
9
Additive Models, Trees, and Related
Methods

In this chapter we begin our discussion of some specific methods for super-
vised learning. These techniques each assume a (different) structured form
for the unknown regression function, and by doing so they finesse the curse
of dimensionality. Of course, they pay the possible price of misspecifying
the model, and so in each case there is a tradeoff that has to be made. They
take off where Chapters 3–6 left off. We describe five related techniques:
generalized additive models, trees, multivariate adaptive regression splines,
the patient rule induction method, and hierarchical mixtures of experts.

9.1 Generalized Additive Models

Regression models play an important role in many data analyses, providing
prediction and classification rules, and data analytic tools for understand-
ing the importance of different inputs.

Although attractively simple, the traditional linear model often fails in
these situations: in real life, effects are often not linear. In earlier chapters
we described techniques that used predefined basis functions to achieve
nonlinearities. This section describes more automatic flexible statistical
methods that may be used to identify and characterize nonlinear regression
effects. These methods are called “generalized additive models.”

In the regression setting, a generalized additive model has the form

E(Y |X1,X2, . . . , Xp) = α + f1(X1) + f2(X2) + · · ·+ fp(Xp). (9.1)

© Springer Science+Business Media, LLC 2009

T. Hastie et al., The Elements of Statistical Learning, Second Edition, 295
DOI: 10.1007/b94608_9,

296 9. Additive Models, Trees, and Related Methods

As usual X1,X2, . . . , Xp represent predictors and Y is the outcome; the fj ’s
are unspecified smooth (“nonparametric”) functions. If we were to model
each function using an expansion of basis functions (as in Chapter 5), the
resulting model could then be fit by simple least squares. Our approach
here is different: we fit each function using a scatterplot smoother (e.g., a
cubic smoothing spline or kernel smoother), and provide an algorithm for
simultaneously estimating all p functions (Section 9.1.1).

For two-class classification, recall the logistic regression model for binary
data discussed in Section 4.4. We relate the mean of the binary response
μ(X) = Pr(Y = 1|X) to the predictors via a linear regression model and
the logit link function:

log
(

μ(X)
1− μ(X)

)
= α + β1X1 + · · ·+ βpXp. (9.2)

The additive logistic regression model replaces each linear term by a more
general functional form

log
(

μ(X)
1− μ(X)

)
= α + f1(X1) + · · ·+ fp(Xp), (9.3)

where again each fj is an unspecified smooth function. While the non-
parametric form for the functions fj makes the model more flexible, the
additivity is retained and allows us to interpret the model in much the
same way as before. The additive logistic regression model is an example
of a generalized additive model. In general, the conditional mean μ(X) of
a response Y is related to an additive function of the predictors via a link
function g:

g[μ(X)] = α + f1(X1) + · · ·+ fp(Xp). (9.4)

Examples of classical link functions are the following:

• g(μ) = μ is the identity link, used for linear and additive models for
Gaussian response data.

• g(μ) = logit(μ) as above, or g(μ) = probit(μ), the probit link function,
for modeling binomial probabilities. The probit function is the inverse
Gaussian cumulative distribution function: probit(μ) = Φ−1(μ).

• g(μ) = log(μ) for log-linear or log-additive models for Poisson count
data.

All three of these arise from exponential family sampling models, which
in addition include the gamma and negative-binomial distributions. These
families generate the well-known class of generalized linear models, which
are all extended in the same way to generalized additive models.

The functions fj are estimated in a flexible manner, using an algorithm
whose basic building block is a scatterplot smoother. The estimated func-
tion f̂j can then reveal possible nonlinearities in the effect of Xj . Not all

9.1 Generalized Additive Models 297

of the functions fj need to be nonlinear. We can easily mix in linear and
other parametric forms with the nonlinear terms, a necessity when some of
the inputs are qualitative variables (factors). The nonlinear terms are not
restricted to main effects either; we can have nonlinear components in two
or more variables, or separate curves in Xj for each level of the factor Xk.
Thus each of the following would qualify:

• g(μ) = XT β + αk + f(Z)—a semiparametric model, where X is a
vector of predictors to be modeled linearly, αk the effect for the kth
level of a qualitative input V , and the effect of predictor Z is modeled
nonparametrically.

• g(μ) = f(X) + gk(Z)—again k indexes the levels of a qualitative
input V . and thus creates an interaction term g(V,Z) = gk(Z) for
the effect of V and Z.

• g(μ) = f(X) + g(Z,W) where g is a nonparametric function in two
features.

Additive models can replace linear models in a wide variety of settings,
for example an additive decomposition of time series,

Yt = St + Tt + εt, (9.5)

where St is a seasonal component, Tt is a trend and ε is an error term.

9.1.1 Fitting Additive Models

In this section we describe a modular algorithm for fitting additive models
and their generalizations. The building block is the scatterplot smoother
for fitting nonlinear effects in a flexible way. For concreteness we use as our
scatterplot smoother the cubic smoothing spline described in Chapter 5.

The additive model has the form

Y = α +
p∑

j=1

fj(Xj) + ε, (9.6)

where the error term ε has mean zero. Given observations xi, yi, a criterion
like the penalized sum of squares (5.9) of Section 5.4 can be specified for
this problem,

PRSS(α, f1, f2, . . . , fp) =
N∑

i=1

(
yi−α−

p∑
j=1

fj(xij)

)2

+
p∑

j=1

λj

∫
f

′′

j (tj)2dtj ,

(9.7)
where the λj ≥ 0 are tuning parameters. It can be shown that the minimizer
of (9.7) is an additive cubic spline model; each of the functions fj is a

298 9. Additive Models, Trees, and Related Methods

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: α̂ = 1
N

∑N
1 yi, f̂j ≡ 0,∀i, j.

2. Cycle: j = 1, 2, . . . , p, . . . , 1, 2, . . . , p, . . . ,

f̂j ← Sj

[
{yi − α̂−

∑
k �=j

f̂k(xik)}N
1

]
,

f̂j ← f̂j −
1
N

N∑
i=1

f̂j(xij).

until the functions f̂j change less than a prespecified threshold.

cubic spline in the component Xj , with knots at each of the unique values
of xij , i = 1, . . . , N . However, without further restrictions on the model,
the solution is not unique. The constant α is not identifiable, since we
can add or subtract any constants to each of the functions fj , and adjust
α accordingly. The standard convention is to assume that

∑N
1 fj(xij) =

0 ∀j—the functions average zero over the data. It is easily seen that α̂ =
ave(yi) in this case. If in addition to this restriction, the matrix of input
values (having ijth entry xij) has full column rank, then (9.7) is a strictly
convex criterion and the minimizer is unique. If the matrix is singular, then
the linear part of the components fj cannot be uniquely determined (while
the nonlinear parts can!)(Buja et al., 1989).

Furthermore, a simple iterative procedure exists for finding the solution.
We set α̂ = ave(yi), and it never changes. We apply a cubic smoothing
spline Sj to the targets {yi − α̂ −

∑
k �=j f̂k(xik)}N

1 , as a function of xij ,
to obtain a new estimate f̂j . This is done for each predictor in turn, using
the current estimates of the other functions f̂k when computing yi − α̂ −∑

k �=j f̂k(xik). The process is continued until the estimates f̂j stabilize. This
procedure, given in detail in Algorithm 9.1, is known as “backfitting” and
the resulting fit is analogous to a multiple regression for linear models.

In principle, the second step in (2) of Algorithm 9.1 is not needed, since
the smoothing spline fit to a mean-zero response has mean zero (Exer-
cise 9.1). In practice, machine rounding can cause slippage, and the ad-
justment is advised.

This same algorithm can accommodate other fitting methods in exactly
the same way, by specifying appropriate smoothing operators Sj :

• other univariate regression smoothers such as local polynomial re-
gression and kernel methods;

9.1 Generalized Additive Models 299

• linear regression operators yielding polynomial fits, piecewise con-
stant fits, parametric spline fits, series and Fourier fits;

• more complicated operators such as surface smoothers for second or
higher-order interactions or periodic smoothers for seasonal effects.

If we consider the operation of smoother Sj only at the training points, it
can be represented by an N × N operator matrix Sj (see Section 5.4.1).
Then the degrees of freedom for the jth term are (approximately) computed
as dfj = trace[Sj] − 1, by analogy with degrees of freedom for smoothers
discussed in Chapters 5 and 6.

For a large class of linear smoothers Sj , backfitting is equivalent to a
Gauss–Seidel algorithm for solving a certain linear system of equations.
Details are given in Exercise 9.2.

For the logistic regression model and other generalized additive models,
the appropriate criterion is a penalized log-likelihood. To maximize it, the
backfitting procedure is used in conjunction with a likelihood maximizer.
The usual Newton–Raphson routine for maximizing log-likelihoods in gen-
eralized linear models can be recast as an IRLS (iteratively reweighted
least squares) algorithm. This involves repeatedly fitting a weighted linear
regression of a working response variable on the covariates; each regression
yields a new value of the parameter estimates, which in turn give new work-
ing responses and weights, and the process is iterated (see Section 4.4.1).
In the generalized additive model, the weighted linear regression is simply
replaced by a weighted backfitting algorithm. We describe the algorithm in
more detail for logistic regression below, and more generally in Chapter 6
of Hastie and Tibshirani (1990).

