting, works of
art simulate experiences of the world

6. Special focus. Art is set aside from ordinary life and made a dramatic focus
of experience.

4 Pareyson for instance proposes that a piece of art is successful according to a norm
(or set of norms) defined within the piece itself, and the norm defines the invention
and the criteria for the artwork

5 The reader will forgive me for not pursuing this aspect further in this paper
6 “Critique of Judgment”
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One could easily draw parallels between these signatures and science: “beautiful”
science is considered to be “difficult”; “style” could refer to different schools of
thoughts on a particular subject; criticism can be found in the peer-review pro-
cess, for instance; imitation can go in parallel with re-use. As for non-utilitarian
pleasure and special focus, although scientific discoveries can be said to be driven
by “need”, in reality the theory which describes the phenomenon and the exper-
iments devised to investigate nature are, in my view, entirely works of the mind
and in themselves can be enjoyed for their own sake and are set aside from
ordinary life. Consider for instance the theory according to which dark matter
permeates the Universe: assuming it “beautiful”, it does not provide me with
shelter or food, and indeed is set aside from ordinary life, but it does provide
me with a dramatic focus of experience. And indeed we can apply the above
signatures to the theory and consider it beautiful. But Dutton’s signatures are
not the end of the story: being universal they risk encompassing too much. How-
ever, the strength of the signatures is that it bridges the objective and subjective
parts of beauty: if I cannot appreciate the virtuosity of a piece of art I cannot
consider it beautiful; thus, a sense of “responsibility” is required on the part of
the beholder and his/her knowledge becomes part of the appreciation of beauty
not just as fruition of beauty but also as a determining conscious act.

Karl Popper delivered in 19537 a lecture[7] where he attempts to draw a line
between science and pseudo-science, and arrives at a set of conclusions on the
nature of science8, which I use as the basis for the bridge between aesthetics and
science:

– Science is courageous: it must allow the risk of being refuted
– A good scientific theory is a prohibition
– Irrefutability is a vice of science

The first thing to notice in this list is that it applies mostly to quite revolutionary
steps in the progress of science: Popper was extremely impressed by Einstein’s
proof of General Relativity by Sir Arthur Eddington who organized an expedi-
tion to observe the solar eclipse of 1919 and showed that light is indeed bent by
gravitational fields as expected by Einstein’s theory. Kuhn correctly points out
that most science is instead an accretion on existing knowledge: while Popper
describes the “romantic hero” of science (see previous section), Kuhn talks about
the “busy bees” who make up most of the knowledge by contributing small parts
to greater ideas. It appears to me that Popper introduces some sense of aesthetic
in the scientific discourse, in particular when he talks about risk. Observe that
this position is very different from that of those philosophers who consider science
to be the result of mechanical observations thus precluding science from any aes-
thetic activity for the lack of intuition. Rather, Popper seals the non-mechanical
element of intuition and consequently an aesthetic perspective onto the scientific

7 This lecture was subsequently published in the reference indicated in the bibliogra-
phy

8 Popper also indicates additional criteria more related to testability of theories, which
I don’t think are relevant in the current discussion
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progress, warning of the risks of confusing the two aspects, mechanical accretion
of knowledge and pure intuition not supported by observation. Kuhn counters
that in reality the work of the scientist is far from the beautiful theories, and
focuses instead on experiments: “the exploits of Copernicus or Einstein make
better reading than those of a Brahe or Lorentz”[1]. Is beauty lost here? No:
in my opinion, the aspiration of the scientist is still the beautiful theory, the
ground-shifting discovery, the Higgs boson with the “wrong” weight, the Fourier
transform. The other observation is that science and art are courageous in sim-
ilar ways, pushing the boundaries of what’s known and exploring the impact of
new theories on existing knowledge, imposing distinctions and prohibitions and
being open to debate/tests.

3 Beauty in STEM

“Armed” with the basic tools introduced above, we can finally approach Beauty
in the STEM subjects (Science, Technology, Engineering and Mathematics) in
steps or degrees, and this will be helpful to our final aim. We first look at a
subset of what is beautiful, and I will use the term “elegance” for the quality
of these instances. I will consider “elegance” a subset of beauty because in my
definition something elegant might not be beautiful, while something inelegant
cannot be beautiful. Of course, I am “overloading”9 this term for my purposes
here, but the word and its everyday meaning is in line with my aims.

I will use a normative approach for the definition of elegance and beauty in
science: I intend these “norms” however more as guidelines than rules.

We can identify a set of criteria for elegance in science:

1. Clarity or effortlessness – an elegant solution, experiment, proof, theory can
be understood by those familiar with the context, and the general idea can
be grasped by those not familiar. This is the quality of an elegant work to
appear as self-evident

2. Generality – it applies not only to the problem at hand, but can be re-used
with the necessary modifications in other contexts

3. Control or coverage – an elegant solution covers the problem completely. This
does not mean that it does not have limitations, rather that the limitations
do not preclude breadth of application

4. Adherence to Occam’s Razor – “entities must not be multiplied beyond ne-
cessity”, the solution is economical and efficient

These four criteria can be applied to science and engineering works at various
levels: experiments, theories, but also computer programs or computer languages
themselves. I have chosen these criteria from my experience and they are there-
fore open to criticism (i.e. they risk to be refuted, as a good theory should).

Beauty extends elegance and we introduce the following additional criteria:

9 A term borrowed from Computing, where a function can be overloaded if it has
different semantics based on the number and type of input parameter and output
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5. Virtuosism – a beautiful solution resolves a difficult problem, and/or chal-
lenges our preconceptions and knowledge

6. Intuition – a beautiful solution hints at something beyond the problem at
hand and has far-reaching consequences (an instantiation of Kant’s “purpo-
sive without purpose”)

3.1 The Fourier Transform

As an example of beauty in science, I propose the Fourier transform. This is a
mathematical tool which describes an arbitrary function10 in terms of sinusoids
of different frequency and amplitude. It is a remarkable method, and applied
to technologies we use in everyday life; it also enables scientific methods and
observations which further our understanding of physics, chemistry, astronomy
to name a few disciplines. We can apply the criteria defined previously:

1. Clarity - The idea of a signal as composed of sinusoids of different frequencies
and amplitudes is surprising to begin with, but becomes simple to relate to
when observing a diagram. Most people use a graphic equalizer for their HiFi
stereo - a direct application of the Fourier Transform

2. Generality - Fourier discovered this method while working on heat transfer
and yet the very same method is used for anything from audio processing to
radio communication

3. Control/Coverage - the constraints applied to the method are not a major
limitation and the Transform is applied successfully in most applications

4. Occam’s Razor - the Fourier Transform is powerful in its “economicity”; con-
sider for instance the ability to deploy a Fast Fourier Transform (FFT), a
method which simplifies the traditional Fourier Transform to make it avail-
able for deployment in digital computation platforms - or even by hand

5. Virtuosism - The idea of translating a complex, arbitrary waveform into
its frequency components is such a divergence from the sensory perception
of reality that it challenges our knowledge and preconceived assumptions.
Moving from the actual observed light into analysing the colour components,
astrophysicists are able to determine the composition of planets’ atmospheres
and stars, which in turn enables them to infer a history of the celestial bodies

6. Intuition - the “magic” of the Fourier Transform is that it opens a window on
a completely different way to observe reality: the Transform itself is a mere
mathematical tool, but the implication that every signal we observe (or make
devices to observe) is composed of simple repeating waveforms of different
amplitude and frequency has a metaphysical quality to it, and inspires us to
consider corollaries which bring us far away from the original proposition

3.2 The Phase-Locked Loop

Elegance in Engineering is a more slippery concept to an extent, but as an exam-
ple consider the Phase-Locked Loop (PLL). This device (which can be developed

10 The arbitrary nature of the function is in fact limited by a number of constraints
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mechanically or electronically) is able to track an incoming waveform and keep
the output phase locked to the input phase. It is an important development in
technology, enabling for example efficient and affordable modulation and demod-
ulation of radio signals. It is a fundamental building block of many electronic
devices, used for instance in clock generation.

Applying the criteria:

1. Clarity - The function of the PLL can be easily explained and is typically
understood by undergraduates of engineering courses

2. Generality - The PLL is applied very widely in industry
3. Control/Coverage - The PLL device has very limited caveats in its deploy-

ment
4. Occam’s Razor - The PLL is “economical” in that it requires limited bound-

ary conditions to operate

However, I contend that the PLL does not completely satisfy the additional two
criteria:

5. Virtuosism – This is covered, as the PLL does indeed resolve a complex
problem which would require significant effort to resolve with alternative
solutions (consider radio modulation and demodulation before the PLL)

6. Intuition - this is the criteria which I believe the PLL does not completely
satisfy. Under scrutiny, the PLL operation can be described completely and
it does not appear to open up different ways to consider reality

Thus, I propose that the PLL is an Elegant solution rather than Beautiful.

3.3 Beauty and Elegance: Necessity or Indulgence?

We now come to a fundamental tenet of this essay. I contend that “beauty” and
“elegance”, and the pursuit of these, are not only desirable aspects of the scientific
and engineering endeavour; they are necessary :

– Beautiful and elegant solutions are clear and easy to understand intuitively.
Examples are software coding, electronics design, chemical processes etc.

– This clarity makes portability and enhancements more reliable and pre-
dictable

– Such solutions also require less maintenance and additional follow-up work,
as they have generality and coverage as defining features

– They are optimal as they adhere to the Occam’s Razor rule
– Beautiful scientific solutions have an element of virtuosism and appeal to

our intuition, which fills us with awe at the unending complexity of Nature,
intended in the widest sense

A suitable metaphor which can be used here equates the scientist to the tradi-
tional “artist” and the engineer to the traditional “craftsperson”. The artist ex-
plores the boundaries and challenges assumptions about aesthetic; the craftsper-
son exploits and develops ideas to turn them into practical deployments. It is
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important to point out that the two are related: the two agents influence each
other’s work, enabling a complex interplay between artistic élan, technologi-
cal constraints, business opportunities, customer appreciation. The parallels be-
tween the artistic and scientific endeavour are very appropriate to bring the
scientific pursuit of beauty and the engineering focus on elegance on terms more
closely related to everyday life.

Just as the artist and craftsperson uses and develops the available technol-
ogy to their pursuits, so do the scientist and the engineer. In this context, the
Engineer is a “scientific craftsperson”: this agent invents new solutions to tech-
nical problems, translates the ideas of the “bohemian researcher” into practical
products, provides the bohemian researcher with new and refined technologies
to pursue new, beautiful science.

In summary, I consider that what moves us to further knowledge is science
is not just our insatiable curiosity, but also a pursuit of aesthetic satisfaction
which transcends the senses - in a way, scientific pursuit is essentially beautiful

in a pure sense. Notice an intriguing parallel with (post-)modern art - a parallel
we will not explore further in this paper.

4 Conclusions

Looking back, strictly speaking that (ex-)manager was indeed right: we (engi-
neers) don’t do beautiful - instead, we engineers “do elegant”. But I don’t believe
the attitude of considering the idea of “beauty” in engineering with disdain, as
an unnecessary distraction from the necessary work at hand, is correct. Intro-
ducing “elegance” is a way to introduce aesthetic appreciation in the engineering
practice, however, seeing it as a burden, an incidental by-product of the work
of the snowed-under engineer is limiting its application. What is the alternative
to elegant work? Inelegant work requires regular re-work; re-use and extension
of inelegant work require understanding of the original caveats and limitations,
hampered by lack of full coverage of a problem; its use outside the strict letter
of its manual (itself a work of engineering, thus subject to the same elegance
criteria!) can have unexpected results. Thus inelegant work requires unnecessary
resources which could be saved by more work on the aesthetic value.

And what about science, and in particular research? I believe that researchers
have the privilege of aspiring towards beauty as an everyday endeavour; this priv-
ilege should indeed inform the choices and any work undertaken. It is true that
a balance needs to be struck between what I call the bohemian aspect of the
research and the day-to-day drudgery of literature reviews, computations, anal-
ysis etc. However, keeping in mind the higher ideal of Beauty during this work
can only help in making the work more appealing and may lead to unexpected
developments.

Finally, a necessary digression. I have avoided deliberately mentioning “truth”
throughout the essay, but this is indeed an important concept in this context,
especially to explain an aspect discussed previously. A pitfall which should be
avoided at all costs is to equate beauty and truth: this equation we have already
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discounted previously, but apart from the mistake of inferring beauty from truth,
an even more dangerous mistake is to infer truth from beauty. Ian Glynn in the
epilogue to his book “Elegance in Science”[5] reports an excellent example of this
mistake related to the way data is encoded onto the DNA molecule (a warmly
recommend read for every scientist). I mentioned before that “scientific pursuit
is essentially beautiful in a pure sense”: the price to pay for that is that at the
end, truth defines the success or otherwise of scientific work. Art has no such
shackles and is therefore free to explore beauty - a privilege not afforded to the
scientist.

So my closing remarks are that beauty is not simply incidental to science,
but a fundamental aspect of it. Engineers are the scientific craftspeople informed
by aesthetic just as much as by science. A reassessment of the aesthetic value
of the scientific and engineering endeavour would make us more efficient, more
effective and, more importantly of all, happier and more satisfied individuals.
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Abstract. A stimulating intellectual environment and access to resources are of 

paramount importance in creating an ideal learning and research atmosphere 

conducive to quality scholarly work. Being in a system that rewards academic 

contributions through publications and funding garners commitment towards 

the chosen field of research.  Inspirational role models help to shape students 

and thereby enable them to pursue academic disciplines they can excel in. We 

have been lucky to be mentored/supervised by Prof. Alex Yakovlev during our 

Masters and PhD degree courses in Newcastle University. Through his work he 

has shown how satisfying and gratifying research can be once you start on this 

path. His objective for research made an impression on many professional 

careers towards a more fulfilling objective in life rather than just material and 

personal gain. In developing countries learning is always a goal to achieve 

personal gains rather than actually understanding and spreading the knowledge. 

In this paper, we will aim to provide an Indian student’s perspective on learning 
and research in India and how it compares to Britain and how role models like 

Alex helped shape us into what we are today.  

1   Introduction 

As a student, coming to study in a different country has a lot of excitement 

associated with it. The excitement of living in a new society, with people from 

various countries and culture, is foremost for new students. Most students find this 

experience, a background learning process which enhances their appreciation of other 

cultures. The first hand exposure of this new society is something which cannot be 

experienced through portrayals in British dramas and movies. However, along with 

the excitement there is a sense of apprehension regarding the challenges to be 

encountered in a new education system. Education system for higher degrees in the 

UK universities is operated in a very professional manner.  The way universities are 

set up makes the initial experience a very welcoming one. Even in a one year course 

the initial days are spent just enjoying the whole university experience rather than 

immersing the students in a classroom. Once the taught modules begin, the lecturer 

and students exchange starts at a very personal level. Most lecturers practice an open 

door policy to the students and are ready to share their experiences. In this paper we 

try to highlight the key advantages that we experienced in the UK University over our 

experience in an Indian University. 
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2   Experience 

Our first-hand experience of being taught by Prof Alex Yakovlev was during our 

Masters programme. We both were coming from an education background in India 

which had a different approach to teaching compared to our experience working with 

Alex Yakovlev. His teaching style was more a subjective approach as compared to 

having an objective approach. This was a refreshing change where the details of each 

concept were analysed and explained for understanding of the students. This meant 

the involvement of the student in getting curious about learning. This also enabled 

students to extrapolate from established theories and be creative about the subject.  

Owing to Alex, our university education became the beginning of our un-

schooling. This is where we began to love learning and not lose ourselves in the 

production line. Much of what we feel  are the weaknesses of the Indian education 

system comes from the fact that emphasis is solely given on a student’s grade when 
considering admission to a particular field of study. In the UK, lecturers like Alex, 

look beyond grades and identify the potential of student through their skills, 

knowledge, aptitude and aspirations. 

One of the major things that alienated the school education system was the 

expectation that students can memorise large amounts information in order to 

reproduce these during examinations. On the contrary, in the UK, lecturers pushed 

students to think and know that there can be two right answers to a question. 

Another key strength of UK education system is the emphasis on original research 

and publication. Many University departments in India have poor government and 

corporate funding which hinders student participation in workshops and conferences. 

During our tenure at Newcastle University we have always been encouraged to attend 

workshops, seminars and conferences which helped us bounce off ideas against each 

other and helped us grow as a researcher. 

3   Conclusion 

The development of a discipline in any country is closely related with the overall 

economic and political stability. This has a deep impact on the available resources to 

invest in higher education and the resulting infrastructure within universities and 

research institutions. Although the Indian education system had its shortcomings we 

feel we still benefited from it in many other ways. The Indian education system 

provided us with good theoretical background which enables us to pursue higher 

education in UK. The competitive nature of the Indian education system also enabled 

us to adapt quickly to the education system in UK. We are enriched in our 

experiences due to our university experience in UK. Our experiences in two different 

worlds have made us better professionals.  

This paper is dedicated to Prof Alex Yakovlev and how his teaching and mentoring 

style has left a deep imprint on our lives. We feel his teaching style has had an impact 

on many students before us and will continue to have on many students in the future.   
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The Story of the Amulet: A Brief History of

Asynchronous Events in Manchester

Doug Edwards, Will Toms, Steve Temple, Luis Plana, Jim Garside and Steve
Furber

University of Manchester

Abstract. This presents an overview of the significant achievements in
Asynchronous Logic over the last quarter of a century at the University of
Manchester. Including the Amulet (and subsequent) asynchronous Mi-
croprocessors, the synthesis tools Balsa and Teak, the MARBLE and
Chain on-chip Interconnects, together with research arising from exter-
nal collaborations with the University of Newcastle.

1 Pre-history - an Overview by Steve Furber

The Amulet story begins in 1989. Through the 1980s I (SBF) worked at Acorn
Computers Ltd in Cambridge, UK, where I was a designer of the BBC Microcom-
puter and the ARM (then “Acorn RISC Machine”) 32-bit RISC microprocessor.
We didn’t publish much, but one paper we published was on the ARM3 - the
first ARM with an on-chip cache - at VLSI’89 in Munich [7]. At that conference
I was struck by a paper [14] presented by Craig Mudge, then CEO of Austek Mi-
crosystems Ltd based in Adelaide. This was my first exposure to asynchronous
design, and of course Mudge’s paper cited Ivan Sutherland’s Turing Award paper
[19] which really sold the concept to me.

Over the following year I doodled some ideas on the possible design of an
asynchronous version of the ARM based on Sutherland’s micropipelines ap-
proach. This was around the time the EU launched the OMI - Open Micropro-
cessor systems Initiative - which was in part stimulated by input from Acorn.
When I accepted the ICL Chair at Manchester, to which I moved on 1st August
1990, Acorn was generous in allowing me to take with me to Manchester a part
of an early OMI project that I had been involved in developing at Acorn - the
OMI-MAP project. OMI-MAP provided the early funding that got the Amulet
(asynchronous ARM) research off the ground at Manchester. The University
allocated a lectureship appointment linked to my chair, to which Jim Garside
was appointed, and OMI-MAP funded the appointment of Nigel Paver and Paul
Day as post-docs. In addition, existing academic staff joined in - Doug Edwards,
Linda Brackenbury and Viv Woods, bringing in additional perspectives and new
funding, all of which enabled the Amulet group to grow to critical mass.

Why “Amulet”? Well, in searching for a group or project name you have
to start somewhere, and writing down keywords on a whiteboard is one way
to start. “Asynchronous”, “Manchester University”,“Low-Energy Technology”?
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The name stuck and worked well, even though the acronym expansion did not
see much light-of-day!

2 Amulet Processor Series

Before engineers had learned the “correct way” to build digital circuits - by
inventing a global clock to slow everything down - there was considerable exper-
imentation with different design styles. However to attempt anything complex
in a clockless circuit was clearly a bad idea. Was it even possible to challenge
the decades of synchronous development with such a radical alternative?

Few people had tried asynchronous VLSI, largely because the two terms are
from different eras; asynchronous digital circuits largely predated VLSI. How-
ever, conventional devices were exhibiting some worrying trends, particularly
increasing power consumption in parallel with the rise of mobile computing de-
vices and shedding the clock seemed like a way to lose one of the major drains
on a battery, particularly as the clock waggled continuously but did no actual
computing.

Requiring a demonstrator, a microprocessor seemed an appropriate size. Re-
garding an architecture, a custom ISA was already being addressed at Caltech
[13] so cloning a commercial ISA seemed to pose some additional - and well-
defined - challenges. Respecting Steve Furber’s background, and arguably influ-
enced by already being a low-power champion - the demonstrator ended up as
an ARM.

Thus was born Amulet 1, an attempt to produce an ARM7 including ev-
erything but the clock. With respect to the literature, particularly Sutherland’s
’Micropipelines’ paper [19] this was done using transition (two-phase) signalling
and lots of “exotic” standard cells such as a variety of Muller C-elements [15].
Time elapsed and the the device appeared, made largely ’by hand’ on a 1 µm
2LM process. Happily it was functional and could run standard ARM code with
various asynchronous features such as varying execution speed as the supply
voltage was changed. Rather less happily it did this at about half the speed of a
contemporary ARM7, despite managing a ’CPI’ figure of 0.0. On the plus side,
energetically it was at least comparable with the synchronous circuit; as a minus
the transition signalling proved extremely painful to interface to.

Somewhat undaunted, Amulet 2 followed, hopefully incorporating the lessons
learnt. This involved going “four phase” to simplify the circuit design and in-
corporating more features - notably a cache memory (operating asynchronously,
of course) on chip. This achieved its objectives in that when the chip arrived it
worked and was a lot easier to use. It was also somewhat faster; unfortunately
so were the contemporary synchronous ARMs though which meant it was still
about half their speed. However there was another interesting observation made
which was that the lack of temporal coherence reduced the electromagnetic noise
emitted by the system.

It was this last characteristic which was a tipping point in having a third
attempt at the architecture, named, unsurprisingly, Amulet3. This was done in
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parallel with Hagenuk GmbH for integration onto Draco - a Digital Radio Con-
troller. This time only half the chip (the Manchester half) was clockless but this
included the processor, memories, DMAC etc. all communicating across MAR-
BLE [2], an asynchronous bus. This was now to compete with the ARM9 and
more features - such as branch prediction and out-of-order, parallel execution -
were incorporated into the microarchitecture. The goal was to achieve a com-
mercially available system before the year 2000. The chip was manufactured in
time; unfortunately also in time for Hagenuk to go out of this business. However
the technical design was vindicated in that this would run at effectively the same
speed as an ARM9 manufactured on the same process. Honours on energy use
was about even; the EMI was startlingly low.

Amulet 4 may have addressed more sophisticated architectural issues such
as superscalar execution ... but it never happened. In the synchronous world
new techniques - such as gating the annoying, power-consuming clock - were
being adopted and it was becoming apparent that the potential advantages of
future asynchronous processors were unlikely to be great enough to cause a major
switch in the industry. However the chips did demonstrate that most, perhaps
all, synchronous microarchitecture can be duplicated competitively without a
clock.

3 SPA - A Synthesised Amulet

The Amulet processors followed the design style used in the early, synchronous
ARM hard macrocells - full-custom datapaths with standard cell control blocks.
A different approach was required for the next collaborative project, which inves-
tigated the ability of asynchronous systems to offer improved security through
increased resistance to non-invasive attacks on smartcards, such as power and
timing analysis. A new processor, based on a more secure asynchronous tech-
nology, was needed and there was no time to design it in the rather laborious,
full-custom style used previously. Balsa had proved its value in the Amulet3-
based DRACO chip and presented the group with the opportunity to produce
a synthesised, asynchronous, ARM-compatible core, named SPA [16]. In fact, a
complete asynchronous smartcard System-on-Chip, shown in figure 1, was syn-
thesised using Balsa. The only clock used in the system is the smartcard interface
clock, driven by the smartcard reader. All the components of the system-on-chip
were connected through CHAIN, the on-chip interconnect technology also devel-
oped at Manchester. Balsa was used to describe and synthesise the system-on-
chip, which incorporated synchronous memories with asynchronous wrappers.
Cadence CAD tools were used to implement the chip in TSMC 180nm technol-
ogy. The chip, shown in figure 2, occupied an area of approximately 33 mm2.
Prototypes were received from the manufacturer in October 2002 and, after a
connection in the memory wrapper was repaired using FIB technology, were
fully functional. SPA required a completely different design approach from the
Amulets. The strategy to make SPA robust against power and timing attacks was
to make sure that all operations consumed the same energy and took the same
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time, irrespective of the actual data. This went against a basic asynchronous
designer’s strategy to take advantage of average case performance. The only
sensible way to achieve this was to design the processor to operate in worst-case
time and energy consumption. SPA was a success from the point of view of se-
curity but was distinguished with the unenviable accolade of being the slowest
ARM ever.

4 Latch Controllers

Amulet1 was an implementation of the ARM based pretty faithfully on Suther-
land’s micropipelines style. However, we found the two-phase control pretty
messy and slow for complex control structures, so for Amulet2 we decided to
try four-phase micropipelines - a very similar bundled-data approach but with
return-to-zero (RTZ) signalling. After some early exploratory work [6] we decided
that the number of options in terms of the interleaving of the two handshakes was
too complex to do entirely by hand, so with a little help from Alex we adopted
an STG approach to devise a range of solutions with performance/complexity
trade-offs. The paper published in IEEE Trans.VLSI [8] remains Steve Furber’s
most cited paper of all time, with just under 300 citations to date pretty evenly
spread over the last 20 years! Further developments optimised the controllers
for pipelines using dynamic logic [10]. Steve pulled a lot of this together in the
unpublished (though still cited!) ”A small compendium of 4-phase micropipeline
latch control circuits”, which has kept Graham Birtwistle and Ken Stevens (con-
structively) amused for many years since exploring the outer limits of this space.

As our designs became more complex, the need to use formal tools to get
things right increased. On Amulet3 [9] we acknowledge extensive use of Alex’s
Petrify tool in the design. Although a wide range of latch controllers are used
in the design, the most terrifying aspect of it was the register reorder buffer.
Here Jim Garside came up with an initial circuit by hand, but no-one else could
understand it, so Steve used Petrify to verify Jim’s design. This turned out to
be non-trivial - specifying an STG with as much concurrency as Jim’s brain was
a very challenging and incremental process! But in the end, with a little help
from Alex, we got there. Petrify proved Jim’s design correct, and even managed
to remove one transistor from it!

5 AntiTokens and Wagging Logic

While working in the optimisation of dual-rail self-timed logic, Charles Brej
formulated the idea of “anti-tokens” [5]. To fully exploit the benefits of‘ “early-
evaluation” (or “Or-causality”) anti-tokens are sent in the opposite direction to
the flow of data to destroy data that is no longer required. The concept was
subsequently adopted by Cortadella et al for use in Elastic Systems.

Charles also developed the “Wagging-Logic” style where logic-blocks are
replicated (into slices) and each successive datum are applied to successive blocks
in a round-robin fashion. This allows the return-to-zero phase of a slice to be
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overlapped with the data-phase of the succeeding slice. By extending the concept
to the units of a Microprocessor, data forwarding occurs between slices, reducing
the interlocking penalty and maximising the throughput of independent instruc-
tions. This design style cumulated in the Utopium, an 11-way wagging 8051
microcontroller. Sceptical comments from reviewers were etched into the top
layer metal (figure 3)!

Fig. 3. Utopium Die Plot

6 Balsa and Teak

As part of the EU funded project, EXACT, we were introduced to Tangram,
developed by Philips Research Labs, wihich was a CSP-based tool using hand-
shake circuits to synthesise complex asynchronous hardware. it was clear that
Tangram was likely to be extremely useful for the design of the systems that
the Amulet group might be interested in building. However, it had a number of
disadvantages: the language was unfamiliar to most engineers; more importantly,
it was proprietary software and was not possible to experiment with language
extensions and optimisations and it was not clear if Manchester would be able
to use it after the end of EXACT project and. Doug Edwards, who led the
Manchester effort on EXACT, persuaded Andrew Bardsley, then a final year
student, to become interested in the idea. Andrew produced a prototype for his
prize-winning project and then produced a complete working system, Balsa [4],
for his M.Phil.

Balsa was used to design the DMA controller for Amulet3. This was a matter
of necessity: for various reasons, it would not have been possible for a hand-
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designed controller to meet the tape-out deadline; the design that Andrew pro-
duced in short order was a convincing proof of the effectiveness and reliability of
the tool. Balsa was then used to successfully design a complete processor - SPA
by an engineer, Peter Riocreux, who had no previous experience of the Balsa
paradigm. SPA has a reputation of being slow, but this is in part due to the
design requirements of the processor.

Although there were good reasons for SPA’s performance, strenuous efforts
were made by Andrew and Luis Tarazona to improve the speed of Balsa gen-
erated circuits resulting in an improvement of more than an order of magni-
tude. Nevertheless, performance could not match that achieved by a conven-
tional synchronous implementation. Attention was directed towards generating
data-driven circuits rather than the control-driven circuits of Balsa. Sam Tay-
lor’s system, based on Balsa, gave promising results, but unfortunately existing
circuit descriptions could not be automatically translated into his new language.

Andrew then began developing Teak which is capable of transforming the
timeless concurrent specifications in the CSP-based Balsa language into a data-
driven network. The Teak generated dataflows enjoy a set of architectural prop-
erties in communication and computation including slack elasticity, distributed
control and data-driven behaviour which pave the way for further optimisations
such as retiming and re-synthesis. These all make Teak a practical EDA frame-
work in the asynchronous domain suitable for exploring fine-grained elasticity
toward tackling the energy issue in large-scale SoCs

Recently eTeak has been introduced to enable the synchronous designers to
exploit the powerful properties of the Teak networks including scalability. eTeak
adopts a synchronous library (specifically the synchronous elastic protocol) to
introduce a common timing discipline to the asynchronous dataflows of Teak [12].
This way clocked commercial EDA is employable for retiming and resynthesis in
the synchronous domain. Latest explorations toward automatic GALS synthesis
leverage these advantages, particularly retiming of eTeak circuits, to study the
impact of the fine-grained partitioning on performance.

Balsa research has had many points of intersection with Alex Yakovlev’s
group at Newcastle, from STG specification of handshake circuit to collaboration
on funded research projects such as GAELS, SEDATE, VERDAD. It has been
used as a teaching and research tool in many institutions globally.

7 Asynchronous Interconnect

The Manchester AsynchRonous Bus for Low Energy (MARBLE) [2] was de-
veloped by John Bainbridge for use in the Amulet3H system. MARBLE was a
dual-channel pipelined bus with centralised arbitration and address decoding,
using an asynchronous four-phase bundled data protocol. The interfaces (fig-
ure 4) were specified using STG’s and speed-independent implementations were
synthesised using Newcastle University’s Petrify tool, except for two signalling
modules in which timing assumptions were unavoidable. John was awarded the
BCS Distinguished Dissertation award for his PhD based on MARBLE.
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Fig. 4. MARBLE Interface STGs

To overcome the limitations of a shared bus, MARBLE was re-implemented
as a packet-switched Network-on-Chip, using a Delay-Insensitive 1-of-4 data
encoding [3]. This was further developed in to the CHip Area INterconnect
(CHAIN) Network fabric [1] using a range of incomplete m-of-n codes designed
to minimise encoding and decoding overhead. The CHAIN Network became the
core of Silistix, which produced a range of AMBA and AXI compatible asyn-
chronous network-on-chip solutions.

8 SpiNNaker

In addition to leading the research into asynchronous systems, in the late 1990s
Steve Furber also became actively interested in how the brain functions. This
was to lead to the SpiNNaker project [11] which received its first funding in 2006
and has continued to the present time. SpiNNaker is based around a multi-core
processing chip [17] which has a novel routing system for small packets (40 or
72 bits) which represent the spikes emitted by real neurons when they fire. The
chips are designed to tile together to create a massively parallel compute engine
for simulating networks of spiking neurons. Currently, a 500,000 core machine
has been constructed, which consumes around 40kW when running flat out. It
is planned to extend this machine to 1 million cores.

It was clear from the outset that the design effort in making the SpiNNaker
chip required the use of as much pre-existing IP as possible. Our Amulet cores
were not readily process-portable so in collaboration with ARM we obtained
processor and memory controller IP (synchronous, of course) and from Silistix,
which was spun out from the group to commercialise the CHAIN system, we
obtained asynchronous networking IP. This meant that we could concentrate our
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efforts on the novel IP required for SpiNNaker which was based around a custom
router which facilitated efficient multicast routing of the small packets used to
represent neural spikes. The chip was built as a GALS system which meant that
we could harden the various synchronous IP blocks and obtain timing closure on
them relatively easily, while the GALS architecture meant that timing closure
at the top level was much easier than a fully synchronous system of similar size.

So while SpiNNaker generally uses synchronous IP there is a significant asyn-
chronous element to the design. The chip has two independent asynchronous
networks (figure 5). The System NoC is the main system bus for all of the cores,
on-chip peripherals and memories. It was generated using Silistix’s tools and
based around multiple 3-of-6 RTZ channels running in parallel to achieve the
necessary bandwidth, which is of the order of 1 Gbyte/s. Silistix provided syn-
chronous interface IP for this network which presented ARM AMBA interfaces
(AXI, AHB and APB) to the synchronous IP blocks. The second asynchronous

Output
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Fig. 5. SpiNNaker asynchronous NoCs

network, the Communications NoC, is used to carry spike packets around the
chip both between cores and the router and between the router and the off-
chip packet interfaces which transport packets between chips. The Comms. NoC
links are single 3-of-6 RTZ channels as the bandwidth requirement for packets
is relatively modest. To carry packets from chip to chip, we convert 3-of-6 to an
asynchronous interface based on 2-of-7 NRZ signalling. This only requires 3 tran-
sitions (two data and acknowledge) to convey data as a 4-bit flit and provides a
very low-power interconnect, albeit at the cost of 8 pins per channel. The band-
width across these links is around 250 Mbit/s and significant design effort was
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expended in making them resistant to glitching (and therefore deadlock-free) as
they may span significant distances on a PCB [18].

Two chips were fabricated in a UMC 130nm process through Europractice.
A prototype (MPW) chip in 2009 was followed by the production chip in 2011.
The production chip figure 6 is approximately 10x10mm and houses 18 ARM968
processing cores each with 96 Kbytes of local RAM. The packet router is in the
centre of the die and there is also an SDRAM interface block at the left hand
side which interfaces to a 128 Mbyte LPDDR memory die which is housed in the
same package as the SpiNNaker die. As some of the on-chip asynchronous links
span considerable distances on the die, pipelined repeaters were inserted every
0.5mm to maintain throughput. The System NoC is laid out as a sea of gates
surrounding the router. Standard synchronous CAD tools were used throughout
the design with a minimum of manual intervention to maintain correct opera-
tion of the asynchronous components. An estimated 30 man-years went into the

Fig. 6. SpiNNaker chip die plot

design of the SpiNNaker chip, a figure which will soon seem insignificant when
the associated software effort is calculated!

References

1. Bainbridge, J., Furber, S.: Chain: a delay-insensitive chip area interconnect. IEEE
Micro (5), 16–23 (2002)

2. Bainbridge, W., Furber, S.B.: Asynchronous macrocell interconnect using MAR-
BLE. In: Advanced Research in Asynchronous Circuits and Systems, 1998. Pro-
ceedings. 1998 Fourth International Symposium on. pp. 122–132. IEEE (1998)

155 x 238 mm

The Story of the Amulet       129



11

3. Bainbridge, W., Furber, S.B.: Delay insensitive system-on-chip interconnect using
1-of-4 data encoding. In: Asynchronus Circuits and Systems, 2001. ASYNC 2001.
Seventh International Symposium on. pp. 118–126. IEEE (2001)

4. Bardsley, A., Edwards, D.: The Balsa asynchronous circuit synthesis system. In:
Proceedings FDL 2000. pp. 37–44 (2000)

5. Brej, C., Garside, J.: Early output logic using anti-tokens. In: International Work-
shop on Logic Synthesis. pp. 302–309 (2003)

6. Day, P., Woods, J.V.: Investigation into micropipeline latch design styles. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on 3(2), 264–272
(1995)

7. Furber, S., Thomas, A., Oldham, H., Howaid, D., Urquhart, J., Wilson, A.: ARM3-
32b RISC processor with 4kbyte on-chip cache. In: Proceedings IFIP VLSI’89
international conference. vol. 10, pp. 35–44 (1989)

8. Furber, S.B., Day, P.: Four-phase micropipeline latch control circuits. IEEE Trans-
actions on Very Large Scale Integration(VLSI) Systems 4(2), 247–253 (1996)

9. Furber, S.B., Edwards, D.A., Garside, J.D.: AMULET3: a 100 MIPS asynchronous
embedded processor. In: Computer Design, 2000. Proceedings. 2000 International
Conference on. pp. 329–334. IEEE (2000)

10. Furber, S.B., Liu, J.: Dynamic logic in four-phase micropipelines. In: Advanced
Research in Asynchronous Circuits and Systems, 1996. Proceedings., Second In-
ternational Symposium on. pp. 11–16. IEEE (1996)

11. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker project. Pro-
ceedings of the IEEE 102(5), 652–665 (2014)

12. Mamaghani, M.J., Garside, J., Edwards., D.: De-elastisation: from asynchronous
dataflows to synchronous circuits. In: Proceedings of the 2015 Design, Automation
and Test in Europe. EDA Consortium (2015)

13. Martin, A.J.: The Design of a Delay-Insensitive Microprocessor: An Example of
Circuit Synthesis by Program Transformation. In: Leeser, M., Brown, G. (eds.)
Hardware Specification, Verification and Synthesis: Mathematical Aspects. vol.
408, pp. 244–259 (1989)

14. Mudge, J.C.: An Illustration of Micropipelines using Two-Dimensional Fourier
Transform Architectures . In: Musgrave, G., Lauther, U. (eds.) Proceedings of
VLSI 89. pp. 359–368 (1989)

15. Muller, D.E.: Asynchronous Logics and Application to Information Processing. In:
Symposium on the Application of Switching Theory to Space Technology. Stanford
University Press (1962)

16. Plana, L., Riocreux, P., Bainbridge, W., Bardsley, A., Garside, J., Temple, S.: SPA-
a synthesisable Amulet core for smartcard applications. In: Asynchronous Circuits
and Systems, 2002. Proceedings. Eighth International Symposium on. pp. 201–210.
IEEE (2002)

17. Plana, L.A., Clark, D., Davidson, S., Furber, S., Garside, J., Painkras, E., Pepper,
J., Temple, S., Bainbridge, J.: SpiNNaker: Design and Implementation of a GALS
Multicore System-on-Chip. J. Emerg. Technol. Comput. Syst. 7(4), 17:1–17:18 (Dec
2011), http://doi.acm.org/10.1145/2043643.2043647

18. Shi, Y., Furber, S.B., Garside, J., Plana, L.A.: Fault tolerant Delay Insensitive
Inter-Chip Communication. In: 2009 15th IEEE Symposium on Asynchronous Cir-
cuits and Systems. pp. 77–84. IEEE (2009)

19. Sutherland, I.E.: Micropipelines. Communications of the ACM 32(6), 720–738
(1989)

155 x 238 mm

130         Doug Edwards et al.



Partially-Ordered Event-Triggered Systems (POETS) 

Steve Furber1, Andrew Brown2 

1: School of Computer Science, University of Manchester, M13 9PL 
2: Department of Electronics & Computer Science, University of Southampton, SO17 1BJ 

Abstract: Event-triggered computing systems have long formed the basis of re-
al-time embedded systems in industrial plant control, automotive and aerospace 
system, to name but a few. Each of these application domains comes with its 
own challenges, but - generalising wildly - there are numerically few inputs and 
the timing constraints are such that the system can be realised with typically a 
few cores. Within the last decade, technology has moved on to the point where 
"the core" - once a central and important component in any computing system - 
has become as commoditised as the transistor did forty years ago. They have 
become negligibly cheap, and this change of value has brought with it a change 
of design perspective: In the past, complex data structures had to be constructed 
to allow a machine to operate efficiently on large numbers of "problem compo-
nents", and if the resource was insufficient, multiple cores would be bought into 
play, their interactions choreographed explicitly by expert software architects. It 
is now possible to create systems where the atomic elements of a datastructure 
are spread evenly and thinly over a huge number of small, simple cores, and the 
necessary computations executed by cores local to the data, rather than moving 
the data to the cores. In this paper we discuss realisations of this idea: the 
SpiNNaker engine, a custom system designed to simulate the behaviour of a bil-
lion mammalian neurons in real time - a feat made possible by a bespoke com-
munications infrastructure, asynchronously and independently transporting tiny 
packets of information; we then go on to generalise the concept and describe the 
POETS computing system, which allows a far greater range of application do-
mains to be addressed than does SpiNNaker. 

The model 

Introduction 

Here we begin to develop a formal system model that can be used to describe the 
operation of biological neural systems (such as the brain) and computational models 
of such systems. 

This work is motivated by a desire to find useful ways to think about information 
processing in the brain, and by a desire to produce a formal semantics that can under-
pin reliable operation of event-based machines. 

We introduce three models at different levels of abstraction, progressing from the 
biology of neural systems down to the details of the SpiNNaker machine. 
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A hybrid-system model 

The system is a set of dynamical processes P = {Pi} that communicate purely 
though event communications using a set of event channels E = {Ej}.  

Each dynamical process evolves in time under the influence of received events, so 
Pi = pi(t, E), where pi is a function that may have internal state and t is time. Typically 
Pi will depend on a subset of the event channels, not all of them. 

Each event channel carries events that are either generated by a process, or come 
from the environment, to all the other processes that depend on them. So for an inter-
nal event channel Ei = ei(Pj) for some j. Normally an “event” is a pure asynchronous 
event that carries no information other than that is has occurred, so it can be thought 
of as a time series of identical impulses: 

 
k

ki ttE )( , 

where tk are the times the events occur on this channel. Sometimes it might prove 
useful to be able to modulate the size of the impulse. 

We can consider the event channel to be instantaneous, so that events arrive at all 
of their destinations at the same time that they are generated by their source process, 
though causality allows us to view this as “after” they are generated, albeit by a van-
ishingly small delay. Likewise, if an incoming event causes a process to generate an 
outgoing event this causality is captured by the output being “after” the input. 

The outputs from the model are simply a subset of the total set of events, E. 

Biological neurons 

Biological neurons are complex living cells that have a cell body (the soma), a sin-
gle output (the axon) that carries action potentials, and a complex multi-branched 
input structure (dendrites) that collect inputs. The axon from one neuron couples to 
the dendrite of another through a synapse, which is a complex adaptive component in 
its own right. 

Action potentials are sustained and propagated by electro-chemical processes in 
the axon that allow them to be viewed as pure asynchronous events. 

Long axons incur significant delays, but these can be rolled into the transmitting 
and/or receiving process. Where there are different delays from a single source to 
different targets, for example a short delay to proximal targets and a long delay to 
distal targets, the hybrid-system model allows this to be captured either by different 
delays in the receiving process or by the source transmitting separate events with 
different source delays, or some combination of these. 

We therefore claim that the hybrid-system model captures the essential features of 
biological neurons that exchange information principally through action potentials. 

Action potentials are not the whole story, however. Some neurons produce chemi-
cal messages, for example dopamine, that modulate the activity of other neurons with-
in a physical region. Some neurons make analogue dendritic connections with their 
neighbours. These phenomena are outside the hybrid-system model, but we hope that 
their principal effects can be captured through back-channel processes of some sort. 
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In addition, biological systems do not have static connectivity – they develop and 
grow, gaining and losing neurons and connections to their “event channels”. These 
happen slowly relative to the real-time information flow, and such dynamic topology 
changes many be modelled through back-channel processes. 

Biological systems are also very noisy, but we can accommodate this by using 
noisy processes. 

An abstract computational model 

We cannot compute a continuous process exactly as in the hybrid-system model, so 
for efficiency it is important to approximate the process in some way. Most neuron 
models are some form of system of differential equations, so it is common practice to 
compute these using a form of integration over discrete time-steps. 

For real-time modeling, the integration can be implemented by introducing an ad-
ditional “time-step” event, Et. Now time is just another, regular (e.g. 1ms) event, from 
an external source, and t can be removed from the model. 

We can, at least in principle if our computer is sufficiently fast, ignore the time 
taken for a process to handle an event. Each event is handled as it arrives, and each 
process is simply a set of rules defining how that process’s state is changed by every 
possible input event. Thus: 

ijiiiji IEjjSpSEP  :)],([  

where Si is the state of Pi and I i is the set of events, now including Et, that are in-
puts to Pi. This is the event-triggered aspect of POETS. 

It is clear that a process is active only in response to an input event, and therefore 
any output events it generates must also occur at the same time as (though causally 
after) an input event. Note that this does not preclude an internal time delay between a 
neural input and the output it causes: the input can change the state of the process, 
which then progresses through several time-step events before producing an output. 
But the output will eventually be produced in response to, and at the same time as, a 
time-step event. As the only representation of time in the system is the time-step 
event, time is discretized. 

Since the time-step event, Et, connects to many (if not all) processes, there may be 
many events generated just after it. These events, from different processes, have no 
implicit order. This gives rise to the partially-ordered aspect of POETS. Each pro-
cess to which some of these concurrent events are inputs will impose an arbitrary 
order on their reception (at notionally the same time), and as a consequence the sys-
tem behaviour is non-deterministic at this point. 

A SpiNNaker computational model 

SpiNNaker is a massively-parallel system with an interconnect fabric designed 
specifically to convey events generated by a program running on one processor to all 
of the processors to which that event is an input. The SpiNNaker fabric must initially 
be configured to put the necessary connections in place, but once so configured the 
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hardware looks after the event connections. Processors then receive events intended 
for them and issue events with no knowledge of where they are destined to go. 

Unfortunately the processors on SpiNNaker aren’t infinitely fast, so a process 
takes a finite time to complete its response to an input event. While it is running an-
other event may arrive, demanding pre-emption. The time-step event may not be syn-
chronized across the machine (although near synchronization is possible using a tech-
nique such as fire-fly synchronization). 

A further complication is that SpiNNaker processors keep some of their state in 
off-chip SDRAM, access to which incurs high latency costs. In general we aim to 
hide this latency by exploiting a DMA subsystems attached to each processor to han-
dle SDRAM transfers while the processor gets on with other stuff. 

