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Preface 

The creation of a book is an act that requires several preconditions. 

I) An interesting and worthwhile subject 

2) A fair, yet demanding editor. 

3) Someone willing to put the words on paper. 

Given the existence of these three items, the leap to making the book a good one 
becomes the responsibility of the author. The Smarandache function is simultaneously a 
logical extension to earlier functions in number theory as well as a key to many future 
paths of exploration. As such, it is hoped that you get as much out of this book as the 
author did in writing it While all books are a collective work, the responsibility for any 
errors ultimately falls to the author, and this is no exception. 

Several conjectures are made in this book and while the author believes that they are true, 
there will be no offence taken if any are proven wrong. Progress in mathematics is often 
made by seeing such opinions and proving them wrong. In fact, it is hoped that if any 
reader makes any progress in resolving any conjecture, that they will have the good grace 
to contact the author at the address below. 

I would like to take this opportunity to thank Dr. R. Muller for his encouragement in 
getting this project started. The staff at Erhus University Press are also to be commended 
for putting everything in the proper place. Thanks also must go to my supervisors Toutlc 
Moubarak and Brian Dalziel for their understanding during the creation of the book 

Finally, I would like to dedicate this book to my lovely daughter Katrina. A model of 
chaos theory, she is capable of creating messes that make a tornado look like a sneeze. 
And yet she somehow manages to stay cute while doing so. 
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Chapter 1 

As one of the oldest of mathematical disciplines, the roots of number theory extend back 
into antiquity. Problems are often easy to state, but extremely difficult to solve. Which is 
the origin of much of their charm. All mathematicians, amateurs and professionals alike, 
have a soft spot in their hearts for the "purity" of the integers. When "Fermat's Last 
Theorem" was finally proven after centuries of effort, the result was discussed on many 
major news shows in the US. Brief comments also appeared in the major weekly news 
magazines. 

Divisibility is the backbone of number theory. Notions such as prime numbers and the 
standard number theoretic functions 

The Euler phi function, <p(n) is the number of integers m, where 1 :S m < nand m and 
n are relatively prime 

Sum of divisors function, O"(n) is the sum of all the positive divisors of n 

Number of divisors function, T(n) is the number of positive divisors of n. 

are all based on which integers are evenly divisible by others. 

Divisibility and prime factorizations are intimately related, therefore the values of number 
theoretic functions can often be computed by formulas based on the prime factorization. 

For example, if m = pll pr P33 p~n ,then 

<p(m) = m ( 1 - 1 / PI ) ( 1 - l/p2 ) ( 1 - I/P3 ) 

In the 1970's a Rumanian mathematician by the name of Florentin Smarandache created a 
new function in number theory. Called the Smarandache function in his honor but not 
published until 1980[1], it also has a simple definition 

Ifm > 0, then SCm) = n, where n is the smallest number> 0 such that m evenly 
divides n! 

It is possible to extend the domain of S to include the negative integers as well. However, 
since the basic notions of divisibility also includes the negative integers, i. e. 

If min, then -m I n 
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nothing really new occurs if this is done. Do note however, that if the domain is expanded 
in this way, 

SCm) = S(-m) 

so S is an even function. Of course, zero is always excluded. For all of our work here, we 
will consider the domain to be m > 0 

Some example values are 

S(I) = 0 since 0' = 1 
S(2) = 2 since O! = 1, l' = 1 and 2' = 2 
S(3) = 3 since 3 does not divide 0' = 1, l' = 1 or 2' = 2, but 3 divides 3' = 6 
S(6) = 3 since 6 does not divide 0' = 1, l' = 1 or 2' = 2, but 6 divides 3' = 6 
S(l6) = 8 since 16 divides 8! and no other factorials less than that 

Extending out to an infinite horizon, the consequences of this simple definition encompass 
many areas of mathematics. Sometimes behaving like the standard functions of number 
theory and other times totally different, this function occupies a unique niche all its' own. 
Our purpose here is to examine some of those consequences, hopefully giving the reader 
an acquired taste for this unexplored territory. In all of our explorations, the reader should 
assume that all numbers are non-negative integers unless otherwise noted. Also, the word 
divides means evenly divisible and for notational consistency p and q will always be used 
to denote primes. Finally, one will not be considered a prime number. 

We start our journey in a simple manner, with a table of the values of the function for the 
first 30 numbers. 

Table 1 

n Sen) n Sen) n Sen) 
1 0 11 11 21 7 
2 2 12 4 22 11 
3 3 13 13 23 23 
4 4 14 7 24 4 
5 5 15 5 25 10 
6 3 16 6 26 13 
7 7 17 17 27 9 
8 4 18 6 28 7 
9 6 19 19 29 29 
10 5 20 5 30 5 
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Note that S(3) = S(6) = 3, so Sen) is not 1-1. This behavior is typical of number theoretic 
functions. 

Looking at table 1, it can be seen that Sen) < n for all 30 entries. This is a general result 
and is the topic of our first theorem. 

Theorem 1: Sen) :::; n for all n ?: 1. 

Proof: Choose an arbitrary n ?: 1 and construct the list 

0, 1, 2, 3, n 

with corresponding factorials 

0!,1!, 2!, 3!, ... ,n l 

since we are looking for the smallest number m in this list such that n divides ml, we start 
at the left and move right until we encounter such a number. Since n divides nl for all 
n ?: 1, in all cases we need go no further than n. 

Contrasting this with the standard number theoretic functions 

<P(n) :::; n o-(n) > n T(n) < n 

we can see that this is a case where the behavior of S is similar. 

Clearly, 

00 

L 1 I Sen) diverges 
k~I 

since 

I > 1 
Sen) - n 

for all n and the harmonic series 

00 

L 1 In 
n~I 

is known to be divergent. 

Our second theorem gives a lower bound to the values. 
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Theorem 2: Sen) > 1 for n :2: 2 

Proof: Given that 01 and 11 both equal 1 and any number n :2: 2 has at least one prime 
factor greater than or equal to 2, it follows that the smallest number m such that n j m! 
must be greater than 1. 

Corollary 1: 0 ::; S(n)/n ::; 1 for all n :2: 1. 

Proof: Since the domain of the function is all positive numbers, it is a direct consequence 
of theorem 1 that 

S(n)/n ::; 1 

Combining the results of theorems 1 and 2, we have that S(n)/n > 0 for n > 1 Including 
the special case SCI) = 0 yields S(n)/n :2: 0 

There are 10 prime numbers less than 30, and in looking at table 1, we see that Sen) = n 
for all 10 prime numbers. This is a general result and easy to prove. 

Theorem 3: S(p) = p for p a prime. 

Proof: Choose an arbitrary prime number p and construct the list of factorials 

01,11,21, ... ,pi 

To determine the value of S(p) we start at the left and move right until we encounter the 
first number m where p divides mi. By the definition of the primes, there is no number less 
than p that contains p as a factor. Therefore, p is the smallest number where p divides p!. 

This is similar to the behavior of two other number theoretic functions in that 

<I>(p) = P - 1 for p a prime 

J(p) = P + 1 for p a prime 

The number of divisors function is different, in that 

T(p) = 2 for p a prime 

With this result, we also know that the series 
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where Pk is the k-th prime diverges since the sum of the reciprocals of the primes is 
known to diverge. 

Corollary 2: The equation S(n)/n = 1 has an infinite number of solutions 

Proof: Direct consequence of theorem 3 and the well-known fact that there is an infinite 
number of prime numbers. 

Going back to table J once again, we see that 

S(6) = S(2*3) = 3 = S(3) 

S(JS) = S(3*S) = S = S(S) 

S(26) = S(2*13) = 13 = S(13) 

In all three cases the input number is the product of two distinct primes and the value of 
the function is the largest of the primes. This is again no coincidence and is the subject of 
the next theorem. 

To complete the proof we rely on the following property offactorials 

Fact: Ifm! kl, then mini for all n > k. 

Theorem 4: Ifp and q are distinct primes, then S(pq) = largest ofp and q. 

Proof: Without loss of generality, assume that p > q. Form the list of factorials 

O!, 11,2 1,. , q!, ... , p! 

Since p is prime, as we move from left to right in this list, the first factorial we encounter 
that is divisible by pis p! Since q also divides pi, it follows that pq divides pI. Since this is 
the smallest such number, p satisfies the definition of the Smarandache function. 

Definition 1: A function f is said to be multiplicative if 

f(m*n) = f(m) * fen) for all m,n in the domain off 

Corollary 3: SCm) is not multiplicative. 

Proof: Direct consequence of theorem 4. 

Since (J, T and 1> are all multiplicative, this is a fundamental point of difference between S 
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and other number theoretic functions .. 

However, given that S(2*2) = 4 = S(2)*S(2), it is possible to find numbers m and n such 
that S(mn) = S(m)*S(n). 

As is proven in the following theorem, the behavior described in theorem 4 can be 
generalized. 

Theorem 5: Let m = PIP2 ... Pk , where all Pi are distinct primes. Then, 

SCm) = largest of the set { PI, P2, ·,Pk }. 

Proof: First reindex the set so that the order of the indices matches the order of the 
primes Form the ordered list offactorials 

and apply the same reasoning used in theorem 4. 

Definition 2: We will use the notation NS(m) = n to denote that n is the number of 
different integers k such that S(k) = n. 

Example: 
NS(O) = I since SCI) = 0 and there are no other numbers n such that Sen) = 0 

The order of the growth ofNS(m) will at times be of importance, so we start here with a 
straightforward consequence of theorem 5. 

Theorem 6: Ifwe restrict the domain ofNS(p) to be the odd primes only, then the growth 
in the value ofNS(p) is at least 

where the function '/rex) is the number of prime numbers not exceeding x and 

(m) _ m' 
n n'(m-n)1 

Proof: Let p be an arbitrary prime. By theorem 5, any number of the form n = kp, where k 
is a product of distinct primes each less than p will satisfy the equation 

S(kp) = S(p) = P 
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There are n(p) -1 primes less than p_ The number of ways we can create a product by 
choosing k items from this list is 

o :s: k :s: n(p )-1 

Since each product is distinct, the total number of ways we can create the products is the 
sum of these values for all possible choices for k 

Example If we choose p = 31, then n(3 1) - I = 10 _ By the theorem, NS(31) is at least 

(~)+(~)+(~)+(~)+(~)+(~)+(~)+(~)+(~)+ 

C90) + C~) = 

1 + 10+45 + 120+210+252+210+ 120+45 + 10+ 1 = 1024 

Moving up to the next prime p = 37, n(37) -1 = II, so the corresponding number is 

1 + 11 + 55 + 165 + 330 + 462 +462 + 330 + 165 + 55 + 11 + 1 = 2048 

Which is an illustration of the following well-known theorem concerning such sums_ 

Counting Principle 1: For n 2: 0 

Since this result is well-known the proof is not given here_ Interested readers may consult 
any book on combinatorics for the details_ 

Corollary 4: For p any prime, the value ofNS(p) is at least 

Proof: Direct consequence of theorem 6 and counting principle 1_ 

Example 
There are 88 primes less than 1000, so for p = 1009 we know that there are at least 

numbers n where S(n) = 1009_ 
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And, as we will see later, this is only part of the growth of NS(p) for p "sufficiently 
large." 

