
Parallel TBox Classification in Description Logics –
First Experimental Results

Mina Aslani and Volker Haarslev1

Abstract. One of the most frequently used inference services of de-
scription logic reasoners classifies all named classes of OWL ontolo-
gies into a subsumption hierarchy. Due to emerging OWL ontologies
from the web community consisting of up to hundreds of thousand
of named classes and the increasing availability of multi-processor
and multi- or many-core computers, we extend our work on parallel
TBox classification and propose a new algorithm that is sound and
complete and demonstrates in a first experimental evaluation a low
overhead w.r.t. subsumption tests (less than 3%) if compared with
sequential classification.

1 Motivation
Due to the recent popularity of OWL ontologies in the web one can
observe a trend toward the development of very large or huge OWL-
DL ontologies. For instance, well known examples from the bioin-
formatics or medical community are SNOMED, UMLS, GALEN,
or FMA. Some (versions) of these ontologies consist of more than
hundreds of thousands of named concepts/classes and have become
challenging even for the most advanced and optimized description
logic (DL) reasoners. Although specialized DL reasoners for cer-
tain sublogics (e.g., CEL for EL++) and OWL-DL reasoners such as
FaCT++, Pellet, HermiT, or RacerPro could demonstrate impressive
speed enhancements due to newly designed optimization techniques,
one can expect the need for parallelizing description logic inference
services in the near future in order to achieve a web-like scalability
where we have to consider millions of concepts or hundreds of thou-
sands of concepts that cause very difficult subsumptions tests. Our
research is also strongly motivated by recent trends in computer hard-
ware where processors feature multi-cores (2 to 8 cores) or many-
cores (tens or even hundreds of cores). These processors promise
significant speed-ups for algorithms exploiting so-called thread-level
parallelism. This type of parallelism is very promising for DL rea-
soning algorithms that can be executed in parallel but might share
common data structures (e.g., and/or parallelism in proofs, classifi-
cation of TBoxes, ABox realization or query answering).

First approaches on scalable reasoning algorithms for ABoxes
(sets of declarations about individuals) were investigated with the
Racer architecture [11] where novel instance retrieval algorithms
were developed and analyzed, which exploit a variety of techniques
such as index maintenance, dependency analysis, precompletion gen-
eration, etc. Other research focused on scalable ABox reasoning
with optimization techniques to partition ABoxes into independent
parts and/or creating condensed (summary) ABoxes [8, 9, 6]. These
approaches rely on the observation that the structure of particular

1 Concordia University, Montreal, Canada,
email: {m aslani,haarslev}@cse.concordia.ca

ABoxes is often redundant and these ABoxes contain assertions not
needed for ABox consistency checking or query answering.

Parallel algorithms for description logic reasoning were first ex-
plored in the FLEX system [3] where various distributed message-
passing schemes for rule execution were evaluated. The reported re-
sults seemed to be promising but the research suffered from severe
limitations due to the hardware available for experiments at that time.
The only other approach on parallelizing description logic reasoning
[13] reported promising results using multi-core/processor hardware,
where the parallel treatment of disjunctions and individual merging
(due to number restrictions) is explored. In [14] an approach on dis-
tributed reasoning for ALCHIQ is presented that is based on reso-
lution techniques but does not address optimizations for TBox (set of
axioms) classification. There also exists work on parallel distributed
RDF inferencing (e.g., [17]) and parallel reasoning in first-order the-
orem proving but due to completely different proof techniques (res-
olution versus tableaux) and reasoning architectures this is not con-
sidered as relevant here.