9.1.2 Example: Additive Logistic Regression

Probably the most widely used model in medical research is the logistic
model for binary data. In this model the outcome Y can be coded as 0
or 1, with 1 indicating an event (like death or relapse of a disease) and
0 indicating no event. We wish to model Pr(Y = 1|X), the probability of
an event given values of the prognostic factors XT = (X1, . . . , Xp). The
goal is usually to understand the roles of the prognostic factors, rather
than to classify new individuals. Logistic models are also used in applica-
tions where one is interested in estimating the class probabilities, for use
in risk screening. Apart from medical applications, credit risk screening is
a popular application.

The generalized additive logistic model has the form

log
Pr(Y = 1|X)
Pr(Y = 0|X)

= α + f1(X1) + · · ·+ fp(Xp). (9.8)

The functions f1, f2, . . . , fp are estimated by a backfitting algorithm
within a Newton–Raphson procedure, shown in Algorithm 9.2.

300 9. Additive Models, Trees, and Related Methods

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.

1. Compute starting values: α̂ = log[ȳ/(1 − ȳ)], where ȳ = ave(yi), the
sample proportion of ones, and set f̂j ≡ 0 ∀j.

2. Define η̂i = α̂ +
∑

j f̂j(xij) and p̂i = 1/[1 + exp(−η̂i)].

Iterate:

(a) Construct the working target variable

zi = η̂i +
(yi − p̂i)
p̂i(1− p̂i)

.

(b) Construct weights wi = p̂i(1− p̂i)

(c) Fit an additive model to the targets zi with weights wi, us-
ing a weighted backfitting algorithm. This gives new estimates
α̂, f̂j , ∀j

3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

The additive model fitting in step (2) of Algorithm 9.2 requires a weighted
scatterplot smoother. Most smoothing procedures can accept observation
weights (Exercise 5.12); see Chapter 3 of Hastie and Tibshirani (1990) for
further details.

The additive logistic regression model can be generalized further to han-
dle more than two classes, using the multilogit formulation as outlined in
Section 4.4. While the formulation is a straightforward extension of (9.8),
the algorithms for fitting such models are more complex. See Yee and Wild
(1996) for details, and the VGAM software currently available from:

http://www.stat.auckland.ac.nz/∼yee.

Example: Predicting Email Spam

We apply a generalized additive model to the spam data introduced in
Chapter 1. The data consists of information from 4601 email messages, in
a study to screen email for “spam” (i.e., junk email). The data is publicly
available at ftp.ics.uci.edu, and was donated by George Forman from
Hewlett-Packard laboratories, Palo Alto, California.

The response variable is binary, with values email or spam, and there are
57 predictors as described below:

• 48 quantitative predictors—the percentage of words in the email that
match a given word. Examples include business, address, internet,

9.1 Generalized Additive Models 301

TABLE 9.1. Test data confusion matrix for the additive logistic regression model
fit to the spam training data. The overall test error rate is 5.5%.

Predicted Class
True Class email (0) spam (1)
email (0) 58.3% 2.5%
spam (1) 3.0% 36.3%

free, and george. The idea was that these could be customized for
individual users.

• 6 quantitative predictors—the percentage of characters in the email
that match a given character. The characters are ch;, ch(, ch[, ch!,
ch$, and ch#.

• The average length of uninterrupted sequences of capital letters:
CAPAVE.

• The length of the longest uninterrupted sequence of capital letters:
CAPMAX.

• The sum of the length of uninterrupted sequences of capital letters:
CAPTOT.

We coded spam as 1 and email as zero. A test set of size 1536 was randomly
chosen, leaving 3065 observations in the training set. A generalized additive
model was fit, using a cubic smoothing spline with a nominal four degrees of
freedom for each predictor. What this means is that for each predictor Xj ,
the smoothing-spline parameter λj was chosen so that trace[Sj(λj)]−1 = 4,
where Sj(λ) is the smoothing spline operator matrix constructed using the
observed values xij , i = 1, . . . , N . This is a convenient way of specifying
the amount of smoothing in such a complex model.

Most of the spam predictors have a very long-tailed distribution. Before
fitting the GAM model, we log-transformed each variable (actually log(x+
0.1)), but the plots in Figure 9.1 are shown as a function of the original
variables.

The test error rates are shown in Table 9.1; the overall error rate is 5.3%.
By comparison, a linear logistic regression has a test error rate of 7.6%.
Table 9.2 shows the predictors that are highly significant in the additive
model.

For ease of interpretation, in Table 9.2 the contribution for each variable
is decomposed into a linear component and the remaining nonlinear com-
ponent. The top block of predictors are positively correlated with spam,
while the bottom block is negatively correlated. The linear component is a
weighted least squares linear fit of the fitted curve on the predictor, while
the nonlinear part is the residual. The linear component of an estimated

302 9. Additive Models, Trees, and Related Methods

TABLE 9.2. Significant predictors from the additive model fit to the spam train-
ing data. The coefficients represent the linear part of f̂j, along with their standard
errors and Z-score. The nonlinear P-value is for a test of nonlinearity of f̂j.

Name Num. df Coefficient Std. Error Z Score Nonlinear
P -value

Positive effects

our 5 3.9 0.566 0.114 4.970 0.052
over 6 3.9 0.244 0.195 1.249 0.004
remove 7 4.0 0.949 0.183 5.201 0.093
internet 8 4.0 0.524 0.176 2.974 0.028
free 16 3.9 0.507 0.127 4.010 0.065
business 17 3.8 0.779 0.186 4.179 0.194
hpl 26 3.8 0.045 0.250 0.181 0.002
ch! 52 4.0 0.674 0.128 5.283 0.164
ch$ 53 3.9 1.419 0.280 5.062 0.354
CAPMAX 56 3.8 0.247 0.228 1.080 0.000
CAPTOT 57 4.0 0.755 0.165 4.566 0.063

Negative effects

hp 25 3.9 −1.404 0.224 −6.262 0.140
george 27 3.7 −5.003 0.744 −6.722 0.045
1999 37 3.8 −0.672 0.191 −3.512 0.011
re 45 3.9 −0.620 0.133 −4.649 0.597
edu 46 4.0 −1.183 0.209 −5.647 0.000

function is summarized by the coefficient, standard error and Z-score; the
latter is the coefficient divided by its standard error, and is considered
significant if it exceeds the appropriate quantile of a standard normal dis-
tribution. The column labeled nonlinear P -value is a test of nonlinearity
of the estimated function. Note, however, that the effect of each predictor
is fully adjusted for the entire effects of the other predictors, not just for
their linear parts. The predictors shown in the table were judged signifi-
cant by at least one of the tests (linear or nonlinear) at the p = 0.01 level
(two-sided).

Figure 9.1 shows the estimated functions for the significant predictors
appearing in Table 9.2. Many of the nonlinear effects appear to account for
a strong discontinuity at zero. For example, the probability of spam drops
significantly as the frequency of george increases from zero, but then does
not change much after that. This suggests that one might replace each of
the frequency predictors by an indicator variable for a zero count, and resort
to a linear logistic model. This gave a test error rate of 7.4%; including the
linear effects of the frequencies as well dropped the test error to 6.6%. It
appears that the nonlinearities in the additive model have an additional
predictive power.

9.1 Generalized Additive Models 303

0 2 4 6 8

-5
0

5

0 1 2 3

-5
0

5

0 2 4 6

-5
0

5
10

0 2 4 6 8 10

-5
0

5
10

0 2 4 6 8 10

-5
0

5
10

0 2 4 6

-5
0

5
10

0 5 10 15 20

-1
0

-5
0

0 5 10

-1
0

-5
0

0 10 20 30

-1
0

-5
0

5

0 2 4 6

-5
0

5

0 5 10 15 20

-1
0

-5
0

5

0 5 10 15

-1
0

-5
0

0 10 20 30

-5
0

5
10

0 1 2 3 4 5 6

-5
0

5
10

0 2000 6000 10000

-5
0

5

0 5000 10000 15000

-5
0

5

our over remove internet

free business hp hpl

george 1999 re edu

ch! ch$ CAPMAX CAPTOT

f̂
(o
u
r
)

f̂
(o
v
e
r
)

f̂
(r
e
m
o
v
e
)

f̂
(i
n
t
e
r
n
e
t
)

f̂
(f
r
e
e
)

f̂
(b
u
s
i
n
e
s
s
)

f̂
(h
p
)

f̂
(h
p
l
)

f̂
(g
e
o
r
g
e
)

f̂
(1
9
9
9
)

f̂
(r
e
)

f̂
(e
d
u
)

f̂
(c
h
!)

f̂
(c
h
$
)

f̂
(C
A
P
M
A
X
)

f̂
(C
A
P
T
O
T
)

FIGURE 9.1. Spam analysis: estimated functions for significant predictors. The
rug plot along the bottom of each frame indicates the observed values of the cor-
responding predictor. For many of the predictors the nonlinearity picks up the
discontinuity at zero.

304 9. Additive Models, Trees, and Related Methods

It is more serious to classify a genuine email message as spam, since then
a good email would be filtered out and would not reach the user. We can
alter the balance between the class error rates by changing the losses (see
Section 2.4). If we assign a loss L01 for predicting a true class 0 as class 1,
and L10 for predicting a true class 1 as class 0, then the estimated Bayes
rule predicts class 1 if its probability is greater than L01/(L01 + L10). For
example, if we take L01 = 10, L10 = 1 then the (true) class 0 and class 1
error rates change to 0.8% and 8.7%.