The range of the ratio S(n)/n has already been determined. However, it can now be 
proven that the ratio can be made arbitrarily close to zero. 

Theorem 7: For any arbitrary real number E > 0, it is possible to find a number n such that 
S(n)/n < E. 

Proof: Choose any real E > 0. Form a product of distinct primes q = PI P2 .. Pk such that 
1/q < E. Now, take another prime s that is larger than all of the prime factors of q and form 
the product sq. By theorem 5, S(sq) = s, so the ratio S(sq)/sq = J/q. 

Since S(p) = p, for p a prime, it is clear that 

L: S(k)/k diverges 
k~l 

However, many sums can be made to converge by selectively eliminating the part that 
diverges. So, suppose we eliminate the primes and ask the related question: 

What is the behavior of the sum 

ex; 

L: S(k)/k where k ranges over all composite numbers 
k~4 

To see that this sum also diverges, consider all numbers m, where m = 2p, P an odd 
pnme. It follows from theorem 4 that 

S(m)/m = p/2p = 1/2 

and since there are an infinite number of odd primes, the sum must diverge. 

It has already been determined that 

00 oc 

L: I/S(n) and L: J/S(Pk) where Pk is the kth prime 
k~l n~1 

diverge. At this time, it will be proven that the sum 

L: J/S(n) where n is composite 
n~4 
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also diverges. 

Consider all composite numbers of the form n = 2p, where p is an odd prime. By 
theorem 4, 

S(2p) = P 

And so the sum 

:x; 

L I/S(2pk) where Pk is the kth odd prime 
k -I 

is a divergent subseries of 

'x:: 

L I/S(n) where n is composite 
k~4 

forcing it to also be divergent. 

The next step in our journey is to consider the behavior of SCm) for increasing powers of 
a prime. We will start with the simplest case, using the proof as a building block to solve 
several generalizations 

Definition 3: If p is a prime, we define the function Np(m) to be the number of instances 
that p is a factor of m' 

Lemma 1: The behavior of the function Np (m) is given by the formula 

Np(m) = Np(kp) for kp ~ m < (k+ l)p 

Np(m) = Np(kp) + j for m = (k+l)p 

where j is an integer I. 

Proof: Form the series of numbers 

kp, kp+l, kp+2, .. , (k+l)p - I, (k+l)p 

and associated factorials 

kp', (kp+ I )', ,«k+l)p - 1)', «k+l)p)' 

It is a direct consequence of the definition of prime numbers that p does not divide any of 
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the numbers 

kp+l, kp+2, .. , (k+l)p - I 

Therefore, if we split the factorial ((k+ I)p - I) I up into two components 

(I *2*3* ... *kp) * ((kp+I)*(kp+2)*. *((k+l)p-I» 

p does not divide the second component Therefore, the number of instances of p as a 
factor of any number 

(kp+I)1 up to ((k+ I )p_I)1 

must be the same as that ofkpl 

Now taking ((k+ l)p)1 and splitting it into two components 

((k+ I )p-I ) I * (k+ I )p 

it is clear that (k+ I)p will add at least one more instance of the prime p to the list of 
factors 

NOTE 1: Ifp I (k+I), the factor (k+l)p will add more than one instance of the prime p. 

NOTE 2: lim Np(n) = 00 
n~oo 

Theorem 8: Ifm = p2, where p is a prime, then SCm) = 2p. 

Proof: Again form the sequence of factorials 

01, 11,21, ... , pi, (p+I)I, ... ,(2p - 1)1, 2pl 

and realize that for m to divide a number k, k must contain at least 2 instances of the prime 
p as factors. Starting at the left and moving right, the first number that contains one 
instance of p as a factor is p. So pi is the first factorial in the list evenly divisible by p. By 
lemma I, all of the numbers (p+ I) I to (2p-l) I also have only one instance of p as a factor. 
The additional required instance of p is not added until 2p is encountered. Since this is the 
smallest such number, we have the desired result 

Extending the arguments of the proof even further, we get the following general result. 

Theorem 9: If m = pk where p is prime, then SCm) = np, where n <::: k 
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Proof: The number we seek must contain at least k instances of p as a factor. By lemma 1, 
the number of instances of the prime in the factorials forms a stepwise function with 
increments only at the multiples of the prime p. Following the definition of the 
Smarandache function, since the smallest number containing at least k instances of the 
prime p is what we seek, that number must be an integral multiple of p. Since each 
multiple ofp adds at least one instance ofp, kp is the highest we ever need go 

The next step is to extend the ideas of the first note following the previous lemma. As 
an initial step we will form the factorials of the first few integral multiples of 3 and 
determine the number oftimes 3 appears as a factor. 

Product 

1*2*3 
1 *2*3*4*5*(2*3) 
1*2*3*4*5*(2*3)*7*8*(3*3) 
9 1*10*11 *(3*4) 
9 1*10*11 *(3*4)*13*14*(3*5) 
15 1*16*17*(2*3*3) 

Number of3's 

I 
2 
4 
5 
6 
8 

Where the corresponding values of the Smarandache function are 

S(3) = 3 S(3*3) = 6 S(3*3*3) = 9 S(3*3*3*3) = 9 S(3*3*3*3*3) = 12 
S(3*3*3*3*3*3) = 15 S(3*3*3*3*3*3*3) = 18 S(3*3*3*3*3*3*3*3) = 18 

Pay special attention to the instances where two successive powers of three have the same 
value of the Smarandache function 

From this, it is easy to see that at least for the first few numbers m = I, 2, 3, 4, 5, and 6, it 
is possible to find a power of3 such that S(3k ) = 3m. The obvious question is then 
whether this holds in general It does and is the topic of the next theorem 

Theorem 10: Let p be an arbitrary prime and n ::::: I. Then, it is possible to find a number 
k, such that 

S(pk) = np 

Proof: We already know that S(p) = p and S(p2) = 2p. So assume that there is at least one 
number n > 2 such that there is no number k satisfying the equation 

S(pk) = np 

Using the ordering properties of the natural numbers, there must be a smallest such n. For 
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notational purposes, call that number j. Therefore, there must be some number k such that 

By the definition of SCm), the product 

1 *2*3*4* ... *G-1)p 

has k instances of the prime p and is the smallest such number. However, from previous 
work, we know that it is possible for there to be multiple values of k satisfYing the above 
equation. So we define s :::: k to be the largest exponent such that 

S(pS) = G-l)p 

or put another way, the product 

1 *2*3* .. *G-1)p 

contains s instances of the prime p but not s+ 1 . 

Extending the product out to 

1 *2*3*4* .. *G-1)p*(G-1)p+1)*(G-1)p+2)* ... *jp 

and applying lemma 1, it follows thatjp is the smallest number such that Gp)1 contains 
more than s instances of the prime p. 

And so by the definition of the Smarandache function 

S(ps-l) = jp 

Contradicting the assumption. Therefore, no such number exists and the equation 

S(pkl = np 

is solvable in the integers 

Given that S(pn) = kp for p a prime, the next step is to determine an algorithm to 
effectively compute the value of the function if the input is the power of a prime. To start 
this, go back to the list of powers of three and realize that an additional instance of the 
prime is added whenever the multiplier of the prime is divisible by the prime And if the 
multiplier has several instances of the factor, then each multiple will add an instance of the 
prIme 

15 



For example, consider the factorial 

1* .. * p* ... * 2p* ... * kp*. . * (p*2p-l)p 

and let k represent the number of instances ofp in the product. Now add the additional 
factor 

(p*2p)*p 

to this product. The addition will add 3 instances of the prime p to the product, two from 
the index and one since it is a multiple of p. Therefore, to compute k, the number of 
instances of the prime p in the product, we must include not only the contribution from the 
multiples of p, but also the number of times that p appears in the indices. This leads to the 
following lemma. 

Lemma 2: Let m be an integer and consider the product (mp)! Then the number of 
instances of the prime p in the product is m plus the number of times p is a factor of an 
index in the list of numbers 

I, ... ,p, ... ,2p,. ., 3p, . , mp 

The second number is computed by executing the following simple algorithm, where the 
division is integer division. 

Step I: Sum = O. 
Step 2 Hold = mJp 
Step 3: If hold=O then exit with sum the desired result. 
Step 4: sum=sum+hold. 
Step 5: m=hold 
Step 6 Go to step 2. 

Proof: Clearly, p appears as a factor in the list 

I, ... ,p, ... ,2p, . , mp 

m times as a result of m products of p and an index. Performing the integer division mJp, 
will return the number of times that the index was of the form 

kp 

Ifwe then take the integer division again (mJp)/p, we have computed the number of times 
that the index was of the form 
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k*p*p 

And in general, performing the integer division j times will return the number of times that 
the index was of the form kpi. The sum of all of the values of the integer divisions until the 
result is zero will yield the total contribution of instances of the prime p from the indices. 
Therefore, the total number of instances of the prime p in the factorial is the sum of the 
two numbers. 

This leads us to an algorithm that will allow us to compute the value of the Smarandache 
function for all numbers of the form pk, where p is prime. 

Algorithm 1: 

Inputs: A prime number p and an exponent k. 
Output S(pk) 

Step 1: Ifk < P then exit with S(pk) = kp. 

Step 2: Choose an initial number startnumber, such that startnumber*p is less than or 
equal to the value of S(pk) 

Step 3 Use the algorithm in lemma 2 to determine the number of instances of the prime p 
in startnumber*p. 

Step 4 If this number is greater than or equal to k, exit with S(pk) = startnumber*p 

Step 5 Increment startnumber by 1. 

Step 6 Got to step 3. 

NOTE 3: Step 1 in the above algorithm is just the default case when there are no 
contributions of the prime p from the indices. It is included for purposes of efficiency. 

Theorem 11: S(pm) = mp ifm :S p. S(pm) < mp ifm > p. 

Proof: Direct consequence of the algorithm 

Theorem 12: S(pm) / pm > S(pm-l) / pm-l for p a prime. Moreover, 
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Proof: 

lP 
pm'! 

where j :::: k + 1 Therefore, the desired inequality is clear. Since the numerator increases 
by at most 1 when the exponent is increased by 1 and the denominator increases by a 
factor of at least 2, the denominator dominates the numerator rather quickly. 