There has also been substantial work on reasoning through mod-
ularity and partitioning knowledge bases (e.g., [7, 5, 4]). In [7], the
proposed greedy algorithm performs automated partitioning, and the
authors have investigated how to reason effectively with partitioned
sets of logical axioms that have overlap in content and may even
require different reasoning engines. Their partition-based reasoning
algorithms have been proposed for reasoning with logical theories
in propositional and first-order predicate logic that are decomposed
into related partitions of axioms. In [5], a logic-based framework for
modularity of ontologies is proposed. This formalization is very in-
teresting for ontologies that can be modularized. For these cases, ev-
ery module could be assigned to a particular thread and classified
in parallel. The approach reported in [4] also proposed a technique
for incremental ontology reasoning that reuses the results obtained
from previous computations. This technique is based on the notion
of a module and can be applied to arbitrary queries against ontolo-
gies expressed in OWL-DL. The approach focused on a particular
kind of modules that exhibit a set of compelling properties and apply
their method to incremental classification of OWL-DL ontologies.
The techniques do not depend on a particular reasoner or reasoning
method and can be easily implemented in any existing prover.

In the following we extend our work on parallel TBox classifica-
tion [1] and propose a new algorithm that is sound and complete
although it runs in parallel. Our first approach [1] did not ensure
completeness. The implemented prototype system performs paral-
lel TBox classification with various parameters such as number of
threads, size of partitions assigned to threads, etc. First results from
a preliminary evaluation look very promising and indicate a very low
overhead.



2 The New Parallel TBox Classifier
This section describes the architecture of the implemented system
and its underlying sound and complete algorithm for parallel classi-
fication of DL ontologies. To compute the hierarchy in parallel, we
developed a multi-threaded architecture providing control parame-
ters such as number of threads, number of concepts (also called par-
tition size) to be inserted per thread, and strategies used to partition a
given set of concepts. Our system reads an input file containing a list
of concept names to be classified and information about them. The
per-concept information available in the file includes its name, par-
ents (in the complete taxonomy), told subsumers, told disjoints, and
pseudo model information. The information about parents is used
to compute the set of ancestors and descendants of a concept. Told
information consists of subsumers and disjoints that can be easily
extracted from axioms without requiring proof procedures, e.g. the
axiom A v B u ¬C would result in information asserting B as
told subsumer of A and C as told disjoint of A. With the exception
of told subsumers this information is only used for (i) emulating a
tableau subsumption test, i.e., by checking whether a possible sub-
sumer (subsumee) is in the list of ancestors (descendants) of a given
concept, and (ii) in order to verify the completeness of the taxonomy
computed by the parallel classifier. The input information substitutes
for an implemented tableaux reasoning procedure, hence makes the
parallel classifier independent of a particular DL logic or reasoner.
Currently, RacerPro2 is used to generate this file for a given OWL-
DL ontology after performing TBox classification.

The told subsumer information is passed to a preprocessing al-
gorithm which creates a taxonomy skeleton based on the already
known (told) subsumptions and generates a topological-order list
(e.g. depth-first traversal). Using a topological sorting algorithm, the
partial order can be serialized such that a total order between concept
names (or sets of concept names) is defined. During classification,
the concept names are processed according to their topological or-
der. In our topological order list, from left to right, parent concepts
precede child concepts.

To manage concurrency in our system, at least two shared-memory
approaches could be taken into account by using either (i) sets of lo-
cal trees (so-called ParTree approach) or (ii) one global tree. In the
ParTree algorithm [15] a local tree would be assigned to each thread,
and after all the threads have finished the construction of their lo-
cal hierarchy, the local trees need to be merged into one global tree.
TBox classification through a local tree algorithm would not need
any communication or synchronization between the threads. ParTree
is well suited for distributed systems which do not have shared mem-
ory. The global tree approach was chosen because it implements a
shared space which is accessible to different threads running in par-
allel and avoids the large scale overhead of ParTree on synchroniz-
ing local trees. To ensure data integrity a lock mechanism for single
nodes is used. This allows a proper lock granularity and helps to in-
crease the number of simultaneous write accesses to the subsumption
hierarchy under construction.

