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Abstract

In this paper two-dimensional electromagnetic scattering problems with a time-periodic

incident �eld are considered. The scatterer is a perfect conductor, and an arti�cial boundary

condition is used. The large time behavior of solutions, depending on (divergence-free)

initial conditions, is characterized. It turns out that in addition to the expected time-

periodic solution the limiting solution may also contain a spurious stationary �eld. The

source of the stationary �eld is explained and equations describing it are obtained. Several

avoidance strategies are discussed, and numerical comparisons of these techiques are given.
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1. INTRODUCTION

For solving scattering problems with a time-periodic incident �eld, the periodic solution is

often obtained by choosing initial conditions and time marching Maxwell's curl equations

to a periodic state. The initial conditions must satisfy the divergence equations but are

otherwise arbitrary.

When this time marching method is used to solve scattering problems for perfect conductors

it is found that the computed periodic solutions are \contaminated" by spurious stationary

components. For example, in two dimensional transverse magnetic calculations it is observed

that the magnetic �eld is a�ected by a spurious component; in three dimensions both the

magnetic and electric �elds are a�ected. The spurious �elds can be relatively large and must

usually be removed empirically by postprocessing, for example by peak-to-peak averaging

[2], [3], or by the postprocessing method mentioned in section 4 below. These methods are

usually e�ective and permit quantities such as radar cross sections to be obtained from the

resulting numerical data. However, postprocessing introduces additional uncertainties and

it is worthwhile to try to obtain accurate numerical solutions directly.

In this paper we will explain the origin of the spurious �elds and obtain the di�erential

equations and boundary conditions which characterize them. Based on these results we will

propose some techniques which enable accurate results to be found directly and e�ciently

without postprocessing. We will provide numerical comparisons of the techniques.

The next section illustrates the occurrence of a spurious �eld in the relatively simple setting

of a two dimensional transverse magnetic computation. Then we explain the source of this

�eld and derive the equations which de�ne it. Following that we discuss some avoidance

strategies and illustrate their properties. The remainder of the paper extends the results to

other problems and brie
y mentions some mathematical issues which are analysed in detail

in [4].

2. THE MAGNETIC OFFSET

In a two dimensional transverse magnetic problem it is the magnetic �eld which is a�ected

by the spurious stationary component. To illustrate the spurious �eld we consider the

following transverse magnetic scattering problem: in 
,

�
@E

@t
= curlH (1)

�
@H

@t
= �curl E (2)

divH = 0 (3)

with boundary conditions

E = �Ei on �s (4)

E � c�H� n = 0 on �o (5)
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Figure 1: The time history of Hx (solid line) and Hy (dashed line).

and initial conditions

E(x; 0) = E0(x); H(x; 0) = H0(x): (6)

In these equations, E and H denote the scattered �eld variables, Ei is the incident �eld,

�s denotes the boundary of the (perfect conductor) scatterer and �o is the arti�cial outer

boundary. 
 denotes the domain between the inner and outer boundaries, n is the outer

normal to 
 and x = (x; y). We assume that Ei can be written in the form

Ei(x; t) = ei!t eEi(x);

and we look for the time-periodic solutions of (1){(6) in a similar form. For simplicity, we

are assuming a �rst order radiation condition on the outer boundary . The results are not

materially a�ected if higher order radiation conditions are used.

To illustrate the magnetic o�set we take a square scatterer with sides aligned with the

coordinate axes and electric size 1 based on half the side length of the square. The scatterer

is illuminated from the (1; 0) direction by a �eld of the form 1000ei(!t�k�x). The outer

boundary is 4:5
�

wavelengths (4.5 body lengths) from the center of the scatterer. This

problem was marched to a periodic state, starting from zero initial conditions, using the

standard uniform mesh \FDTD" scheme [1] with 20� points per wavelength and with a

timestep of 1=
p
2 the maximum size allowed by the stability condition.

In Figure 1 we show a time history of Hx and Hy sampled at the points (� 1
�
; 20:5
20�

) and

(�19:5
20�

; 1
�
), respectively (measured from the center of the body in wavelengths). While the

records appear to approach periodic functions, they are not symmetric about the horizontal

axis and consequently they cannot be of the desired form ei!tH(x). A similar situation

holds at the other mesh points, the amount of the o�set being a function of position. This

function is spurious and is not part of the solution to the periodically forced scattering

problem. We wish to characterize it with a view to eliminating it altogether.

In contrast to Figure 1, Figure 2 shows the time history of the electric �eld at the point

(� 1
�
; 1
�
). There is no obvious problem with this solution and in fact it is close to the exact
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Figure 2: The time history of E.

solution of the periodically forced di�erence equations. A general proof of this is given in [4].