The final step is to determine an algorithm that will compute the value of the 

Smarandache function in general, and that is the topic of the next theorem. 

Theorem 13: Ifm = PI' p~2 P33 p~n is the prime factorization of m, then 

SCm) = maxi S(pii) } 

Proof: Reindex the primes so that S(p~n) = k is the largest of all the function values 
S(pi') From the properties already proven, k is then the smallest number containing the 
necessary number of instances of the prime Pn so that p~n divides k. Since k is greater than 
or equal to all of the other values of S(pf'), it follows that k must also contain the 
required number of instances of the other primes so that pii divides k. Therefore, k 
satisfies the definition of the Smarandache function and SCm) = k. 

Definition 4: Given m = PI' .. pk'k ,we say that Pi is the prime of concern if 

Now that we have all the necessary machinery to compute the values of the Smarandache 
function, we can prove a simple, yet important theorem concerning the fixed points of S 

Theorem 14: M = 4 is the only composite number where SCm) = m. 

Proof: Case 1: m has only one prime factor 

By theorem 9, S(pn) = kp. So, ifn is to be a fixed point ofS, then S(pm) = kp ~ 

pm = kp. 

Subcase 1: 1 < m :::: p 

Then, by theorem 11, the equation reduces to pm-' = m, which has only one 
solution, p = 2, m = 2. Note that pm-' > m for all other values. 

Subcase 2: m > p. 
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Again, by theorem 11, pm-l = k, k < m. And since pm-l > m where 
p :f. 2 or m :f. 2, there are no solutions. 

Case 2: N has more than one prime factor. 

We will deal with the case where there are two prime factors, the rest will be an obvious 
consequence. 

Suppose n = pjlp2'2 where PI is the prime of cone em Then S(n) = kpl. Ifn is to be a 
fixed point, it follows that 

or upon reduction 

With k :s:: m, we then have 

n :::: pfp2'2 where k has the form above 

Given the form of n, this is impossible. 

If n has more than two prime factors, then the proof is similar. The only difference is that 
the representations have more factors 

Using theorem 13, it is now possible to construct a complete algorithm to compute the 
values of the Smarandache function for all numbers in the domain. 

Algorithm 2: 

Input n an integer :::: 1 

Output S(n) = m. 

Step 1 If n = 1 exit with S(n) = 0 

Step 2 Perform the prime factorization of n 

Step 3 Use algorithm 1 to compute S(pn for all of the prime factors ofn. 

Step 4 Exit with S(n) the maximum of those numbers computed in step 3. 
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It is a simple matter to construct a computer program to execute algorithm 2 and a C 
program that implements the algorithm follows. Unsigned long integers are used to store 
the numbers, which gives an upper limit for num in excess of 4,200,000,000. The 
program was compiled as a C++ program using the Borland Turbo C++ package 

#include<stdio.h> 
#include<math. h> 

void main() 
{ 

long num; II The program will compute S(num) 
long temp I ; II Used as a temporary storage location. 
short i,factcount; II i is used as an index variable in looping and factcount is the number 

I I of distinct prime factors of num. 
long factors[30]; II This array stores the prime factors of num. 
short exps[30]; II This array stores the exponents of the primes held in the array of 

II factors. For example, factors[3] = 5 and exps[3] = 2 means that 
II 5 appears twice as a factor of null. 

long smars[30]; II This array stores the values of the Smarandache function for each 
II of the prime factors. 

long max; II This holds the maximum value of the number in the array smars[]. 
long divisor; II Used as a divisor to determine prime factors ofnum. 
long maxcheck; II If divisor> maxcheck, then the number is prime 
unsigned char found; II Used as a flag to exit a while loop. 
long startnum; II This variable is the one that will be repeatedly divided by the prime to 

II determine the number of instances of the prime that were contributed 
I I by the indices. 

long sum _ ofjactor; II Keeps the running total of the number of instances of the prime. 
long tempsum; II Used to store the results of the repeated integer divisions. 

printf("Enter the value of the number\n"); 
scanf("%ld",&num); 
if(num==l) 
{ 
printf(" 1 l\n"); 
} 
else 

factcount=O; 
for(i=0;i<30;i++ ) 
{ 
factors[i]=O; 
smars[i]=O; 
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exps[i]=O; 
} 

1* The first step is to break num into the equivalent prime factorization. For efficiency 
considerations we first remove all instances of the even prime 2. *1 

templ=num; 
if(num%2) 
{ 
temp 1 =numl2; 
factors[0]=2; 

exps[O]=I; 
while( ((temp 1 %2)==0 )&&( temp 1 > 1 )) 
{ 

temp 1 =temp 1 12; 
exps[O]++; 
} 

factcount= I; 
} 

maxcheck=long( sqrt( num)); 
divisor=3; 
while( (temp 1 > 1 )&&( divisor<=maxcheck)) 
{ 
if( (temp 1 %divisor )==0) 
{ 

} 

factors[ factcount ]=divisor; 
exps[factcount]= I; 
temp 1 =temp !ldivisor; 
while( ( (temp 1 %divisor )==0 )&&( temp 1 > 1 )) 
{ 

temp 1 =temp1 Idivisor; 
exps[ factcount ]++; 
} 

factcount++; 

divisor=divisor+ 2; 
} 

II If temp 1 > 1 at this point, then num is prime. 
if(temp I> I) 
{ 
factcount= 1 ; 

21 



factors[ fact count ]=num; 
exps[ fact count ]= I; 
} 

/* The next step is to compute the value of the Smarandache function for each pair of 
entries in the arrays. */ 

for(i=O;i<factcount;i++ ) 
{ 

if( exps[i]<factors[i]) 
{ 
smars[i]=exps[i] *factors[i]; 

} 
else 

startnum=exps[i ]/factors[ i]; 
if( startnum< I) 
{ 
startnum= I ; 
} 
found=O; 
while(found==O) 
{ 

} 

sum _ oCfactor=startnum; 
tempsum=startnurnlfactors[i] ; 
while(tempsum>O) 
{ 
sum _ oCfactor=sum _ oCfactor+tempsum; 
tempsum=tempsurnlfactors[i] ; 
} 

if( sum_of Jactor>=exps[i]) 
{ 

found=J; 
} 
else 

startnum++; 
} 

} 
smars[i]=startnum*factors[i]; 

/* The final step is to determine the largest of the values of the Smarandache function. */ 
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} 

max=O; 
for(i=O;i<factcount;i++ ) 
{ 
if(smars[i]>max) 
{ 

} 
} 

max=smars[i]; 

printf("%ld %ld\n" ,num,max); 
} 

While most of this algorithm should be clear, there is one additional point that must be 
raised. For the algorithm to be efficient, the value of startnum should be chosen as close to 
the true value as possible The value used here is the exponent divided by the prime. It 
should be obvious that the sum of all the integer divisions must be greater than or equal to 
this value. 

Combining the results of theorems 10 and 13, we can now determine the range of the 
Smarandache function. 

Theorem 15: Range(S) = { 0,2,3,4,5 ... }. In other words, I is the only nonnegative 
number where there is no corresponding m such that 

SCm) = I 

Proof: SCI) = 0 Every number larger than I contains a prime factor, so by theorems 10 
and 13, 

SCm) = kp for p some prime divisor of n 

And it is not possible for I to be in the range of S 

Now, choose an arbitrary m > 1. Decompose m into the corresponding unique prime 
factorization and order those primes. Let q represent the smallest prime in this list and 
rewrite m in the form 

By theorem 10 it is possible to find a number k such that 
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therefore m is in the range of S Since m > 1 was arbitrary, all numbers greater than 1 
are in the range of S. 

The primary conclusion from this theorem is that one can choose an integer n satisfying 
any condition(s) and as long as that integer is greater than one or zero, it is possible to find 
another integer m such that 

S(m) = n 

Therefore, problems concerning the values m such that S(m) = n where n is an element of 
a particular set do not deal with the existence of a solution. Construction of a solution, 
number, and the form of solutions are the points of emphasis. 

Examples 
The set of Cullen numbers is defined in the following way 

{ m I m = n*2n + 1, n ::::: 0 } 

And so, from the previous theorem, it is possible to find an integer m such that 

S(m) = n*2n + 1 for n > 0 

The set of Catalan numbers is defined in the following way 

again, from the previous theorem, there is a number m such that 

S(m) = Ck 

for any Catalan number Ck not equal to 1. 

If P is any prime, we already know that NS(p) is at least 

2"(p)-1 

With the results of theorem 13, we can now continue to the examine the size ofNS(n). 

If S(m) = S(pf) = npi where Pi is the prime of concern, we know that if p is any prime 
less than Pi , then S(pm) = S(m). 
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Therefore, we can now extend this count to include 

NS(n) is at least 2,,(n) 

for n composite. 

Furthermore, ifq < p where q is also prime and S(qk) < p, then 

S(pqk) = S(p) = P 

so the value mentioned above for NS(n) is less than the true size. 

Before, we continue, a well-known result concerning the growth in the size of sets must 
be mentioned. 

Counting Principle 2: Let L be a set containing k elements. Then the number of distinct 
subsets that can be formed from the elements ofL is 

and if an additional element is added that number grows to 

2k- 1 

Of course, elimination of an element reduces the number to 

This principle is well-known, so no proof need be given here. Those interested in a proof 
should consult a book on combinatorics. 

Let p be an odd prime, which forces p - 1 to be even. Therefore, pi would contain at least 

(p - 1) 12 

instances of2 as a factor. From this, it follows that 

2(p-1)12 divides pi 

by theorem 9 S(iP-1)!2) < 1'.;1 * 2 = P - 1 

And by theorem 13, 

S(2kp) = S(p) = P 
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for k :S ~l. 

If we remove the prime number two from consideration, then the number of possible 
combinations of all primes less than p is 

T(p)-2 

Combining 2 and then 22 to this set of primes leads to the inclusion of il, so the addition 
of each power of two does not double the number of possible combinations. In this case 
we can only choose one item from the set of powers of two at a time Therefore, to 
compute the number of possible combinations, we need another fundamental principle of 
counting. 

Counting Principle 3: If we have a set of objects of size m and another set of objects of 
size n and we can only choose one object from the second set at a time, then the number 
of possible ways that this can be done is given by 

m * n 

This principle is well-known, so no proof is given here. Again, those interested in a proof 
should consult a book on combinatorics. 

We can now prove the following expansion of the computation ofNS(p). 

Theorem 16: If p is an odd prime, then the number of distinct solutions m to the equation 

S(m) = p 

is at least 

Proof: Apply counting principle 2 to the numbers computed above. 

Example: For p = 1009, the first 4 digit prime, there are at least 

numbers m such that S(m) = 1009. 