Most TBox classification algorithms are based on two (symmet-
ric) tasks (e.g., see [2]). The first phase (top search) determines the
parents of a given concept to be inserted into the subsumption tree.
It starts with the top concept (>) and tries to push the given con-
cept below the children of the current concept and repeats this pro-
cess with the goal to push the given concept as much to the bottom
of the subsumption tree as possible. Whenever a concept in the tree
subsumes the given concept, it is pushed below this subsumer. The

2 http://racer-systems.com

(not-woman)

(not-woman)

(not-mother)

(not-mother)

(not-female male)

(not-female male)

(not-girl)

(not-girl)

(not-parent)

(not-parent)

(boy)

(boy)

(not-man)

(not-man)

(not-father)

(not-father)

(parent)

(parent)

(father)

(father)

(man)

(man)

(mother)

(mother)

(woman)

(woman)

(girl)

(girl)

(female not-male)

(female not-male)

(not-boy)

(not-boy)

(top)

(top)

Figure 1. Complete subsumption hierarchy for yaya-1

(parent)

(parent)

(not-woman)

(not-woman)

(not-parent)

(not-parent)

(not-mother)

(not-mother)

(not-man)

(not-man)

(not-male)

(not-male)

(not-girl)

(not-girl)

(not-female)

(not-female)

(not-father)

(not-father)

(not-boy)

(not-boy)

(married-to)

(married-to)

(father)

(father)

(man)

(man)

(boy)

(boy)

(male)

(male)

(has-child)

(has-child)

(mother)

(mother)

(woman)

(woman)

(girl)

(girl)

(female)

(female)

(top)

(top)

Figure 2. Told subsumer hierarchy for yaya-1

second phase (bottom search) determines the children of a given con-
cept. It starts with the bottom concept (⊥) and tries to move the given
concept above the parents of the current concept and repeats this pro-
cess with the goal to move the current concept up in the tree as much
as possible. Whenever a concept in the tree is subsumed by the given
concept, it is moved above of this subsumee. Eventually, the given
concept is correctly positioned in the current subsumption hierarchy.
Both phases tag nodes of the tree (‘visited’, ‘positive’, ‘negative’)
to prune the search and avoid visiting already processed nodes. For
instance, ‘positive’ is used to tag nodes already known as (told) sub-
sumers and ‘negative’ for already known as (told) disjoints.

The work in [2] is an example for algorithms that incrementally
construct a subsumption tree and are highly optimized for sequential
execution. In [10] some of these techniques were extended to better
deal with huge TBox hierarchies but these algorithms are still based
on a sequential execution. A recent approach [16] on TBox classifi-
cation exploits partial information about OWL subclass relationships
to reduce the number of subsumption tests and, thus, improves the
algorithms presented in [2].

2.1 Example Scenario
In [1] the degree of incompleteness caused by classifying partitions
of concepts in parallel was tested. For a variety of ontologies it turned
out that a surprisingly few number of subsumptions were missed.
This motivated the work in this paper. In the following we illustrate
the only two scenarios which may cause that a concept is misplaced
in the taxonomy due to parallel classification. For sake of brevity we
use a very small ontology named yaya-1 with 16 concepts (see Fig.
1 and 2).

For this example, we configured our system so that it runs with 4



thread#1 −→ (female not-male), girl, parent
thread#2 −→ woman, mother, (male not-female)
thread#3 −→ man, boy, father
thread#4 −→ not-boy, not-father, not-girl
thread#1 −→ not-man, not-mother, not-parent, not-woman

Figure 3. Concept assignments to each thread for classifying yaya-1

Algorithm 1 parallel tbox classification(concept list)
topological order list← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological order list
run thread ti with insert partition(pi, ti)

until all concepts in topological order list are inserted

threads and 3 number-of-tasks-per-thread. As explained previously,
in parallel classification the topological sort order divides concept
partitions between the threads (e.g. round-robin). For instance, in Fig.
3 a list of concepts allocated to each thread is shown. The only two
possible scenarios (illustrated in the proof of Proposition 1 below)
that may lead to a situation where the correct place of a concept in
the hierarchy is overlooked are described as follows.

Scenario I: In top search, as the new concept is being pushed
downward, right after the children of the current concept have been
processed, at least one new child is added by another thread. In this
scenario, the top search for the new concept is not aware of the recent
change and this might cause missing subsumptions if there is any in-
teraction between the new concept and the added children. The same
might happen in bottom search if the bottom search for the new con-
cept is not informed of the recent change to the list of parents of the
current node.

