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ABSTRACT In this paper nonlinear analysis of a thin rectangular functionally graded plate is
formulated in terms of von-Karman’s dynamic equations. Functionally Graded Material (FGM)
properties vary through the constant thickness of the plate at ambient temperature. By expansion
of the solution as a series of mode functions, we reduce the governing equations of motion to a
Duffing’s equation. The homotopy perturbation solution of generated Duffing’s equation is also
obtained and compared with numerical solutions. The sufficient conditions for the existence of
periodic oscillatory behavior of the plate are established by using Green’s function and Schauder’s
fixed point theorem.

KEY WORDS nonlinear vibration, FGM rectangular plate, Schauder’s fixed point theorem, ho-
motopy perturbation method

I. INTRODUCTION
Functionally graded materials (FGMs) are inhomogeneous composite materials and are made from

different phases such as ceramic and metal, and also have different applications especially for space
vehicles, electronics, and biomedical sectors. FGMs properties vary continuously from one interface to
another by gradually varying the volume fraction of constituent materials.

Thin plates are used in many engineering applications, especially in aircraft, space vehicles, automo-
biles, defense industries, electronics, biomedical engineering, and many engineering structures[1–4]. They
are often subjected to severe dynamic loading conditions and can exhibit large amplitude vibrations of
the order of the plate thickness. In this case a significant geometrical nonlinearity is induced. Simple
models for such oscillations are described with second- and fourth-order partial differential equations.
Usually asymptotic methods can be used to construct approximations for solutions of these equations[5].

Many problems in non-linear vibration do not possess exact analytical solutions. One of the most
important steps in the theory of non-linear vibration is to establish a sufficient criterion in order to
guarantee the existence of periodic solutions. Periodic behavior is the most important regular solution,
and has many applications in control of engineering systems. If the system is acted on by a periodic
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force, in the classical theory one expects that the output will also be periodic. Also, the nonlinear
resonance theory depends on the assumption that periodic input yields periodic output.

The method of analytic continuation, the process of equating Fourier coefficient, the application of
fixed point theorems, and the method of power series are four most frequently used methods of proving
the existence of a periodic solution. Here we have used the third method, i.e. Schauder’s fixed point
theorem, which is of topological character. Schauder generalized the fixed-point theorem of Brouwer for
the Banach space. Topological methods often prove applicable in some situations when other methods
fail. Although topological methods are not constructive, they guarantee the existence of at least one
solution, which is indeed very important[6,7].

For dynamic behavior of FGMs, Praveen and Reddy[8] conducted the nonlinear transient thermo-
elastic analysis of functionally graded ceramic–metal plates using FEM. Yang and Shen[1] dealt with the
dynamic response of initially stressed FGM rectangular thin plates subjected to impulsive loads. Effects
of volume fraction index, foundation stiffness, plate aspect ratio, the shape and duration of impulsive
load on the dynamic response of FGM plates have been studied in this work. Gao et al.[9–11] investigated
the surface acoustic waves in FGM plates using Homotpy perturbation and layered method. Wang et
al.[12] analyzed thickness-shear vibrations in a FGM plate using variation analysis. They showed that
in a plate with piecewise constant material properties can support thickness-shear vibration modes and
energy trapping is attainable in such a plate. Yang and Shen[13] considered the vibration characteristics
and transient response of shear-deformable functionally graded plates made of temperature dependent
materials in thermal environments. Differential quadrature technique, Galerkin approach, and the modal
superposition method were used to determine the transient response of the plate subjected to lateral
dynamic loads. Reddy and Cheng[3] studied the harmonic vibration problem of functionally graded
plates by means of a three-dimensional asymptotic theory formulated in terms of transfer matrix. Woo
and Meguid[14] investigated the nonlinear analysis of functionally graded plates and shallow shells. An
analytical solution has been provided for the coupled large deflection of plates and shallow shells under
mechanical load and temperature field. The solution was obtained in terms of Fourier series. Chen[15]

analyzed the nonlinear vibration of a shear deformable functionally graded plate by using the equations
including the effects of transverse shear deformable and rotary inertia. It was found that the volume
fraction of constituents greatly changes the behavior of nonlinear dynamic response. Allahverdizadeh, et
al.[16] developed a semi-analytical approach for nonlinear free and forced axisymmetric vibration of a thin
circular functionally graded plate. They solved governing equations by using the assumed-time-mode
method and Kantorovich time averaging technique.

