

Presented By:

Rob Ament Road Ecology Program Mgr.

Tony Clevenger Senior Research Scientist

Marcel Huijser Research Wildlife Ecologist

Western Transportation Institute

Agenda

- Overview of the ways road infrastructure and traffic can negatively affect mammals, birds, herpetiles, and fish.
- Wildlife-vehicle collisions, their cost-benefits and both proven and potential new solutions for their reduction.
- Habitat connectivity and genetic exchange; questions to think about when developing plans, designs and monitoring programs.
- MAP-21's new wildlife and habitat connectivity provisions that are important for federal land managers.
- An update on the WGA's wildlife corridors and crucial habitats decision support system and their potential use for transportation planning and projects.

1. Effects of Road Infrastructure and Traffic on Wildlife

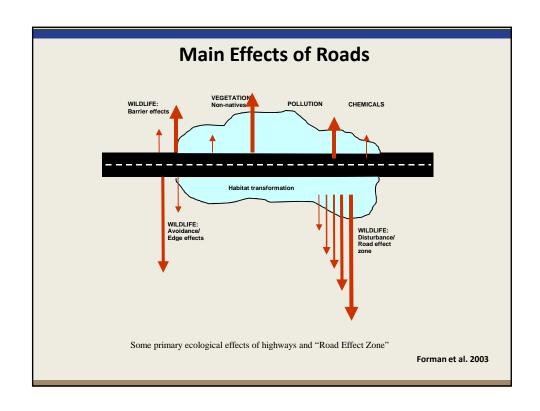
Tony Clevenger Senior Research Scientist

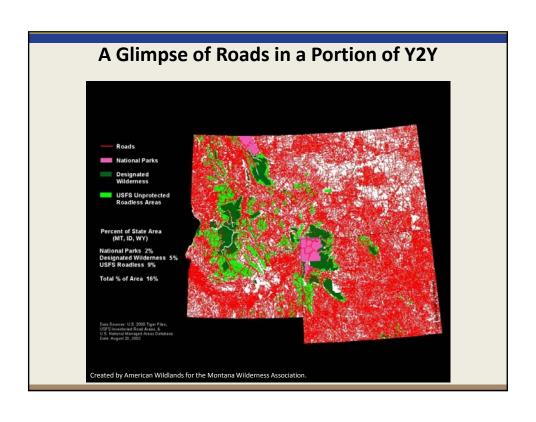
Road Ecology Western Transportation Institute

Effects of Roads

Road System Network

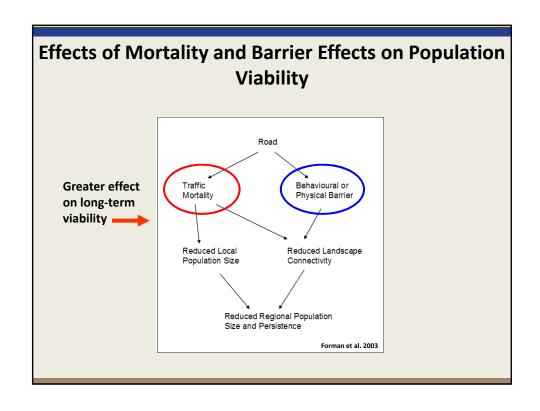
- A "Giant Net" on the natural landscape
- Easy movement and travel
- Slices and divides up nature

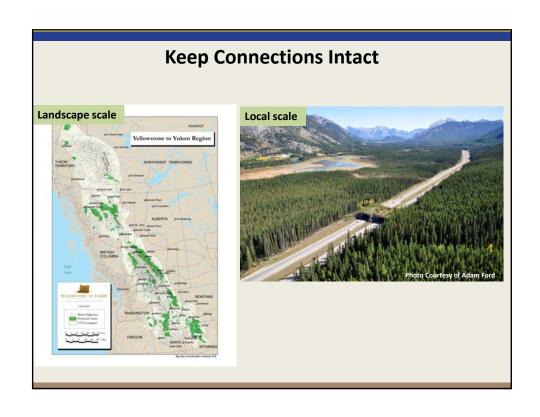

Roads and Their Impacts • "The Sleeping Giant"


- Road-kill overtook hunting as leading direct cause of wildlife mortality
- 15-20% of land impacted by roads

