
An Approximation-Based Data Structurefor Similarity Search�Roger WeberInstitute of Information SystemsETH Zentrum, 8092 Zurich, Switzerlandweber@inf.ethz.ch Stephen BlottyBell Laboratories (Lucent Technologies)700 Mountain Ave, Murray Hill, NJ 07974, USAblott@research.bell-labs.comAbstractMany similarity measures for multimedia retrieval, decision support, and data mining are basedon underlying vector spaces of high dimensionality. Data-partitioning index methods for such spaces(e.g. grid-�les, quad-trees, R-trees, X-trees, etc.) generally work well for low-dimensional spaces,but perform poorly as dimensionality increases|a phenomenon which has become known as the`dimensional curse'.In this paper, we �rst provide an analysis of the nearest-neighbor search problem in high-dimensional vector spaces. Under the assumptions of uniformity and independence, we establishbounds on the average performance of three important classes of data-partitioning techniques. Wethen introduce the vector-approximation �le (VA-File), a method which overcomes the di�culties ofhigh dimensionality by following not the data-partitioning approach of conventional index methods,but rather a �lter-based approach. A VA-File contains a compact, geometric approximation foreach vector. By �rst scanning these smaller approximations, only a small fraction of the vectorsthemselves must be visited. Thus, the VA-File acts as a simple �lter, much as a signature �le is a�lter. Performance is evaluated on the basis of both synthetic and real data sets, and compared tothat of the R?-tree and the X-tree. We show that performance does not degrade, and even improveswith increased dimensionality. Both our analytical and our experimental results suggest that theVA-File is generally the preferred method for similarity search over moderate and large data setswith dimensionality in excess of around ten.�This work has been partially funded in the framework of the European ESPRIT project HERMES (project no. 9141)by the Swiss Bundesamt f�ur Bildung und Wissenshaft (BBW, grant no. 93.0135).yThe work on which this paper is based was carried out in part while Stephen Blott was a member of the DatabaseResearch Group at ETH, Zurich.
1

1 IntroductionOne of the important distinctions between traditional database systems and systems for multimediadata, decision support, and data mining is the need not just for boolean search, but also for similaritysearch. By similarity search we mean the problem, given a data set, of �nding the k objects `mostsimilar' to a given object. This has led to the development of many methods for measuring `similarity'between, for example, documents, images, faces, �nger prints, X-rays, time series, etc. Typically,however, similarity is measured not on objects directly, but rather on abstractions of objects termedfeatures. Though the feature-extraction process itself is application speci�c, the resulting features canfrequently be viewed as points in high-dimensional vector spaces [SO95, FSN+95, Csi95, Csi97]. Werefer to such features as feature vectors. The dimensionality of features vectors can be moderate, suchas 4{8 in [FSN+95] or 45 in [SO95], but it can also become quite large (315 in a recently proposedcolor index [Dim97], or over 900 in some astronomical indexes [Csi95, Csi97]). The similarity of twofeature vectors is measured as the distance between them. As such, similarity search corresponds toa search for the nearest neighbor (or neighbors) within the space of the feature vectors.The conventional approach to nearest-neighbor search is to utilize some form of multidimensional ac-cess method (such as a grid-�le [NHS84], a quad-tree, a k-d-tree, an R-tree [Gut84], R*-tree [BKSS90],TV-tree [LJF94], X-tree [BKK96], SR-tree [KS97] or M-tree [CPZ97], etc.). In general terms, thesemethods work by partitioning the data space, clustering data (or references to data) according to thepartitioning in which they lie, and using the partitioning to prune the search space for queries. There-fore, we refer to these methods as data-partitioning methods. Several surveys provide backgroundand analysis of these methods [BF79, Sam89, Fal96]. Unfortunately, while these methods generallyperform well at low dimensionality, performance degrades as dimensionality increases|a phenomenonwhich has been termed the `dimensional curse'. Practical evaluations have shown that whenever the(inherent) dimensionality exceeds around 10, then a simple sequential scan through the vector dataitself outperforms the data-partitioning methods mentioned above. This result has been reported forR*-trees and X-trees [BKK96, BBB+97], and also for the SR-tree [KS97].In this paper, we address this issue in two ways. The �rst part of the paper provides a formal analysisof the problem. Under the assumptions of uniformity and independence, we establish bounds on theaverage performance of data-partitioning methods. We show that these approaches must ultimatelyfail if dimensionality becomes larger than around 10 (where by `fail' we mean that a simple sequentialscan of the vector data is expected to o�er better performance, on average). This result is achieved forthree important classes of data-partitioning methods: those whose minimum bounding regions (MBRs)are hyper-cubes, those whose MBRs are hyper-spheres, and (as the limiting case) those whose MBRsare lines. Although of questionable value as a practical method, the latter case is of theoretical2

importance since it provides a bound on the average performance of any possible data-partitioningmethod.In the second part of the paper we propose a new, at access method based on a vector-approximation�le (VA-File). Rather than partitioning the data space as most existing methods do, the VA-File isa at �le containing a compact, geometrical approximation for each vector. Typically, the approxi-mations occupy only between 10% and 20% of the space of the vectors themselves. Based only onthese smaller approximations, the vast majority of the vectors can be excluded from a search. Thus,the VA-File is used as a simple �lter, much as a signature �le is a �lter [Fal85, FC87]. Based on theVA-File, we describe two nearest-neighbor search algorithm, one of which has an optimality propertyfor all but a few highly-improbable cases.The main advantage of the new method is that the VA-File retains good performance as dimensionalityincreases. Indeed, we show that performance can even improve with increased dimensionality, such thatVA-File outperforms data-partitioning methods by an order of magnitude or more. However, furtherimportant advantages also follow from the VA-File's simple at structure. Distribution, parallelization,concurrency control and recovery (which can be complicated for tree-based structures) are simpli�edfor the at, array-like structure of the VA-File. Moreover, the VA-File also supports weighted search,thereby allowing relevance feedback to be incorporated. Relevance feedback can have a signi�cantimpact on search e�ectiveness (in terms of precision and recall) for many applications.The remainder of this paper is structured as follows. Section 2 investigates the dimensional curseproblem from an analytical perspective. Section 3 describes the VA-File, and Section 4 provides aperformance evaluation. Section 6 discusses the method and concludes.2 Nearest-Neighbor Search in High Dimensional Vector SpacesThis section establishes a number of analytical results as to the average performance of nearest-neighbor search in partitioned organizations of vector spaces. Broadly speaking, our analysis proceedsas follows. Under the assumptions of uniformity and independence, we compute the expected nearest-neighbor distance for a query. Given this distance, a nearest-neighbor query can be reformulated asa spherical range query, such that both the nearest-neighbor query and the reformulated range queryvisit exactly the same set of blocks. Thus, the average `cost' of a search can be measured by countingthe blocks which intersect the sphere. We then investigate three important classes of data-partitioningmethods: those whose minimum bounding regions (MBRs) are hyper-cubes, those whose MBRs arehyper-spheres, and (as the limiting case) those whose MBRs are lines. In each of these cases, weestablish closed formulae for the average cost of nearest-neighbor (NN) search.3

