Finite length Solenoid potential and field

The surface current density is (Jackson, 1998):

$$
\vec{K}=\frac{I}{L} \delta(\rho-a), \quad z \in\left(-\frac{L}{2}, \frac{L}{2}\right)
$$

The vector potential is:

$$
\begin{gathered}
\vec{A}=A_{\phi} \hat{\phi}=\hat{\phi} \frac{\mu_{0}}{4 \pi} \frac{I}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{\delta\left(\rho^{\prime}-a\right) \cos \phi^{\prime}}{\sqrt{\rho^{2}+\rho^{\prime 2}+\left(z-z^{\prime}\right)^{2}-2 a \rho \cos \phi^{\prime}}} \rho^{\prime} d \rho^{\prime} d \phi^{\prime} d z^{\prime} \\
A_{\phi}=\frac{\mu_{0}}{2 \pi} \frac{I a}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} \int_{0}^{\pi} \frac{\cos \phi^{\prime}}{\sqrt{\rho^{2}+a^{2}+\left(z-z^{\prime}\right)^{2}-2 a \rho \cos \phi^{\prime}}} d \phi^{\prime} d z^{\prime}
\end{gathered}
$$

Simplify the form by setting $\zeta=\left(z-z^{\prime}\right)$ and the integration of ζ is a log function (Edmund E. Callaghan, 1960):

$$
\begin{gathered}
\int_{0}^{\pi} \cos \phi^{\prime}\left[\ln \left(\zeta+\sqrt{\zeta^{2}+\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}}\right)\right]_{\zeta_{-}}^{\zeta_{+}} d \phi^{\prime}=\left[\int_{0}^{\pi} \cos \phi^{\prime} \ln (\zeta+\alpha(\zeta)) d \phi^{\prime}\right]_{\zeta_{-}}^{\zeta_{+}} \\
\alpha(\zeta)=\sqrt{\zeta^{2}+\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}}, \quad \zeta_{ \pm}=z \mp \frac{L}{2}
\end{gathered}
$$

Integration by path:

$$
\left.\int_{0}^{\pi} \cos \phi^{\prime} \ln (\zeta+\alpha(\zeta)) d \phi^{\prime}=\sin \phi^{\prime} \ln (\zeta+\alpha(\zeta))\right]_{0}^{2 \pi}-\int_{0}^{\pi} \sin \phi^{\prime} d(\ln (\zeta+\alpha(\zeta)))
$$

The first term is zero, and the derivative of $\ln (\zeta+\alpha(\zeta))$ is:

$$
\frac{d \ln (\zeta+\alpha(\zeta))}{d \phi^{\prime}}=\frac{\rho a \sin \phi^{\prime}}{(\alpha(\zeta)+\zeta) \alpha(\zeta)}
$$

Multiple by $(\alpha(\zeta)+\zeta) /(\alpha(\zeta)-\zeta)$

$$
=\frac{(\alpha(\zeta)-\zeta) \rho a \sin \phi^{\prime}}{\left(\alpha^{2}(\zeta)+\zeta^{2}\right) \alpha(\zeta)}=\frac{\rho a \sin \phi^{\prime}}{\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)}-\frac{\zeta \rho a \sin \phi^{\prime}}{\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right) \alpha(\zeta)}
$$

The first term on the right side appeared on both $\alpha_{ \pm}$, then,

$$
\begin{gathered}
\int_{0}^{\pi} \sin \phi^{\prime} d(\ln (\zeta+\alpha(\zeta)))=-\int_{0}^{\pi} \frac{\zeta \rho a \sin ^{2} \phi^{\prime}}{\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right) \alpha(\zeta)} d \phi^{\prime} \\
A_{\phi}=\frac{\mu_{0}}{2 \pi} \frac{I a^{2} \rho}{L}\left[\zeta \int_{0}^{\pi} \frac{\sin ^{2} \phi^{\prime}}{\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right) \sqrt{\zeta^{2}+\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}}} d \phi^{\prime}\right]_{\zeta-}^{\zeta_{+}}
\end{gathered}
$$