Many other investigators dealt with various non-linear problems using the fixed-point theorems[17,18].
Feiz-Dizaji, et al.[19] investigated the flow field of a third-grade non-Newtonian fluid in the annulus
of rotating concentric cylinders in the presence of a magnetic field. For this purpose, the constitutive
equation of such a fluid flow was simplified, and the existence of the solution to the governing equation
was established using Schauder’s fixed point theorem. But very little is available on the existence of
periodic solution for the response of plates by using the fixed point theorem[20].

In the present paper the Homotopy perturbation solution of generated Duffing’s equation is obtained
and compared with numerical solutions. Also the determination of the sufficient conditions for the
existence of the periodic solution of the initial boundary value problem for simply supported rectangular
functionally graded plate via the application of Schauder’s fixed point theorem is shown.

II. DERIVATION OF THE GOVERNING EQUATIONS
There are several theories dealing with plates. For thin plates, von-Karman’s large deflection theory

provides a good approximation and is usually applied[21]. Consider a thin rectangular FGM plate, located
in its initially un-deformed configuration by Cartesian coordinates x, y and z. The lengths of the plate,
along x and y directions, are a and b, respectively. The z-coordinate is along the uniform thickness h.
Figure 1 shows the configuration and coordinate system of this functionally graded rectangular plate.
We suppose that the functionally graded plate is made from a mixture of ceramics and metals and the
composition varies from the top to the bottom surface, i.e. the top surface (z = h/2) of the plate is
ceramic-rich whereas the bottom surface (z = −h/2) is metal-rich. In such a way, an arbitrary material
property P (e.g., Young’s modulus E and mass density ρ) can be expressed as
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Fig. 1. Configuration and coordinate system of a rectangular plate.

P = PtVc + PbVm (1)

where Vc and Vm are the ceramic and metal volume fractions and are related by

Vc + Vm = 1 (2)

Pt and Pb stand for the properties of the top and bottom surfaces of the plate[22]. The volume fraction
Vc follows a simple power law as

Vc(z) =
( z
h

+ 0.5
)k

(3)

where the volume fraction index k, dictates the material variation profile across the plate thickness.
The Poisson’s ratio ν is considered to be 0.3. From Eqs.(1)–(3), one has[23]

P (z) = (Pc − Pm)
( z
h

+ 0.5
)k

+ Pm (4)

In what follows, a metal, Stainless Steel (SUS304) and ceramics, Silicon Nitride (Si3N4) system of
FGM is considered, and the mass density and Young’s modulus are[24]: ρc = 2370 kg/m3,Ec = 322 GPa,
ρm = 8166 kg/m3, Em = 207 GPa. The plate is excited in a manner which produces large amplitude
vibration with no damping present in the system. By using the Kirchhoff plate theory, the displacements
ux, uy and uz are expressed as[25]

ux(x, y, z, t) = u(x, y, t) − zw(x, y, t),x (5)

uy(x, y, z, t) = v(x, y, t) − zw(x, y, t),y (6)

uz(x, y, z, t) = w(x, y, t) (7)

where u(x, y, t), v(x, y, t) and w(x, y, t) are the displacements of the point on the middle surface of the
plate. The strains at any level z from the neutral plane are obtained by substituting the classical plate
deformation kinematics relations in the non-linear strain-displacement relations as

εx = u,x +
1

2
(w,x)2 − zw,xx (8)

εy = v,y +
1

2
(w,y)2 − zw,yy (9)

γxy = v,x + u,y + w,xw,y − 2zw,xy (10)

where εx and εy are the normal strains along the x and y directions, and γxy is the shear strain. In
terms of Hooke’s law the stresses are given by

σx =
E(z)

1 − ν2
(εx + νεy) (11)

σy =
E(z)

1 − ν2
(εy + νεx) (12)

τxy =
E(z)

2(1 + ν)
γxy (13)
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where

E(z) = Ecm

( z
h

+ 0.5
)k

+ Em, Ecm = Ec − Em (14)

The in-plane normal forces (Nx, Ny) and in-plane shear force Nxy become

(Nx, Ny, Nxy) =

∫ h/2

−h/2

(σx,σy, τxy)dz (15)

In addition, the bending moments (Mx,My) and twisting moment Mxy become

(Mx,My,Mxy) =

∫ h/2

−h/2

(σx,σy, τxy)zdz (16)

These in-plane forces and bending moments are listed in Appendix.
The equation of motion in the z direction can be written as[26]

Mx,xx + 2Mxy,xy +My,yy = −q −Nxw,xx − 2Nxyw,xy −Nyw,yy (17)

where q is the transverse load including inertia per unit area of the undeformed mid-plane and can be
written as

q = f + p− ρhẅ − chẇ (18)

where f is the external pressure load, p is the fluid pressure in the case of fluid-structure interaction,
ρhẅ is the inertia force per unit area and chẇ is the viscous damping force per unit area.