Our analysis is based on the following assumptions:1. We assume that data is uniformly distributed within the data space, and that dimensions areindependent from one-another (these key assumptions are discussed below).2. We assume that data is partitioned into `blocks', and make only weak assumptions aboutthe partitioning algorithm or strategy. As such our analysis is applicable to any of the ex-isting index methods mentioned above, and also to clustering methods based on space-�ttingcurves (Z-ordering, Hilbert curve, etc. [Sam89]).3. We assume that a data-partitioning method works `well' if on average less than 20% of blocksmust be visited, and `fails' if more than 20% of blocks must be visited. This assumption is basedon the fact that a direct sequential scan of the data can expect a large performance boost simplyfrom the sequential nature of its IO requests. Although a factor of 10 for this phenomenon isfrequently assumed elsewhere (and was observed in our own PC and workstation environments),we assume a more conservative factor of only 5 here.The uniformity and independence assumptions (Assumption 1, above) are generally questionable inpractice. Real data sets are frequently not uniformly distributed, and may exhibit correlation betweendimensions. However, it has been shown that `fractal dimensionality' can be a useful measure forpredicting the performance of data-partitioning access methods [FK94]. In some sense, the fractaldimensionality of a data set is a measure of a data sets inherent dimensionality. A data set consistingof a line in d-dimensional space is still a line, so its fractal dimensionality is 1. Similarly, a data setconsisting of a plane in d-dimensional space is still a plane, so its fractal dimensionality is 2. On theother hand, the fractal dimensionality of a (su�ciently-large) d-dimensional data set which conformsto the uniformity and independence assumptions above is d. Therefore we conjecture that, for d-dimensional data sets, the results obtained here under the uniformity and independence assumptionsgenerally apply also to arbitrary higher-dimensional data sets of fractal dimension d. This conjectureappears reasonable, and is supported by the experimental results of Faloutsos and Kamel for the e�ectof fractal dimensionality on the performance of R-trees [FK94].2.1 Basic De�nitionsFor simplicity, we focus here on the widely-used L2 metric (Euclidean distance), although the structureof our analysis might equally be repeated for other metrics (such as L1 or L1). Where appropriate,our notation and parts of our analysis follow that of Berchtold et al [BBKK97].The nearest neighbor to a query point Q in a d-dimensional space may be de�ned as follows:4

d number of dimensions N number of data pointsk number of NNs to return
 = [0; 1]d data spaceQ query point nn(Q) NN to query point Qnndist(Q) NN-distance of query point Q spd(C; r) d-dim hyper-sphereE(nndist) expected NN-distance Mvisit number of visited blocksm number of points / blockTable 1: Notational summaryDe�nition 2.1 (Nearest Neighbor (NN), NN-distance, NN-sphere)Let D be a set of d-dimensional points. Then the nearest neighbor to the query point Q is the datapoint nn(Q) 2 D, which lies closer to Q than any other point in D:nn(Q) = �P 2 D j 8P 0 2 D : kP �Qk2 � kP 0 �Qk2	where k � � � k2 denotes Euclidean distance. The nearest neighbor distance nndist(Q) is the distancebetween Q and its nearest neighbor nn(Q):nndist(Q) = knn(Q)�Qk2and the NN-sphere nnsp(Q) is the sphere with center Q and radius nndist(Q). 2Analogously, one can de�ne the k-nearest neighbors to a given query point Q. Then nndist;k(Q) is thedistance of the k-th nearest neighbor, and nnsp;k(Q) is the corresponding NN-sphere.We assume that data points are assigned to blocks such that each data point belongs to a single block.Moreover, we assume some minimum bounding region (MBR) is de�ned for each block such that allpoints in the block are contained within the MBR. We do not require that the MBRs are disjoint,although they may be.De�nition 2.2 (MBR) The minimum bounding region of a block is the minimum region of a speci�edgeometrical type (e.g. hyper-cube, hyper-sphere, line) that contains all the data points of the block. 2We assume that the data space
 is the unit hyper-cube:
 = [0; 1]d. Let Q 2
 be a query point,and let spd(Q; r) be the hyper-sphere around Q with radius r. Then, under the uniformity andindependence assumptions, for any point P 2 D, the probability that spd(Q; r) contains P is equal tothe volume of that part of spd(Q; r) which lies inside the data space. This volume can be obtained byintegrating a piecewise de�ned function over the entire data space:V ol �spd(Q; r) \
� = ZZP2
 0@8<:1 if kC � Pk2 � r0 otherwise 1A dP5

As dimensionality increases, this integral becomes di�cult to evaluate. Fortunately, good approxima-tions for such integrals can be obtained by the Monte-Carlo method.2.2 Expected Nearest Neighbor DistanceThe expected NN-distance between a query point Q and its nearest neighbor nn(Q) is a critical factorfor all data-partitioning methods. If this distance is known, then a NN-query can be transformed intoa range query, and search costs can be estimated.Let P (Q; r) be the probability, that the NN-distance nndist(Q) is at most r (i.e. the probability thatnn(Q) is contained in spd(Q; r)). This probability distribution function can be expressed in terms ofits complement, that is, in terms of the probability that all N data points lie outside the hyper-sphere:P (Q; r) = 1� �1� V ol �spd(Q; r) \
��Nand the corresponding probability density function p(Q; r) is the derivative:p(Q; r) = dP (Q; r)drThe expected nearest-neighbor distance for a query point Q can be obtained by integrating over allradii r:E(Q;nndist) = Z 10 r � p(Q; r)drFinally, the expected NN-distance E(nndist) for any query point in the data space is the average ofE(Q;nndist) over all possible points Q in
 (since
 is the unit hyper-cube, the dominator of thisaverage is 1):E(nndist) = ZZQ2
 E(Q;nndist)dQBased on this closed formula, we used the Monte-Carlo method to estimate nearest-neighbor distances.Figure 1 shows this distance as a function (a) of dimensionality, and (b) of the number of data points.Notice, that E(nndist) can even become larger than the length of the data space itself.The main conclusions we draw at this stage are:1. The NN-distance grows steadily with dimensionality (this result can also be derived from theCentral Limit Theorem), and2. Beyond trivially-small data sets, NN-distances decrease only slightly as the size of the data setincreases. 6