3. ORIGIN OF THE MAGNETIC OFFSET

Let ei!t ~E and ei!t ~H denote the periodic solutions obtained by solving the periodically forced

di�erential equations without the initial conditions. We shall assume that the solutions E

and H of the initial value problem are such that for large times,

E(x; t) � ei!t ~E(x); H(x; t) � ei!t ~H(x) +H�(x): (7)

These assumptions re
ect what is seen computationally.

Since ei!t ~E and ei!t ~H satisfy the same equations as E and H (excluding the initial condi-

tions) we obtain by subtraction the following equations for H�:

divH� = 0 (8)

curlH� = 0 (9)

@H�

@t
= 0 (10)

H� � nj�o = 0: (11)

To obtain a boundary condition on the scatterer we integrate Faraday's law with respect

to time, use the initial conditions and evaluate the normal components on �s:

H(x) � n = H0(x) � n�
1

�

Z t

0
curl E(x; �) � n d� on �s:

Since curl E � n on �s is the tangential derivative of E along the boundary, it is completely

determined by the boundary condition. So

H(x) � n = H0(x) � n+
1

�

Z t

0
curl Ei(x; �) � n d�
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=

�
H0(x) � n�

1

i!�
curl eEi(x) � n

�
+

ei!t

i!�
curl eEi(x) � n on �s:

In the above expression it is only the second term which has the required periodic behavior

and it follows that the �rst term, which is stationary, must correspond to the normal

boundary condition for H�. Thus we are led to

H� � nj�s = (H0 � n�
1

i!�
curl eEi � n)j�s: (12)

To interpret this boundary condition, assume that the incident magnetic �eld is also of the

form ei!t ~Hi(x) such that Maxwell's equations are satis�ed. In that case Faraday's law gives

ei!t eHi(x) =
1

i!�
ei!tcurl eEi

and evaluating this at t = 0 and using it to replace the second term in the boundary con-

dition it follows that H� � n is the normal component of the total magnetic �eld at t = 0.

Since B � n must be continuous across �s it follows that there is a magnetic �eld inside

the scatterer if the right side of (12) is nonzero. In addition this �eld is stationary since

E is zero inside a perfect conductor, and we may attribute it to a steady current 
owing

unhindered in the conductor. It is this current which produces the magnetic o�set.

4. AVOIDING THE MAGNETIC OFFSET

In this section we will discuss four di�erent possibilities for obtaining the correct magnetic

�eld ei!t eH(x). The �rst approach is a simple postprocessing technique which does not

use the results of the previous sections except for the assumptions (7). The other three

approaches do rely on the equations obtained in the previous sections.

Method 1: Postprocessing. The postprocessing approach consists simply of �tting a

function of the form A+Bei!t to the computed H at each mesh point, and then discarding

the stationary part A. A decision has to be made about when to sample H. This should be

at reasonably spaced times after the solution is believed to have become adequately periodic

(3{6 periods is often su�cient).

To illustrate the stationary part we took a square scatterer as before and illuminated it

from the (1,0) direction with a �eld Ei(x; t) = 1000ei(!t�k�x). The problem was solved (for

the imaginary part of the solution) by the method mentioned above in section 2, starting

from zero initial conditions. We calculated (the imaginary part of ) the stationary part by

sampling the values of H after m; m � T
4
and m � T

2
timesteps, where T is the period of

the incident �eld in timesteps, for m = 500 and m = 1000 (about 4 and 8 periods). The

values of the stationary parts of the x- and y-components of H on lines y = 20:5
20�

and y = 1
�
,

respectively, are shown in �gures 3 and 4. Also shown are the theoretically predicted values

of the stationary �eld H� (the approximate solution of (8){(12) ). We see that the values of
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Figure 3: The stationary part of Hx.
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Figure 4: The stationary part of Hy.

Postprocessing method (zero initial data)

500 timesteps | solid line, 1000 timesteps | dashed line, H� | dotted line.

H� are quite near to the stationary parts of H, especially for longer time. The stationary

part is relatively large compared to the amplitude of H, which is near one for most of 
.

Method 2: Solving the div-curl system. The second approach to elimination of the

magnetic o�set is based on the observation from (12) that if the initial condition for H

satis�es H0 � n =
1

i!�
curl eEi � n on �s, then the div-curl system for H� will have only the

zero solution. One way to choose a suitable H0 is as a solution of the equations

curl H0 = 0 (13)

div H0 = 0 (14)

H0 � n =
1

i!�
curl eEi � n on �s (15)

H0 � n = 0 on �o: (16)

To illustrate this we solved Maxwell equations with the initial conditions E0 = 0 and H0

being the solution of (14){(16). Then we calculated the stationary part as above. The

results (the values of the stationary parts of the x- and y-components ofH on lines y = 20:5
20�

and y = 1
�
, as before) are shown in Figures 5 and 6.