By using the change of integration interval

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{\left((a+\rho)^{2}-4 \rho a \sin ^{2} \theta\right) \sqrt{\zeta^{2}+(a+\rho)^{2}-4 \rho a \sin ^{2} \theta}} d \theta \\
=\frac{k h^{2}}{8(\sqrt{a \rho})^{3}} \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=\frac{k h^{2}}{2(\sqrt{a \rho})^{3}} \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} \theta-\sin ^{4} \theta}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
h^{2}=\frac{4 a \rho}{(a+\rho)^{2}} \\
k^{2}=\frac{4 a \rho}{(a+\rho)^{2}+\zeta^{2}}
\end{gathered}
$$

The integral can be spitted into 2 parts, the first part is (Milton Abramowitz, 1965) (NIST Digital Library of Mathematical Functions) :

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} \theta}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=-\frac{1}{h^{2}} \int_{0}^{\frac{\pi}{2}} \frac{1-h^{2} \sin ^{2} \theta-1}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=-\frac{1}{h^{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}}-\frac{1}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=\frac{1}{h^{2}}\left(\Pi\left(h^{2}, k^{2}\right)-K\left(k^{2}\right)\right)
\end{gathered}
$$

Here

$$
\Pi(n, m)=\int_{0}^{\frac{\pi}{2}} \frac{1}{\left(1-n \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}} d \theta
$$

It is the elliptic integral of $3^{\text {rd }}$ kind.
The $2^{\text {nd }}$ part is:

$$
\int_{0}^{\frac{\pi}{2}} \frac{-\sin ^{4} \theta}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta
$$

$$
\begin{gathered}
=\frac{1}{h^{4}} \int_{0}^{\frac{\pi}{2}} \frac{1-h^{4} \sin ^{4} \theta-1}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=\frac{1}{h^{4}} \int_{0}^{\frac{\pi}{2}} \frac{1+h^{2} \sin ^{4} \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}-\frac{1}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=\frac{1}{h^{4}}\left(K\left(k^{2}\right)+\frac{h^{2}}{k^{2}}\left(K\left(k^{2}\right)-E\left(k^{2}\right)\right)-\Pi\left(h^{2}, k^{2}\right)\right)
\end{gathered}
$$

Thus, combine it and we have:

$$
A_{\phi}=\frac{\mu_{0}}{4 \pi} \frac{I}{L} \sqrt{\frac{a}{\rho}}\left[\zeta k\left(\frac{k^{2}+h^{2}-h^{2} k^{2}}{h^{2} k^{2}} K\left(k^{2}\right)-\frac{1}{k^{2}} E\left(k^{2}\right)+\frac{h^{2}-1}{h^{2}} \Pi\left(h^{2}, k^{2}\right)\right)\right]_{\zeta-}^{\zeta_{+}}
$$

The magnetic field is the curl

$$
\begin{gathered}
B_{\rho}=\left[\nabla \times A_{\phi}\right]_{\rho}=-\frac{\partial}{\partial z}\left(A_{\phi}\right)=-\frac{\partial}{\partial \zeta}\left(A_{\phi}\right) \\
B_{z}=\left[\nabla \times A_{\phi}\right]_{z}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\phi}\right)=\frac{1}{\rho} A_{\phi}+\frac{\partial A_{\phi}}{\partial \rho}
\end{gathered}
$$

Using the derivative formulae for elliptic integral:

$$
\begin{gathered}
\frac{d}{d x} K(x)=-\frac{1}{2 x} K(x)+\frac{1}{2 x(1-x)} E(k) \\
\frac{d}{d x} E(x)=-\frac{1}{2 x} K(x)+\frac{1}{2 k} E(k) \\
\frac{d}{d x} \Pi(v, x)=\frac{1}{2(x-1)(v-x)} E(k)+\frac{1}{2(v-x)} \Pi(v, x)
\end{gathered}
$$