These (and other) niceties apart, SpiNNaker aims to implement the abstract com-
putational model as faithfully as it can, subject to all of the constraints of the physical 
system, delivering a reasonably efficient solution, and minimizing energy consump-
tion. 

SpiNNaker models may attempt to implement the abstract computational model 
faithfully, in which case they will aim to synchronize the (notional) 1ms time-step 
across the machine and complete all the work in every 1ms to stay in lock-step across 
the machine. In this case the peak process load must complete within the 1ms for 
correct operation. Alternatively, they may adopt an asynchronous model where there 
is no attempt to align a 1ms period in one process with that in another, in which case 
the average process load must complete within 1ms for correct operation. 

Spiking neurons on SpiNNaker 

Each processor on a SpiNNaker machine handles one process, where each process 
models a number of neurons. As incoming events from other processes are very simi-
lar they are handled by one event handler. The simplest model of a SpiNNaker pro-
cess then handles two event types: 

1. Incoming neuron event: locate and process synaptic data, updating local neural 
state accordingly. 

2. Time-step event: perform integration step for all local neurons, possibly generat-
ing outgoing events. 

As an implementation detail the neuron event handler will usually invoke a DMA 
transfer to bring the synaptic connectivity data in from SDRAM, but as this is internal 
to the process we hope to hide the DMA as much as possible from the application 
code. 

This model does not handle the important aspect of synaptic plasticity, but already 
creates some interesting data consistency issues if a type 2 event occurs while the 
(fairly long) event 1 process is running and pre-empts it. These data consistency is-
sues are avoided if no input is allowed to affect state that is used in the current time 
step, which amounts to imposing a minimum axonal delay of 1ms. 

In general a SpiNNaker implementation uses a very simple real-time kernel of 
some sort, with drivers for the event communication system, DMA, etc. It includes 
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queue management, priority scheduling, buffer overflow procedures, and so on. This 
notwithstanding, it maintains a strongly event-driven nature, spending any idle time in 
a low-power wait-for-interrupt state. 

What can a formal model offer? 

A validated formal model can answer various important questions about the SpiN-
Naker system. At the low level: 

 Is the run-time software a robust implementation of the computational model? 

And at the high level: 

 Is system activity at a stable level, or will it grow uncontrollably (as in epilepsy) 
or die away? 

 How does the processing of neural information through successive layers “add 
value”? For example, in vision we start from pixels, which are processed (in the 
retina) into centre-surround signals. The primary part of the visual cortex is known 
as V1, (Visual area one), which processes these signals into edge/–
corner/orientation, and up through further layers into “car” or “tiger”. (Both hemi-
spheres of the brain contain visual cortex, one for each visual field.) How can we 
quantify the benefits of each layer, preferably in information-theoretic terms?  

Generalising.... 

Changing the narrative perspective significantly and moving it back out, Moore's 
Law has given us a doubling of logic density every eighteen months or so for over 
four decades. It has enabled microelectronics to move from a narrow professional 
niche into the hands and pockets of every consumer in the world. However, as process 
geometries continue to shrink towards the scale of the atom, we face the emergence of 
fundamental limits which the scaling of current methodology can no longer easily 
overcome; increasingly, far ranging architectural - both hardware and software - 
changes are required to utilise the potential of the technology. Four major challenges 
can be identified: 

● Power dissipation: it is already not possible to power all parts of a chip at the 
same time (the dark-silicon problem). It has been demonstrated that multiple 
small CPUs are correspondingly more power efficient than fewer large ones, 
so the deployment of large cohorts of small CPUs is an obvious way forward. 

● Reliability: As process geometries continue to shrink, issues of reliability and 
robustness inevitably emerge. In a system of millions of cores (not unreasona-
ble today), it is unrealistic to expect 100% functionality 'out of the box'; equal-
ly, cores will inevitably fail over the lifetime of the system. 

● Communication vs computation: A traditional argument against moving to 
large numbers of cores is the relative cost of computation and communication. 
A core can typically perform several thousand operations in the time taken to 
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get a single word out of memory and made available to a core. Ever deeper 
caches and convoluted pipelines can help alleviate the problem, but with con-
ventional architectures, bottlenecks are still almost unavoidable. 

● Programming: In the past, processor time (core hours) was a valuable re-
source, and much work went into understanding how to optimise the schedul-
ing of a workload on parallel machines. The automatic (high-level) parallelisa-
tion of general-purpose codes remains a 'holy grail' of computer science, but 
fine-grain parallelisation is frequently signposted by the underlying mathemat-
ics. The problem has been in the past that solutions emerging naturally from a 
numerical solution technique do not map well (cheaply) onto existing architec-
tures, partly because cores were relatively scarce, compared to the granularity 
of a discrete solution. Today, processing is effectively a free resource: cores do 
not have to be 'kept busy'. 

These considerations form another set of constraints on a design space that is al-
ready extremely complex. However, they also open the way to new approaches: de-
sign space may become more convoluted, but it also gets bigger. 

Whilst there is no way through Amdahl’s Law (The proportion of code that can-
not be parallelised will ultimately limit the advantages accrued from more proces-
sors), the Gustafson-Barsis Law does permit a way around it: (If you can have an 
arbitrary number of processors, the total amount of work performed by the system 
may be increased arbitrarily at no extra cost). 

POETS technology exploits this and explicitly addresses all these points simulta-
neously. 

What is POETS? 

POETS - Partial Ordered Event Triggered Systems - technology is based on the 
idea of an extremely large number of small cores, embedded in a fast, hardware, par-
allel communications infrastructure - the core mesh. Inter-core communication is 
effected by small, fixed size, hardware data packets (a few bytes) - aka messages. 

This proposal describes research to investigate and prototype a software methodol-
ogy and associated hardware platform to realise the potential of this architecture. 

The physical implementation of such a system imposes a fixed and finite topology 
on the core graph, but a thin (hardware) layer on top of the cores allows the user to 
virtualise an arbitrary connectivity graph on top of the physical one. Once this is 
done, the mapping of problem domain to processor mesh follows naturally. 

For example, a surprising number of industrial problems map naturally and ulti-
mately to solution of the matrix equation [A]x = [B], and the efficient solution of this 
prima facie simple problem for large (say, rank 1000) and ill-defined systems is still 
the subject of current research. Using POETS technology, each matrix element can 
be mapped onto its own core: textbook solution techniques become possible because 
element-element communication is truly (hardware) parallel across the entire matrix. 
Traditionally, calculations of this type require polynomial time; POETS can perform 
the calculation in linear time - a massive difference with large industrial problem sets. 
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Why now? 

Because we can - ten years ago it was not possible. 
 
In 1965 Gordon Moore published his famous prediction: that the number of transis-

tors on a chip would double every 18 months or so. This is not a law, just a market 
prediction, yet it has become a self-fulfilling prophecy that has guided industry for 
decades. However, it is an exponential prediction, and no exponential is sustainable 
indefinitely in nature. 

Moore's Law is coming to an end, gradually, not because of any one particular 
show-stopping physical limit, but because of a host of effects, each one in isolation 
probably capable of resolution, but taken together present an insuperable barrier: it 
simply isn't worth it any more. 

But: if we focus on the last few years of this line, and recalibrate the axes in terms 
of cores/chip instead of transistors/chip, we see the beginnings of a new law: the 
number of cores/chip is increasing by some multiple/year. Yes, it is an exponent, and 
so it won't last, but while it does, we should exploit it. 

 
POETS fits into the landscape described above in innovative ways: 

● Power dissipation: POETS is an event-driven system. Cores carry out small 
calculations in response to the arrival of a message, based on a state subset 
held in local memories. These calculations may/may not result in the emission 
of further messages, which are immediately swept up by the communication 
infrastructure and delivered asynchronously, via hardware, to their target core. 
The target core is woken (by the hardware delivering the message), acts upon 
it - as above - and returns to quiescence, awaiting another stimulus. POETS is 
intrinsically energy frugal - you only power calculations when you perform 
calculations. The design intention is that for a significant portion of time, each 
core is asleep. This is a programming model of immense power and enormous 
potential, and is completely orthogonal to conventional architectures. 

● Reliability: POETS architecture is intrinsically resilient in the face of hard-
ware failure for two reasons: (1) one way of thinking about a POETS core is to 
view it as an asynchronous finite state machine. Like its conventional counter-
part, there is no reason why its state transition graph cannot be disjoint - 
POETS cores can multi-task at an event level, and so can run inconspicuous 
system integrity checks in parallel with anything else, allowing possible recov-
ery and/or graceful performance degradation in the face of core or communica-
tion fabric failure. (2) is rather more subtle, and not applicable to all problem 
domains. The dominant use intention of the system is that a fine-grained math-
ematical model is mapped to the core mesh for subsequent processing - usually 
but not always some kind of simulation. Failure of a core (or part of the com-
munication fabric) therefore has the effect of compromising the simulation 
model (specifically the state subset held in the failed area), rather than the al-
gorithm, which is distributed over the entire system. For a certain subset of 
problems (notably relaxation-based simulations), this perturbation is minimal, 
localised and does not propagate. 
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● Communication vs computation: POETS sidesteps this tension by 'embed-
ding' the cores in a hardware communications fabric (which is truly parallel) 
and in which the messages are small and of fixed size (a few bytes). (This is 
one of the core outcomes of the SpiNNaker project.) With POETS machines, 
the burden of high-level message choreography is completely removed (there 
are none): systems trade cores against complexity in both compute and com-
munications.  

● Programming: This is the area where the largest research challenges lie. Our 
work with SpiNNaker has demonstrated the validity of the POETS concepts, 
but the use cases to date have all been hand-crafted. The challenge here is to 
find a way in which domain-specific specialists - who neither know nor care 
about the underpinning technology - can use the system to attack large, indus-
trially important problems, focussing on the problem, without the distraction of 
the solution technique and details. 

Taken together, these attributes represent a significant sea-change in the way in 
which large, industrially relevant problem sets may be attacked. POETS is not a gen-
eral-purpose architecture, but nor is it a corner-case; it is elegantly suited to a wide 
variety of industrial problems: 

● Finite difference and finite element problems 
● Computational chemistry 
● Particle & field 
● Image processing 
● Neural synthesis and simulation (Human Brain Project) 
● Drug screening 
● Discrete system simulation  

In fact, anything where the underlying mathematics naturally formulates as a large 
graph with large numbers of small, parallel interactions, and no overarching synchro-
nisation requirement. 

 
For some - not all - industrial problems, POETS architectures are capable of 

delivering orders of magnitude speed increases. 

What needs to be done? 

Our work with SpiNNaker delivered the first large-scale existence proof of the 
power of this concept. If we are to exploit this hitherto underexplored and unconven-
tional computing technology, there is still much research to be done. For nearly every 
step of the development trajectory to date, almost every tool and technique that a con-
ventional software developer takes for granted has had to be re-engineered from 
scratch. Conventional support tools do not work with this system. We need standard-
ised input formalisms, we need command, control, internal visibility and debug tools, 
we need to know where the limits are of an instance of the architecture, and how dif-
ficult and expensive it is to move these limits. 
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Why should we bother? 

Despite decades of attack, the general purpose parallelisation problem remains one 
of the most elusive 'holy grails' of computer science. Inspired - possibly - by what we 
achieved by simply ignoring difficult general problems in our past neural simulation 
work, and focussing on the functionality we actually needed, our thesis here is that 
POETS is incredibly well-suited to an unexpectedly wide range of important engi-
neering and physics problems, most of which are traditionally the domain of large, 
extremely resource hungry supercomputers. Event-driven programming, using thou-
sands to millions of small, cheap, energy frugal cores is by far the best platform for 
some massive engineering problems that traditionally consume millions - tending to 
billions - of core-hours and watts, both of which translate directly into money. Pro-
ponents of exascale computing need event-driven machines if budgets are to re-
main sub-exascale. 

The problem is not creating large cohorts of processors, but how they might be 
productively used to perform or enable the sort of analyses that users of big compute 
demand. The project focuses on the potential of the hardware architectural point on 
the scale represented by the earlier SpiNNaker work. It will look at the areas of work 
where the hardware architecture would be well suited, how those needs can be sup-
ported on this architecture by methods and tools, and how the architecture may be 
further optimised, with the objective of providing the basis of knowledge to support 
valuable commercial exploitation opportunities anticipated to emerge for commodity 
HPC. 

POETS is a different type of computing architecture; no mature tools or techniques 
currently exist to exploit it fully, and physical implementations are not yet common-
place. However, this will change: the architecture is unusual but has the attraction of 
being the choice of evolution - it is the architecture of all neural cortexes, including 
our own brains. It is highly functional, extremely power efficient and very fault toler-
ant. Whilst it demonstrably can be programmed, research is needed to make it a 
commodity capability on a par with the architectures found in almost every electronic 
system today. 

Aims of the research 

The phrase "Technology Readiness Level (TRL)" has several definitions, not all of 
which are mutually consistent, but in essence POETS is currently squarely at TRL 1: 
the basic principles have been observed and reported. The goal at the project end is to 
take the concept at least to TRL 4: (Validation of the concept in laboratory condi-
tions), preferably, with the assistance of the project partners, to TRL 5: (Validation of 
the concept in a relevant domain-specific environment.) 

The long-term strategy is to be in a position, at the end of the project, to be able to 
approach tool vendors and specialist product providers with a solution technique - 
cast in domain-specific terms that they are familiar with, demonstrating solutions to 
real problems that they care about - and make a case for the commercial uptake of 
the developed technology. 
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SpiNNaker and POETS: 

SpiNNaker is a distributed multi-core system, consisting of a network of 65 000 
nodes, (each containing 18 200MHz ARM9 cores), embedded in a bespoke (hard-
ware) message-passing infrastructure. The nodes are triangularly connected in a two-
dimensional (2D) planar mesh, the edges of which are identified with each other and 
the whole plane wrapped onto the surface of a torus. Cores communicate via hard-
ware packets of 72 bits. Each node also contains a router unit to control all packet 
movements, both inter- and intra-node. The design of SpiNNaker explicitly disregards 
three of the central planks of computer architecture dogma: 

1. There is no central synchronising system clock, and all the inter-node (and much 
intra-node) communication is asynchronous. 

2. There is no attempt made to enforce overall memory coherency. Each core has 
its own private memory, which is not visible to any other core. 

3. The message passing infrastructure is non-deterministic (and may, under certain 
circumstances, be non-transitive). 

SpiNNaker is designed for use as a neural simulator. At the level of abstraction uti-
lised by SpiNNaker, a neuron consists of a multi-input, multi-output unidirectional 
discrete component, communicating with its peers via action potentials, modelled as 
discrete events. A neural system or circuit is represented as a graph of neurons, 
mapped onto the physical core mesh. A thin hardware layer (the routing system) ena-
bles transparent neuron-neuron communication over the underlying hardware - the 
biological model does not 'see' the underlying electronics. 

SpiNNaker is intended to simulate neural aggregates in real time: the biological in-
formation contained within a packet resides in the wallclock time of arrival; the 72 
bits interact with the underlying routing system to ensure the right packet gets to the 
right neuron model. 

POETS: SpiNNaker is extremely good at the task for which it was designed: neu-
ral simulation. The idea of virtualising an abstract arbitrary graph and mapping it to 
hardware via a thin, hardware, parallel routing layer is immensely powerful, and 
opens the door to a large array of application domains. However, SpiNNaker is an 
ASIC, and contains aspects - that we cannot change - that make it unsuitable for the 
generalisations we wish to explore in POETS. 

● In biology, the existence of a spike (packet) contains the only biological 
data. It is here at this time, or it isn't; this is how mammalian neural systems 
work. For more diverse applications, we need to be able to put more data in-
to a packet. To keep the speed advantage, the packet size must be small and 
fixed size, but the bit length of SpiNNaker is crippling for other domains. A 
few dozen bytes would be fine; 72 bits is not enough. 

● Data exfiltration: SpiNNaker relies on gross neural activities for I/O - this is 
how biological systems work. We need to be able to extract global state data 
reliably. 

● Global synchronisation: Biological systems do not support this behaviour - 
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neither does SpiNNaker. There exists a wide set of circumstances - in diverse 
application areas - where this functionality is essential. 

Event triggered computing - key points: 

Architecture 
● Extremely large numbers (1000000+) of extremely simple cores 
● Short (a few bytes), uniform messages 
● Hardware massively parallel communications network (on and off-chip) 
 
Disadvantages 
● Not a general purpose architecture 
● Cannot port existing codebases 
● No existing support toolsets 
 
Advantages 
● Massive speedups for certain classes of problem: O(nm)  →  O(k) 
● Highly fault tolerant 
● Low power: 25000 cores < 13A 
 

Use cases 

A large proportion of real engineering problems can be broken down to a discrete 
graph, albeit one with sometimes millions of nodes. If we have millions of cores and a 
fast communications infrastructure, we can trade cores off against computational 
complexity, and exploit the near-perfect parallelism of the hardware interconnect. The 
Use case portfolio suggests some of the industrial application areas for POETS tech-
nology. 
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Use case: Finite difference calculations 

Consider the canonical finite difference 
heat equation on a 2D square grid: each 
grid point is represented by an individual 
core, which holds the grid point state (tem-
perature) plus ghosts of the immediate 
neighbouring states, and communicates only 
with its direct neighbours by messages. On 
receipt of a message - any message - a grid 
point recomputes its state; if this has 
changed, it broadcasts the new state value to 
its neighbours. All the cores do this simul-
taneously (asynchronously), triggered by the arrival of messages. Pinning the opposite 
corner temperatures and letting heat flow freely produces the obvious result. 

 
The interesting point is the wallclock solution time as a function of grid size: the 

algorithm, as cast, will continue to operate in constant time, using more and more 
cores as the user increases the grid size, until it runs out of physical resource.  

 
There is, obviously, no reason why we need restrict our analyses to a uniform grid: 
 
 
 
 
 

2.2GHz desktop 

200MHz 768 core SpiNNaker engine 
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Use case: Neuron synthesis 

Large scale neural simulations - which underpin almost all of computational neuro-
science - require realistic models to simulate, and the generation of these models is 
not trivial or computationally cheap. In biology, 1mm3 of neural matter contains 
around 105 cell bodies, 4km of axons, 5.106 dendrites and 7.109 synapses. Each neu-
ron is represented as a space-filling tree, which does not intersect with itself or any 
other neuron. Vasculature 
- essential for accurate 
modelling - approximately 
doubles the complexity of 
the space. 

 
A popular way of ap-

proaching this problem is 
to tile space (the universe) 
with three-dimensional 
cubes, populated with 
'virtual neurites'. These 
move about randomly, 
condensing (and sticking) 
onto a seed neuron when-
ever they touch one. 

 
 
 

Using POETS methodolo-
gy, we can allocate each spa-
tial 3-cube to an individual 
core, and handle the passage 
of neurites and the growth of 
neurons across cube bounda-
ries by passing messages. Run 
0 below shows the universe 
modelled by one POETS core; 
run 5 by 32 x 32 x 32 ( = 
32768) cores. (Intermediate 
data points are for 23, 43, 83 
and 163 cores.) The figure 
itself is a simulation, but nev-
ertheless the speedup trend is 
clear and impressive. 
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Use case: Spatio-temporal simulation of stochastic biochemical processes 

Biochemical processes are increasingly being modelled in-silico, where a low-level 
description of chemical interactions is used to drive a simulation of higher-level bio-
logical activities; these models have been made possible by improved abilities to au-
tomatically extract individual molecular pathways. 
Modelling the interactions within an entire cell is com-
putationally infeasible, due to the large number of mol-
ecules, and the huge number of interactions needed for 
the cell to make enough progress to be interpreted at a 
high level. 

Approximations are used to interpret and capture 
low-level processes as coarse behaviour, which have 
recently allowed the creation of whole-cell models for 
simple bacteria. However, there remains the question of 
whether some important behaviour is only captured by 
the low-level interactions, so there is still a need to perform high-fidelity simulations 
of chemical processes which track individual molecules. 

Current cell simulation techniques provide an efficient method for simulating sys-
tems with tens of thousands of reactants, but current compute systems are too slow to 
come close to the speed needed to model all interactions within a cell. The spatial 
nature of the problem, and the heavy reliance on local lightweight communication, 
means that space can be discretised and each cube mapped onto a core: 
● Loose temporal coupling: the notion of time within a simulated system is 

intrinsically fuzzy, and only local causality matters. 
● Local fault tolerance: as long as molecules can propagate between local 

volumes within a spatial region, the failure of one or two volumes within that 
region is largely irrelevant. 

● Scaling via spatial decomposition: due to the huge number of molecules 
involved, the problem can be decomposed spatially until all available CPUs 
are occupied, achieving good utilisation of all available CPUs. 

As well as being a good fit for the architecture, stochastic chemical simulation also 
presents some interesting challenges and research opportunities: 
● Dynamic molecule balancing: during the simulation molecules naturally 

migrate around the system, potentially requiring cores to negotiate the size of 
the volume they manage. 

● Dynamic rate balancing: the rate at which reactions within a volume occur 
depends on the number and balance of local molecules, and "hot" areas will 
eventually limit the rate of progress within the entire system. 

Overall we can expect to see this application scaling linearly with the number of 
cores in the system; where a traditional multi-core or GPU simulation becomes com-
munication limited, the intrinsic spatial communication capabilities of POETS means 
the bottleneck is removed. 

J. Shillcock, Langmuir 

2012, 28, 541-547 
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Use case: Particle & field 

Advances in conventional computer technol-
ogy have made it feasible to simulate the mutual 
interactions of huge ensembles of particles, but 
at a massive core-hour cost. By employing 
sometimes innovative and sometimes brutal 
approximations, it is possible, for example, to 
model the migration of proteins through a cell 
wall at the level of individual particles (where a 
particle is a group of atoms - a sort of sub-
molecule). These computational experiments 
push at the boundaries of what is possible today 
- and the further introduction of long-range 
forces into the experimental regime (for exam-
ple electrical charge) places many interesting 
and useful studies out of range. The difficulty 
here lies in the fact that non-trivial forces extend over many particle-particle separa-
tions, making the computational graph necessary to solve the system almost a clique. 
Any attempt to parallelise such a system computationally rapidly becomes communi-
cation bound.  

 
POETS, however, offers a (partial) solution to this. Whilst particle-particle anal-

yses will not map usefully onto a POETS system, an alternative representation, parti-
cle & field, does. In a particle & field analysis, space is tiled, and each core "owns" 
a volume, managing the particles that inhabit that volume. Particles do not, however, 
interact with each other, they interact with a global field (which may be multi-valued 
in space):  

 
Particles tell the field how to deform, and 
the field tells the particles how to move. 

 
The big difference - from POETS point of view - is that deformations in the field 

can spread out from their source via core-core communication, and the intensity of the 
field can be calculated locally (and simply) by the local core - no reference back to 
the originator of the perturbation is necessary. Particles derive the force incident on 
them from the local field: again, information that is to hand. 
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Use case: Industrial image processing 

At their core, many industrial problems resolve to [A]x = [B] or similar. Whilst 
matrix solution techniques are the stuff of undergraduate textbooks, industry is inter-
ested in matrices of massive ranks (thousands), which are often sparse and ill-
conditioned. Further, sequences of matrices that represent continuous processes are 
often mutually inconsistent. 

 
Mapping a core to each matrix element allows the inversion of matrix equations 

in O(n) time, better than any low-thread solution on a conventional machine. This 
opens the door to a host of real-time image based applications: 

 
Medical: detailed non-invasive tomo-

graphic imaging of biological structures - 
bones, brains, vascular systems; image-
guided surgery. The last requires the recon-
struction of images that are noisy and fast 
moving (typically around 106 points/s), 
where inaccuracy can easily cause death. 

 
Measuring ionospheric weather: can de-

crease the error of GPS fixes by a meter. So 
what? GPS guided ocean oil drilling costs 
around 106 £m-1. 

 
 
 
 
 
 

Inverse field problems: detection and loca-
tion of submerged cylindrical magnetohydrody-
namic anomalies 

 
 

 
 
Production line quality control: mixing 

efficiency, void detection, structural integrity 

Endoscope 

Aorta 

C.N. Mitchell, University of Bath 

W. Yang, University of Manchester 
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Use case: Drug screening 

Computational chemistry has a long way 
to go before the interactions of drugs and cells 
can be modelled and simulated accurately 
and usefully at a molecular level. The 
difficulty arises from the sheer volume of 
computation necessary to model the inter-
actions of the millions of atoms compris-
ing even the simplest biological drug-
relevant system. 

The natural response of the simulation 
engineer in this situation is to increase the 
level of granularity of the system, modelling 
at larger and larger resolutions, which exposes a di-
lemma: the higher the modelling level, the more tractable the total problem, but on the 
other hand, by coarsening the level of modelling abstraction, interactions were dis-
carded that may turn out to be dominant in some unexpected way; and the ultimate 
object of simulation is to illuminate interactions that were unexpected. The art of 
modelling for simulation - in any discipline - consists of finding ways to capture rele-
vant interactions as simply as possible without compromising (too much) the repre-
sentation of reality embodied in the model. 

Drug discovery is the process through which potential new medicines are identi-
fied. It is traditionally slow and labour intensive, but remains a vital step in the identi-
fication of new medicines and treatments. A difficulty arises from the fact that even 
the simplest drug interacts not only with its primary target (cell), but also with sec-
ondary structures - other proteins in other cells. These also interact with each other, in 
complex ways, making the prediction of the impact of a specific pharmaceutical in-
tervention an almost impossible task, unless the system is modelled at infeasible lev-
els of granularity. 

One attempt to overcome this bottleneck employs a radically different methodolo-
gy to represent a cell and its constituent proteins: a cell is represented by a graph. The 
nodes of the graph are the proteins contained within the cell, and the edges of the 
graph the known protein interactions. These edges may themselves be quite complex, 
to model known adjuvant and chaperoning effects. In a similar manner, a potential 
drug may be represented by a graph, modelling the effects of the drug on specific 
proteins. The screening process then involves running a "cross-product" between the 
biological cell library and the putative drug, analysing the effects by looking at the 
topology of the affected cell graphs. 

None of the steps in this process are particularly individually demanding, but again 
the difficulties arise from the sheer size of the graphs: a cell graph can contain tens of 
thousands of nodes. Mapping the model graph nodes onto POETS cores opens the 
way to parallelising the graph-graph interactions, with a potentially dramatic impact 
on computational throughput. 
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Use case: Discrete simulation 

In 1979 - four years before the PC became available - a paper about discrete simu-
lation (K.M. Chandy and J. Misra, IEEE-T Software Engineering, SE-5 no 5 1976 440-452) 
was published by the IEEE, where the authors stated in the abstract: 

 
... We propose a distributed solution where processes communicate only through 

messages with their neighbours; there are no shared variables and there is no central 
process for message routing or process scheduling. Deadlock is avoided in this sys-
tem despite the absence of global control. Each process in the solution requires only a 
limited amount of memory..... 

 
They were talking abut POETS, thir-

ty-six years ago. 
 
The match to the POETS technology 

is quite remarkable; mapping one logi-
cal device to each core - something 
unimaginable in 1979 - allows the simu-
lation of industrially relevant systems 
today. The perennial problem of maintaining overall simulation causality is elegantly 
overcome by the introduction of timing events that are broadcast along the same sig-
nal paths as contained in the circuit under simulation; thus the overhead is an approx-
imate doubling of the signal traffic, a negligible cost considering the speed gearing 
from all the cores. 

 
Further levels of sophistication are possible: where the circuit under simulation has 

more devices than the POETS engine has cores - it can happen - we can map multiple 
devices to a single core, and further, allow the POETS engine to dynamically modify 

this mapping, 
load-balancing 
the simulation 
on the fly. 
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Meteoblue AG, www.meteoblue.com 

 

Use case: Weather modelling 

Weather modelling involves predicting the interactions of wind, solar radiation, 
ground conditions, pollution and a host of other features into a numerical model 
whose state is capable of extrapolation into the future in a computational timeframe 
that is faster than real time - there is little point in coming up with an accurate predic-
tion of tomorrows weather if it takes two days to do it.  

 
Current methodologies decompose the atmosphere into a non-uniform (multi-scale) 

grid, and solve the equations concerning the movement of air between grid cells, en-
suring continuity of pressure, temperature, density et al across the cell boundaries. 
The atmosphere over the UK is divided into cells around 1.5 km on a side (giving a 
UK - based cell count of around 6.107 cells); over Europe around 4 km on a side and 
the rest of the world is modelled at a resolution of around 17 km. 

 
The solution technique revolves around mapping the atmospheric cells onto the 

available cores of whatever machine is being used to solve the system - there is a 
tradeoff between cell size (accuracy - pushes the cell size down) and the inter-core 
traffic load (speed - which pushes the cell size up). Much effort is required to find the 
'sweet-spot', resulting in the best accuracy from the fastest cell configuration. (Much 
effort is also expended in finding better models to represent the atmospheric behav-
iour, but POETS solves equations, it does not derive them.) 

 
Using ever smaller cells - 

and mapping only a handful of 
these to each POETS core - 
provides two-fold benefits: the 
cell-cell traffic maps comforta-
bly onto the hardware routing 
fabric of the engine (which in 
any case in POETS engines is 
hardware and fast); and the 
equations governing the behav-
iour of the atmospheric model 
can become much simpler, as 
the range scale of the non-
linearities intrinsic to the phys-
ics become comparable to the 
new, reduced cell resolution.  
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Abstract. The continuous scaling of semiconductor devices has intro-

duced new circuit failure mechanisms such as bias temperature insta-

bility, and made existing reliability problems more severe such as sin-

gle event transients (SET), variability and crosstalk. This work provides 

a frame work to quantify the soft errors induced by crosstalk and radi-

ation hits in on-chip communication schemes and investigates the ef-

fects of aging on the susceptibility of on-chip communication to these 

transient failures. It also provides a comprehensive comparison be-

tween synchronous and asynchronous communication methods in 

terms of their robustness against soft errors.  Our results based on 

SPICE level simulations in 90 nm technologies indicate that BTI aging 

increases the probability of delay-induced soft errors but mitigate the 

effect of glitches-triggered errors.  

 

1. Introduction  

 

One of the major challenges facing the SoC designers of dependable and/or safety 

critical systems is the intrinsic unreliability of the communication infrastructure in 

Nano scale CMOS technologies [1, 2].   There are number physical mechanisms which 

may cause soft errors in on-chip communication links, examples include: crosstalk 

and radiation, and power bounce [3].  Such problems are further worsened by Varia-

bility and CMOS aging. The former refers to the inaccuracies in manufacturing pro-
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cesses and within-die voltage-temperature variations that lead to fluctuations in 

circuit performance and power consumption. It arises from scaling very large-scale 

integrated (VLSI) circuit technologies beyond the ability to control specific perfor-

mance-dependent and power-dependent parameters [4, 5]. Variability has become a 

first order limitation to continued scaling. At deep submicron technology nodes, the 

achievement of parameter precision becomes exponentially more difficult due to the 

limitations imposed by quantum mechanics. The various intrinsic sources of variabil-

ity such as random dopant distribution cannot be reduced by better process control 

and their effect is generally random, this is shown by atomistic modelling in [6, 7].  

Therefore, the impact of variability is expected to be significant in future technolo-

gies [5, 8], making variations an unavoidable characteristic of future VLSI circuits.  

CMOS aging is another major concern for modern VLSI designers, It refers to a 

slow progressive degradation in the performance of MOS transistors; it is caused by 

several failure mechanisms; namely: Bias Temperature Instability (BTI); Hot Carrier 

Injection (HCI); and Time- Dependent Dielectric Breakdown (TDDB) [9, 10]. BTI is 

often cited as the primary reliability concern in modern processes [11]. Negative bias 

temperature instability (NBTI) in PMOS transistors is more dominant than  positive 

bias temperature instability in NMOS transistors in the latest process technology 

especially after the introduction of nitrogen into gate stacks, which reduces boron 

penetration and gate leakage, but leads to worse NBTI degradation [12]. This mech-

anism is characterized by a positive shift in the absolute value of the threshold volt-

age of the PMOS device, such a shift is typically attributed to hole trapping in the 

dielectric bulk and  the breakage of Si-H bonds at the gate dielectric interface [13].  

Positive bias temperature instability (PBTI) in NMOS transistors also has the same 

effect but is only considered crucial in devices which use high K-dielectrics.  BTI aging 

causes delay to increase, which can eventually lead to timing errors and system fail-

ure [9, 10, 14].   The effects of aging on the performance and reliability of systems on 

chips have been extensively addressed in the literature [15-20].  In addition, there 

are extensive works in the literature in the area of reliability enhancement tech-

niques for soft errors. The authors of  [21]  proposed a data-redundancy-based fault 

tolerance method  for  self-timed phase-encoded channels in order to mitigate the 

effect of crosstalk-related errors. In [22] Lin et al proposed a radiation hardened 

register design for protecting microprocessors pipelines from alpha particles hits. 

The use of error correction and detection codes has also been proposed to enhance 

the reliability of on-chip communication [23, 24].   However to the best of our 

knowledge, there are no previous studies on the effects of BTI aging on the suscepti-

bility of on-chip communication schemes to soft errors.  The contributions of this 

work are as follows: 
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1) It provides a framework to quantify the soft errors induced by crosstalk 

and radiation hits in on-chip communication schemes.  

2) It investigates the effects of aging on the susceptibility of on-chip com-

munication to soft errors. 

3) It provides a comprehensive comparison between synchronous and 

asynchronous communication methods in terms of their robustness 

against transient failure mechanisms.  

The rest of the paper is organized as follows. Section 2 and 3 outline the computa-

tion of closed form expression to quantify the soft error caused by crosstalk and 

radiation hits respectively. The experimental setups and the analysis methodology 

are explained in section 4. Simulation results are presented and discussed in section 

5. Conclusions are drawn in section 6. 

 

2. Computation of Crosstalk-Induced Error Rate 

 

The soft errors caused by crosstalk can be classified into two types, namely: 

1. Glitch-induced soft errors: these are caused by static noise pulses induced on 

a quiet victim net due to switching of neighbouring aggressors.  If  such a 

pulse propagates through logic gates and reaches storage elements, it can 

mistakenly be considered as a valid data item  

2. Delay-induced soft errors: these are due to violations in the timing con-

straints which occur when the timing of a stage (i.e. gate and interconnect) 

becomes uncertain due to coupling from the switching activity of neighbour-

ing stages (i.e. Miller effect). This results in a change in the total capacitance 

of the wire, hence dynamic delay.  

The following two subsections provide closed form expressions that can be used 

to compute the probability of crosstalk-induced soft errors in synchronous and asyn-

chronous channels, respectively.  

 

2.1. Crosstalk Error Rate in Synchronous Links 

Synchronous design methodologies globally distribute a timing signal (a clock) to 

all parts of the circuit. Transitions (rising and/or falling depending on the design) on 

this clock line indicate moments at which the data signals are stable and therefore 

ready to be sampled. In synchronous links, crosstalk can cause both delay and/or 

glitch-induced soft errors; this depends on the data transition state on the bus.  

To illustrate crosstalk effects on a synchronous communication channel, consider 

the link shown in figure 1, it is a typical D-flip-flop (DFF) pipelining stage. Data is 
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normally transmitted every clock cycle where the latches are triggered at the clock 

rising edge. 
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 Figure 1: A Synchronous Communication Link 

 

 To ensure correct data transmission, intermediate values of logic signals or 

glitches must settle down before the next clock edge such that there is a stable logic 

value at the input of each register.   Crosstalk-Delay-induced soft errors can only 

occur on a victim wire during a data transition event (0=> 1 or 1=>0), whereas glitch-

induced soft error occurs on a victim wire when the data on it is stable and there are 

transitions on neighbouring lines. For example in a three-wire link as shown in figure 

1, each wire has  four possible transition states (UP (0=> 1), Down (1=>0), Stable(1), 

Stable(0)),  so there are (43  =64) possible transition states. In 32 of which, the middle 

line is vulnerable to crosstalk delay errors. In 14 of which are, the middle line is vul-

nerable to crosstalk glitch errors. In the remaining 18 state, the middle line is not 

vulnerable to any crosstalk-induced soft errors.  

The average probability of a crosstalk delay soft error (CDSE) on a victim line per 

transmission cycle (i.e. per clock cycle in this case) can be computed as follows: 

 = ∑ ∗ ��=1                                                                                          (1) 

 

The average probability of a crosstalk glitch soft error (CGSE) on a victim line per 

transmission cycle can be computed as follows  

 

155 x 238 mm

The Effects of BTI Aging         153



 
 

� = ∑ � ∗ ��=1                                                                                           (2) 

 

Where: 

 

TERi is the probability of crosstalk-delay induced soft error during a bus transi-

tion state i 

GERj is the probability of crosstalk-delay induced soft error during a bus transi-

tion state j 

SD is the number of transition states on the bus in which delay errors are pos-

sible 

SG is the number of transition states on the bus in which glitch errors are pos-

sible 

Oi is the occurrence probability of a transition state i 

  

 

Detailed closed form expressions to compute TER and GER  are provided in our 

previous work [25]. 

 

2.2. Crosstalk Error Rate in Delay-Insensitive Asynchronous Links 

Asynchronous methodologies typically encode the timing information in the data 

line activity itself, therefore there is no need for a separate timing signal [26, 27].  

Delay-insensitive channels are an important class of asynchronous communication 

scheme, these channels are self-timed, and hence, insensitive to signal propagation 

delays, in other words, they have no timing constraints. Therefore, they are inher-

ently resilient to crosstalk-delay soft errors. However, they are still prone to crosstalk 

glitch soft errors. There are many possible delay insensitive coding methods such as 

M-out-of-N, Burger, and Knuth codes [26, 27].  The average probability of a cross-

talk-glitch soft error (CGSE) per transmission cycle can be computed using equation 2 

above. 

 

3. Computation of Radiation Hits-Induced Error Rate 

 

The probability of a radiation-induced soft error is the product of two factors, 

namely: the probability of energetic radiation hits and the probability of a functional 

failure caused by such a strike. The first factor depends on the environment under 

which the circuit is operating, and is independent of the architecture and the design 

of the circuit; therefore, it is not relevant in a comparative analysis of various design 

techniques, and it is not going to be addressed in this work.  On the other hand; the 
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probability of a radiation-induced glitch turning into a soft error is a function of the 

circuit architecture and fabrication technology; therefore, it can be used as a metric 

to estimate the susceptibility of an on-chip communication schemes to radiation-

induced soft errors. The following two subsections provide closed form expressions 

that can be used to compute the probability of a radiation glitch soft error (RGSE) for 

both synchronous and asynchronous channels: 

 

 

3.1. Radiation Error Rate in Synchronous Links 

 

A radiation-induced glitch at the input of an edge triggered flip flop can cause a 

functional failure if it is erroneously sampled or if it forces the devise to go into met-

astability state. The occurrence time of the glitch and its width determine whether 

or not it generates an error. Consider the case of a synchronous link in figure 1,  as-

sume a glitch is generated by a repeater due to a radiation hit. In order for this glitch 

propagate to cause an error, it has to satisfy the following three conditions: 

1) Glitch amplitude Condition (GA): the amplitude of the glitch should ex-

ceed the threshold voltage  of the receiving flip-flop  

2) Glitch Timing condition(GT): The glitch should coincide with the sampling 

clock in order for it to be latched 

3) Glitch Width Condition (GW): it should be sufficiently wide i.e. (its ampli-

tude should remain higher than the threshold voltage while the flip-flop 

input is being sampled.) 

 

Therefore, given a radiation hit has actually happened, the probability of a soft er-

ror caused by such the radiation-induced transient pulse in synchronous links is giv-

en as follows: 

 

    � = �� ∗ � ∗ �                                         (3)                                                               

 

Detailed closed form expressions to compute GA, GT, and GW are provided in our 

previous work [28]. 

 

3.2. Radiation Error Rate in Delay-Insensitive Asynchronous Links  

In this type of links, a radiation-induced glitch can lead to the generation of illegal 

code words, for example in (1-of-4) based channel, a code word (0001) can be re-

ceived as (0011). Depending on the design of the receiver, this erroneous data sym-

bol can be disregarded or wrongly interpreted as a different symbol. In order for this 

a radiation-induced transient to cause such a failure, it should only satisfy the glitch 
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amplitude condition (ga). This is because data can be sampled at any time in delay 

insensitive links, so there is a high probability for a glitch to cause an error if it ex-

ceeds the threshold voltage of the logic gates. Therefore, the probability of a soft 

error caused by a radiation glitch in asynchronous links is given as follows: 

Therefore, given a radiation hit has actually happened, the probability of a soft er-

ror caused by such the radiation-induced transient pulse  in Asynchronous delay 

insensitive links is given as follows: 

 

    � = ��                                                                (4)                                                                     

4. Analysis Method and Experimental Setups 

In this section we first outline the aging model we have used, and then summarize 

our analysis method and experimental setups  

 

4.1.  Bias Temperature Instability Model  

BTI consists of Negative Bias Temperature Instability (NBTI) in pMOS transistors 

and Positive Bias Temperature Instability (PBTI) in nMOS transistors. The reaction 

diffusion model has been developed in [29] to allow designers to estimate the drift 

of Vth (ΔVth  induced by BTI effects as a function of technology parameters, operat-

ing conditions and time. However, the drift of Vth does not depend on the frequency 

of input signals, but only on the total amount of the stress time, therefore a closed 

form analytical model has recently been proposed which allow designers to estimate 

long term threshold voltage shift as follows [30, 31] : 

 ∆ �ℎ =  � √ �� �� − �ℎ  exp � �� 1 6⁄                      5  

  Cox is the oxide capacitance; 

t: is the operating time; 

α: is the fraction of the operating time during which 

a MOS transistor is under a stress condition. It has 

a alue et ee   a d . α =  if the MOS t a sis-
to  is al ays OFF e o e y phase , hile α =  if it 
is always ON (stress phase); 

Ea: is the activation energy (Ea0.1eV ); 
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kB: is the Boltzmann constant; 

TA: is the aging temperature; 

χ: is a coefficient to distinguish between PBTI and 

NBTI. Pa ti ula ly, χ e uals .5 fo  PBTI, a d  fo  
NBTI; 

K: lumps technology and environmental parameters. 

 

4.2. Analysis Methodology  

In order to estimate the impact of BTI aging on the susceptibility of on-chip links to 

soft errors, we have adopted the following approach: 

First, we have considered a synchronous communication link as shown in figure 1. We 

have also considered three delay-insensitive channels: (1-of-4), (3-of-6) and (2-of-7). 

The physical layouts of all communication schemes considered are the same in all 

experiments. Second, we estimated the soft error rate induced by crosstalk and 

radiation hits expression provided in equations (1), (2), (3) and (4) based on SPICE 

level simulations in 90nm technology. Third, in order to estimate the impact of BTI 

aging, we computed the degradation in electrical parameter of transistors based on 

the model presented in Section 4.1 The Vth value obtained for each considered 

operating time interval was then utilized to customize the SPICE device model and 

simulate the communication link with the proper BTI degradation. Particularly, we 

have considered three operation points after 1 day, 1 year, and 5 years. Fourth, we 

estimated the soft error rate induced by crosstalk and radiation hits have been 

estimated again using circuits with degraded electrical parameters.  

 

4.3. Experimental Setups 

The communication medium considered in this study is top metal layer in the 

90nm technology. The interconnect structure used is three signal lines between two 

grounded shields as shown in figure 1. Each wire is modelled as a distributed RC 

network with four П-model segments. The resistive and capacitive parasitic elements 

of the wires are calculated using equations from [32]. To model process variations, 

we have considered seven sources of variations, namely: wire width (w), metal 

thi k ess t , i te laye  diele t i  thi k ess h , etal esisti ity ρ , gate le gth 
(Leff), supply voltage (Vdd) and temperature (T). The variability of these parameters 

are assumed to be Gaussian and mutually independent. We have also assumed that 
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wire width (w) and spacing(s) are perfectly negatively correlated, letting w to be the 

independent variable. Table 1 summarises the mean and variations for each of these 

parameters. It is worth mentioning that the wire width shown in Table 1 is the mini-

mum wire width in the considered technology.   

Table 1: The Nominal Values and Variations of Circuit Parameters 

 

Parameter 
Nominal 

Value 

Varia-

tions 

Interlayer Dielectric 

height 
0.94 um 20% 

Metal resistivity 21.8 Ω.  20% 

Wire thickness 0.81 um 20% 

Wire Width 0.56 um 20% 

Transistor length 90 nm 10% 

Power Supply 1.2 V 10% 

Temperature 27 oC 
12 – 43 

oC 

 

In all of our simulations we have considered a channel with a 10 mm wire length, 

each line has four equally spaced and minimally sized repeaters. We used a clock 

frequency of 1.5 GHz for simulating the synchronous link. 

For crosstalk error rate commutation of synchronous links, the delay of the victim 

wire has been estimated using spice-level simulation for all possible transition activi-

ties. The amplitude and the width of the induced crosstalk glitch the victim line glitch 

have also been estimated in the same manner. To estimate the impact of variability 

on the delay and glitch characteristics, we have employed the DoE statistical analysis 

approach to device a set of experiments in order to estimate the mean value and 

statistical distributions of measured parameters as shown in our previous work[33].  