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500

E
xp

ec
te

d
N

N
-d

is
ta

nc
e

(E
(n

n-
di

st
))

Number of dimensions (d)

N=1’000’000

0

1

2

3

4

5

6

7

200000 400000 600000 800000 1e+06

E
xp

ec
te

d
N

N
-d

is
ta

nc
e

(E
(n

n-
di

st
))

Number of data points (N)

d=10
d=40

d=100
d=200

(a) (b)Figure 1: Expected nearest neighbor distance as a function: (a) of the dimensionality; and (b) of thenumber of data pointsThe average value for E(nndist) grows because
 becomes sparser and sparser as dimensionalityincreases. In order to maintain a constant density in the data space, the number of data points wouldhave to grow exponentially with the number of dimensions. This is clearly not the case for real datasets. As a consequence, objects are widely scattered and, as we shall see, the probability of being ableto identify a good partitioning of the data space diminishes.2.3 Search Costs: Expected Number of Intersected BlocksWe now establish bounds on the expected number of blocks which must be accessed for a nearest-neighbor search. Our results depend upon the geometry of blocks' MBRs. In particular, we deriveclosed formulae for the expected number of blocks accessed in the cases that MBRs are either hyper-cubes (e.g. R*-tree, X-tree), are hyper-spheres (e.g. M-tree, VP-tree) or, in the limiting case, arelines (with two points per block). For disk-resident databases, the number of blocks which must beaccessed is a measure of the amount of IO which must be performed, and hence of the `cost' of a query.We �rst introduce the general method, then study the three special cases in the following sections.2.3.1 The General MethodA nearest-neighbor search algorithm is optimal if the blocks visited during the search are exactlythose whose MBRs intersect the NN-sphere. Such an algorithm has been proposed by Hjaltson andSamet [HS95], and shown to be optimal by Berchtold et al. [BBKK97]. This algorithm visits blocksin increasing order of their minimal distance to the query point, and stops as soon as a point isencountered which lies closer to the query point than all remaining blocks. In the general case, the7

NN-dist

NN

query

point query

data space

NN-dist

NN-sphere

NN-dist

leaf page

NN

query

spherical query

data space

Figure 2: The transformation of a spherical query into a point queryalgorithm stops after having found k points that lie closer to the query than the remaining blocks.Given this optimal algorithm, let Mvisit denote the number of blocks visited. Then Mvisit is equal tothe number of blocks which intersect the nearest neighbor sphere nnsp(Q) with, on average, the radiusE(nndist). To estimate Mvisit, we transform the spherical query into a point query by the techniqueof Minkowski sum (following [BBKK97]|see Figure 2). A block i is extended by moving the centerof the NN-sphere over the surface of its minimum bounding region (mbri). The result is an enlargedobject MinkSum �mbri; E(nndist)�. The volume of the part of this region which is within the dataspace corresponds to the fraction of all possible queries in
 whose nearest neighbor sphere intersectsthat block. Therefore, the probability that the i-th block must be visited is given by:Pvisit(i) = V ol �MinkSum�mbri; E(nndist)� \
�Finally, the expected number of blocks which must be visited is given by the sum of this probabilityover all blocks. If we assume m objects per block, then we arrive at:Mvisit = Nm � Pvisit(i) = Nm � V ol �MinkSum�mbri; E(nndist)� \
�This open formula depends upon the geometry of mbri. Next, we establish closed lower bounds forMvisit under the assumptions that MBRs are either hyper-cubes, are hyper-spheres, or are lines.2.3.2 Hyper-Cube MBRsIndex methods such as R*-tree, X-tree and SR-tree (see also next section) use hyper-cubes to boundthe region of a block. Usually, splitting a node results in two new, equally-full partitions of the data8

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500

di
st

an
ce

 (
E

(n
n-

di
st

),
 lm

ax
)

Number of dimensions (d)

Hyper-Cube MBR, m=100

E(NN-dist)
lmax [N=100’000, d’=10]

lmax [N=1’000’000, d’=14]
lmax [N=10’000’000, d’=17]

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

P
ro

b.
 o

f v
is

iti
ng

 a
 b

lo
ck

 (
P

vi
si

t)

Number of dimensions (d)

Hyper-Cube MBR, m=100

N=100’000 [d’=10]
N=1’000’000 [d’=14]

N=10’000’000 [d’=17]

(a) (b)Figure 3: Hyper-cubes: (a) the maximum distance lmax to a block, and (b) the probability of visitinga block.space. Assume, that each dimension is split at least once. Since after each split the number of pointsin the partitions is halved, there must be more than 2d data points in the index. However, evenat moderate dimensionality this number far exceeds the size of real databases. Thus, assuming anaverage of m data points are assigned to each block, the number of split dimensions (d0) is smallerthan the total number of dimensions, and we obtain an upper bound:d0 � �log2 Nm�Furthermore, each dimension is split at most once, and, since data is distributed uniformly, the splitposition is always at 12 . Hence, the MBR of a block has d0 sides with a length of 12 , and d � d0 sideswith a length of 1. For any block, let lmax denote the maximum distance between an arbitrary pointin the data space
 and the MBR of the block. Then lmax is given by the equation:lmax = 12pd0 = 12s�log2 Nm�Assume that each block contains 100 data points (i.e. m = 100). If we overlay lmax on the expectedNN-distance (see Figure 3 (a)), we observe that lmax becomes smaller than E(nndist) if dimensionalityis larger than around 50. In other words, if we enlarge the MBR by the expected NN-distance accordingto the Minkowski sum, the resulting region covers the entire data space. The probability of visiting ablock is 1. Consequently, all blocks must be accessed, and even nearest-neighbor search by an optimalsearch algorithm degrades to a (poor) scan of the entire data set. Figure 3 (b) shows the probabilityof accessing a block during a NN-search for di�erent database sizes, and di�erent values of d0. Thegraphs are only plotted for dimensions above the number of split axes, that is 10, 14 and 17 for105, 106 and 107 data points, respectively. Depending upon the database size, the 20% threshold is9