Our Job

Reconnect Nature




How Roads Impact Wildlife

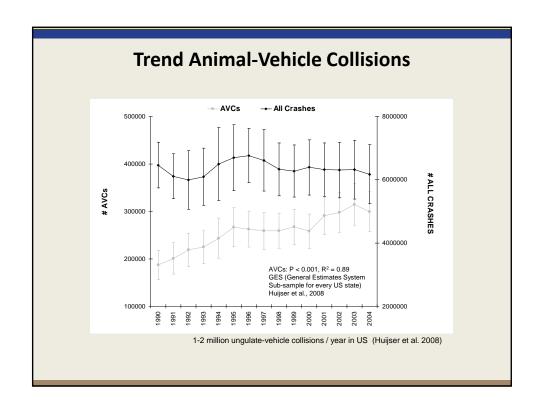
- Mortality (Road-kill)
- Loss of habitat
- Blocking of movements "Barrier effect"
 - Habitat fragmentation (animals need to move)
 - Isolation
 - Local extinction
- Other impacts
 - Too much noise and lights
 - Pollution from vehicles runoff!
 - Changes in water flow (streams),
 - microclimate

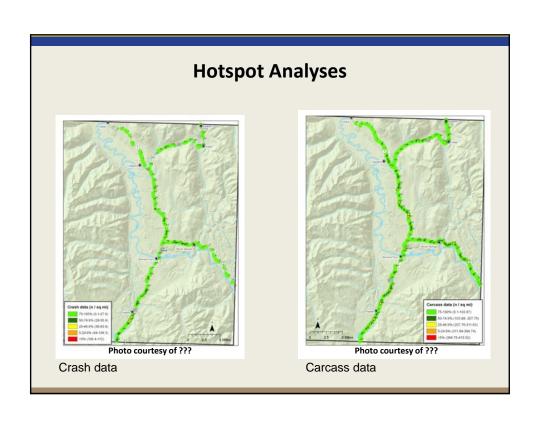
Roads — Can't live without them... Comparatively more detrimental than other types of fragmentation Understanding mortality and fragmentation is central to finding solutions Credit: A Taylor

2. Addressing Wildlife – Vehicle Collisions (WVCs)

Marcel Huijser Research Wildlife Ecologist

Road Ecology Program Western Transportation Institute


Human Perspective


	US	Canada	Europe
Animal-vehicle- Collisions	1-2 million (deer)	± 28,000	507.000 (ungulates)
Human injuries	29.000	1,565	30.000
Human fatalities	211	18	300
Property damage	> 1 billion US\$	200 million CAN\$	> 1 billion US\$

This is per year

.... and increasing

Conover et al., 1995; Cook & Daggett, 1995; Groot Bruinderink & Hazebroek, 1996'; L-P Tardiff & Associates Inc. 2003; Huijser et al. 2008

When to Take Action?

- Human safety
- Sensitive or endangered species
- Population survival probability
- Negative effect on population level
- Mass mortality
- Loss or suffering of individuals

Alabama red-bellied turtle road kill

Federally Listed Species

Species Group	Species Name
Amphibians	California tiger salamander (Ambystoma californiense), C. CA, S. Barb., Son. county
Amphibians	Flatwoods salamander (Ambystoma cingulatum)
Amphibians	Houston toad (Bufo houstonensis)
Reptiles	American crocodile (Crocodylus acutus)
Reptiles	Desert tortoise (Gopherus agassizii), except in Sonoran Desert
Reptiles	Gopher tortoise (Gopherus polyphemus), W of Mobile/Tombigbee Rs.
Reptiles	Alabama red-bellied turtle (Pseudemys alabamensis)
Reptiles	Bog turtle (Muhlenberg) northern population (Clemmys muhlenbergii)
Reptiles	Copperbelly water snake (Nerodia erythrogaster neglecta)

Species Group	Species Name
Reptiles	Eastern indigo snake, eastern indigo (Drymarchon corais couperi)
Birds	Audubon's crested caracara (Polyborus plancus audubonii), FL pop.
Birds	Hawaiian goose (Branta sandvicensis)
Birds	Florida scrub jay (Aphelocoma coerulescens)
Mammals	Lower Keys marsh rabbit, (Sylvilagus palustris hefneri)
Mammals	Key deer (Odocoileus virginianus clavium)
Mammals	Bighorn Sheep, Peninsular CA pop. (Ovis canadensis)
Mammals	San Joaquin kit fox (Vulpes macrotis mutica)
Mammals	Canada lynx (Lynx canadensis), lower 48 states
Mammals	Ocelot (Leopardus pardalis)
Mammals	Florida panther (Felis concolor coryi)
Mammals	Red wolf (Canis rufus), except where XN