Scenario II: Between the time that top and bottom search have
been started to find the location of a new concept in the taxonomy
and the time its location has been decided, a different thread has in-
dependently placed at least one concept into another (possibly dis-
joint) part of the hierarchy which the new concept has an interaction
with. Again, this might cause missing subsumptions.

In our example (yaya-1), due to the small size of the taxonomy,
scenario I was not encountered, however, scenario II occurred in
our experiments because thread#1 inserted (female not-male)3 and
thread#2 added woman independently into the taxonomy and due to
the parallelism each thread did not have any information regarding
the latest concept insertion by other threads (see also Fig. 3). Hence,
both (female not-male) and woman were initially placed directly
under the top concept although woman should be a child of (female
not-male) (see Fig. 1). This was discovered and corrected by exe-
cuting lines 6-7, 16-17, and 25-37 in Algorithm 2.

2.2 Algorithms for Parallel Classification

The procedure parallel tbox classification is sketched in Algo-
rithm 1. It is called with a list of named concepts and sorts them
in topological order w.r.t. to the initial taxonomy created from the al-
ready known told ancestors and descendants of each concept (using

3 This notation indicates that the concepts female and not-male are syn-
onyms for each other.

Algorithm 2 insert partition(partition,id)
1: lock(inserted concepts(id))
2: inserted concepts(id)← ∅
3: unlock(inserted concepts(id))
4: for all new ∈ partition do
5: parents← top search(new,>)
6: while ¬ consistent in top search(parents,new) do
7: parents← top search(new,>)
8: lock(new)
9: predecessors(new)← parents

10: unlock(new)
11: for all pred ∈ parents do
12: lock(pred)
13: successors(pred)← successors(pred) ∪ {new}
14: unlock(pred)
15: children← bottom search(new,⊥)
16: while ¬ consistent in bottom search(children,new) do
17: children← bottom search(new,⊥)
18: lock(new)
19: successors(new)← children
20: unlock(new)
21: for all succ ∈ children do
22: lock(succ)
23: predecessors(succ)← predecessors(succ) ∪ {new}
24: unlock(succ)
25: check ←

check if concept inserted(new , inserted concepts(id))
26: if check 6= 0 then
27: if check = 1 ∨ check = 3 then
28: new predecessors← top search(new,>)
29: lock(new)
30: predecessors(new)← new predecessors
31: unlock(new)
32: if check = 2 ∨ check = 3 then
33: new successors← bottom search(new,⊥)
34: lock(new)
35: successors(new)← new successors
36: unlock(new)
37: insert concept(new,predecessors(new),successors(new))
38: for all busy threads ti 6= id do
39: lock(inserted concepts(ti))
40: inserted concepts(ti)← inserted concepts(ti) ∪ {new}
41: unlock(inserted concepts(ti))

the told subsumer information). The classifier assigns in a round-
robin manner partitions with a fixed size from the concept list to idle
threads and activates these threads with their assigned partition using
the procedure insert partition outlined in Algorithm 2. All threads
work in parallel with the goal to construct a global subsumption
tree (taxonomy). They also share a global array inserted concepts
indexed by thread identifications. Nodes in the global tree as well as
entries in the array are locked for modification.

The procedure insert partition inserts all concepts of a given par-
tition into the global taxonomy. For inserting a concept or updating
its parents or children, it locks the corresponding nodes. It first per-
forms for each concept new the top-search phase (starting from the
top concept) and possibly repeats the top-search phase for new if
other threads updated the list of children of its parents and there is
an interaction between new and the added children. Then, it sets the
parents of new and adds new for each parent to its list of children.