The above experiments are then repeated using circuits with degraded electrical 

parameters according to the aging model explained in section 4.1 For the estimation 

of crosstalk error of delay-insensitive links we followed the same approach above 

using the code [34]. The recorded values from each simulation are used to compute 

the crosstalk error rate according to the equations presented in section 2. For the 

computation of radiation errors, the single event transient (SET) values for 90nm 

technology presented in [35]. The mean and standard variation of the SET width is 

500 and 150 ps respectively. The mean and standard variation of the SET amplitude 

is 0.1v and 0.32v respectively , these values are in agreement with the statistical 

distributions of the SET characteristics presented in  [36]. 
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5. Results and Discussions 

5.1. The Impact of Aging on Crosstalk Error Rate  

The results shown in figure 2 indicate the BTI aging leads to an increase in the sus-

ceptibility of synchronous links to crosstalk –induced delay errors. In this case the 

probability of a soft error is 10-8       which mean, every 100 million clock cycle we ex-

pect to have one soft error. After five years of operation the probability of a soft 

error is 3* 10-5      which is there order of magnitude larger.  This sever degradation 

can be attributed to the induced delay degradation of the repeaters and flip-flops 

due to BTI aging in these links, which increases the probability of violating the timing 

constraints.  On the other hand, the results shown in figure 3 indicate that the effect 

of crosstalk glitches on the reliability of synchronous links become less pronounced 

with aging, because the latter leads to an increase in the threshold voltages of CMOS 

transistors, therefore some of the crosstalk glitches will no longer be able to propa-

gate and cause soft errors. A similar trend is also observed for asynchronous delay 

insensitive links as shown in figure 4. One interesting observation from figure 4 is the 

fact that some delay-insensitive code are more susceptible to crosstalk errors, this is 

because crosstalk errors are dependent on the transition activities and the data pat-

terns on the bus, both of these factors are affected by the choice of a delay insensi-

tive code. In particular 2-of-7 links are most prone to crosstalk-related errors at any 

time, so any glitch that exceeds the threshold voltage of a logic gate can propagate   

 

 

 

Figure 2: The Impact of BTI Aging on the Rate of Crosstalk-Induced Delay Errors in 

Synchronous Links 
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Figure 3: The Impact of BTI Aging on the Rate of Crosstalk-Induced Glitch Errors  

In Synchronous Links 

 

Figure 4: The Impact of BTI Aging on the Rate of total Crosstalk Errors in Asyn-

chronous Links 
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Figure 5 indicates that the effect of radiation-induced SET on the reliability of com-

munication links become less pronounced with aging, this is mainly due to the fact 

that aging lead to an increase in the threshold voltages of CMOS transistors, there-

fore some of the SET glitches will no longer be able to propagate and cause a soft 

error. Again, asynchronous links seems be more vulnerable to this type of soft errors 

than synchronous channels due to their inherent nature of sampling logic values 

 

 

 

Figure 5: A Comparison of Single Transition Event Errors-Susceptibility 

 (Synchronous vs. Asynchronous Links) 

 

6. Conclusions 

 

BTI CMOS aging is major concern for modern VLSI designers, It refers to a 

slow progressive degradation in the performance of MOS transistors; this 

mechanism is characterized by a positive shift in the absolute value of the 

threshold voltage of the PMOS device, such a shift is typically attributed to 

hole trapping in the dielectric bulk and the breakage of Si-H bonds at the gate 

dielectric interface. This work shows that aging can significantly affect the 

susceptibility of on-communication schemes to soft errors caused by cross-

talk and/or radiation hits. In particular, BTI aging can lead to sharp increase in 

the rate of delay-induced soft errors; this is a major concern for synchronous 
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links. On the other hand, aging seems to mitigate the probability of a soft er-

ror caused by a noise pulse (due to crosstalk or SET), this means the robust-

ness of asynchronous communication schemes against may become better as 

the circuit ages. On the other hand, Synchronous communication links seem 

to become more prone to delay-induced soft errors with aging but better 

protected against glitches and noise pulses.  
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Proving timing properties with the Leibnizian

time model

Alexei Iliasov

Newcastle University

Abstract. We present a novel approach to the description of real-time
requirements in Event-B, based on the relativistic time model of Got-
tfried Liebniz. The approach is surprisingly useful, and has led to some
significant results. We illustrate the approach with several modelling
recipes for the specification of real-time systems in Event-B.

1 Introduction

In the design and modelling of systems from user specifications, it is common to
find some proportion of the user requirements expressed in terms of real-time.
In work on business information systems, for example, real-time requirements
are a natural way to express high-level constraints on business processes [8]. In
scheduling or performance analysis, real-time is the natural language for stating
requirements.

We use the Event-B language [5] to explore an alternative model of time,
the Leibnizian model [11]. According to Leibniz, time is not a fundamental di-
mension, but is used to distinguish the changes in an observed entity. In the
Newtonian model time is an observable attribute of an entity, and may be used
to distinguish an entity in the past from an entity in the future, even if the
entities are otherwise identical. In the Leibnizian model, in which time is not
a directly observable attribute, these may only be distinguished if some other
observable attribute has changed. In other words, in the Leibnizian model, time-
related changes are transformations of the entity itself. If nothing changes, time
is not observed to pass, and therefore (to the observer) time does not pass.
The Newtonian model permits time to change without a change in the observed
entity.

The dichotomy of the Leibnizian model, in which two separate entities are
necessary in order to define the notion of time, suggests that all the time-related
properties may be isolated in the observer part leaving the part being observed
to deal with functional properties. This has important practical implications:
the formulation of timing constraints does not have to be notationally tied with
the description of behaviour so that existing methods, semantics and tools may
be employed in specifying functional properties.

This difference in time interpretation has significant consequences for the
definition of a timed semantics, and for the specification of timing constraints in
Event B. We present the semantic model briefly, using examples to illustrate the
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machine M
sees Context
variables v

invariant I(c, s, v)
initialisation SI(c, s, v

′)
events

e = any p where Ge(c, s, p, v) then Se(c, s, p, v, v
′) end

. . .

end

Fig. 1. Event-B model structure.

important points. We also give a series of “recipes” to show how the Leibnizian
time model could be used by a model developer to introduce time into Event-B
developments.

2 Background

An Event-B development starts with a compact, often trivial abstraction. The
cornerstone of the Event-B method is a stepwise development that facilitates
a gradual design of a complex system via a number of correctness-preserving
refinement steps. The general form of an Event-B model (or machine) is shown
in Fig. 1. A machine encapsulates a state space, defined by machine variables,
and provides transitions on the state, as described by machine events. Events
are characterised by a list of parameters p, a state predicate G called an event
guard, and a next-state relation S.

The invariant clause defines the properties of a system, expressed as state
predicates, that must be preserved during the system lifitem. The states defined
by an invariant are called the safe states of a system. A correct model is proven
to never leave its safe states. Data types s, constants c and relevant axioms are
defined in a separate component called a context, and included into a machine
with the sees clause.

The consistency of a machine as well as the correctness of refinement steps is
demonstrated by discharging relevant proof obligations which, collectively, define
the Event-B proof semantics [5]. The Rodin Platform [18], a tool supporting
Event-B, is an integrated environment that automatically generates necessary
proof obligations and providers a number of automated provers and solvers along
with an interactive proof environment.

An Event-B machine defines a state transition system. Let Ω = {v | I(c, s, v)}
be the (safe) states of a machine where v and I(c, s, v) are the variables and the
invariant of a machine. The relational form of an event e is [e]R ≡ {v 7→ v′ |
∃p · (Ge(c, s, p, v) ∧ Se(c, s, p, v, v

′))}.

Definition 1 (Event-B transition system). A machine defines a transition
system (Ω, f, ω0) where f : Ω→P(Ω) is defined as f = (

⋃
e[e]R); the set of initial

states ω0 ⊆ Ω is defined by the initialisation predicate SI : ω0 = {v′ | SI(c, s, v
′)}.
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3 Leibnizian Time

In this section we formally define some essential concepts of the Leibnizian time
model. We illustrate them with a timed specification of a lossless buffer, which
we return to throughout the paper. For brevity, we omit the theorem proofs.
Proofs and machine-checked models of the example are available at [3].

A fundamental concept is that of a process, which we define as a transition
system.

Definition 2 (Process). A process P is a tuple (αP, p, ιP) where αP is a pro-
cess alphabet, p ⊂ αP × αP is a transition relation and ιP is the set of initial
states.

Time only appears when we put together two processes and let them interact in
a certain way. The nature of the interaction is what intuitively may be regarded
as an observation of one process by another.

Definition 3 (Observation connection). An observation connection between
processes C and S is a relation ϕ ⊆ αS× αC.

A timed system is formed of pair of processes where one process, an observer,
is said to observe another process, a subject. In the definition above, C is an
observer and S is a subject.

Definition 4 (Timed system). An observer process C, a subject process S and
an observation connection ϕ define a timed system C · ϕ · S.

The first technique we give extends an untimed Event-B model to a timed system,
by defining a timed observer in an associated context. We illustrate this technique
in Example 1.

Recipe 1 (Event-B timed system) An timed Event-B system C · ϕ · S is a
pair of a machine S and context C of the following form.

machine S

sees C

variables v

invariant I(V )
initialisation R(v′)
events

Ei = any pi where

Gi(pi, v)
then

Si(pi, v, v
′)

end

end

context C

sets αC

constants c, ϕ, ιC

axioms

ιC ⊆ αC

c ⊆ αC× αC

ϕ ⊆ {v | I(v)} × αC

. . .

end
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Subject S is an arbitrary Event-B machine defining a vector of variables v. Set
{v | I(v)} defines the possible states of the machine. Observer C is axiomatically
defined in a context. The context defines a sort αC, a transition relation c and
an observation connection ϕ which relates states from set {v | I(v)} to observer
states. Further axioms and theorems may added, to more precisely characterise
the observer model. �

Example 1 (Buffer). A lossy buffer with the capacity to store one element of
type V is defined by machine BUF, as shown below.

machine BUF

sees def ,C0

variables b

invariant b ∈ V

initialisation b :∈ V

events

wr = any v where

v ∈ V 1
then

b := v

end

rd = begin b := nil end

end

context C0

ιC0 = V

c ⊆ V × V \ (V 1× V 1)
ϕ = V ⊳ id

end

The constant nil ∈ V and sets V 1 = V \ {nil}, V 1 6= ∅ are defined in context
def . Event wr updates the value of the stored element; event rd consumes a
buffered element and sets the buffer contents to nil to indicate that the buffer
is now empty. The events are always enabled and thus BUF permits arbitrary
interleavings of the operations. Such operations may be implemented by unsyn-
chronised concurrent activities. The write operation may happen arbitrary often
thus potentially overwriting a previous value before it is read.

A lossless buffer is defined with the following timed Event-B system.

C0 · ϕ · BUF

The observation model rules out the possibility of event wr writing into a non-
empty buffer. We shall substantiate this claim in Example 2. �

An interpretation of a timed system gives a precise meaning to the phe-
nomenon of observation. Essentially, an observation prohibits behaviours that
an observer does not expect to see.

Definition 5 (Interpretation of a timed system). Given a timed system
C · ϕ · S where S = (αS, s, ιS) and C = (αC, c, ιC), its interpretation is a process

I(C · ϕ · S) ≡ (ϕ, τ(C · ϕ · S), (ιS× ιC) ∩ ϕ)
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where transition relation τ(C · ϕ · S) ⊆ (αS × αC) × (αS × αC) is such that a
mapping (u 7→ t) 7→ (u′ 7→ t′) ∈ (αS× αC)× (αS× αC) belongs to τ(C · ϕ · S) if
and only if the following properties hold

(a) u 7→ u′ ∈ s (a transition of a subject process)
(b) t 7→ t′ ∈ c (a transition of an observer process)
(c) u 7→ t, u′ 7→ t′ ∈ ϕ (subject and observer transitions are linked via the

observation connection)

One could say that an observer is a historian with a preconceived idea about
subject process behaviour. An observer would not tolerate a subject that does
not follow a certain plan or timetable. Note the use of ϕ ⊆ αS×αC to define the
alphabet of a timed system interpretation. Whenever we speak about a timed
system we always imply, unless specifically indicated otherwise, that the timed
system permits an interpretation.

It is essential to note that (despite the nomenclature) the observer is an
integral part of the timed system, and does not have a merely passive role. The
observer characterises the timing constraints that the developer wishes to impose
on an otherwise untimed system, and permits only interpretations that conform
to these constraints.

Recipe 2 (Consistency) It may happen that a proof of liveness and timing
properties is merely a consequence of an incompatibility between the observer
and the subject process. This incompatibility results in a vacuous interpretation
of a timed system that defines no common state transitions. To avoid this prob-
lem, it is sufficient to exhibit an initialisation of the timed system. For a timed
system C · ϕ · S one needs to prove that

∃x, y · x 7→ y ∈ ιS× ιC ∧ x 7→ y ∈ ϕ (1)

Condition 1 is called the consistency proof obligation of a timed system. �

The consistency condition holds for the system in Example 1; one possible
witness is mapping nil 7→ nil.

We give now the condition under which an event may be safely removed from
a timed system without affecting the overall behaviour.

Recipe 3 (Relation empty) Consider a timed system C ·ϕ · S with Event-B
machine S defining some event Ei :

Ei = any pi where Gi(pi, v) then Si(pi, v, v
′) end

Let S′ be a machine identical to S except that Ei is suppressed:

Ei = any pi where ⊥ then Si(pi, v, v
′) end

Timed systems C·ϕ·S and C·ϕ·S′ are equivalent provided the following condition
is satisfied
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(ϕ[before(Ei)]× ϕ[after(Ei)]) ∩ c = ∅ (2)

where before(e) corresponds to the enabling states defined by an event guard
and after(e) is a set of possible new states computed by an event:

before(e) = {v | I(v) ∧ ∃pi ·Gi(pi, v)}
after(e) = {v′ | I(v) ∧ ∃pi · (Gi(pi, v) ∧ Si(pi, v, v

′))}

The technique allows one to prove that after removing event Ei the overall
timed system does not become less live since the Ei is already prevented from
occuring by an observer.

Example 2 (Buffer, contd.). We can apply the event removal technique to prove
that timed system C0 · ϕ · BUF from Example 1 does indeed define a lossless
buffer.

To make the buffer lossless, we need to rule out the posibility of event wr
writing into a non-empty buffer. That is, event wr should not happen when
b 6= nil. Event wr may be represented (via a trivial case of refinement) by the
following two events.

wr = refines wr any v where b = nil ∧ v ∈ V 1 then b := v end

owr = refines wr any v where b 6= nil ∧ v ∈ V 1 then b := v end

It is possible to prove that owr is not a part of the timed system C0 ·ϕ ·BUF by
showing that Condition 2 holds for owr :

(ϕ[before(owr)]× ϕ[after(owr)]) ∩ c = ∅

which expands to ϕ[{b | b ∈ V 1 ∧ (∃v · v ∈ V 1)}] × ϕ[{b′ | b ∈ V 1 ∧ (∃v · v ∈
V 1 ∧ b′ = v)}] ∩ c = ∅. Since V 1 is not empty we have that ∃v · v ∈ V 1 ⇔ ⊤
and also V 1 = {b | b ∈ V 1}. The condition simplifies to ϕ[V 1] × ϕ[V 1] ∩ c =
∅ ⇔ ϕ[V 1] × ϕ[V 1] ∩ (V × V \ (V 1 × V 1)) = ∅ ⇔ ⊤. Hence, we can replace
machine BUF in C0 · ϕ · BUF with the following machine BUF′:

machine BUF′

. . .

events

wr = any v where b = nil ∧ v ∈ V 1 then b := v end

rd = begin b := nil end

end

It is trivial to see that BUF′ defines a lossless buffer. Hence, C0 · ϕ · BUF is
also a lossless buffer. �

It is often advantageous to deal with an observer that is cooperative enough
to completely accept any execution of a subject process. Then one knows a
priori that something happens in a subject process for every possible point of
time defined by an observer.

155 x 238 mm

Proving Timing Properties         171



Definition 6 (Strictness). A timed system A = (αC, c, ιC) · ϕ · (αS, s, ιS) is
strict if for every u 7→ t ∈ αS×αC and t 7→ t′ ∈ c there exists some u′ such that
(u 7→ t) 7→ (u′ 7→ t′) ∈ τA and ιC ⊆ ϕ[ιS].

In a system with a strict observer, an observation connection is also a simulation
relation [3].

Example 3 (Buffer, contd.). Observer C0 permits a concise abstraction however
there is an even simpler observer that achieves the same effect. Notice that
C0 · ϕ · BUF defines three transitions classes: reading a value and setting buffer
to 0 (V +×{nil}); reading an empty buffer ({nil 7→ nil}); writing into an empty
buffer ({nil}×V +). We shall exploit this property and define a new observer C1

such that these three classes are the kernels of new observation connection ϕ1:

context C1

extends def
sets αC1

constants c1, ϕ1, ιC1,E,F
axioms

partition(αC1, {E,F})
ιC1 = {E,F}
c1 = {E 7→ E,E 7→ F,F 7→ E}
ϕ1 = V 1× {F} ∪ {nil}× {E}

end

It is not hard to see that event removal condition also holds for C1 · ϕ1 · BUF:
ϕ1[before(owr)]×ϕ1[after(owr)]∩ c1 = ∅⇔ ({F}×{F})∩ c1 = ∅⇔⊤. It is easy
to see that, unlike C0 · ϕ · BUF, system C1 · ϕ1 · BUF is strict. �

The fourth recipe allows a developer to show that a state which is possible in
the untimed process is ruled out by the timing constraints. We give the theory
of the technique and demonstrate it with a simple example.

Recipe 4 (Point empty) Consider a timed system C ·ϕ ·S and a subject state
w ∈ αS. If one can show that ϕ does not project w into anything at all in αC

then, by the Definition 5 of timed system interpretation, any state χ ∈ αC×αS

where prj2[{χ}] = {w} is not a state of C · ϕ · S.
Thus, a subject state not projected by ϕ is not reachable in a timed system.

A proof that assumes the existence of such a state may be discharged by deriving
a contradiction with the following rule.

∀W ·W ⊆ Ω ∧ ϕ[W ] = ∅⇒⊥ (3)

where Ω = {v | I(v)} is the set of subject states. �

Example 4 (Mutex). In this example we describe a very simple mutual exclusion
algorithm that works due to a rigid scheduling of the involved threads. The state
of a thread p is defined by s(p) and is one of the following values: ’out’, denoting
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that p is outside of a critical section and not trying to enter it; ’prep’, telling
that the thread is about to enter the critical section; and ’in’ for the states when
the thread is in the critical section.

machine MTX

variables s

invariant

inv1 : s ∈ P →{out, prep, in}
inv2 : card(s−1[{in}]) ≤ 1

initialisation s := P × {out}
events

prepare = any p where p ∈ P ∧ s(p) = out then s(p) := prep end

enter = any p where p ∈ P ∧ s(p) = prep then s(p) := in end

leave = any p where p ∈ P ∧ s(p) = in then s(p) := out end
end

where set P of processes is finite. Invariant inv2 expresses the property of mu-
tual exclusion. We employ the following observer process to define that no two
processes may be, at the same time, at stages ’prep’ and ’in’:

context C

. . .

c ⊆ αC× αC

S = P(P × {out, prep, in})
ϕ ⊆ S × αC

axm5 : ∀t, q · t, q ∈ P ∧ t 6= q ⇒ Js(t) = prep ∧ s(q) = inK = ∅

end

where JP (ω)K ≡ ϕ[{ω | P (ω)}]. The only non-trivial proof obligation in this
model is the preservation of inv2 by event enter . It asks to prove, for some
process p, that entering the critical does not violate safety invariant inv2.

card(s−1[{in}]) ≤ 1 ∧ s(p) = prep � card((s⊳− {p 7→ in})−1[{in}]) ≤ 1

The condition cannot be discharged within the scope of the subject model alone.
We need to bring in the constraints of the observer model to demonstrate the
condition. We proceed by replacing card((s ⊳− {p 7→ in})−1[{in}]) ≤ 1 with a
stronger goal s−1[{in}] = ∅ and continue with a proof by contradiction. The
negation of s−1[{in}] = ∅ in hypothesis gives

s(p) = prep ∧ s(x) = in ∧ x 6= p � ⊥

A state where one process is in the critical section and the other is about to
enter the critical section is disallowed by the observer (axm5) so that the point
empty technique may be used to discharge the condition. Instantiating axm5
with t = p, q = x we have ϕ[{a · a ∈ S ∧ a(p) = prep ∧ a(x) = in | a}] = ∅

which gives us set W to instantiate Condition 3 and derive a contradiction in
hypothesis.
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One way to realise observer C is by defining it to be cyclic scheduler that
allows processes to access the critical section at fixed time intervals. �

4 Realisability

According to Definition 5, a timed system is a transition (or a process, as it is
defined in Definition 2). Hence, a timed system may itself be employed in the role
of subject or observer and one can define a complex timed system made of sub-
systems which are also timed systems. One application of the compositionality
property is a structure called time log. A time log is timed system observed by an
external observer. Informally, the external observer make a record of observation
using its own timekeeping device.

Definition 7 (Time log). Time log T(C ·ϕ ·S)T,ω of timed system A = C ·ϕ ·S
is a process

T(A)T,ω = (ϕ;ω,L[τ(T · ω · τ(A))], ιT)

where T · ω · τ(A) is strict, ω is total and functional; projection L removes
states of process C: L[X] = {((a, b), {c}) 7→ (a, c) | ((a, b), {c}) ∈ X}. Also,
L[ιA× ιT] ∩ ω 6= ∅.

A time log defines a timed system (or a process) which does not reference states of
observer C. A time log is itself a transition system hence it is sometimes possible
to replace a timed system with its time log. One common reason to do this is to
separate the proof of logical properties relevant to timing constraints from the
proof of how these properties may be expressed in a specific, implementation-
oriented form, e.g., hard real-time constraints.

Not all timed system may be realised in physical reality. If the object of a
formal development is a piece of software of hardware it is necessary to check,
at the level of a concrete design, that certain properties are respected by an
observer process. These properties, called realisability conditions, are as follows:

– time advance is monotonic
– infinite subject activities take infinitely long time to observe

Instead of checking these properties directly on an observer model, it is more
convenient to consider yet another observer and study the observations defined
by the new observer and the original timed system. The first realisability con-
dition demands that the time model described in an observer process may be
mapped to a monotonic time model. The second condition prohibits a situation
where an unterminating activity of a subject process is timed to terminate by a
certain deadline.
An animation is a time log satisfying the the realisability conditions. Let bounded(X,Y)
denote the fact that there exist lower and upper bounds w.r.t. the relation of
process Y = (αY, <), bounded(X) ≡ X ⊆ αY∧(∃l, u · l, u ∈ αY∧∀p ·p ∈ P⇒ l <

p < b).
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Definition 8 (Animation of timed system). An animation of C · ϕ · S is
a time log T(C · ϕ · S)T,ω such that T is monotone and every bounded sub-
set of αT maps to a finite sequence of subject actions: ∀P · bounded(P,T) ⇒
finite(ω−1;ϕ−1[P ]).

Definition 9 (Realisability). A timed system is realisable if it admits at least
one animation.

According to Definition 5, a timed system is a transition (or a process, as it is
defined in Definition 2). Hence, a timed system may itself be employed in the role
of subject or observer and one can define a complex timed system made of sub-
systems which are also timed systems. One application of the compositionality
property is a structure called an animation. An animation is a timed system
formed by observed another timed system. Informally, the external observer
make a record of observation using its own timekeeping device.

Definition 10 (Animation). Animation T(C · ϕ · S)T,ω of timed system A =
C · ϕ · S is a process

T(A)T,ω = (ϕ;ω,L[τ(T · ω · τ(A))], ιT)

where T · ω · τ(A) is strict, ω is total and functional; projection L removes
states of process C: L[X] = {((a, b), {c}) 7→ (a, c) | ((a, b), {c}) ∈ X}. Also,
L[ιA× ιT] ∩ ω 6= ∅.

An animation defines a timed system (or a process) which does not reference
states of observer C. An animation is itself a transition system hence it is some-
times possible to replace a timed system with its animation. One common reason
to do this is to separate the proof of logical properties relevant to timing con-
straints from the proof of how these properties may be expressed in a specific,
implementation-oriented form, e.g., hard real-time constraints.

Recipe 5 (Real-time constraints) The form of timing constraints of a
concrete design is dictated by the practical necessity to validate constraints via
some form of static analysis (i.e., worst-case execution time) or by observing
execution runs of a software or hardware implementation. For the former, it
may be necessary to present constraints in the form of durations of elementary
execution steps.

In a timed Event-B we suggest to use an observer based on a dense linear
order (DLO) to realise real-time constraints. A linear order c is dense if it satisfies
condition ∀x, y · x 7→ y ∈ c ⇒ (∃z · x 7→ z ∈ c ∧ z 7→ y ∈ c). Intuitively, with
a dense order one is able to define durations and time points with an arbitrary
precision1. It also means one is able to interpolate between any two time points.
An example of an Event-B model of a DLO may be found in [1].

Assume a process C = (αC, c, ιC) where c is a DLO. This process will be
employed to define an animator for some timed system A. We introduce a layer

1 This is what, we believe, is usually meant as a property distinguishing a “real-valued
clock” from a “discrete” clock.
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of syntactic shorthand to express properties of C. Let t ∈ αC be the current
state of animator C, P a predicate defined on set γ−1[αC] and γ an animation
relation.

– at(P, t)γ ≡ P (γ−1(t)): event (defined by predicate) P happens at time t;
– during(P, i)γ ≡ ∃t · t ∈ i ⇒ at(s, t)γ : event P happens at least once during

time interval i;
– within(∆,P, t)γ ≡ ∃t′ · t′ > t ∧ t′ − t ≤ ∆ ∧ P (γ−1(t′)): event P happens

within ∆ time units after t;
– after(∆,P, t)γ ≡ ¬within(∆,P, t)γ ∧ within(∞, P, t)γ : event P happens not

sooner than ∆ time units (but happens eventually) after t.

The following statement says that, at all times, whenever there happens a
stimulus event (s), it is followed by a response event (r) within ∆ time units

∀t · t ∈ αC ∧ at(s, t)γ ⇒ within(∆, r, t)γ

One may elect to be more precise and state that, should a stimulus happen at
time t, a response follows within interval [t+∆1, t+∆2]

∀t · t ∈ αC ∧ at(s, t)γ ⇒ during([t+∆1, t+∆2], r)γ

which is the same as

∀t · t ∈ αC ∧ at(s, t)γ ⇒¬within(∆1, r, t)γ ∧ within(∆2, r, t)γ

As a further illustration, the following are statements about a simple traffic light.

– Aγ(t) ≡ within(∞,green, t)γ : the green aspect is eventually lit;
– Bγ(t) ≡ ¬within(∞,green∧ red, t)γ : the green and red aspects are never lit

at the same time;
– Cγ(t) ≡ at(red, t) ⇒ after(∆1,green, t)γ : the green aspect follows the red

aspect within ∆1 time units;
– Dγ(t) ≡ at(red, t) ⇒ ¬after(∆2,yellow, t)γ : the yellow aspect might be lit

after red aspect might happen but not sooner than ∆2 time units.

Any traffic light implementation must respect these properties. In an animator
specification this is expressed by addign an axiom that animator C may never
violate these properties:

ιC ⊆ vγ c[vγ ] ⊆ vγ (4)

For the traffic light example, it must hold that the initial states ιC satisfies
properties A − D and the animation relation c preserves properties A − D so
that vγ is the set of all valid time points: vγ = {t | t ∈ αC ∧ Aγ(t) ∧ Bγ(t) ∧
Cγ(t) ∧Dγ(t)}.

The verification effort is in showing that an animator does indeed animate a
given timed system. For this we consider the animation relation γ connecting the
timed system observer with the animator C. If one can prove that γ exists as an
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animation relation that one may take the animation as a timed specification that
respects both the abstract scheduling properties of the original timed system and
the real-time constraints of the animator. �

Example 5 (Buffer, contd.). In this example we show how to construct an an-
imation of the lossless buffer timed system C1 · ϕ1 · BUF in the terms of the
relative speeds of the write and read operations. For this, we reinterpret the
timing requirements with an animator that explicitly defines operation delays
and time-outs.

Consider a DLO animator T = (αT, <, {zero}) and animation relation ω ∈
{E,F}→ αT such that for all x, y ∈ αT it holds that

(a) P1(t) ≡ within(∆R, λc · c = E, t)ω (a read happens within ∆R time units)
(b) P2(t) ≡ ¬within(∆W , λc · c = F, t)ω (a write happens not sooner than ∆W

time units from now)
(c) P3 ≡ ∆R ≤ ∆W (reader is quicker than writer)
(d) ω[{E}] = {zero} (system starts at time zero ∈ αT)

In this example, properties P1 − P3 also sufficiently constrain the animation
relation γ. Delays ∆R and ∆W define the durations of wr and rd. We prove that
T animates C1 ·ϕ1 ·BUF with animation connection ω. Let vγ = {t | P1(t)∧P2(t)}
(we omit P3 as it is not time-sensetive) and less be a prefix form of <. From
Condition 4 we derive the following hypothesis

{zero} ⊆ vω less[vω] ⊆ vω

The initialisation condition expands to

(∃t′ · t′ > zero ∧ t′ − zero ≤ ∆R ∧ ω−1(t′) = E)∧
¬(∃t′ · t′ > zero ∧ t′ − zero ≤ ∆W ∧ ω−1(t′) = F)

(5)

Statement less[vω] ⊆ vω gives

∀t0, t1 · t0t1 ∈ αT ∧ t0 < t1∧
((∃t′ · t′ > t0 ∧ t′ − t0 ≤ ∆R ∧ ω−1(t′) = E)∧
¬(∃t′ · t′ > t0 ∧ t′ − t0 ≤ ∆W ∧ ω−1(t′) = F))⇒

((∃t′ · t′ > t1 ∧ t′ − t1 ≤ ∆R ∧ ω−1(t′) = E)∧
¬(∃t′ · t′ > t1 ∧ t′ − t1 ≤ ∆W ∧ ω−1(t′) = F))

(6)

We sketch the proof for the fact that ω is an animation relation: for any t < t′ it
holds that ω−1(t) < ω−1(t′). The only case when ω−1(t) ≥ ω−1(t′) is ω−1(t) = F
and ω−1(t′) = F. Assume that such t and t′ exist. From Condition 5 there exists
t0 < t and ω−1(t0) = E. From Condition 6 we have the existence of t1 such
that t1 > t0 ∧ t1 − t0 ≤ ∆R ∧ ω−1(t1) = E and t1 > t′. The t1 > t′ part may
be shown by induction: since t0 and t are a finite distance apart there exists
ti, ω

−1(ti) = E such that there does not exist ti+1, ω
−1(ti) = E and ti+1 < t.

Also, from Condition 6, we have that t′− t ≥ ∆W which leads to a contradiction
due to condition (c). �
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Recipe 6 (Point merge) This technique is a generalisation of the empty point
technique. It is used to derive a contradiction when a subject state, defined by
the intersection of states of two or more concurrent threads disagrees with the
observation model. The following lemma states how to make a transition from
a set of statements about individual thread states to a statement about a time
point when such a state configuration may be observed.

Lemma 1 (Point merge). Let W and Pi be non-empty subject process states
such that W = {v | W (v)}, Pi = {v | Pi(v)} where W (v) and Pi(v) are predicates
over subject process state space and it holds that W ⇒

∧
i Pi. Then there exist

time points ti ∈ JPiK ∩ JW K such that ∀i, j · ti = tj.

Proof. See [3] (a Rodin Toolkit proof).

The proof technique is to show that no two states from Pi and Pj , i 6= j may be
observed at the same time (due to some timing conditions). Then the existence
of a time point common for the two states Pi and Pj gives a contradiction.

We have applied the point merge technique in the proof of Fischer’s timing-
based algorithm of mutual exclusion [19, 4]. The complete Event-B development
of the algorithm is available at [2]. �

5 Related Work

One closely related work is that of Abadi and Lamport [4] which shows that
timing constraints may be expressed directly in TLA without syntactic or se-
mantic extensions. Timed automata [6] offers a formal framework for specifying
real-time properties by enriching the state of an automata with a number real-
valued clocks. The UPPAAL[7] tool offers support for automated verification of
timed automata. Timed process algebras have been researched extensively and
there is a large variety of notations and semantics. The timed extensions of CSP
[19] and CCS[16] are two notable examples.

Although Event-B lacks any native support of time, some form of timed
modelling may be done directly in the Event-B notation. The basic principle - a
clock variable employed to keep track of time - is fairly intuitive and has been
applied in various state-based and proces algebraic methods. One example is
Tock-CSP [19] which uses the standard CSP notation and measures the passage
of time by counting the occurence of a tock event. A state-based equivalent is
having a dedicated variable now to track the passage of time and express timing
conditions [4, 15].

Previous work on modelling time in B uses a clock variable which records
the current value of a clock, and an operation is given to advance time [9]. This
approach is taken up again for Event B in [10, 17]. In [14] the concept of time is
embedded into the B notation itself. Time is modelled by equipping a machine
with a clock and assuming that an event execution is not instanteneous.
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We briefly discuss the general ideas behind a clock variable technique and
show how it may related to our approach. A machine with a clock variable t has
the following form

machine m
variables v, t

invariant I(v) ∧ P (v, t)
initialisation R(v′, t′)
events

sys = when G(v, t) then S(v, t, v′) end
tick = when H(v, t) then T (t, v, t′) end

end

Timing constraints are encoded as a safety invariant P (v, t). A clock variable t is
usually defined as t ∈ N to imply an unbounded discrete clock. The clock variable
is updated by event tick; an update would either increment t by one or ’jump’
time to some interesting point in future (i.e., next deadline). The behaviour of
a system is then cumulatively defined by some event sys which may not update
t but may refer to t in its guard. An informal interpretation is the following: if
activity sys must happen within interval [a(v), b(v)], guard G(v, t) should not
allow sys happen before a(v) while the clock guard H(v, t) should prevent time
from progressing beyond b(v) until sys has happened. Sometimes intervals are
singular and one speaks about deadlines [17].

Verification conditions for time properties are invariant preservation theo-
rems for P (v, t):

I(v) ∧ P (v, t) ∧G(v, t) ∧ S(v, t, v′)⇒ P (v′, t)
I(v) ∧ P (v, t) ∧H(v, t) ∧ T (t, v, t′)⇒ P (v, t′)

On the left-hand side, P (v, t) is stated on an old state and on the right-hand
side on a new state produceed by respective events. What such theorems show is
that, if properly initialised, the system is guaranteed to stay within the bounds
set by predicate P (v, t).

This technique allows one to demonstarte a range of progress properties with
a heavy reliance on Event-B refinement principles. In Event-B one is able to re-
fine a previously atomic transition into a sequence or a terminating loop of new
transitions. Atomicity refinement - as this technique is known - allows one to
prove certain progress properties by constructing suitable refinement relations.
For instance, one can prove that activity A completes before activity B (each
comprising several events) by showing that A and B are derived from abstract
events a and b and, at that abstraction level, it is somehow known that a always
precedes b. Such kind of properties of a and b may be demonstrated by encoding
an ordering relation with an auxiliary variable or generating a special proof obli-
gation [12, 13]. A model with a clock variable restates the atomicity refinement
technique in terms of deadlines and intervals.

It is easy to convert the tick model into Leibnizian time. Rather than giving
a timed system that defines an equivalent transitions system we define a timed
system that, as we believe, corresponds to the intended purpose of an Event-B
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machine with a tick event. Let Υ = {t | ∃v · P (v, t)} and Ω = {v | ∃t · I(v) ∧
P (v, t)}. Then machine m corresponds to a timed system C · ϕ · S such that

– C = (Υ, c, ιC) where c ⊆ Υ × Υ and c ∩ id(Υ ) = ∅

– S = (Ω, s, ιS) where s = {v 7→ v′ | ∃t ·G(v, t) ∧ S(v, t, v′)}
– ϕ = {v 7→ t | G(v, t) ∧ ¬H(v, t)} ∩ {(v, t) | P (v, t)}

Note that C · ϕ · S does not depend on the definition of T (t, v, t′). This is
because in an Event-B model there is no meaning to T (t, v, t′) in the sense
that no proof obligation constraints T (t, v, t′) beyond requiring that T (t, v, t′)
is safe and irreflexive (should be imposed by the proof of convergence of tick)
and T (t, v, t′) ⊆ {(v, t) | P (v, t)} × {(v, t) | P (v, t)}. The guard H(v, t) of tick
potentially matters as it would be a part of the deadlock freeness condition. In
practice, the convergence and deadlock freeness of tick are hard to prove and are
rarely attempted. In the Leibnizian time model the P (v, t) constraint is placed in
the observation connection and the irreflexivity property is a part of the observer
model leaving subject S to contend with functional properties.

6 Discussion

We have presented a summary of our ideas on how the Leibnizian model of time
may be used to construct timed Event-B specifications. Our approach offers a
homogenous technique to time modelling where properties of timed models are
expressed and proven in a gradual, refinement-based manner. The approach is
a conservative extension of Event-B. No notational or semantical changes are
necessary and the existing modelling tools have proven adequate.

Our technique does not dictate any specific time domain: we let a modeller
choose the most appropriate abstraction of time – a simple scheduler, a fictious
integer clock or a dense time clock. Both dense and discrete time domains are
supported so that the approach may be used as a part of a toolchain with a wide
range of potential roles including expressing scheduling properties and hard real-
time constraints. The approach has proven to be quite effecient and intuitive:
we were able to tackle several large case studies and, as far as we are aware,
our models are simpler and require a lower verification effort while all proofs are
completely machine-checked.

Due to space constraints, we did not present a larger case study although
one such case study is available at [2]. Many recipes were not discussed. These
include rules for demonstrating the realisability of a timed specification and
several refinement-related recipes. We plan to provide a plug-in to the Rodin
Toolkit [18] for automated generation of the timed systems proof obligations and
a template-based assistant for constructing various kinds of observer processes.
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Regions of Affine Nets
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Abstract. Regions of transition systems provide a versatile and effec-
tive tool for the synthesis of Petri nets from behavioural specifications.
Intuitively, a region captures a single net place through essential be-
havioural characteristics as encoded in the transition system, including
marking information and its connectivity with all the transitions. One
of the key advances in the design of region based solutions for a variety
of synthesis problems has been the development of a general approach
for dealing with region based synthesis of Petri nets. It is founded on
so-called τ -nets and corresponding τ -regions.
In this paper, we discuss a region based synthesis procedure for affine
nets, a class of Petri nets, in which the number of tokens produced by
firing transitions depends linearly on the current marking. We then show
that the notion of a τ -region can be suitably adapted to fit the semantics
of affine nets.
Keywords: concurrency, theory of regions, transition system, synthesis
problem, Petri net, affine net, localities, locally maximal step semantics

1 Introduction

The intended or observed behaviour of a concurrent system may be captured
using a step transition system such as that depicted in Figure 1. It has six
different states, including the initial state init, and a number of directed arcs
labelled by multisets of executed actions representing possible transitions among
these states.

init

{u, u, u, u, z}

{t} {t}

{u} {u, u}{u, t}

{u, u, z}

Fig. 1. A step transition system which cannot be generated by a pt-net.
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Suppose that one would like to construct a Place/Transition net (pt-net)
net N with its concurrent reachability graph isomorphic to the step transition
system in Figure 1. Such an attempt would fail for the following reasons:

– The presence of an arc labelled by {u, t} necessarily implies the presence of
an arc outgoing from the same state labelled by {u}, and that is not true of
the step transition system in Figure 1.

– The effect of executing {t}{u, t}{u, u, z} and {t}{t}{u, u, u, u, z} should in
N be the same as both step sequences lead from the initial state to the
same state of the transition system. Hence, assuming that W is the weight
function of N , for every place p we would have:

3 · (W (u, p)−W (p, u)) + 2 · (W (t, p)−W (p, t)) + (W (z, p)−W (p, z)) =
4 · (W (u, p)−W (p, u)) + 2 · (W (t, p)−W (p, t)) + (W (z, p)−W (p, z)) .

As a result, W (u, p) = W (p, u) which means that executing u would not
change the marking of N , a contradiction with the fact that executing {u}
in the initial state leads to a different state.

The latter of the above two problems is related to the fact that arc weights in
pt-nets are constant and, as we demonstrated above, no net model with this
property can generate the step transition system in Figure 1. We therefore need
a more expressive model, and in this paper we show that a suitable formal model
for behavioural descriptions like that in Figure 1 are affine nets with localities
(al-nets). Affine nets [13] are an example of Petri net models where arc weights
depend linearly on the current marking. They are syntactically related to nets
with whole-place operations [1] (wpo-nets) and transfer/reset nets [10], but they
have a distinct execution semantics. In this paper, we extend the original model
of [13] with step sequence semantics and transition localities. The latter feature
supports the definition of the locally maximal execution semantics, allowing one
to model GALS (Globally Asynchronous Locally Synchronous) systems [8, 12].

Grouping net transitions in different localities and introducing execution se-
mantics that allows only the maximal multisets of enabled net transitions to ‘fire’
within a given locality will help us to address the first problem mentioned above.
Allowing the weights of connections between places and transitions depend on
the current marking will address the second problem.

The synthesis of an al-net from a transition system specification will be
based on the notion of a region of a transition system [11, 3, 2] suitably adapted
to al-nets, and the notion of locally maximal step semantics, a special kind of
step firing policy (see [7, 16]).

Synthesising systems from behavioural specifications is an attractive way of
constructing implementations which are correct-by-design and thus requiring no
costly validation efforts. The synthesis problem was solved for many specific
classes of nets, e.g., [18, 17, 4, 20, 5, 19]. Later, a general approach was developed
within the framework of τ -nets that take a net-type as a parameter [3]. In this
context, [7] introduced a general approach for dealing with step firing policies,
including the locally maximal execution semantics.
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Regions of Affine Nets 3

In this paper, we focus on the problem of synthesising al-nets from be-
havioural specifications provided by step transition systems. A solution to the
synthesis problem for the wpo-nets was outlined in [14], and for wpo-nets with
localities in [15] and we use some of the ideas introduced there in the proposed
treatment of affine nets with localities.

The paper is organised as follows. The next section recalls some basic notions
concerning step transition systems and τ -nets. Section 3 introduces al-nets, and
Section 4 presents regions as an essential ingredient for a solution to the synthesis
problem for al-nets, treating them as a special kind of τ -nets.

2 Preliminaries

An abelian monoid is a set S with a commutative and associative binary opera-
tion +, and an identity element 0. The result of composing n copies of s ∈ S is
denoted by n · s, and so 0 = 0 · s. An example of an abelian monoid is the free
abelian monoid 〈T 〉 generated by a set T , the elements of which will represent
steps of nets with transition set T . 〈T 〉 can be seen as the set of all the multisets
over T , e.g., aab = aba = baa = {a, a, b}. We use α, β, γ, . . . to range over the
elements of 〈T 〉. For t ∈ T and α ∈ 〈T 〉, α(t) denotes the multiplicity of t in α,
and so α =

∑

t∈T α(t) · t. Then t ∈ α whenever α(t) > 0, and α < β whenever
α 6= β and α(t) ≤ β(t) for all t ∈ T .

Transition systems. A (deterministic) transition system 〈Q, S, δ〉 over an abelian
monoid S consists of a set of states Q and a partial transition function δ : Q×S →
Q such that δ(q,0) = q for all q ∈ Q. An initialised transition system 〈Q, S, δ, q0〉
is a transition system with an initial state q0 ∈ Q such that each state q ∈ Q
is reachable from the initial state, i.e., there are s1, . . . , sn and q1, . . . , qn = q
(n ≥ 0) with δ(qi−1, si) = qi, for 1 ≤ i ≤ n. For every state q, we denote by
enbTS (q) the set of all s which are enabled at q, i.e., δ(q, s) is defined. TS is
bounded if enbTS (q) is finite for every state q of TS . Moreover, such a TS is
finite if it has finitely many states. In diagrams, 0-labelled arcs are omitted.

Initialised transition systems T over free abelian monoids — called step tran-
sition systems or concurrent reachability graphs — represent behaviours of Petri
nets. Net-types are non-initialised transition systems τ over abelian monoids and
used to define various classes of nets.

Two step transition systems, T = 〈Q, 〈T 〉, δ, q0〉 and T ′ = 〈Q′, 〈T 〉, δ′, q′0〉,
are isomorphic if there is a bijection f with f(q0) = q′0 and

δ(q, α) = q′ ⇔ δ′(f(q), α) = f(q′), for all q, q′ ∈ Q and α ∈ 〈T 〉 .

Petri nets defined by net-types. A net-type τ = 〈Q, S, ∆〉 specifies the values
(markings) that can be stored in places (Q), the operations and tests (inscrip-
tions on the arcs) that a net transition may perform on these values (S), and the
enabling condition and the newly generated values for steps of transitions (∆).

A τ -net is a tuple N = 〈P, T, F,M0〉, where:
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– P and T are respectively disjoint sets of places and transitions;

– F : P × T → S is a flow mapping ; and

– M0 is an initial marking belonging to the set of markings, i.e., mappings
from P to Q.

For many classes of Petri nets, including the affine nets, Q is the set of natural
numbers N = {0, 1, 2, . . . } or its subset.

N is finite if both P and T are finite. For all p ∈ P and α ∈ 〈T 〉, we denote
F (p, α) =

∑

t∈T α(t) · F (p, t). Then a step α ∈ 〈T 〉 is enabled at a marking M
if, for every p ∈ P , F (p, α) ∈ enbτ (M(p)). We denote this by α ∈ enbN (M).
Firing such a step produces the marking M ′, for every p ∈ P defined by M ′(p) =
∆(M(p), F (p, α)). We denote this byM [α〉M ′. The concurrent reachability graph
CRG(N) of N is formed by firing inductively from M0 all possible enabled steps,
i.e., CRG(N) = 〈[M0〉, 〈T 〉, δ,M0〉 where

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . .Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi}

is the set of reachable markings, and δ(M,α) = M ′ iff M [α〉M ′.

3 Affine Nets with Localities

Assuming an ordering of places, markings can be represented as vectors, with
the i-th component of a vector x being denoted by x(i). For x = (x1, . . . , xn)
and y = (y1, . . . , yn), (x, 1) = (x1, . . . , xn, 1) and x⊗ y = x1 · y1 + · · ·+ xn · yn.
Moreover, ⊗ also denotes the multiplication of two-dimensional arrays.

Before introducing al-nets, we first give the definition of affine nets and their
step sequence semantics. An affine net (a-net), not yet considered as a τ -net, is
a tuple N = 〈P, T,W,m0〉, where:

– P = {p1, . . . , pn} is a finite set of implicitly ordered places;

– T is a finite set of transitions disjoint with P ;

– W is a weight function with domain (P × T ) ∪ (T × P ) such that, for all
p ∈ P and t ∈ T , W (p, t) ∈ N and W (t, p) ∈ N

n+1; and

– m0 is an initial marking belonging to the set Nn of markings.