exceeded for dimensionality greater than around d = 15, d = 18, and d = 20. Based on our earlierassumption about the performance of scan algorithms, these values provide upper bounds on thedimensionality at which any data-partitioning method with hyper-cubic MBRs can be expected toperform `well', on average. On the other hand, for low-dimensional spaces (that is, for d < 10), thereis considerable scope for data-partitioning methods to be very e�ective in pruning the search spacefor e�cient nearest-neighbor search (as is well-known from the practice).2.3.3 Hyper-Sphere MBRsThe analysis above applies to index methods whose MBRs are hyper-cubes. There exists another groupof index structures, however, such as the TV-tree, M-tree, VP-tree and SR-tree (see also the previoussection), which use MBRs in the form of hyper-spheres. In an optimal structure, each block consistsof the center point C and its m� 1 nearest neighbors (where m again denotes the average number ofdata points per block). Therefore, the MBR can be described by the NN-sphere nnsp;m�1(C) whoseradius is given by nndist;m�1(C). If we now use a Minkowski sum to transform this region, we enlargethe MBR by the expected NN-distance E(nndist). The result is a new hyper-sphere given byMinkSum�mbri; E(nndist)� = spd �C;nndist;m�1(C) +E(nndist)�The probability, that block i must be visited during a NN-search can be formulated as:Pvisit(i) � V ol �spd �C;nndist;m�1(C) +E(nndist)� \
�(this is a bound and not an equality since not all structures are optimal). Since nndist;i does notdecrease as i increases (that is, 8j > i : nndist;j � nndist;i), another lower bound for this probabilitycan be obtained by replacing nndist;m�1 by nndist;1 = nndist:Pvisit(i) � V ol �spd �C; 2 � E(nndist)� \
�In order to obtain the probability of accessing a block during the search, we average the above prob-ability over all center points C 2
:Pvisit(i) � ZZC2
 V ol �spd �C; 2 � E(nndist)� \
� dCFinally, the number of blocks which must be visited can be bounded as follows:Mvisit = Nm � Pvisit(i) � Nm � ZZC2
 V ol �spd �C; 2 �E(nndist)� \
� dCFigure 4 (a) shows that the percentage of blocks visited increases rapidly with the dimensionality, andreaches 100% with d = 45. This is a similar pattern to that observed above for hyper-cube MBRs.For d = 26, the critical performance threshold of 20% is already exceeded, and a sequential scan willperform better in practice, on average. 10

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

P
ro

b.
 o

f v
is

iti
ng

 a
 b

lo
ck

 (
P

vi
si

t)

Number of dimensions (d)

Hyper-Sphere MBR

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

P
ro

b.
 o

f v
is

iti
ng

 a
 b

lo
ck

 (
P

vi
si

t)

Number of dimensions (d)

Line MBR (Limiting Case)

(a) (b)Figure 4: The probability that a block must be visited if the MBR is: (a) a hyper-sphere; (b) a line.2.3.4 Line MBRs (Limiting Case)Given the results of the previous two sections, the di�culties of high dimensionality might be overcomeeither by increasing the number of points, or by reducing the extension of the MBR. Since real datasets are of given size, we focus here on the second possibility.The case of only a single data point per block is not interesting since, in a tree structure, the problemis then simply shifted to the next level of the tree. Therefore, the smallest possible MBR is achievedwhen only two points are stored on each block. In this case, the optimal MBR is the line joiningthese two points. Given the best possible split strategy|in each block, the closest two points arestored|the average length of the line/MBR is bounded below by the average NN-distance. Followingthe same analytic techniques as before, we can estimate the number of blocks visited. Figure 4 (b)shows these results. In this limiting case, the 20% threshold is exceeded when d � 280.An important consequence of this limiting case is the following. Even with an optimal index struc-ture, data partitioning methods for nearest-neighbor searches will, as dimensionality increases, alwaysdegenerate to visiting the entire data set. This result applies to the case of uniformly-distributedd-dimensional data, and also (we conjecture) to the case of arbitrarily-distributed data of fractaldimension d.3 The Vector-Approximation File (VA-File)As shown above, nearest-neighbor search tends towards linear complexity as dimensionality increases.Given this starting point, we propose here a search structure based not on data partitioning, but ratherupon adaption and improvement of a fundamentally linear algorithm. The vector approximation �le11

b number of bits per approximation bj number of bits in dimension jmj[k] k-th mark in dimension j ri;j region into which ~pi falls in dim jli; ui bounds: li � Ls(~q; ~p) � ui Lp(~a;~b) weighted distance functionTable 2: Notational summary for the VA-File method
1

2

3

4

5

00 01 10

10

01

00

11

data space

0.9 0.1
0.6
0.1
0.1

0.8

0.9
0.4

11 00
10 11
00 01
00 11

0.3 0.7 01 10

vector data VA-File

11

1

24

3

5

Figure 5: Building the VA-File(VA-File) is an array of compact, geometric approximations to data points. These smaller approxima-tions are scanned, and each approximation determines a lower and an upper bound on the distancebetween its data point and the query. These bounds frequently su�ce to �lter most of the vectorsfrom the search. IO costs are incurred only for those few candidates remaining after the �ltering step.This section describes the VA-File method and is organized as follows. Below, the VA-File itself isdescribed. Section 3.2 describes the use of approximations to derive lower and upper bounds, and,based on these bounds, Section 3.3 presents two nearest-neighbor search algorithms. The notationused in this section is summarized in Table 2.Assume N is the number of data points and d the number of dimensions. We use i 2 f1; : : : ; Ngto range over data points, and j 2 f1; : : : ; dg over dimensions. Hence, ~pi denotes an individual datapoint, and pi;j the j-th component within ~pi. Let ai denote the approximation of ~pi, and let bj be thenumber of bits per approximation in dimension j. The weighted metric Lp(~a;~b) is de�ned as:Lp(~a;~b) = 0@ dXj=1(wj � jaj � bj j)p1A1=p
12

3.1 StructureFor each vector ~pi, an approximation is derived (see Figure 5). The �rst step is to assign a numberof bits bj to allocate to each dimension j. We use here an even distribution. Hence, the relationshipbetween the total number of bits (b) and the number of dimensions (d) determines bj as follows:bj = � bd�+8<:1 if j � (b mod d)0 otherwiseTypically bj is a small integer: between 4 and 6.The number of bits in each dimension is used to determine marks on the corresponding axes, asillustrated in Figure 5, left. In particular, there are 2bj partitions along dimension j, requiring 2bj +1marks. The �rst (mj [0]) and the last mark (mj[2bj]) correspond to the minimum and maximum valuein this dimension. The remaining marks (mj[1]; : : : ;mj [2bj�1]) are computed in order to partition thedimension into 2bj more or less equally-full partitions. The resulting set of marks is kept constant whileinsert, update and delete operations are performed, and is recomputed if the di�erence of the numberof points in the partitions exceeds a given (tune-able) threshold. These techniques for establishingand maintaining marks are similar to those used for grid �les [NHS84] or for partitioned-hashingschemes [Ull88]. Techniques for maintaining equi-depth approximate histograms can also be appliedhere [GMP97].An approximation ai for the data point pi is generated as follows. Let the 2bj partitions in dimensionj be numbered 0; : : : ; 2bj � 1. Then, let ri;j be the number of the partition into which pi;j falls. Apoint falls into a partition only if it lies between the lower and upper bounds of that partition:mi[ri;j] � pi;j < mi[ri;j+1]The approximation ai is simply the concatenation of the binary bj-bit patterns for each partition inturn. The complete VA-File is an array of all these approximations, as illustrated in Figure 5, right.Notice that, unlike data-partitioning approaches such as grid �le [NHS84], R-trees [Gut84] and theirvariants, data is not partitioned and clustered.Given the set of marks, the data space is divided into 2b cells. In practice, approximations frequentlyconsists of more than 100 bits. As such, the number of cells exceeds the number of data points, andthe vast majority of cells are empty.3.2 BoundsBased on approximations, we now derive simple bounds on the distance between a query point and avector. Assume a query ~q and a distance function Lp, for some p. An approximation ai determines a13

