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A new type of hidden symmetry has been found. It can be used to find the complete
spectra for a broad class of problems including all known exactly solvable problems
of quantum mechanics through elementary calculations. How this symmetrycan
explain reflectionless potentials is shown.
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1. Supersymmetryr is attracting increasing interest among physicists, and its
fields ofapplication are far from being exhausted. In this letter we analyze the energy
spectrum of a supersymmetry quantum mechanics, which is an important model for
studying the structure of supersymmetry theories.' We derive the conditions under
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which the problem of finding the complete spectrum has an exact and very simple
solution.

This result may be of interest in two ways. First, it suggests some new aspects of
exactly solvable models (the exact solution of the spectrum problem, which we are
discussing here, is related to a sort of hidden symmetry of the Hamiltonian). Second, it
simplifies the problem of finding the complete spectra for a broad class of one-dimen-
sional problems (or of problems which can be reduced to one-dimensional problems) in
ordinary quantum mechanics. In particular, this is true of all known3 exactly solvable
spectral problems. All such problems have a hidden symmetry, and this symmetry
makes the problem of calculating the spectra an elementary one; the answer can t'
found almost immediately.

This approach also furnishes an explanation for the reflectionless nature ofpoten-
tials of the type U (xl: - n(n * ll/2chzx, which are important in the theory of soli-
tons: Such potentials are related by transformations of this symmetry with the poten-
tial U(x):0.

2. The Hamiltonian of our supersymmetry quantum mechanics is2

H = (p2 + w 2(x) + osW'(x))l 2

(o, are the Pauli matrices) and acts on two-component wave functions. The supersym-
metry generators Qr: @rp * o2Wl/2;Qr: (o2p - orW)/2 satisfy the algebra
Qi : Q7 : H /2;lQpQrl :o;[H,Qrl : [H,Q): 0, making the spectrum offlnon-
negative and the levels degenerate. The only level which may be nondegenerate is the
lowest, whose energy in this case is zero.'l

It follows that the two customary one-dimensional Hamiltonians l/1 ,
H t=  p2 /2+ (w2(x)  t  w , (d )  =  p2 l2+ ( I * (x ) ,  e l

have identical spectra for an arbitrary function W (x).The only exceptional case may be
the lowest level of one of Ilr , in which case its energy is exactly zero. Below we use
these two properties of supersymmetry theories-the level degeneracy and the vanish-
ing ground-state energy-to find the exact spectrum.

3. We assume that H _ has a zero level [i.e., that t/to - exp( - t'W(x'px') is nor-
malizablel.

How are the potentials Un - (W'+ W'l/2 related? If they ditrer only in the
parameter*t which appear in them (including an additive constant), then the complete
spectrum of the Hamiltonians H * and thus of the supersymmetry HamiltonianH can
be found easily. To show this, we assume

U* fa, x) = U_(ar, x) + R(ar),

where a is the set of parameters, and a, : f (a).

We construct the series of Hamiltonians Hn,n :0,1,2, ...

Hn = p2 12 + [/-(an, *) * 
nE 

R(ae),
k=t

where cn : ft"t(a) (i.e., /is applied n times), and we compare the spectra fI, and, H , * , .
Using (3), we find

(3)

(4)

357 JETP Lett., Vol. 38, No. 6, 25 September 1983 L. E. Gendensht€ih 357



n

Hn- ,  :  p2 /2+u * (an ,  x )+  E 
rR(ay) .  

(5 )

Comparing expressions (4) and (5), and using the results of Section 2, we see that

H n and ti ^ * , iuui identical spectra except for the lowest level of I/, , whose energy is

>i:rR(ao), as follows from (4). In going from Hn to H,-1 , €tc', we get back our

o.iglnut liamiltonian' Ho: H - : p2/2 + U -(atl, whose lowest level is zero, and all

of whose other levels coincide with the lowest levels of the Hamiltonians I1". The

complete spectrum 11- is thus given by E, : 2i': t'R (ao )' The spectrum of a Hamil-

tonian with a potential U la;'l : U -(a,xl + C lal is thus

En= En+ c(a)= 
r2r^{oP 

+ c(a).

Expression (6) is the basic result of this paper.

4. To demonstrate the use of this approach we consider the interesting example of

the potential U(aA): - a|a * ll/Zch2x, which is known to be reflectionless for in-

teger values of a. In this case we have ll/ (xl : s1lDC. we have

i *1a ,x1 :  -  o (a l l l /Zch2x  +  a ' /2 .  Hence ar : f (a ) :a  -  l ,an  :  a  -  n 'C(a l

:-  -  oi /z;  and R (ao) :(atx-t  -  a 'u1/2, so that ) [ : ,R (a1):@2 -at" l tz '  The com-

plete spectrum is then, according to (6)'

E n = - a z r l Z = - ( n - n ) 2 1 2 .