More ambitiously, we can encourage the model to fit better data in the
class 0 by using weights L01 for the class 0 observations and L10 for the
class 1 observations. As above, we then use the estimated Bayes rule to
predict. This gave error rates of 1.2% and 8.0% in (true) class 0 and class 1,
respectively. We discuss below the issue of unequal losses further, in the
context of tree-based models.

After fitting an additive model, one should check whether the inclusion
of some interactions can significantly improve the fit. This can be done
“manually,” by inserting products of some or all of the significant inputs,
or automatically via the MARS procedure (Section 9.4).

This example uses the additive model in an automatic fashion. As a data
analysis tool, additive models are often used in a more interactive fashion,
adding and dropping terms to determine their effect. By calibrating the
amount of smoothing in terms of dfj , one can move seamlessly between
linear models (dfj = 1) and partially linear models, where some terms are
modeled more flexibly. See Hastie and Tibshirani (1990) for more details.

9.1.3 Summary

Additive models provide a useful extension of linear models, making them
more flexible while still retaining much of their interpretability. The familiar
tools for modeling and inference in linear models are also available for
additive models, seen for example in Table 9.2. The backfitting procedure
for fitting these models is simple and modular, allowing one to choose a
fitting method appropriate for each input variable. As a result they have
become widely used in the statistical community.

However additive models can have limitations for large data-mining ap-
plications. The backfitting algorithm fits all predictors, which is not feasi-
ble or desirable when a large number are available. The BRUTO procedure
(Hastie and Tibshirani, 1990, Chapter 9) combines backfitting with selec-
tion of inputs, but is not designed for large data-mining problems. There
has also been recent work using lasso-type penalties to estimate sparse ad-
ditive models, for example the COSSO procedure of Lin and Zhang (2006)
and the SpAM proposal of Ravikumar et al. (2008). For large problems a
forward stagewise approach such as boosting (Chapter 10) is more effective,
and also allows for interactions to be included in the model.

9.2 Tree-Based Methods 305

9.2 Tree-Based Methods

9.2.1 Background

Tree-based methods partition the feature space into a set of rectangles, and
then fit a simple model (like a constant) in each one. They are conceptually
simple yet powerful. We first describe a popular method for tree-based
regression and classification called CART, and later contrast it with C4.5,
a major competitor.

Let’s consider a regression problem with continuous response Y and in-
puts X1 and X2, each taking values in the unit interval. The top left panel
of Figure 9.2 shows a partition of the feature space by lines that are parallel
to the coordinate axes. In each partition element we can model Y with a
different constant. However, there is a problem: although each partitioning
line has a simple description like X1 = c, some of the resulting regions are
complicated to describe.

To simplify matters, we restrict attention to recursive binary partitions
like that in the top right panel of Figure 9.2. We first split the space into
two regions, and model the response by the mean of Y in each region.
We choose the variable and split-point to achieve the best fit. Then one
or both of these regions are split into two more regions, and this process
is continued, until some stopping rule is applied. For example, in the top
right panel of Figure 9.2, we first split at X1 = t1. Then the region X1 ≤ t1
is split at X2 = t2 and the region X1 > t1 is split at X1 = t3. Finally, the
region X1 > t3 is split at X2 = t4. The result of this process is a partition
into the five regions R1, R2, . . . , R5 shown in the figure. The corresponding
regression model predicts Y with a constant cm in region Rm, that is,

f̂(X) =
5∑

m=1

cmI{(X1,X2) ∈ Rm}. (9.9)

This same model can be represented by the binary tree in the bottom left
panel of Figure 9.2. The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes or leaves of the
tree correspond to the regions R1, R2, . . . , R5. The bottom right panel of
Figure 9.2 is a perspective plot of the regression surface from this model.
For illustration, we chose the node means c1 = −5, c2 = −7, c3 = 0, c4 =
2, c5 = 4 to make this plot.

A key advantage of the recursive binary tree is its interpretability. The
feature space partition is fully described by a single tree. With more than
two inputs, partitions like that in the top right panel of Figure 9.2 are
difficult to draw, but the binary tree representation works in the same
way. This representation is also popular among medical scientists, perhaps
because it mimics the way that a doctor thinks. The tree stratifies the

306 9. Additive Models, Trees, and Related Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

9.2 Tree-Based Methods 307

population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(xi, yi) for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition into M regions R1, R2, . . . , RM , and we model the response
as a constant cm in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm). (9.10)

If we adopt as our criterion minimization of the sum of squares
∑

(yi −
f(xi))2, it is easy to see that the best ĉm is just the average of yi in region
Rm:

ĉm = ave(yi|xi ∈ Rm). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min
j, s

[
min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2
]
. (9.13)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.

Having found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

308 9. Additive Models, Trees, and Related Methods

Tree size is a tuning parameter governing the model’s complexity, and the
optimal tree size should be adaptively chosen from the data. One approach
would be to split tree nodes only if the decrease in sum-of-squares due to the
split exceeds some threshold. This strategy is too short-sighted, however,
since a seemingly worthless split might lead to a very good split below it.

The preferred strategy is to grow a large tree T0, stopping the splitting
process only when some minimum node size (say 5) is reached. Then this
large tree is pruned using cost-complexity pruning, which we now describe.

We define a subtree T ⊂ T0 to be any tree that can be obtained by
pruning T0, that is, collapsing any number of its internal (non-terminal)
nodes. We index terminal nodes by m, with node m representing region
Rm. Let |T | denote the number of terminal nodes in T . Letting

Nm = #{xi ∈ Rm},

ĉm =
1

Nm

∑
xi∈Rm

yi,

Qm(T) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2,

(9.15)

we define the cost complexity criterion

Cα(T) =
|T |∑

m=1

NmQm(T) + α|T |. (9.16)

The idea is to find, for each α, the subtree Tα ⊆ T0 to minimize Cα(T).
The tuning parameter α ≥ 0 governs the tradeoff between tree size and its
goodness of fit to the data. Large values of α result in smaller trees Tα, and
conversely for smaller values of α. As the notation suggests, with α = 0 the
solution is the full tree T0. We discuss how to adaptively choose α below.

For each α one can show that there is a unique smallest subtree Tα that
minimizes Cα(T). To find Tα we use weakest link pruning: we successively
collapse the internal node that produces the smallest per-node increase in∑

m NmQm(T), and continue until we produce the single-node (root) tree.
This gives a (finite) sequence of subtrees, and one can show this sequence
must contain Tα. See Breiman et al. (1984) or Ripley (1996) for details.
Estimation of α is achieved by five- or tenfold cross-validation: we choose
the value α̂ to minimize the cross-validated sum of squares. Our final tree
is Tα̂.

9.2.3 Classification Trees

If the target is a classification outcome taking values 1, 2, . . . ,K, the only
changes needed in the tree algorithm pertain to the criteria for splitting
nodes and pruning the tree. For regression we used the squared-error node

9.2 Tree-Based Methods 309

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p

Entropy

Gini
 in

de
x

M
isc

las
sif

ica
tio

n
er

ro
r

FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxk p̂mk, the majority class in
node m. Different measures Qm(T) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi �= k(m)) = 1− p̂mk(m).

Gini index:
∑

k �=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while

310 9. Additive Models, Trees, and Related Methods

the other created nodes (200, 400) and (200, 0). Both splits produce a mis-
classification rate of 0.25, but the second split produces a pure node and is
probably preferable. Both the Gini index and cross-entropy are lower for the
second split. For this reason, either the Gini index or cross-entropy should
be used when growing the tree. To guide cost-complexity pruning, any of
the three measures can be used, but typically it is the misclassification rate.

The Gini index can be interpreted in two interesting ways. Rather than
classify observations to the majority class in the node, we could classify
them to class k with probability p̂mk. Then the training error rate of this
rule in the node is

∑
k �=k′ p̂mkp̂mk′—the Gini index. Similarly, if we code

each observation as 1 for class k and zero otherwise, the variance over the
node of this 0-1 response is p̂mk(1 − p̂mk). Summing over classes k again
gives the Gini index.

9.2.4 Other Issues

Categorical Predictors

When splitting a predictor having q possible unordered values, there are
2q−1 − 1 possible partitions of the q values into two groups, and the com-
putations become prohibitive for large q. However, with a 0 − 1 outcome,
this computation simplifies. We order the predictor classes according to the
proportion falling in outcome class 1. Then we split this predictor as if it
were an ordered predictor. One can show this gives the optimal split, in
terms of cross-entropy or Gini index, among all possible 2q−1−1 splits. This
result also holds for a quantitative outcome and square error loss—the cat-
egories are ordered by increasing mean of the outcome. Although intuitive,
the proofs of these assertions are not trivial. The proof for binary outcomes
is given in Breiman et al. (1984) and Ripley (1996); the proof for quantita-
tive outcomes can be found in Fisher (1958). For multicategory outcomes,
no such simplifications are possible, although various approximations have
been proposed (Loh and Vanichsetakul, 1988).

The partitioning algorithm tends to favor categorical predictors with
many levels q; the number of partitions grows exponentially in q, and the
more choices we have, the more likely we can find a good one for the data
at hand. This can lead to severe overfitting if q is large, and such variables
should be avoided.