Algorithm 3 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
captured successors(new)(current)← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result

Algorithm 4 enhanced top subs(current,new)
if current marked as ‘positive’ then

return true
else if current marked as ‘negative’ then

return false
else if for all z ∈ predecessors(current)

enhanced top subs(z,new)
and subsumes(current,new) then

mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

Afterwards the bottom-search phase (starting from the bottom con-
cept) is performed. Analogously to the top-search phase the bottom
search is possibly repeated and sets the children of new and updates
the parents of the children of new. After finishing the top and bottom
search for new it is checked again whether other threads updated its
entry in inserted concepts and the top and/or bottom search needs to
be repeated. Finally, new is properly inserted into the hierarchy by
updating its parents and children accordingly (line 37 in Algorithm
2) and also added to the entries in inserted concepts of all other busy
threads.

In order to avoid unnecessary tree traversals and tableau subsump-
tion tests when computing the subsumption hierarchy, the parallel
classifier adapted the enhanced traversal method [2], which is an al-
gorithm that was designed for sequential execution. Algorithm 3 and
4 outline the traversal procedures for the top-search phase.

The procedure top search outlined in Algorithm 3 recursively tra-
verses the taxonomy top-down from a current concept and tries to
push the new concept down the taxonomy as far as possible by
traversing the children of the current concept. It uses an auxiliary
procedure enhanced top subs (outlined in Algorithm 4) which itself
uses an auxiliary procedure subsumes (not specified here) that im-
plements a subsumption test. The procedure enhanced top subs tests
whether current subsumes new. If the node current was tagged these
tags are used to prune the search, otherwise the parents of the node
current are recursively traversed.

In a symmetric manner the procedure bottom search traverses the
taxonomy bottom-up from a current concept and tries to push the
new concept up the taxonomy as far as possible. It uses an auxiliary
procedure enhanced bottom subs. Both procedures are omitted for
ease of presentation.

Algorithm 5 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if subsumption possible(child,new) then
return false

return true

Algorithm 6 check if concept inserted(new,inserted concepts)
if inserted concepts = ∅ then

return 0
else

for all concept ∈ inserted concepts do
if subsumption possible(concept,new) then

if subsumption possible(new,concept) then
return 3

else
return 1

else if subsumption possible(new,concept) then
if subsumption possible(concept,new) then

return 3
else

return 2
return 0

To resolve the possible incompleteness caused by parallel clas-
sification, we utilize Algorithms 5 and 6. The procedure consis-
tent in bottom search is not shown here because it mirrors consis-
tent in top search.

Algorithms 5 illustrate the solution for scenario I described in Sec-
tion 2.1. As already described, in top search we start traversing from
the top concept to locate the concept new in the taxonomy. At time
t1, when top search is called, we capture the children information
“captured successors” of the concept current; the children informa-
tion is stored relative4 to the concept new being inserted (we use an
array of arrays) and captures the successors of the concept current
(see Algorithm 3). As soon as top search is finished at time t2, and
the parents of the concept new have been determined, we check if
there has been any update on the children list of the computed par-
ents for new between t1 and t2 (e.g., see Algorithm 5 on how this is
discovered). If there is any inconsistency and also if there is a sub-
sumption possible5 between new and any concept newly added to the
children list, we rerun top search until there is no inconsistency (see
line 6 in Algorithm 2).

The same process as illustrated in Algorithm 5 happens in bottom
search. The only difference is that parents information is captured
when bottom search starts; and when bottom search finishes, the in-
consistency and interaction is checked between the parent list of the
computed children for new and the “captured predecessors”.

Algorithm 6 describes the solution for scenario II; every time a
thread inserts a concept in the taxonomy, it notifies the other threads
by adding the concept name to their “inserted concepts” list. There-
fore, as soon as a thread finds the parents and children of the new con-
cept by running top search and bottom search; it checks if there is

4 Otherwise a different thread could overwrite captured successors for node
current. This is now prevented because each concept (new) is inserted by
only one thread.

5 This is checked by subsumption possible using pseudo model merging [12],
where a sound but incomplete test for non-subsumption on cached pseudo
models of named concepts and their negation is utilized.



any interaction between new concept and the concepts located in the
“inserted concepts” list. Based on the interaction, top search and/or
bottom search need to be repeated accordingly.