It is convenient to specify the output weights using linear expressions involving
the pi’s. For example, if n = 3 then W (t, p3) = (2, 0, 1, 4) can be written down
as 2 · p1 + p3 + 4. In diagrams, arcs are annotated with their weights; arcs with
weight 0 are dropped; and annotations ’1’ are not explicitly shown. A place pj
(1 ≤ j ≤ n) is a whole-place if W (t, p)(j) > 0, for some p ∈ P and t ∈ T . In such
a case we also write pj  p.

For p ∈ P and α ∈ 〈T 〉, W (p, α) =
∑

t∈T α(t) · W (p, t) and W (α, p) =
∑

t∈T α(t) ·W (t, p). Then α is enabled at a marking m if, for every p ∈ P ,

m(p) ≥ W (p, α) . (1)
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We denote this by α ∈ enbN (m). An enabled α can be fired leading to a new
marking such that, for every p ∈ P ,

m′(p) = m(p)−W (p, α) + (m− (W (p1, α), . . . ,W (pn, α)), 1)⊗W (α, p) . (2)

We denote this by m[α〉m′, and define the concurrent reachability graph
CRG(N) of N as one built by firing inductively from m0 all possible enabled
steps. Note that in (2), the number of tokes deposited in places depends linearly
on the marking of the net places after the tokens were removed from them by the
transitions of the step being executed. In contrast, in wpo-nets [1] the number of
deposited tokens is calculated on the basis of the marking before the execution
of the step (in addition, the number of tokens removed from the places also
depends on the current marking).

An affine net with localities (al-net) is a tuple N = 〈P, T,W,m0, ℓ〉 such
that 〈P, T,W,m0〉 is the underlying a-net, ℓ : T → N is the locality mapping of
N , and ℓ(T ) are the localities of N . In diagrams, nodes representing transitions
assigned the same locality are shaded in the same way, as illustrated in Figure 2
for transitions z and u.

al-nets are executed under the locally maximal rule. A step α ∈ 〈T 〉 is
resource enabled at a marking m if, for every p ∈ P , the inequality (1) is satisfied
(i.e., if α is enabled in the underlying a-net). A resource enabled step α is then
control enabled at m if there are no t ∈ T and u ∈ α (not necessarily different
from t) such that ℓ(t) = ℓ(u) and the step t + α is resource enabled at m. A
control enabled step α can be then fired leading to the marking m′, for every
p ∈ P given by the formula (2) (i.e., as in the underlying a-net). The concurrent
reachability graph CRG lmax (N) of N is then formed by firing inductively from
m0 all possible control enabled steps. The concurrent reachability graph of the
al-net in Figure 2 is isomorphic to the step transition system shown in Figure 1.

The concurrent reachability graph of an al-net can be finite even if the
concurrent reachability graph of the underlying a-net is infinite. For example,
the underlying a-net of the al-net in Figure 2 generates infinitely many step
sequences {t}{t}{z} . . . {t}{t}{z}

︸ ︷︷ ︸

k times

, each of which leads to a different marking.

In general, execution semantics such as local maximal concurrency can be
formulated in terms of step firing policies (see [7]). A step firing policy is given by
a control disabled steps mapping cds : 2〈T 〉 → 2〈T 〉\{0} that, for a set of resource
enabled steps at some reachable marking, returns the set of steps disabled by this
policy at that marking. For the locally maximal step firing policy this mapping
is given by:

cds lmax(X) = {α ∈ X \ {0} | ∃β ∈ X : ℓ(β) = ℓ(α) ∧ α < β} .

4 Synthesising affine nets with localities

We will now discuss how to construct an al-net with a concurrent reachability
graph that is isomorphic to a given step transition system T = 〈Q, 〈T 〉, δ, q0〉.
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p

tuz

2 ·p + 2

2

2

Fig. 2. An al-net generating the step transition system of Figure 1.

For this net synthesis problem, a general approach was developed for generically
defined τ -nets, each such class of nets being represented by its own net-type τ .
Note that a key aspect of any solution to a net synthesis problem is to discover
all the necessary net places from T and their connections with transitions of T
from τ .

4.1 Net-type for affine nets

al-nets employ arc weights that depend on the current marking of all places.
This may be too general, e.g., in the case of systems where places are distributed
among remote neighbourhoods and thus are not capable to exert direct influence
on each other. This can be captured by restricting the number of places which
can influence arc weights.

A k-restricted al-net (k-al-net, k ≥ 1) is a al-net N for which there is a
partition P1 ⊎ · · · ⊎Pr of the set of places such that each Pi comprises at most k
places and, for all p ∈ Pi and p′ ∈ Pj (i 6= j), we have p 6 p′. That is, there is
no exchange of current marking information between different clusters of places
Pi.

Although k-al-nets are not τ -nets in the sense of the original definition, they
still broadly speaking adhere to the ideas behind the definition of τ -nets. All we
need to do is to define a suitably extended net-type capturing the behaviour
of sets of clusters of places rather than the behaviour of single places. More
precisely, for each k ≥ 1, the k-affine-net-type is a transition system:

τkaff = 〈Nk,Nk × (Nk+1)k, ∆k
aff 〉

where
∆k

aff : Nk × (Nk × (Nk+1)k) → N
k

is a partial function such that ∆k
aff (x, (X,Y )) is defined if x ≥ X and, if that is

the case,
∆k

aff (x, (X,Y )) = (x−X) + (x−X, 1)⊗ Y .

Note that here we treat tuples of vectors in (Nk+1)k as (k + 1)× k arrays.
A τkaff -net is a tuple N = 〈P, T, F,M0, ℓ〉, where:
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Fig. 3. A fragment of the infinite net-type τ2

aff .

– P = {P1, . . . , Pr} is a set of disjoint sets of implicitly ordered places com-
prising exactly k places each;

– T is a set of transitions being different from the places in the sets of P;
– F : P × T → N

k × (Nk+1)k is a flow mapping ;
– M0 is an initial marking belonging to the set ofmarkings defined as mappings

from P to N
k; and

– ℓ is a location mapping for the transitions in T .

For all Pi ∈ P and α ∈ 〈T 〉, we denote F (Pi, α) =
∑

t∈T α(t) · F (Pi, t). Then a
step α ∈ 〈T 〉 is resource enabled at a marking M if, for every Pi ∈ P, F (Pi, α) ∈
enbτk

aff
(M(Pi)). Such a step is then control enabled if

α ∈ enbN,cdslmax
(M) = enbN (M) \ cds lmax(enbN (M)) . (3)

Firing a control enabled step produces the markingM ′, for every Pi ∈ P, defined
byM ′(Pi) = ∆k

aff (M(Pi), F (Pi, α)). We denote this byM [α〉M ′, and then define
the concurrent reachability graph CRG lmax (N) ofN as the step transition system
formed by firing inductively from M0 all possible control enabled steps.

4.2 From transition systems to nets

First we need to express a k-al-netN = 〈P, T,W,m0, ℓ〉, with a set of places P =
{p1, . . . , pn} and clusters P1, . . . , Pr, as a τkaff -net with localities. Suppose that
each set Pi in the partition has exactly k places. (If any of the sets Pi has m < k
places, we can always add to it k −m fresh dummy empty places disconnected
from the original transitions and places.) We then define N ′ = 〈P, T, F,M0, ℓ〉
so that P = {P1, . . . , Pr} and, for all Pi ∈ P and t ∈ T :

– F (Pi, t) = (X,Y ), where X = (W (p1, t), . . . ,W (pn, t)) is a vector, and Y is
the array [W (t, p1), . . . ,W (t, pn)] (the W (t, pi)’s are column vectors), both
obtained by deleting the rows and/or columns corresponding to the places
in P \ Pi;
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– M0(Pi) is obtained from m0 by deleting the entries corresponding to the
places in P \ Pi.

It is straightforward to check that the concurrent reachability graphs of N and
N ′ are isomorphic (when we apply the cds lmax policy, or ignore it, in both nets).
Conversely, one can transform any τkaff -net with localities into an equivalent k-
al-net and, trivially, each al-net is a |P |-al-net. Hence k-al-net synthesis can
be reduced to the following two synthesis problems for τkaff -net with localities.

Problem 1 (feasibility) Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transition
system, k be a positive integer, and ℓ be a locality mapping for T .
Provide necessary and sufficient conditions for T to be realised by some τkaff -net
with the locality mapping ℓ, i.e., T is isomorphic with the concurrent reachability
graph of the net executed under the cds lmax policy defined by ℓ.

Problem 2 (effective construction) Let T = 〈Q, 〈T 〉, δ, q0〉 be a finite step
transition system, k be a positive integer, and ℓ be a locality mapping for T .
Decide whether there is a finite τkaff -net with the locality mapping ℓ realising T .
Moreover, if the answer is positive construct such a net.

To address Problem 1, we define a τkaff -region of T as a pair:

〈σ : Q → N
k, η : T → N

k × (Nk+1)k〉 (4)

such that, for all q ∈ Q and α ∈ enbT (q),

η(α) ∈ enbτk

aff
(σ(q)) and ∆k

aff (σ(q), η(α)) = σ(δ(q, α)) ,

where η(α) =
∑

t∈T α(t) · η(t). Moreover, for every state q of Q, we denote by

enbT ,τk

aff
(q) the set of all steps α such that η(α) ∈ enbτk

aff
(σ(q)), for all τkaff -

regions 〈σ, η〉 of T (intuitively, in this case α is region enabled).
In the context of the synthesis problem, a τkaff -region represents a cluster

of places whose local states (in τkaff ) are consistent with the global states (in

T ). Then, to deliver a realisation of T , one needs to find enough3 τkaff -regions

to construct a τkaff -net with localities realising T (under the cds lmax policy).

The need for the existence of such τkaff -regions is dictated by the following two
regional axioms :

Axiom 1 (state separation) For any pair of states q 6= r of T , there is a
τkaff -region 〈σ, η〉 of T such that σ(q) 6= σ(r).

Axiom 2 (forward closure) For every state q of T , enbT (q) = enbT ,τk

aff
(q) \

cds lmax(enbT ,τk

aff
(q)).

3 We need here only a subset of all possible regions, called admissible regions in [9],
that act as ‘witnesses’ for the satisfaction of every instance of the regional axioms.
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The above axioms provide a full characterisation of realisable transition sys-
tems. The first axiom links the states of T with markings of the net to be
constructed, making sure that a difference between two states of T is reflected
in a different number of tokens held in the two markings of the net representing
the said states. The second axiom means that, for every state q and every step
α in 〈T 〉 \ enbT (q), we have that:

1. there is a τkaff -region 〈σ, η〉 of T such that η(α) /∈ enbτk

aff
(σ(q)) (the step α

is not region enabled), or
2. α ∈ cds lmax(enbT ,τk

aff
(q)) (the step α is not control enabled, meaning that it

is rejected by the cds lmax policy).

Note that when a τkaff -net with localities realises T , every cluster of places of the

net still determines a corresponding τkaff -region of the transition system, without
taking cds lmax into account.

For Problem 1, by suitably adapting the proofs developed in [15] for thewpo-
nets with localities, one can show that T can be realised by a τkaff -net (k ≥ 1)
executed under cds lmax iff Axioms 1 and 2 are satisfied.

To address Problem 2 using the feasibility result provided by the above state-
ment we need to find an effective representation of the τkaff -regions of T . Similarly
as in [14], one can define a system ST of equations and inequalities encoding the
conditions defining τkaff -regions. Then, all the non-negative integer solutions of

ST are in one-to-one correspondence with the τkaff -regions of T . Therefore, Ax-
ioms 1 and 2 can be checked using the solutions of ST .

In general, the (homogenous) system ST is quadratic. In practice, one might
often want to impose bounds on the allowed range of the whole-place coefficients
used in arc annotations. In such a case, Problem 2 has a solution since one can
replace ST by finitely many linear systems that can be dealt with using the
techniques developed for pt-nets that employ the results of [6]. One can also
consider modified versions of Problem 2, where there is no need to resort to
bounding the whole-place coefficients, and still obtain a solution, see, e.g., [14,
15].

5 Conclusions

In this paper, we extended the notions of τ -nets and τ -regions to the class of
affine nets. We also discussed how these two notions can be used to develop a
synthesis procedure for affine nets with locally maximal step semantics.

Among possible directions for future work, we single out two challenges. The
first is to investigate the relationship between the locality mapping and the
grouping of the places into clusters. The second is effective construction without
the locality mapping being given as input.
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1 Introduction

The scaling of CMOS technologies continues to enable each two years more and
more transistors to the ASIC designers and eventually application users. In the-
ory this would mean that the processing architectures could also exponentially
develop in the direction of further many-processor systems scaling. Nevertheless
there are significant issues which may disable such scenario with the current
(20 nm, 14 nm) and future (10 nm, 8 nm and beyond) technology nodes. The
power consumption which can be provided to the silicon unfortunately cannot
scale further. This leads to the phenomenon named as dark silicon [1]. As a
consequence, even if the increased number of available transistors is used to im-
plement additional processor cores, all available cores cannot be powered at the
same time, in order not to overload the thermal budget of the chip. Dark silicon
is potentially very significant issue, practically disabling further simple scaling
of homogenous processor architectures.

There are several consequences of dark silicon paradigm:

– The business as usual” strategy of scaled complex chips is not possible any-
more and novel architectures and strategies are required. The future designs
shell instead of parallel operation of many homogenous programmable pro-
cessing cores, rather use large number of dedicated co-processors which will
execute the dedicated tasks in a power-optimal manned only when needed
and during idle time stay unpowered [2].

– The advanced power reduction methods are becoming completely unavoid-
able. The use of power gating, dynamic frequency and voltage scaling and
even adaptive voltage scaling are the cornerstones of successful dark silicon
ASIC implementation.

– The applied methods/architectures need to be utilized in a dynamic adaptive
way, ensuring that the performance is available when applications needs it,
but that it can be dramatically reduced in case of inactive operation or it
can be utilized with additional robustness again when needed.
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– The intelligent power management is needed to utilize the rich processing
architectures and advanced power control mechanisms in an optimal and
reliable way.

Use of standard synchronous methodologies is quite challenging with dark
silicon limitation. Continuous clocking of the circuits adds increase to the power
budget and creates the need for extensive clock gating which comes with its own
overhead. Moreover the advanced power reduction methods, such as adaptive
voltage scaling and use of the circuits in Near-Threshold (NT) modes, becomes
to be very critical or suboptimal in synchronous systems due to the large on-
chip variability. One important alternative is the partial or intensive use of the
asynchronous logic in dark silicon systems.

2 Power Optimal Asynchronous Circuits

Asynchronous circuits are for many years proposed as low-power alternative
to the standard synchronous approach. The main difference between the syn-
chronous and asynchronous paradigm is that in the synchronous case there is
only one global control signal - clock, which is periodically active regardless
whether there is a need for processing in particular pipeline stage or not. In case
of asynchronous design, the local activity is there only if there is a valid con-
trol initiator (token) which activates the local pipelines. With this methodology
the dynamic power consumption could be significantly reduced compared to the
synchronous counterparts.

The limitations of asynchronous methods, namely complicated design and
purely developed test flow, disabled the pervasive use of the methodology for the
applications beyond the academic demonstrators and few industry examples.

In the recent years the novel asynchronous design methods have been pro-
posed, including the concept of desynchronization [3]. Desynchronization enables
the seamless conversion of arbitrary synchronous circuit into the bundled data
asynchronous design. Using such approaches it has been shown that the signif-
icant advantages of the asynchronous circuits in ultra-low power domains can
be obtained. In particular, according to [4], in near threshold regimes, due to
lack of the global timing and avoidance of worst case paradigm, 40% improved
power consumption can be achieved. This can be traded also for more per-
formance under the same power budget. Moreover, the novel aggressive fault
tolerant voltage scaling approaches on the asynchronous side, such as recently
proposed BLADE [5] show important improvements in comparison with state of
the art synchronous power saving architectures such as Bubble-RAZOR.

One of the most interesting concepts for power reduction using asynchronous
logic comes from the group of Prof. Alex Yakovlev at the University of Newcastle.
He introduces the term ”energy modulated computing” [6, 7], indicating the
ability of asynchronous logic to use the quant of the energy which is currently
available, i.e. to self-adjust the performance to the energy level which is currently
available. This concept has been utilized in the various valuable architectures
focused on ultra-low power usage in for example wireless sensor nodes [8].
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Based on the prior work, it has been shown that the asynchronous circuit
design methods are very effective for low-power applications in the scaled CMOS
world especially for the applications with extreme power reduction requirements,
such as Internet of Things (IoT). Nevertheless, the power requirements are not
important only to mobile and IoT applications. The high-performance computing
is also affected and dark silicon issues and causes the need to the radical paradigm
change. In this context there is a significant chance for the asynchronous logic
design methods to address dark silicon problems.

3 Asynchronous Design for Dark Silicon

In order to address the challenges imposed by the dark silicon issues the asyn-
chronous logic design could be effectively utilized in several ways.

The future architectural concept of dedicated, power-optimal and power-
controlled co-processor based design is much more suitable for the use of asyn-
chronous logic then the generic homogenous many-core processing which was a
main trend some years ago. The asynchronous co-processors could be effectively
power-controlled, they do not need the distribution of the clock source, and could
be fully event driven. Also utilization of the modern low-power techniques such
as adaptive voltage scaling and power gating can be seamlessly integrated in
the design of such co-processors. In general the concept of co-processor is based
on irregular activation of the dedicated accelerated hardware processing which
again in the event driven manner provides back the processed information. In its
nature this function is elastic and does not need exact global synchronization and
cycle based processing. Consequently, the use of the asynchronous logic seems
to be the natural choice. As an example, the recent study [9] has shown that
asynchronous co-processor for Elliptic Curve Cryptography (ECC) can reduce
the power consumption in comparison to the synchronous counterpart by 1/3.

Moreover, the use of asynchronous logic is in general beneficial for the oper-
ations in the ultra-low power regimes of the operations such as Near Threshold
Voltage Computing [4]. This can be additionally utilized in co-processor de-
sign in dark silicon chips to increase the performance and/or reduce the power
consumption. Since synchronous design style still has significant merits when
it comes to the high performance, due to the maturity of the design tools and
simpler control protocol, it is plausible to propose also the use of mixed-mode
synchronous-asynchronous logic, as illustrated in Fig. 1. In the context of dark
silicon the specific co-processors can be designed in such way that their pipelines
can be with control signal (Mode in Fig. 1) turn into asynchronous (bundled-
data) pipelines. This asynchronous mode of operation could be used in near
threshold voltage mode to further reduce the power consumption of the system.
In high-performance mode, the regular synchronous pipeline could be activated.
The overhead of this technique could be limited to the additional control gates
which can be in scaled technologies, with billions of gates available, tolerated in
many applications.
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Fig. 1. Standard synchronous pipeline (a), and mixed-mode synchronous-asynchronous
pipeline (b)

Finally, the inevitable part of the future dark silicon systems will be inter-
connects. The concepts of Networks of Chips have be proposed already many
years ago, but mainly driven from the academic research. In this context it has
been also shown that asynchronous logic can be utilized in much power effi-
cient way compared to the synchronous approach. The power consumption of
the asynchronous switches could be reduced by using asynchronous methods
from 45% up to 91%, respectively in active and idle operation phases, compared
with the clock gated synchronous design [10]. The industry standards (such as
AMBA AXI, OCP) and applications push the interconnect development more
into point-to-point link direction. However, in this case the use of the asyn-
chronous interconnects is even more natural and simpler than in the case of bus
or crossbar interconnect topologies. It is therefore reasonable to expect that in
dark silicon chips the role of asynchronous interconnects will be significant. The
power management of asynchronous blocks is simpler and more efficient then
in case of the synchronous design. In general the free voltage adaptation is al-
ways possible and the processing performance will be self-adjusted to the current
PVT (process, voltage, temperature) setting, without the need for PLL or simi-
lar blocks. Moreover, the blocks may have extremely fast event-based activation
which doesn’t require active clock being enabled all the time. Finally, there are
no additional obstacles in integrating power gating with asynchronous logic.

4 Conclusions

Dark silicon issues impose significant challenges to the design and architectures
of the future complex system-on-chip. In this paper it has been emphasized that
the asynchronous design methods could be utilized as effective design methods to
address the challenges of the dark silicon. Those design methods could be utilized
to in general improve the power budget of the system both at the component and
at the interconnect level. Moreover, such methods will enable more aggressive
voltage scaling techniques and utilization of near-threshold voltages. Finally, the
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event based computing is very suitable to the co-processor based architectures
which expect to be the main stream solution for the future dark silicon systems.
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Abstract. Triple modular redundancy (TMR) is a wide-spread tech-
nique for mitigating soft-errors in digital circuits. Replication of syn-
chronous circuits is often performed at gate-level, where a single clock
tree needs to be maintained and a specialised redundant implementa-
tion of the circuit is necessary. In case of replication at module-level
on the other hand, any non-redundant module implementation can be
easily triplicated without modification. The replicas can then be placed
at physically isolated locations on the die for optimal fault tolerance.
The drawback of this approach is that voting can only be performed at
the module outputs and extra effort is required to recover the internal
state of a compromised replica. In this paper we therefore present a scan
chain-based recovery mechanism, which allows for scrubbing the internal
state. The replicated modules do not need to be within a single clock
domain, albeit they are likely to operate with the same clock frequency.
Clock gating is used to compensate for run-time differences, whenever a
state recovery needs to be performed.

1 Introduction

Fault-tolerant circuit architectures are essential for applications that have high
reliability requirements and/or are exposed to harsh environmental conditions
such as radiation in space. In space electronics, e.g. a shift towards feature sizes
of 65 nm and below can be observed due to increasing processing demands. With
decreasing feature sizes, however, soft error rates due to radiation are increasing.
Furthermore, there is currently a large momentum for small-satellite platforms
that rely on inexpensive commercial-of-the-shelf (COTS) parts, which obviously
cannot offer the same radiation-hardness as space-grade semiconductor ICs.

All these trends demand for fault-tolerant solutions that can be implemented
at architectural level. Triple-modular redundancy is a widely used technique to
improve circuit reliability. Replication can be done at gate level, where individual
gates and flip-flops are triplicated (fine-grained TMR), or by replicating entire
modules, where each module instance is effectively an unchanged copy of the non-
redundant circuit implementation (coarse-grained TMR). Both solutions have
their upsides and downsides and depending on the specific application needs
one might match better than the other. Fine-grained TMR requires EDA tools
to perform the desired replication and to insert voters that mask errors after
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flip-flops. Due to these voters SEUs in flip-flops cannot spread within the circuit
and are recovered in the next clock cycle that overwrites the affected flip-flop.
This obviously requires that the entire replicated circuit belongs to a single clock
domain with one common clock tree, which remains a single point of failure. The
use of voters inside a fine-grained TMR circuit increases the complexity of the
interconnect and thereby has direct implications on the physical implementation
of the modular redundant circuit. Limited routing capacities and strict timing
constraints enforce a compact circuit layout, where replicated components have
to be placed in close proximity. This might reduce the reliability of the resulting
system, especially if multiple-bit upsets have to be considered.

Coarse-grained or module-level replication on the other hand can be done
manually by the RTL designer, simply by instantiating the reliability-critical
modules threefold and by implementing voting functions for the module out-
puts. As the replicated modules are not internally connected via voters, physical
separation is possible, minimising the probability of spatial proximity faults [1].
Furthermore, the circuit layout of the replicas can remain identical to a non-
redundant implementation avoiding any timing penalties that might occur due
to the increased routing complexity of a fine-grained solution. The disadvantage
of a coarse-grained setup, however, is the fact that SEU in flip-flops are not
implicitly scrubbed, since voting is only performed outside the modules. A sin-
gle upset thus might quickly poison the state of other flip-flops in the affected
module replica, whose outputs might then become fully inconsistent to the re-
maining two healthy replicas. In this situation the failure probability is twice as
high compared to a non-redundant system, since a soft error in one of the two
healthy modules will cause a system failure. Therefore, a recovery mechanism is
required that quickly brings a faulty module replica back to a correct and con-
sistent state. In this paper we want to discuss the concept for such a recovery
mechanism.

2 Related Work

In [2] Yu et.al. presented a roll-forward mechanism to improve the reliability of
TMR circuits. They propose a state restoration scheme where faulty registers
are overwritten with the data values provided by correct registers. Like in our
solution recovery is performed at predetermined checkpoints.

Ebrahimi et.al. [3] employ a voting mechanism to detect faults at the out-
puts of triplicated components. If an error is detected, the recovery process is
triggered. Like in our solution register scan chains are used to recover a faulty
state. In [4] the same authors propose an extension of their previous work to
recover from multiple transient faults in one or two replicas.

In [5, 6] we have already introduced a scan-chain based recovery mechanism
for TMR modules in GALS systems. In such a system the entire module commu-
nication is performed over asynchronous interfaces. Synchronization is performed
with stoppable clock generators built from on-chip ring oscillators. These clock
generators are also used to stall the module operation during the recovery pro-
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cess, i.e. they fulfil the same purpose as the clock gating mechanism in this paper.
However, the design of robust ring oscillators with low jitter also constitutes a
major challenge for practical circuit implementations.

3 Concept

Integrated circuits are typically composed of several modules or IP cores, which
are performing various tasks needed for the operation of the chip. They usually
communicate over standardised bus systems or a network on chip (NoC). When
replicating a critical module there are two alternatives how the module copies
can be connected to the bus/NoC: 1) Via a single bus interface or NoC link,
where a voter protects the system against faulty accesses to the interconnection
network, or 2) via individual, independent interfaces, where each copy can di-
rectly provide output data for other components of the system. In first approach
failures of a single module copy will remain completely transparent to the rest
of the system, whereas in the second solution components that process output
data of the triplicated modules need to acquire all the redundant outputs and
perform voting themselves. The benefit of the latter approach, however, is that
maximum independence of the replicated modules can be achieved. The chip
designer can place them anywhere on the die, e.g. in different corners of an NoC
mesh. Figure 1 illustrates this idea for an NoC-based chip architecture. Note that
the redundant modules do not necessarily need to be in a single clock domain,
since they do not exchange data directly. In a mesochronous NoC [7], e.g. each
module would likely be operated with the same clock frequency but their clock
signals could have an arbitrary (constant) phase offset.

Module
Copy 1

Module
Copy 2

Module
Copy 3

(a) NoC-based chip architecture.

Recovery Controller

SE

Module
Copy [1−3]

SOSI

fclk

Bus IF / 
NoC link

(b) Module with recovery controller.

Fig. 1. Coarse-grained TMR concept.

To support the required recovery process we need a mechanism to access state
information and exchange it among the replicas. In [5] we therefore proposed to
use a scan-chain based approach to tackle this problem. Scan chains provide a
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simple mechanism to access the state of a module’s flip-flops, both for reading
and writing their stored values. Considering that scan chains are available any-
way in most ASIC designs for testability reasons, they provide an area-neutral
means to perform state recovery. All we need are recovery controllers, one for
each replicated module, which perform a readout of their module’s scan chain,
exchange data with the other replicas and perform majority voting on these data
bit by bit and shift the voting results back into the scan chain. Obviously, this
process can only be executed when the redundant modules have the exact same
state, at least for the flip-flops that store data relevant for the execution after
the recovery. Also the recovery controller needs to be in a single clock domain
with the module it is associated to.

The data exchange can be done by re-using the module’s local link to the
system bus or NoC. Depending on the link width a certain number of bits can
be read from the scan chain and then transmitted. Concurrently, the recovery
controller waits for the same data chunk to arrive from the other replicas. This
could take a few clock cycles since the replicated modules are likely to experience
a different number of wait cycles when accessing a shared bus or a network-on-
chip with other communicating nodes (note that the replicated modules could
already be off by some cycles due to different timing of I/O operations during the
regular execution). While a recovery controller waits for incoming state recovery
data, clock gating can be used to stall the scan-chain operation.

Attention has to be paid to the fact that the recovery controllers themselves
might be affected by SEUs. A recovery controller could deadlock or become
inconsistent to the other controllers and therefore not join the recovery process
at the time it is supposed to. Since the other controllers wait for data (while
gating the clock), the healthy module replicas would get stuck. To avoid this a
watchdog timer can be implemented in every recovery controller, which detects
such a deadlock situation. If a timeout happens in the middle of the recovery
process, the healthy controllers can abort the recovery and finish the scan and
shift back operation locally without voting. This brings the healthy replicas back
into a state where they can go on with their regular operation.

To recover a deadlocked or inconsistent recovery controller – a necessary ac-
tion to bring the TMR ensemble back to a fully functional state – a mechanism
needs to be implemented for the healthy controllers to force their erroneous coun-
terpart into the recovery operation. This can be done with a control signal that is
asserted by every (functional) recovery controller at the beginning of the recov-
ery process and is routed to the other redundant controllers. Consider this signal
to be a recovery request, which is mutually exchanged among the controllers. By
voting over local and remote request signals, every controller can determine, if
the majority of controllers wants to start the recovery. This information activates
another timeout-controlled circuit, which drives the recovery controller’s state
machine into recovery mode when it fails to do so on its own before the timeout
occurs. The replicated recovery controllers therefore form a TMR system them-
selves. Note that the recovery request signals are mesochronous inputs and have
to be synchronized to the clock domain of the receiving controller. Furthermore,
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timeout values need to be carefully selected in order for this mechanism to work.
For details the interested reader is referred to [6].

4 Conclusion

In this paper we presented the concept of a coarse-grained TMR implementation.
Replicated modules provide their outputs to other modules over a bus system or
NoC. The replicas do not need to be synchronized to each other and therefore
can be implemented independently with no physical constraints on their location
on the die. The state recovery with scan-chains does not add extra circuits to
the modules and the recovery controllers are simple state machines, which would
have a very small area footprint.
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Where the Light is Coming From 

Terrence Mak 
terrencemak@gmail.com 

 
Abstract - Newcastle upon Tyne, is a place where my academic career started and is a 
place that I met my teacher, mentor and friend – Prof. Alex Yakovlev. It was a cold 
day with plenty of snow covering all the pieces of stones in the college. People who 
live here are calling themselves Geordies and saying “Aye” instead of “Yes”. It is also 
a place as the guardian for England with the famous Hadrian wall. Strong, ancient but 
tough castles can be easily found all along the seaside to defend England from intrud-
ers. That was the time when I was almost finished my PhD at Imperial College Lon-
don. When all my colleagues started to look for jobs in London or looking for aca-
demic positions back to their home countries, Prof Alex Yakovlev offered me a lec-
tureship at Newcastle University and that was the beginning of my career as a Lectur-
er. “Terrence, are you interested to join us?” Alex asked with an enthusiastic smile. 

1 Alex as a Teacher 

“Terrence, this is Ra’ed, one of my PhD student. I let you two to have chat,” This 
is the first week when I joint Newcastle. I was struggling where to look for PhD stu-
dents and where to looking for research assistants. Ra’ed was a guy with Moustache 
and a bit like Zappa. Not too sure about his age but plenty of smile and can speak 
fluent English. He began by explaining where he was coming from and what was his 
research.  

 
It was not easy at all to initiate and maintain a good motivation throughout the 

PhD, and it was even more difficult to direct the student into a research area that was 
rough and unclear. However, there was a strange connection between myself, Alex 
and Ra’ed. The efficiency between myself and Ra’ed was like the speed of light and 
we began to work out what problems to tackle, to use what kind of tools and tech-
niques. Ra’ed was quickly identified the research topics. One special highlight was 
that both the descriptions and illustration of research, and drawing and sketching of 
figures from Ra’ed were totally professional, given the fact that he was at his first 
year PhD. Especially, he could draw a figure using five to six different colours, in 
order to make sure everybody knew what he was talking about.  

 
Only within six months, we finished a conference paper submission. Sooner, the 

great news came back and his paper had been accepted at the DATE’11 (one of the 
most prestigious conference in the world) and, later on, the paper was awarded the 
Best Paper Award 2011 in the conference. Need to spell out that this conference had 
at least 800 submissions and only one paper could obtain this award. Not only a de-
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lightful smile was given by Ra’ed, I began to enjoy working with the inspirational 
teacher, Alex. 

  

Fig. 1. (Left) Both Alex and myself were receiving the Best paper award at DATE’2012. 
(Right) Ammar, Ra’ed, Alex and myself are visiting Vancouver to attend the networks-on-chip 
architecture conference in 2013. Yet, we were visiting the famous forrest in Vancouver. 

Later on, we had received multiple awards including one highlight, which was called 
the 2015 IET Computer & Digital Techniques Premium Award. This is a really out-
standing award and only one journal paper is selected each year in this top-in-the-field 
magazine. This prize was based on an IET publication together with our co-supervise 
student, Dr Nizar Dahir, who was a PhD student and was also co-supervised with with 
Alex. Together with Alex, we have more than eight PhD students graduated and they 
are all now working at different exciting places in the world. 

2 Alex as a learner 

“I am learning,” said by Alex. At a quarter past three, if you go to the tea room at 
level 3 of the Electrical and Electronic Engineering Building, you will find Alex who 
is there and talking to students, col-
leagues and may be the waitresses. 
The tea room in the building is the 
discussion hotspot. Especially in the 
afternoon, no one would miss the 
time to go there and have a chat. 
Alex is one of the usual customer. 
“If we can provide an architecture as 
3-dimensional structure and spinning 
like a spiral, the energy saving will 
be tremendous, yet …”, a group of 
students were holding their drinks 
and listening to Alex. In fact, that tea 
room at level 3 is a scientific and 
engineering meeting place.  

Fig. 2. “Shall we go for a tea?” Alex asked. “Of 
course, it is time to discuss.” I replied. 
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We discussed a lot and, most of the time, the discussion was not only limited by 

our research. Diversity from different area and discussion on different religions were 
in our discussions. Drinking an afternoon tea at level 3, you wouldn’t miss the politi-
cal or even spiritual view from Alex. Commentary on various political groups and 
leaders in the history were even more fascinating. You could certainly obtain a feeling 
based on the thought and perspective from Alex. But the most appreciated character 
that naturally speared with Alex is his inclusiveness. His students are with different 
ages, from different countries, having different religions and especially with various 
characters.  
 

Alex said, “My students are my teachers and I can learn a lot from them”. Alex is 
truly a model of researcher, a teacher and a sincere friend. 

3 The most important is 
Happiness 

“The most important thing is happiness. 
Happiness is the bridge between you and 
your friends, is the mirror of your success 
and is synchronous to your awards and 
asynchronous to your learning and experi-
ences”, Alex said in his 60’s birthday party. 
We all congratulated Alex’s birthday and 
make unstoppable clapping that evening. 
Happiness might be something that you are 
looking for. But to Alex, happiness was 
naturally rooted in his blood and illuminat-
ing in his face. It is not only the emotion, 
but a strong character or even a naturally 
instinct to interact with people. This is the 
most respectful character to learn from 
experiences. Because, happiness is the 
reward to someone who never stop learn-
ing. This is Alex is my mentor, my teacher 
and is my very good friend as well. 

 

 

Fig. 3. With the same hat and jacket, I can 
sense the power of happiness from Alex. 
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Reassessing the causes of 
asynchronous systems performance 

Alain J. Martin 
California Institute of Technology 

Abstract. In the course of the past 25 years of research in asynchronous VLSI, 
several complex systems, mainly microprocessors, have been designed and suc-
cessfully fabricated to demonstrate the proposed technology. 

Most prototypes have displayed a set of unique advantages. Some ad-
vantages, such as improved robustness to parameter variations, can be directly 
attributed to the quasi delay-insensitivity of circuits without clocks. But the re-
markable performance of some large asynchronous chips in the combined space 
of speed and power has been offset by the mediocre behavior of some other 
comparable asynchronous prototypes. This suggests that some other factor may 
be at play.   

The question raised here is the following. What if the good performance of 
complex asynchronous systems were not due to the absence of a clock? 

 
 

Having been for many years an ardent proponent of asynchronous logic, I will 
happily slip into the role of the iconoclast and propose that the excellent performance 
of several asynchronous systems may not be (mainly) due to asynchrony (the absence 
of clock). 

 
My argument concerns the design of at least moderately complex systems, typical-

ly a microprocessor. (I am not talking about single components such as a FIFO or an 
adder.) A sufficient number of such complete asynchronous systems have now been 
produced, and we can draw some conclusions. I will use as examples the projects I 
know best: the asynchronous systems developed at Caltech between 1988 and today. 
Other labs have produced asynchronous prototypes following an essentially similar 
approach: the Cornell asynchronous microcontrollers, the Grenoble ASPRO series, 
and the Fulcrum switches are the closest in design style. 

 
What characterizes those approaches is a systematic top-down synthesis starting 

from a simple and, in principle, easily verifiable version of the device. I will call this 
approach “ab initio”, because no attempt should be made at the start to guess the final 
structure of the design. Rather, starting from this simple initial version, the final struc-
ture is reached through a sequence of semantic-preserving transformations. The goal 
of the transformations is usually to increase concurrency (pipeline depth, for example) 
and at the same time to replace large monolithic components with a number of small-
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er and smaller ones. In the end, each component has a standard, easily implementable 
structure. This first set of transformations is not part of the compiling phase. The 
source and result of a transformation are in the same formalism. At Caltech, this for-
malism is the programming language CHP. It is only at the end of this first phase, 
when all components are of the appropriate size and the decomposition is expected to 
deliver the target performance, that the second phase, which can be called compila-
tion, transforms each CHP component into an asynchronous circuit. 

 
The quality of the formalism (CHP, for example) is crucial to the method, as it 

must allow an algebraic style of manipulations of the representation of the system, 
and it requires us to look at a programming language not so much as a “description 
language,” but rather as a formal notation.   

 
Other formalisms, such as Petri Nets or STG (“signal transition graphs”) have been 

used with success as well. Their graph-base model gives them a flexibility that lan-
guage-based models sometimes miss. My personal reticence with such tools is that 
they do not scale well with the size of the systems to be represented. Who can give 
me the Petri Net or STG describing a complete microprocessor? 

 
All systems engineered following this general approach have produced excellent 

results in terms of energy efficiency, robustness to parameter variations, combined 
energy and delay performance. All were functioning correctly on first silicon, often 
over a wide range of power supplies, including sub-threshold. Other groups using a 
similar approach have reported similarly good results. 

 
But several asynchronous systems developments have followed a different ap-

proach. Whereas the final implementation of the components as asynchronous circuits 
followed a method essentially similar to the first one, the overall system decomposi-
tion was quite different. The starting point was usually a pre-existing synchronous 
architecture – or at least a standard, generic, synchronous pipeline. Without mention-
ing specific cases, the general observation is that asynchronous systems developed 
along this path often produced unremarkable results, not better and sometimes worse 
than their synchronous counterpart – except where it concerns attributes specific to 
asynchrony, such as robustness to parameter variations. 

 
The discrepancy between the two methods has been a surprise to me, as it should 

be to all those interested in the technology. Once, a proponent of the second approach 
was so surprised by the results claimed for the Caltech MiniMIPS (an asynchronous 
version of a MIPS R3000 microprocessor) that he suggested at an NSF meeting that 
the performance figures we reported could absolutely not be true, and must be fraudu-
lent… 

 
So what may be causing the performance gap between the two approaches? Both 

use asynchronous logic as circuit implementation, albeit with some significant differ-
ences: the circuits of the ab-initio approach are usually of the QDI flavor, whereas the 
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circuits of the second approach are usually not. But that difference is not significant 
enough to explain the discrepancy. So if the excellent performances of the ab-initio 
approach are not due to asynchrony, they may be the result of the drastically different 
system-level design. 

 
At the system level, the main design issue is complexity – and, in particular, in the 

case of a modern microprocessor, complexity due to intricate concurrency and com-
munication, which are crucial to achieving any kind of performance. In a traditional 
approach, the engineer confronted with this complexity has only one safe way out: to 
stick as closely as is possible to what he or she already knows might work. In the 
absence of a correct-by-construction method, drastically new explorations of alterna-
tive solutions are too risky and too time consuming.  

 
In the ab-initio approach, many (possibly all) alternative solutions can be generated 

with the emboldening knowledge that they are all correct. A thorough exploration of 
the solution space is achievable by the algebraic manipulation of an abstract object (a 
CHP program) that is a correct representation of the complete design. Certainly, asyn-
chrony greatly facilitates the application of this synthesis method by postponing deal-
ing with the physical issues as long as possible. 

 
Another argument is that, by positioning the high-level design squarely within the 

realm of distributed computing, all the tools (program constructs, proof methods) and 
techniques of concurrency can be brought to bear on the problem with much better 
results than those achieved by traditional HDLs.  

 
In the end, it is conceivable that asynchrony is mainly a powerful enabler for a 

concurrency-based approach to digital system design – and that this approach itself 
represents a fundamental paradigm shift from traditional methods. 
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Abstract. Another attempt to apply BDD-like structures to build dig-
ital systems. The close relationship of BDDs with elementary schemes
of computational algorithms is used. A simple conceptual option for de-
composition of asynchronous computational processes on sub-machines
with BDD-like structure is seen in several examples.

Keywords: binary decision diagrams, asynchronous circuits

1 Introduction

An important property of Binary Decision Diagrams (BDD) is their ability to
canonically and compactly represent Boolean functions, which is attractive in
digital circuit design, and in some cases makes BDDs preferable to other rep-
resentations [1]. A lot of research has been dedicated to the use of BDDs for
synthesis and analysis of circuits in different technologies [2–4]. BDDs were typ-
ically used for implementing the combinational part of control automata in an
‘orthogonal way’ that came both with benefits, such as testability and race free-
dom, as well as drawbacks, such as the requirement for separate descriptions of
the control and operational parts of the system, and, perhaps more importantly,
the sequentiality of described processes. The sequentiality was caused by the
fact that a single BDD could only represent a single Boolean function, which
forced the designer to decompose the combinational part of control into a set of
independently synthesised components that could not be used simultaneously.

In this work we use BDD-like diagrams for the compact representation of
concurrent computations. Thanks to the orthogonality of obtained descriptions,
it is possible to directly map them into efficient asynchronous controllers of large
computation systems. We show that the size of such descriptions significantly
depends on the decomposition between the control and operational parts of the
system.

Section 2 demonstrates a correspondence between BDDs and simple logic
computations on an example. To emphasise the correspondence we show how
BDDs can be converted to Orthogonal Canonical Parameterised Computation
Graphs (OCPCGs) that inherit orthogonality and canonicity – the two key prop-
erties of BDDs. We then discuss OCPCG-based control descriptions and show
how they can be translated to Petri Nets. The rest of the section is dedicated to
graph decomposition, concurrency and synchronisation issues.
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Section 3 discusses ways of reducing the size of OCPCG descriptions by re-
stricting the labellings of their elements. We use several examples to show how
the size and properties of OCPCGs describing the control part of a system de-
pend on the properties of its operational part, and study restrictions on OCPCG
labellings that preserve the canonicity.

Section 4 concludes the paper with an example of using OCPCGs in the
implementation of the control part of a 5-bit multiplier. It is known that the
corresponding Boolean functions cannot be compactly represented by BDDs,
however we show that OCPCGs admit a simple reformulation of this problem
leading to significant savings in terms of the size of the obtained representations.

2 BDDs and logic computations

Consider a BDD in Fig. 1 describing a Boolean function y = F (x1, x2, x3, x4, x5)
whose truth table is shown in Tab. 1. The terminal nodes 0 and 1 at the bottom
of the BDD correspond to the value that the function has on a particular set
of input variables. This diagram can also be thought of as a control part of a
system, whose task is to execute a particular operation under the condition y = 1
and skip it when y = 0.

Fig. 1: BDD corresponding to the function from Tab. 1.

Let us modify the diagram in Fig. 1 by labelling the arcs leading to the two
terminals by 0 and 1 according to their targets (0 labels may also be omitted
on diagrams, as one can always infer them from remaining 1 labels). We then
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x1 x2 x3 x4 x5 y x1 x2 x3 x4 x5 y x1 x2 x3 x4 x5 y x1 x2 x3 x4 x5 y

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0
0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1
0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1
0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0
0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1
0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0

Table 1: Truth table of a Boolean function of 5 variables.

merge the terminals into a new node end, and add another node begin at the top
of the diagram for symmetry. See the result in Fig. 2.

Fig. 2: A computation graph derived from the BDD in Fig. 1.

The newly added nodes begin and end have a different semantics from that
of terminals 0 and 1 in BDDs: instead of denoting the final computed value,
they simply indicate the start and end of a computation process. Note that
the resulting computation graph in Fig. 2 may be local, that is, it may be a
(sequential) part of a larger computation system, which may contain concurrency
and/or cycles, as illustrated in Fig. 3.

All nodes of a computation graph can take part in the computation, similar
to Petri Nets. As an example, we can place a token in the begin node, that
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Fig. 3: A cyclic computation graph comprised of local processes.

will then travel along the arcs of the graph following the local routing decisions
made in individual nodes according to the values of input variables. Each arc
could in fact correspond to a Petri Net that consumes a single token from a
node, performs a computation process according to usual Petri Net rules, and
then signals about the completion by releasing the token to the next node. In
fact, the whole computation graph can be modelled by a Petri Net if we create
suitable Petri Net fragments corresponding to individual computation nodes,
e.g. as shown in Fig. 4.

Fig. 4: An example fragment Petri Net.
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3 Labellings

Let us come back to the graph in Fig. 2. The upper half of the graph is dedicated
to the computation of the necessary logic conditions that are used by the lower
half of the graph for actually executing the action associated with y = 1. The
complexity of the computation part eventually determines the complexity of the
hardware that implements it. It is well-known that BDDs often lead to overly
complex circuits when used directly to implement logic computations, compared
to conventional logic synthesis. However, one can consider alternative ways of
labelling the elements of the computation graph in Fig. 2, which can lead to a
reduction in the number of its vertices and therefore in a lower complexity of
the resulting hardware.

As an example, let us change the semantics of the labels in our computation
graph. The label of 1 will now correspond to adding 1 to the current value of y
modulo 2, that is, y ← y⊕ 1. The label of 0 will correspond to y ← y⊕ 0, which
is essentially a no-op. With this approach, one can imagine the token to start
in the node begin with the initial value y = 0, and travel along the arcs of the
graph, undergoing the transformations corresponding to the labels on route to
the destination node end. When the token reaches end, the value of y becomes
the final outcome of the computation. There may be several equivalent labellings
that compute the same Boolean function. Fig. 5 gives an example of a labelling
that is equivalent to the one shown in Fig. 2.