The procedure for finding the spectra in all other cases (see the following section)

is completely analogous and equally elementary.

In the example at hand, the potential U (a,xl with integer a is reduced by a se-

quence of transformations (3) to a potentials U(x):O, since cn : a - n.It is for this

i"urol that potentials of this sort are reflectionless: The eigenfunctions of the Hamilto-

nians I/, and H^+ I are coupled by the action of the operators Q, -ld /dx + lv(xll,

which do not transform the functions exp( * ih) into each other, and with U (x):O

there is obviously no reflection.

5. If the potentials [/ * satisfy condition (3), i.e., if the functio n w (a a\ satisfies the

functional-differential equation

W 2 ( a , x ) + W ' ( a , x ) = t l t ' ( o r , * ) - t i l ' ( o r , x ) + ? R ( a 1 ) ,  0 )

then the spectra of the Hamiltonians H , and thus the spectrum of supersymmetry

model (l) can be found by elementary calculations by the approach described here. We

have found the following solutions of Eq. (7):

W =af, *b; tr= af2 +blf2; 1l= (a+t t/  pf i  +f,111r,

where the functions/,, fr, andf, satisfy the (separable-variable) differential equations

"f i : pfi * qfi * r, f 
', : pf7 + q, f 5 : JpfT + q with arbitrary constants p, q, and r.

T[e corresponding potentials incorporate all potentials for which exact spectra have

been found so far3)(only eight such potentials were given in Ref. 3) and also several

other potentials with the same qualitative behavior:

(6)

(8)
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tl U(x) - 
a(a - r) 

- lb 
* t) ah,+ l) +b2,' vt^r 

2 ,lrt 
- 

2"h\ ; 2) U(x)= 
l rt r;- 

- b ( ? n + l ) c h x

2 shzx '

7 . \  r t / - , _  b ' - a ( a + 1 7 ,  b ( ? t + l ) s h x  . \  r t , _ , , _ a ( a - l ) + b 2  b ( \ a - l ) c o s xr) u(x/=-T&;- * --r;p;-; 4) u(x)=-.#:__r,"r, ,

Their spectra,

l )  E n =  - ( b  - a  - 2 n ) 2 / 2 ;  2 ) E n =  _ ( a  _  n ) 2 / 2 ;  3 ) E n =  _  ( a  _ n ) r / 2 ;

4) En = (a + n)2 /2,

are found by analogy with the procedure used in Sec. 4.

Whether Eq. (7) has solutions other than those in (8) remains an open question. It
may be that the "shape invariance" of the potentials, which is expressed by Eqs. (3)
and (7), is also a necessary condition for the possibility in principle offinding theLxact
spectrum.

Finally, we note that the energy of the ground state can be calculated for the
potential u (x) : (rl,t - w')/2 + c with the derivative u (xl provided that
r/, : exp( - l'llt(x')dx') is normalizable. For example, for U(x) - (a3x6 _ 3ax2l/2 we
fiid Eo: fi (reckoned from the bottom of the potential well).

There is the interesting possibility that this approach might be generalized to
multidimensional cases and to field theory.

I wish to thank D. v. volkov,y.f-. Katsnel'son, I. v. Kriva, and A. I. pashnev
for discussions.

rThe existence ofa level with a zero energy means that the supersymmetry is not spontaneously broken.
This is the case if one of the functions t : exp( t f ti/(x'px,l is normalizable.22These parameters are analogs of the coupling and masses in field theorv.r)Not counting piecewise-constant potentials.

rYu. A. Gol'fand and E. p. Likhtman, pis'ma Zh. Eksp. Teor. Fiz. 13, 4s2 (lgltl pETp Letr. 13, 190(1971)l; D. v. volkov and v. p. Akutov, pis'ma Zh. Eksp. Teor. Fiz. 16,62t (197i) IJETP Leu. 16, 438(l972ll; J. Wess and B. Zumino, Nucl. phys. Blli0,,39 (lg:,4).2E. Witten, Nucl. phys. BIES, 513 (l9Sl).
'Y' G' Bagrov et a/.' Tochnye resheniya relyativistskikh volnovykh uravnenii (Exact Solutions of RelativisticWave F4uations), Novosibirsk, 1982, p. 64.
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