Proposition 1 (Completeness of Parallel TBox Classifier) The
proposed algorithms are complete for TBox classification.

TBox classification based on top search and bottom search is com-
plete in the sequential case. This means that the subsumption algo-
rithms will find all subsumption relationships between concepts of
a partition assigned to a single thread. The threads lock and unlock
nodes whenever they are updating the information about a node in the
global subsumption tree. Thus, we need to consider only the scenar-
ios where two concepts C and D are inserted in parallel by different
threads (e.g., thread#1 inserts concept C while thread#2 inserts con-
cept D). In principle, if top (bottom) search pushed a new concept
down (up), the information about children (parents) of a traversed
node E could be incomplete because another thread might later add
more nodes to the parents or children of E that were not considered
when determining whether the concept being inserted subsumes or
is subsumed by any of these newly added nodes. This leads to two
scenarios that need to be examined for incompleteness.

W.l.o.g. we restrict our analysis to the case where a concept C is
a parent of a concept D in the complete subsumption tree (CT ). Let
us assume that our algorithms would not determine this subsumption,
i.e., in the computed (incomplete) tree (IT ) the concept C is not a
parent of D.

Case I: top search incomplete for D: After D has been pushed
down the tree IT as far as possible by top search (executed by
thread#2) and top search has traversed the children of a concept E
and E has become the parent of D, C is inserted by thread#1 as a new
child of E. In line 6 of Algorithm 2 top search is iteratively repeated
for the concept new as long as consistent in top search finds a dis-
crepancy between the captured and current successors of the parents
of the newly inserted concept new. After finishing top and bottom
search, Algorithm 2 checks again in lines 27-28 whether top search
needs to be repeated due to newly added nodes. If any of the newly
added children of D would subsume C and become a parent of C,
the repeated execution of top search would find this subsumption.
This contradicts our assumption.

Case II: bottom search incomplete for C: After C has been
pushed up the tree IT as far as possible by bottom search (executed
by thread#1) and bottom search has traversed the parents of a concept
E and E has become a child of C, D is inserted by thread#2 as a new
parent of E. In line 16 of Algorithm 2 bottom search is iteratively
repeated for the concept new as long as consistent in bottom search
finds a discrepancy between the captured and current predecessors
of the children of the newly inserted concept new. After finishing top
and bottom search, Algorithm 2 checks again in lines 32-33 whether
bottom search needs to be repeated due to newly added nodes. If C
would subsume any of the newly added parents of D and it would
become a child of C, the repeated execution of bottom search would
find this subsumption. This contradicts our assumption.

3 Evaluation
The Parallel TBox Classifier has been developed to speed up the
classification time especially for large ontologies by utilizing par-
allel threads sharing the same memory. The benchmarking can be
configured so that it runs various experiments over ontologies. We
evaluated it with a collection of 8 mostly publicly available ontolo-
gies. Their name, size in number of named concepts, and used DL

Table 1. Characteristics of the used test ontologies.

Ontology name DL language No. of named concepts
Embassi-2 ALCHN 657
Embassi-3 ALCHN 1,121

Galen SHN 2,730
Galen1 ALCH 2,730
Galen2 ELH 3,928

FungalWeb ALCHIN (D) 3,603
Umls-2 ALCHIN (D) 9,479

Tambis-2a ELH 10,116

is shown in Table 1. As mentioned in the previous section, two pa-
rameters influence the parallel TBox classification, namely number
of tasks/concepts per thread and number of threads; the number of
tasks/concepts per thread was set to 5 and number of threads to 2
in our empirical experiments. This evaluation focussed only on the
number of performed subsumption tests. The runtime of our system
and the runtime of RacerPro were not considered yet.