Effective Measures

100% Review in Huijser et al. 2007a

100% Review in Huijser et al. 2007a

Mitigation measure

Vegetation removal

Relocation

Fence, gap, crosswalk Population culling

Anti-fertility treatment

Fence (incl. dig barrier)

Fence, under- and overpass

Animal detection system (ADS)

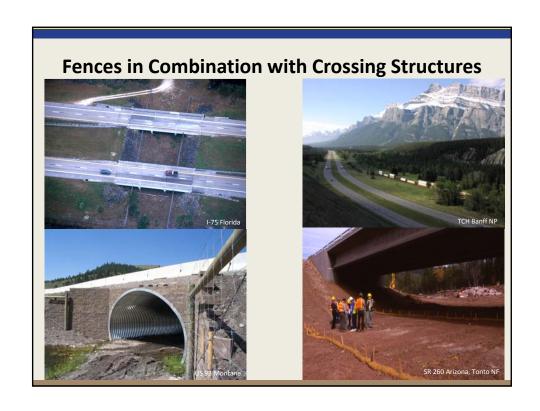
86%

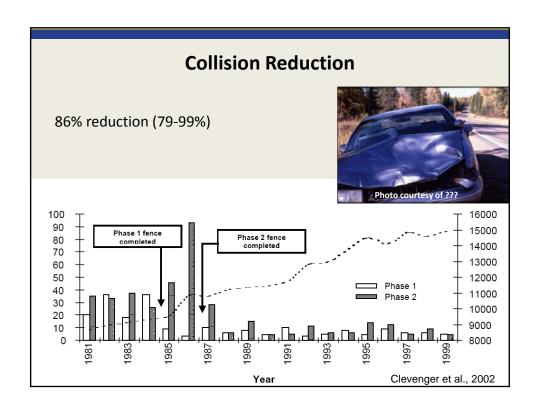
Fence, underpass

Fence, gap, ADS

Elevated roadway

Road tunnel

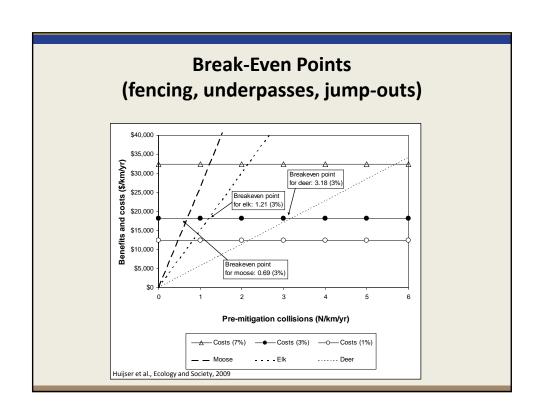

Effect-Seasonal wildlife warning sign 26% Sullivan et al. (2004): 51%; Rogers (2004): 0% 38% Jaren et al. (1991): 56%; Lavsund and Sandegren (1991): 20% 40% Lehnert and Bissonette (1997): 42%, 37% 50% Review in Huijser et al. 2007a 50% Review in Huijser et al. 2007a 50% Review in Huijser et al. 2007a Reed et al. (1982) 79%; Ward (1982): 90% Woods (1990): 94-97%; Clevenger et al. (2001): 80%; Dodd et al. (2007): 87%


Reed et al. (1982) 79%; Ward (1982): 90% Woods (1990): 94–97%; Clevenger et al. (2001): 80%; Dodd et al. (2007): 87%

Reed et al. (1982) 79%; Ward (1982): 90% Woods (1990): 94-97%; Clevenger et al. (2001): 80%; Dodd et al. (2007): 87%

Mosler-Berger and Romer (2003): 82%; Dodd and Gagnon (2008): 91%

Mosler-Berger and Romer (2003): 82%; Dodd and Gagnon (2008): 91%


Cost-Benefit Analyses

- <u>Costs</u>: Equipment, installation, construction, operation, maintenance, removal
- Benefits: Reduced costs collisions