Fig. 5: An equivalent labelling of the graph from Fig. 2.
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The existence of equivalent labellings means that our new computation
graphs lost an important property inherited from BDDs – the canonicity of
the representation of Boolean functions. Fortunately, it is possible to recover it.

Indeed, there are certain rules we can follow to relabel a computation graph
in order to bring it back to a canonical form. For example, consider an arbitrary
node xn with arcs labelled a, b, c and d, as shown in Fig. 6(left).

Fig. 6: Equivalent relabelling.

Let us try to change the label a to g. Labels b, c and d may need to be
changed too in order to preserve the equivalence. To find out admissible new
labels b′, c′ and d′ we can solve the following system of equations:



















g ⊕ c′ = a⊕ c,

g ⊕ d′ = a⊕ d,

b′ ⊕ c′ = b⊕ c,

b′ ⊕ d′ = b⊕ d.

(1)

The equations above use modulo 2 addition ⊕, but in general any additive
group can be used. If the set of labels does not form an additive group with
respect to the chosen addition operator, then the resulting system of equations
may have no solutions or multiple solutions, therefore limiting the freedom of
graph relabelling and/or making the derivation of a canonical labelling more
challenging. On the other hand, if the system of equations is guaranteed to
always have a unique solution, as in the case of (1), then one can fix the label
of a particular arc, e.g. fix the xn = 0 branch to always have label 0, leading to
a canonical labelling of the computation graph.

Once a canonical relabelling is performed, one can reduce the resulting graph
by merging equivalent nodes, similar to the reduction of BDDs. Fig. 5 shows two
pairs of equivalent nodes by dashed arrows; after merging them we obtain the
reduced computation graph shown in Fig. 7.

The system of equations of the form (1) will be analogous for any addi-
tive group, including non-commutative ones, such as real or complex numbers,
vectors, matrices, etc. The issue of commutativity in this context is related to
concurrency. Indeed, if the labels do not commute then the computation order is
important and the graph corresponds to a sequential computation process. On
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Fig. 7: Reduced computation graph from Fig. 5.

the other hand, if labels commute, e.g. a + b = b + a, then the order in which
a and b are performed does not matter and they may be performed concur-
rently. Most real systems are mixed and involve both sequential and concurrent
computations, which can be represented by general models such as Petri Nets.
The following example illustrates how commutative labels can also be used for
finding further reduction opportunities in computation graphs.

Let us remove the node conditions xn from the graph in Fig. 7 and place
them on the incoming arcs instead, as shown in Fig. 8. In other words, nodes no
longer contain any conditions, and the latter actually become arc labels, which
means variable comparisons are now performed while travelling along arcs. We
therefore have a new set of arc labels {x1, x2, ...} that do not interact in any way
with existing labels {0, 1}, and therefore commute with them. However, we can
no longer relabel arcs as described above, because we have not yet defined the
group operation that acts on the new labels. Despite this, we can already identify
new equivalent nodes that can be merged, as indicated by dashed arrows. The
graph obtained by merging these nodes is shown in Fig. 9.

Let us refer to the new labels {x1, x2, ...} as condition labels. Can we move
these labels from one arc to another? Yes, we can! Below we give one possible
relabelling method, which is not as simple as we would like, but does provide
further intuition into labelled computation graphs.

Let us keep all condition labels in a queue, which is initially empty, and
supports two operations: i) extracting a label at the front of the queue, ii) adding
a new label to the queue, either combining it an with existing label corresponding
to the same control variable (using a group operation defined below), or adding
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Fig. 8: Moving conditions from nodes to arcs.

Fig. 9: Reducing the graph in Fig. 8.

it to the back of the queue if it is the first occurrence of the variable in the queue.
Note that labels corresponding to different variables do not interact with each
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other, therefore it is sufficient to define an operation only on labels corresponding
the the same variable.

Let x stand for a control variable. Then we can define a group operation +
for combining labels corresponding to this variable according to Tab. 2. This is
an infinite commutative group.

+ 0 x −x 2 · x −2 · x . . .

0 0 x −x 2 · x −2 · x . . .

x x 2 · x 0 3 · x −x . . .

−x −x 0 −2 · x x −3 · x . . .

2 · x 2 · x 3 · x x 4 · x 0 . . .

−2 · x −2 · x −x −3 · x 0 −4 · x . . .

. . . . . . . . . . . . . . . . . . . . .

Table 2: Combining condition labels corresponding to variable x

Label x in this group means: apply x as the branching condition at the current
node. Label 2 · x (here the dot is not a group operation, it simply denotes the
multiplicity of the label) means: apply x as the branching condition at the current
node as well as the next node. Label −x means: skip x and use the next label in
the queue as the branching condition. This is a complex rule and will likely incur
significant hardware cost in the implementation. Furthermore, to further reduce
the size of the computation graph it may be necessary to allow multiple labels
on each arc in the graph, which is also costly. Nevertheless, this approach may
be practically beneficial for certain applications, where the aim is to minimise
the number of branches. The graph obtained by labelling arcs using the group
operations in Tab. 2 and its reduced variant are shown in Fig. 10.

To obtain the graph shown in Fig. 10(left) we use the following relabelling
approach. Our end goal is to have 0 labels on all false arcs of the graph. To
achieve that we first move variable x1 to the topmost arc. We then remove
label x2 from the subsequent false arc by subtracting x2 from both outgoing
branches, and adding x2 to the incoming arcs. This procedure is then repeated
for all occurrences of x3, until all false arcs are free from it, and so forth.

Let us now demonstrate how the resulting graph can be used for computation.
Consider variable assignment 11010 (x1 corresponds to the leftmost bit). Starting
at the arc leaving node begin, we extract the first element from the queue and
since x1 = 1 we follow the true arc of the subsequent node of the graph (see
Fig. 10b). The arc holds two labels: the first one tells us that we need to update
the value of y by adding 1 to it: y ← y ⊕ 1 = 0 ⊕ 1 = 1, the second one tells
us that condition variable x4 will have to be skipped, therefore we erase it from
the queue and proceed. These two markers do not interact and hence commute.
Once both of them are handled, we arrive at the next node (denoted as 3 in
Fig. 10b), and the next variable in the queue that we check is x2. Since x2 = 1
we travel along the arc leading to node 4, updating y ← y ⊕ 1 = 1 ⊕ 1 = 0
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(a) Initial transformation. (b) Reduced graph.

Fig. 10: Graph Fig. 9 transformed using condition labels.

again and adding x5 to the back of the control label queue. The next variable to
check is x3 = 0, hence we follow the false arc, which contains label 0 only (as a
consequence of our relabelling algorithm). We do nothing and now check x5 = 0
(remember, we erased x4 from the queue), which leads us directly to node end,
where we report the computation outcome: y = 0 (upon checking Tab. 1 we see
that this is the correct value).

3.1 Labellings with two operations

The use of independent (commutative) labels allows us to model a system of
Boolean functions with a single computation graph. However, the more inde-
pendent labels we can have on an arc and the more different values a single label
can take, the fewer opportunities for graph reduction will be available, because
the number of ‘unmergeable’ nodes grows. As we have seen in the previous sub-
section, by introducing a richer algebraic structure to labels sometimes allows us
to find new opportunities for graph reductions without sacrificing the canonicity
of the representation. We can take this idea further, and consider labels that
form richer algebraic structures with two operations, that still guarantee unique
solutions to the system of equations arising in the process of graph relabelling.
For finite sets of labels such algebras are Galois fields; for infinite sets – division
rings.

An algebraic structure with two operations is a powerful tool for graph rela-
belling. We can associate pairs of labels with an arc of a computation graph: one
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for the additive component, and another for the multiplicative one. The additive
component is added to the labels reachable during the computation, while the
multiplicative one is multiplied by them.

The relabelling process is arranged in two stages. In the first stage we asso-
ciate additive labels with all arcs making sure that false arcs contain 0 values
(as before). In the second stage, we add multiplicative labels to all arcs except
for those pointing to node end. We then normalise the pairs so that false arcs
contain exactly the pair (0, 1), the additive zero and the multiplicative identity.

Let us clarify the above using an example of a system of four Boolean func-
tions of four input variables x1..x4 describing a 2-bit binary multiplier. Tab. 3
shows the truth table for all four functions y1..y4 of the multiplier.

x1 x2 x3 x4 y1 y2 y3 y4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

Table 3: Truth table of a 2-bit binary multiplier

Let us use 4-bit labels with addition + being component-wise addition mod-
ulo 2, and multiplication ∗ defined modulo an irreducible polynomial e4 + e+ I
where e = 0010 is the generator. Below are all 24 = 16 labels of the resulting
algebraic structure:

– e = 0010 – the generator,
– e2 = 0100,
– e3 = 1000,
– e4 = e+ I = 0011,
– e5 = e2 + e = 0110,
– e6 = e3 + e2 = 1100,
– e7 = e3 + e+ I = 1011,
– e8 = e2 + I = 0101,
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– e9 = e3 + e = 1010,
– e10 = e2 + e+ I = 0111,
– e11 = e3 + e2 + e = 1110,
– e12 = e3 + e2 + e+ I = 1111,
– e13 = e3 + e2 + I = 1101,
– e14 = e3 + I = 1001,
– e15 = I = 0001 – the identity element,
– ∅ = 0000 – the zero element.

As the first step we build a computation graph according to the specification
given in Tab. 3 using only additive labelling, that is using only the modulo 2
addition operation for combining labels along computation paths. The resulting
graph is shown in Fig. 11.

Fig. 11: Additive labelling.

There are no pairs of equivalent nodes, hence the obtained graph cannot
be reduced. However, we can now relabel the graph using the multiplication
operation, by factoring out common factors from outgoing arcs and moving them
up to the incoming arcs in a canonical manner. After applying the relabelling to
the lower layer of the graph we obtain a new graph shown in Fig. 12. We explain
the used notation for new labels below.

We use so-called Polish prefix notation for compact representation of the
effect (function) that additive and multiplicative labels have on values travelling
along arcs. For example, label +∅ ∗ I should be interpreted as y ← ∅ + I ∗ y,
where y represents the current value of the computation, just as in the examples
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Fig. 12: Multiplicative labelling of the lower layer of the graph in Fig. 11.

before. The use of Polish notation allows us to avoid parentheses on the arcs
of the graph. Alternatively, one can use lambda calculus for a more general and
familiar (yet somewhat more verbose) representation.

Let us now define the relabelling rule using the properties of addition and
multiplication of our Galois field. As before, consider a node xn with incoming
and outgoing arcs as shown in Fig. 13. If we would like to relabel the graph by
changing a to g, how do we need to change the other labels?

Fig. 13: Relabelling with two operations.
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The following four equations need to be satisfied:



















c+ x ∗ g = c+ a ∗m,

d+ y ∗ g = d+ a ∗ n,

c+ x ∗ b′ = c+ b ∗m,

d+ y ∗ b′ = d+ b ∗ n.

(2)

Unique solutions of (2) have the following form:











x = g−1 ∗ a ∗m,

y = g−1 ∗ a ∗ n,

b′ = g ∗ a−1 ∗ b.

(3)

Using the obtained solution we can complete the relabelling procedure of the
lower layer of our example graph, as shown in Fig. 14.

Fig. 14: Canonical relabelling of the lower layer of the graph in Fig. 12.

After the canonical relabelling all nodes of the lower layer become equivalent
and can therefore be merged as shown in Fig. 15.

We continue the process by relabelling the previous (third) layer, leading the
graph shown in Fig. 16 containing two new equivalent nodes that will further be
merged. By proceeding analogously we complete the graph relabelling obtaining
the graph shown in Fig. 17.

How do we use the obtained computation graph? We start at the node begin

and traverse the graph according to the values of conditions x1..x4 until we reach
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Fig. 15: Merging equivalent nodes of the lower layer in the graph in Fig. 14.

Fig. 16: Relabelling of the third layer.

the node end, writing down the computation result in the form of an expression
in Polish prefix notation. We then evaluate the expression and interpret the
result as a 4-bit Boolean vector y1..y4. For example, let x1 = x2 = x3 = x4 = 1,
i.e. the input Boolean vector is 1111. This vector corresponds to the rightmost
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Fig. 17: Complete graph relabelling.

computation path in the graph in Fig. 17. The resulting expression is (+∅∗e+∅∗
e3+e∗e8)I. We clarify the evaluation of the expression in Fig. 18. The resulting
Boolean vector is 1001, which matches the specification in Tab. 3.

Fig. 18: Evaluating of the resulting expression for input 1111.

The presented approach to the reduction of the size of computation graphs
is inspired by differential BDDs [5].
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b1 b2 b3 b4 b5 Operation

0

0

0
0

0 r1; ∅; ∅; ∅; ∅; ∅; ∅; ∅; ∅; ∅
1 r1; r2; ∅; ∅; ∅; ∅; ∅; ∅; ∅; ∅

1
0 r1; r2; r3; ∅; ∅; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r2; ∅; ∅; ∅; ∅; ∅; ∅

1
0

0 r1; r2; r3; r3; ∅; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r2; ∅; ∅; ∅; ∅; ∅

1
0 r1; r2; r3; r2; r3; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r2; ∅; ∅; ∅; ∅

1

0
0

0 r1; r2; r3; r3; r3; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r3; r2; ∅; ∅; ∅; ∅

1
0 r1; r2; r3; r3; r2; r3; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r2; r3; r2; ∅; ∅; ∅

1
0

0 r1; r2; r3; r2; r3; r3; ∅; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r3; r2; ∅; ∅; ∅

1
0 r1; r2; r3; r2; r3; r3; r2; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r2; r3; r2; ∅; ∅

1

0

0
0

0 r1; r2; r3; r3; r3; r3; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r3; r3; r2; ∅; ∅; ∅

1
0 r1; r2; r3; r3; r3; r2; r3; ∅; ∅; ∅
1 r1; r2; r3; r3; r3; r2; r3; r2; ∅; ∅

1
0

0 r1; r2; r3; r3; r2; r3; r3; ∅; ∅; ∅
1 r1; r2; r3; r3; r2; r3; r3; r2; ∅; ∅

1
0 r1; r2; r3; r3; r2; r3; r2; r3; ∅; ∅
1 r1; r2; r3; r3; r2; r3; r2; r3; r2; ∅

1

0
0

0 r1; r2; r3; r2; r3; r3; r3; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r3; r3; r2; ∅; ∅

1
0 r1; r2; r3; r2; r3; r3; r2; r3; ∅; ∅
1 r1; r2; r3; r2; r3; r3; r2; r3; r2; ∅

1
0

0 r1; r2; r3; r2; r3; r2; r3; r3; ∅; ∅
1 r1; r2; r3; r2; r3; r2; r3; r3; r2; ∅

1
0 r1; r2; r3; r2; r3; r2; r3; r2; r3; ∅
1 r1; r2; r3; r2; r3; r2; r3; r2; r3; r2

Table 4: Decision tree for a 5-bit sequential multiplier.

4 Example of a sequential computation process

Consider a sequential computation process corresponding to the multiplier of 5-
bit non-negative integer numbers. We have a 10-bit asynchronous accumulating
register Y that supports three operations: i) add a given 5-bit value A to its
current content: Y ← Y +A, ii) double the currently stored value: Y ← Y + Y ,
and iii) reset to zero: Y ← 0. The complete binary decision tree for all input
vectors is shown in Tab. 4; the table uses the following notation for brevity:

– ∅ corresponds to the no-op (doing nothing),
– r1 corresponds to the reset operation: Y ← 0,
– r2 corresponds to addition: Y ← Y +A,
– r3 corresponds to doubling: Y ← Y + Y .
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A list of operations separated by semicolons corresponds to the sequential
execution of listed operations from left to right.

(a) Canonical. (b) Not canonical.

Fig. 19: Computation graphs for the 5-bit multiplier.

The leafs of the decision tree are all distinct, therefore the only way to achieve
any reduction in the size of the computation graph is to introduce an algebraic
structure on the arc labels. Let us first consider label r1, which stands for the
reset of the register. To define an additive group we use ∅ as the zero label,
and introduce the negative label −r1, which stands for undo the reset operation.
Supporting such undo operations in hardware may be overly expensive, therefore
we do not want them to appear the final computation graph, however we are
still free to use them analytically in intermediate derivations. We extend the
additive group on labels r2 and r3 in a similar manner, although their negative
labels have more straightforward hardware implementations: −r2 means subtract
A from Y : Y ← Y −A, while −r3 means divide Y by 2 : Y ← Y/2. The resulting
group is defined by the following equations:

– r1 + r1 = 2 · r1, r1 − r1 = ∅,−r1 − r1 = −2 · r1, . . .;
– r2 + r2 = 2 · r2, r2 − r2 = ∅,−r2 − r2 = −2 · r2, . . .;
– r3 + r3 = 2 · r3, r3 − r3 = ∅,−r3 − r3 = −2 · r3, . . ..

Using the relabelling system of equations similar to (1), one can derive the
canonical computation graph shown in Fig. 19a. We have not considered the
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optimality with respect to the register operations, however, and one can see that
some of the resulting computation labels contain redundant shifting operations
(doubling labels r3 followed by immediate division by 2 labels −r3). This is a
cost of choosing a particular canonical relabelling. If canonicity can be sacrificed,
it is possible to obtain a more efficient labelling shown in Fig. 19b, which avoids
negative labels.
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Asynchronous Clocks

Simon Moore
University of Cambridge

Abstract. Asynchronous circuits typically operate in a clock-free man-
ner. That said, low-level timing characteristics like equipotential regions
and matched delays are often employed in self- timed circuits, a class of
asynchronous circuits. This paper takes this a step further and reviews
approaches to generating clocks inspired by asynchronous circuits, from
frequency distribution using Muller C-element chains through to pausible
clocks and asynchronously oscillating grids.

1 Introduction

After many years of discussion with Professor Alex Yakovlev and Professor David
Kinniment in Newcastle, and other members of the asynchronous circuits com-
munity, I am fortunate to have gained a deeper understanding timing in circuits.
With that understanding brings enlightenment but not always back-and-white
clarity. The question of what is a clock and what is not a clock is a grey area
when one looks closely. Proponents of asynchronous (or self-timed) circuits be-
lieve that clocks are an evil and that clock-less circuits have many virtues. This
paper reviews the heretical approach of using asynchronous (clock-less) circuits
to generate clocks, and how the boundary between asynchrony and synchrony
can be blurred.

2 Clocking basics

In its simplest form, a clock for a digital circuit comes from a precision timing
source like a quarts crystal. The precision timing source is then distributed across
a chip, to the clock inputs of components like the D flip-flop (DFF). The DFFs
provide storage of state and also control the rate of data propagation by delaying
data output until the next clock edge. Thus, data is advanced on the clock edge.
To provide the illusion that all state updates happen simultaneously (so called
synchronous digital circuits or clocked digital circuits), the clocks to each DFF
are expected to arrive simultaneously (synchronously). This provides the illusion
of discrete (digital) time to go with the discrete (digital) signal levels. In practise,
a truly synchronous clock does not exist. Instead we must be satisfied with a
close approximation that, within tolerances (e.g. setup and hold times of the
DFFs), provides an accurate enough implementation of the desired synchronous
abstraction, which arguably makes the circuit designer’s life easier.
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2 FIXME

3 Asynchronous clock source

Many clocked circuit designers like to provide an external clock locked to a highly
stable quartz crystal. It is ironic that the performance of their circuits will vary
with temperature, so the clock frequency has to be set against the worst case
path delay between synchronising elements at the worst case temperature. Much
performance is, therefore, thrown on the floor when the circuits are operating at
more typically temperatures. But this approach does preserve the digital time
abstraction.

External crystals typically operate at a much lower rate than the desired clock
frequency. A phase locked loop is often used to multiply this lower frequency
stable clock up to a higher frequency on-chip clock.

An alternative clock generation strategy is to use a delay-line. Some low-cost
microcontrollers simply use an inverter ring to provide a clock frequency. Typi-
cally the resulting clock frequency varies significantly between devices and with
device temperature. We investigated the possibility of constructing a tuneable
delay-line that can be self-calibrated from a low-frequency and power-efficient
watch crystal [7]. An overview is presented in Figure 1 with details of the delay-
line cell in Figure 2.

QD

dout

din

32.768kHz

decoupler
arbiter

Q element

control module

swapack

swapreq

sclk slr fastmode

cout

cin

D1

optional

sclk slr fastmode

dsel

cin
din dout

cout

double buffered
delay line

Fig. 1. Overview of an asynchronous self-calibrating delay-line (from [7])

Critical to the functional behaviour is the Q-element [5] used to send both
rising and falling events through the delay line before acknowledging dout. The
Q-element ensures that the arbiter is not released until the delay line has been
through both rising and falling edge phases. Analysis of the behaviour of our
Q-element implementation (Figure 4) was undertaken using signal transition
graphs (STGs) [8, 9], a form of Petri net, with assistance from the Petrify tool [2].
Professor Yakovlev was pivotal in establishing STGs and the creation of the
Petrify tool.
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4 Asynchronous clock distribution

Clock distribution is the art of broadcasting a clock across a chip so that its
frequency and phase appear identical at every clocked element (e.g. DFF). Fre-
quency distribution, in contrast is rather easier. One could, for example, con-
struct a long chain of inverters (Figure 5a) and arrange them in a serpentine
manner over the surface of the chip. This would (almost) manage to broadcast
the frequency. I say “almost” because a pulse proceeding down an inverter chain
will undergo pulse shrinkage, so it is unlikely to reach the end of a long chain.
On the other hand, an asynchronous micropipeline made of Muller-C elements
(Figure 5b) will successfully distribute the frequency and will guarantee that
pulse shrinkage will never obliterate a pulse as it carefully copies the pulse (or
token) to the next Muller C-element before destroying the source.

A conventional clock distribution approach uses a H-tree fractal over the
surface of the chip. This works quite well, though still presents potential discon-
tinuities in clock phase (e.g. see nodes A and B in Figure 6 which are clocked
from different branches but are physically adjacent). Self-calibration in the tree
can help. Also, sometimes a grid is used at the lowest level to crowbar the H-tree
leaves together.

Rather than drive a grid from a H-tree, Dr Scott Fairbanks and I investigated
the use of a micropipeline structure laid out as a grid to form a self-oscillating
clock distribution system (both frequency and phase) [3]. This originated from
earlier work on the one-dimensional asP micropipline structure [1] (see Figure 7a)
and was evolved into a two-dimensional structure (Figure 7c). The grid inputs are
mixed using the circuit in Figure 8. Pull-up and pull-down nodes are alternated
across a grid. Pull-up nodes use the mixer to identify when the majority of
inputs are low and then pulls high. Pull-down nodes do the inverse. Thus the
grid oscillates in unison and measurements indicate very low skew even in the
presence of device variability.

Fig. 5. (a) inverter and (b) micropipeline clock frequency distribution
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Fig. 6. Simplified H-tree clock distribution
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Fig. 7. Evolution from dynamic asP to a distributed clock generator (from [3])
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Fig. 8. Clock mixer for the distributed clock generator (from [3])

5 Globally asynchronous but locally synchronous circuits

Given that global synchronisation is difficult to achieve, one option is to build
chips which are globally asynchronous but locally synchronous (GALS). Since
local synchrony is easier to achieve, it allows the clock (synchronous) design
method to be used in the small (e.g. a processor core) with asynchronous inter-
connect between these clocked islands. Global frequency distribution might still
be used to control the rate of transfer of information between blocks, making it
easy to use credit-based flow control.

Moving data between synchronous domains is not without its problems, how-
ever. Sampling a “data ready” bit or some other flow control information coming
from another clock domain is likely to result in metastability in the sampling
flip-flop. Using a two-flop synchroniser is one approach and with careful design
it is possible to reduce the mean-time between failure (MTBF) to once in the
lifetime of the universe [4]. However, with incorrect design, or device variability
reducing the performance of the sampling flip-flop, the MTBF can easily become
less than a minute.

In order to avoid metastability altogether, it is possible to use pausible clocks
to ensure completely safe data transfer. Dr Robert Mullins and I undertook a
great deal of work in this area with the key final paper being Demystifying

Data-Driven and Pausible Clocking Schemes [6]. Dr Robert Mullins and I were
delighted to collaborate with Professor David Kinniment and Professor Alex
Yakovlev on the book Synchronization and Arbitration in Digital Systems [4]
with several circuits from [6] being reproduced.

Pausible clocks are based around the use of a delay line clock source (Fig-
ure 9a) that can be transformed into a data driven clock (Figure 9b) where a
local clock signal is produced whenever there is new input data. This is, however,
rather restrictive since one typically requires that the local clock continues to
oscillate regardless of whether there is new data or not. To this end, the circuit
in Figure 9d (an evolution from the circuits in Figure 9a–c) can be used so that
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Fig. 9. Pausible and Data-Driven Local Clocks (from [6])

the clock is only paused to safely transfer new data. Using this basic concept,
a complete GALS system can be produced (see Figure 10). For further details,
see [6].

Conclusions

Just as digital circuits abstract the analog world into discrete ones and zeros,
clocked synchronous circuits abstract continuous time into discrete ticks. In much
the same way that it can be useful to analyse digital circuits in their true analog
form, it can also be helpful to analyse the true asynchronous (or analog-time)
behaviour using techniques like STGs that Professor Yakovlev has been pivotal in
creating. Moreover, the ability to mix clocked and asynchronous circuits enables
a broader range of design tradeoffs. As we face challenges in clock distribution
and device variability for future CMOS circuits, asynchronous techniques may
well become critical to meet design requirements. Finally, it should be noted that
we can use asynchronous techniques to control and generate clocks, blending
synchrony with asynchrony.
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Asynchronous Circuit Design and Beyond

Chris J. Myers1

University of Utah, Salt Lake City, UT 84112, USA,
myers@ece.utah.edu,

WWW home page: http://www.async.ece.utah.edu/Myers

Abstract. In the 80s, there was a resurgence of interest in asynchronous
circuit design. Technology challenges being faced by synchronous design-
ers led researchers to reconsider the clock-less option. This work led to
both new theoretical insights and computational design methods that
were ultimately validated in a number of successful demonstration de-
signs. After more than 30 years, there has been some industrial uptake
of this research work, but the revolution that we envisioned has not oc-
curred. Instead, the asynchronous mindset has had impact in a number of
other domains from formal methods applied to mixed-signal and cyber-
physical systems to design methods for synthetic biology. This paper
will give a brief account of the asynchronous renaissance and its lasting
impact.

Keywords: asynchronous circuit design, Petri nets, formal methods

1 A Brief History of Asynchronous Circuit Design

The universe doesn’t allow perfection.
– Stephen Hawking, A Brief History of Time

Asynchronous circuit design has a long history. Many of the earliest main-
frame computers including the ILLIAC and ILLIAC II designed at the University
of Illinois and the Atlas and MU-5 designed at the University of Manchester in
the 1950s and 1960s utilized asynchronous circuits. Asynchronous circuit de-
sign was chosen to improve reliability and provide easier maintenance [3]. Asyn-
chronous circuit design though can be challenging due to the need to ensure that
every transition on a signal wire is meaningful [14]. An asynchronous computa-
tion is coordinated using a handshaking protocol in which a circuit is requested to
perform an operation, and it acknowledges completion of the operation. Even a
single unwanted glitch on a request or acknowledge signal wire, known as a logic
hazard, could lead to unintended behavior. A simple way to address this hazard
problem is to utilize synchronous circuit design, which employs a periodic clock
signal to filter out these glitches by allowing sampling of signals to occur only
at prescribed times. For this reason, synchronous circuit design has become the
dominant design methodology.

During the 1980s, however, asynchronous circuit design experienced a resur-
gence of interest. In particular, new effective design methodologies were devel-
oped to address the challenges to produce hazard-free asynchronous circuits.
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There were two main camps: the language-based and the graph-based researchers.
The language-based researchers included Alain Martin of Caltech [11] and Mar-
tin Rem of Eindhoven University [2]. They and their students developed design
methods that started with behavioral descriptions of asynchronous designs writ-
ten in a high-level language inspired by Hoare’s communication channels [7],
which are then compiled through a series of well defined transformations into a
hazard-free asynchronous circuit implementation. The graph-based researchers
included, among others, Tam-Anh Chu, a PhD student from the Massachusetts
Institute of Technology [4], Teresa Meng, a PhD student from the University
of California at Berkeley [13], and Alexander Yakovlev and Victor Varshavsky
of the Leningrad Electrical Engineering Institute [19, 23]. These researchers and
their colleagues developed design methods that started with graphical models,
typically some variation on a Petri net [17], for their asynchronous designs. Us-
ing these models, all reachable states would be considered, sometimes implicitly,
to produce asynchronous logic circuits free of hazards.

The late 80s and early 90s witnessed several exciting demonstrations of
these new methodologies to produce asynchronous circuits with improved perfor-
mance, power consumption, and robustness. The first fully asynchronous micro-
processor was designed by Martin’s group at Caltech in 1989 [12]. Utilizing tech-
niques inspired by Ivan Sutherland’s Turing Award paper on micropipelines [21],
Steve Furber’s group at the University of Manchester designed the first asyn-
chronous microprocessor that was code-compatible with an existing synchronous
processor [24]. At Phillips Research Laboratories, former students and colleagues
of Martin Rem designed several low power circuits for commercial applica-
tions [1]. Finally, between 1995 and 1999, researchers working with Intel on
the RAPPID project designed an asynchronous instruction-length decoder for
the Pentium processor with three times better performance while consuming half
the power [20].

These successes enabled several startup companies to explore asynchronous
circuit design during the late 90s and early 2000s. For example, Alain Martin
created Situs Logic, while his former students created Fulcrum Microsystems
and Achronix Semiconductor. Other startup companies originated from Steve
Furber’s group including Cogency and Silistix. Finally, the Phillips group spun
out a company called Handshake Solutions. These companies though faced the
tremendous inertia in the semiconductor industry. The asynchronous solution
had to provide not only substantial benefits, but it also must solve problems
that could not be solved by synchronous methods. Therefore, the success of
these startup companies has been quite limited to date.

2 The Asynchronous Mindset

They are really smart, and we can teach them to do something real.
– Manpreet Khaira, Top 10 Reasons to Hire an Asynchronous Designer

After the success of the RAPPID project, Intel hired numerous asynchronous
researchers to join their Strategic CAD Labs that was led by Manpreet Khaira.
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The quote above was from a panel discussion at the 1999 Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems held in Barcelona Spain.
This was the same conference in which the RAPPID results were first pub-
lished and won the best paper award. Although perhaps a bit insulting to an
asynchronous designer, I would argue that it need not be. The “asynchronous
mindset” is indeed a very powerful tool that can be applied to a wide vari-
ety of applications. The world around us is inherently asynchronous, so those
trained to reason in this way are perfectly equipped to be successful. This section
briefly highlights three such research areas, ordered in increasing distance from
electronic circuits, that we have applied, with some success, an “asynchronous
mindset”.

2.1 Formal Verification of Analog/Mixed-Signal Circuits

In order to design asynchronous circuits, one must reason about time as a contin-
uous rather than a discrete variable. Analog/mixed-signal (AMS) circuits take
this one step further and also require values to be represented as continuous
variables. In this domain, we have extended a Petri net graph-based modeling
formalism utilized for asynchronous design to represent these continuous volt-
ages and currents [9]. This has enabled AMS circuits to be modeled and verified
using techniques originally developed for the verification of asynchronous cir-
cuits [6]. Most recently, in collaboration with Alexander Yakovlev’s group at
Newcastle University, we have been closing the design loop by leveraging these
formal techniques to optimize the design of asynchronous digital controllers for
analog circuits [5].

2.2 Formal Verification of Cyber-Physical Systems

Cyber-physical systems (CPS) are any systems that tightly integrate computa-
tion, communication, and control with the physical world. These can include
anything from nuclear power plants, to robotic surgeons, to autonomous ve-
hicles. The physical world that these systems must interact with is inherently
noisy, stochastic, continuous, and asynchronous. Since these systems are clearly
safety critical, it is essential that they be formally verified to avoid catastrophic
failures. Once again, a Petri net inspired modeling formalism, similar to the one
used for asynchronous and AMS systems, can be efficiently employed to model
and verify these systems [22]. We have also recently used a channel-level language
inspired by the one that we used for asynchronous design [14] to model and for-
mally verify a fault-tolerant asynchronous routing protocol for an automotive
application [25].

2.3 Genetic Design Automation

Synthetic biology is an exciting area of research in which scientists are attempt-
ing to engineer new biological systems to solve a wide variety of environmental,
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energy, and health problems. Genetic design automation (GDA) research is pro-
viding the design methods and tools to support this discipline [15, 16]. Since
biological systems do not have a global clock, it only makes sense that these
methods should be adopted from the asynchronous domain. To this end, we have
abstracted biochemical models into asynchronous logical models, once again us-
ing an adapted Petri net formalism, enabling orders of magnitude more efficient
analysis [8, 10]. We have also adapted asynchronous logic synthesis techniques to
produce genetic circuit designs automatically [18]. Finally, we hope to some day
potentially draw inspiration from the design in this very noisy environments to
produce more robust asynchronous electronic circuits.

3 Discussion

While the asynchronous revolution that many of us hoped for when we began
working in this area of research has not yet occurred, I believe we can take solace
in the fact the “asynchronous mindset” is and will continue to have tremendous
impact in a wide variety of fields. A continued emphasis in instilling this view of
the world in our students make them better equipped to tackle the wide variety
of problems that they will face in the ever changing asynchronous world.
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Abstract. This paper makes self-timed circuits dual citizens by provid-
ing a clocked mode of operation in addition to their self-timed mode. The
clocked or synchronous mode of operation re-uses the self-timed fabric
and protocols, and thereby — beneficially — inherits the elasticity of
the self-timed or asynchronous mode of operation. In exchange, clocked
circuit operations can build confidence in self-timed circuit operations or
replace aging or erratic self-timed circuit operations that need more time
to finish. Once confidence is gained, the self-timed mode of operation can
serve as a turbo mode to obtain better latency, throughput, energy, ro-
bustness to delay variations, or electro-magnetic compatibility. The dual
citizen circuits in this paper have individual action control. As a result,
the circuits can either run in a fixed mode — self-timed or clocked —
and switch modes on the fly, or run in both modes concurrently.

Keywords: self-timed circuits, asynchronous, synchronous, dual mode

Figure 1 Carrying coal to Newcastle, ASYNC 2008.
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Foreword

The title of this paper reflects an incident at the ASYNC 2008 conference chaired
by Alex. Ivan, having a British mother, grew up knowing the futility of “Carrying
Coal to Newcastle.” Because ASYNC 2008 was in Newcastle, Ivan seized on the
opportunity actually to carry coal to Newcastle. Being at pains to find coal in
the San Francisco Bay area where it is a rare household fuel, he finally got
a plastic sandwich bag of coal imported from Utah to California. He labeled it
“mineral samples” to pass international inspection, and duly delivered it to Alex
— see Figure 1.

1 Introduction

This paper expands [8] by not only naturalizing self-timed circuits but by turning
them into dual citizens as well. Below, we explain what this means.

The “naturalized communication and testing” view [8] separates self-timed build-
ing blocks into links and joints. Links store and transport data. Joints serve as
meeting points for links to coordinate state and exchange data. The actions of a
self-timed system start in joints, and can be enabled or frozen selectively using
separate go control signals in each joint. Joints act only when input links are
full and output links are empty and go is enabled. Actions can be conditional or
nondeterministic. For ease of explanation, this paper uses simple FIFO actions
— see Figure 2.

Figure 2 shows a joint as a stick figure with data flowing in the direction of
the arrow, and links as rectangles. Each link-joint-link triple represents a FIFO
with an input link called in, and an output link called out. The most important
property of a link is whether it is full or empty, just as the most important
property of a parking place is whether or not it is occupied. We color the inside
of a full link blue (grey in black and white print) and leave an empty link white.

Each link reports its full or empty state at both ends. It accepts a fill command at
its input end and a drain command at its output end. Fill and drain commands
change the state of a link. The impact of fill and drain commands is observed
immediately at the near end of the link but may take time to traverse the length
of the link before appearing at the link’s far end.

The joint in Figure 2 acts only when its input link, in, is full and its output
link, out, is empty, and its go signal is enabled. When it acts, it starts three
concurrent operations that (1) copy the data from in to out, (2) drain link in
— leaving it empty, and (3) fill link out — leaving it full. Note that when go is
disabled, the joint is “frozen,” and there is no action. Note also that the data
value shown in Figure 2 as 60 stays in link in even after being copied — it may
stay there until link in is filled with new data. By making link in empty and
link out full, the action enables neighboring joints to act while it disables itself.
This is what makes a self-timed circuit “tick.”
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Figure 2 Self-timed FIFO action.

The full-empty protocol in Figure 2 works regardless of its handshake imple-
mentation. We advocate using it as standard interface to facilitate mixing and
matching self-timed designs from different circuit families. The “naturalized”
link and joint view offered in [8] captures the essence of self-timed systems.

This paper expands that view by adding a clocked or synchronous mode of oper-
ation to a naturalized self-timed circuit. Clock signals that retard the self-timed
or asynchronous operation can be part of links or part of joints — we show cir-
cuits for each. A clocked link announces changes in its full or empty state only at
times specified by its clocks. Likewise, a clocked joint acts only at times specified
by its clocks. Not only do both self-timed and clocked modes of operation work,
but simulations reported here also confirm mixed mode operation.

By providing a self-timed circuit with a clocked mode of operation, we aspire
to increase the level of familiarity, comfort, and confidence of VLSI designers to
integrate self-timed circuits into their systems. We regard the resulting circuit
as both a self-timed and a clocked circuit — just as a “dual citizen” is regarded
as a citizen of two countries. We therefore call this circuit a dual citizen circuit.

This paper is organized as follows. Section 2 shows a naturalized FIFO imple-
mentation for Figure 2 in Click, taken from [8], for use as reference design.
Section 3 expands this reference design in two ways, by adding a clocked mode
of operation to (1) its joint and (2) its links. Section 4 presents simulations for
fixed mode operation, mode switching, and mixed mode operation. Section 5
discusses related work. Section 6 concludes the paper.
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2 Naturalized Self-Timed Circuits

Most design methods for self-timed circuits use handshake protocols to encode
the full or empty status of a link and validity of the link’s data. Figure 3 shows a
two-phase single-rail handshake [9] — or as we say a “two-phase non-return-to-
zero handshake with bundled data” — and the way it encodes full, empty, and
data validity. This protocol is used by the Click self-timed circuit family [6].

Click is the most synchronous asynchronous circuit family that we know. Its
implementation style was chosen to resemble clocked or synchronous circuits as
much as possible. It uses flipflops in every loop and it uses flipflops to store
data. The flipflops facilitate the use of conventional optimization, timing, and
test tools used for clocked circuits.

Figure 4 shows a self-timed circuit implementation for Figure 2, based on Click
and two-phase non-return-to-zero handshake signaling with bundled data, but
adapted for “naturalized communication and testing” [8]. The circuit has been
adapted by moving the link-joint interface. The original interface separated links
and joints at the handshake request, acknowledge, and data signals — here
named R, A, and Dstored. The new interface separates the links and joints at
their natural communication signals: full, drain, and Dstored for links carrying
data into a joint, and empty, fill, and D for links carrying data away from the
joint. The new interface takes full advantage of the handshake protocol without
exposing it. It thereby diverts any “Tower of Babel” effect that a multitude
of handshake protocols in use [9] might create if their handshake signals were
exposed to each other.

By “naturalizing” the communication we gain translation-free communication.
Moreover, we gain it whilst keeping the peculiarities of each handshake protocol
and the specific skills that it supports to create circuits with better latency,
throughput, energy, robustness, or electro-magnetic compatibility [1, 4, 5].

Time

full fullempty emptyempty

request

acknowledge

valid validbundled data

Voltage

Figure 3 Example of a two-phase non-return-to-zero handshake with bundled
data. This protocol has two control signals, request and acknowledge, and zero
or more data signals, also known as bundled data. A link using this protocol is
full when the voltage levels of its request and acknowledge differ, and empty
otherwise. Its data signals are valid when the channel is full. A full channel may
be drained, i.e. made empty, and an empty channel may be filled, i.e. made full.
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Figure 4 Naturalized Click FIFO circuit presented at ASYNC 2015 [8].

The links in Figure 4 use edge-triggered flipflops to store their full or empty state
and the data they transfer. Combinational logic (CL) for datapath operations is
kept in the joint. A FIFO that merely fills its output link with data copied from
its input link uses simple wire connections for combinational logic.

Each link stores its full or empty state on two signals, a request signal, R, and an
acknowledge signal, A. Each fill operation, performed as soon as signal fill goes
high, changes R, making it differ from A. Each drain operation, performed as
soon as signal drain goes high, changes A, making it match R. XOR and XNOR
gates generate the full or empty state of the link by comparing the signal values
of R and A. They report this state to signals full and empty. The link changes
each R and A signal by complementing its value. Because R and A are separate
signals, the link has separate flipflops to store the old and new values.

The joint in Figure 4 contains an AND function and the combinational logic
for the datapath. The AND function combines the full and empty signals of
links in and out with a go signal. When all three signals are high, the AND
function “acts” by making signals drain and fill both high. Thus the action
starts concurrently (1) a drain operation in link in, and (2) a fill operation in
link out that copies the data from link in. In turn, the fill and drain operations
make both full and empty signals low, thus disabling the AND function and
causing both drain and fill to go low, which ends the action.

The go signal comes with its own arbiter to decide what to do when go is low.
When go is low, the arbiter decides cleanly whether to stop at once or to complete
a pending or ongoing action in the joint. The arbitrated circuit is called MrGO,
pronounced “Mister GO” — see Figure 5(a). To control actions selectively, each
MrGO has its own go signal. We use MrGO for single-step, multi-step, and at-
speed test and debug as explained in [8], and for switching between self-timed and
clocked modes of operation as explained later in this paper.
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Figure 5 Transistor-level details for (a) MrGO and (b) a zero-passing latch.
(a) MrGO
The schematic for MrGO with its icon inset in the grey area is copied from [8],
except that here we use correctly matching in and go parts. When go is high,
MrGO acts as an inverter from in to out. When go is low, MrGO uses arbitration
to decide cleanly whether or not to make out high. The bold central transistor
delays active-low signal out by conducting only after metastability ends in
favor of a low out signal. Metastability can occur during arbitration decisions,
when a high-to-low (falling) transition on go to make and keep out high concurs
with a low-to-high (rising) transition on in to make out low. Transistors are
sized to reduce the logical effort from in to out. Split pull-up transistors avoid
a floating out signal. We use MrGO for single-step, multi-step, and at-
speed test and debug as explained in [8], and for switching between
self-timed and clocked modes of operation as explained in this paper.
(b) Zero-passing latch
The latch stops a high input signal in from propagating until clock signal ck
is high. When both in and ck are high, or when in is low, output signal out
copies the value of in. Back to back inverters on out keep its value. To reduce
drive fights, the reverse inverter of the keeper is weak.

3 Dual Citizen Circuits

The link and joint model of a self-timed circuit extends naturally to two solutions
with a clocked mode of operation: clock the joint, as in Figures 6, or clock the
link, as in Figure 7. The two dual citizen circuit solutions in Figures 6–7 both
extend the Click circuit of Figure 4. Both circuits re-use the self-timed fabric and
protocols. As a result, even in clocked mode, each circuit inherits the elasticity
of the self-timed mode of operation to act only when and where needed. This is
beneficial not only because it reduces power and saves energy, but also because
it simplifies scheduling of clocked operations. With protocols rather than clock
cycles in charge of the flow of control, the clocked operations of a dual citizen
circuit can function correctly even when operating out of lockstep.
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Figure 7 Dual citizen version of Figure 4 with clocks in each Link.
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Because they re-use the self-timed fabric, the clocked circuit operations can
build confidence in the self-timed circuit operations or replace aging or erratic
self-timed circuit operations that need more time to finish.

Once confidence in the correctness of the self-timed operation is established, the
self-timed mode can serve as “turbo mode” to obtain better latency, throughput,
energy, robustness to delay variations, or electro-magnetic compatibility.

Both circuits use master and slave clocks, clockM and clockS. For self-timed
operation, both clocks remain high. For clocked operation, a high pulse on clockM
is followed by a high pulse on clockS.

The circuit in Figure 6 adds clockM and clockS at the end of the AND function
in the joint where the clocks control a serial pair of zero-passing latches. For a
transistor level schematic of a zero-passing latch, see Figure 5(b). In self-timed
mode, clockM and clockS both remain high and the latches remain transparent
to amplify the output signal of the MrGO controlled AND function. In clocked
mode, each latch passes a low incoming signal by making its output low, but
keeps its output as is when the incoming signal is high and its clock is low.
A high incoming signal propagates only during a high pulse of the latch clock.
Zero-passing latches allow the reset part of the joint action to run unhindered to
completion — even in the clocked mode of operation. Because neighboring joints
act in mutual exclusion, allowing each action to complete by making its copy,
fill, and drain signals low before starting another action in the next clock cycle,
facilitates the use of latches instead of edge-triggered flipflops in the datapath.

The key advantages of the dual citizen circuit in Figure 6 are (1) its simplicity
and (2) its generality: many self-timed circuit families use the same joints [8].
Its key disadvantage is that the clocks leave some self-timed loops free running:

• The inverting loops of the link flipflops run freely, even in clocked mode. As
a result, hold violations on these flipflops, due to an exceedingly fast data
inversion loop, will affect both self-timed and clocked modes of operation.

• The action, once started, runs freely to completion. As a result, active-high
pulse width violations on copy, fill, and drain signals are beyond clock control,
and will affect both self-timed and clocked modes of operation.

The dual citizen circuit in Figure 7 adds clockM and clockS in each link. This
circuit also allows the reset part of a joint’s action to run to completion. But it
does so while keeping a firm grip on all self-timed loops. The circuit in Figure 7
can repair all aging or erratic self-timed circuit operations that need more time
to finish by switching to a clocked mode of operation, and by setting the high
and low pulse widths for clockM and clockS as wide as needed.