To better compare the performance between the sequential and
parallel case, we assume that every subsumption test runs in time
t1 and in the sequential and parallel case the same amount of time
is used for an executed subsumption test. Subsumption tests can be
expensive and, hence, are preferred to be avoided by optimization
techniques such as pseudo model merging [12]. The ratio illustrated
in Equation 1 uses TotSubsTestss, the number of times a sub-
sumption test was computed in the sequential case, and MaxOfSub-
TestsInEachThread, the maximum number of subsumption tests per-
formed in each threads. Similarly, Equation 2 defines the overhead
(where the index p refers to the parallel case).

Ratio =
MaxOfSubTestsInEachThread

TotSubsTestss
(1)

Overhead =
TotSubsTestsp − TotSubsTestss

TotSubsTestss
(2)

Table 2 shows an excellent performance increase and a surpris-
ingly small overhead when using the Parallel TBox Classifier. Using
two threads the maximum of number of subsumption test for all on-
tologies could be reduced to roughly one half compared to the se-
quential case. The overhead as defined in Equation 2 varies between
0.13% and 2.62%. The overhead is mostly determined by the quality
of the told subsumers and disjoints information, the imposed order
of traversal within a partitioning, and the division of the ordered con-
cept list into partitions. In general, one tries to insert nodes as close as
possible to their final order in the tree using a top to bottom strategy.

Figure 4 shows five graphs depicting the structure of selected sub-
sumption hierarchies, where the length of a line reflects the number
of nodes on this level (shown from top to bottom). As can be ob-
served in Figure 4, the shapes of the subsumption hierarchies are
quite different and the order of inserting concepts affects the number
of top and bottom searches. In the sequential case usually a topologi-
cal sort-order based on told subsumers and disjoints information is a
good approximation to minimize the number of bottom searches. In
the parallel case, a topological sort-order is also used but its effective-
ness is affected by the way such a sorted list is partitioned. Ideally,
partitions should resemble small subtrees that interact with other sub-
trees as little as possible. Obviously, different shapes of subsumption
trees resulting in different sets of partitions can affect the overhead
in the parallel case. In our current evaluation we did not test dif-
ferent partitioning schemes yet and used an uninformed round-robin
scheme to divide the sorted list into partitions.



Table 2. Subsumptions tests and their ratio for the test ontologies.

Embassi-2 Embassi-3 Galen Galen1 Galen2 FungalWeb Umls-2 Tambis-2a
Subs. Tests in sequent. 154,034 420,912 2,706,412 2,688,107 5,734,976 4,996,932 87,423,341 36,555,225
Subs. Tests in thread#1 76,267 217,324 1,363,321 1,367,302 2,929,276 2,518,676 44,042,203 18,342,944
Subs. Tests in thread#2 77,767 214,633 1,354,297 1,348,281 2,893,716 2,490,329 44,025,988 18,261,532

Worst Case Ratio 50.48% 51.63% 50.37% 50.86% 51.07% 50.40% 50.37% 50.17%
Overhead 1.64% 2.62% 0.41% 1.02% 1.53% 0.24% 0.73% 0.13%

Galen Umls-2 FungalWeb Tambis-2a Embassi-3

Figure 4. Subsumption tree structure of Galen, Umls-2, FungalWeb, Tambis-2a, and Embassi-3

4 Conclusion
In this paper, we described an architecture for parallelizing well-
known algorithms for TBox classification. Our work is targeted
for ontologies where independent partitions cannot be easily con-
structed; therefore we did not use the previously mentioned ap-
proaches in our system. The first experimental evaluation of our tech-
niques shows that the results are very promising because the over-
head for ensuring completeness is surprisingly small. In our next
steps we plan to extend our tests with different configurations of
threads and partition sizes and a larger variety of test ontologies. We
intend to feed recorded runtimes for performing single subsumption
tests into our system in order to make the computation of the over-
head more accurate. We also plan to implement and test our approach
in a multi-core and multi-processor environment.

ACKNOWLEDGEMENTS
We would like to thank the reviewers for their helpful comments.

REFERENCES
[1] M. Aslani and V. Haarslev, ‘Towards parallel classifcation of TBoxes’,

in Proceedings of the 2008 International Workshop on Description Log-
ics (DL-2008), Dresden, Germany, May 13-16, (2008).