a i

u i

p
i

li

00 01 10 11

10

01

00

11

data space
cell for

qFigure 6: Lower and upper bounds for Lp(~q; ~pi) given ai guaranteeing li � Lp(~q; ~pi) � uilower bound li and an upper bound ui such that:li � Lp(~q; ~pi) � uiThis is sketched in Figure 6. Intuitively, ai contains su�cient information to determine the cell inwhich ~pi lies. The lower bound li is simply the shortest distance from the query to a point in thatcell. Similarly, the upper bound ui is the longest distance to a point in that cell.Formally, li and ui are derived as follows. As with data points, a query ~q consists of componentsqj and these fall into partitions numbered rq;j. Also, given ai, components ri;j are easily extracted.Based on this information, the bounds li and ui are determined by the equations:li = �Pdj=1(wjli;j)p�1=p where li;j = 8>>>><>>>>:qj �mj [ri;j + 1]0mj [ri;j]� qj ri;j < rq;jri;j = rq;jri;j > rq;jui = �Pdj=1(wjui;j)p�1=p where ui;j= 8>>>><>>>>:qj �mj [ri;j]max (qj �mj [ri;j];mj [ri;j + 1]� qj)mj [ri;j + 1]� qj ri;j < rq;jri;j = rq;jri;j > rq;j3.3 Two Search AlgorithmsThe result of a nearest neighbor query must be the k data points closest to the query ~q. This sectiondescribes two di�erent search algorithms for �nding those vectors. Both algorithms are based on thesame underlying structure and bounds, as described above.An important property of bounds presented above is the following. Given a query point, it is possibleto precompute the distance, in each dimension, from the query point to each of the partition points.14

VAR ans: ARRAY OF INT; dst: ARRAY of REAL;a: ARRAY of Approx; ~p: ARRAY of Vector;FUNC InitCandidate(): REAL;VAR j: INT;FOR j := 1 TO k DOdst[j] := MAXREAL;RETURN MAXREAL;END-FUNC InitCandidate;
FUNC Candidate(�: REAL; i: INT): REAL;IF � < dst[k] THENdst[k] := �; ans[k] := i;SortOnDst(ans, dst, k);RETURN dst[k];END-FUNC Candidate;PROC VA-SSA(~q: Vector);VAR i: INT; li, �: REAL;� := InitCandidate();FOR i := 1 TO N DOli := GetBounds(ai, ~vq);IF li < � THEN� := Candidate(Lp(~pi; ~q), i);END-FOR;END-PROC VA-SSA;Figure 7: The simple-search algorithm: VA-SSAThis eliminates the need to square values during the search itself, and reduces the CPU costs ofthe algorithms described below. This leads to the surprising fact that the VA-File search algorithmscan consume less CPU resources than a scan algorithm. All costs associated with an individualquery (including these pre-processing costs) are included in the results presented in the next section.3.3.1 A `Simple-Search' Algorithm (VA-SSA)The simple-search algorithm, known as VA-SSA, is described in pseudo code in Figure 7. Arraysans and dst are maintained of the nearest k vectors encountered so far, and their distances to ~q,respectively. These are sorted in order of increasing distance. The approximations are scanned linearly.A vector is a candidate whenever less than k vectors have been encountered, or whenever the lowerbound li is less than the distance of the k-th vector currently in the answer set. The actual distancebased on Lp is evaluated only for these candidate vectors, hence only these candidates are visited.Thus, the VA-File is used as a simple �lter.The major advantages of this algorithm are simplicity, a low memory overhead, and that vectors arevisited sequentially (i.e. there are no long, random seeks). On the other hand, the performance of15

PROC VA-NOA(~q: Vector);VAR i: INT; �, li, ui: REAL; Heap: HEAP; Init(Heap);(* PHASE - ONE *)� := InitCandidate();FOR i := 1 TO N DOli; ui := GetBounds(ai, ~q);IF li <= � THEN� := Candidate(ui, i);InsertHeap(Heap, li, i);END-FOR;
(* PHASE - TWO *)� := InitCandidate();li, i := PopHeap(Heap);WHILE li < � DO� := Candidate(Lp(~pi; ~q), i);li, i := PopHeap(Heap);END-WHILE;END-PROC VA-NOA;Figure 8: The near-optimal search algorithm: VA-NOAsimple-search depends upon the ordering of the vectors and approximations. Despite this potentialdi�culty, Section 4.2 shows that this algorithm performs well in practice.3.3.2 A Near-Optimal Search AlgorithmNext, we present an algorithm (VA-NOA) that is near-optimal in the sense that it minimizes thenumber of vectors visited, i.e. it minimizes IO operations. In fact, this algorithm is optimal for allbut a few highly-degenerate cases (so far, there is only one situation known, for which VA-NOA is notoptimal1). The algorithm operates in two phases, and is sketch in Figure 8.During the �rst phase, the approximations are scanned, and the bounds li and ui are computed foreach vector. Then the following �ltering step is applied. Assume � is the k-th largest upper boundencountered so far. If an approximation is encountered such that li exceeds �, then ~pi can be eliminatedsince k better candidates have already been found. In our practical experiments, between 95% and99% of the vectors were eliminated during this �rst �ltering step. Let N1 denote the number ofcandidates remaining after this �rst phase. N1 proved to be sub-linear in the database size. The spaceoverhead of this algorithm is proportional to N1.During the second phase, the answer set is determined by visiting the vectors themselves in increasingorder of li. Not all the remaining candidates must be visited. Rather, this phase ends when a lowerbound is encountered which exceeds or equals the k-th distance in the answer set. The data structure1The degenerate, non-optimal conditions are the following. Assume ~pi is the �nal member of the answer set foundby VA-NOA. Further, let � be Lp(~q; ~pi). Then non-optimality occurs only if: 1) li = �, 2) the lower bound of thepreviously-visited vector is also �, 3) no vector is visited by VA-NOA after ~pi, and 4) no vector in the answer set has adistance to the query larger than �. These conditions are exceedingly improbable in practice.16