In Section 4, we show simulation waveforms of dual citizen circuits interacting
in self-timed and in clocked mode. Some interactions use MrGO to control joints
selectively. In clocked operations, we change go signals during the low phase of
clockM. None of the simulation scenarios in this paper require the arbitration
function of MrGO. But if needed, arbitration in MrGO can be avoided in clocked
operations by changing the go signal only when both clockM and clockS are low.
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4 Simulation Experiments

We use four simulation scenarios to illustrate what one can do with dual citizen
circuits. We simulate a ripple FIFO with ten joints, Joint 1 to Joint 10, and
eleven links, Link 0 to Link 10, where Link 0 and Link 10 are connected to the
external environment — see Figure 11. We assume that initially all links are
empty (low) and all input signals and signal values stored in latches or flipflops
are zero (low). For details on initialization, see [8].

All simulations were done in Verilog and use discrete delay models. For gate
delays we model the number of signal inversions: each inversion counts as one
time step. More precisely: signal changes through INVERTER and NAND gates
take one time step. It takes two time steps to go through AND, X(N)OR,
FLIPFLOPS, and LATCHES. The environment takes five time steps to respond.
Environment actions that fill and drain a link are synchronized with a link’s slave
clock whenever the link operates in clocked mode, and are self-timed otherwise.5

All simulation waveforms shown in this paper are generated using the dual citizen
Click FIFO with clocks added to the links, as shown in Figure 7, and with 6-bit
wide data signals and simple wire connections for combinational logic. If instead
of clocking the links we clock the joints, as shown in Figure 6, the Verilog test
benches produce similar waveforms with the same test stimuli and responses.

Sections 4.1–4.3 below discuss the following simulation scenarios:

• Run in fixed mode mode, either self-timed or clocked.
• Switch modes after starting a self-timed operation to finish it clocked.
• Mix modes by running self-timed and clocked operations concurrently.

4.1 Run in Fixed Mode — Self-Timed or Clocked

The simulation waveforms in Figure 8 show the FIFO operating in self-timed
mode. Those in Figure 9 show the FIFO operating in clocked mode.

The horizontal axis at the top of both Figures shows the progression of time
throughout the course of the operation. The signal waveforms are displayed
vertically, row by row. The vertical axis on the left shows the signal names.
The signal called start indicates the end of initialization — we use it to start
the operation cleanly. Any grey-colored, i.e. undefined, waveform values and any
waveform changes prior to start going high can be ignored.

The master and slave clocks, clockM and clockS, are both high in Figure 8, as
required for self-timed operation, while in Figure 9 they start ticking as soon as
start goes high. Signals in empty, in fill, and in D go between Link 0 and the
environment. Likewise, signals out D, out full, and out drain go between Link 10
and the environment. The remaining signals, Dstored0 to Dstored9, are the data
signals stored in Link 0 to Link 9.

5 The reset part of fill and drain actions remains self-timed at all times.
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Figure 8 Self-timed FIFO operation transferring four data items.

As soon as start goes high, the environment starts communicating with the
FIFO, using the protocols on Link 0 and Link 10. The entire operation consists
of: (1) the environment sending four data items, with successive values 1 to 4,
through Link 0 into the FIFO, (2) the FIFO forwarding these data items from
Link 0 to Link 10, and (3) the environment collecting the data items at Link 10.

Note that data values stay in the links until they are overwritten by new values.
This is particularly visible for the initial data values of 0 and for the final data
values of 4. The FIFO’s output data, out D, for instance, keeps its initial value 0
for approximately 140 time steps in Figure 8, which is how long it takes a data
item to ripple through the FIFO in self-timed mode. In the clocked mode of
operation shown in Figure 9, this takes approximately 700 time steps. Likewise,
the value 4 of the last data item stays on all the links after all four data items
have rippled through the FIFO.

Figures 8–9 show that both the self-timed and the clocked operation are immune
to old data values lingering on links. This is as expected, because both modes of
operation obey the same dataflow protocols. Both use the full or empty status
of a link to decide when to pay attention to and when to ignore the link’s data.
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Figure 9 Clocked FIFO operation transferring four data items.

As a result — omitted from Figure 9 — the master and slave clocks in the clocked
operation can keep ticking after the operation completes, without jeopardizing
any of the final values of status or data signals.

As noted earlier, the clocked mode of operation shown in Figure 9 is slower than
the self-timed operation in Figure 8. The clocked operation is slower because
the clocks retard the self-timed fabric and protocols. The clock periods must be
longer than the worst-case cycle times of the self-timed fabric and protocols.

4.2 Switch Modes — from Self-Timed to Clocked

The simulation waveforms in Figure 10 show the FIFO first operating in self-
timed mode and then switching mode to operate in clocked mode. The overall
operation is similar to each of the operations shown in Figures 8–9: four data
items pass through the FIFO. Approximately the first 250 time steps of the
simulation run self-timed. In self-timed mode, we execute the first half of the
operation, which consists of (1) the environment sending four data items, with
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Figure 10 From self-timed to clocked FIFO operation passing four data items.

successive values 1 to 4, through Link 0 into the FIFO, and (2) the FIFO storing
these data items in Link 0 to Link 4. The remaining time steps of the simulation
run clocked. In clocked mode, we execute the second half of the operation, which
consists of (3) the FIFO forwarding the data items stored in Link 0 to Link 4,
and (4) the environment collecting the data items at Link 10. In between, the
mode of operation switches from self-timed to clocked.

To split the operation in two and switch the mode of execution between the two
halves, we deploy MrGO [8]. Specifically, we use go control signal go5 of Joint 5.
Signal go5 is the only new signal that we inserted into the waveform display of
Figure 10 — just below the center. All other signals match those of Figures 8–9.

A pictorial view of the role of go5 in splitting the operation follows in Figure 11.
First, we freeze Joint 5, by making go5 low — see Figure 11(a). This prevents
Joint 5 from acting. Then we run the first half of the operation in self-timed
mode. The operation ends in a stable state in which Link 1 to Link 4 are full and
the other links are empty — see Figure 11(b). The stable state allows us to switch
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Figure 11 Pictorial view of how to switch modes from self-timed to clocked.
We color full links blue (or grey) and empty links white — see also Figure 2.

the mode of operation reliably from self-timed to clocked — see Figure 11(c).
Next, we enable Join 5 by making go5 high — see Figure 11(d). To do this
safely, go5 must change from low to high during the low phase of the master
clock, clockM. The waveforms in Figure 10 show a safe low to high transition for
go5 sufficiently in advance of the first high pulse on clockM, around 275 time
steps into the simulation. The second and clocked half of the operation can now
forward and drain the four data items from the FIFO — see Figure 11(e).
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4.3 Mix Modes — Self-Timed and Clocked

The waveforms in Figure 12 show the FIFO operating simultaneously in both
self-timed and clocked modes. In addition to showing waveforms for the signal
names introduced earlier for Figures 8–10, Figure 12 also includes the waveforms
for go control signal go7 of Joint 7, and for status signals empty5 and empty6
of Link 5 and Link 6. The FIFO is partitioned into three regions that share the
same source clocks but can run in different modes of operation:

• Region 1, the FIFO’s input region, covers Link 0 to Link 4, and operates
continuously in self-timed mode. Signals clockM1, clockS1 refer to its clocks.

• Region 2, the FIFO’s airlock, covers Joint 5 to Joint 7. It switches mode
repeatedly. Signals clockM2 and clockS2 refer to its clocks.

• Region 3, the FIFO’s output region, covers Link 7 to Link 10, and operates
continuously in clocked mode. Signals clockM3 and clockS3 refer to its clocks.

We call the middle region, Region 2, “the FIFO’s airlock” because it permits
status, control, and data to pass reliably between the input and output regions
of the FIFO, Region 1 and Region 3, just as an airlock permits safe passage of
people and objects between environments of different air pressures.

A pictorial view of how the airlock provides safe passage of status, control, and
data between Region 1 and Region 3 follows in Figure 13. To operate the airlock,
we deploy the two MrGO circuits in Joint 5 and Joint 7 — the two joints that
separate the airlock from its neighbors. By freezing or enabling Joint 5, using go
control signal go5, we disconnect the airlock from or engage it with its predecessor
region in the FIFO, Region 1. Likewise, freezing or enabling Joint 7, via go7,
disconnects the airlock from or engages it with its successor region in the FIFO,
Region 3. The use of go control signals to accommodate the airlock operation is
an extension of their use in the mode-switching operation depicted in Figure 11.

The waveform and pictorial views in Figures 12–13 relate to each other as follows:

• Figure 13(a) — fill airlock self-timed
Initially, Joint 5 is enabled and Joint 7 frozen, because go5 is high and go7
low. This engages the airlock with Region 1 for self-timed filling. The fill
operation ends with Links 0 to 6 full, around 200 time steps into Figure 12.

• Figure 13(b) — engage airlock with clocked successor
The stable state of the airlock allows us to disconnect the airlock safely from
its self-timed predecessor, Region 1, which we do by freezing Joint 5, i.e.
by making go5 low. Now, we can switch the airlock’s mode of operation
reliably from self-timed to clocked. Next, we engage the airlock with its
clocked successor, Region 3, by enabling Joint 7, i.e. by making go7 high. To
do this safely, go7 must change during the low phase of the master clock. The
waveforms in Figure 12 show a safe low to high transition for go7 sufficiently
in advance of the engaging high pulse on clockM2 or clockM3, now the same,
around 275 time steps into the simulation.
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Figure 12 Mixed-mode self-timed and clocked FIFO operation with airlock.
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Figure 13 Pictorial view of the airlock from Joint 5 to Joint 7 passing data.
We color full links blue (or grey) and empty links white — see also Figure 2.
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• Figure 13(c) — drain airlock clocked
We can now drain the airlock using a clocked mode of operation. The drain
operation forwards data value 1 on Dstored6, stored in Link 6, followed by
data value 2 on Dstored5, stored in Link 5, draining both links in the process.
The drain operation ends in a stable airlock state with Link 5 and Link 6
both empty, around 450 time steps into Figure 12.

• Figure 13(d) — engage airlock with self-timed predecessor
The stable airlock state allows us to disconnect the airlock safely from its
successor, Region 3, which we do by freezing Joint 7, by making go7 low.
Next, we engage the airlock with its self-timed predecessor, Region 1, by mak-
ing clockM2 and clockS2 both high to enable self-timed operation, and by
making go5 high to enable Joint 5. These engagement steps happen shortly
after the airlock becomes empty, about 450 time steps into Figure 12.

• Figure 13(a) — fill airlock self-timed
We can now fill the airlock using a self-timed mode of operation, just like
we did initially. The fill operation ends with Link 0 to Link 6 full, and with
a data value of 3 on Dstored6 in Link 6 and a data value of 4 on Dstored5
in Link 5 — about 500 time steps into Figure 12. This specific fill operation
is marked by the first grey-colored vertical band in Figure 12. Similar grey-
colored bands mark similar fill operations further along in the simulation.

Note that each grey-colored band in Figure 12 starts with empty5 and empty6
both high, and ends with empty5 and empty6 both low. This indicates that each
grey-colored band starts with an empty airlock and ends with a full airlock. The
airlock is filled using a self-timed mode of operation within a grey band, and is
drained using a clocked mode of operation between grey bands.6

Note also that the data exchange rate at the output of the FIFO is constant. The
output environment receives a new data value for out D for every two pairs of
non-overlapping clockM3–clockS3 pulses, i.e. every two clock cycles. This is the
fastest clock cycle time that the simulated dual citizen Click circuit can support.
The output environment works at full speed, and can be completely agnostic of
the existence of the self-timed input environment and the FIFO’s airlock!

5 Comparison to Related Work

The idea of clocking a self-timed circuits is not new by itself. Prior work pub-
lished in [7, 10, 3, 2] explains how to combine clocks with handshake protocols or
with other forms of elastic protocols. Only the circuits published in [10] and [3]
use both a clocked and a self-timed mode of operation, as do we, but neither
publication discusses running a system in both modes concurrently as we do in
Figures 12–13. Below follows a more specific comparison.

The work reported in [7] adds clocks to initially self-timed handshake circuits
but then optimizes the circuits for synchronous operation by simplifying those

6 Note that clockM2 and clockS2 remain high within a grey band, for self-timed filling,
and match clockM3 and clockS3 between grey bands, for clocked draining.
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parts of the circuits that provide flow control for self-timed operation but that
are redundant under clocked operation. The resulting circuits, though generated
with the same design flow, are no longer self-timed and may have lost some of
their elasticity, but can be used for FPGA mappings or for integration into a
completely synchronous system.

The circuits presented in [2] remain elastic when clocked, and will thus tolerate
variations in computation and communication delays when clocked. The sup-
porting design, analysis, and optimization techniques described in the paper can
be used for clocked as well as for self-timed circuit designs. As such, the choice
“to clock or not to clock” can be deferred until late in the design process. The
paper gives no examples nor any indication of keeping both choices, clocked and
self-timed, available to the final circuit implementation.

The dual-mode synchronous/asynchronous CORDIC processor for wireless
broadband communication presented in [3] can select its mode of operation
to fit system demands and application needs. For instance, when the received
signal is weak, the processor can be switched into self-timed mode to reduce
electro-magnetic interference. The clocks in [3] bypass the handshake control
circuits. Consequently, clocked operation of the CORDIC forfeits the elasticity
provided by the handshake protocols. Also, in bypassing the handshake control,
the CORDIC’s clocked mode of operation will be of marginal use for building
confidence in the CORDIC’s self-timed operations.

In contrast to [3], the clocked or synchronous mode of operation implemented
in [10] re-uses the self-timed fabric and protocols — as do we. The resulting
level-sensitive synchronous mode of operation thus inherits the elasticity of the
self-timed mode of operation. As a result, the synchronous mode of operation
can be used to build confidence in the self-timed circuit operations, which is
one of the key reasons for us to add it, though this is not addressed in [10]
which mentions only its potential use for system-level diagnosis and debug. The
paper provides a systematic solution for adding clocks and test inputs to a self-
timed circuit. The use of clocks to run the circuit in synchronous mode acts as a
stepping stone in that solution. The key feature of [10] is the systematic addition
of a clocked scan test mode of operation.

The dual citizen circuits that we present in this paper offer a new approach to
clocking self-timed circuits, because the circuits are built around the ideas of
naturalized communication and testing [8]. By differentiating links from joints
the design solutions for adding a clocked mode of operation fall naturally into
solutions that clock the links versus solutions that clock the joints. By differen-
tiating actions from states we can avoid adding energy-costly slave latches into
the datapath that an action-agnostic approach like [10] would add, because we
know that the joints at opposite ends of a link act in mutual exclusion. Last
but not least, we can control actions individually, using MrGO. By enabling or
freezing selective actions at run time, different parts of the circuit can be made
to (1) run in different modes, (2) switch modes reliably, and (3) exchange data
without the need for synchronizers.
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6 Conclusion

The “naturalized communication and testing” view [8] unifies thinking about a
wide variety of self-timed circuit families and facilitates mixing and matching
these families within a single system. In this paper, we extend this unity to
embrace clocked circuits; we add a clocked or synchronous mode of operation to
self-timed circuits. We call the resulting circuits dual citizen circuits.

As reference circuit, we chose a ripple FIFO implemented in Click [6] but adapted
for naturalized communication and testing [8]. Its dual citizen solutions and
simulation results apply broadly to other self-timed designs and circuit families.

Clock signals that retard self-timed operation can be part of links or of joints.
Links store and transport data. Joints act on the data. We have shown how to add
clocking to each. Each of our clocking additions re-uses the self-timed protocols,
and thereby inherits their elasticity to act only when and where needed. Need-
driven action is beneficial not only because it saves energy, but also because
it simplifies scheduling of operations. With protocols rather than clock cycles
in charge of flow control, the clocked operations of a dual citizen circuit can
function correctly even when operating out of lockstep.

By recognizing joint actions, we can avoid adding latches and clocked gates into
the datapath As a result, dual citizen circuits operating in self-timed mode can
maintain the energy-efficiency of the original self-timed circuit.

By enabling or freezing selective actions at run time, using MrGO, different
parts of the circuit can (1) run in different modes, (2) switch modes reliably, and
(3) exchange data without the need for synchronizers. We have shown simulations
of fixed mode operation, mode switching, and mixed mode operation.

The clocked mode of dual citizen circuits can bolster confidence in the correct
functionality of the self-timed mode — or vice versa — in various ways.

• Engineers most comfortable with clocked systems can easily see how dual
citizen circuits work when clocked. The datapath is identical in both modes
and so may be understood in either mode. The self-timed control fabric and
protocols are shared in both modes. Seeing the control work when clocked
can therefore build confidence in its self-timed behavior.

• Simulations reported here exhibit mixed mode behavior. Data received in
self-timed mode may be delivered to a clocked destination and vice versa.
The ability to change between clocked and self-timed modes of operation
can bolster confidence in the correctness of either mode.

Because their self-timed mode of operation is faster than their clocked mode,
the clocked mode of operation can be used as a “crutch” to support aging or
erratic self-timed circuit operations that need more time to finish. The link-
based clocking addition makes a good crutch because it keeps a firm grip on
self-timed loops and can retard any of these as much as needed by using wider
clock pulses. On the other hand, the self-timed mode of operation can provide a
“turbo” performance boost when needed, to obtain better latency, throughput,
energy, robustness to delay variations, or electro-magnetic compatibility.
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Moving safely from clocked circuits through self-timed circuits and then back
again provides a path for synchronous designers to embrace self-timed design
incrementally. We clear this path by providing self-timed circuits with a clocked
mode of operation. This approach deserves thorough study, so the costs in terms
of design, analysis, verification, and engineering can be quantified, and — we
hope — proven competitive with the state of the art in distributed VLSI design.
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Pavlova 
3 (old) egg whites 

9 oz castor sugar 

1 tsp vanilla 

1 tsp vinegar 

1 pinch salt 

cream 

fruit 

Beat egg whites with a pinch of salt  
until stiff enough to peak. 
Fold in sugar, vanilla, and vinegar. 
Place on baking paper on greased tray. 
Bake slowly about 1-1.5 hours at 250F. 
Dress with fresh whipped cream, 
kiwi fruit, strawberries, or similar. 
BON APPÉTIT ! 

P
av

lo
va

 p
ho

to
 b

y 
H

az
el

 F
ow

le
r,

 W
ik

im
ed

ia
 C

om
m

on
s 

 

155 x 238 mm

Dual Citizen Circuits         261



Significance-Driven Computing for Big Data 

Applications: From Buttery Discussions to Serious 

Research 
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Abstract. Sometimes the best of the ideas evolve from informal discussions 

over coffee in cafes or places of retreat, such as Buttery. In this festschrift 

article we reflect on how one of these ideas inspired serious research on the 

development of a new generation of intelligent and energy-efficient processors 

by the Microsystems Research Group (jointly led by Alex and I) at Newcastle 

University. 

1   Pretext 

  Continued technology scaling and engineering innovations have made digital 

services ever more affordable, thereby revolutionising the industrial age of data. A 

number of applications have emerged, which use deeply-embedded sensors to collect 

data and process them continuously, otherwise known as big data. Examples of these 

applications include smart computer vision, machine learning, e-governance and 

financial analytics. However, with widespread adoption of these services and 

applications the dimensionality and density of data are increasing drastically, 

rendering an unprecedented resource proliferation. Such proliferation of resources is 

likely to cause an uncontrolled energy consumption challenge for computing 

hardware systems, particularly to technology and service providers. For achieving 

transformational energy efficiency while also coping with increased performance 

needs a key solution is to design adaptive approximate computing systems. Recently, 

extensive research efforts have been initiated by the Microsystems Research Group 

(jointly led by Alex and I) at Newcastle University to design such computing systems. 

The aim is to learn the data significance during runtime and to process them 

dynamically adapting to their significance using novel logic design and system-level 

interactions. This rest of this article will report how these ideas evolved from informal 

discussions over coffee at Buttery and how they have inspired serious research on the 

design, implementation and validation of a new generation of intelligent and energy-

efficient processors. 
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2   Prologue: Buttery Discussions 

Buttery is a retreat space, popular among the students and staff members of the 

School of Electrical and Electronic Engineering (EEE) at Newcastle University. 

When I joined the school as a Lecturer in Electronic Systems (in September 2015), 

this was the first place where Alex invited me to have a coffee with him and discuss 

my research ambitions. During our rather informal discussions, the words ‘adaptive’, 
and ‘approximate’ were pronounced in very many contexts, mostly within the remits 
of electronic computing systems. Our discussions made good strides in understanding 

how the recent computing systems have evolved and how the future systems needed 

to emerge with magical adaptability features to play the perfect tradeoff game 

between energy consumption and performance every time.  

In Buttery we started a little tradition of round-robin payment system for the coffee 

there – e.g. if Alex paid for the coffee the day earlier day I’d be the one to pay the 
next day and so on. Many a times, we would not remember who paid in the previous 

day. In those times we would vaguely try to remember by tagging with some 

‘significant’ ideas that have been discussed in the previous day. We could then find 

out who paid for the coffee through backtracing techniques, much like GCC’s 

debugging features. We both appreciated how our brains tag ‘significance’ to our 
everyday activities and process them accordingly. We also recognised how more 

‘significant’ activities are stored by our brain in fast access memory for us to quickly 
recapitulate them. 

Strangely enough, these little appreciations and observations triggered us to think 

and ask – ‘why shouldn’t our computing systems and storage subsystems also work 

likewise – i.e. modulate and adapt computation and storage efforts based on the data 

significance?’ Finding “the” answer meant more work and investigation as outlined in 

the following sections. 

3   Parode: Energy Consumption and Performance Tradeoffs 

To find “the” answer it was important to understand the underlying challenges with 
existing computing systems. The increasing performance demands and resulting 

energy were the first issues that needed a bit of retrospective analysis without getting 

into details of big data just yet. 

The performance needs of modern embedded computing systems have evolved 

dramatically over the years due to many emerging applications. According to 

Koomey’s law, the performance per unit watt has doubled every 1.57 years [1], which 

is faster than the originally predicted 1.8 years by Moore’s law [2]. The performance 

improvement is being enabled by technology scaling and innovative parallelisation 

techniques. However, the power consumption is also increasing uncontrollably as 

demonstrated by Dennard’s scaling law [3] and numerous experimental observations 

[4-5]. Indeed, achieving scalable performance improvement with energy-efficiency is 

highly challenging for current and future generations of computing systems. 

To minimise energy consumption, traditional approach is to reduce the supply 

voltage [6]. However, due to capacitive load imbalance, this also necessitates 
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lowering the operating frequencies [7]. Such reduction of supply voltage, coupled 

with the operating frequency is generally known as dynamic voltage/frequency 

scaling (DVFS), which ensures energy minimisation at the cost of degraded 

performance [6]. Over the years, significant research works have been carried out to 

demonstrate energy and performance tradeoffs in computing systems [8-11]. 

To improve performance at low energy consumption, an effective approach is to 

operate each processor core at low voltage/frequencies and also parallelise the 

computation tasks between multiple cores [12]. Significant research has been carried 

out in the recent past for understanding the best possible schemes and architectures to 

parallelise application tasks, including both compute- and memory-intensive ones. 

These works have revealed that the best energy efficiency is exhibited when compute-

intensive parallel application tasks are exercised with higher number of cores 

operating at low voltage/frequency. The memory-intensive parallel workloads tend to 

favour lower number of cores at higher operating voltage/frequency for energy 

efficiency [13].  

However, modern application workloads cannot always be statically labelled as 

CPU- or memory-intensive. Workloads change dynamically in these applications all 

the time. Often the same task or parallel thread can exhibit compute- and memory-

intensive contexts at different times [13]. To address such dynamic variations, 

continuous runtime adaptation approaches have also been demonstrated recently by 

researchers. These approaches use feedback from the processor performance counters 

to adjust number of parallel threads, cores, architectural configurations and/or 

operating voltage/frequency to achieve energy-efficiency [9-10]. 

Existing system-level approaches have established the relationships between 

application workloads and power control knobs to achieve energy efficiency. 

However, modern big data applications are posing new challenges energy efficiency 

at required performance levels. This is because these applications are typically 

characterised by high volume and velocity (i.e. real-time processing needs) of data, 

which will require unprecedented resource allocations (for both computation and 

storage) using the existing approaches [14].  

It is clear that existing computing approaches will hardly be enough to meet the 

growing performance needs for big data applications. Specific details of this are 

highlighted next. 

4   Agôn: Key Challenges of Big Data Computing 

Achieving energy efficiency for computing with big data applications is highly 
challenging using the existing approaches due to the following three major reasons: 
Data proliferation: Existing big data applications have been characterised with a 
volume growth of several hundreds of petabytes per day. It is envisioned that such 
expansive growth will continue for the foreseeable future, generating many orders of 
magnitude higher volume of data. Current research suggests that the typical energy 
consumption of computing these data will soon approach the complexity of O(N3) or 
higher, where N is the number of data samples [15].  
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Undue performance scaling: To compute such a large volume of data at the required 
performance, currently existing computing systems exploit system-level controls, e.g. 
increased number of parallel cores and high operating frequencies through DVFS. 
However, these controls eventually cause diminishing returns in terms of increased 
energy consumption and complexity in the systems design with large area. In some 
cases, to meet the high performance demands custom designed accelerators are also 
used, which less flexible in terms of design, adaptability and programmability. 
Indiscriminate Data Processing: The raw data of these applications acquired from 
the sources (e.g. sensors or humans) are processed identically in existing computing 
systems, ignoring the underlying informational value, i.e. significance, of the data. 
However, in reality the significance of acquired data varies dynamically over time and 
space depending on the application [16]. As a result, existing computing systems 
exhibit indiscriminate efficiency in data processing, resulting in large energy costs.  

To foster the growth of this technology with the required energy reductions a 
paradigm shift is much needed from the existing significance-agnostic computing to 
significance-driven computing. Our research efforts in this direction is briefly 
outlined in the next section. 

5 Parabasis: Significance-Driven Computation Research 

  Recently, extensive and serious research works have been initiated by the 
Microsystems Research Group at Newcastle University, led by Alex and I, to design 
such computing systems, including logic-level and system-level approaches. Our 
works at these levels are aimed at achieving holistic energy-efficiency through 
adaptive computation approach that can intelligently infer the significance of 
underlying information (i.e. bits and/or data). We give a brief account of the summary 
of our research to date in the following key areas, as follows. 
 
5.1. Significance-Driven Low-level Logic Design:  
  In existing data processing logic design, there is no notion of modulating 
processing effort based on their bit-level significance. All bits are treated equally to 
generate a precise output. However, many emerging applications are inherently 
tolerant to imprecisions in less signigicant bits, such as computer vision, data mining 
and machine learning. This gives a unique opportunity to design next-generation 
processing logic such that computation efforts can adapted to the significance at bit-
levels for achieving energy efficiency.  
  To this end, our low-level logic design is aimed at developing novel arithmetic and 
logical data processing subsystems. The more significant bits are treated with 
progressively higher precision through traditional computation, while bits with lower 
significance are compressed using variable clustering (i.e. vertical grouping of partial 
terms). As a result of such logic design, complexity of computation in terms of logic 
cell counts and length of the critical paths are drastically reduced.  
  A number of multipliers using this approach have recently been designed using 
SystemVerilog and synthesised using EDA tools. Our post-synthesis experiments 
with a 128-bit multiplier showed that up to 60% less energy consumption and 53% 
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performance improvement can be achieved, when compared with traditional Dadda 
and Wallace multipliers. These gains are achieved at a low loss of accuracy due to 
significance-driven bit processing - with up to 30% inaccuracies for small valued 
operands and exponentially reduced imprecision for higher values. We are currently 
designing real application demonstrators using this approach to show the comparative 
advantages of our approach. 
 
5.2. Extracting Data Significance at System-level:  
  Data are crucial parts of big data applications. However, not all data carry the same 
informational value. Traditional computing systems are agnostic of such values as all 
data are processed indiscriminately and equally. As a result, a large energy cost is 
incurred for processing a large volume of data, much of which have little or no 
significance.  
  To extract the informational value of data at operational time we have taken 
initiatives to modify processor architectures underpinning the theory and practices of 
approximate computing and machine learning. These involve designing a data 
inference engine as middleware, which will use application domain-specific 
knowledge to evaluate measurable significance of data that are being processed in 
parallel. The aim is to use the measured significance to dynamically scale the 
computation efforts, e.g. data with higher significance will be processed using 
accurate data processing unit and standard data flow (prefetch, decode and execute), 
while those with less significance will be processed using low-complexity and 
inaccurate data processing unit using already existing cache data (i.e. avoiding further 
prefetch flow). This will eventually result in significant energy reductions for data-
intensive applications.  
  To date we have already carried out proof-of-concept designs, currently also 
carrying out implementation-ready logic design. We will follow this by integrated 
processor design and optimisation, including cache localisation for fast middleware 
routines and DVFS features to corroborate energy reductions. The new processor will 
be validated using real case study big data applications for practical demonstrations to 
key industries and academia in the UK and beyond. The overarching goal will be to 
create a critical mass in this important area. 
 
5.3. Significance-driven Big Data Storage: 
  Memory constitutes a major component in modern computing systems. The energy 
efficiency or performance of these systems cannot be achieved in isolation without 
considering the memory effect. As such, our future research plan will include 
significance-driven memory management, including cache optimisation and 
development of fast memory systems for significant data.  

6   Exode: Conclusions 

  Our rather informal Buttery discussions over such a short period time have given us 
the impetus to combine our expertise synergistically to carry out serious research on a 
new breed of intelligent processors. So this Exode is really just a beginning rather 
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than an end. We will continue to engage in further fruitful discussions in the future, 
potentially involving other interested academics and industrial peers to advance the 
understanding of research needs further. 
  We expect that our research will be a small but important contribution to UK’s 
world-leading portfolio in low power systems engineering. A key differentiator for 
maintaining this portfolio and enhancing it further will be to be able to design a new 
breed of intelligent processors with control over computation efforts. It is a relatively 
new area, which combines and advances the theory and practices of traditional 
approximate computing and machine learning. Our innovations in this space will be 
crucial to enable many emerging applications of profound impact on our businesses 
and society. 
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Workcraft: Ten Years Later
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Abstract A large number of models that are employed in the field of
concurrent systems’ design, such as Petri nets, Signal Transition Graphs,
gate-level circuits, dataflow structures have an underlying static graph
structure. Their semantics, however, is defined using additional entities,
e.g. tokens or node/arc states, which collectively form the overall state
of the system. We jointly refer to such formalisms as Interpreted Graph
Models (IGMs).
Workcraft is a framework for capturing, simulation, synthesis and
analysis of IGMs. It provides an extendible cross-platform plugin-based
front-end to a variety of computationally-intensive command-line back-
end tools. This paper gives the developers’ perspective on Workcraft

and overviews its evolution.

1 Introduction

We want our research to be used to make the world a better place. However,
technology transfer is challenging in practice due to a number of obstacles. One
of the primary research outcomes is scientific publications. However, engineers do
not have time to read them and do not normally have a necessary background to
comprehend and apply that knowledge, or even find the necessary publications.

One of the ways to make this knowledge more accessible is to encapsulate it in
software tools. Ideally, these tools should be usable by non-experts. In practice,
however, the situation is very different. A research tool is typically developed
up to a point when it can produce a table of results for a research paper. The
motivation to develop it any further is diminished afterwards – in the current
“publish or perish” academic culture it is usually more advantageous to start
exploring new topics for writing another paper, and it is also more interesting
than polishing old tools. Moreover, research funding is usually granted for a very
limited period of time and so the academics, researchers, and PhD students who
developed the tool leave or get allocated to different projects. Hence, much of
research software has only a command-line interface with cryptic options, poor
documentation, limited error handling, requires modifying the source code to
adjust the tool to a particular variant of a problem and is not maintained.

Integrating several research tools into a coherent flow presents further chal-
lenges. File formats are often invented by the creators of the tools and are non-
standard. Furthermore, there are often gaps in the flow that have to be patched
to complete it. This requires a large amount of slog with no perspective of pub-
lishing its results. Therefore, using research software in a real industrial flow is
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often infeasible. The net result of the above is that much knowledge remains bur-
ied in publications or “experts-only” tools and is not accessible to practitioners.

Workcraft is unusual in several respects. There have been a series of fun-
ded projects related by the common topic of application of Petri nets to circuit
design. This allowed to have relatively stable group of developers and sufficient
time to make the tool usable. Furthermore, early versions of the tool attracted
industrial interest, which motivated putting more effort into user interface de-
velopment. In addition, several previously developed command-line tools were
deployed within Workcraft as back-ends. In turn, the success of Workcraft
and the perspectives of industrial exploitation motivated the developers of back-
ends to maintain and enhance the functionality of these tools.

As the result, Workcraft opens access to the goodness hidden in research
tools. The main enabling factors for this to happen are:

– Availability – open-source front-end and plugins, permissive freeware licenses
for back-end tools, as well as frequent releases with bug fixes and features
requested by users.

– Usability – elaborated GUI that was developed with much feedback from the
users.

– Portability – it runs on Windows, Linux, and Mac OS X operating systems.
– Extendibility – the framework is designed to easily include new IGMs and

interfaces to back-end tools as plugins.
– Automation – several complete design flows have been implemented by

bridging the gaps between back-ends and converting file formats.

The focus on availability, usability, portability and extendibility, along with
extensive networking, has proven effective – there is a large and diverse user base.
For example, in 2015 there were 4.4k downloads from 1.2k unique IPs and 11.1k
visits to http://workcraft.org/, 4.7k of them from unique IPs. During that
year there were 4 releases with 49 bug fixes and 23 new features. We do not know
all Workcraft users, but one can identify at least the following categories:
developers, industrial users, undergraduate students, academics, researchers, and
PhD students.

In this paper we give the developers’ perspective on Workcraft. The main
principles of Workcraft architecture and its design flow are outlined in Sec-
tions 2 and 3. Supported IGMs together with relevant case studies use are presen-
ted in Sections 4 and 5. We analyse the categories of Workcraft users in
Section 6 and overview the timeline of Workcraft evolution in Section 7.

2 Workcraft philosophy

In this section we discuss several basic principles/ideas underlying Workcraft.
Some of them are visible to the user and aimed at enhancing the user experience.
Others are concerned with the internal organisation and aimed at simplifying
the integration of new research tools.
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2.1 Interpreted Graph Models

A large number of models that are employed in the field of concurrent systems’
design, such as Petri nets, Signal Transition Graphs, gate-level circuits, dataflow
structures have an underlying static graph structure. Their semantics, however, is
defined using additional entities, e.g. tokens or node/arc states, which collectively
form the overall state of the system. We jointly refer to such formalisms as
Interpreted Graph Models (IGMs) [21].

The similarities between the interpreted graph models allow for links between
different formalisms to be created, either by means of adapter interfaces or by
conversion from one model type into another. This greatly extends the range of
applicable modelling and analysis techniques.

Workcraft is designed to provide a flexible common framework for de-
velopment of interpreted graph models, including visual editing, (co-)simulation
and analysis. The latter can be carried out either directly or by mapping a model
into a behaviourally equivalent model of a different type (usually a Petri net or
Signal Transition Graph). Hence the user can design a system using the most
appropriate formalism (or even different formalisms for the subsystems), while
still utilising the power of Petri net analysis techniques. In Section 4 there is a
summary of the currently supported IGMs.

2.2 Front-end vs. back-end

Workcraft provides front-end to a number of command-line back-end tools,
such as Petrify [10,2] and UnfoldingTools toolkit [3]. The calls to back-end
tools are transparent to the user: Workcraft automatically chooses the correct
command-line parameters, parses the output of the tools and presents it to the
user in an appropriate graphic form. For example, to check whether a digital
circuit conforms to its environment the user needs to click a single menu item.
In response the following sequence of actions is performed by the front-end:

1. The circuit is converted to an equivalent STG.
2. The internal signal transitions in the environment STG (it models the con-

tract between the circuit and its environment) are replaced by dummies –
this is required for technical reason.

3. The STGs obtained in the previous two steps are composed by calling
PComp back-end with appropriate command line parameters.

4. The front-end expresses the conformation property as an expression in
Reach language. Parts of this expression are specific to the circuit under
test and need to be calculated by the front-end.

5. The composed STG is unfolded by calling Punf back-end.
6. The resulting unfolding prefix and Reach expression are passed to MPSat

back-end that performs verification.
7. The verification results are parsed by the front-end. If the property holds

then an appropriate message is displayed. Otherwise the violation trace of
the composed STG reported by MPSat is projected to the circuit, and the
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user can execute it step-by-step to debug the problem. All the capabilities
of the front-end simulator are available, e.g. navigation within the trace,
branching, etc.

Each of the above steps looks trivial and “boring” (and hence unpublishable) from
the research point of view. However, checking conformation is a frequent task
during the circuit design. Performing all the above steps manually would have
been very tedious and error-prone, discouraging the casual user from applying
formal verification. Hence using Workcraft makes it feasible for the user to
harness the power of research tools, which helps to catch the bugs early in the
design process, and reduces the risk of an incorrect circuit going into production.

2.3 Plugin-based architecture

Extendibility is an important part of Workcraft philosophy and this is reflec-
ted in its plugin-based architecture [23]. In particular, there is a framework for
adding new IGMs and integrating new back-end tools. This framework provides a
number of standard services available to the plugins, such as (de-)serialisation of
IGMs, common editing features (creation of nodes and connections, undo-redo,
copy-paste, etc.) and model visualisation.

To add a new IGM the developer has to implement a small set of Java
interfaces for mathematical and visual representation of the IGM. Most of the
functionality has default implementations provided by the Workcraft core
and only “unusual” features of a new model need to be explicitly implemented.

For integration of a back-end tool the developer needs to provide versions
of the tool for the supported operating systems (this is usually not a problem
because console applications are relatively easy to port), and implement a simple
Java interface that specifies how to run the tool, interpret its output, which IGMs
it is applicable to, and which menu to integrate it into.

There is also a possibility to add more complicated plugins that interact with
visual representation of the IGMs, e.g. the simulation plugin.

3 Workcraft design flow

The Workcraft design flow is modelled by the Petri net in Figure 1. A typical
way of designing a circuit is as follows.

1. The STG specification (place specification) is created in the Workcraft
editor (transition edit) or perhaps imported from a *.g file (transition import).

2. The user verifies various properties of this specification, such as consistency,
deadlock freeness, output persistency, input properness, complete state cod-
ing (CSC) and some custom design specific properties (transition verify).

3. The verification report from a back-end tool (place report) is then presen-
ted to the user in a convenient form, e.g. a violation trace can be simu-
lated (transition simulate), CSC conflict cores can be visualised as a core
map or a core density map (transition visualise). This helps the user to de-
bug the STG.
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Figure 1: Workcraft design flow.

4. Once a correct specification is obtained, it can be implemented as a circuit.
At this point the CSC property may still be violated, and so a new STG
where the conflicts are resolved by inserting new internal signals can be auto-
matically created by synthesis back-ends (transition synthesise; hence place
specification will contain two tokens representing the original and modified
STGs).

5. At this point the user can synthesise a digital circuit (transition synthesise;
hence place specification will contain three tokens representing the two STGs
and the circuit).

6. The user can manually alter the circuit, e.g. by improving the layout or
changing the polarity of some internal signals (transition edit).

7. The circuit must be verified against the initial specification, as synthesis tools
are complicated and may have bugs and manual editing is error-prone (trans-
ition verify). Verification report is presented to the user in a convenient form.

8. The created models can be exported, e.g. as Verilog netlist for circuits and
*.g files for STGs (transition export). In addition models can be exported
in a variety of graphic formats for inserting into documentation or research
papers.

4 Workcraft models

As explained in Section 2, Workcraft supports several IGMs, and new models
are added from time to time. Some of the most popular IGMs are described
below. A crucial aspect of Workcraft is interaction and synergy between
different types of IGMs.

A popular formalism for capturing the behaviour of a concurrent system is
Finite State Machines (FSMs). The advantage of FSMs is their relative simplicity
compared to the alternative formalisms. However, they represent concurrency
by multi-dimensional interleaving ‘diamonds’ which is unnatural and leads to
exponential blow-up in the size of the model [27].

Petri nets (PNs) [19] are a well-known ‘true concurrency’ formalism which
is much more convenient for practical modelling. Workcraft supports con-
versions between FSMs and PNs: one can construct the reachability graph of a
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PN or, vice versa, synthesise a PN as a compact representation of a behaviour
expressed as an FSM – see Vending Machine case study in Section 5.1 for FSM
and PN.

Signal Transition Graphs (STGs) [9,24] are a kind of PNs where transitions
are labelled by rising and falling edges of signals. STGs are often used to specify
the behaviour of speed-independent Digital Circuits [18,12], which is another
IGM supported by Workcraft. Many kinds of interactions and conversions
between these two models are supported. For example, one can synthesise an
STG as a circuit using several implementation styles or convert a circuit to an
STG – this is necessary for composing it with the environment expressed as an
STG for subsequent verification of various standard and custom correctness prop-
erties [22]. Section 5.2 presents a case study on designing a speed-independent
circuit using STGs.

Dataflow Structures (DFSs) [25] and xMAS Circuits [8] are high-level models
for designing pipelines, in particular data paths of circuits. Workcraft sup-
ports the simulation and analysis of these IGMs by converting them to STGs
and utilising the established functionality. Some model-specific functionality such
as finding bottlenecks, cycle analysis, and performance optimisation using wag-
ging [7] are also supported. Section 5.3 showcases DFS functionality using a
baseband transmitter pipeline.

Conditional Partial Order Graphs (CPOGs) [15] is a formalism for specifying
a collection of behavioural scenarios, and combining them into a compact graph
representation using the optimal encoding. For example, CPOGs can be used for
synthesis of application-specific microprocessor instruction sets, see Section 5.4
for an ARM Cortex-M0 case study.

Structured Occurrence Nets (SONs) [14] is a model for capturing and analysis
of causality and concurrency in families of execution traces. They can be used
to represent the current state of crime or accident investigation – see Section 5.5
for the use of SONs to model Ladbroke Grove rail crash.

The diagram in Figure 2 shows the relationships between the currently sup-
ported IGMs. There are several categories of automatic conversions. Synthesis,
e.g. from STGs to Digital Circuits or from FSMs to PNs, is a computationally
intensive procedure whose resulting graph is structurally very different from the
input graph. Translation is a relatively simple transformation yielding a struc-
turally similar graph. Lossless translation, e.g. from PNs to STGs, does not lose
information, i.e. the original model can be restored from the result of the con-
version. Lossy translation, e.g. from STGs to PNs, loses some information, in
this case the signal information attached to transitions.

5 Case studies

The applications of Workcraft are wide-ranging: from modelling concurrent
algorithms and biological systems to designing asynchronous circuits and invest-
igating crimes. In this section we present several examples of how Workcraft
can be used.
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Figure 2: Relationships between Workcraft models.

5.1 Modelling Concurrent Systems: Vending Machine

In this case study Workcraft is used to capture the behaviour of a concurrent
vending machine as an FSM shown in Figure 3a. It allows the user to insert a £1
coin (action pound) concurrently with making an order (actions coke and choc).
Note that the concurrency between actions pound and coke as well as pound and
choc is represented by interleaving – there are two corresponding diamonds in
this FSM, and the layout is chosen so as to highlight them.

(a) FSM specification. (b) Synthesised Petri net.

Figure 3: Concurrent vending machine.

A PN can often be automatically obtained from the initial FSM model by the
process called synthesis (Conversion→Net synthesis [Petrify] menu item of
FSM model). The resultant PN is shown in Figure 3b; one can validate that
be reachability graph of this PN coincides with the original FSM. Note that
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transitions pound and coke as well as pound and choc are now truly concurrent
in the PN.

5.2 Design of Asynchronous Circuits: VME Bus Controller

In this case study Workcraft is used to formally specify and derive a speed-
independent implementation of VME bus controller. A controller for VME bus
provides an interface between a data bus and a slave device, as shown in Figure 4.

dsw

dsr

dtack

d

lds

ldtack

VME bus

controller

transceiver

device

bus

Figure 4: VME bus interface.

The controller has two modes of operation: reading from the device into the
bus (activated by dsr+) and writing from the bus into the device (activated by
dsw+). In the reading mode, a request to read data form the device is made
through lds+. When the device has the data ready and this is acknowledged by
ldtack+, the controller opens the transceiver by d+ and notifies the bus that
data is ready for transfer by dtack+. After the read operation is complete, all
the signals return to the initial state.

In the writing mode, once the data is stable on the bus, the transceiver is
opened by d+, and the write request is made by lds+. When the device ac-
knowledges the receipt of data by ldtack+, the transceiver is closed with d-, thus
isolating the device from the bus, and the bus is notified that the write operation
is complete by dtack+. After that all the signals return to the initial state.

The read and write modes of VME control are captured in Workcraft
by the STGs in Figures 5a and 5b respectively. These two STGs describe the
behaviour of the same circuit and need to be combined into one specification by
merging their initial states. Note that transitions ldtack-, lds- and dtack- occur
in both branches of the choice and can also be merged. For merging places and
transitions one can use the corresponding operations in the Transformations

menu. The complete STG specification of VME bus controller is shown in Fig-
ure 5c.

Before proceeding to synthesis the STG needs to satisfy the following sound-
ness properties (Verification menu of Workcraft enables checking all these
properties with a single click):

– Deadlock freeness – every reachable marking enables at least one transition.
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(a) Read operation. (b) Write operation. (c) Combined operation.

Figure 5: STG specification of VME bus controller.

– Consistency – the ‘+’ and ‘–’ transitions of every signal alternate in every
execution, always starting with the same sign.

– Input properness – an input cannot be disabled by an output or internal
signal, and cannot be triggered by an internal signal.

– Output persistency – an enabled output or internal signal cannot be disabled
by any other signal.

The STG specification can now be synthesised into an asynchronous circuit. A
complex-gate solution is as follows (csc0 signal was automatically inserted by
Petrify back-end to resolve a CSC conflict):
INORDER = dsr dsw ldtack d dtack lds csc0;

OUTORDER = [d] [dtack] [lds] [csc0];

[d] = dsr ldtack csc0’ + dsw (csc0 + ldtack’);

[dtack] = d’ csc0’ (dsr’ + dsw) + dsw’ d;

[lds] = csc0’;

[csc0] = dsr’ d’ (csc0 + dsw’) + ldtack csc0;

This solution uses complex gates that do not usually exist in real gate libra-
ries. Such gates need to be decomposed to map them to existing library gates –
this is done by logic decomposition that preserves speed-independence of the cir-
cuit. The library of available gates can be passed to Workcraft in SIS GenLib
format.