Now we introduce in-plane stress function F which satisfies the equilibrium equations in x and y
directions as

Nx = F,yy, Ny = F,xx, Nxy = −F,xy (19)

Substituting Eqs.(52) to (54) into Eq.(18) and doing some manipulations the equation of equilibrium
in the z-direction becomes

(AR −B2)h3

A(1 − ν2)
∇4w +

(
ρm +

ρcm

k + 1

)
hw,tt = f (x, y, t) + F,yyw,xx − 2F,xyw,xy + F,xxw,yy (20)

where coefficients A, B and R are introduced in Appendix.
The compatibility equation is obtained by applying the differential operator ∂2/∂x∂y to Eq.(51):

(Nxy),xy =
h

2(1 + ν)

[
A(u,xyy + v,xxy + w,xxyw,y + w,xyyw,x + w2

,xy + w,xxw,yy) − 2Bhw,xxyy

]
(21)

Using Eqs.(49), (50) and (19), the resulting equation is

∇4F = Ah
(
w2

,xy − w,xxw,yy

)
(22)

Dimensionless variables introduced here are as follows:

x∗ =
x

y
, y∗ =

y

h
, w∗ =

w

h
, a∗ =

a

h
, b∗ =

b

h

t∗ =

√
Em/ρmt

h
, f∗ (x, y, t) =

f (x, y, t)

Em
, F ∗ =

F

h3Em

(23)

and

A∗ =
A

Em
, B∗ =

B

Em
, R∗ =

R

Em
, ρ∗cm =

ρcm

ρm
, E∗

cm =
Ecm

Em
, ρcm = ρc − ρm (24)

Therefore, the governing differential equations for large deflection of rectangular functionally graded
plate may be written in non-dimensional form as

AR −B2

A (1 − ν2)
∇4w +

(
1 +

ρcm

K + 1

)
w,tt = f (x, y, t) + F,yyw,xx − 2F,xyw,xy + F,xxw,yy (25)

∇4F = A
(
w2

,xy − w,xxw,yy

)
(26)
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In these equations, the star symbol has been dropped for convenience. Equations (25) and (26) are
dynamic forms of von-Karman’s equations, where the longitudinal and rotary inertias are neglected.
For homogeneous material, the above relations are identical with Ref.[21]. These governing differential
equations are complicated by the obvious nonlinear coupling of membrane and bending theories for
thin plates. For simply supported rectangular plate of sides a and b, the boundary conditions on w are

w = 0 and νw,yy + w,xx = 0 at x = 0, a
w = 0 and w,yy + ν w,xx = 0 at y = 0, b

(27)

The boundary conditions for in-plane stress function for the case of a plate with stress free edges
can be expressed as

F,yy = 0 and F,xy = 0 at x = 0, a
F,xx = 0 and F,xy = 0 at y = 0, b

(28)

And the initial conditions can be written as

w(x, y, t) |t=0 = w0(x, y), w(x, y, t),t |t=0 = ϑ0(x, y) (29)

In order to decouple the equations of motion for the dynamics of time dependent amplitudes, an
approximate single mode assumption is taken as follows:

w(x, y, t) = D(t) sin
(mπx

a

)
sin

(nπy
b

)
(30)

m and n are integers and D(t) is a dimensionless function of time. The function (30) obviously satisfies
the boundary conditions (27). Inserting Eq.(30) in (26) results in

∇4F =
A

2

(
mnπ2

ab

)
D2(t)

[
cos

(
2mπx

a

)
+ cos

(
2nπy

b

)]
(31)

Using the Galerkin method, the following solution for the stress function is used to obtain an
approximate solution of Eqs.(31) and (25):

F = ψD2(t)

[
1 − cos

(
2mπx

a

)][
1 − cos

(
2nπy

b

)]
(32)