0

0.05

0.1

0.15

0.2

50 100 150 200 250 300 350 400 450 500

%
 V

ec
to

rs
 v

is
ite

d/
re

m
ai

ni
ng

Number of vectors (thousands)

d=50, uniformly distributed, k=10

VA-SSA
VA-NOA, after first phase (N1)

VA-NOA, after second phase (N2)

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

%
 V

ec
to

r
bl

oc
ks

 v
is

ite
d

Number of dimensions in vectors

N=100’000, uniformly distributed, k=10

VA-SSA
VA-NOA

(a) (b)Figure 9: (a) Vector selectivity for the VA-File as a function of the database size; and (b) blockselectivity as a function of dimensionality.supporting this procedure is a heap-based priority queue [Sed83]. Let N2 denote the number of stepsperformed during this phase. Then the total number of additional steps for this second phase isroughly N2 log2N1. In particular, only the N2 elements necessary to complete the search are sorted.4 Performance EvaluationTo show the practical relevance of the VA-File, we performed many evaluations based on syntheticdata sets and real data sets. The synthetic data set was obtained by randomly generating the desirednumber of points in the data space
 = [0; 1]d. The real data was a set of 45-dimensional featurevectors extracted form an image database consisting of over 50'000 images. The similarity methodfor color distribution described by Stricker and Orengo [SO95] generates 9-dimensional feature vectorsfor each image. A newer approach treats �ve overlapping parts of images separately, and generates a45-dimensional feature vector for each image. In all experiments reported here, the L2 metric with allweights equal to 1 was chosen. The number of nearest neighbors to return was always ten, i.e. k = 10.The experimental results presented in this section are computed on a Sun SPARCstation 4 with64 MBytes of main memory. We used the original implementation of the X-tree [BKK96], and anoptimized version of the original R*-tree [BKSS90]. Due to a limitation of the code, the X-tree couldonly maintain data with less than 32 dimensions. The following four search structures were evaluated.The VA-File, the R*-tree, the X-tree and a simple sequential scan. The sequential scan retrieved datain blocks of 400K, and the data for all the methods reported was stored on a local disk.
17

4.1 Selectivity Experiments for the VA-FileTwo sets of selectivity experiments for the VA-File approach were performed. Selectivity was measured�rstly as a function of the database size, and secondly as a function of the number of dimensions. Thedatabase consisted of (synthetic) uniformly-distributed data points. Figure 9 (a) shows improvedvector selectivity as the number of data points increases (d = 50). At N = 5000000, less than 0.1% ofthe vectors remain after the �rst phase of VA-NOA, and only about 0.02% of the vectors are actuallyvisited by this algorithm. At N = 500000, only 19 vectors are visited, while at N = 5000000 only 20vectors are visited. Thus, almost the minimum number of necessary visits (i.e. N2 = k = 10) wasachieved. The selectivity of the simple algorithm VA-SSA is about �ve times smaller but still veryhigh. At N = 500000, 134 vectors are visited, while at N = 5000000, 190 vectors are visited.Figure 9 (b) shows the percentage of blocks visited as a function of dimensionality. This graph directlyreects the estimated IO cost of the VA-File. For low-dimensional data spaces (d < 5), our thresholdof 20% is not reached with both algorithms, and other methods (e.g., R�-Tree, X-Tree, or scan)may generally perform better. However, for high-dimensional spaces, the VA-File o�ers signi�cantadvantages over either data-partitioning or scan-based methods. For d � 35, only around 1% (VA-NOA) and 5% (VA-SSA) data blocks are accessed. Moreover, performance remains equally good andeven improves as dimensionality increases.4.2 Performance Comparison with Other MethodsThe performance of NN-search in tree based methods is usually estimated by counting the number(or the fraction) of blocks visited. The CPU cost is considered to be marginal when compared to theIO costs of secondary-memory accesses. Figures 10 and 11 compare the performance of the di�erentaccess methods as a function of dimensionality for a uniformly-distributed data set (Figure 10), andfor a real data set (Figure 11). The left-hand sides show the percentage of blocks visited, and theright-hand sides show the total number of blocks visited, both as a function of dimensionality. The sizeof a block was always 8192 bytes. As our analysis predicts, the performance of the data-partitioningmethods degrades severely as dimensionality increases. In practice based on our 20% threshold, thesedata-partitioning methods should not be considered for data sets of dimensionality greater than aroundten (see Figure 10 (a) and Figure 11 (a)). Ultimately, these methods access even more blocks than asequential scan. For d > 10 and the metrics shown, the VA-File outperforms all other methods. Theseconclusions hold in general for both data sets.Notice that there is an apparent anomaly in Figure 11 (a). In particular, this graph appears tocontradict that of Figure 3 (b) (which predicts that the graph must reach 100%). The explanationfor this is the following. There is a hidden assumption in our analysis which comes into play here. In18

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

%
 V

ec
to

r/
Le

af
 b

lo
ck

s
vi

si
te

d

Number of dimensions in vectors

N=50’000, uniformly distributed, k=10

Scan
R*-Tree
X-Tree

VA-SSA
VA-NOA

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

T
ot

al
 n

um
be

r
of

 b
lo

ck
s

re
ad

s

Number of dimensions in vectors

N=50’000, uniformly distributed, k=10

Scan
R*-tree
X-tree

VA-SSA
VA-NOA

(a) (b)Figure 10: (a) Block selectivity and, (b) the total number of blocks accessed as a function of thenumber of dimensions. Synthetic data set (uniformly distributed).

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45

%
 V

ec
to

r/
Le

af
 b

lo
ck

s
vi

si
te

d

Number of dimensions in vectors

N=50’000, image database, k=10

Scan
R*-Tree
X-Tree

VA-SSA
VA-NOA

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45

T
ot

al
 n

um
be

r
of

 b
lo

ck
s

re
ad

s

Number of dimensions in vectors

N=50’000, image database, k=10

Scan
R*-tree
X-tree

VA-SSA
VA-NOA

(a) (b)Figure 11: (a) Block selectivity and, (b) the total number of blocks accessed as a function of thenumber of dimensions. Real data set.particular, the analysis assumes that all the data exists within a closed data space. In practice, realdata sets have outliers. The blocks on which these outliers reside are visited only very infrequently,implying that 100% of the blocks are not, in fact, visited in practice.4.3 CPU and Wall-Clock ExperimentsTo demonstrate the practical relevance of the VA-File, we performed a number of timing experimentsbased on the real image data set. In these experiments, the number of indexing dimensions was varied.Figure 12 (a) shows the CPU time, and Figure 12 (b) shows elapsed time (also called wall-clock time)of a nearest neighbor search for each of the four methods considered. Notice that the scale of the19