However, this also understates the number of solutions, in that it includes only the 
instances of 2 that are contributed by the second numbers in the products 

26 



2k 

completely ignoring the contributions when 2 divides the index k. This is significant for 
even small numbers, as 

and not 128, as is used in theorem 16. 

There is one last item to deal with before we move on to the examination and clarification 
of some of the problems involving the Smarandache function. While unsigned long 
integers can accomodate numbers in excess of 4,000,000,000, there are times when it is 
necessary to examine particular numbers larger than this. For example, one may be 
interested in the behavior of the set 

{ SCm) I where m is a Cullen number} 

And the C++ program may not allow for adequate evaluation. 

UBASIC is a public domain extended precision package that allows numbers to have 
thousands of digits. As the name implies it is a subset of BASIC, so it is very easy to learn 

The following program is a UBASIC implimentation of the algorithm to compute the 
values of the Smarandache function. Num is the input number and is hardcoded into the 
program. 

10 dim facts(30),eps(30),smar(30) 
50 num=3 
100 for i=1 to 30 
110 facts(i)=O 
120 eps(i)=O 
130 smar(i)=O 
140 next i 
150 factcount= 1 
160j=2 
170 tl=num 
175 ' \ is integer division in UBASIC 
180 t2=tl\j 
185 'The remainder of integer division is automatically stored in the identifier res 
190 if res<>O then goto 400 
200 facts(factcount)=j 
210 eps(factcount)= 1 
220 tl=t2 
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230 iftl=l then goto 500 
240 t2=tl~ 
250 ifres<>O then goto 300 
260 eps(factcount)=eps(factcount)+ 1 
270 goto 220 
300 factcount=factcount+ I 
400 j=j+1 
410 goto 180 
500 print"The number is ";num 
510 for i= I to factcount 
520 print facts(i),eps(i) 
530 next i 
690 smar=1 
700 for i=1 to factcount 
710 p=facts(i) 
720 a=eps(i) 
730 gosub 20000 
740 if spa<smar then goto 760 
750 smar=spa 
760 next i 
770 print"The value of the function is ";smar 
2000 end 
20000 'Subroutine to compute s(p"a) 
20005'The value of the function is spa 
200 I 0 if a>=p then goto 20040 
20020 spa=p*a 
20030 return 
20040 nl=a\2 
20050 sl=nl 
20055 t1=nl 
20060 t2=t I \p 
20070 if res<p then goto 20 I 05 
20080 sl =sl +t2 
20090 tl=t2 
20 I 00 goto 20060 
20105 sl=s1+t2 
20 I 00 goto 20060 
20110 if sl>=a then goto 20140 
20120 nl=n1+1 
20130 goto 20050 
20140 spa=p*nl 
20150 return 

28 



Those familiar with old, original BASIC should have little trouble understanding this 
program. 

At this point, we have completed the introduction of the function and how to compute 
the values. Although the Smarandache function is of relatively recent vintage, a large 
number of problems have already been posed concerning the properties and consequences 
of the function. With the information that we now have at our disposal, we can proceed to 
examine and clarifY some of these problems. The computer programs listed above were 
also used to search for solutions. 

29 



Chapter 2 

In this chapter, we introduce and resolve several questions that have been raised 
concerning the Smarandache function. Most of the following problems have appeared in 
either [2] or [3]. 

Theorem 17: For any integer n > 0, it is possible to find another integer m such that 

SCm) = n' 
Proof: SCI) = 0' = l' S(2) = 3 S(3) = 3 

Let p :S n be a prime Then, since n' = kp for k some integer, we apply theorem 10 and 
conclude that there is some value m, such that 

One thing that is often done with functions is to perform repeated iterations, such as 
f(f(f(x»). It is not difficult to analyze what happens when this is done with the 
Smarandache function. 

Definition 5: Let Sk(n) be used to represent k iterations of the function S 

SeSe ... Sen) .. ) 

Definition 6: A number n is said to be a fixed point of the function fif 

fen) = n 

Lemma 3: Ifn = 4 or n prime, then Sk(n) = n for any number k. 

Proof: By theorem 3 S(p) = P and by theorem 14 n = 4 is the only composite fixed point. 

NOTE 4: From this, Sk has an infinite number of fixed points 

To understand what happens when p is not a prime, we need the following two general 
results. 

Lemma 4: Ifn is has at least two distinct prime factors, then Sen) :S nl2. 

Proof: By hypothesis, n can be factored into two or more prime components. By theorem 
13, Sen) is the maximum value of the separate S(pf) values. Since the factors other than Pi 
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where Pi is the prime of concern, must have a product greater than or equal to 2, the 
following holds. 

pf :::; nl2 

Applying theorem I, the inequality becomes 

S(pf) :::; pf :::; nl2 

Lemma 5: If n = pk, where k > I and n > 4 then Sen) < n. 

Proof: There are two cases 

Subcase 1: k :::; P 

By theorem 11, Sen) = kp. Then since k :::; pk-l for k > 1 and p 2: 2 we have 
kp :::; pk Equality occurs only when k = 2 and p = 2. 

Subcase 2: k > P 

Applying theorem 11, Sen) = mp < kp Reasoning similar to that of subcase 1 allows 
us to conclude that kp < pk so it follows that mp < pk 

Combining the results of the previous three lemmas we have the following general 
behavior when the Smarandache function is iterated. 

Theorem 18: 

a) Ifm = 1, then Sk(m) is undefined for k > L 

b) Ifm > 1, then Sk(m) = n where n is 4 or prime for all k sufficiently large 

Proof: 
( a) Obvious, since S( 1) = 0 and 0 is not in the domain of S. 

(b) Ifm = p a prime, apply lemma 3. Ifm = 4, use theorem 14. 

Therefore, ifm is not prime or 4, we can apply lemmas 4 and 5 to conclude that the result 
of an iteration is strictly less than the input number. Repeated iteration of successive 
composite numbers will then move towards zero. Obviously this cannot continue 
indefinitely 
Since the result of an iteration is of the form kp, where p is the prime of concern, the final 
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value must be a prime to the first power or 4. 

Another interesting consequence of the repeated iteration is that while every process 
starting at a number m > I terminates at a fixed point, there is no maximum number of 
steps that it can take. 

Theorem 19: There is no number K such that for every number m > I, 

SK(m) = n where n is a fixed point of S 

Proof: Suppose there is some number K that satisfies the conditions of the theorem. Then, 
there must exist some non-empty set of numbers where S must be iterated K times to 
reach a fixed point Let m be an arbitrary element of that set Clearly, m > I. From 
theorem 15, we know that there is another number r such that 

S(r) = m 

Therefore, it must take K + I iterations of S from the initial number r to reach a fixed 
point This contradiction forces the conclusion that no such K exists. 

We already know that there are an infinite number of fixed points ofS. The next question 
concerns how many numbers will iterate to a given fixed point. 

Theorem 20: Let m > 2 be a fixed point of S. Then the set of numbers 

U = {n I Sk(n) = m } 

is infinite. 

Proof: As the "oddest" of the fixed points, we deal with 4 separately. 

By computation S(8) = 4 and S(64) = 8. Assume that U is finite and that n = 2k k > 2 is 
the largest power of two found in U. From theorem 10 we know that there is some 
number 2) such that 

Since 2i is composite, and j > 2, it follows that j > k. This contradiction forces the 
conclusion that U is infinite. 

Let p > 2 be a prime. Clearly, S(p2) = 2p and S(2p) = p by choice ofp. Being a 
multiple of2, theorem 10 allows us to conclude that there is some number k > 2 such 
that 
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And we can use reasoning similar to that for the previous case to conclude that there is no 
largest power of two that iterates to p. 

Corollary 4: N = 2 is the only number where 

Proof: Ifp is prime, then the only numbers m such that SCm) = pare m = p or those 
products kp, where S(k) ~ p. Ifk contains an odd prime, S(kp) = 2 is impossible. 
Therefore, the only possibility is ifk is a power of2. However, any number of that form 
must have more than one instance of 2 and iterate to either another prime or the fixed 
point 4. 

The modifcations of the number theoretic functions <P(n) ± 1 and a(n) ± 1 have also 
been iterated Some unsolved problems stemming from these operations are given in the 
book by Guy[ 4]. Our next topic will be the behavior of SCm) - 1 as it is iterated and we 
will start with an important lemma. 

Lemma 6: SCm) - 1 iterated twice is less than m ifm > 5. 

Proof: There are two cases 

Case 1: m = p a prime. Then S(p) = p, which forces p - 1 to be composite. Applying 
lemmas 4 and 5 S(p-l) < p-l and we can construct the desired inequality. 

Case 2: m is composite. Then by lemmas 4 and 5, SCm) < m and SCm) - 1 < m. 
Applying theorem 1, we then have 

S(S(m) - 1) - 1 < m 

From this, it is clear that repeated iteration of SCm) - 1 will lead to a continuing reduction 
in size. Since the repeated iteration must lead to a value that is eventually ~ 5, let us now 
examine what happens in that range. 

S(5) - 1 = 4 
S( 4) - 1 = 3 
S(3) - 1 = 2 
S(2) - 1 = 1 
S(l) - 1 =-1 
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Leading to the theorem for iterations of SCm) - 1. 

Theorem 21: Repeated iteration of the function SCm) -1 always leads to a terminal value 
of -1, where the operation is no longer defined 

Proof: Clear from previous work. 

For the function SCm) + 1 we compute the first few values 

S(I) + 1 = I 
S(2) + 1 = 3 
S(3) + 1 = 4 
S(4) + 1 = 5 
S(5) + 1 = 6 
S(6) + 1 = 4 
S(7) + 1 = 8 
S(8) + 1 = 5 
S(9) + 1 = 7 
S(10)+I=6 

and it is clear that the iteration of SCm) + 1 will enter a loop if the value ever drops to 10 
or less. 

To determine what occurs when SCm) + 1 is iterated twice, we need the following two 
lemmas. 

Lemma 7: Ifm is composite and m > 10, then SCm) < m - 2. 

Proof: Ifm contains more than one prime factor, then we can apply lemma 4. Ifm = pk 
we need only apply the reasoning oflemma 5 with the understanding that k > 3 or p > 2. 

Lemma 8: SCm) + 1 iterated twice is less than m for m > 10. 

Proof: We split the proof into cases. 

Case 1: m = p where p is prime Then S(p) + 1 = p+ 1 where p must be composite. By 
lemma 7, S(p+I) < p-I, so S(p+I)+ 1 < p-I + 1 =p. 