The stress free edges boundary conditions (28) are clearly consistent with the assumed solution (33).
The expressions for the stress function F and the values for w satisfy the boundary conditions and
Eq.(26). However, they do not exactly satisfy Eq.(31). Inserting Eq.(32) into Eq.(31), multiplying the
resultant by [1 − cos(2mπx/a)] [1 − cos(2nπy/b)] and integrating over the surface of the plate results
in

ψ = −
A [mn/(ab)]

2

24

{[
(m/a)

2
+ (n/b)

2
]2

− 4 [mn/ (ab)]
2
/3

}2 (33)

Inserting Eqs.(30) and (32) into Eq.(25), multiplying the resulting equation by the corresponding
selected mode shape of the lateral displacement, i.e. sin(mπx/a) sin(nπy/b) and integrating over the
surface of the plate yields

D̈(t) + PD(t) +QD3(t) = F (t) (34)

in which

P =
K

H
, Q =

L

H
, F (t) =

1

H

∫ b

0

∫ a

0

f(x, y, t) sin
(mπx

a

)
sin

(nπy
b

)
dxdy (35)

where

H =
a2b2

16π2mn

(
1 +

ρcm

k + 1

)
, K =

AR −B2

A(1 − ν2)

a2b2π2

16mn

[(m
a

)2

+
(n
b

)2
]2

L =
m4n4π4

24a3b3
A[

(m/a)
2

+ (n/b)
2
]2

− 4 [mn/ (ab)]
2
/3

(36)
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III. HOMOTOPY PERTURBATION SOLUTION
In this section, Eq.(34) will be solved by the Homotopy Perturbation Method[27]. The advantage

of this Method compared to other methods such as traditional perturbation method[28] is that this
method does not require small parameters in the differential equation. Here, the external force F (t) is
taken periodic in the form of F (t) = η cos(Ωt+ Φ). First, we construct a homotopy as follows[27]:

H(v, p) = L(v) − L(u0) + pL(u0) + p [N (v) − F (t)] = 0 (37)

where L(u) = d2u/dt2 + u, N(v) constituting the nonlinear term which in this case is N(v) = Qv3,
p ∈ [0, 1] is an embedded parameter, and D0 is an initial approximation of Eq.(34), which satisfies the
boundary conditions. The solution of Eq.(34) can be written as a power series in p:

v(t) = v0(t) + pv1(t) + · · · (38)

Substitution of Eq.(38) into Eq.(37) yields

d2v0
dt2

+ Pv0 −
d2D0

dt2
− PD0 = 0, v0(0) = D0, v̇0(0) = Ḋ0 (39a)

d2v1
dt2

+ Pv1 +
d2D0

dt2
+ PD0 +Qv3

0 − η cos(Ωt+ Φ) = 0, v1(0) = 0, v̇0(0) = 0 (39b)

We set v0(t) as

v0(t) = D0(t) = D0 cos(α t) + Ḋ0 sin(β t) (40)

which is in the form of linear solution of Eq.(34). α and β are unknown constants to be determined
later. Substituting v0(t) and D0(t) into Eq.(39b), v1(t) can be readily found as follows:

v1(t) =

(
−D0α

2 + PD0 +
3QD3

0

4
+

3QḊ2
0D0

2

)
cos(αt)

α2 − P

+

(
−Ḋ0β

2 + PḊ0 +
3QḊ3

0

4
+

3QD2
0Ḋ0

2

)
sin(β t)

β2 − P
+
QD3

0

4

cos(3αt)

9α2 − P

−
QḊ3

0

4

sin(3βt)

9β2 − P
+

3QD2
0Ḋ0

4

{
sin [(2α+ β)t]

(2α+ β)2 − P
−

sin [(2α− β)t]

(2α− β)2 − P

}
−

3QḊ2
0D0

4

{
cos [(2β − α)t]

(2β − α)2 − P
−

cos [(2β + α)t]

(2β + α)2 − P

}
−
η cos(Ωt+ Φ)

Ω2 − P
(41)

In order to eliminate the secular terms which may occur in the next iteration, we set the coefficients
of cos(

√
pt) and cos(

√
pt) zero which give us two equations. The unknown constants α and β can be

found from these equations as follows:(
−D0α

2 + PD0 +
3QD3

0

4
+

3QḊ2
0D0

2

)
1

P − α2
+
QD3

0

4

1

P − 9α2

−
3QḊ2

0D0

4

[
1

P − (2β − α)2
−

1

P − (2β + α)2

]
−
η cos(Φ)