One can see that the stationary part is several times smaller than in the postprocessing

method; in fact it is probably caused by the discretization error in time. However, even

though there is a natural way to formulate the div-curl system in the FDTD framework,
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Figure 5: The stationary part of Hx.
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Figure 6: The stationary part of Hy.

H0 is a solution of the div-curl problem (14){(16).

500 timesteps | solid line, 1000 timesteps | dashed line

solving it can be quite expensive. Also, up to round-o� error the solution is similar to that

of the postprocessing method after discarding the stationary part. So it seems that this

method is not worth while.

Method 3: Extension of eEi. Another way to satisfy the condition H0 �n =
1

i!�
curl eEi �n

on �s is to use the initial conditions

E0(x) = ��(x)eEi(x); H0(x) =
1

i!�
curl (�(x)eEi(x)); (17)

where � is a smooth real-valued function such that � � 1 in a neighborhood of �s, and � � 0

in a neighborhood of �o. A possible advantage of this scheme is that since the initial values

and the boundary data match at t = 0, the solution should be smoother in time for small

times. We would then expect that discretizations should have a better rate of convergence

as the mesh size approaches zero.

We used for � a product of continuously di�erentiable cubic splines in x and in y. The

resulting \stationary �eld" is shown on Figures 7 and 8. We see that it is much smaller than

in the previous case, especially for longer time (40-80 times smaller after 1000 timesteps).

Method 4: Modi�ed incident �eld. This method consists of giving zero initial data

and making an adjustment to the incident �eld. It is possible to change this �eld for a

small interval of time so that the spurious �eld will be zero. One possibility is to de�ne the
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Figure 7: The stationary part of Hx.
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Figure 8: The stationary part of Hy.

The smooth initial data (17).

500 timesteps | solid line, 1000 timesteps | dashed line

incident �eld to be

Ei(x; t) =

8><
>:

!t

2�
ei!t eEi(x); 0 � t � 2�

!
;

ei!t eEi(x); t >
2�

!
:

(18)

Then at time t0 =
2�
!
, on �s we have

H(x; t0) � n =
1

�

Z t0

0

t

t0
ei!tdt curl eEi(x) � n =

1

i!�
ei!t0curl eEi(x) � n; (19)

so that H(x; t0) satis�es the correct condition at time t0 = 2�
!
. Again the initial and the

boundary conditions match, so the solution is smoother. Since the incident �eld reaches the

correct value after the �rst period, the additional work required is roughly equal to solving

the equations during one period.

The results are shown in Figures 9 and 10.

For an incident �eld in the form ei(!t�k�x) it might be preferable to adjust the �eld as

follows:

Ei(x; t) =

8>><
>>:

0; !t � k � x;
!t� k � x

2�
ei(!t�k�x); 0 < !t � k � x � 2�;

ei(!t�k�x); 2� < !t� k � x:

(20)
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Figure 9: The stationary part of Hx.
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Figure 10: The stationary part of Hy .

Continuous adjustment of the incident �eld, given by (18).

500 timesteps | solid line, 1000 timesteps | dashed line

Again at time t0 large enough so that the incident �eld has reached the correct value on all

�s, we get that H(x; t0) satis�es the condition necessary to make the spurious �eld vanish.

This adjustment makes the imaginary part of Ei continuously di�erentiable, so we should

get even better convergence when solving for the imaginary part only. The results are shown

in Figures 11 and 12. (We used m = 600 instead of m = 500, because after 4 periods the

adjusted incident �eld has barely reached its correct value near the outer boundary.) Note

that the stationary parts are the smallest compared with the other methods.

To compare the smoothness of the solutions obtained by the di�erent methods we present

here the time history ofHx at the point (� 1
�
; 1
40�

). This point, as any point near the x-axis,

is special in the sense that the amplitude of Hx is very small, so e�ects of nonsmoothness

stand out more clearly. Figure 13 shows the solutions with zero initial data (method 1)

and in the case of \correct" smooth initial data (17) (method 3). The graph of the solution

obtained by �rst solving the div-curl system (method 2) looks the same as of the solution

obtained by method 1, only shifted by a constant (the size of the shift is determined by

the value of the solution of the div-curl problem at given point), so we chose not to present

it here. The solutions exhibit very large oscillations in the beginning. They correspond

to a large error in approximating the discontinuous wavefront. As the front moves away,

the solution becames smoother. Then the oscillations reappear approximately at the time

when the (re
ected) wavefront arrives back from the corners of the arti�cial boundary (the

re
ections from the smooth part of the boundary are probably too small to be seen). Figure
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Figure 11: The stationary part of Hx.
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Figure 12: The stationary part of Hy .