Case 2: m is composite. Ifm contains more than one prime factor, by lemma 4 

SCm) S ml2 ¢} SCm) + I S ml2 + 1 

S( ml2+ 1) + 1 is then at most ml2 + 2 
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which by choice of m is less than m. If m contains only one prime factor then by lemma 7 

S(m) + 1 < m - 2 

and S(S(m)+I) < m - 1 

All of which leads to the following 

Theorem 22: Repeated iteration of the function S(m) + 1 leads to a loop if the initial 
number is greater than I. 

Proof: By lemmas 7 and 8, if m > 10 each iteration reduces the value. At some point, 
the value must drop under 10 and the repeated behavior can be seen from the 
computations for those numbers. 

It is not difficult to see that the behavior of the iteration of S(m) - 1 can be generalized. 

Theorem 23: Iteration ofS(m) - k for k ~ 1 will always lead to smaller numbers with 
eventual termination at a number not in the domain ofS. 

Proof: The inequalities in the proof of S(m) - 1 also hold for any such k in the place of I. 

Another useful result concerns the behavior of the differences of successive values of the 
function. 

Theorem 24: The set of numbers {d I d = I S(n+l) - S(n) I} is unbounded. 

Proof: Suppose there is some number M such that 

M = max { I S(n+l) - S(n) I} 

Since the number of primes is infinite, we can find some prime p such that p > 4M. By 
theorem 3, S(p) = p. Since p-I is composite, we can apply lemma 4 to conclude that 
S(p-I) :::; (p-I)/2 Therefore, 

S(p) - S(p-I) ~ P - (p-I )/2 = (p+ 1)/2 > M 

contradicting the choice ofM. 

The following is then a direct consequence of this theorem. 

Theorem 25: S does not satisfy the Lipschitz condition, i. e there is no number M > 0 
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such that i SCm) - Sen) 1 :S MI m - n 1 

Proof: With the understanding that I m - n I = 1 in the previous theorem, this is a direct 
consequence of that theorem. 

Corollary 5: S does not satisfy a k-Lipschitz condition. I.e. 

1 SCm) - Sen) 1 :S M (I m - n i)k , for k some integer 

Proof: Direct consequence of the fact that 1 m - n Ik = 1 in the previous two theorems. 

Now that we know that the differences! S(n+ I) - Sen) 1 have no upper bound, the next 
step is to determine what the lower bound is. Since S(2) = 2 and S(3) = 3, we know that it 
is at most I. The next question, which is our first unsolved problem, is if the difference can 
ever be zero. 

Unsolved Problem 1: Is there a number n such that SCm) = S(m+I)? 

It has been conjectured in [5] that there is no such number. 

The author used a modification of the C program given previously and found no solutions 
up through num :S 1,000,000 As we will see shortly, that fact is essentially meaningless 
when dealing with the values of S 

By lemma 4, lemma 5 and theorem 3, it is clear that ifn is such a number, then neither n 
or n+ 1 can be prime. Also, the numbers cannot share any common prime factors. Since 
both numbers must be composite, Sen) = kp, where p is the prime of concern for nand 
Sen+!) = rq, where q is the prime of concern for n+ 1. For the equality 

kp = rq 

to hold, it follows that q would have to divide k and p divide r. That it may be possible to 
find a solution by severely restricting the search is easily justified Consider an arbitrary 
number 

2*3*n 

where n > I. By theorem 10 it is possible to find numbers k 1 and k2 such that 

Therefore, there are an infinite number of simultaneous powers of 3 and 5 such that their 
respective values of S are equal It also follows that if p is any prime 5 < P < 3 * 5 *n, 
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then 

S(p*2k1
) = 2*3*n = S(p*3 k2 ) 

And in general, any number m ,where S(m) ~ 2*3*n can be placed in the product 
without affecting the value of S 

Which gives us the following algorithm to search for solutions to the equation 

S(m) = S(m+l) 

I. Start with any number evenly divisible by 2 and 3. Call that value num. 

2. Determine the values kl and k2 such that S(2kl) = num = S(3k2 ) . 

3. Construct the set P of all primes p < num 

4. Construct the set Q of all distinct products of elements of P. 

5. Construct all products r*2kl and s*3 k2 where rand s are elements ofQ. If the 
difference of these products is ever 1, exit with the products as the solution. 

6. Increment num by 2*3 

7. Go to step 2. 

Although this algorithm was constructed using the example primes 2 and 3, it will also 
work if we use p and q, two arbitrary primes. However, we must be careful to maintain 
the proper parity, which can be used to improve the performance. Since 2kl is even and 
3k2 is odd the products constructed in step 5 are all of opposite parity. Which is what is 
needed since n and n+ 1 are of opposite parity 

However, if we use two odd primes, then the powers are both of odd parity and the 
products rand s must be of opposite parity. This is easily repaired as 2 is available to build 
the products 

As we have already seen, the number of all possible products of primes rises very rapidly 
as num increases. Furthermore, while not included in the algorithm, it would be possible to 
include all powers pk where S(pk) ~ num. 

Given the large number of possible combinations that develop as the numbers get larger, 
the author is convinced that solutions to the equation do exist and makes the following 
conjecture. 
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Conjecture 1: There are numbers nand n+ 1 such that 

S(n) = S(n+l) 

It is the authors fervent hope that readers will search for solutions and one will be found. 
However, there will also be no disappointment if a proof that there are no solutions is 
discovered. 

Additional families of unsolved problems concerning the algebraic relationships between 
successive values of the Smarandache function have been posed. Very little has actually 
been resolved concerning these issues, although at times there are tantalizing hints as to a 
possible resolution. 

Definition 7: The Fibonacci sequence is defined in the following way: 

F(O) = 0 F(1) = 1 F(n+2) = F(n+ 1) + F(n) for n > 1. 

In 1994, T. Yau[6] noted that S(9) + S(10) = S(11) <=> 6 + 5 = 11, 
S( 119) + S( 120) = S(121) <=> 17 + 5 = 22 and asked if there were any other solutions 
matching the Fibonacci-like behavior. 

The author conducted an additional computer search up through n :::; 1,000,000 and 
found the additional solutions 

S( 4900) + S( 4901) = S( 4902) <=> 
S(2*2*5*5*7*7) + S(13*13*29) = S(2*3*19*43) <=> 14 + 29 = 43 

S(26243) + S(26244) = S(26245) <=> 
S(7*23*163) + S(2*2*3*3*3*3*3*3*3) = S(5*29*181) <=> 163 + 18 = 181 

S(32110) + S(32111) = S(32112) <=> 
S(2*5*13*13*19) + S(163*197) = S(2*2*2*2*3*3*223) <=> 
26 + 197 = 223 

S(64008) + S(64009) = S(64010) <=> 
S(2*2*2*3*3*7* 127) + S(11 * 11 *23*23) = S(2*5*37* 173) <=> 
127 + 46 = 173 

S(368138) + S(368139) = S(368140) <=> 
S(2*23*53*151) + S(3*41 *41 *73) = S(2*2*5*79*233) <=> 
151 + 82 = 233 

S(415662) + S(415663) = S(415664) <=> 
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S(2*3* 13*73*73) + S(l9* 131 * 167) = S(2*2*2*2*83*313) ¢} 

146 + 167 = 313 

In examining the solutions, notice that with only two exceptions, the values ofS(n) are 
determined by either the largest prime factor or from a prime factor that occurs twice. This 
certainly makes sense, as we cannot have 

odd prime + odd prime = odd prime 

In nearly all other cases, we have the prime of concern appearing only to the first power. 

To begin our analysis, we note that all of the following 

odd prime + odd prime = twice an odd prime 

twice an odd prime + odd prime = odd prime 

odd prime + twice an odd prime = odd prime 

can serve as the foundation. Since we know that S(p) = p and S(p2) = 2p for p prime, 
finding solutions where 

S(r) + S(s) = S(t) 

is just a matter of finding primes PI, P2 and P3 such that 

PI + P2 = 2P3 or 

2pI + P2 = P3 or 

Starting with primes that satisfy any of the three formulas above and then taking the list of 
all primes such that S(pl) < r, S(p2) < sand S(p3) < t, it is possible to create many 
triples (r,s,t) such that 

S(r) + S(s) = S(t) 

And as has already been noted, the size of each list is bounded below by a power of two. 
Since the lists are mutually exclusive, if we exclude everything but the primes, the number 
of possible combinations is at least 
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Inclusion of the powers of the primes will substantially increase the number of possibilities. 
Note that the parity of the the numbers (r,s,t) has no affect on whether the formula is 
satisfied 

The final parameter to be satisfied is then to find a combination 

(r,s,t) = (n, n+ I, n+2) 

Since 2 is the number with the largest allowable number of repeats, this could explain the 
number of solutions with several instances of 2 as a factor. Also, the rapidly growing 
number of possible combinations allows one to argue that the number of solutions will 
grow as larger numbers are used. The maximum number of 1,000,000 in the computer 
search is not large enough to exhaust all possible combinations using the seed primes of 
the solutions found. All of this leads to the conjecture 

Conjecture 2: There are an infinite number of solutions to the equation 

Sen) + S(n+ 1) = S(n+2) 

Rationale: In addition to the arguments presented above, note that if there are three 
primes in an arithmetic progression 

p, p + d, p + 2d 

then 

S(p) + S(p + 2d) = S( (p+d)2) 

and we have a solution satisfying the initial parameter. It is known that there are an infinite 
number of such sequences[7]. 

Not only are each of the products created by a collection of the primes less than a number 
distinct, but an examination of the clustering of those products is of value Clearly, the 
minimum and maximum values of the products are 

2 and 

However, if the locations of the values are plotted, most will be concentrated somewhere 
in the "middle" of this range, increasing the likelihood of finding a desired triple. Ifwe are 
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starting with numbers that are primes but close together, the probability of constructing 
three numbers n, n+ 1 and n+2 is even higher. 

Since we are on the subject of Fibonacci numbers, it is a good time to explore a related 
problem. Given the range ofS, for any Fibonacci number Fk, where k > 2, it is possible 
to find another number m such that 

SCm) = Fk 

Therefore, questions concerning a relationship between Sand F must have additional 
parameters. A logical question to explore asks for Fibonacci numbers on both sides. 

Problem 1: How many pairs of Fibonacci numbers (Fj, Fk) are there such that 

Clearly, ifFj is prime, then (Fj, Fj) is a solution. As is mentioned in [8], it is not and may 
never be known if there are an infinite number of Fibonacci numbers that are prime. 

The next step is then to ask the related question with the restriction that one or both 
Fibonacci numbers be composite. Following previous work, ifm is any number such that 
SCm) :S: Fj, then (rnFj,Fj) is also a solution. Therefore, it is possible to have solutions 
where the first is composite, but here again the number of solutions is dependent on the 
number of prime Fibonacci numbers. It should be obvious that it is not possible to have a 
solution where the first is prime and the second is not 

Which takes us to the final option, where both numbers are composite. We already know 
that for any number, sufficiently large, of the form Fk = np where p is prime, there is some 
value of k such that 

While we have no guarantee that pk is also a Fibonacci number we know that it is possible 
to find a very large number of composite numbers m such that SCm) = np. This is used to 
justify the following conjecture. 