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45

C
P

U
 T

im
e

fo
r

N
N

-s
ea

rc
h

(m
s)

Number of dimensions in vectors

N=50’000, image database, k=10

Scan
R*-ree
X-tree

VA-SSA
VA-NOA

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45

E
la

ps
ed

 T
im

e
fo

r
N

N
-s

ea
rc

h
(m

s)

Number of dimensions in vectors

N=50’000, image database, k=10

Scan
R*-ree
X-tree

VA-SSA
VA-NOA

(a) (b)Figure 12: CPU time (a) and wall-clock time (b) for the image database

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

E
la

ps
ed

 T
im

e
fo

r
N

N
-s

ea
rc

h
(s

)

Number of vectors (thousands)

d=2, uniformly distributed, k=10

Scan
X-tree

VA-SSA
VA-NOA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 100 150 200 250 300

E
la

ps
ed

 T
im

e
fo

r
N

N
-s

ea
rc

h
(s

)

Number of vectors (thousands)

d=5, uniformly distributed, k=10

Scan
X-tree

VA-SSA
VA-NOA

(a) (b)Figure 13: Wall-clock time as function of the database size, for (a) 2 dimensions, and (b) 5 dimensionsy-axis is logarithmic in this �gure. In comparison with the tree based structures, the CPU cost of theVA-File is up to one order of magnitude smaller, in fact, the CPU time never exceeded 0.5 seconds.Surprisingly, despite its heavy use of bit operations, the CPU costs of the VA-File methods can evenbe less than those of the scan. This is because of the additional arithmetic which must be performedby the scan. Consequently, even if the whole database �ts into main memory, the VA-File can o�er aperformance improvement over a well-tuned scan.For very large databases, the feature vectors of the objects do not �t into main memory and IOoperations become the limiting factor. The wall-clock experiments presented in Figure 12 (b) areperformed on the local, uncached disk of our test machine. In low-dimensional data spaces, thesequential scan (5 � d � 10) and the X-tree (d < 5) produce least disk operation and executethe nearest neighbor search fastest. In high-dimensional data spaces, that is d > 10, the VA-Fileoutperforms all other methods. 20

Figure 12 (b) also shows that the tree-based methods are unsuitable if the data consists of morethan around 5 dimensions. In particular, even in very low-dimensional spaces the R*-tree is 10 timesslower than the sequential scan. Although fastest at low dimensionality, the performance of the X-treedegrades rapidly, and ultimately becomes even worse than that of the R*-tree.Finally, Figure 13 illustrates relative wall-clock times at low dimensionality in greater detail. Thesewall-clock experiments were performed on a uniformly distributed data set with 2 and 5 dimensions,respectively, and the database size was varied up to 300'000 points [notice that the previous exper-iments were performed on a �xed data-set size of 50'000 points]. For the 2-dimensional data set(Figure 13 (a)), the X-tree performed best and determined the nearest neighbors up to 10 timesfaster than the scan and the VA-File. As illustrated in Figure 13 (b), however, the advantage of theX-tree can be lost in the case of 5-dimensional data points. With the increasing number of points,the performance of the X-tree method improves since the data space becomes increasingly dense, andthus the inuence of the larger dimensionality is diminished. However, there is little di�erence be-tween the methods, and, for moderate database sizes, the VA-File may even to be preferred for thislow-dimensional case.5 Related WorkThere is a considerable amount of related work in the theory and practice of indexing high-dimensionalvector spaces. The general model of using abstract features as the basis for indexing in, for example,multimedia applications has been described by Faloutsos [Fal96]. We will not focus here on the arrayof multi-dimensional indexing techniques which have been proposed in the literature, except to saythat many of these techniques have been referenced within the body of this text, as appropriate. Aninteresting generalization of entire classes of data-partitioning access methods has been proposed byHellerstein, Naughton and Pfe�er [HNP95].The `indexability' results of Hellerstein, Koutsoupias and Papadimitriou [HKP97] are directly relatedto the analysis of Section 2. For range queries, these authors presented a minimum bound on the`access overhead' of B1� 1d , which tends toward B as dimensionality increases (B denotes the size ofa block). This result is consistent with the average-case results established here for nearest-neighborqueries with either hyper-cubic or hyper-spherical MBRs.There is also extensive previous work on cost-model{based analysis, similar to the results establishedhere. Early work in this area includes [FBF77, Cle79, Spr91], but failed to address the speci�cdi�culties of high dimensionality. Berchtold, B�ohm Keim and Kriegel have more recently addressedthe issue of high dimensionality, and, in particular, the boundary e�ects which impact the performanceof high-dimensional access methods. Our use of Minkowski Sums, much of our notation, and the21

MBR 20th percentile 90th percentile CaseHyper-Cubes 18 28 N = 100000000Hyper-Spheres 26 43Lines (limiting case) 280 600+Table 3: Summary of analytical results based on Figures 3 (b), 4 (a) and 4 (b)structure of our analysis for hyper-cubic MBRs follow their analysis. However, our analysis extendstheirs by considering not just hyper-cubic MBRs, but also hyper-spherical MBRs, and, as the limitingcase, linear MBRs.The VA-File method which we proposed has aspects in common with a number of existing methods.The way the data space is partitioned is similar to techniques used for grid �les [NHS84] or forpartitioned-hashing schemes [Ull88]. However, our use of this partitioning is more akin to its usewithin signature �les [Fal85, FC87], although signature �les are generally useful for partial matchqueries. Here, these techniques have been adapted to the requirements of nearest-neighbor queries.To the best of our knowledge, the structure and performance of the VA-File (or a similar structure)have not been presented previously.6 Conclusion and Future WorkWe provided an analysis of the performance of data-partitioning index methods (R-Tree, X-Tree, M-Tree, etc.) at low, moderate, and high dimensionality. We have focussed on nearest-neighbor queriessince these are frequently critical in the applications where similarity search in high-dimensional vectorspaces arise naturally (such as multimedia systems, decision support, data mining and geographicalsystems). We have focussed upon three classes of methods: those whose MBRs are hyper-cubes, thosewhose MBRs are hyper-spheres, and those whose MBRs are lines. The �rst two of these cases are ofpractical importance since there exist many methods which assume such MBRs. The case of lines,however, is of theoretical importance since it places a bound on the possible average performance ofany data-partitioning method. Finally, while our bounds for hyper-cubes are tighter than our boundsfor hyper-spheres, we do not feel that that necessarily indicates that hyper-spheres are a better choicefor data-partitioning methods. Rather, this result stems from the fact that we were able to make use ofstronger information in obtaining bounds for the hyper-cubes case, than we were for the hyper-spherescase.Given this analytical basis, we then described the VA-File, an approximation-based organization forhigh-dimensional data sets, and have provided a performance evaluation for this method. Although22