Smooth adjustment of the incident �eld, given by (20).

600 timesteps | solid line, 1000 timesteps | dashed line

14 shows the solutions with zero initial data and altered boundary conditions (method 4,

boundary conditions (18) and (20) ). We see that the solution looks much smoother than

the solutions obtained with the other methods, so one might expect to have smaller dis-

cretization error than in the other cases.
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Figure 13: The time history of Hx at the point (� 1
�
; 1
40�

) in the case of zero initial data

(solid line) and the smooth initial data (17) (dashed line).
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Figure 14: The time history of Hx at the point (� 1
�
; 1
40� ) in the case of continuous ad-

justment of the boundary conditions, given by (18) (solid line), and in the case of smooth

adjustment (20) (dashed line), both with zero initial data.

5. OTHER PROBLEMS

Consider the transverse electric problem: in 
,

�
@E

@t
= curlH

�
@H

@t
= �curl E

divE = 0

with boundary conditions

E� n = �Ei � n on �s

E� n + c�H = 0 on �o
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and initial conditions

E(x; 0) = E0(x); H(x; 0) = H0(x):

In this case there is an electric o�set. The magnetic o�set is zero because H � n = 0 on �s
holds automatically.

Assuming that for large times

E(x; t) � ei!t eE(x) + E�(x); H(x; t) � ei!t eH(x);

we obtain as before by subtraction the following equations for E�:

@E�

@t
= 0

curl E� = 0

div E� = 0

E� � n = 0 on �o and on �s

A system such as this is determined up to a one parameter family of solutions. In this case

the parameter is the total surface charge on the body. This quantity should be zero to avoid

a spurious addition to the electric �eld. It is computed as follows:

Z
�s

E � n =

Z
�s

E0 � n+
1

�

Z t

0

Z
�s

curl H � n =

Z
�s

E0 � n:

It follows that the total charge is constant in time and it is this charge, determined by

the initial condition, which is responsible for the electric o�set �eld. The simplest way to

eliminate the electric o�set is to put E0 � 0. The system above, supplemented with this

condition of zero surface charge then has only the zero solution.

For the three dimensional case the calculations above remain valid so both the electric and

magnetic �elds may have spurious components. Our equations for E� and H� continue to

hold and so should the remedies although we have not checked that explicitly.

It has not been possible to completely rule out the possibility of additional (possibly time

dependent) spurious �elds in three dimensions although we do not expect that such �elds

exist.

6. MATHEMATICAL COMMENTS

We have made a number of assumptions in order to obtain the equations for the o�set �elds.

We wish to mention the major assumptions here.

First there is the question of whether the equations (1){(6) admit a periodic solution. This

is equivalent to the question of existence for Helmholtz equation in a bounded domain with

the appropriate boundary conditions. We have assumed here that periodic solutions exist.
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A second assumption is that the solutions of the initial value problems with periodic bound-

ary conditions approach to a limiting state as t ! 1. While this is certainly expected for

reasonably shaped scatterers, it should be proved in a precise treatment.

The third assumption is the one we justi�ed by appeal to computational experiments, which

is that in the transverse magnetic (electric) case the electric (magnetic) �eld has no o�set

so that E(x; t)� ei!t eE(x)! 0 as t! 1 (H(x; t)� ei!t eH(x)! 0) as t !1. Since in the

transverse magnetic (electric) problem E (H) is one-dimensional, this is really a question of

the asymptotic behavior of the wave equation with periodic Dirichlet (Neumann) condition

on the inner boundary and the absorbing boundary condition on the outer boundary. This

has been known for a while. For three dimensions the question is more delicate, because

the equations are coupled by divergence conditions, and also because both the electric and

the magnetic �eld may have spurious components.

In our paper [4], which is a companion to this one, we provide a rigorous statement of

these assumptions and the appropriate results are proved correct for the two dimensional

problems.

7. CONCLUSIONS

We have shown the origin of the spurious magnetic and electric o�set �elds which are

encountered when time marching Maxwell equations for periodic solutions. Based on the

equations governing these �elds several remedies were discussed. We found that the best

remedy is to modify the incident �eld, gradually allowing it to reach its desired form in the

way speci�ed in section 4. This technique reliably reduces the magnetic o�set to a negligible

size and avoids the need for postprocessing of the results of the computation.
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