Conjecture 3: There are an infinite number of pairs of Fibonacci numbers (Fj,Fk) such 
that 

S(Fj) = Fk. 

The Lucas numbers are defined in a very similar way 
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Lo = 2 L1 = 1 

and the same conjecture can be made concerning this sequence. 

Another group of problems concerns the additivity of successive values of the 
Smarandache function and was first brought to the author's attention in a pre-publication 
manuscript by Jorge Castillo[9] that was passed on by R Muller. 

We start with the first, which is related to the Fibonacci question addressed earlier. 

Problem 2: How many quadruplets satisfy the relationship 

Sen) + S(n+l) = S(n+2) + S(n+3) ? 

And the three solutions 

S(6) + S(7) = S(8) + S(9) ¢} 3 + 7 = 4 + 6 
S(7) + S(8) = S(9) + S(10) ¢} 7 + 4 = 6 + 5 
S(28) + S(29) = S(30) + S(31) ¢} 7 + 29 = 5 + 31 

were listed. 

The aforementioned C program was again put to work searching for additional solutions. 
Due to the large number, the run was terminated at 100,000 The complete list of new 
solutions is given below 

S(114)+S(115)=S(116)+S(117) ¢} 19+23=29+13=42 
S(I720) + S(I721) = S(I722) + S(I723) ¢} 43 + 1721 = 41 + 1723 
S(3538) + S(3539) = S(3540) + S(3541) ¢} 61 + 3539 = 59 + 3541 
S(4313) + S(4314) = S(4315) + S(4316) ¢} 227 + 719 = 863 + 83 = 946 
S(8474) + S(8475) = S(8476) + S(8477) ¢} 223 + 113 = 163 + 173 = 336 
S(10300) + S(10301) = S(10302) + S(10303) ¢} 103 + 10301 = 101 + 10303 = 10404 
S(13052) + S(13053) = S(13054) + S(13055) ¢} 251 + 229 = 107 + 373 = 480 
S(15417) + S(15418) = S(15419) + S(15420) ¢} 571 + 593 = 905 + 257 = 1164 
S(15688) + S(15689) = S(15690) + S(15691) ¢} 53 + 541 = 523 + 71 = 594 
S(19902) + S(19903) = S(19904) + S(19905) ¢} 107 + 1531 = 311 + 1327 = 1638 
S(22194) + S(22195) = S(22196) + S(22197) ¢} 137 + 193 = 179 + 151 = 330 
S(22503) + S(22504) = S(22505) + S(22506) ¢} 577 + 97 = 643 + 31 = 674 
S(24822) + S(24823) = S(24824) + S(24825) ¢} 197 + 241 = 107 + 331 = 438 
S(26413) + S(26414) = S(26415) + S(26416) ¢} 433 + 281 = 587 + 127 = 714 
S(56349) + S(56350) = S(56351) + S(56352) ¢} 2087 + 23 = 1523 + 587 = 2110 
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S(70964) + S(70965) = S(70966) + S(70967) <=> 157 + 83 = 137 + 103 = 240 
S(75601) + S(75602) = S(75603) + S(75604) <=> 173 + 367 = 79 + 461 = 540 
S(78610) + S(78611) = S(78612) + S(78613) <=> 1123 + 6047 = 6551 + 619 = 7170 
S(86505) + S(86506) = S(86507) + S(86508) <=> 79 + 167 = 157 + 89 = 246 

Looking at the solutions in this case, a clear pattern emerges. The typical solution 
consists of four numbers where the prime of concern appears once and the difference of 
two primes of concern matches the difference of the other two. For example, 

19902=2*3*31*107 19903=13*153119904=2*2*2*2*2*2*311 

19905 = 3*5*1327 

and 1531 - 1327 = 204 = 311 - 107 

Conjecture 4: There are an infinite number of values ofn such that 

Sen) + S(n+l) = S(n+2) +S(n+3) 

Rationale: Choose two pairs of primes PI, P2, P3 and P4 such that PI - P2 = P3 - P4. Then 
if we can find collections of primes CI, C2, C3 and C4 such that PI, P2, P3 and P4 remain 
the primes of concern in the products 

and CIPI, C4P4, C3P3, and C2P2 are consecutive integers, we will have a solution 

The known rate of growth of 7r(x) guarantees that there are an infinite number of 
quadruples (Pl,P2,P3,P4) satisfying the initial condition. Also, the number of possible 
products Cj grows at a rapid rate, increasing the likelihood of a solution. 

The following companion problem was also mentioned in the Castillo manuscript, 

Problem 3: How many solutions are there to the relationship 

Sen) - S(n+l) = S(n+2) - S(n+3) 

with the three solutions 

S(l) - S(2) = S(3) - S(4) <=> 1 - 2 = 3 - 4 
S(2) - S(3) = S(4) - S(5) <=> 2 - 3 = 4 - 5 
S(49) - S(50) = S(51) - S(52) <=> 14 - 10 = 17 - 13 
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Performing another computer search up through 100,000, the following additional 
solutions were found, 

S(40) - S(41) = S(42) - S(43) {=} 5 - 41 = 7 - 43 = -36 
S(107) - S(I08) = S(I09) - S(110) {=} 107 - 9 = 109 - 11 = 98 
S(2315) - S(2316) = S(2317) - S(2318) {=} 463 - 193 = 331 - 61 = 270 
S(3913) - S(3914) = S(3915) - S(3916) {=} 43 - 103 = 29 - 89 = -60 
S(4157) - S(4158) = S(4159) - S(4160) {=} 4157 - 11 = 4159 - 13 = 4146 
S(4170) - S(4171) = S(4172) - S(4173) {=} 139 - 97 = 149 - 107 = 42 
S(11344) - S(I1345) = S(11346) - S(I 1347) {=} 709 - 2269 = 61 - 1621 = -1560 
S(11604) - S(11605) = S(11606) - S(11607) {=} 967 - 211 = 829 - 73 = 756 
S( 11968) - S( 11969) = S(11970) - S( 11971) {=} 17 - 11969 = 19 - 11971 = -11952 
S(13244) - S(13245) = S(I3246) - S(13247) {=} 43 - 883 = 179 - 1019 = -840 
S(15048) - S(I5049) = S(I5050) - S(15051) {=} 19 - 149 = 43 - 173 = -130 
S(19180) - S(19181) = S(I9182) - S(19183) {=} 137 - 19181 = 139 - 19183 = -19044 
S(19692) - S(19693) = S(19694) - S(19685) {=} 547 - 419 = 229 - 101 = 128 
S( 26219) - S(26220) = S(26221) - S(26222) {=} 167 - 23 = 2017 - 1873 = 144 
S(29352) - S(29353) = S(29354) - S(29355) {=} 1223 - 197 = 1129 - 103 = 1026 
S(29415) - S(29416) = S(29417) - S(29418) {=} 53 - 3677 = 1279 - 4903 = -3624 
S(43015) - S(43016) = S(43017) - S(43018) {=} 1229 - 283 = 1103 - 157 = 946 
S(44358) - S(44359) = S(44360) - S(44361) {=} 7393 - 6337 = 1109 - 53 = 1056 
S(59498) - S(59499) = S(59500) - S(59501) {=} 419 - 601 = 17 - 199 = -182. 

In this case, a pattern emerges that is similar to the previous problem 

59498=2*71*419 59499=3*3*11*601 
59500 = 2*2*5*5*5*7*17 59501 = 13*23*199 

where each prime of concern appears once in each number and the differences of the pairs 
of primes match. 

Conjecture 5: There are an infinite number of solutions to the equation 

Sen) - S(n+l) = S(n+2) - S(n+3) 

Rationale: Similar to that used to justify conjecture 4. 

Another problem mentioned in the Castillo manuscript is an extension of the additive 
sequence 

Problem 4: How many solutions are there to the relationship 

Sen) + S(n+ 1) +S(n+2) = S(n+ 3) + S(n+4) + S(n+5) 
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with a single solution given 

S(5) + S(6) + S(7) = S(8) + S(9) + S(10) <=> 5 + 3 + 7 = 4 + 6 + 5 

A computer search up through 100,000 yielded the additional solutions 

S(5182) + S(5183) + S(5184) = S(5185) + S(5186) + S(5187) <=> 
2591 + 73 + 9 = 61 + 2593 + 19 = 2673 

S(9855) + S(9856) + S(9857) = S(9858) + S(9859) + S(9860) <=> 
73 + II + 9857 = 53 + 9859 + 29 = 9941 

S(10428) + S(10429) + S(10430) = S(10431) + S(10432) + S(10433) <=> 
79 + 10429 + 149 = 61 + 163 + 10433 = 10657 

S(28373) + S(28374) + S(28375) = S(28376) + S(28377) + S(28378) <=> 
1669 + 4729 + 227 = 3547 + 1051 + 2027 = 6625 

S(32589) + S(32590) + S(32591) = S(32592) + S(32593) + S(32594) <=> 
71 + 3259 + 109 = 97 + 2963 + 379 = 3439 

S(83323) + S(83324) + S(83325) = S(83326) + S(83327) + S(83328) <=> 
859 + 563 + 101 = 683 + 809 + 31 = 1523 

While the number of solutions is much less than that for the sums of two values, a similar 
pattern emerges. For example, 

32589 = 3*3*3*17*71 
32591 = 13*23*109 
32593 = 11*2963 

32590 =2*5*3259 
32592 = 2*2*2*2*3*7*97 
32594 = 2*43*379 

where each prime of concern appears only once in each product However, in this case, 
there is no common difference of two primes to start the construction. The basic 
construction here starts with six primes such that 

PI + P2 + P3 = P4 + Ps + P6 

and then finding six collections of numbers CI , C2 , C3, C4 , Cs and C6 such that each of 
the products CiPi has the original prime as the prime of concern, and where the products 
are consecutive integers. With the tighter parameters of the sum of three primes two 
different ways and having to find 6 collections to make the proper sums, it should come as 
no surprise that the number of solutions discovered is smaller than that for the earlier 
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relationship. 

The three previous examples of problems appearing in the paper by Castillo were all 
particular instances of a general family of problems that were also defined in the paper. 

Definition 8: A relationship of the form 

Sen) 'V S(n+l) 'V. 'V S(n+p) = S(n+p+l) 'V ... 'V S(n+p+q) 

where 'V represents a generic operation defined on the integers, is said to be a 
Smarandache p-q-relationship. 

Example: The Fibonnaci-like expression Sen) + S(n+l) = S(n+2) would be a 
Smarandache 2-1 relationship. 