The Loss Matrix

In classification problems, the consequences of misclassifying observations
are more serious in some classes than others. For example, it is probably
worse to predict that a person will not have a heart attack when he/she
actually will, than vice versa. To account for this, we define a K ×K loss
matrix L, with Lkk′ being the loss incurred for classifying a class k obser-
vation as class k′. Typically no loss is incurred for correct classifications,

9.2 Tree-Based Methods 311

that is, Lkk = 0 ∀k. To incorporate the losses into the modeling process,
we could modify the Gini index to

∑
k �=k′ Lkk′ p̂mkp̂mk′ ; this would be the

expected loss incurred by the randomized rule. This works for the multi-
class case, but in the two-class case has no effect, since the coefficient of
p̂mkp̂mk′ is Lkk′ + Lk′k. For two classes a better approach is to weight the
observations in class k by Lkk′ . This can be used in the multiclass case only
if, as a function of k, Lkk′ doesn’t depend on k′. Observation weighting can
be used with the deviance as well. The effect of observation weighting is to
alter the prior probability on the classes. In a terminal node, the empirical
Bayes rule implies that we classify to class k(m) = arg mink

∑
� L�kp̂m�.

Missing Predictor Values

Suppose our data has some missing predictor values in some or all of the
variables. We might discard any observation with some missing values, but
this could lead to serious depletion of the training set. Alternatively we
might try to fill in (impute) the missing values, with say the mean of that
predictor over the nonmissing observations. For tree-based models, there
are two better approaches. The first is applicable to categorical predictors:
we simply make a new category for “missing.” From this we might dis-
cover that observations with missing values for some measurement behave
differently than those with nonmissing values. The second more general
approach is the construction of surrogate variables. When considering a
predictor for a split, we use only the observations for which that predictor
is not missing. Having chosen the best (primary) predictor and split point,
we form a list of surrogate predictors and split points. The first surrogate
is the predictor and corresponding split point that best mimics the split of
the training data achieved by the primary split. The second surrogate is
the predictor and corresponding split point that does second best, and so
on. When sending observations down the tree either in the training phase
or during prediction, we use the surrogate splits in order, if the primary
splitting predictor is missing. Surrogate splits exploit correlations between
predictors to try and alleviate the effect of missing data. The higher the cor-
relation between the missing predictor and the other predictors, the smaller
the loss of information due to the missing value. The general problem of
missing data is discussed in Section 9.6.

Why Binary Splits?

Rather than splitting each node into just two groups at each stage (as
above), we might consider multiway splits into more than two groups. While
this can sometimes be useful, it is not a good general strategy. The problem
is that multiway splits fragment the data too quickly, leaving insufficient
data at the next level down. Hence we would want to use such splits only
when needed. Since multiway splits can be achieved by a series of binary
splits, the latter are preferred.

312 9. Additive Models, Trees, and Related Methods

Other Tree-Building Procedures

The discussion above focuses on the CART (classification and regression
tree) implementation of trees. The other popular methodology is ID3 and
its later versions, C4.5 and C5.0 (Quinlan, 1993). Early versions of the
program were limited to categorical predictors, and used a top-down rule
with no pruning. With more recent developments, C5.0 has become quite
similar to CART. The most significant feature unique to C5.0 is a scheme
for deriving rule sets. After a tree is grown, the splitting rules that define the
terminal nodes can sometimes be simplified: that is, one or more condition
can be dropped without changing the subset of observations that fall in
the node. We end up with a simplified set of rules defining each terminal
node; these no longer follow a tree structure, but their simplicity might
make them more attractive to the user.

Linear Combination Splits

Rather than restricting splits to be of the form Xj ≤ s, one can allow splits
along linear combinations of the form

∑
ajXj ≤ s. The weights aj and

split point s are optimized to minimize the relevant criterion (such as the
Gini index). While this can improve the predictive power of the tree, it can
hurt interpretability. Computationally, the discreteness of the split point
search precludes the use of a smooth optimization for the weights. A better
way to incorporate linear combination splits is in the hierarchical mixtures
of experts (HME) model, the topic of Section 9.5.

Instability of Trees

One major problem with trees is their high variance. Often a small change
in the data can result in a very different series of splits, making interpre-
tation somewhat precarious. The major reason for this instability is the
hierarchical nature of the process: the effect of an error in the top split
is propagated down to all of the splits below it. One can alleviate this to
some degree by trying to use a more stable split criterion, but the inherent
instability is not removed. It is the price to be paid for estimating a simple,
tree-based structure from the data. Bagging (Section 8.7) averages many
trees to reduce this variance.

Lack of Smoothness

Another limitation of trees is the lack of smoothness of the prediction sur-
face, as can be seen in the bottom right panel of Figure 9.2. In classification
with 0/1 loss, this doesn’t hurt much, since bias in estimation of the class
probabilities has a limited effect. However, this can degrade performance
in the regression setting, where we would normally expect the underlying
function to be smooth. The MARS procedure, described in Section 9.4,

9.2 Tree-Based Methods 313

TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross–
validation) on the test data. Overall error rate is 9.3%.

Predicted
True email spam
email 57.3% 4.0%
spam 5.3% 33.4%

can be viewed as a modification of CART designed to alleviate this lack of
smoothness.

Difficulty in Capturing Additive Structure

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose, for example, that Y = c1I(X1 < t1)+c2I(X2 <
t2) + ε where ε is zero-mean noise. Then a binary tree might make its first
split on X1 near t1. At the next level down it would have to split both nodes
on X2 at t2 in order to capture the additive structure. This might happen
with sufficient data, but the model is given no special encouragement to find
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The “blame”
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2.5 Spam Example (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and mis-
classification rate to prune it. Figure 9.4 shows the 10-fold cross-validation
error rate as a function of the size of the pruned tree, along with ±2 stan-
dard errors of the mean, from the ten replications. The test error curve is
shown in orange. Note that the cross-validation error rates are indexed by
a sequence of values of α and not tree size; for trees grown in different folds,
a value of α might imply different sizes. The sizes shown at the base of the
plot refer to |Tα|, the sizes of the pruned original tree.

The error flattens out at around 17 terminal nodes, giving the pruned tree
in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate shown in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

314 9. Additive Models, Trees, and Related Methods

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

Tree Size

M
is

cl
as

si
fic

at
io

n
R

at
e

176 21 7 5 3 2 0

α

FIGURE 9.4. Results for spam example. The blue curve is the 10-fold cross-val-
idation estimate of misclassification rate as a function of tree size, with standard
error bars. The minimum occurs at a tree size with about 17 terminal nodes (using
the “one-standard-error” rule). The orange curve is the test error, which tracks
the CV error quite closely. The cross-validation is indexed by values of α, shown
above. The tree sizes shown below refer to |Tα|, the size of the original tree indexed
by α.

However, if in addition the phrase hp occurs frequently, then this is likely
to be company business and we classify as email. All of the 22 cases in
the test set satisfying these criteria were correctly classified. If the second
condition is not met, and in addition the average length of repeated capital
letters CAPAVE is larger than 2.9, then we classify as spam. Of the 227 test
cases, only seven were misclassified.

In medical classification problems, the terms sensitivity and specificity
are used to characterize a rule. They are defined as follows:

Sensitivity: probability of predicting disease given true state is disease.

Specificity: probability of predicting non-disease given true state is non-
disease.

9.2 Tree-Based Methods 315

600/1536

280/1177

180/1065

 80/861

 80/652

 77/423

 20/238

 19/236 1/2

 57/185

 48/113

 37/101 1/12

 9/72

 3/229

 0/209

100/204

 36/123

 16/94

 14/89 3/5

 9/29

 16/81

 9/112

 6/109 0/3

 48/359

 26/337

 19/110

 18/109 0/1

 7/227

 0/22

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

ch$<0.0555

remove<0.06

ch!<0.191

george<0.005

hp<0.03

CAPMAX<10.5

receive<0.125 edu<0.045

our<1.2

CAPAVE<2.7505

free<0.065

business<0.145

george<0.15

hp<0.405

CAPAVE<2.907

1999<0.58

ch$>0.0555

remove>0.06

ch!>0.191

george>0.005

hp>0.03

CAPMAX>10.5

receive>0.125 edu>0.045

our>1.2

CAPAVE>2.7505

free>0.065

business>0.145

george>0.15

hp>0.405

CAPAVE>2.907

1999>0.58

FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.

316 9. Additive Models, Trees, and Related Methods

Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 • •

•
• •

•
•

•

••

•

•

• • • • • • •••••••••••••••••••••••••••••••••••••••
•
•
•

•

•

•

•
•
•••
•

•

•

•

•

Tree (0.95)
GAM (0.98)
Weighted Tree (0.90)

FIGURE 9.6. ROC curves for the classification rules fit to the spam data. Curves
that are closer to the northeast corner represent better classifiers. In this case the
GAM classifier dominates the trees. The weighted tree achieves better sensitivity
for higher specificity than the unweighted tree. The numbers in the legend repre-
sent the area under the curve.

If we think of spam and email as the presence and absence of disease, re-
spectively, then from Table 9.3 we have

Sensitivity = 100× 33.4
33.4 + 5.3

= 86.3%,

Specificity = 100× 57.3
57.3 + 4.0

= 93.4%.