Description	Deer	Elk	Moose
Vehicle repair costs per collision	\$2,622	\$4,550	\$5,600
Human injuries per collision	\$2,702	\$5,403	\$10,807
Human fatalities per collision	\$1,002	\$6,683	\$13,360
Towing, accident attendance and investigation	\$125	\$375	\$500
Hunting value animal per collision	\$116	\$397	\$38
Carcass removal and disposal per collision	\$50	\$75	\$100

75 year long period


Discount rate: 1%, 3%, 7%

≥80% Reduction of WVCs

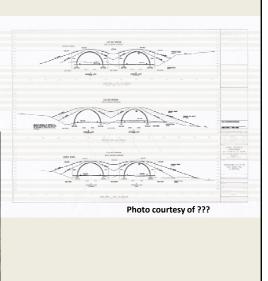
Threshold values	Discount rate	Fence	Fence, under pass, jump-outs	Fence, under- and overpass, jump-outs	ADS	Fence, gap, ADS, jump-outs	Elevated roadway	Road tunnel
\$/yr	1%	\$5,223	\$12,437	\$15,975	\$35,279	\$25,634	\$2,233,094	\$3,328,56
\$/vr	3%	\$6,304	\$18,123	\$24,230	\$37,014	\$28,150	\$3,109,422	\$4,981,33
\$/yr	7%	\$8,931	\$32,457	\$45,142	\$41,526	\$34,437	\$5,369,961	\$9,246,61
deer/km/vr	1%	0.92	2.19	2.81	6.13	4.45	337.48	503.0
deer/km/vr	3%	1.11	3.18	4.26	6.43	4.89	(469.9)	752.8
deer/km/yr	7%	1.57	5.70	7.93	7.21	5.98	811.54	1397.4
elk/km/yr	1%	0.35	0.83	1.06	2.32	1.69	127.73	190.3
elk/km/yr	3%	0.42	1.21	1.61	2.43	1.85	177.85	284.9
elk/km/yr	7%	0.59	2.16	3.00	2.73	2.26	307.15	528.8
moose/km/yr	1%	0.20	0.47	0.60	1.32	0.96	72.60	108.2
moose/km/yr	3%	0.24	0.69	0.92	1.38	1.05	101.09	161.9
moose/km/yr	7%	0.34	1.23	1.71	1.55	1.29	174.58	300.6

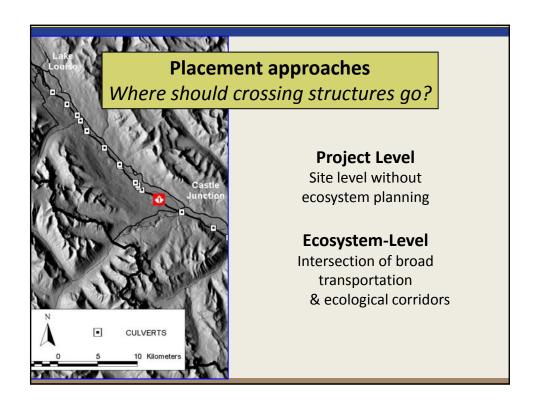
Huijser et al., Ecology and Society, 2009

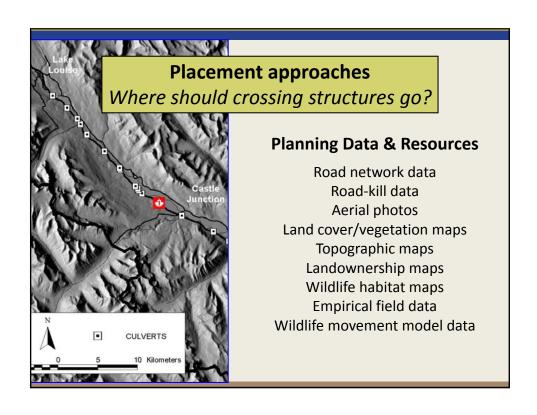
3. Addressing Habitat Connectivity and Genetic Exchange

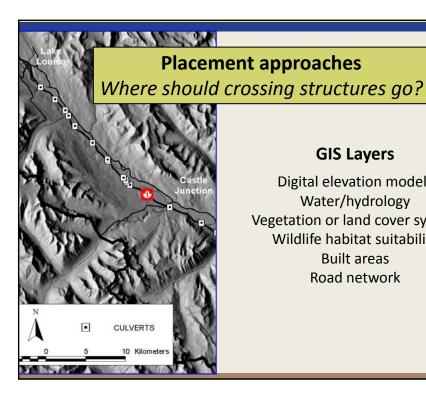
Tony Clevenger Senior Research Scientist