Definition 9: A solution to a Smarandache p-q relationship for a specific operator is said 
to be a Smarandache p-q-{name of operator} sequence. 

Example: S(83323) + S(83324) + S(83325) = S(83326) + S(83327) + S(83328) {o} 

859 + 563 + 101 = 683 + 809 + 31 = 1523 

would be an example ofa Smarandache 3-3-additive relationship. 

Which brings us to the first of several families of problems of this type that can be posed. 

Problem 5: For what values ofk is there a solution to the additive relationship 

Sen) + S(n+ 1) +. . + S(n+k) = S(n+k+ 1) ? 

The case of k = I is the Fibonacci-like sequence and has already been resolved in the 
affirmative. 

A computer search for solutions to the k = 2 relationship, sometimes called the 
Tribonnaci sequence 

Sen) + S(n+ 1) +S(n+2) = S(n+ 3) 

up through 100,000 yielded the following list. 

S(20) + S(21) + S(22) = S(23) {o} 5 + 7 + 11 = 23 
S(26) + S(27) + S(28) = S(29) {o} 13 + 9 + 7 = 29 
S(678) + S(679) + S(680) = S(681) {o} 113 + 97 + 17 = 227 
S(960) + S(961) + S(962) = S(963) {o} 8 + 62 + 37 = 107 
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S(3425) + S(3426) + S(3427) = S(3428) {o} 137 + 571 + 149 = 857 
S(37637) + S(37638) + S(37639) = S(37640) {o} 617 + 41 + 283 = 941 
S(62628) + S(62629) + S(62630) = S(62631) {o} 307 + 389 + 6233 = 6959 

slightly more than the number of solutions that exist for the k = 1 case in this range. 

The only solution found for the k = 3 case in the range n ::; 100,000 is 

S(63842) + S(63843) + S(63844) + S(63845) = S(63846) {o} 

233 + 1637 + 1451 + 226 = 3547 

Two solutions were found for the k = 4 case in the range n ::; 100,000 

S(1413) + S(1414) + S(1415) + S(1416) + S(1417) = S(1418) {o} 

157 + 101 + 283 + 59 + 109 = 709 

1413=3*3*157 1414=2*7*101 1415=5*283 1416=2*2*2*3*59 
1417 = 13*109 1418 = 2*709 

S(83513) + S(83514) + S(83515) + S(83516) + S(83517) = S(83518) {o} 

3631 + 449 + 16703 + 20879 + 97 = 41759 

83513=23*363183514=2*3*31*449 83515=5*16703 
83516=2*2*2087983517=3*7*41*97 83518=2*41759 

Only one solution was found for the k = 5 case in the range ::; 100,000 

S(763) + S(764) + S(765) + S(766) + S(767) + S(768) = S(769) {o} 

109 + 191 + 17 + 383 + 59 + 10 = 769. 

Two solutions were found for the k = 6 case in the range::; 100,000 

S(8786) + S(8787) + S(8788) + S(8789) + S(8790) + S(8791) + S(8792) = 
S(8793) 

191 + 101 + 39 + 47 + 293 + 149 + 157 = 977 

8786 = 2*23*191 8787 = 3*29*101 8788 = 2*2*13*13*13 
8789= 11*17*47 8790=2*3*5*293 8791 =59*149 
8792 = 2*2*2*7*157 8793 = 3*3*977 
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S(42546) + S(42547) + S(42548) + S(42549) + S(42550) + S(42551) + S(42552) = 
S( 42553) 

1013 + 271 + 967 + 1091 + 37 + 2503 + 197 = 6079 

42546=2*3*7*1013 42547= 157*271 42548=2*2*11*967 
42549 = 3*13*1091 42550 = 2*5*5*23*37 42551 = 17*2503 
42552 = 2*2*2*3*3*3*197 42553 = 7*6079 

And we have more cases where the prime of concern appears once in each of the numbers. 

The solution then occurs when there are collections of numbers Cj that make the products 
a sequence of consecutive integers. 

This also gives us a possible explanation for why only one solution was found in both the 
k=3 and k=5 cases. If all of the numbers are constructed with only one instance of the 
prime of concern, then we would have the sums 

which of course must be even. This does not preclude a solution, just forces at least one of 
the S values to be even. 

Conjecture 6: In any range 1 <. :S n, the number of solutions to a 
Smarandache p-l additive sequence will tend to be larger if p is even. 

Additional arguments concerning the number of solutions justify the following 
conjectures. 

Conjecture 7: There are an infinite number of positive integers k, such that a solution to 
the Smarandache k -1 relationship 

S(n) + S(n+ 1) + ... S(n+k) = S(n+k+ 1) 
exists. 

Closely related to the previous family of problems, the Smarandache k-l subtractive 
relationship would be 

S(n) - S(n+ 1) - . - S(n+k) = S(n+k+l) 

Since the above is algebraically equivalent to 
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S(n) = S(n+l) + S(n+2) + ... + S(n+k+l) 

without deep thought we would expect the number of solutions to be the same as that for 
the "equivalent" Smarandache k-l additive relationship. 

For the k = 2 case, a search up through n ::; 100,000 yielded the solutions 

S(37) - S(38) - S(39) = S(40) {=? 37 - 19 - 13 = 5 
37=3738=2*1939=3*13 S(40)=2*2*2*5 

S(1383) - S(1384) - S(1385) = S(1386) {=? 461 - 173 - 277 = 11 
1383 = 3*461 1384 = 2*2*2173 1385 = 5*277 1386 = 2*3*3*7*11 

S(1902) - S(1903) - S(1904) = S(1905) {=? 317 - 173 - 17 = 127 
1902=2*3*317 1903=11*173 1904=2*2*2*2*7*17 1905=3*5*127 

S(4328) - S(4329) - S(4330) = S(4331) {=? 541 - 37 - 433 = 71 
4328 = 2*2*2*541 4329 = 3*3*13*37 4330 = 2*5*433 4331 = 61 *71 

S(4981) - S(4982) - S(4983) = S(4984) {=? 293 - 53 - 151 = 89 
4981 = 17*293 4982 = 2*47*53 4983 = 3 * 11 * 151 4984 = 2*2*3*7*89 

S(58970) - S(58971) - S(58972) = S(58973) {=? 5897 - 1787 - 641 = 3469 
58970 = 2*5*5897 58971 = 3*11 *1787 58972 = 2*2*23*641 
58973 = 17*3469 

S(91480) - S(91481) - S(91482) = S(91483) {=? 2287 - 227 - 193 = 1867 
91480=2*2*2*5*2287 91481 = 13*31*227 91482=2*3*79*193 
91483 = 7*7*1867 

For the k = 3 case, a search up through n ::; 100,000 yielded the solutions 

S(47) - S(48) - S(49) - S(50) = S(51) {=? 47 - 6 - 14 - 10 = 17 
47=4748=2*2*2*2*349=7*750=2*5*551=3*17 

S(2526) - S(2527) - S(2528) - S(2529) = S(2530) {=? 421 - 38 - 79 - 281 = 23 
2526 = 2*3*421 2527 = 7*19*19 2528 = 2*2*2*2*2*79 
2529 = 3*3*281 2530 = 2*5*11 *23 

S(58803) - S(58804) - S(58805) - S(58806) = S(58807) {=? 

1153 - 241 - 619 - 22 = 271 
58803 = 51 * 1153 58804 = 2*2*61 *241 58805 = 5* 19*619 
58806 = 2*3*3*3*3*3* 11 * 11 58807 = 7*31 *271 
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The number and forms of the solutions justify the following conjecture. 

Conjecture 8: There are an infinite number of positive integers k, such that a solution to 
the Smarandache k -1 relationship 

Sen) - S(n+ I) - S(n+2) - - S(n+k) = S(n+k+ 1) 

exits. 

Moving on to another family of similar problems, we now address the case 

Problem 6: For what values ofk is there a solution to the Smarandache k-k additive 
relationship 

Sen) + S(n+l) + . +S(n+k) = S(n+k+l) + S(n+k+2) + ... +S(n+k+k+l) ? 

From previous work, we already know that solutions exist for k = 1 and k =2 and it has 
been conjectured that there are an infinite number of solutions to both cases. 

A search was performed up through n = 10,000 for the k = 3 case and the following 2 
solutions were found 

S(23) + S(24) +S(25) + S(26) = S(27) + S(28) + S(29) + S(30) {=> 

23 + 4 + 10 + 13 = 9 + 7 + 29 + 5 = 50 

S(643) + S(644) + S(645) + S(646) = S(647) + S(648) + S(649) + S(650) {=> 

643 + 23 + 43 + 19 = 647 + 9 + 59 + 13 

Once again, one can start with 8 primes such that the sum of 4 equals the sum of the 
other 4 and use them as the primes of concern for 8 numbers. To obtain a solution, it 
would then be necessary to find a combination that yields 8 consecutive numbers. As was 
the case previously, the large number of possibilities can be used to justify the following 
conjecture 

Conjecture 9: There are an infinite number of values ofk for which the Smarandache k-k 
additive sequence has a solution. 

Of course it is possible to extend the subtractive sequences beyond the k = 1 case already 
covered. That will not be done here. Furthermore, it is also possible to combine different 
operators into additional sequences such as 

Sen) + S(n+l) - S(n+2) + S(n+3) = S(n+4) + S(n+5) - S(n+6) + S(n+7) 
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However, we will not deal with these problems either. 

The last problem of this form we will consider is the Smarandache 2- I multiplicative 
relationship 

S(n)*S(n+ 1) = S(n+2) 

Theorem 26: Ifthe prime of concern in any of the numbers n, n+ 1 or n+2 is a factor to 
the first power, then the equation 

S(n) * S(n+l) = S(n+2) 

has no solution. 

Proof: We know that S(n) = kIPI, S(n+ 1) = k2P2 and S(n+2) = k3P3 for PI a prime factor 
of n, P2 a prime factor of n+ 1 and P3 a prime factor of n+2. Putting the equation together, 
we have 

Clearly, for this equality to hold, PI and P2 must both divide k3. From this, it also follows 
that P2 must divide kl and PI must divide k2 Ifany of these values is 1, we have a 
contradiction. 

This method of proof can also be used to solve the 2-2-multiplicative problem. 

Theorem 27: If the prime of concern of any of the numbers n, n+l, n+2 or n+3 is to the 
first power, then the equation 

S(n) * S(n+ 1) = S(n+2) * S(n+ 3) 

has no solution .. 

Proof: The case where S(n) = PI will be the only one covered, the others can be dealt 
with in a similar way. 

Special case 1: n = PI = 2. Then S(2) = 2, S(3) = 3, S(4) = 4 and S(5) = 5 

Special case 2: n = PI = 3. Then S(3) = 3, S(4) = 4, S(5) = 5 and S(6) = 3. 