P −Ω2
= 0 (42a)

(
−Ḋ0β

2 + PḊ0 +
3QḊ3

0

4
+

3QD2
0Ḋ0

2

)
1

P − β2

(
β√
P

)
−
QḊ3

0

4

1

P − 9β2

(
3β√
P

)

+
3QD2

0Ḋ0

4

[
1

P − (2α+ β)2
2α+ β√

P
−

1

P − (2α− β)2
2α− β√

P

]
−

η

P −Ω2

Ω√
P

sin(Φ) = 0 (42b)

The explicit solution cannot be found for constants α and β and they should be found numerically
for every example. Therefore, the first-order approximation solution can be found by setting p = 1 in
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Eq.(38) as follows:

D(t) = v0(t) + v1(t) =

(
3QD3

0

4
+

3QḊ2
0D0

2

)
cos(αt)

α2 − P
+

(
3QḊ3

0

4
+

3QD2
0Ḋ0

2

)
sin(β t)

β2 − P

+
QD3

0

4

cos(3αt)

9α2 − P
−
QḊ3

0

4

sin(3βt)

9β2 − P
+

3QD2
0Ḋ0

4

{
sin [(2α+ β)t]

(2α+ β)2 − P
−

sin [(2α− β)t]

(2α− β)2 − P

}
−

3QḊ2
0D0

4

{
cos [(2β − α)t]

(2β − α)2 − P
−

cos [(2β + α)t]

(2β + α)2 − P

}
−
η cos(Ωt+ Φ)

Ω2 − P
(43)

For the special case of Ḋ(t) = 0, β is equal to zero and the period of solution can be found explicitly
as follows:

T =
2π

α
(44)

where

α =

√
10P + 7QD2

0 +
√

64P 2 + 104PQD2
0 + 49Q2D4

0

18
(45)

The exact period can be obtained as[27]

TExact =
4√

P +QD2
0

∫ π/2

0

dθ√
1 −m sin2 θ

(46)

To compare the homotopy perturbation solution and exact solution we compare the period when
Q→ ∞, therefore,

lim
Q→∞

TExact

THPM
=

2
√

7/9

π

∫ π/2

0

dθ√
1 − 0.5 sin2 θ

=
2
√

7/9

π
× 1.8541 = 1.0414 (47)

This result proves that for a finite value of P and any value ofQ the maximum relative error constant
is less than 4%. for Q→ ∞ and P → ∞ we have

lim
Q→∞

P→∞

TExact

THPM
=

2

π
√

1 +D2
0

√
10 + 7D2

0 +
√

64 + 104D2
0 + 49D4

0

18

∫ π/2

0

dθ√
1 −D2

0 sin2 θ/[2(1 +D2
0)]

(48)
when P and Q both go to infinity, the ratio depends on D0. Figure 2 shows the relationship between
TExact/THPM and D0. As can be seen from this Figure, by increasing the displacement initial value D0,
the maximum relative error constant increases and for D0 → ∞, the ratio converges to 1.0414, which
was previously obtained for Q→ ∞.

Next, we compare the sample time plot of homotopy perturbation solution and the solution obtained
by numerically integrating Eq.(34). The properties of the rectangular plate are set in accordance with
the properties in §IV and D0 = 1. Figure 3 compares the time response of these two solutions. As
depicted in this figure, the homotopy perturbation method agrees very well with numerical solution.

IV. PERIODICITY ANALYSIS
Equation (34) belongs to the class of Duffing equations[5]. We assume that f(x, y, t) is odd (even)

and periodic in t with period T = 2π/ω. It is then obvious that F (t) will be periodic with period
T = 2π/ω, and is odd (even). By using Schauder’s fixed point theorem, it has been proven that there
is an odd (even) periodic solution D(t), such that D(0) = 0 and D(−T ) = D(T ) (respectively for even
function)[29].