Road Ecology Western Transportation Institute






Mitigating impacts of roads with wildlife crossing infrastructure


- 1. Placement and planning
- 2. Design
- 3. Monitoring techniques
- 4. Evaluating performance
- 5. Resources available

GIS Layers

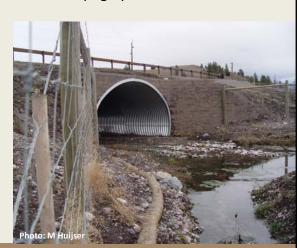
Digital elevation models Water/hydrology Vegetation or land cover system Wildlife habitat suitability **Built areas** Road network

Planning Wildlife Crossing Mitigation

Field data:

Road-kill hotspots (dead - unsuccessful) Observations of road crossings (live - successful) Radio-tracking/telemetry (can be high resolution) Winter road surveys (seasonally limited)

GIS models:


Least-cost path models of animal movements

No data:

Expert-opinion models (modeling habitat & movement) Rapid assessments (stakeholder meetings) Local knowledge

Basic Principles

- Movements are associated with topographic features
- Design and manage for multiple species
- Agencies need to coordinate in shortand long-term
- Structures must be integrated into larger network

Design

Overpass Design:

- 1. Landscape bridge
- 2. Wildlife overpass
- 3. Multi-use overpass
- 4. Canopy crossing

Underpass Design:

- 5. Viaduct/flyover
- 6. Large mammal underpass
- 7. Multi-use underpass
- 8. Underpass with water flow
- 9. Small/medium-sized mammal underpass
- 10. Modified culvert design
- 11. Herpetile tunnel

FHWA Wildlife Crossing Structure Guidelines

(Clevenger & Huijser 2011)

Туре	Usage	Species/groups	Minimum dimensions	Recommended dimensions
Wildlife Overpass	Wildlife only	Large mammals Lo mobility medium mammals Hi mobility medium mammals Small mammals Reptiles Amphibians (adapt)	W: 130-165' (40-50 m)	W: 165-230' (50-70 m)
Multi-use Overpass	Wildlife & human activities	Same as above	W: 32' (10 m)	W: 50-130' (15-40 m)

Clevenger, A.P. & M.P. Huijser. 2011. Wildlife Crossing Structure Handbook, Design and Evaluation in North America, Publication No. FHWA-CFL/TD-11-003. Department of Transportation, Federal Highway Administration, Washington D.C., USA.

FHWA Wildlife Crossing Structure Guidelines

Туре	Usage	Species/groups	Minimum Dimensions	Recommended Dimensions
Large mammal underpass	Wildlife only	Large mammals Lo mobility medium mammals Hi mobility medium mammals Small mammals Reptiles Semi-arboreal (adapt) Semi-aquatic (adapt) Amphibians (adapt)	W: 23' (7 m) H: 13' (4 m)	W: >32' (>10 m) H: >13' (>4 m)
Multi-use underpass	Wildlife & human activities	Same as above	W: 16.5' (5 m) H: 8.2' (2.5 m)	W: >23' (>7 m) H: >11.5' (>3.5 m)

Clevenger, A.P. & M.P. Huijser. 2011. Wildlife Crossing Structure Handbook, Design and Evaluation in North America, Publication No. FHWA-CFL/TD-11-003. Department of Transportation, Federal Highway Administration, Washington D.C., USA.

Design of North American Wildlife Crossings

Species and Species Groups

Ungulates:

Moose, Elk, Deer sp., Pronghorn, Mtn sheep, Mtn goat

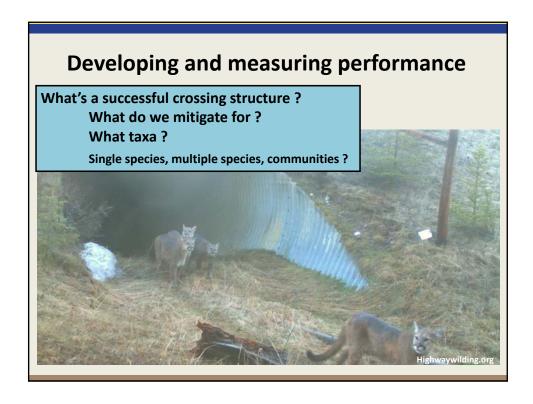
Carnivores:

Black bear, Grizzly bear, Wolf, Coyote, Fox1, Fox2, Cougar, Bobcat Lynx, Wolverine, Fisher, Marten, Weasel, Badger

Low mobility medium-sized mammals Semi-arboreal mammals Semi-aquatic mammals Small mammals Amphibians Reptiles

Design of North American Wildlife Crossings

Recommendation categories:

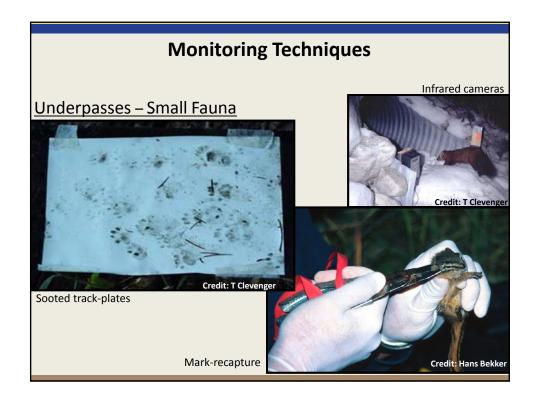

- 1_Recommended/Optimum solution
- 2_Possible if adapted to local conditions
- 3_Not recommended
- 4_? Unknown, more data are required
- 5_Not applicable

Slide 37

what is purpose of this slide? Angela Kociolek, 9/28/2011 AK12

Slide 38

what is purpose of this slide? Angela Kociolek, 9/28/2011 AK13


Developing & Measuring Performance

- 1. Genetic interchange
- 2. Biological requirements met
- 3. Dispersal of subadults, recolonizations
- 4. Population redistribution with environmental change
- 5. Long-term maintenance of metapopulations, community stability, and ecosystem processes

Customizing Transportation Needs

Different agencies require different information

Operations, Landscapes, Wildlife

National Guidelines for Crossing Structures

Broad-based, but applicability at regional scale??

Customizing needs

Proper scale and boundaries

Agency or Park (province/state/federal)

Ecological/ Transboundary

Hans Bekke

4. New Legislation and New Wildlife Information: MAP-21 and WGA's Wildlife Corridors Initiative

Rob Ament Road Ecology Program Manager

Western Transportation Institute

Moving Ahead for Progress in the 21st Century or MAP-21

A "BIG DEAL" FOR WILDLIFE

First national transportation law to weave throughout its programs authority and use of program dollars to reduce Wildlife – Vehicle Collisions and address Ecological Connectivity

- FHWA
- federal land management agencies
- State DOTs
- Metropolitan Transportation Organizations
- · Tribal roads program
- Researchers

Callahan, R. and R. Ament 2012. http://www.climateconservation.org/images/Papers_and_Reports/MAP-21-Synopsis-of-Wildlife-Provisions.pdf

Sec. 1119 Federal Lands Transportation Program

(\$300 Million/Year)

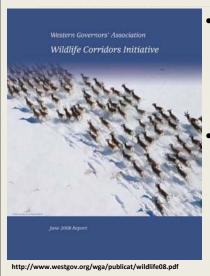
Funding from this program can be used to pay for environmental mitigation in or adjacent to Federal land open to the public to improve public safety and:

- reduce vehicle-caused wildlife mortality while maintaining habitat connectivity;
- mitigate damage to wildlife, aquatic organism passage, habitat, and ecosystem connectivity, including the costs of constructing, maintaining, replacing, or removing culverts and bridges.
- Cap of \$10,000,000 per fiscal year for these activities.

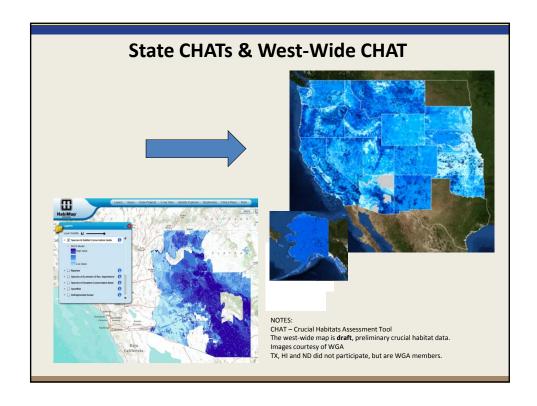
Sec 1119. Federal Lands Access Program

(\$250 Million/Year)

"Funding from this program can be used to pay for environmental mitigation in or adjacent to Federal land to improve public safety and reduce vehicle-caused wildlife mortality while maintaining habitat connectivity."