The result of technology mapping into TSMC gate library (with an addition
of C-elements) is shown in Figure 6. One can verify (via Verification menu)
that the circuit implementation is deadlock-free, hazard-free, and conforms to
the original STG specification.
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Figure 6: Implementation of VME bus controller. The dotted lines through the
inverters express the timing assumption that their delays are smaller than any
other gate delay in the circuit.
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5.3 Analysis of Asynchronous Pipelines: Baseband Transmitter

Pipelines can be modelled in Workcraft using the Dataflow Structure (DFS)
formalism. This abstraction separates the structure and the function of the sys-
tem from the implementation details of its components.

The possibility of formally modelling and reasoning about the system at this
architectural level is crucial, as the design decisions made at this level will affect
all the subsequent stages of the design. Moreover, optimisations performed at
this level are likely to have a much stronger impact than micro-optimisations
applied towards the end of the design process.

A DFS model in Figure 7a represents pipeline stages of a baseband trans-
mitter at a rather high level of abstraction. Even at this level important design
decisions can be made about specific implementation of the pipeline components.
For example, information about the maximum number of streams to encode (up
to 4 streams), available components for Fast Fourier Transform (maximum 64-
points) and the preliminary performance estimates (interleaver is the bottleneck
as it is 3 times slower than the other pipeline stages) define the refinement of
the DFS model shown in Figure 7b. Note that the refinement of the interleaver
stage into three concurrent slices was obtained automatically using the 3-way
wagging [7] operation in the Transformations menu.

5.4 Instruction Set Architecture: ARM Cortex-M0+

Workcraft can be used to specify and explore processor Instruction Set Ar-
chitectures (ISAs), and synthesise efficient hardware implementations for their
microcontrollers. In this section we use Workcraft to specify a subset of ARM
Cortex-M0+ instructions, automatically derive optimal opcodes for them, and
synthesise a Verilog netlist for the corresponding microcontroller. The presen-
ted approach relies on CPOGs as the modelling formalism [15] that provides
the designer with a convenient ISA visualisation notation as well as analysis
methods.

Figure 8 shows 11 partial orders corresponding to instruction classes of ARM
Cortex-M0+ processor [1][11]. The events in these partial orders correspond to
primitive computation steps performed during instruction execution:

– PCIU stands for the Program Counter Increment Unit. It is used to advance
the program counter when fetching instruction opcodes and operands from
the program memory.

– The Instruction Fetch Unit (IFU) loads instruction opcodes and immediate
instruction operands from the program memory into the processor instruc-
tion register.

– The data memory can be accessed using the Memory Access Unit (MAU),
which transfers data between the processor registers and the data memory.

– The Arithmetic Logic Unit (ALU) is capable of performing basic compu-
tations such as addition, multiplication, comparison, bitwise Boolean logic
operations, etc.
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Figure 8: ARM Cortex M0+ instruction classes.

The partial orders can be created in Workcraft either by individually pla-
cing and connecting events, or by using the Parameterised Graphs Algebra [17]
plugin, which allows one to specify partial orders algebraically (as an example,
the partial order ALU (register to register) in Figure 8 can be specified by the
expression PCIU -> IFU + ALU).

Figure 9: Compact representation of ARM Cortex M0+ instructions.

The CPOG encoding plugin Scenco [11] can be used to automatically de-
rive instruction opcodes minimising the area of the resulting microcontroller.
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The plugin allows one to set a desired opcode length and reserve opcode bits in
certain instructions. Several encoding algorithms are supported – see Table 1.
Note that choosing good opcodes has a significant impact on the area of the
resulting microcontroller. Having computed the optimal opcodes for the given
partial orders, it is possible to represent them compactly as a CPOG, see Fig-
ure 9. Furthermore, it is possible to synthesise the processor microcontroller that
can execute all 11 instruction classes. The microcontroller can be automatically
synthesised as a Digital Circuit in Workcraft – see Figure 10, or exported as
a Verilog netlist for processing with traditional EDA toolkits.

Figure 10: Synthesised microcontroller.
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Encoding algorithm Microcontroller area, µm2 Gate count

Sequential assignment 468 28

Random, 10 samples 436 28
Random, 100 samples 364 24
Random, 200 samples 372 24

Heuristic [11], 10 seeds 312 21
Heuristic, 100 seeds 256 16
Heuristic, 200 seeds 248 15

SAT-based [16] 256 16

Table 1: Comparison of CPOG encoding algorithms.

5.5 Accident Investigation: Ladbroke Grove Rail Crash

In this case study Workcraft is used for modelling Ladbroke Grove rail
crash [20]. Ladbroke Grove, London, was the scene of a serious railway acci-
dent in October 1999. An outbound diesel train collided with a high speed train
at the combined velocity of 130mph, with 31 people killed and over 500 injured.
The immediate cause of the disaster was that the diesel train passed signal SN109
at red, although there were many other contributing factors.

The SON model in Figure 11 captures the details of the Ladbroke Grove rail
crash. It consists of five occurrence nets that represent separate parties of the
accident:

– signals – represents the track signals that diesel train passed by in sequence.
The first signal SN43 is green (proceed). The next two signals SN63 and
SN87 are both yellow (caution). The last one SN109 is red (stop).

– driver – shows the behaviours of the diesel train driver. It captures the opera-
tion of the train speed control with seven speed notches (1-7) and the brake
actions.

– diesel train – models the speed of diesel train as a reaction to driver actions.
– control centre – is the behaviours of the signaller who was in charge of mon-

itoring the situation.
– HST – models the high speed train shortly before collision.

Workcraft allows one to verify several kinds of properties of SON models,
including behavioural, structural and temporal consistency.

6 Workcraft users

User-centred design process is at the heart of Workcraft philosophy. Work-
craft is used for different purposes, such as education, research, and industrial
circuit design to list a few. Therefore there are several categories of users: taught
students, academics and research students, industrial engineers. The developers
of Workcraft also use it intensively in their research. It is not trivial to de-
velop a tool that suits all these categories. Hence the developers made a point not
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Figure 11: SONs model of the Ladbroke Grove rail crash.

to impose their design decisions on the users, but rather listen to their feedback
and try to understand their needs. This resulted in an intuitive GUI. Historically
there have been many reports of features as bugs because the users were con-
fused due to lack of experience and understanding. Rather than dismissing these
reports, an effort was made to improve the interface and address the sources of
confusion.

Plenty of resources to support Workcraft users are available from the http:

//workcraft.org/ website:

– binary distributions for Windows, Linux, Mac OS X and a link to the source
code at GitHub;

– educational materials in the form of tutorials and case studies;
– user manuals;
– guidelines for developers of new IGMs, plugins, and back-ends;
– news track and announcement of the training events.

6.1 Education

Workcraft and the developed educational materials have been deployed in
the learning process at Newcastle University as a part of undergraduate module
CSC3324: Understanding Concurrency for Stage 3 students within the Research-
led Teaching initiative. Not only this enhanced the learning process for the stu-
dents, but the developers have also benefited by gathering invaluable data about

– how novice users attempted to install and use Workcraft;
– unexpected use patterns;
– features which students found difficult or confusing;
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– bug reports;
– suggestions for improvements;
– feature requests.

This data helped to improve the stability and usability of Workcraft. The
developers directly engaged with the students and tried to resolve the issues as
soon as possible. In particular, several versions of Workcraft were released in
the course of the module, so that the students could see their feedback making
real difference.

Workcraft is also used by other universities to support teaching of asyn-
chronous circuit design, in particular by Technical University of Denmark for
02204: Design of Asynchronous Circuits course and by Southampton University
for the MSc Systems on Chip course.

6.2 Research

Researchers use Workcraft for formal modelling or designing various systems.
Accessible simulation, synthesis and verification features enhance this process
and automate some routine and tedious parts of it. Researchers occasionally
come up with new IGM formalisms. The extendible architecture of Workcraft
makes it possible to implement them as plugins, benefiting from the functionality
that is already present in the Workcraft core and existing plugins.

An important part of researcher survival is funding applications. Work-
craft has been used, and is planned to be used, in several research proposals.
There are several ways in which Workcraft is useful for this purpose:

– As a platform for developing solutions for the problems stated in the project
proposal.

– As an impact and dissemination channel: the research results are encapsu-
lated in Workcraft to enable non-expert users to reap the benefits.

– Establishing industrial links which strengthen the impact cases. Industry
also helped to focus on industrially relevant topics and discover new areas
of research (e.g. analogue-to-asynchronous interfaces) generating ideas for
research proposals.

– In the REF2014 UK national exercise, one of the Newcastle socio-economic
impact case studies was Worldwide Adoption of Asynchronous Circuits and
Improved Business Process Modelling – it was judged to be world-leading.
This case study included the development of techniques and tools for the
synthesis of asynchronous systems (these tools are now incorporated into
Workcraft as back-ends). This achievement can be leveraged in future
funding applications.

On the practical side in research papers related to Petri nets and asynchronous
circuits one usually needs a number of diagrams. Using LATEX primitives or
general-purpose graphics editors is tedious and time-consuming. Workcraft
export feature allows one to produce high quality diagrams of the supported
IGMs in a variety of graphic formats with minimum effort. This also improves the
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consistency between the published diagrams and the models that were actually
used in the research.

6.3 Industry

Interaction with industry is of paramount importance for the researchers living
in the ivory tower of academia, and industrial uptake is a crucial criterion of
success for research software. We are proud that Workcraft is used by several
hardware design companies to develop real-life electronic circuits.

Interaction with industry proved to be of enormous use. It provided real-
life case studies, gave insight into problems faced by industry where research is
necessary and what kind of solutions can be actually implemented in silicone.
We had a number of joint projects and publications with industrial partners
and exchanged numerous visits. Several tutorials and teaching materials were
developed to address educational needs of engineers. The feedback and feature
requests submitted by the engineers helped to improve the usability of Work-
craft in industrial context as well as identify and implement missing links in
the design flow.

7 Workcraft timeline

Workcraft started in 2006 as a PhD research project of Ivan Poliakov to
provide a modelling and simulation tool for PNs and STGs. Additional require-
ments were to make it cross-platform, user-friendly, and easily extendible. The
result proved to be a convenient framework for a range of PN-like models (sub-
sequently called IGMs), and other researchers started adding their favourite
formalisms to Workcraft.

Figure 12 captures the history of Workcraft as a SON model. The cent-
ral part of the diagram represents the development of Workcraft versions,
highlighting some major features associated with each release. The shaded ver-
tices denote new IGMs introduced in the corresponding release. Developers of
the codebase and their contribution to specific features are listed at the top.
The main dissemination results in terms of exhibition demonstrations, training
sessions, and teaching are at the bottom of the diagram.

The main milestones in Workcraft development are as follows:

– Workcraft 1 series (A New Hope) was implemented in Java with native
libraries for OpenGL graphics. It supported PNs, STGs, ACMs and Digital
Circuits models. It also worked as a sandpit for trying different flavours of
self-timed datapath models with various token game semantics. This lead to
formalisation of a folklore static DFS model and its extension with dynamic
elements. Figure 13 shows Workcraft v1.0 when simulating a motor con-
trol system with asynchronous communication between slow speed controller,
fast torque controller, and the slowest adaptive parameter tuner [13].
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Figure 13: Modelling asynchronous communication in Workcraft v1.0.

– Workcraft 2 series (Metastability Strikes Back) was a major revision of
the core functionality, plugin architecture, file exchange format, and rende-
ring engine. Several new IGMs we added in this series, namely CPOGs, SONs
and Policy nets. A screenshot in Figure 14 shows a development of Petri net
representation of algorithm for generating a pair of public and private keys
used in AES encryption in Workcraft v2.0 [26].

– Workcraft 2.2 branch (Attack of Scala) was a heroic attempt to direct
the development into reactive programming paradigm using Scala functional
programming language. Due to inherent complexity of the design concepts
only few researchers could contribute to this development. As a result this
branch was abandoned.

– Workcraft 3 series (Return of the Hazard) is currently under active de-
velopment and follows regular schedule of releases (as opposed to rolling re-
leases in the previous development). The focus of this series is on improving
user experience and developing tutorial materials. Several new IGMs were
also added, namely FSMs, FSTs and DTDs. Figure 15 shows a screenshot of
Workcraft v3.1.0 when designing an asynchronous controller for a basic
buck converter [5].

155 x 238 mm

288         Danil Sokolov, Victor Khomenko and Andrey Mokhov



F
ig

u
re

14
:
R

efi
n
em

en
t

of
al

go
ri

th
m

fo
r

ge
n
er

at
io

n
of

A
E

S
ke

y
s

u
si

n
g

P
et

ri
n
et

s
in

W
o
r
k
c
r
a
f
t

v
2
.0

.

155 x 238 mm

Workcraft: Ten Years Later       289



F
ig

u
re

1
5
:
D

esig
n

o
f
a

con
troller

for
b
asic

b
u
ck

con
v
erter

in
W

o
r
k
c
r
a
f
t

v
3.1.0.

155 x 238 mm

290         Danil Sokolov, Victor Khomenko and Andrey Mokhov



8 Conclusions

Workcraft is a versatile framework for capturing, simulation, synthesis and
analysis of IGMs. It opens access to all the goodness hidden in command-line aca-
demic tools. This has significantly increased the user base, including industrial
users, and thus the research impact of this software. The future plans include:

– Promoting Workcraft to an even wider audience. This will be achieved
by creating and delivering tutorials to academic and industrial audience,
development of the website [4], and improving the user experience based on
their feedback.

– Encouraging other researchers to integrate their tools as back-ends.
– Extending Workcraft by adding new IGMs and implementing new fea-

tures for existing ones. This will often be based on user requests. For example,
waveforms model will be added in near future based on a request from an
industrial partner.

– Finding other areas of application for the supported methods. For example,
techniques based on STGs and speed-independent circuits appear to be well
suited for modelling and analysis of Genetic Regulatory Networks [6].
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Fifty Shades of Synchrony
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Abstract. This paper reflects on how, from the view of a VLSI designer,
we coordinate activities in our daily lives. Example cases from trans-
portation and recreational activities illustrate that both, synchronous
and asynchronous approaches are in use, and there are good reasons for
that. Interestingly, there is rarely a “black or white” – combined ap-
proaches can be found in many places.

It is the author’s hope that this paper can serve two purposes, namely
(a) to illustrate the differences in the fundamental principles of the two
timing paradigms and their implications for a doctor’s consultation, e.g.,
and (b) to inspire the reader to leverage the proven “grey” approaches
from everyday life for solving problems in the VLSI domain.

1 Introduction

Since several decades more or less all reasonably complex logic devices are
clocked, which means their timing is based on the synchronous paradigm. This
approach is very efficient in both, design and implementation. In parallel to that,
a relatively small research community of “asynchronous revolters” has kept on
elaborating conceptually elegant methods for designing circuits that operate in a
“self-timed” fashion, i.e. without a global clock. The continuous debate on which
approach, synchronous or asynchronous, is preferable has been fueled by the in-
creasing visibility of shortcomings of the dominant synchronous approach caused
by the proceeding miniaturization of device structures. Recent examples for such
deficiencies are power consumption/heat dissipation, and parameter or voltage
variations. More often than not, this debate unveils substantial misunderstand-
ings on the differences between asynchronous and synchronous paradigm. It is
the aim of this paper to contribute to a clarification here that is comprehensible
for non-experts. To this end we will go away from the domain of VLSI systems
and look for comparable problems we encounter in everyday life. There we will
investigate which solutions – synchronous or asynchronous – we employ there.
Beyond (hopefully) providing a good illustration for the key concepts of the ap-
proaches, such a comparison may inspire new solutions for VLSI that leverage
the wealth of (intuitive) knowledge and experiences of generations that shaped
these everyday solutions.
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2 Andreas Steininger

2 The VLSI designer’s world

In the VLSI domain the problem is to coordinate some kind of cooperative exe-
cution, like shared/distributed processing of a task (like in pipelined or parallel
execution units), access to a shared resource, or simply a data exchange. In the
latter, e.g., the receiver must capture the data at a point in time when they are
actually provided by the sender. Synchronization is required and becomes non-
trivial, as soon as the partners operate concurrently, i.e. each partner operates
at its own speed, determined by the complexity of its service (which may it-
self vary with input data or operating mode), communication delays, tolerances
and jitter, and, most notably, coordination with other partners. Especially the
latter can lead to extremely complex transitional dependences in the speed of
operation.

There are two fundamental ways to establish a synchronization: In (the most
pronounced form of) the synchronous paradigm, all partners are provided with
the same notion of time, and a global schedule determines which partner has to
perform which activity at which point in time. In fact, all partners receive the
same clock signal whose edges define a discrete time base. A partner’s schedule
can be as simple as “capture your input data with every rising clock edge”, or it
may be a very involved behavior, determined by a protocol state machine. The
important concept here is that each partner performs its activities based on its

local view only, without caring about the others. The global schedule (circuit
design) takes care that those local activities, in their combination, provide the
desired overall service. The clock period is usually constant, and each partner
has to finish its local task by a given deadline (usually the next active clock
edge), where most often being too early does not pose a problem but does not
yield a benefit either.

The asynchronous approach is based on an explicit communication between
the partners, which is, unlike the actual application data flow that may occur
between them as well, just dedicated to the coordination of their activities. This
so called handshake is composed of some partner initiating an activity (request)
and another one (or more) confirming its completion (acknowledge). For a data
exchange, the sender will, e.g., provide the data to the receiver’s input, then
request the exchange; and the receiver will capture the data and acknowledge
their reception. The important point here is that the partners communicate to
establish the coordination, so there must be suitable channels available for that
(the handshake signals)1. This communication allows taking care of the partner’s
state. In fact, the handshake establishes a closed-loop timing control between
the partners that adapts the timing of the local activities to the abilities of the
respective partner(s). In order to consider the partners’ state, one needs to know
all partners involved in a cooperative execution. In a multicast communication,
e.g., the sender can remove its data only after having received the acknowledges
of all intended receivers.

1 The handshake may be intertwined with the data.
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Fifty Shades of Synchrony 3

It is often non-trivial to directly identify the completion of a local event which
is needed to trigger a request or acknowledge signal. For the simple example of
a data exchange, e.g., it is not obvious when exactly the data have arrived
at the receiver’s input, neither when exactly their capturing by the receiver
is finished. The lack of such exact knowledge compromises the otherwise very
beneficial closed-loop behavior of the “delay-insensitive” asynchronous approach.
In contrast, the asynchronous “bounded delay approach” simply accepts this
imperfection and uses a time delay as an indirect measure for completion, thus
often saving significant overheads.

3 Synchrony and asynchrony in daily life

As a first real-life example let us look at transportation. Here the service is to
have a group of persons moved from location A to B jointly, and synchronization
is required to have these persons on the transportation medium upon departure.

The synchronous incarnation of this problem is a train: There is a global
schedule known to everyone, which gives a deadline for boarding. The train will
depart as scheduled, irrespective of who has boarded, and, as the author knows
well from his daily ride to work, without mercy for latecomers. No handshake, no
communication. The passengers are acting concurrently in the sense that each
of them has his own history of getting up in the morning, not finding his skirt,
meeting a friend on the way2, getting stuck in a traffic jam3, etc. Therefore they
arrive at the train at different times, and they are “synchronized” by the joint
departure.

The asynchronous counterpart would be a family returning with the car from
a hike. Dad will start driving home with the car, as soon as mom, Tom and
Nelly are comfortably sitting in the car. As long as Nelly is still flirting with the
incredibly nice boy she just met on the trail, there is no way for dad to start
going – even if since days he had insisted on being back home again before 7pm,
in order to make it for a beer with his friend Gordon.

Some key differences in the concepts become clearly visible here: For the train
it is neither known nor important who will join – the alignment of all passengers’
largely different concurrent activities to one closed control loop would cause
unmanageable complexity. Here the synchronous approach that abandons all
history and just sticks to the global schedule is an essential means of decomposing
this enormously complicated system; essentially moving the responsibility to
each single passenger.

Even if he wished, this does not work for dad’s problem, since he cares to
have the whole family on board.

An interesting hybrid approach is the airplane, where the luggage check-in
is ruled by a strict static time schedule (synchronous), while then the plane
will not depart without any of the checked-in passengers (asynchronous) – at
that point the airline knows each single passenger and, “for security reasons”,

2 This is an example of the transitional dependence mentioned above.
3 This is an example of a shared resource requiring/enforcing synchronization.

155 x 238 mm

296         Andreas Steininger



4 Andreas Steininger

cares to have everyone on board. While it was easy for dad to see that the
family is complete, the airline companies check completion by means of barcode
scanners, accompanied by manual counting through the flight attendants. This
fussy procedure nicely illustrates that completion detection can be quite tricky.
Interestingly, even in real life “bounded delay approaches” are sometimes being
pursued to circumvent completion detection. One (for the author particularly
annoying) example is the microwave oven: The user has to enter (and know!) a
cooking time instead of the desired temperature, simply because time is cheaper
to measure.

Another interesting aspect we can study with these transportation examples
is fault tolerance: If Nelly drove away in her new boyfriend’s car without saying
a word (handshake!), then dad would search the whole surroundings for her
instead of driving home. So asynchronous systems tend to deadlock in case of
faults. This property is deeply buried in their “wait for all” philosophy imposed
by the closed loop. Obviously such a concept will never work for a train. The
synchronous approach can easily handle the absence of a partner – it simply does
not care. Another way of viewing this is that the asynchronous paradigm has
no flexibility with the number of completion messages but is arbitrarily flexible
about their arrival times, while in the synchronous case there is no flexibility in
time but arbitrary flexibility in the number of completing partners.

However, if the train is late for whatever reason, some of its next track
segments will be used by other trains already4, and passengers will miss their
connections. Here the coordinated mission fails, as on that level of hierarchy
the underlying global schedule essentially relies on the correct behavior of all
partners. So the don’t care philosophy fails if there are partners that are mission
critical (like the professor in a lecture).

In practice one often finds solutions between these extremes, like an asyn-
chronous approach with time-out (waiting for a colleague to drop by in the office
during the afternoon, but at some point then going home when he still does not
show up), or a combined synchronous/asynchronous approach. An example for
the latter will be presented in the next section.

Before that, let us briefly turn to a different example, namely meeting friends
to go for a bike tour. Some 30 years ago (like when the author did such tours)
all partners simply agreed on a time and a street corner to meet, and everyone
tried to be 5 minutes earlier because he knew the others will be unnecessarily
waiting at the street corner if he is late – or even leave without him. Today (like
when the author’s son is doing such tours), for the same simple purpose of going
on a bike tour, there is an incredible amount of communication on cell phone,
skype or whatsapp like “Shall we meet at 4 or better at 5?”, “Will Andrey also
join?”, “I will be 20 minutes late, wait for me” or “Decided not to come, don’t
wait for me”, to negotiate for the actual meeting time. Why this change?

4 To avoid crashes in these cases, sensors and signals are installed to provide the
communication infrastructure required for a switch to the asynchronous paradigm
at that point.
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Fifty Shades of Synchrony 5

In earlier times, in the absence of mobile communication, there was no choice
but resorting to the common notion of time which was the only (mobile) available
relevant infrastructure then5. This forced us to use the synchronous paradigm.
Nowadays the mobile phones provide the cheap mobile peer-to-peer communi-
cation channels required for the asynchronous approach. And for the reasons
mentioned earlier this indeed seems to be the preferable approach for reasonably
small groups.

4 The king of timing optimization

An extremely enlightening construction is the doctor’s appointment. It starts
with an “asynchronous” call at the doctor’s office6, upon which a date and
time (synchronous!) are assigned for a consultation. However, when arriving
synchronously, e.g. before the deadline, at the doctor’s office, the patient waits
until being called (handshake), and this can take a substantial amount of time.
This can be regarded as a locally asynchronous globally synchronous approach,
and although the abbreviation “LAGS” does not sound as nice as GALS7, this
principle is surprisingly often encountered in our everyday life. It can be inter-
preted as follows: We use a synchronous “appointment” approach to roughly
schedule our daily agendas – that would simply be too complicated to be done
asynchronously, “on demand”. In a perfect world that alone would be sufficient,
but in reality we cannot precisely meet all deadlines, as we have, e.g., to accom-
modate asynchronous requests as well (like accidentally meeting an old friend on
the way), so we use an asynchronous approach for fine-tuning. This also relieves
us from being too pessimistic about our deadlines, thus saving waiting time and
increasing performance.

This brings up the issue of waiting times in general. Fundamentally, coordi-
nation of activities among concurrently operating partners implies some form of
waiting for each other. In a synchronous setting, the rendezvous time must be
chosen such that each partner (we care about) can be in time even under the
worst circumstances. That is why we usually plan for some safety margin when
going to an important date like our wedding – the idea is to make sure we make
the deadline even if we get caught in a traffic jam or the car breaks8. Clearly, this
causes unnecessary waiting in all but the worst case situations, for all partners.
It is the responsibility of each partner to decide which margin he wants to have.
Each partner’s waiting time is then the difference between the considered worst
case and the actual case. Under good conditions all partners will thus be early
and wait. The train will normally not leave the station before schedule even if
all passengers have already boarded.

5 Note how immensely important global time as a common infrastructure is for our
society, exactly for this type of synchronous coordination

6 Synchronous doesn’t make sense here unless one regularly gets ill
7 “Globally Asynchronous Locally Synchronous”, an approach recently used in VLSI
8 That’s probably the only reasonable argument why airlines urge passengers to be at
the airport 2 hours before departure
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6 Andreas Steininger

In an asynchronous setting the completion/arrival of the slowest/latest part-
ner determines the start of the joint activity. The slowest partner therefore does
not have to wait, while all others wait. Recall that in the synchronous setting the
rendezvous time was determined such that even the slowest partner can reach
it under worst case conditions. Therefore, in the average case, even the slowest
partner will arrive earlier than that, and all partners save waiting time. That is
why asynchronous systems are said to have higher performance, namely average
case performance, than synchronous ones with their worst-case performance.

However, why then do we notoriously have to wait for hours in the doctor’s
waiting room? This is because the doctor abuses this scheme: In the synchronous
domain, he gives you a date for which he knows that he will never make it. This
forces you to arrive at a time when he is not ready for sure, and at that time he
switches to the asynchronous mode, which means you will always be the waiting
partner and he will never wait (or have you ever seen the doctor welcome you
with the words “I have been waiting for you already!”). Through that unfair
trick the doctor increases your waiting time beyond the one you already had in
the synchronous domain – so this system is not beneficial for the patient9. The
doctor is using it because he considers himself a precious resource whose waiting
time has thus to be minimized. Admittedly, there are no good alternatives:
A purely asynchronous approach (visit the doctor on demand, scheduling by
priority), is necessarily practiced in emergency stations, but has proven to cause
even higher waiting times in practice for the lower priority cases. And a purely
synchronous system with conservative estimation of the time per patient would
severely decrease the doctor’s throughput, and also disallow him to take care of
sporadic emergency cases.

Actually, the doctor uses another trick to avoid waiting times on his side:
buffering. Most often there is more than one patient waiting patiently, so should
the doctor be faster with processing one patient, there is already a next one
waiting (who of course also got a ridiculously optimistic rendezvouz time). This
nicely illustrates the function of a buffer (waiting room) for compensating fluc-
tuations in the processing time. Such a FIFO buffer – sometimes even signified
by the fact that you literally get a number – is to the benefit of all patients, as
it increases the doctor’s throughput. However, it is yet another unfair trick of
doctors to introduce some dubious kind of priority (for emergency cases like his
brother-in-law’s cousin) sometimes.

Obviously there is no point in using the LAGS scheme for starting a rock
concert, where the sheer number of participants clearly calls for a synchronous
solution. And on the family hike dad won’t make friends by always looking at the
watch and telling “Hurry up, we must be back at the car at 5pm!” or not starting
the ride back at 4:45pm even if everyone is sitting in the car – this is clearly
an asynchronous case. However, even the friends going on a bike tour from the
example above (at least the classic version) employ a LAGS solution by agreeing
on a time to meet and then wait until everyone (they care about) is here. In
fact, we use this scheme many times a day. We use the synchronous schedule

9 Interestingly this word’s interpretation as an adjective becomes symptomatic here
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Fifty Shades of Synchrony 7

for planning our day (you simply cannot plan if you give all partners arbitrary
freedom), i.e. scheduling ourselves as a kind of shared resource, but then add
flexibility by switching to the asynchronous mode, accounting for the fact that
the interactions between the myriads of parallel and interacting processes on our
planet are so complicated in detail that we call them unpredictable.

Note that in LAGS we often need to assign an ID to each of the partners. As
an example, imagine the doctor using a schedule of the patients, and the patients
establishing a FIFO order by pulling numbers as they arrive. The patients will
(even in the absence of dubious priority) not know in which order to enter
the doctor’s room, and the doctor will clearly call them by name. In technical
terms, when the jitter of arrival gets larger than the synchronous period (planned
processing time per patient), out-of-order arrival is possible and identifiers need
to be introduced. This is neither necessary in a purely synchronous approach
(“Take the 8:30 train”) nor in a purely asynchronous approach with strict FIFO
ordering (pulling a number at a government office).

5 Conclusion

We have discussed real-life scenarios where either pure synchronous or pure asyn-
chronous timing is beneficially used, and these have essentially confirmed the ex-
periences from the VLSI domain. However, it turned out that in our daily lives we
often use a locally asynchronous globally synchronous (LAGS) approach, which
is quite in contrast to the GALS approach found in the VLSI domain. What VLSI
designers might take away from this observation is that (a) the large complexity
found on system level might be much easier to handle in a (coarse-grained) syn-
chronous approach than with interacting asynchronous control loops, while (b)
using continuous time for fine-tuning the local timing might be more appropriate
than using ridiculously high clock frequencies to avoid losing performance when
performing that task in the synchronous domain.

Admittedly, these are just relatively vague ideas, and some of the parallels
drawn may even turn out wrong upon closer investigation. It is not the author’s
claim that this is a scientific paper (after all it is lacking related work and
references), but it is hoped that this different view at the problem of VLSI
timing may inspire new solutions. At minimum, however, the paper shall provide
something to contemplate about during the next hours the reader spends in the
doctor’s waiting room.
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Can Metastable States be Trapped?
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Abstract. Synchronizers (commonly implemented as chains of two flip-
flops) are used to reduce the probability that metastable states, em-
anating from asynchronous input transitions, propagate to state/data
flip-flops and cause unwieldy catastrophes. Another way to think of this
is that synchronizers “trap” metastability, preventing it from being ob-
served by others circuits until a failure rate criteria is satisfied. Flip-flop
chains are certainly one way of doing it but are there other ways in
which metastability can be trapped? More importantly, can a circuit
perform useful computations while trapping metastability in the same
way that a synchronizer does? This paper will explore the theoretical
prospects (and, potentially foolishly, break the long- held taboos) of al-
lowing metastability inside generic Moore machines and finding ways to
trap it and manage its effects.

1 Introduction

This paper will explore the theoretical possibility of creating synchronous state
machines that meet a given functional specification despite being occasionally
metastable. The motivation behind this perusal is to determine whether it is
possible (at least in principle) to create multi-clock systems where signals can
be transferred across clock domain boundaries without latency. As the reader
may well be aware, there is a formal proof (using dynamical system theory)
that a fundamental trade-off between latency and reliability is inherent in any
Newtonian system that attempts to make a binary decision based on an analogue
quantity [1]. It is therefore important to note outright that this paper will not
attempt the impossible by trying to remove synchronization altogether. Instead,
what will be considered is the more realistic (but perhaps equally questionable)
possibility of turning a state machine into a large synchronizer housing many
flip-flops and logic gates. To develop the intuition behind this idea, the paper
will start by considering a synchronization conundrum in a hypothetical system.

2 The Island

Legend has it that in a time, so long ago, the best philosophers in all parts of
the world, tired of wars and petty human affairs, decided to leave the main lands
and live in a distant island, known to the rest of the world only as Synchrona.1

1 Incidentally, philosophers in that era, known for their modest attire, were colloquially
called by common people flip-flops in reference to their (often worn out) sandals.
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The inhabitants of Synchrona sought to resolve all disorder by establishing strict
rules to govern their interactions and day-to-day affairs. One such rule mandated
that all philosophers meet each day, precisely at noon, to share any new philo-
sophical insights they have had overnight. This daily routine worked well for
the philosophers but was occasionally disturbed by the untimely arrival of small
boats from the main lands, carrying messages from common people who sought
the philosophers’ wisdom. When a boat arrived during a meeting, a very pecu-
liar thing often happened: the philosophers developed conflicting views about
what was said during the interrupted meeting. These problematic disagreements
were often resolved during the next one or two meetings (although they often
led philosophers to reach nonsensical conclusions about certain matters).2

Even though disagreements were settled peacefully and had no long-term ill
effects on Synchrona, any messenger boats dispatched carrying conflicting replies
from the philosophers stirred doubt and greater trouble when received by com-
mon people on the main lands. The philosophers were aware of the dangers of
propagating disagreements and, realizing that boat arrivals at Synchrona, the
interruptions of their meetings and consequently their disagreements could not
be prevented, decided to add one more rule to their routine. The new rule said
that all discussions preceding the drafting of a reply to common people’s ques-
tions may not depend on prior discussions on which the philosophers are still in
disagreement. Knowing that deciding which discussions involved disagreements
was itself a discussion prone to disagreement, the philosophers decided on a most
unusual way to enact their new rule. After unloading their cargo, all inbound
boats are to be forced into a two-day sail around Synchrona before docking to
collect drafted replies and returning to people on the main lands. This way, the
philosophers reasoned, any disagreements arising from the arrival of boats would
have had enough time to be settled by the time a reply is to be shipped.

Ever since the new rule came into force, the common people stopped receiving
the occasional news about the philosophers’ disagreements. Rumor circulated
that the philosophers devised a most ingenious way to abolish disagreements of
all sorts (although the more educated remained skeptical of this). Unusual notes
that did not make much sense such as “1 + 2 = 7” were still received from the
island but all carried the signature of each philosopher known to be living there.

3 The Island as a State Machine

As the philosophers living on Synchrona have argued, metastable states can be
“trapped” in a synchronous component if we ensure that value changes on its
asynchronous input ports cannot be observed on the outputs within n cycles
(where n corresponds to a given MTBF criterion). Synchronizers are the sim-
plest circuits that satisfy this property; it takes n cycles for an input change
to be observed at the output of an n-stage synchronizer. Gray counters satisfy

2 Scientists inhabiting the island noted that the probability such disagreements per-
sisted for t more seconds was reduced by a factor of et/τ (where τ depended on how
well-fed were the involved philosophers).
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Fig. 1. A state graph of Synchrona

this property too but, like synchronizers, are not typically used for anything
beyond counting. In this section we aim to present a toy example of a datapath
controller that traps metastability in the same way that a synchronizer does.
The controller processes a data item received asynchronously and synchronizes
its associated request signal simultaneously. Our aim here is not to provide a
rigorous methodology for designing such components but to present and argue
for the correctness of at least one non-trivial example.

To continue our analogy from the previous section, our datapath controller
is assumed to be Synchrona itself. Figure 1 shows a state graph of the island
in which three “binary philosophers” (A, B and C) are used to encode its state
(with A being the most significant philosopher). The graph has two branches that
correspond to a sequence of computations to be performed based on whether
the received data satisfies a certain condition v, where v is computed by the
datapath after data has been latched. When req is asserted, the island is kicked
into a series of transitions along one of the two main branches. State codes are
chosen such that any two consecutive states within 2 transitions from the idle
state differ by only 1 bit. This Gray-based encoding scheme ensures that any
metastable state bit in the system will have a single sensitized combinational
path to a destination state bit. When the island is metastable, therefore, only a
single state bit is open to misinterpretation and the island will either transition
to the next state or safely roll back to its existing one.

But what about the signal v? If v is generated by the datapath based on
a data item that is received asynchronously then isn’t v itself vulnerable to
becoming metastable? No, the data bundling constraint implies that data bits
arrive well before their corresponding req transition and so the controller state
bits are the single point of failure in the system [2].
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So far we have presented arguments that the controller will function correctly
(more strictly, the arrival of req will trigger a chain of state transitions as per
Figure 1, although occasionally the controller will stay in one of the states 000 or
001 for an additional cycle). Can the controller be safely integrated into a larger
system without causing metastability failures? Yes if we make it impossible for
external observers that monitor the controller’s output ports to know when the
controller is metastable (just like the philosophers did to hide news of their
disagreements from common people). We do this by making the controller’s
output ports have the same values in the states 000 and 001. In our example
we assume the controller has a single output valid that is logic high when
the controller is in either state 011 or 101 and logic low otherwise (i.e. valid
= (A ⊕ B) ∧ C). valid will go high once synchronization is complete and is
therefore a safe signal for external circuits to sample.

In effect, our controller has two “built-in” synchronizer chains: CB (when
v = 1) and CA (when v = 0). The value of valid is asserted once the tran-
sition of req appears at the second synchronizer flip-flop (either B or A) and
so the controller satisfies our criterion for functioning as a synchronizer. In the
state graph, entering the state 001 corresponds to the completion of the first
stage of synchronization and entering either state 011 or 101 corresponds to the
completion of the second.

4 Conclusion

The main point of the informal discussion presented here is to show that there
exists more than meets the eye in the design space of metastable synchronous
components. Although it is impossible to prevent the occurrence or propaga-
tion of metastable states in synchronous modules, our toy datapath controller
demonstrates few key things that we still can do. First, we can create more
generic forms of synchronizer circuits that are neither flip-flop chains nor Gray
counters. In these designs, the propagation of metastable states can be restricted
to specific chains of flip-flops. Second, these generic synchronizers can be state
machines that complete a number of state transitions in sequence. There remains
a non-deterministic uncertainty of 1 cycle in how long these transitions take but
they are nonetheless guaranteed to be completed eventually.
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Abstract. Variables being passed between processes not synchronized for the 
communication may be affected by the lack of synchrony between the processes 
and such passing of variables may also affect the nominal asynchrony between 
the communicating processes. There exists a large body of research on the data 
communication between asynchronous processes exemplified by Lamport’s 
atomic registers and Simpson’s multi-slot asynchronous communication mech-
anisms (ACMs). Many of the existing solutions try to reduce the effects of the 
fundamental problem by reducing the timing independence to variables of very 
small size. For instance, Boolean and ternary control variables have been used 
to protect the usually larger data structures being passed. However, ultimately, 
the control variables must deal with the asynchrony between the communi-
cating processes in some way. A Boolean variable (single bit) between an asyn-
chronous reader-writer pair cannot avoid metastability or mutual exclusion pro-
tection, for instance. Existing models using formalisms such as Petri nets and 
process algebra and solutions based on state-space analysis provide a very good 
understanding in the qualitative behavior of such variables. In this paper we aim 
to expand this understanding to the quantitative by developing models in sto-
chastic activity networks (SANs) with which quantitative investigations may be 
made with regard to such variables. 

Keywords: asynchronous data communication, metastability, stochastic activi-
ty networks. 

1 Introduction 

In digital systems, before the entire world’s systems can be synchronized on the 
same truly global clock, inevitably it would be necessary to communicate outside a 
particular clock domain. With continued increase of VLSI integration, the physical 
size of clock domains have become smaller, not larger, and the overall number of 
clock domains has also increased. For instance, whereas it used to be that everything 
on the motherboard of a desktop computer ran off a single global clock, now within a 
single chip there tends to be multiple clock domains as a single chip packs more com-
putation power than multiple classical computers.  

Crossing clock domain boundaries with data can be implemented in many ways. It 
can be done fully synchronously, through the temporary synchronization between two 
clock domains for the duration of data transfer. This can be found in many globally 
asynchronous locally synchronous (GALS) solutions where stretchable and/or pausi-
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ble clocks are used [1]. It can also be done with a certain degree of asynchrony be-
tween the communicating processes, for instance through the use of data buffers. This 
can be found in the majority of network communications including networks on chip 
(NoC) solutions [2].  

One of the ultimate examples of asynchronous data communication is the so-called 
fully asynchronous communication where there is no synchronization either actively 
administered (e.g. the use of GALS-style synchronization) or implied (e.g. through 
the buffer full or empty states, or the mutual exclusion/critical section protection of 
data), which ideally allows the processes to possess full temporal independence not 
affected by the act of communication. Lamport’s atomic register followed by Simp-
son’s multi-slot ACMs attempt to solve this problem [3, 4].  

From this wide spectrum of problem statements and solutions, it is clear that there 
exist two fundamental desirable properties. These are: 

 Asynchrony: Minimal obliged waiting for either the reader or the writer pro-
cesses. Fully asynchronous communication aims for zero waiting on either side. 

 Data transfer: Maximal quality for the data eventually read. This is usually de-
scribed by a number of metric parameters, such as data coherence, data fresh-
ness, data sequencing, etc. and is different for different application scenarios. 
An intuitive understanding of data coherence, for instance, is that the writer, or 
anything else, should not be allowed to corrupt half-read data. 

And the large number of existing solutions arrive at various trade-off points be-
tween these two qualities [8].  

A substantial amount of research exists in this field, with a large number of at-
tempts at provide qualitative modelling so that a solution may be tested for whether it 
violates data coherence, process asynchrony or any other metric and if so under what 
circumstances [8].  

However there has been a total absence of any quantitative modelling method with 
which different solutions may be more precisely placed relative to each other in a 
quantitative map of trade-off.  

1.1 Contributions and organization 

This work is the first attempt at achieving quantitative models of asynchronous da-
ta communication. The language chosen is SANs, which provides opportunities of 
properly representing such phenomena as metastability quantitatively according to 
well accepted models [9]. Given that many solutions remove the problems caused by 
inter-process asynchrony away from potentially large data to usually small control 
variables, this work concentrate on modelling Boolean and ternary variables and their 
usual implementation using hardware latches.  

The rest of the paper is organized as follows: Section 2 introduces the concept of 
the asynchronous variable, and describes quantitative models for the two essential 
properties for Boolean asynchronous variables. Section 3 describes more complex 
asynchronous variables, their implementation and modelling. Section 4 describes case 
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studies where the models of asynchronous control variables are used to derive behav-
iors of larger systems in which they are used. Section 5 concludes the paper. 

2 The Boolean asynchronous variable 

Fig. 1 shows the basic concept of two asynchronous processes intercommunicating 
with one (writer) providing the data and the other (reader) making use of it. This is 
both a general description of all such data communications and a specific description 
of the passing of control variables. The difference is in what the data is and how it is 
meant to be used.  

 

Fig. 1 Unidirectional inter-process data communication. 

In a control variable situation, it may happen that the writer of the overall data 
communication may be the reader of a specific control variable, which is written by 
the reader process in the overall communication. In other words, although a specific 
instance of asynchronous data communication is usually defined as unidirectional, i.e. 
data passing from the writer to the reader, to support this communication some of the 
control variables may go the other way, to allow the reader to inform the writer of its 
current state, for instance. In the rest of the paper, unless otherwise stated, ‘reader’ 
and ‘writer’ pertain to the variable being discussed, which in most cases are binary 
and ternary control variables and not the main data. 

It is clear from Fig. 1 that we assume each individual control variable to be unidi-
rectional and cannot be written to by both sides. This simplifies the problem without 
limiting the solution space, as demonstrated by numerous existing work. 

The smallest control variable is the smallest digital variable, i.e. a single binary bit. 
This is the subject of this section. 

Such a variable can be transmitted from the writer to the reader in a number of 
ways: 

(a) Fully synchronously: The reader and the writer need to be synchronized for a 
single clock period during which the reader directly reads a copy of this Boole-
an value from the writer’s bus or output port. There needs to be no shared 
memory, just shared wires [5]. 

(b) With a single shared memory location to provide some degree of asynchrony: 
The single space FIFO buffer may be guarded with a MUTEX making it acces-
sible by one process at any time [5].  

writer reader 

data connection 
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(c) With an unguarded single space FIFO buffer: A fully asynchronous solution al-
lows buffer access by both sides at the same time [4, 8]. 

All three methods face the following two issues: 

 Metastability: The phenomenon of metastability, where a nominally Boolean 
signal takes a value that is neither 0 nor 1 which nevertheless may persevere for 
non-trivial amounts of time, is inevitable when you have two independently 
timed processes accessing the same memory element at the same time in certain 
conflicting ways, such as reading and writing at the same time or making re-
quests to a MUTEX element at the same time [6]. The simplest 1-bit memory is 
a latch and synchronizers, MUTEXes and Boolean variables are implemented 
using circuits which could be classified as some type of latch. The first method 
therefore cannot avoid metastability at the synchronizer, the second method 
must face it at the MUTEX, and the third directly on the data bit.  

 The relative timing of access from both sides is not specified. Reading may take 
the same time as, or a radically different time from, writing. And this potentially 
has an impact on the behaviors of all three methods. 

The effects of these challenges on the different methods may be reasoned about 
qualitatively using existing research results and techniques [7]. For example, even 
though the fully asynchronous solution may sound unsafe because the metastability is 
on the data and not controlled by a MUTEX, or mitigated by multi-flop synchroniz-
ers, for a lot of control variables used in asynchronous data communications this 
causes, in practice, some non-deterministic delay [8]. Since the variable being com-
municated is a binary bit, the worst case scenario, i.e. the reader and the writer both 
accessing it at the same time, is that metastability may happen. Pragmatically, it is 
sensible to assume that once metastability happens, the variable eventually settles 
non-deterministically to one of the digital values: either 0 or 1. Metastability can only 
happen if the writer is in the process of changing the value of the bit when the reader 
attempts to access it. Hence either one of the settled values should be valid, for any 
sensible communication algorithm and implementation. The only thing the designer 
need to do is to make sure that the control variable is used after some time of its read-
ing to provide it with enough probability to settle before use, as determined by the 
mean time between failure (MTBF) requirement of the design. 

However, when a designer is making a decision on choosing one method over an-
other, a quantitative exploration may be desirable in addition to qualitative considera-
tions. 