In this analysis we have used equal losses. As before let Lkk′ be the
loss associated with predicting a class k object as class k′. By varying the
relative sizes of the losses L01 and L10, we increase the sensitivity and
decrease the specificity of the rule, or vice versa. In this example, we want
to avoid marking good email as spam, and thus we want the specificity to
be very high. We can achieve this by setting L01 > 1 say, with L10 = 1.
The Bayes’ rule in each terminal node classifies to class 1 (spam) if the
proportion of spam is ≥ L01/(L10 + L01), and class zero otherwise. The

9.3 PRIM: Bump Hunting 317

receiver operating characteristic curve (ROC) is a commonly used summary
for assessing the tradeoff between sensitivity and specificity. It is a plot of
the sensitivity versus specificity as we vary the parameters of a classification
rule. Varying the loss L01 between 0.1 and 10, and applying Bayes’ rule to
the 17-node tree selected in Figure 9.4, produced the ROC curve shown
in Figure 9.6. The standard error of each curve near 0.9 is approximately√

0.9(1− 0.9)/1536 = 0.008, and hence the standard error of the difference
is about 0.01. We see that in order to achieve a specificity of close to 100%,
the sensitivity has to drop to about 50%. The area under the curve is a
commonly used quantitative summary; extending the curve linearly in each
direction so that it is defined over [0, 100], the area is approximately 0.95.
For comparison, we have included the ROC curve for the GAM model fit
to these data in Section 9.2; it gives a better classification rule for any loss,
with an area of 0.98.

Rather than just modifying the Bayes rule in the nodes, it is better to
take full account of the unequal losses in growing the tree, as was done
in Section 9.2. With just two classes 0 and 1, losses may be incorporated
into the tree-growing process by using weight Lk,1−k for an observation in
class k. Here we chose L01 = 5, L10 = 1 and fit the same size tree as before
(|Tα| = 17). This tree has higher sensitivity at high values of the specificity
than the original tree, but does more poorly at the other extreme. Its top
few splits are the same as the original tree, and then it departs from it.
For this application the tree grown using L01 = 5 is clearly better than the
original tree.

The area under the ROC curve, used above, is sometimes called the c-
statistic. Interestingly, it can be shown that the area under the ROC curve
is equivalent to the Mann-Whitney U statistic (or Wilcoxon rank-sum test),
for the median difference between the prediction scores in the two groups
(Hanley and McNeil, 1982). For evaluating the contribution of an additional
predictor when added to a standard model, the c-statistic may not be an
informative measure. The new predictor can be very significant in terms
of the change in model deviance, but show only a small increase in the c-
statistic. For example, removal of the highly significant term george from
the model of Table 9.2 results in a decrease in the c-statistic of less than
0.01. Instead, it is useful to examine how the additional predictor changes
the classification on an individual sample basis. A good discussion of this
point appears in Cook (2007).

9.3 PRIM: Bump Hunting

Tree-based methods (for regression) partition the feature space into box-
shaped regions, to try to make the response averages in each box as differ-

318 9. Additive Models, Trees, and Related Methods

ent as possible. The splitting rules defining the boxes are related to each
through a binary tree, facilitating their interpretation.

The patient rule induction method (PRIM) also finds boxes in the feature
space, but seeks boxes in which the response average is high. Hence it looks
for maxima in the target function, an exercise known as bump hunting. (If
minima rather than maxima are desired, one simply works with the negative
response values.)

PRIM also differs from tree-based partitioning methods in that the box
definitions are not described by a binary tree. This makes interpretation of
the collection of rules more difficult; however, by removing the binary tree
constraint, the individual rules are often simpler.

The main box construction method in PRIM works from the top down,
starting with a box containing all of the data. The box is compressed along
one face by a small amount, and the observations then falling outside the
box are peeled off. The face chosen for compression is the one resulting in
the largest box mean, after the compression is performed. Then the process
is repeated, stopping when the current box contains some minimum number
of data points.

This process is illustrated in Figure 9.7. There are 200 data points uni-
formly distributed over the unit square. The color-coded plot indicates the
response Y taking the value 1 (red) when 0.5 < X1 < 0.8 and 0.4 < X2 <
0.6. and zero (blue) otherwise. The panels shows the successive boxes found
by the top-down peeling procedure, peeling off a proportion α = 0.1 of the
remaining data points at each stage.

Figure 9.8 shows the mean of the response values in the box, as the box
is compressed.

After the top-down sequence is computed, PRIM reverses the process,
expanding along any edge, if such an expansion increases the box mean.
This is called pasting. Since the top-down procedure is greedy at each step,
such an expansion is often possible.

The result of these steps is a sequence of boxes, with different numbers
of observation in each box. Cross-validation, combined with the judgment
of the data analyst, is used to choose the optimal box size.

Denote by B1 the indices of the observations in the box found in step 1.
The PRIM procedure then removes the observations in B1 from the training
set, and the two-step process—top down peeling, followed by bottom-up
pasting—is repeated on the remaining dataset. This entire process is re-
peated several times, producing a sequence of boxes B1, B2, . . . , Bk. Each
box is defined by a set of rules involving a subset of predictors like

(a1 ≤ X1 ≤ b1) and (b1 ≤ X3 ≤ b2).

A summary of the PRIM procedure is given Algorithm 9.3.
PRIM can handle a categorical predictor by considering all partitions of

the predictor, as in CART. Missing values are also handled in a manner
similar to CART. PRIM is designed for regression (quantitative response

9.3 PRIM: Bump Hunting 319

1

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

2

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

3

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

4

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

5

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

6

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

7

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

8

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

12

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

17

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

22

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

27

oo o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo o

o
o

oo

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o
o

o
oo

o

o

o

o

oo

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo o

o

o

o
o

o o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

FIGURE 9.7. Illustration of PRIM algorithm. There are two classes, indicated
by the blue (class 0) and red (class 1) points. The procedure starts with a rectangle
(broken black lines) surrounding all of the data, and then peels away points along
one edge by a prespecified amount in order to maximize the mean of the points
remaining in the box. Starting at the top left panel, the sequence of peelings is
shown, until a pure red region is isolated in the bottom right panel. The iteration
number is indicated at the top of each panel.

Number of Observations in Box

B
ox

 M
ea

n

50 100 150

0.
2

0.
4

0.
6

0.
8

1.
0

••••••••••••••••••
•

•
•
•
•
•

•
•
•

FIGURE 9.8. Box mean as a function of number of observations in the box.

320 9. Additive Models, Trees, and Related Methods

Algorithm 9.3 Patient Rule Induction Method.

1. Start with all of the training data, and a maximal box containing all
of the data.

2. Consider shrinking the box by compressing one face, so as to peel off
the proportion α of observations having either the highest values of
a predictor Xj , or the lowest. Choose the peeling that produces the
highest response mean in the remaining box. (Typically α = 0.05 or
0.10.)

3. Repeat step 2 until some minimal number of observations (say 10)
remain in the box.

4. Expand the box along any face, as long as the resulting box mean
increases.

5. Steps 1–4 give a sequence of boxes, with different numbers of obser-
vations in each box. Use cross-validation to choose a member of the
sequence. Call the box B1.

6. Remove the data in box B1 from the dataset and repeat steps 2–5 to
obtain a second box, and continue to get as many boxes as desired.

variable); a two-class outcome can be handled simply by coding it as 0 and
1. There is no simple way to deal with k > 2 classes simultaneously: one
approach is to run PRIM separately for each class versus a baseline class.

An advantage of PRIM over CART is its patience. Because of its bi-
nary splits, CART fragments the data quite quickly. Assuming splits of
equal size, with N observations it can only make log2(N)− 1 splits before
running out of data. If PRIM peels off a proportion α of training points
at each stage, it can perform approximately − log(N)/ log(1 − α) peeling
steps before running out of data. For example, if N = 128 and α = 0.10,
then log2(N)− 1 = 6 while − log(N)/ log(1−α) ≈ 46. Taking into account
that there must be an integer number of observations at each stage, PRIM
in fact can peel only 29 times. In any case, the ability of PRIM to be more
patient should help the top-down greedy algorithm find a better solution.

9.3.1 Spam Example (Continued)

We applied PRIM to the spam data, with the response coded as 1 for spam

and 0 for email.
The first two boxes found by PRIM are summarized below:

9.4 MARS: Multivariate Adaptive Regression Splines 321

Rule 1 Global Mean Box Mean Box Support
Training 0.3931 0.9607 0.1413
Test 0.3958 1.0000 0.1536

Rule 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ch! > 0.029
CAPAVE > 2.331
your > 0.705
1999 < 0.040

CAPTOT > 79.50
edu < 0.070
re < 0.535
ch; < 0.030

Rule 2 Remain Mean Box Mean Box Support
Training 0.2998 0.9560 0.1043
Test 0.2862 0.9264 0.1061

Rule 2
{

remove > 0.010
george < 0.110

The box support is the proportion of observations falling in the box.
The first box is purely spam, and contains about 15% of the test data.
The second box contains 10.6% of the test observations, 92.6% of which
are spam. Together the two boxes contain 26% of the data and are about
97% spam. The next few boxes (not shown) are quite small, containing only
about 3% of the data.

The predictors are listed in order of importance. Interestingly the top
splitting variables in the CART tree (Figure 9.5) do not appear in PRIM’s
first box.

9.4 MARS: Multivariate Adaptive Regression
Splines

MARS is an adaptive procedure for regression, and is well suited for high-
dimensional problems (i.e., a large number of inputs). It can be viewed as a
generalization of stepwise linear regression or a modification of the CART
method to improve the latter’s performance in the regression setting. We
introduce MARS from the first point of view, and later make the connection
to CART.

MARS uses expansions in piecewise linear basis functions of the form
(x− t)+ and (t− x)+. The “+” means positive part, so

(x−t)+ =
{

x− t, if x > t,
0, otherwise, and (t−x)+ =

{
t− x, , if x < t,

0, otherwise.

322 9. Additive Models, Trees, and Related Methods

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(x − t)+(t − x)+

x

t

B
a
si

s
F
u
n
ct

io
n

FIGURE 9.9. The basis functions (x− t)+ (solid orange) and (t− x)+ (broken
blue) used by MARS.