Example: South Texas NWR Complex Ocelot Crossings

Haines et al. 2006. First ocelot (Leopardus pardalis) monitored with GPS telemetry. EuJWildRes (2006) 52: 216–218


SEC. 1311. PROGRAMMATIC MITIGATION PLANS (NEW)

- States or Metropolitan Planning Organizations
- Regional, ecosystem, watershed, or statewide scale
- May encompass:
 - multiple environmental resources
 - a specific resource: i.e., parkland, wildlife habitat, aquatic resources
- Federal agencies with jurisdiction must be consulted

WGA Wildlife Corridors Initiative

- Identify key wildlife corridors and crucial habitats, and develop and coordinate policy options and tools for preserving those landscapes.
- Provide a user friendly online tool for parties to access consistent wildlife information across political boundaries to better inform land use planning.

CHAT: Benefits Across Scales

- Proactive efforts on threatened/endangered species
- Planning energy corridors/transmission lines
- · Responding to climate adaptation needs
- Implementation of USFS national planning rule

- Broad energy development plans
- Environmental Impact Statements
- Resource management/land use plan revisions
- Mitigation/restoration priorities

Guides more detailed discussions about:

- Infrastructure development
- Wildlife corridor /movement needs
- Conservation easements
- Land acquisitions/exchanges

Available State CHATs

- California Areas of Conservation Emphasis (ACE)
- Montana Crucial Areas Planning System (CAPS)
- Washington Priority Habitat Species (PHS On Line)
- Five-state Southern Great Plains CHAT Lesser Prairie Chicken
- HabiMap™ Arizona
- Wyoming Interagency Spatial Database & Online Management (WISDOM)

References

- Ament, R., Clevenger, A.P., Yu, O., and A. Hardy. 2008. An assessment of road impacts on wildlife populations in U.S. national parks. Environmental Management, 42(3):480-96.
- Beckmann, J. P., Clevenger, A.P., Huijser, M. and J. A. Hilty (eds). 2010. Safe Passages: Highways, wildlife and habitat connectivity.
- Callahan, R. and R. Ament. 2012. Policy Paper: Wildlife provisions from MAP-21's surface transportation programs, plans and projects. Center for Large Landscape Conservation, Bozeman, MT, 13 pp.
- Huijser, M.P., P. McGowen, J. Fuller, A. Hardy, A. Kociolek, A.P. Clevenger, D. Smith & R. Ament. 2007. Wildlife-vehicle collision reduction study. Report to Congress. U.S. Department of Transportation, Federal Highway Administration, Washington D.C., USA.
- Huijser, M.P., Duffield, J.W., Clevenger, A.P., Ament, R.J. and P. T. McGowen. 2009. Costbenefit analyses of mitigation measures aimed at reducing collisions with large ungulates in North America; a decision support tool. Ecology and Society 14 (2):15.
- Huijser, M.P., J. Fuller, M.E. Wagner, A. Hardy & A.P. Clevenger. 2007. Animal-vehicle
 collision data collection. NCHRP Project 20-05/Topic 37-12. Prepared for the Transportation
 Research Board of the National Academies, Washington, DC, USA.
- National Research Council. 2005. Assessing and managing the ecological impacts of paved roads. The National Academies Press, Washington, D.C.

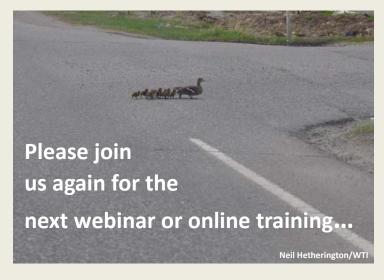
Resources Available

FHWA manuals

<u>Best Practices Manual: Wildlife vehicle collision reduction study</u> <u>Wildlife crossing structure handbook</u>

National Training Center USFWS

Websites: FHWA, TRB, AASHTO, Critter Crossings, ARC Solutions, etc.


www.arc-solutions.org

Key List-serve: Wildlife-Transportation (NCSU)

Conferences: Transportation & Ecology – International

Professional Societies: SCB, TWS, IALE ESA, SER

Thank you for participating

Contact the TRIPTAC!

Paul S. Sarbanes Transit in Parks Technical Assistance Center

www.triptac.org helpdesk@triptac.org (877) 704-5292