In this section, we develop quantitative models for both challenges, metastability 
and independent timing of reader and writer processes.  

2.1 Quantitative modelling of metastability in a Boolean variable 

To study the metastability behavior of a binary bit being passed from one asyn-
chronous process to another, we assume it is implemented in the way described by 
Fig. 2. This is the passing of a binary variable from the writer to the reader, such that 
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the reader’s input variable y takes on the value of the writer’s output variable x when 
the clock/control signal cl is set. In other words, cl: y=x. 

 
Fig. 2 A binary asynchronous variable. 

In order to have metastability in a latch of this type, the clock or control signal cl is 
usually activated by some entity not temporally related to the writer, in other words, 
the signals x and cl may change very close in time causing metastability to happen at 
signal y. This directly corresponds with method (c) described above as a latch like this 
forms the unguarded FIFO buffer used in that method. On the other hand, since syn-
chronizers are constructed out of essentially the same kind of circuit with the same 
metastability behavior, we can describe the metastability encountered by method (a) 
using the same technique.  

A binary variable that may become metastable, and settling out of metastability 
Representing the metastable value of a nominally Boolean variable as a distinct 

marking allows the convenient tracking of metastability and its effects. The SAN 
model of a Boolean variable that may become metastable is shown in Fig. 3. 

 
Fig. 3 SAN model of a Boolean variable y that may become metastable,  

including the process of metastability settling. 

The process of the natural settling of metastability is usually regarded as stochastic 
with an average speed entirely dependent on the hardware implementation of the vari-
able. This can be represented by a timed transition whose firing takes the value of the 
variable to 0 or 1 based on pre-determined probabilities. Established theory on meta-
stability describes the settling as following an exponential process [5]. This can be 
represented by the timed transition having an exponential timing distribution whose 
mean rate λ can be found through hardware experimentation [5]. It is usual practice to 
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assume that metastability settles to 0 or 1 with the same probability, i.e. 50%. Howev-
er, the model in Fig. 3 allows arbitrary pairs of probabilities p0=1-p1 to be chosen, if 
experiments on hardware show a bias in one way or the other. 

Coincidentally, for the purpose of using this model for analysis, exponential timing 
in the timed transition means that this part of the model does not introduce anything 
non-Markovian. An entirely Markovian system model usually allows not only simula-
tions but also analytical reasoning [9]. 

The logic of the input and output gates in the model is defined as follows: 
 
Gate Predicate Function 
IG Mark(yM)==1  
OG0  Mark(yM)=0; 

if (Mark(y0)==0 and Mark(y1)==0) 

then Mark(y0)=1; 

OG1  Mark(yM)=0; 

if (Mark(y0)==0 and Mark(y1)==0) 

then Mark(y0)=1; 

 
The settling countdown starts immediately when the variable enters metastability. 

At the end of the model-determined settling time, the marking in place yM is set to 
zero. However, when updating the variable to a digital value, the model needs to de-
termine whether the settling process is at this moment still in charge of the value of 
the variable – it is entirely possible that during the expected duration of metastability 
settling time, when the settling transition is in the process of firing, the variable has 
otherwise been set to a secure digital value through other means such as having been 
successfully assigned a value by another operation. The functions of the output gates 
ensure that only when no such thing has happened (i.e. both digital places still have 
the marking of 0) the completion of the settling transition would set the expected 
digital value. Otherwise nothing is done as at the end of the expected settling time, the 
variable has already otherwise achieved a secure digital value.  

Actively changing the variable value 
In addition to the settling of metastability, which is a passive process, the value of 

a nominally Boolean variable may also be changed actively. An example of this is the 
setting of variable y to the value of variable x in Fig. 2. 

To model metastability and its effect fully, we need to consider the following situa-
tions: 

 When cl comes, x is stable at either 0 or 1 → y takes the value of x 
 When cl comes, x is itself metastable, i.e. having the value of M → y has a 

probability of becoming M; 
 When cl comes, x is being changed → y has a probability of becoming M; 

This means that we need a place or places whose marking(s) indicate that x is be-
ing changed between the two digital values 0 and 1. In addition, cl itself is a signal 
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whose change may take some time. This is best represented by having any cl change 
indicated by a marking in a place.  

The SAN formalism facilitates the compact representation of such conditional rela-
tionships, once such states as ‘x is being changed’ and ‘cl is coming’ are represented 
by markings. Similar to the metastability settling speed, the probabilities of y getting a 
value of 0, M or 1 in any particular situation may be obtained through hardware ex-
periments. Hardware characterization is the best method for generating the quantita-
tive parameters for these models.  

 
Fig. 4 Changing the value of an asynchronous Boolean variable. 

Fig. 4 shows the structure of the SAN model of changing the value of a Boolean 
variable implemented using a circuit of the type shown in Fig. 2. Places named x0, 
yM, cl0, etc. denote that the signal takes a particular value. Places named with the 
signal name followed by two values denote that the signal is transitioning from the 
first value to the second, i.e. x01 denotes x: 0→1. 

The logic of the input and output gates is as follows: 
 

Gate Predicate Function 
IG Mark(cl10)==1  
OG0  Mark(y=M)=0; 

Mark(y=0)=0; 

Mark(y=1)=1; 

OG1  Mark(y=M)=0; 

Mark(y=1)=0; 

Mark(y=0)=1; 

OGM  Mark(y=0)=0; 

Mark(y=1)=0; 

Mark(y=M)=1; 

 
The process of changing the value of y starts when cl is being reset (falling edge 

trigger on the clock, place cl10 marked). At the end of the process, the value of y is 
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set according to what branch of the SAN the model has been progressing. The first 
transition on the left hand side is where the logic is that determines how the value of y 
will be set, and as such must correctly specify the probabilities of each of its branches, 
changing from 0 to 1, changing from 1 to 0, setting to M, and do nothing (keeping the 
old value of y). 

This depends on the markings of the places listed on the left hand side of Fig. 4. 
For instance, case 4 of the activity, do nothing, has a probability of 1 when x=0 and 

y=0, and a probability of 0 when x=0 and y=1. The probability of case 3 is non-zero if 
one of the places xM, x01 and x10 are marked. The probability of case 3 under differ-
ent conditions when it is not zero can be determined through hardware characteriza-
tion experiments [5]. 

This model has a relatively low precision as it assumes a constant probability of y 
entering metastability if, when cl changes, x is in the process of change. However, 
accepted theory of metastability indicates that the probability of y entering metastabil-
ity is related to how close the cl and x changes are in time [5]. Assuming the same 
probability for all cases of overlapping access may not be precise enough for certainly 
analysis. 

Timing issues 
The precision of the above model can be improved by representing one of the 

changing processes, either x changing or cl falling, as constituting multiple steps. This 
extended representation is shown in Fig. 5. 

 
Fig. 5 Dividing a value change into multiple steps. 

During a change of the signal cl, how much this change has progressed is indicated 
by where the token is in the chain. Usually variable value changes take deterministic 
time related to the speed of the hardware in which the process that makes this change 
is mapped. Such a deterministic delay can easily be divided into a sequence of deter-
ministic delays as represented by the timed transitions in Fig. 5. For stochastic delays, 
this method is less effective and accurate unless the distributions of the sequence of 
smaller delays can be derived from the distribution of the overall delay, which is not 
always possible. In other words, if metastability is involved in any signal value 
change, this method of dividing into multiple smaller changes may be less effective 
and using a single probability as in the previous section may be unavoidable. 

Knowing where a signal is in its changing process when the other signal is also 
changing allows the distance in time between these two changes to be represented, up 
to the precision of the stages in the model shown in Fig. 5. The model can therefore 
be made as precise as the time resolution of the hardware characterization data.  

The other timing issue, that of the relative durations of time each of the reader and 
writer processes makes accesses to a shared resource, is automatically represented in 

cl101 cl10n cl102 … … 
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models developed according to the methods given in this section. Together, the meta-
stability settling time, rising time, and falling time of each signal fully describe over-
all process lengths such as how long a shared variable is accessed by the writer or the 
reader. 

2.2 MUTEX and arbitration 

For method (b), which protects the shared memory location with a mutual exclu-
sion arrangement avoiding simultaneous accesses by both the reader and writer. The 
metastability and timing modelling can be derived based on the models presented in 
Section 2.1. This is because MUTEXes are usually constructed out of similar circuits, 
i.e. a single bit memory. However, since the input signals to MUTEXes are not the 
somewhat asymmetric data and clock with different functions, but fully symmetric 
requests, the models need to be modified to reflect this. 

A typical MUTEX consists of an SR-latch followed by a metastability resolver. It 
functions as follows: 

 Be ready to receive requests from two different processes when no grant is out-
standing; 

 Issue a grand to the process which has just produced a request; 
 Withdraw a grant after receiving a reset of a request signal – a requesting pro-

cess is assumed to reset its request once the granted resource has been made use 
of; 

 When requests from both processes arrive close together, the latch may go into 
metastability, but the metastability resolver makes sure that no grants will be is-
sued until the metastability has been resolved; 

 A requesting process is assumed to hold up its request until a grant is issued – 
there is no withdrawal of requests without grants. 

The model for the metastable state and its settlement is similar to Fig. 3, if a Bool-
ean variable is used to issue grants, for instance y=0 grants process 0 and y=1 grants 
process 1, as is normal for MUTEX arbitration.  

 
Fig. 6 Responding to requests 

gW 

gR 

rW01 

rR10 

IG rW1 

rR1 

ready 

1 

0 

M 

155 x 238 mm

Quantitative Modelling of Asynchronous Variables         313



The model in Fig. 6 is based on the assumption that the internal MUTEX state of 1 
corresponds to granting to writer and 0 corresponds to granting to reader, without 
losing generality. Once the internal state 0 or 1 is secured, the corresponding grant 
may take non-zero time to appear, represented by the timed transitions on the right 
hand side. If this degree of representation is not needed, these may be replaced with 
instantaneous transitions. The internal state M causes the entire process to delay with 
the only activity being the metastability settling. Note that this settling sub-net is less 
complex than Fig. 3 as in a MUTEX it is not possible for external influences to hard 
set M to one of the digital states. Because requesters would not withdraw outstanding 
requests, the only route out of the M state is via settlement. 

The internal state is only represented between the start of a grant computation (the 
left hand transition firing) and the next grant commitment (one of the right hand tran-
sitions starting to fire). Although the actual circuit would maintain an internal state 
always, it is only of functional relevance in between those events. Hence the model is 
simplified this way. 

The input gate IG has the following predicate and function: 
 

Gate Predicate Function 
IG Mark(ready)==1 &&  

(Mark(rW1)==1 || Mark(rR1)==1) 

Mark(ready)=0 

 
This means that grant computation starts when the place ‘ready’ is marked and at 

least one of the request signals is present (rW1 and/or rR1 marked). And starting a 
round of grant computation unmarks the place ‘ready’. Place ‘ready’ is marked again 
once a requesting process has finished using its granted access. 

The probabilities in the grant computation starting transition need to reflect the fol-
lowing protocol: 

 If neither rR1 nor rR01 is marked, i.e. the reader request is not present nor being 
issued, grant computation goes to the branch leading to internal place ‘1’ with a 
probability of 1. This leads towards granting writer access. 

 If neither rW1 nor rW01 is marked, i.e. the writer request is not present nor be-
ing issued, grant computation goes to the branch leading to internal place ‘0’ 
with a probability of 1. This leads to granting reader access. 

 If one of rR1/rR01 and one of rW1/rW01 are marked at the same time, i.e. both 
reader and writer requests are either present or being issued, grant computation 
goes to all three branches with appropriate probabilities, which may be obtained 
from experimental characterization of hardware. 

Granting is represented by either place gW or place gR. The appropriate process 
taking its grant by taking the token from its corresponding grant place, and puts a 
token back to place ‘ready’ after the end of the access. 

The normal assumptions of MUTEX arbitration apply. For instance, a requester is 
not supposed to withdrawn a request before a grant is issued in its favor. In order to 
represent all possible causes of metastability properly, request signals are modelled as 
taking non-zero time to set up (‘being issued’ is at least one distinct state). More pre-

155 x 238 mm

314         Fei Xia and Ian Clark



cise modelling by having a multi-stage setup process for one or both of the request 
signals is possible with the method shown in Fig. 5, if necessary. 

3 The ternary asynchronous variable 

Larger control variables may be needed for more complex ACMs. Here we discuss 
the ternary control variable used in certain existing ACM algorithms, to show that 
larger control variables can be constructed out of Boolean asynchronous variables. 

A ternary (base-3) variable taking three possible values (e.g., 0, 1, 2) may be im-
plemented in a number of ways. The most straightforward is to use one-hot encoding 
and binary circuits. In other words, using three wires, with a maximum of one of then 
having a signal value of 1 at any time. Wire 0 being 1 and the other two wires being 0 
indicate the value of the variable being 0, wire 1 being 1 and the other two wires be-
ing 0 indicate the value of the variable being 1, and wire 2 being 1 and the other two 
wires being 0 indicate the value of the variable being 2: 

 
Signals on wires Variable value 
{1, 0, 0} 0 
{0, 1, 0} 1 
{0, 0, 1} 2 
{0, 0, 0} potential spacer (see below) 
other values are not allowed undefined  

 
When such a variable is being sent from one independently timed process to anoth-

er, the simplest way of avoiding confusion and reducing potential errors is to make 
use of spacers. In other words, when changing the value of such a variable, the current 
wire holding 1 is pulled down to 0 first, before another wire is set from 0 to 1. Briefly, 
the three wires hold the spacer signal {0, 0, 0}, which indicates the fact that the value 
of the ternary variable is being changed. 

For instance, the following steps change the variable value from 0 to 2: 
 
{1, 0, 0} → {0, 0, 0} → {0, 0, 1} 
 
With such an implementation, or any other implementation using binary logic, the 

models derived in Section 2 can be directly used, as each ternary variable is imple-
mented with binary signals.  

It is worth noting that when reading the value of such a ternary variable, a spacer 
should cause a wait on the reader’s part as the value is not functionally valid. In other 
words, reading a ternary variable should be done using the following procedure: 

 
wait until (v0=1 or v1=1 or v2=1); 

read v; 
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In such a scheme, metastability can only happen when changing to spacer or 
changing out of spacer. The spacer scheme qualitatively trades spacer delay for addi-
tional variable value safety.  

Ternary logic based on using three different analogue signal values to represent the 
three variable values is conceptually possible. It is worth noting that these circuits 
have been ignored in general by researchers in the field of asynchronous data com-
munication. Modelling such implementations is out of the scope of this paper. 

4 Case study 

In this section we investigate the usage of the asynchronous variable models in a 
wider context, i.e. when these variables are used as control variables in ACMs. Here 
the examples used are the ‘pool’ or ‘RR-OW’ type, with a single logical buffer space, 
mechanisms that aim to provide the reading and writing processes with full timing 
independence. This means that overwriting of previously unread data stored in the 
buffer, and rereading of previously read data, must be allowed. This is intuitive if the 
buffer has a limited number of spaces (in this case a single space), and potentially 
allow multiple cycles of reader access in between two writer accesses and multiple 
writer accesses in between two reader accesses. 

The fundamental assumption of these ACMs is that they serve as data connectors 
between the communicating processes between which a sequence of data items of the 
same type are transferred. In each cycle of writing and reading access, the relevant 
communicating process transfers one item of data to or from the ACM.  

4.1 A two-slot ACM 

The two-slot pool ACM, proposed by Simpson in [4], attempts to accommodate the 
full asynchrony between the reading and writing accesses by using two physical data 
memory spaces, each enough to contain one item of data. When an access happens, 
the other access should maximally be able to occupy one slot, hence the intuition is 
that whenever an access needs to happen it always has a slot to point to. Control vari-
ables are used to make sure that reading accesses ‘chase’ writing accesses – each 
reading access tries to read from the slot containing the newest completely written 
data item, as indicated by the writing access’s previous round. How the writing access 
chooses its slot can be more interesting. A seemingly totally safe method is to always 
avoid the reading access by going to the other slot not currently being read. This how-
ever has been shown to create the possibility that the reading access will keep reread-
ing the same item of data whilst the writing access keeps overwriting to the other slot, 
if the two accesses are matched in their speed. Simpson’s method is to have the writ-
ing access point to alternating slots in successive rounds regardless of where the read-
ing is happening. This has been shown to lead to clashes on the same slot by both 
processes and violate data coherence, under certain circumstances.  

The algorithm for the two-slot mechanism can be written as follows: 
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Write access Read access 
w=!(l); r=l; 

d[w]=input; Output=d[r]; 

l=w;  

 
In this algorithm the two data slots are arranged into an array d[0..1], whose access 

is managed through the shared control variable l, which is Boolean and indicates the 
last complete written slot. The writing access uses its private control variable w to 
choose the next slot to be written. The reading access uses its private control variable 
r to choose the next slot to be read.  

In the writing access the sequence of actions are: choosing the slot not accessed by 
the previous writing access, writing to that slot, indicating that slot to be the last writ-
ten one. It is then assumed that the writing process ends and the master process that 
contains the writing process will execute a sequence of actions which includes the 
preparation of the next writing access round. Then the writing access will start again 
from the first statement. This is assumed to form a forever loop as long as the ACM 
continues to be used. 

The reading access has the following sequence of actions: choosing the slot to read 
from, read from that slot. After a round of reading access ends, the master process that 
includes the reading access is assumed to perform actions not related to accessing this 
ACM, including making use of the data just read. A forever loop situation similar to 
the writing side is also assumed. 

The ACM accesses can then be viewed as procedures or functions called by their 
respective master processes in each cycle of action. 

A single Boolean control variable is shared between the two access procedures, l, 
which is written by the writing access and read by the reading access. It is used for the 
writing side to indicate to the reading side, and to itself, the immediate previous com-
pletely written slot. The passing of this Boolean variable through the reader statement 
r=l can be modelled with the method described in Section 2.  

Here we investigate the mode of operation where the two-slot ACM works if l is 
always correctly read. This is guaranteed if the duration between two writing accesses 
is longer than a reading access. If this is not the case, the two-slot ACM can violate 
data coherence even if l is always correctly read and there is not much point in ana-
lyzing what happens when, for instance, r becomes metastable.  

As the value of l itself is changed entirely during a writer internal statement unre-
lated to the reader, it cannot be metastable. As a result the model for r and the syn-
chronizer is simpler in methods (a) and (c) as there is no such thing as metastability 
propagation between the two sides. For method (b), the MUTEX protects variable l, 
and both l=w; and r=l; need to be preceded by requests to the MUTEX and fol-
lowed by request resets. The writer example is as follows:  

 
rW=1; 

l=w; 

rW=0; 
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4.2 Quantitative model explorations 

Models in SANs were constructed within the environment of the Möbius tool [10] 
and quantitative explorations of the behavior of the two-slot ACM studied in the same 
environment. In this first explorative attempt, the following assumptions are made: 

 The smallest step, that of assigning the value of a Boolean variable, is set to unit 
time, called τ – this usually corresponds with somewhere in the picosecond 
range in current CMOS technology given typical latches;  

 Both reader and writer processes have deterministic delays in their statements, 
to emulate real-time programs whose timings have deterministic specifications; 

 The reader process is started after a stochastic delay after the writer process, to 
emulate non-deterministic phase differences between the two processes, the res-
olution of this phase difference is 0.1τ so that processes can by desynchronized 
by less time than a full Boolean variable value change; 

 Test cases with both l=w; and r=l; taking τ, with l=w; taking τ and r=l; 
taking 10τ, as well as with l=w; taking 10τ and r=l; taking τ are explored; 

 Reading is assumed to take 10 times the time as a reader binary variable state-
ment and writing is assumed to take 10 times the time as a writer binary variable 
statement; 

 The time distance between two write accesses and that between two read ac-
cesses is assumed to take 1000 times the time as a binary variable statement. 

Basically we cover the cases where the writer is 10 times faster than, the same 
speed as, and 10 times slower than the reader. The only non-deterministic delays in 
the study comes from metastability settlement. We also tried one case where the writ-
er’s speed is related to τ, and hence that of the reader, by a random non-integer value, 
but that did not show up any new results or trends. 

We only explored methods (b) – MUTEX protection for l and (c) – unprotected 
fully asynchronous access to l by both sides. 

The quantitative results we obtained, collated from a number of experiments, are 
listed as follows: 

 
Method Data 

error 
min 

Data 
error 
mean 

Data 
error 
max 

Delay 
min 

Delay 
mean 

Delay 
max 

(b) 0 0 0 0 0.013τ ∞1 
(c) 0 0.025% 100%2 0 0 0 

 
These explorations are based on realistic assumptions of very low probabilities of 

the onset of metastability even with overlapping accesses (e.g. 1%) and fast metasta-
bility settlement (e.g. the mean settlement time 1/λ = 0.1τ). Data error is measured by 
how many reads produced output values that have not been written, and ‘delay’ in the 
above results relate to additional delay either side has to suffer because the two state-

                                                           
1  These are theoretical values derived from [5]. 
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ments l=w; and r=l; took longer than normal time due to the asynchrony. The 
results confirm the intuitive notion that the two methods trade delay with correctness 
as the MUTEX method protects the variable by paying potential non-deterministic 
delay as a price, and the fully asynchronous method guarantees full delay predictabil-
ity by paying potential data corruption. Although these qualitative points can be de-
rived from existing methods this work provides a systematic way of generating quan-
titative trade-off maps for designers.  

5 Conclusions and future work 

Quantitative models of asynchronous variables including metastability and its set-
tlement are developed using the formalism stochastic activity networks (SANs) and 
their use initially demonstrated through a case study conducted using the Möbius tool. 
Whilst the actual numbers obtained from the work so far may not have any practical 
significance, the fact that they can be obtained using the methods provided represents 
a new development in the modelling of variables being passed between two non-fully 
synchronized processes.  

The models can be extended and used on the entire class of existing ACM solu-
tions and the hypothesis that the method may be used for developing new ACMs are 
promising topics of future work. 
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Working with Petri Nets and

Asynchronous Circuits

Tomohiro Yoneda

National Institute of Informatics, Tokyo 101-8430, Japan

Abstract. Petri nets and asynchronous circuits are very important and
special topics in my research career. Petri nets have been a useful tool
for me to formally verify and synthesize asynchronous circuits. In this
paper, I especially focus on handling timing issues in such frameworks,
and would like to summarize my research experiences built on both time
Petri nets and timed asynchronous circuits.

1 Time Petri nets and timed circuits

A time Petri net [1] is one of timed extensions of a Petri net where timing con-
straints are given to their transition firings. Two nonnegative rational numbers
are assigned to each transition of a time Petri net as shown in Fig. 1. In this
example, suppose that a transition t0 becomes enabled (i.e., a marking where
both its input places p0 and p1 have tokens is reached) at time point T . Then,
t0 cannot fire before time T + a, and t0 must fire before or at time T + b.

These timing constraints given to transitions of time Petri nets are useful to
model a timed circuit, where each gate in it has bounded delays, as shown in
Fig. 2 (a). In this paper, it is considered that the timed gate shown in Fig. 2 (a)
is equivalent to a gate with an inertial delay element as shown in Fig. 2 (b).
The two parameters of the delay element show its lower and upper bounds of
the delay, that is, the actual delay of the gate is non-deterministic, but is always
within the range. Furthermore, since it is an inertial delay element, a pulse whose
width is shorter than a always disappears (i.e., it cannot go through the delay
element). A wider pulse may or may not disappear, if its width is shorter than
or equal to b.

The timed gate shown in Fig. 2 can be modeled by a time Petri net as shown
in Fig. 3. This time Petri net is extended in several points: (1) Each transition

p0

p2t0 [a,b]

p1

Fig. 1. A time Petri net.

(a)

[a,b]

x

y
z

(b)

[a,b]
x

y
zw

Fig. 2. A timed gate.
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2

x=1

x=0

t0 t1 t4[0,0]
t7[a,b]

t5[0,0]

t6[0,0]

x ↓ x ↑

y=1

y=0

w=1

w=0

z=1

z=0
t2 t3

y ↑y ↓

w ↓

w ↓

w ↑

z ↑

t8[a,b]
z ↓

Fig. 3. A time Petri net representing the timed gate shown in Fig. 2.

is labeled with a rising or falling change of a signal. The firing of a transition
represents the change of the corresponding signal. (2) Each place is labeled with
a value of a signal. If a place has a token, the corresponding signal has the value
at the place. (3) Some transitions have no timing constraints (e.g., t0, t1, t2, and
t3). These transitions are called input transitions. The remaining transitions are
called output transitions. When a set of time Petri nets representing gates or
modules are considered, the firings of input transitions are invoked in synchro-
nization with the firings of the corresponding output transitions.

2 Partial order reduction

State space enumeration of a formal model is an essential technique needed for
both formal verification and asynchronous circuit synthesis. However, it is not
easy to complete the state space enumeration of a system unless the system is
very small. Thus, we focused on the fact that our purpose can be achieved by
checking whether some specific properties hold or not. One such simple exam-
ple of the properties is whether a specific transition can fire in some reachable
state. This property can easily be checked, if the whole reachable state space is
examined, but it is also possible to check it in a reduced state space. The partial
order reduction is a technique to obtain such a reduced state space for the given
property. Stubborn set method [2] is one of such techniques, and we extended
similar ideas for time Petri nets [3, 4].

Let’s consider a time Petri net shown in Fig. 4 (a), and assume that we want
to check whether transition t5 can fire in some reachable state. After firing t0, t1
can fire concurrently with t3 and t4 from their timing constraints. Two transitions
t2 and t5 are in conflict, which means that firing one of those transitions disables
the other. After firing t1, t2 becomes enabled. Again, from the timing constraints,
t2 can fire at the state, and its firing disables t5. Similar situation happens for
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t0[0,0]

t0

t3

t1

t1

t1

t1

t4

t5

p0

p0

p4p1

p2

p3

p5

p6

p7

t3[2,2]

t4[1,3]

t5[1,3]

t1[0,5]

t2[0,4]

(a) (b)

p1, p4

p1, p5

p1, p6

p1, p7

t3

t2

t2

t2

t4

t5

p2, p4

p2, p5

p2, p6

p2, p7

t3

t4

p3, p4

p3, p5

p3, p6

t0

t1

p0

(c)

p1, p4

t3

t2

t4

t5

p2, p4

p2, p5

p2, p6

p2, p7

p3, p6

Fig. 4. (a) A time Petri net, (b) its full state space, and (c) its reduced state space.

t5. Hence, we have a reachable state graph as shown in Fig. 4 (b). This graph
is obtained by firing every transition that can fire in each state. This is the full
state enumeration.

In order to check the above property without constructing the full state
graph, we usually fire one enabled and firable transition in each state. Intuitively,
an enabled transition is firable, if it can fire with respect to its timing constraints.
After firing t0, both t1 and t3 satisfy this condition. Since we choose one such
transition arbitrarily, assume that t1 is chosen. After firing t1, t2 and t3 are such
transitions. This state is special, because firing t2 takes away the possibility to
fire t5. Thus, firing only t2 in this state may lead to an incorrect decision. Instead,
enabled and firable transitions that may eventually make t5 enabled in time are
searched. In this case, it is t3. Our algorithm requires that t3 should also be
fired when t2 is fired from this state. On the other hand, t3 is an enabled and
firable transition in this state, and it conflicts with no other transitions. Thus,
when t3 is fired in this state, it is not required to fire any other transitions. For
this reason, our algorithm chooses to fire t3 in this state. t4 is fired similarly,
and then, both t2 and t5 become enabled. In this state, there is no other option
except for firing t2 or t5, and the reduced state space shown in Fig. 4 (c) is
obtained.

A key idea of our algorithm is that in case where firing a transition ta is
considered and a disabled transition tb is in conflict with ta, enabled and firable
transitions that may eventually make tb enabled in time are searched. Firing
such transitions (as well as ta) prevents us from missing possible transition fir-
ings. By the way, the above “in time” is also important. For example, if the
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timing constraints of t3 is [8, 8] instead of [2, 2], t3 cannot make t5 enabled in
time, because t2 must fire before time T (t0) + 9 (let T (u) denote the time when
transition u fires).

I mainly worked with Holger Schlingloff for this research topic. We both
stayed at Carnegie Mellon University in 1990-1991 as visiting researchers of
Prof. E. M. Clarke. We published 7 co-authored papers. An incomplete list of
researchers with whom I communicated on this topic is B. Berthomieu, P. Gode-
froid, K. L. McMillan, D. Peled, and A. Valmari.

3 Formal verification of timed asynchronous circuits

Our framework of formal verification of timed asynchronous circuits is a confor-
mance checking. In this framework, a safety failure for given specification and
circuit is a situation where a possible behavior in either side (specification or
circuit) is not possible in the other side. This situation usually happens when
the circuit produces a bad output that is not specified in the specification. For
this purpose, the given specification is first modeled by a time Petri net. This
time Petri net specifies when the input signals of the circuit can change, with
the timing constrains given to its output transitions. It also specifies when the
output signals of the circuit can change, with its input transitions. For example,
Fig. 5 (b) is a specification of a C-element in Fig. 5 (a). Note that transitions
labeled with τ are dummy transitions that are output transitions, but have no
corresponding input transitions.

c

a

b

t0[0,5]

[5,10]

t4t2[4.9,4.9]

t1[0,5]

(a) (b)

a ↑

b ↑

τ

t3[5.2,5.2]
τ

c ↑

t5[0,5]

t9t7[4.9,4.9]

t6[0,5]
τ

t8[5.2,5.2]
τ

a ↓

b ↓

c ↓

C

Fig. 5. (a) a circuit, and (b) its specification.

A circuit is modeled by a set of time Petri nets. As shown in Fig. 3, a simple
gate is straightforwardly modeled by a time Petri net. For connecting several
gates to compose a circuit, it is only needed to prepare a set of gates. Two im-
portant roles of our verification algorithm are (1) to synchronize the firings of
corresponding input and output transitions to explore the state space of the sys-
tem (i.e., a set of time Petri nets for a specification and gates), and (2) to check
whether for any firable output transition there exists a corresponding enabled
input transition. By the role (1), when an output of a gate is connected to an
input of another gate, its connection is represented by firing those input and
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output transitions in synchronization with each other. The role (1) also works
for specifying how a circuit should be used with respect to the specification.
Remember that the output transitions of the specification decide how the corre-
sponding input signals of a circuit behave, by synchronizing the corresponding
output transitions in a specification and the input transitions in a circuit. That
is, the specification stimulates the circuit. The role (2) is exactly for detecting
the safety failures.

As mentioned in the previous section, it is not usually possible to explore
the full state space. Thus, we have applied the partial order reduction for the
conformance checking. For this purpose, we need to consider a property for
the partial order reduction, such that a safety failed state is reachable in the
reduced state space if and only if a safety failed state is reachable in the full state
space. Remember that the simple partial order reduction algorithm mentioned in
Section 2 searches enabled and firable transitions that make tb enabled in time,
where tb is in conflict with ta and ta is fired at the current state. For handling
the conformance checking, this search is extended such that an input transition
tc is considered for the search similarly to tb, where td is an output transition
that corresponds to tc and td is made enabled by ta (see Fig. 6).

search

t
d

t
b

t
c

t
a

search

input transition of t
d

Fig. 6. Extended search of enabled and firable transitions.

I mainly worked with Chris Myers for this research topic. We had a joint
travel grant for 3 years, and published 15 co-authored papers related to this
topic. An incomplete list of researchers with whom I communicated on this
topic is P. A. Beerel, J. Cortadella, D. Dill, K. L. McMillan, and H. Schlingloff.

4 Synthesis of asynchronous circuits

Synthesis of an asynchronous circuit is to obtain an asynchronous circuit M for
a given specification G such that M behaves identically to G. In our case, G is
given as a timed signal transition graph, which is a kind of a time Petri net. By
using timed signal transition graphs for specifications, several behaviors that are
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impossible due to the given timing constraints are ignored, and thus, a smaller
circuit is expected to be finally synthesized.

If the full state space of G is obtained, and it satisfies several properties,
M can be obtained by a standard logic synthesis algorithm for asynchronous
circuits. Such logic synthesis algorithm is implemented in several tools. The
most popular tool may be Petrify [5]. Again, it is not easy to explore the full
state space of the given specifications, especially when those specifications are
obtained in a high-level synthesis process.

Our approach to this problem is a decomposition based synthesis [6, 7]. In
our approach, for an output x of the given G, some subset V of signals of G
and abs(G, V, x) are first obtained, where abs(G,V, x) and G have equivalent
behaviors with respect to signals in V , and abs(G,V, x) is synthesizable. Then, a
standard logic synthesis algorithm is applied to abs(G,V, x) instead of G, which
generates a sub-circuit for an output x. This process is repeated for each output
of G. Usually, the state space of abs(G,V, x) is much smaller than that of G.
Thus, the synthesis time can be dramatically reduced. The construction of V is,
however, not trivial. Actually, it can easily be obtained from the full state space
of G, but it does not help us. Our key contribution is an algorithm to efficiently
obtain V using a technique similar to the partial order reduction for time Petri
nets. Note that this approach uses a restricted information through a subset V of
signals of G. Thus, the synthesized circuits by our method may not be optimal.
According to the experimental results, however, this overhead is pretty small [6,
7].

I worked with Chris Myers also for this research topic. We published 7 co-
authored papers related to this topic. An incomplete list of researchers with
whom I communicated on this topic is J. Cortadella, V. Khomenko, M. Schaefer,
and W. Vogler.

5 Conclusion

In this paper, I summarized my previous work related to time Petri nets. I
have chosen such research topics, because I had many chances to talk with Alex
Yakovlev through those topics in related conferences such as ASYNC and ACSD.
Recently, I have been more interested in designing asynchronous circuits such as
asynchronous NoCs. At ACSD conference in 2011, Alex invited me as a key-note
speaker, and I was greatly honored to be able to give a talk on asynchronous
NoCs there.
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Abstract—Ultra-low voltage digital IC design is promising in achieving ultra-low power 
consumption for emerging applications such as IoT, smart sensor and wearable compu-
ting. This paper discusses the opportunities and challenges of ultra-low voltage digital IC 
design by reviewing and discussing the major design techniques for enabling ultra-low 
voltage operation, including ultra-low voltage device sizing, ultra-low voltage level shifter 
design, ultra-low voltage SRAM design and variation-resilient techniques for ultra-low 
voltage design.  

 

1 INTRODUCTION 

    Emerging applications such as IoT, smart sensor and wearable computing require 
advanced built-in digital signal processing and controlling capability for “intelligent” 
and “connected” devices. In the meanwhile, ultra-low power consumption is demanded 
to prolong the battery life or achieve perpetual operation with energy harvester. This 
makes the design of ultra-low power digital ICs a must. In the past, ultra-low voltage 
design has been proved to be able to reduce the power consumption by 5-10×[1][2], 
making it a very promising candidate for the power-constrained emerging applications. 
This paper reviews and discusses the major design techniques for the ultra-low voltage 
digital IC design. In Section 2, the ultra-low voltage device sizing methods are re-
viewed. In Section 3, the design techniques of ultra-low voltage level shifter are dis-
cussed. In Section 4, the design techniques of ultra-low voltage SRAM are discussed. 
In Section 5, the variation resilience design techniques for ultra-low voltage operation 
are discussed, and in Section 6, the conclusions are drawn. 

2 Ultra-Low Voltage Device Sizing for Logic Gates 

Previous studies [2][3] have shown that the logic gates with low fan-in (e.g. fan-in 
less than 4) usually do not have functionality problems at ultra-low voltage even under 
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PVT variations. However, in terms of performance they are not optimal, as the device 
size is optimized for super-threshold operation. For example, the PMOS is usually 
sized around twice as big as NMOS in order to achieve balanced rise and fall delay. 
However, in the near/sub-threshold region, the strength ratio of PMOS and NMOS 
varies due to different current-voltage characteristic, leading to unbalanced rise and fall 
delay [2][3][4]. Another issue is that the impact of the parasitic effects becomes dif-
ferent in the near/sub-threshold region. For example, the impact of drain-induced 
barrier lowering (DIBL) become less due to reduced drain-to-source voltage and the 
impact of reverse short-channel effect (RSCE) becomes stronger due to the exponential 
dependence of current on threshold voltage. Sub-threshold device sizing methods 
considering the change of current-voltage characteristic and parasitic effects of have 
been proposed to achieve optimal performance for the near/sub-threshold operation.  In 
[4], RSCE is utilized to boost the current by using non-minimum transistor length. This 
also mitigate the impact of process variations due to increased transistor area. In [5], 
inverse narrow width effect (INWE) is utilized to increase the current by using mini-
mum-size finger. With constant current this results in reduced load capacitance and 
area. The same device sizing method is combined with minimum sizing in a dual-width 
sub-threshold standard cell library [6]. The INWE-aware cells are used in critical paths 
to achieve small delay while the minimum-sizing cells are used in non-critical paths to 
reduce the power and area. Based on these work, future ultra-low voltage device sizing 
methods may further explore circuit partitioning and hybrid device sizing method to 
achieve co-optimized delay, power and area. 
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3 Ultra-Low Voltage Level Shifter 

     

 

Fig. 1. Ultra-low voltage level shifters. 

(a) Type I (b) Type II

(c) RSI based LS [7] (d) Multi-stage LS [10]

(e) Body bias based LS [11]

(g) Wilson current mirror 

based LS [13]

(f) Input detection based LS [12]

(h) Revised Wilson current 

mirror based LS [14]
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Level shifter is a crucial component in ultra-low voltage digital ICs for voltage 
conversion between different voltage domains including core-to-core and core-to-I/O. 
The conventional level shifter topologies for super-threshold level shifting have func-
tionality or performance issues when operating at ultra-low voltage. For example, for 
the cross-coupled level shifting structure (i.e. Type I) as shown in Fig. 1(a), when the 
input voltage is extremely low, the pull-down NMOS cannot overcome the strength of 
the pull-up PMOS even after heavy upsizing, which will cause functional failures. For 
the current-mirror level shifting structure (i.e. Type II) as shown in Fig. 1(b), the static 
source current causes significant standby power, which will diminish the power saving 
from ultra-low voltage operation. To address these issues, some ultra-low voltage level 
shifters have been proposed in the past as shown in Fig. 1(c)-(h). In [7][8] the pull-up 
network is weakened by using reduced swing inverter (RSI) so as to prevent functional 
failure in Type I level shifters. However, in this topology the delay is not scalable with 
supply voltage as the pull-up network is constantly weakened. In[9][10], multi-stage 
level shifter is used to reduce the effort for wide-range level shifting. This effectively 
avoids the heavy upsizing of the pull-down NMOS while resulting in increased com-
plexity and relatively long delay compared with single-stage level shifters. In [11], 
forward body bias is applied to help the level shifting at the price of increased area and 
power due to body bias control. For Type II level shifter, the major effort are spent on 
reducing the static current. In [12] the source current is enabled/disabled based on the 
detection of input transition. This significantly reduce the standby power while in-
creasing the delay and dynamic energy due to the operation of the detection circuits. In 
[13], feedback control is used to cut off the source current after the output of the level 
shifter flips. However, the feedback structure causes output drop and charging sharing 
issues, resulting in non-optimal delay and energy consumption. The issues were ad-
dressed in [14] via a revised Wilson-current mirror based level shifter, which also uses 
mixed-VT devices to achieve wide-range voltage conversion up to I/O voltage. While 
focusing on the performance optimization for ultra-low voltage operation, what is 
missing in the existing work is how to achieve optimal operation over a wide range of 
supply voltages across sub-threshold and super-threshold region. This need to be con-
sidered especially for wide-range dynamic voltage scaling (DVS)applications. 
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4 Ultra-Low Voltage SRAM 

SRAM is heavily used in digital ICs. Conventional 6T SRAM cannot work at ul-
tra-low voltage due to several issues such as read disturbance, degraded sensing mar-
gine and writability. To address these issues,  the SRAM cell and write/read circuits 
need to be re-designed. In this section, several techniques are presented for energy 
efficient ultra-low voltage SRAMs. 

 

 

4.1 MTCMOS 

Multi-threshold CMOS (MTCMOS) devices are commonly utilized in advanced 
CMOS technologies. Utilization of those devices properly can improve energy effi-
ciency significantly. In general, devices with higher threshold voltage are used in 
non-critical paths while devices with lower threshold voltage are employed in critical 
paths. This improves the energy efficiency by reducing the leakage in the non-critical 
paths and maximizing the performance of the critical paths. In SRAMs, read delay is 
larger than write delay. Therefore, higher-Vth devices are preferred in the write paths 
while lower-Vth devices are better in the read paths. The variations in the energy of 
various device combinations are illustrated in Fig. 2. Note that the maximum energy 
occurs at the device combination of standard-Vth devices in the write paths and low-
er-Vth devices in the read paths (SVT(W)-LVT(R)), which is 6.24× better than that of 
LVT(W)-HVT(R). This indicates that proper device selection is not trivial in point of 
energy efficiency. The optimal device combination can be also affected by various 
circuit techniques for leakage reduction, dynamic power reduction, etc. 

Variations in energy caused 
by device selection: 6.24x
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Fig. 2.Summary of normalized minimum energy consumption over various 

device combinations [15] 
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4.2 Read Assist Circuits 

 
Scaling supply voltage degrades Ion-to-Ioff ratio, which affects read bitline sensing 

margin. This limits the number of SRAM cells per bitline, maximum temperature, 
operating supply voltage, etc. One technique to reduce the impact of bitline leakage on 
sensing is to equalize the bitline leakage. Fig. 3 shows an 9T SRAM that can generate 
same leakage regardless of the stored data. In unselected SRAM cells, either M7 or M9 
is turned on while RVDD and /SEL are grounded. Compared to the conventional bitline 
sensing (Fig. 4(left)) where sensing margin is affected by the amount of data-dependent 
bitline leakage, the equalized leakage always provides sensing margin (Fig. 4(right)) 
with the equalized bitline leakage. Another technique for improving sensing margin is 
to realize static bitline. Fig. 5 explains the principle of the static bitline. Unlike the 
conventional dynamic-operation-based read operation, the static bitline is implemented 
by turning on the pull-up PMOS devices with proper strength adjustment. This prevents 
read bitline from being fully discharged to GND. The final bitline voltage levels are 
determined by the strength of the pull-down paths and that of the pull-up pths, which 
achieves static bitlines. As shown in Fig. 6, the static bitline provides larger sensing 
margin and sensing timing window compared to the conventional bitline structure. 
However, this requires additional power during read operation. Therefore, it is neces-
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Fig. 3. Proposed SRAM cell with equalized bitline [15]. 
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Fig. 4. Principle of the equalized bitline[15]. 
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sary to turn off the pull-up devices or read wordline (RWL) quickly after completing 
read operation. 

 

 

4.3 Write Assist Circuits 

Write operation is equally critical for reliable ultra-low voltage operation. Circuit 
techniques such as boosted wordline [17] and floating supply [17] improves write 
margin. However, they also exacerbate the half-selected cell stability. One technique 
for enhancing write margin without stability degradation is to use write-back tech-
niques. The write-back operation is achieved by executing read operation before write 
operation. By writing read data into the write bitlines of unselected columns, the cell 
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Fig. 5. (a) Schematic of the boosted bitline scheme [16] (b) timing diagram 

during a read operation of the conventional 8T and boosted bitline 8T. 

 

 
Fig. 6. Simulated proposed RBL waveforms and RBL swing of the 
conventional 8T at 27 oC. RBL levels of data ‘1’ is higher than data ‘0’ in the 
proposed design. However it is reversed in the 8T design, indcating a wrong 
sensing[16]. 
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stability disturbance caused by the conventional half-selection issue can be eliminated. 
However, this requires additional delay for executing the inserted read operation. 
However, by reducing the read delay through the hierarchical bitline structures, the 
overall performance of the write-back operation is comparable to the read performance. 
Therefore, the performance of the overall SRAM is not degraded. Fig. 7 explains the 
above write-back scheme, which is called ‘fast local write-back’. A sample read/write 
timing diagram of fast local write-back scheme is presented in Fig. 8.  

 

 

5 Variation-Resilient Design 

One of the largest challenges for ultra-low voltage digital IC design is the dramat-
ically increased delay variations, which can be up to 100× compared to that for nominal 
voltage operation [1]. The conventional worse-case design method will result in sig-
nificant design overhead in this case. Earlier the issue was addressed by on-chip timing 
error monitoring using the replica critical paths and adaptive clock/voltage tuning. 
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However, this cannot capture the local variations in the actual critical paths. In-situ 
timing monitoring techniques have been proposed to tackle this problem. In [19], razor 
technique is used to capture the late arrival signals (i.e. timing errors) by a shadow 
flipflop and correct them by architectural replay. However, this requires the minimal 
path delay to be increased to differentiate the late arrival and early arrival signals, 
leading to significant overhead due to buffer insertion. Also, its application is limited to 
high performance processors where architectural replay is available. In [20], canary 
flipflop technique is used to predict the error by monitoring artificially delayed signal. 
This eliminates the need for increasing minimum path delay. The drawback is there are 
some errors it cannot correct such as errors caused by fast variation or suddenly acti-
vated critical paths.  In [21], half-path error monitoring is proposed to address the 
disadvantages of the razor and canary flipflop techniques. As the error is detected 
before the clock rising edge. It does not need to differentiate the late and early arrival 
signals, reducing the overhead of buffer insertion. Also, it is able to deal with errors 
caused by fast variations and suddenly activated critical path.  Another advantage is 
that it is applicable to any digital designs as the error correction is done through general 
clock gating. For variation-resilient ultra-low voltage design techniques, the most 
important considerations include overhead, effectiveness and compatibility with 
standard design flow, which determine how the technique will be welcomed by major 
industry. 

6 Conclusions 

In this paper the major design techniques for ultra-low voltage digital IC design are 
reviewed. The device sizing methods considering current behavior and parasitic effects 
in near/sub-threshold region are reviewed and discussed. The ultra-low voltage level 
shifter design techniques employing revised cross-couple and current mirror structures 
are discussed. Various design techniques for ultra-low voltage SRAM are reviewed, 
including adoption of Multi-threshold CMOS device, read assist circuit and write assist 
circuits. The variation-resilient design techniques for ultra-low voltage operation are 
also reviewed and discussed. 
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