So we can assume that PI > 3. Suppose that a solution exists. 

Then S(n+ 1) = k2P2, S(n+2) = k3P3 and S(n+3) = ~P4. Forming the equation, 
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it follows that PI must divide either k3 or k4 . Without loss of generality, assume that PI 
divides k3 Then 

S(p~) = kSPIP3 where k 2 k,PI 

Putting all of this together, we have the inequality 

n+2 > ppl <=> n = p > ppl -2 
- 3 I - 3 

which is a contradiction, since P3 22 and PI 2 5. 

If the operator is division, we need to carefully differentiate which form of division is 
being used, integer division or real number division. It is also possible to use the modulus 
% operator, which is the remainder upon integer division. If integer division is used, we 
can immediately identity some solutions. 

Theorem 28: Ifp and p+2 are twin primes and the operation is integer division, then 

S(p-I) S(p+ I) 
S(p) S(pT2)" 

Proof: 
If P is prime, then S(p-I) I S(p) = 0, since S(p-I) ::::; p-I < p. Therefore, both sides of 

the equation will evaluate to zero when p is the smaller ofa pair of twin primes. 

A very large book could be written about Smarandache p-q-{ operator name} 
relationships. Since our purpose here is to introduce the function and some of the 
consequences, it is time to move on and explore other territory. 

In a letter to the editor[IO], I. M. Radu posed the question: 

For n > 0, is it always possible to find a prime p such that S(n) < p < S(n+ I) or 
S(n) 2 p 2 S(n+ I)? 

This problem was also investigated using the aforementioned C program and it turns out 
the answer is negative. The program was run for all n ::::; 1,000,000 and four 
counterexamples were discovered 

n = 224 = 2*2*2*2*2*7 
n+1 = 225 = 3*3*5*5 
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n = 2057 = 11 * 11 * 17 
n+ 1 = 2058 = 2*3*7*7*7 

n = 265225 = 5*5*103*103 
n = 265226 = 2*13* 101 *101 

n = 843637 = 37*151 *151 
n+l = 843638 = 2*19*149*149 

Sen) = 22 
S(n+l) = 21 

Sen) = 206 
S(n+l) = 202 

Sen) = 302 
S(n+l) = 298 

The most obvious characteristic of the last two solutions is that each contains two 
instance of a prime where the primes are twin. Also note that for the solution pair 
(265225,265226) the products that are not the twin primes are 25 and 26. For the pair 
(843637,843638) the products are 37 and 38. All of this is easily understood and the 
explanations point towards additional solutions. 

Lemma 9: If the prime of concern in either n or n+ 1 appears only once, then there is a 
prime p in the range Sen) :S p :S S(n+ 1) or Sen) 2: p 2: S(n+ 1). 

Proof: Using the definition of prime of concern and theorem 13, either Sen) = p or 
S(n+ 1) = P where p is a prime. 

Therefore, a potential counterexample to the problem must have a prime of concern that 
appears at least twice 

Clearly, if one narrows the gap between Sen) and S(n+ 1), then one increases the chances 
that there will be no prime between them. If we take two arbitrary numbers m and n where 
their respective primes of concern are twin primes which appear twice, then 
I SCm) - Sen) I = 4, a gap where only three additional numbers have to be non-prime to 
satisfY the parameters of'the problem. The remaining requirement is then to find the 
additional factors that do not alter the prime of concern but whose product keeps the gap 
small. Therefore, the presence of the twin primes is no surprise. 

While it is not yet known whether there are an infinite number of twin primes, the 
following is well-known[ll]. 

F or every natural number M, there exists an even number 2k such that there are more 
than M pairs of successive primes with difference 2k. 

The number of potential gaps and the thinning of the primes leads to the conjecture, 

Conjecture 10: There are an infinite number of cases where the gap between Sen) and 
S(n+ 1) contains no primes. Furthermore, the density of those cases increases as n gets 
larger. 

53 



Rationale: Choose an arbitrary pair of primes p and p+r, and square both 

and p2 + 2pr +~. 

To satisfy the conditions, we need to form two collections of additional prime factors C1 

and C2 such that 

and p and p+r are the primes of concern for the products. The difference between the 
respective values of S will be 2r, meaning that an additional 2r-1 numbers must be 
composite. The range of those numbers would be 2p :<:: :<:: 2(p+r). As was 
mentioned before, as the primes p and p+r get larger then the number of possible 
combinations C1 and C2 that keep p and p+r the primes of concern grows at a rapid rate. 
Also, the values of the product can differ by one in either direction. 

The range of testing done by computer 1 :<:: n :<:: 1,000,000 is simply not large enough 
to allow the growth in the number of possibilities to take affect 

Successive values ofS(n) can be used to construct a number, and the form of that number 
was the subject of unsolved problem (8) in [I2l 

Is r = 0.0234537465 ... where the sequence of digits is S(n), n > 1, an irrational 
number? 

Theorem 29: The number r = 0 0234537 .. formed by the sequence of digits from S(n) is 
an irrational number. 

The following theorem is well-known[13] 

Dirichlet's Theorem: If d > 1 and a f 0 are relatively prime, then the arithmetic 
progression 

a, a + d, a + 2d, a + 3d, . 

contains an infinite number of prime numbers. 

Proof of theorem 29: Assume that r is rational. Then after some number m of digits, we 
must have a sequence ofk digits that repeat 

Construct the repunit number consisting of 10k 1 's. 
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a= 1111 ... IIII 

and the number 

d = 1000 .. 000 

that has 10k zeros. 

Since d has only 2 and 5 as prime factors, a and d must be relatively prime. Therefore, by 
Dirichlet's theorem, the sequence 

a, a+d, a+2d, . 

contains an infinite number of primes. 

Since S(p) = P and we have a prime with more digits than the number k that repeat, all the 
digits of the repeated segment ofr must be I's. 

Now, construct another number a that consists of IOn 3's 

a = 3333 ... 3 

and use the same value for d. Again, a and d are relatively prime, so the sequence 

a, a + d, a + 2d, . 

contains an infinite number of primes. 

We are now forced into the contradiction of having all of the digits of the repeated 
segment being I and having some of them equal to 3. Therefore, the number r does not 
repeat and must be irrationaL 

We have already proven that 0 :::; Sen) / n :::; I where SCI) i 1 is the only case where the 
value is zero and S(p)/p = 1 for p a prime. The topic of unsolved problem (7) in [13] 
concerned what happens away from the endpoints. 

Are the points Sen) / n uniformly distributed in the interval (0,1)? 

The answer to this question is no. However here we will prove a much stronger result. 

Theorem 30: There is no interval (O,b), b < 1 and b a real number, where the points 

Sen) / n 
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are evenly distributed. 

Lemma 10: For any real E > 0, there is some number M such that 

Sen) / n < E for all n 2: M and n not prime 

Proof: Let p be a prime such that 2 / p < E. Then 

2p 

il 1. < E P . 

By theorem 11, it follows that 

S(pkl < E for k 2: 2. 
pk 

Using the ordering properties of the integers, it is possible to find the smallest prime P 
such that 2 / P < E. 

Now, let p be an arbitrary prime less than P. By theorem 11, there is some number K such 
that 

for all k 2: K 

F or each prime p < P, find the corresponding K such that 

< E 

and use those numbers to create a list L. Since this list is finite, there is no need to involve 
infinite processes. 

If we then set 

M=max{L UP} 

we have a value ofM satisfying the criteria of the lemma. 

Proof of theorem 30: By the previous lemma, for any real number ° < a < 1, the set 

{ n I Sen) / n > a and n not prime} 

is finite From this, it follows that there is no interval (O,b) where the points are evenly 
distributed. 
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Clearly, S(n) / n is always rational and the set 

{ r I r = S(n) / n for some n ~ ] } 

infinite. Therefore, the number of solutions is countable. With this idea and the results of 
the previous theorem, we can ask the question 

For what rational numbers r does there exist an n such that r = S(n) / n ? 

One result is quite easy. Let 

Q = { p I there exists some n such that S(n) / n = ] / P } 

Theorem 31: Q = { 2,3 } 

Proof: 
S(8) = 4, so S(8) / 8 = 112 
S(27) = 9, so S(27) / 27 = ]/3 

Let p > 5 and prime. Ifwe take the successive powers of that prime and form the ratios, 
we have 

2p 

P' 

on up to 

~ 
p 

S(p3) 

IT 
3p 

P' 

I 
pp.2 

~ 
p 

S(p') 

IT 

Which has the form ] / p only when p = 3. Since 

1 
p 

it follows that no power ofp can have the form] / p. 

4p = '! 
P' p 

It should also be clear that there is no power of another prime q such that 

S(qk) _ I 
T - P 

For suppose that n has more than one prime factor and Pi is the prime of concern with 
multiplicity j. Then 
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and the ratio cannot be of the form II p for any prime p. 

We will close the study of the Smarandache function by briefly touching on several 
additional problems 

Unsolved problem (21) in [14] deals with products. 

Are there m,n,k non-null positive integers, m # I # n, for which 

S(m*n) = mk * Sen)? Clearly, S is not homogenous to degree k 

Clearly m = n = 2, k = I is a solution The search for other solutions, if any, will be left 
for others to explore. 

Unsolved problem (22) in [15] deals with logarithms. 

Is it possible to find two distinct numbers k,n for which 

is an integer') 

The answer is yes, k = 4, n = 2 is a solution. In fact, all numbers a and b where 

will be a solution. 

Mersenne numbers are of the form 2m 
- l. It is known that some are prime and some are 

composite. Clearly, if a Mersenne number p is prime, then 

S(p) = p 

and we have a pair of Mer senne primes that satisfies the Smarandache relation. The next 
question is then 

Is there a pair of Mersenne numbers (m,n) such that m is composite and 

SCm) = n 
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The answer is affirmative, since 26 
- 1 = 63 S(63) = 7 and 

23 
- 1 = 7. Whether other such solutions exist is a question that will be left open. 

Unsolved problem (2094) in [16] deals with greatest common divisor, gcd. 

Solve the diophantine equation 

gcd(x,y) = gcd(S(x),S(y)) 

Ifwe take p,q to be distinct primes greater than 2, then 

gcd(2p,2q) = 2 

so there are an infinite number of solutions to the equation. In fact, it is a simple matter to 
construct several such infinite families. 

And now, we come to the author imposed end of our journey through only a tiny part of 
the ramifications of the Smarandache function. It is my sincere hope that you, the reader, 
feel enriched, yet hungry for more. If you do, then I have received the highest possible 
praise that an author can receive. Happy with the product, yet eager for more. Good luck 
in your mathematical endeavors. 
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