deceptively simple, experimental results based on both selectivity and wall-clock experiments are verypromising. At moderate and high dimensionality, and for moderate and large data sets, the VA-Filemethod can outperform any other method known to the authors. We have also shown that performanceimproves as dimensionality increases (whereas the performance of data-partitioing methods degradesas dimensionality increases). The experiments reported here o�er one of the most comprehensivestudies of the practical impact of high dimensionality on a variety of similarity search methods.Although presented wholly in terms of the Lp norms, the results presented here depend relativelyweakly upon which particular distance metric is chosen. Rather, the requirement is that a lower anda upper bound can be derived based on the geometrical approximation which is used.The simple, at structure of the VA-File o�ers a number of important advantages in addition to theperformance issues discussed in detail here. It is possible to integrate search in VA-File structures overmultiple vector spaces, and also over signature �les for non-metric spaces. This capability can be usedfor conjunctive queries. It is also possible to include weights in the distance metric, thereby accommo-dating weighted search and, as a special case, partial match. Weighted search is necessary to supportrelevance feedback mechanisms. Also, extensions to the method incorporating parallelism, distribu-tion, concurrency and recovery (all of which are non-trivial for tree-based methods) are simpli�ed bythe simple at structure. These issues are all subject to future work.Acknowledgments. This work has been partially funded in the framework of the European ESPRITproject HERMES (project no. 9141) by the Swiss Bundesamt f�ur Bildung und Wissenshaft (BBW, grant no.93.0135), and partially by the ETH cooperative project on Integrated Image Analysis and Retrieval. We alsothank the authors of [BKSS90, BKK96] for making their R*-tree and X-tree implementations available to us.References[BBB+97] S. Berchtold, C. B�ohm, B. Braunm�uller, D.A. Keim, and H.-P. Kriegel. Fast parallel similaritysearch in multimedia databases. In Proceedings of the ACM SIGMOD International Conference onManagement of Data, pages 1{12, Tucson, USA, 1997.[BBKK97] S. Berchtold, C. B�ohm, D.A. Keim, and H.-P. Kriegel. A cost model for nearest neighbour search.In Proceedings of the ACM Symposium on Principles of Database Systems (PODS), pages 78{86,Tucson, USA, 1997.[BF79] J.L. Bentley and J.H. Friedman. Data structures for range searching. ACM Computing Surveys,11(4):397{409, Decmeber 1979.[BKK96] S. Berchtold, D.A. Keim, and H.-P. Kriegel. The X-tree: An index structure for high-dimensionaldata. In Proceedings of the International Conference on Very Large Databases (VLDB), pages 28{39,1996. 23

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An e�cient and robustaccess method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD InternationalConference on Management of Data, pages 322{331, Atlantic City, NJ, 23{25 May 1990.[Cle79] J.G. Cleary. Analysis of an algorithm for �nding nearest-neighbors in euclidean space. ACM Trans-actions on Mathematical Software, 5(2), 1979.[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An e�cient access method for similarity search inmetric spaces. In Proceedings of the International Conference on Very Large Databases (VLDB),Athens, Greece, 1997.[Csi95] A. Csillaghy. Retrieving information from digital solar radio spectrograms. In Coronal MagneticEnergy Releases (Lecture Notes in Physics). Springer Verlag, 1995.[Csi97] A. Csillaghy. Information extraction by local density analysis: A contribution to content-basedmanagement of scienti�c data. Ph.D. thesis, Institut f�ur Informationssysteme, 1997.[Dim97] A. Dimai. Di�erences of global features for region indexing. Technical Report 177, ETH Z�urich,Feb. 1997.[Fal85] C. Faloutsos. Access methods for text. ACM Computing Surveys, 17(1):49{74, March 1985. Alsopublished in/as: \Multiattribute Hashing Using Gray Codes", ACM SIGMOD, 1986.[Fal96] C. Faloutsos. Searching Multimedia Databases By Content. Kluwer Academic Press, 1996.[FBF77] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for �nding best-matches in logarithmictime. TOMS, 3(3), 1977.[FC87] C. Faloutsos and S. Christodoulakis. Description and performance analysis of signature �le methodsfor o�ce �ling. ACM Transactions on O�ce Information Systems, 5(3):237{257, July 1987.[FK94] C. Faloutsos and I. Kamel. Beyond uniformity and independence: Analysis of R-trees using theconcept of fractal dimension. In Proceedings of the ACM Symposium on Principles of DatabaseSystems (PODS), 1994.[FSN+95] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system.Computer, 28(9):23{32, September 1995.[GMP97] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate histograms.In Proceedings of the International Conference on Very Large Databases (VLDB), 1997.[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACMSIGMOD International Conference on Management of Data, pages 47{57, Boston, MA, June 1984.[HKP97] J.M. Hellerstein, E. Koutsoupias, and C.H. Papadimitriou. On the analysis of indexing schemes. InProceedings of the ACM Symposium on Principles of Database Systems (PODS), 1997.[HNP95] J.M. Hellerstein, J.F. Naughton, and A. Pfe�er. Generalized search trees for database systems. InProceedings of the International Conference on Very Large Databases (VLDB), 1995.24

[HS95] G.R. Hjaltason and H. Samet. Ranking in spatial databases. In Proceedings of the Fourth Interna-tional Symposium on Advances in Spatial Database Systems (SSD95), number 951 in Lecture Notesin Computer Science, pages 83{95, Portland, Maine, August 1995. Springer Verlag.[KS97] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional nearest neighborqueries. In Proceedings of the ACM SIGMOD International Conference on Management of Data,pages 369{380, Tucson, Arizon USA, 1997.[LJF94] K.-I. Lin, H.V. Jagadish, and C. Faloutsos. The TV-tree: An index structure for high-dimensionaldata. The VLDB Journal: The International Journal on Very Large Data Bases, 3(4):517{549,October 1994.[NHS84] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid �le: An adaptable symmetric multikey�le structure. ACM Transactions on Database Systems, 9(1):38{71, March 1984.[Sam89] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.[Sed83] R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, 1983.[SO95] M. Stricker and M. Orengo. Similarity of color images. In Storage and Retrieval for Image andVideo Databases, SPIE, San Jose, CA, 1995.[Spr91] R.F. Sproull. Re�nements to nearest-neighbor search in k-dimensional trees. Algorithmica, 1991.[Ull88] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Computer SciencePress, 1988.

25