As an example, the functions (x− 0.5)+ and (0.5− x)+ are shown in Fig-
ure 9.9.

Each function is piecewise linear, with a knot at the value t. In the
terminology of Chapter 5, these are linear splines. We call the two functions
a reflected pair in the discussion below. The idea is to form reflected pairs
for each input Xj with knots at each observed value xij of that input.
Therefore, the collection of basis functions is

C = {(Xj − t)+, (t−Xj)+} t ∈ {x1j , x2j , . . . , xNj}
j = 1, 2, . . . , p.

(9.18)

If all of the input values are distinct, there are 2Np basis functions alto-
gether. Note that although each basis function depends only on a single
Xj , for example, h(X) = (Xj − t)+, it is considered as a function over the
entire input space IRp.

The model-building strategy is like a forward stepwise linear regression,
but instead of using the original inputs, we are allowed to use functions
from the set C and their products. Thus the model has the form

f(X) = β0 +
M∑

m=1

βmhm(X), (9.19)

where each hm(X) is a function in C, or a product of two or more such
functions.

Given a choice for the hm, the coefficients βm are estimated by minimiz-
ing the residual sum-of-squares, that is, by standard linear regression. The
real art, however, is in the construction of the functions hm(x). We start
with only the constant function h0(X) = 1 in our model, and all functions
in the set C are candidate functions. This is depicted in Figure 9.10.

At each stage we consider as a new basis function pair all products of a
function hm in the model set M with one of the reflected pairs in C. We
add to the model M the term of the form

β̂M+1h�(X) · (Xj − t)+ + β̂M+2h�(X) · (t−Xj)+, h� ∈M,

9.4 MARS: Multivariate Adaptive Regression Splines 323

X1

X1

X1

X1

X2

X2

X2

X2

X2

Xp

Xp

Xp

Constant

FIGURE 9.10. Schematic of the MARS forward model-building procedure. On
the left are the basis functions currently in the model: initially, this is the constant
function h(X) = 1. On the right are all candidate basis functions to be considered
in building the model. These are pairs of piecewise linear basis functions as in
Figure 9.9, with knots t at all unique observed values xij of each predictor Xj.
At each stage we consider all products of a candidate pair with a basis function
in the model. The product that decreases the residual error the most is added into
the current model. Above we illustrate the first three steps of the procedure, with
the selected functions shown in red.

324 9. Additive Models, Trees, and Related Methods

X1
X2

h(X1, X2)

FIGURE 9.11. The function h(X1, X2) = (X1 − x51)+ · (x72 − X2)+, resulting
from multiplication of two piecewise linear MARS basis functions.

that produces the largest decrease in training error. Here β̂M+1 and β̂M+2

are coefficients estimated by least squares, along with all the other M + 1
coefficients in the model. Then the winning products are added to the
model and the process is continued until the model set M contains some
preset maximum number of terms.

For example, at the first stage we consider adding to the model a function
of the form β1(Xj − t)+ + β2(t −Xj)+; t ∈ {xij}, since multiplication by
the constant function just produces the function itself. Suppose the best
choice is β̂1(X2 − x72)+ + β̂2(x72 −X2)+. Then this pair of basis functions
is added to the set M, and at the next stage we consider including a pair
of products the form

hm(X) · (Xj − t)+ and hm(X) · (t−Xj)+, t ∈ {xij},

where for hm we have the choices

h0(X) = 1,
h1(X) = (X2 − x72)+, or
h2(X) = (x72 −X2)+.

The third choice produces functions such as (X1 − x51)+ · (x72 − X2)+,
depicted in Figure 9.11.

At the end of this process we have a large model of the form (9.19). This
model typically overfits the data, and so a backward deletion procedure
is applied. The term whose removal causes the smallest increase in resid-
ual squared error is deleted from the model at each stage, producing an
estimated best model f̂λ of each size (number of terms) λ. One could use
cross-validation to estimate the optimal value of λ, but for computational

9.4 MARS: Multivariate Adaptive Regression Splines 325

savings the MARS procedure instead uses generalized cross-validation. This
criterion is defined as

GCV(λ) =
∑N

i=1(yi − f̂λ(xi))2

(1−M(λ)/N)2
. (9.20)

The value M(λ) is the effective number of parameters in the model: this
accounts both for the number of terms in the models, plus the number
of parameters used in selecting the optimal positions of the knots. Some
mathematical and simulation results suggest that one should pay a price
of three parameters for selecting a knot in a piecewise linear regression.

Thus if there are r linearly independent basis functions in the model, and
K knots were selected in the forward process, the formula is M(λ) = r+cK,
where c = 3. (When the model is restricted to be additive—details below—
a penalty of c = 2 is used). Using this, we choose the model along the
backward sequence that minimizes GCV(λ).

Why these piecewise linear basis functions, and why this particular model
strategy? A key property of the functions of Figure 9.9 is their ability to
operate locally; they are zero over part of their range. When they are mul-
tiplied together, as in Figure 9.11, the result is nonzero only over the small
part of the feature space where both component functions are nonzero. As
a result, the regression surface is built up parsimoniously, using nonzero
components locally—only where they are needed. This is important, since
one should “spend” parameters carefully in high dimensions, as they can
run out quickly. The use of other basis functions such as polynomials, would
produce a nonzero product everywhere, and would not work as well.

The second important advantage of the piecewise linear basis function
concerns computation. Consider the product of a function in M with each
of the N reflected pairs for an input Xj . This appears to require the fitting
of N single-input linear regression models, each of which uses O(N) oper-
ations, making a total of O(N2) operations. However, we can exploit the
simple form of the piecewise linear function. We first fit the reflected pair
with rightmost knot. As the knot is moved successively one position at a
time to the left, the basis functions differ by zero over the left part of the
domain, and by a constant over the right part. Hence after each such move
we can update the fit in O(1) operations. This allows us to try every knot
in only O(N) operations.

The forward modeling strategy in MARS is hierarchical, in the sense that
multiway products are built up from products involving terms already in
the model. For example, a four-way product can only be added to the model
if one of its three-way components is already in the model. The philosophy
here is that a high-order interaction will likely only exist if some of its lower-
order “footprints” exist as well. This need not be true, but is a reasonable
working assumption and avoids the search over an exponentially growing
space of alternatives.

326 9. Additive Models, Trees, and Related Methods

Rank of Model

T
es

t M
is

cl
as

si
fic

at
io

n
E

rr
or

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

•••
•••••••••

•••••••••
•••

••

••
•

•

0.055

GCV choice

FIGURE 9.12. Spam data: test error misclassification rate for the MARS pro-
cedure, as a function of the rank (number of independent basis functions) in the
model.

There is one restriction put on the formation of model terms: each input
can appear at most once in a product. This prevents the formation of
higher-order powers of an input, which increase or decrease too sharply
near the boundaries of the feature space. Such powers can be approximated
in a more stable way with piecewise linear functions.

A useful option in the MARS procedure is to set an upper limit on
the order of interaction. For example, one can set a limit of two, allowing
pairwise products of piecewise linear functions, but not three- or higher-
way products. This can aid in the interpretation of the final model. An
upper limit of one results in an additive model.

9.4.1 Spam Example (Continued)

We applied MARS to the “spam” data analyzed earlier in this chapter. To
enhance interpretability, we restricted MARS to second-degree interactions.
Although the target is a two-class variable, we used the squared-error loss
function nonetheless (see Section 9.4.3). Figure 9.12 shows the test error
misclassification rate as a function of the rank (number of independent ba-
sis functions) in the model. The error rate levels off at about 5.5%, which is
slightly higher than that of the generalized additive model (5.3%) discussed
earlier. GCV chose a model size of 60, which is roughly the smallest model
giving optimal performance. The leading interactions found by MARS in-
volved inputs (ch$, remove), (ch$, free) and (hp, CAPTOT). However, these
interactions give no improvement in performance over the generalized ad-
ditive model.

9.4 MARS: Multivariate Adaptive Regression Splines 327

9.4.2 Example (Simulated Data)

Here we examine the performance of MARS in three contrasting scenarios.
There are N = 100 observations, and the predictors X1,X2, . . . , Xp and
errors ε have independent standard normal distributions.

Scenario 1: The data generation model is

Y = (X1 − 1)+ + (X1 − 1)+ · (X2 − .8)+ + 0.12 · ε. (9.21)

The noise standard deviation 0.12 was chosen so that the signal-to-
noise ratio was about 5. We call this the tensor-product scenario; the
product term gives a surface that looks like that of Figure 9.11.

Scenario 2: This is the same as scenario 1, but with p = 20 total predictors;
that is, there are 18 inputs that are independent of the response.

Scenario 3: This has the structure of a neural network:

�1 = X1 + X2 + X3 + X4 + X5,
�2 = X6 −X7 + X8 −X9 + X10,

σ(t) = 1/(1 + e−t),
Y = σ(�1) + σ(�2) + 0.12 · ε.

(9.22)

Scenarios 1 and 2 are ideally suited for MARS, while scenario 3 contains
high-order interactions and may be difficult for MARS to approximate. We
ran five simulations from each model, and recorded the results.

In scenario 1, MARS typically uncovered the correct model almost per-
fectly. In scenario 2, it found the correct structure but also found a few
extraneous terms involving other predictors.