By applying Schauder’s fixed point theorem and using the results of Ref.[30] and some manipulations,
it is concluded that ifP ≥ ω2/π2 orω ≤ π

√
P , no conclusion can be drawn about the existence of periodic

solution. If the forcing frequency ω > π
√
P (where the natural linear resonance frequency is 1) then there

is a periodic solution with frequency ω if the amplitude of forcing term F ∗ = max {|F (t)| : t ∈ [0, T ]} is
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≤ F ∗
0 : a limiting value which goes toward 0, as ω → π

√
P and goes toward∞, asQ→ 0. By substituting

ω = 2π/T in relations, it can be inferred that there is guarantee for the existence of periodic solution
when 0 < T 2P < 4.

The Fixed Point theorem also guarantees the uniqueness of the solution but it does not mean that
under the conditions that the theorem holds the system will not have any bifurcations.

V. PARAMETRIC STUDY
In this section a simply supported rectangular square plate is considered. The plate is 0.2 m in

length, 0.2 m in width and 0.005 m in thickness. A parametric study has been carried out with the
results given in Figs.4 to 7. The results are obtained for the first mode of vibration (i.e. m = n = 1).

First, we study the influence of volume fraction index k and deriving frequency on vibration char-
acteristics of Eq.(34). Figure 4 shows the time response for different k’s. The deriving function F (t) of
Eq.(34) is taken as 0.01 sin(0.05t). As can be seen from this figure, the amplitude and the period of the
time response both increase by increasing volume fraction index k. Figure 5 depicts the amplitude of
vibration versus k for different driving frequencies. In general, the amplitude increases as the material
changes from ceramic to metal (i.e. k increases). In addition, the amplitude decreases by increasing the
driving frequency (Ω). Note that all the frequencies used in this figure are greater than π

√
P which

guarantees the periodic solution.
Next, the range of the problem parameters for which the existence of periodic solution is guaranteed

will be studied. This study is based on the application of the second Shauder’s fixed-point theorem and
the effects of geometrical (width to thickness ratio) and FGM properties of the plate on the minimum
frequency of the distributed load. The results are depicted in Fig.6. The guaranteed domain is the region
above all curved lines. It can be inferred from this figure that if the plate is thinner, then the minimum
frequency will be smaller and the larger domain will exist.

Figure 7 shows the dependency of the maximum applied vibrating force (F ∗) on the distributed
load frequency for various volume fraction indices of the FGM plate. It is found that increasing the
frequency of the distributed load will increase the domain for applied force in which the periodic response
is guaranteed for various volume fraction indicesof the FGM plate. Also it is illustrated that increasing
the volume fraction index would result in increasing the maximum allowable vibrating force (F ∗

0 ).

Fig. 2. The relationship between ratio of exact period to
homotopy perturbation period (TExact/THPM) and the dis-
placement initial value D0.

Fig. 3. Comparing time response of homotopy perturbation
method and the response obtained by numerically integrat-
ing Eq.(34). (free vibration with D0 = 1).
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VI. CONCLUSION
For large transverse deflections, a nonlinear analysis of a thin rectangular functionally graded plate

has been considered by using the von-Karman’s plate theory. In this paper, the periodicity of the
nonlinear system is investigated at ambient temperature, and the sufficient conditions for the existence
of periodic oscillatory behavior were obtained. It is shown that the governing partial differential equation
could be converted into a nonlinear ordinary differential equation. The Homotopy perturbation solution
of generated Duffing’s equation is also obtained and compared with numerical solutions. The results
showed very good agreement with Numerical solution.

Using Green’s function and Schauder’s fixed point theorem, the conditions for periodic oscillatory
behavior of the plate are established and the existence of periodic solution for a Duffing’s equation is
proved.

The range of the parameters of the problem for the existence of periodic solution is presented and
the effects of the FGM properties of the plate as well as the maximum allowable vibrating force to the
minimum frequency of distributed load were studied. It is concluded that, the variation of the volume
fraction index is influential in FGM properties and the guaranteed domain.

Fig. 4. The influence of volume fraction index k on the time
response of Eq.(34) (F = 0.01 sin(0.05t)).

Fig. 5. The influence of volume fraction index k and de-
riving frequency Ω on the amplitude of vibration (F =
0.01 sin(Ωt)).

Fig. 6. Minimum frequency of uniform distributed load vs.
a/h (b/h), in which the existence of periodic solution is
guaranteed through this study.

Fig. 7. Dependency of maximum allowable vibrating force
on frequency of uniform distributed load and volume frac-
tion index of the FGM plate.
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APPENDIX
These membrane forces and bending moments per unit length for FGM rectangular plate are com-

puted from Eq.(15) and Eq.(16) as follows:
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