[2] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich, ‘An
empirical analysis of optimization techniques for terminological repre-
sentation systems or: Making KRIS get a move on’, Applied Artificial
Intelligence. Special Issue on Knowledge Base Management, 4(2), 109–
132, (1994).

[3] F. Bergmann and J. Quantz, ‘Parallelizing description logics’, in Proc.
of 19th Ann. German Conf. on Artificial Intelligence, LNCS, pp. 137–
148. Springer-Verlag, (1995).

[4] B. Cuenca Grau, C. Halaschek-Wiener, and Y. Kazakov, ‘History mat-
ters: Incremental ontology reasoning using modules’, in Proc. of the 6th
Int. Semantic Web Conf. (ISWC 2007), Busan, South Korea, Nov. 11-15,
(2007).

[5] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler, ‘A logical
framework for modularity of ontologies’, in In Proc. of the 20th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2007), Busan, South Korea,
Nov. 11-15, pp. 298–303, (2007).

[6] J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, E. Schon-
berg, and K. Srinivas, ‘Scalable semantic retrieval through summariza-
tion and refinement’, in 21st Conf. on Artificial Intelligence (AAAI), pp.
299–304. AAAI Press, (2007).

[7] A. Eyal and S. Mcllraith, ‘Partition-based logical reasoning for first-
order and propositional theories’, Artifical Intelligence, 162(1-2), 49–
88, (2005).

[8] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas,
‘The summary Abox: Cutting ontologies down to size’, in Proc. of
Int. Semantic Web Conf. (ISWC), volume 4273 of LNCS, pp. 343–356.
Springer-Verlag, (2006).

[9] Y. Guo and J. Heflin, ‘A scalable approach for partitioning OWL knowl-
edge bases’, in Proc. 2nd Int. Workshop on Scalable Semantic Web
Knowledge Base Systems, Athens, USA, pp. 47–60, (2006).

[10] V. Haarslev and R. Möller, ‘High performance reasoning with very
large knowledge bases: A practical case study’, in Proc. of the 17th
Int. Joint Conf. on Artificial Intelligence, IJCAI-01, Aug. 4-10, Seattle,
USA, pp. 161–166. Morgan Kaufmann, (2001).

[11] V. Haarslev and R. Möller, ‘On the scalability of description logic
instance retrieval’, Journal of Automated Reasoning, 41(2), 99–142,
(2008).

[12] V. Haarslev, R. Möller, and A.-Y. Turhan, ‘Exploiting pseudo mod-
els for TBox and ABox reasoning in expressive description logics’,
in Proc. of the Int. Joint Conf. on Automated Reasoning, IJCAR’2001,
June 18-23, 2001, Siena, Italy, LNCS, pp. 61–75, (June 2001).

[13] T. Liebig and F. Müller, ‘Parallelizing tableaux-based description logic
reasoning’, in Proc. of 3rd Int. Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS ’07), Vilamoura, Portugal, Nov 27,
volume 4806 of LNCS, pp. 1135–1144. Springer-Verlag, (2007).

[14] A. Schlicht and H. Stuckenschmidt, ‘Distributed resolution for expres-
sive ontology networks’, in Web Reasoning and Rule Systems, 3rd Int.
Conf. (RR 2009), Chantilly, VA, USA, Oct. 25-26, 2009, pp. 87–101,
(2009).

[15] H. Shan and J. P. Singh, ‘Parallel tree building on a range of shared ad-
dress space multiprocessors: Algorithms and application performance’,
in 12th Int. Parallel Processing Symposium (IPPS ’98), March 30 -
April 3, 1998, Orlando, Florida, USA, pp. 475–484, (1998).

[16] R. Shearer and I. Horrocks, ‘Exploiting partial information in taxonomy
construction’, in Proc. of the 8th International Semantic Web Confer-
ence (ISWC 2009), (2009).

[17] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen,
‘Scalable distributed reasoning using MapReduce’, in International Se-
mantic Web Conference, pp. 634–649, (2009).