Let μ(x) be the true mean of Y , and let

MSE0 = avex∈Test(ȳ − μ(x))2,
MSE = avex∈Test(f̂(x)− μ(x))2.

(9.23)

These represent the mean-square error of the constant model and the fitted
MARS model, estimated by averaging at the 1000 test values of x. Table 9.4
shows the proportional decrease in model error or R2 for each scenario:

R2 =
MSE0 −MSE

MSE0
. (9.24)

The values shown are means and standard error over the five simulations.
The performance of MARS is degraded only slightly by the inclusion of the
useless inputs in scenario 2; it performs substantially worse in scenario 3.

328 9. Additive Models, Trees, and Related Methods

TABLE 9.4. Proportional decrease in model error (R2) when MARS is applied
to three different scenarios.

Scenario Mean (S.E.)
1: Tensor product p = 2 0.97 (0.01)
2: Tensor product p = 20 0.96 (0.01)
3: Neural network 0.79 (0.01)

9.4.3 Other Issues

MARS for Classification

The MARS method and algorithm can be extended to handle classification
problems. Several strategies have been suggested.

For two classes, one can code the output as 0/1 and treat the problem as
a regression; we did this for the spam example. For more than two classes,
one can use the indicator response approach described in Section 4.2. One
codes the K response classes via 0/1 indicator variables, and then per-
forms a multi-response MARS regression. For the latter we use a common
set of basis functions for all response variables. Classification is made to
the class with the largest predicted response value. There are, however, po-
tential masking problems with this approach, as described in Section 4.2.
A generally superior approach is the “optimal scoring” method discussed
in Section 12.5.

Stone et al. (1997) developed a hybrid of MARS called PolyMARS specif-
ically designed to handle classification problems. It uses the multiple logistic
framework described in Section 4.4. It grows the model in a forward stage-
wise fashion like MARS, but at each stage uses a quadratic approximation
to the multinomial log-likelihood to search for the next basis-function pair.
Once found, the enlarged model is fit by maximum likelihood, and the
process is repeated.

Relationship of MARS to CART

Although they might seem quite different, the MARS and CART strategies
actually have strong similarities. Suppose we take the MARS procedure and
make the following changes:

• Replace the piecewise linear basis functions by step functions I(x−t >
0) and I(x− t ≤ 0).

• When a model term is involved in a multiplication by a candidate
term, it gets replaced by the interaction, and hence is not available
for further interactions.

With these changes, the MARS forward procedure is the same as the CART
tree-growing algorithm. Multiplying a step function by a pair of reflected

9.5 Hierarchical Mixtures of Experts 329

step functions is equivalent to splitting a node at the step. The second
restriction implies that a node may not be split more than once, and leads
to the attractive binary-tree representation of the CART model. On the
other hand, it is this restriction that makes it difficult for CART to model
additive structures. MARS forgoes the tree structure and gains the ability
to capture additive effects.

Mixed Inputs

Mars can handle “mixed” predictors—quantitative and qualitative—in a
natural way, much like CART does. MARS considers all possible binary
partitions of the categories for a qualitative predictor into two groups.
Each such partition generates a pair of piecewise constant basis functions—
indicator functions for the two sets of categories. This basis pair is now
treated as any other, and is used in forming tensor products with other
basis functions already in the model.

9.5 Hierarchical Mixtures of Experts

The hierarchical mixtures of experts (HME) procedure can be viewed as a
variant of tree-based methods. The main difference is that the tree splits
are not hard decisions but rather soft probabilistic ones. At each node an
observation goes left or right with probabilities depending on its input val-
ues. This has some computational advantages since the resulting parameter
optimization problem is smooth, unlike the discrete split point search in the
tree-based approach. The soft splits might also help in prediction accuracy
and provide a useful alternative description of the data.

There are other differences between HMEs and the CART implementa-
tion of trees. In an HME, a linear (or logistic regression) model is fit in
each terminal node, instead of a constant as in CART. The splits can be
multiway, not just binary, and the splits are probabilistic functions of a
linear combination of inputs, rather than a single input as in the standard
use of CART. However, the relative merits of these choices are not clear,
and most were discussed at the end of Section 9.2.

A simple two-level HME model in shown in Figure 9.13. It can be thought
of as a tree with soft splits at each non-terminal node. However, the inven-
tors of this methodology use a different terminology. The terminal nodes
are called experts, and the non-terminal nodes are called gating networks.
The idea is that each expert provides an opinion (prediction) about the
response, and these are combined together by the gating networks. As we
will see, the model is formally a mixture model, and the two-level model
in the figure can be extend to multiple levels, hence the name hierarchical
mixtures of experts.

330 9. Additive Models, Trees, and Related Methods

g1 g2

g1|1 g2|1 g1|2 g2|2

Gating Gating

GatingGating

Gating GatingGating Gating

Gating

NetworkNetwork Network

Network

Network

Network

Network

NetworkNetwork Network

Network

Network

Network NetworkNetwork Network

NetworkNetwork Network

Network

ExpertExpertExpert ExpertExpertExpert ExpertExpert ExpertExpertExpert

Pr(y|x, θ11) Pr(y|x, θ21) Pr(y|x, θ12) Pr(y|x, θ22)

FIGURE 9.13. A two-level hierarchical mixture of experts (HME) model.

Consider the regression or classification problem, as described earlier in
the chapter. The data is (xi, yi), i = 1, 2, . . . , N , with yi either a continuous
or binary-valued response, and xi a vector-valued input. For ease of nota-
tion we assume that the first element of xi is one, to account for intercepts.

Here is how an HME is defined. The top gating network has the output

gj(x, γj) =
eγT

j x∑K
k=1 eγT

k x
, j = 1, 2, . . . ,K, (9.25)

where each γj is a vector of unknown parameters. This represents a soft
K-way split (K = 2 in Figure 9.13.) Each gj(x, γj) is the probability of
assigning an observation with feature vector x to the jth branch. Notice
that with K = 2 groups, if we take the coefficient of one of the elements of
x to be +∞, then we get a logistic curve with infinite slope. In this case,
the gating probabilities are either 0 or 1, corresponding to a hard split on
that input.

At the second level, the gating networks have a similar form:

g�|j(x, γj�) =
eγT

j�x∑K
k=1 eγT

jkx
, � = 1, 2, . . . ,K. (9.26)

9.5 Hierarchical Mixtures of Experts 331

This is the probability of assignment to the �th branch, given assignment
to the jth branch at the level above.

At each expert (terminal node), we have a model for the response variable
of the form

Y ∼ Pr(y|x, θj�). (9.27)

This differs according to the problem.

Regression: The Gaussian linear regression model is used, with θj� =
(βj�, σ

2
j�):

Y = βT
j�x + ε and ε ∼ N(0, σ2

j�). (9.28)

Classification: The linear logistic regression model is used:

Pr(Y = 1|x, θj�) =
1

1 + e−θT
j�x

. (9.29)

Denoting the collection of all parameters by Ψ = {γj , γj�, θj�}, the total
probability that Y = y is

Pr(y|x,Ψ) =
K∑

j=1

gj(x, γj)
K∑

�=1

g�|j(x, γj�)Pr(y|x, θj�). (9.30)

This is a mixture model, with the mixture probabilities determined by the
gating network models.

To estimate the parameters, we maximize the log-likelihood of the data,∑
i log Pr(yi|xi,Ψ), over the parameters in Ψ. The most convenient method

for doing this is the EM algorithm, which we describe for mixtures in
Section 8.5. We define latent variables Δj , all of which are zero except for
a single one. We interpret these as the branching decisions made by the top
level gating network. Similarly we define latent variables Δ�|j to describe
the gating decisions at the second level.

In the E-step, the EM algorithm computes the expectations of the Δj

and Δ�|j given the current values of the parameters. These expectations
are then used as observation weights in the M-step of the procedure, to
estimate the parameters in the expert networks. The parameters in the
internal nodes are estimated by a version of multiple logistic regression.
The expectations of the Δj or Δ�|j are probability profiles, and these are
used as the response vectors for these logistic regressions.

The hierarchical mixtures of experts approach is a promising competitor
to CART trees. By using soft splits rather than hard decision rules it can
capture situations where the transition from low to high response is gradual.
The log-likelihood is a smooth function of the unknown weights and hence
is amenable to numerical optimization. The model is similar to CART with
linear combination splits, but the latter is more difficult to optimize. On

332 9. Additive Models, Trees, and Related Methods

the other hand, to our knowledge there are no methods for finding a good
tree topology for the HME model, as there are in CART. Typically one uses
a fixed tree of some depth, possibly the output of the CART procedure.
The emphasis in the research on HMEs has been on prediction rather than
interpretation of the final model. A close cousin of the HME is the latent
class model (Lin et al., 2000), which typically has only one layer; here
the nodes or latent classes are interpreted as groups of subjects that show
similar response behavior.

9.6 Missing Data

It is quite common to have observations with missing values for one or more
input features. The usual approach is to impute (fill-in) the missing values
in some way.

However, the first issue in dealing with the problem is determining wheth-
er the missing data mechanism has distorted the observed data. Roughly
speaking, data are missing at random if the mechanism resulting in its
omission is independent of its (unobserved) value. A more precise definition
is given in Little and Rubin (2002). Suppose y is the response vector and X
is the N × p matrix of inputs (some of which are missing). Denote by Xobs

the observed entries in X and let Z = (y,X), Zobs = (y,Xobs). Finally, if R
is an indicator matrix with ijth entry 1 if xij is missing and zero otherwise,
then the data is said to be missing at random (MAR) if the distribution of
R depends on the data Z only through Zobs:

Pr(R|Z, θ) = Pr(R|Zobs, θ). (9.31)

Here θ are any parameters in the distribution of R. Data are said to be
missing completely at random (MCAR) if the distribution of R doesn’t
depend on the observed or missing data:

Pr(R|Z, θ) = Pr(R|θ). (9.32)

MCAR is a stronger assumption than MAR: most imputation methods rely
on MCAR for their validity.

For example, if a patient’s measurement was not taken because the doctor
felt he was too sick, that observation would not be MAR or MCAR. In this
case the missing data mechanism causes our observed training data to give a
distorted picture of the true population, and data imputation is dangerous
in this instance. Often the determination of whether features are MCAR
must be made from information about the data collection process. For
categorical features, one way to diagnose this problem is to code “missing”
as an additional class. Then we fit our model to the training data and see
if class “missing” is predictive of the response.

9.6 Missing Data 333

Assuming the features are missing completely at random, there are a
number of ways of proceeding:

1. Discard observations with any missing values.

2. Rely on the learning algorithm to deal with missing values in its
training phase.

3. Impute all missing values before training.

Approach (1) can be used if the relative amount of missing data is small,
but otherwise should be avoided. Regarding (2), CART is one learning
algorithm that deals effectively with missing values, through surrogate splits
(Section 9.2.4). MARS and PRIM use similar approaches. In generalized
additive modeling, all observations missing for a given input feature are
omitted when the partial residuals are smoothed against that feature in
the backfitting algorithm, and their fitted values are set to zero. Since the
fitted curves have mean zero (when the model includes an intercept), this
amounts to assigning the average fitted value to the missing observations.

For most learning methods, the imputation approach (3) is necessary.
The simplest tactic is to impute the missing value with the mean or median
of the nonmissing values for that feature. (Note that the above procedure
for generalized additive models is analogous to this.)

If the features have at least some moderate degree of dependence, one
can do better by estimating a predictive model for each feature given the
other features and then imputing each missing value by its prediction from
the model. In choosing the learning method for imputation of the features,
one must remember that this choice is distinct from the method used for
predicting y from X. Thus a flexible, adaptive method will often be pre-
ferred, even for the eventual purpose of carrying out a linear regression of y
on X. In addition, if there are many missing feature values in the training
set, the learning method must itself be able to deal with missing feature
values. CART therefore is an ideal choice for this imputation “engine.”

After imputation, missing values are typically treated as if they were ac-
tually observed. This ignores the uncertainty due to the imputation, which
will itself introduce additional uncertainty into estimates and predictions
from the response model. One can measure this additional uncertainty by
doing multiple imputations and hence creating many different training sets.
The predictive model for y can be fit to each training set, and the variation
across training sets can be assessed. If CART was used for the imputation
engine, the multiple imputations could be done by sampling from the values
in the corresponding terminal nodes.

334 9. Additive Models, Trees, and Related Methods

9.7 Computational Considerations

With N observations and p predictors, additive model fitting requires some
number mp of applications of a one-dimensional smoother or regression
method. The required number of cycles m of the backfitting algorithm is
usually less than 20 and often less than 10, and depends on the amount
of correlation in the inputs. With cubic smoothing splines, for example,
N log N operations are needed for an initial sort and N operations for the
spline fit. Hence the total operations for an additive model fit is pN log N +
mpN .

Trees require pN log N operations for an initial sort for each predictor,
and typically another pN log N operations for the split computations. If the
splits occurred near the edges of the predictor ranges, this number could
increase to N2p.

MARS requires Nm2 + pmN operations to add a basis function to a
model with m terms already present, from a pool of p predictors. Hence to
build an M -term model requires NM3 + pM2N computations, which can
be quite prohibitive if M is a reasonable fraction of N .

Each of the components of an HME are typically inexpensive to fit at
each M-step: Np2 for the regressions, and Np2K2 for a K-class logistic
regression. The EM algorithm, however, can take a long time to converge,
and so sizable HME models are considered costly to fit.

Bibliographic Notes

The most comprehensive source for generalized additive models is the text
of that name by Hastie and Tibshirani (1990). Different applications of
this work in medical problems are discussed in Hastie et al. (1989) and
Hastie and Herman (1990), and the software implementation in Splus is
described in Chambers and Hastie (1991). Green and Silverman (1994)
discuss penalization and spline models in a variety of settings. Efron and
Tibshirani (1991) give an exposition of modern developments in statistics
(including generalized additive models), for a nonmathematical audience.
Classification and regression trees date back at least as far as Morgan and
Sonquist (1963). We have followed the modern approaches of Breiman et
al. (1984) and Quinlan (1993). The PRIM method is due to Friedman
and Fisher (1999), while MARS is introduced in Friedman (1991), with an
additive precursor in Friedman and Silverman (1989). Hierarchical mixtures
of experts were proposed in Jordan and Jacobs (1994); see also Jacobs et
al. (1991).

Exercises 335

Exercises

Ex. 9.1 Show that a smoothing spline fit of yi to xi preserves the linear
part of the fit. In other words, if yi = ŷi + ri, where ŷi represents the
linear regression fits, and S is the smoothing matrix, then Sy = ŷ + Sr.
Show that the same is true for local linear regression (Section 6.1.1). Hence
argue that the adjustment step in the second line of (2) in Algorithm 9.1
is unnecessary.

Ex. 9.2 Let A be a known k × k matrix, b be a known k-vector, and z
be an unknown k-vector. A Gauss–Seidel algorithm for solving the linear
system of equations Az = b works by successively solving for element zj in
the jth equation, fixing all other zj ’s at their current guesses. This process
is repeated for j = 1, 2, . . . , k, 1, 2, . . . , k, . . . , until convergence (Golub and
Van Loan, 1983).

(a) Consider an additive model with N observations and p terms, with
the jth term to be fit by a linear smoother Sj . Consider the following
system of equations:⎛⎜⎜⎜⎝

I S1 S1 · · · S1

S2 I S2 · · · S2

...
...

...
. . .

...
Sp Sp Sp · · · I

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f1
f2
...
fp

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
S1y
S2y

...
Spy

⎞⎟⎟⎟⎠ . (9.33)

Here each fj is an N -vector of evaluations of the jth function at
the data points, and y is an N -vector of the response values. Show
that backfitting is a blockwise Gauss–Seidel algorithm for solving this
system of equations.

(b) Let S1 and S2 be symmetric smoothing operators (matrices) with
eigenvalues in [0, 1). Consider a backfitting algorithm with response
vector y and smoothers S1,S2. Show that with any starting values,
the algorithm converges and give a formula for the final iterates.

Ex. 9.3 Backfitting equations. Consider a backfitting procedure with orthog-
onal projections, and let D be the overall regression matrix whose columns
span V = Lcol(S1) ⊕ Lcol(S2) ⊕ · · · ⊕ Lcol(Sp), where Lcol(S) denotes the
column space of a matrix S. Show that the estimating equations⎛⎜⎜⎜⎝

I S1 S1 · · · S1

S2 I S2 · · · S2

...
...

...
. . .

...
Sp Sp Sp · · · I

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f1
f2
...
fp

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
S1y
S2y

...
Spy

⎞⎟⎟⎟⎠
are equivalent to the least squares normal equations DT Dβ = DT y where
β is the vector of coefficients.

336 9. Additive Models, Trees, and Related Methods

Ex. 9.4 Suppose the same smoother S is used to estimate both terms in a
two-term additive model (i.e., both variables are identical). Assume that S
is symmetric with eigenvalues in [0, 1). Show that the backfitting residual
converges to (I + S)−1(I− S)y, and that the residual sum of squares con-
verges upward. Can the residual sum of squares converge upward in less
structured situations? How does this fit compare to the fit with a single
term fit by S? [Hint: Use the eigen-decomposition of S to help with this
comparison.]

Ex. 9.5 Degrees of freedom of a tree. Given data yi with mean f(xi) and
variance σ2, and a fitting operation y → ŷ, let’s define the degrees of
freedom of a fit by

∑
i cov(yi, ŷi)/σ2.

Consider a fit ŷ estimated by a regression tree, fit to a set of predictors
X1,X2, . . . , Xp.

(a) In terms of the number of terminal nodes m, give a rough formula for
the degrees of freedom of the fit.

(b) Generate 100 observations with predictors X1,X2, . . . , X10 as inde-
pendent standard Gaussian variates and fix these values.

(c) Generate response values also as standard Gaussian (σ2 = 1), indepen-
dent of the predictors. Fit regression trees to the data of fixed size 1,5
and 10 terminal nodes and hence estimate the degrees of freedom of
each fit. [Do ten simulations of the response and average the results,
to get a good estimate of degrees of freedom.]

(d) Compare your estimates of degrees of freedom in (a) and (c) and
discuss.

(e) If the regression tree fit were a linear operation, we could write ŷ = Sy
for some matrix S. Then the degrees of freedom would be tr(S).
Suggest a way to compute an approximate S matrix for a regression
tree, compute it and compare the resulting degrees of freedom to
those in (a) and (c).

Ex. 9.6 Consider the ozone data of Figure 6.9.

(a) Fit an additive model to the cube root of ozone concentration. as a
function of temperature, wind speed, and radiation. Compare your
results to those obtained via the trellis display in Figure 6.9.

(b) Fit trees, MARS, and PRIM to the same data, and compare the results
to those found in (a) and in Figure 6.9.