Thus:

$$
\begin{gathered}
\frac{d}{d k}\left(k\left(\frac{k^{2}+h^{2}-h^{2} k^{2}}{h^{2} k^{2}} K\left(k^{2}\right)-\frac{1}{k^{2}} E\left(k^{2}\right)+\frac{h^{2}-1}{h^{2}} \Pi\left(h^{2}, k^{2}\right)\right)\right) \\
=-\frac{1}{k^{2}} K\left(k^{2}\right)+\frac{h^{2}}{k^{2}\left(h^{2}-k^{2}\right)} E\left(k^{2}\right)+\frac{h^{2}-1}{\left(h^{2}-k^{2}\right)} \Pi\left(h^{2}, k^{2}\right) \\
\frac{d k}{d z}=-\frac{k^{3}\left(z \pm \frac{L}{2}\right)}{4 a \rho}, \quad \frac{d k}{d \rho}=\frac{k}{2 \rho}-\frac{k^{3}(a+\rho)}{4 a \rho} \\
\frac{d}{d z}(z f(z))=f(z)+z \frac{d f(z)}{d z}, \quad \frac{d}{d \rho}(\sqrt{\rho} f(\rho))=\frac{f(\rho)}{2 \sqrt{\rho}}+\sqrt{\rho} \frac{d f(\rho)}{d \rho}
\end{gathered}
$$

Then

$$
B_{\rho}=\frac{\mu_{0}}{2 \pi} \frac{I}{L} \sqrt{\frac{a}{\rho}}\left[\left(\frac{k^{2}-2}{2 k} K\left(k^{2}\right)+\frac{1}{k} E\left(k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}}
$$

Or, by using integration identity

$$
\begin{gathered}
\frac{d}{d x} \int_{a}^{b} f(x) d x=f(b)-f(a) \\
B_{\rho}=\frac{\mu_{0}}{2 \pi} \frac{I a}{L}\left[\int_{0}^{\pi} \frac{\cos \phi^{\prime}}{\sqrt{\zeta^{2}+\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}}} d \phi^{\prime}\right]_{\zeta_{-}}^{\zeta_{+}}
\end{gathered}
$$

Since the angle integration is elliptic integral.

$$
B_{\rho}=\frac{\mu_{0}}{2 \pi} \frac{I}{L} \sqrt{\frac{a}{\rho}}\left[\left(\frac{k^{2}-2}{2 k} K\left(k^{2}\right)+\frac{1}{k} E\left(k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}}, \quad k^{2}=\frac{4 a \rho}{(a+\rho)^{2}+\zeta^{2}}
$$

Thus, the result is double verified. We should notices that the radial component of the magnetic field is just like 2 coil separated by distance L vertically.

The z-component is :

$$
B_{z}=-\frac{\mu_{0}}{4 \pi} \frac{I}{L 2 \sqrt{a \rho}}\left[\zeta k\left(K\left(k^{2}\right)+\frac{a-\rho}{a+\rho} \Pi\left(h^{2}, k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}}
$$

Or we can compute $\frac{\partial A_{\phi}}{\partial \rho}$, we use

$$
A_{\phi}=\frac{\mu_{0}}{2 \pi} \frac{I a}{L}\left[\int_{0}^{\pi} \cos \phi^{\prime} \ln (\zeta+\alpha(\zeta)) d \phi^{\prime}\right]_{\zeta_{-}}^{\zeta_{+}}
$$

By

$$
\frac{\partial}{\partial \rho} \ln (\zeta+\alpha(\zeta))=\frac{\rho-a \cos \phi^{\prime}}{\alpha(\zeta)(\alpha(\zeta)+\zeta)}
$$

Using the same trick

$$
\begin{gathered}
\frac{\rho-a \cos \phi^{\prime}}{\alpha(\zeta)(\alpha(\zeta)+\zeta)}=\frac{\left(\rho-a \cos \phi^{\prime}\right)(\alpha(\zeta)-\zeta)}{\alpha(\zeta)\left(\alpha^{2}(\zeta)+\zeta^{2}\right)} \\
=\frac{\left(\rho-a \cos \phi^{\prime}\right)(\alpha(\zeta)-\zeta)}{\alpha(\zeta)\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)}=\frac{\left(\rho-a \cos \phi^{\prime}\right)}{\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)}-\frac{\left(\rho-a \cos \phi^{\prime}\right) \zeta}{\alpha(\zeta)\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)}
\end{gathered}
$$

Therefore:

$$
\frac{\partial A_{\phi}}{\partial \rho}=-\frac{\mu_{0}}{2 \pi} \frac{I a}{L}\left[\int_{0}^{\pi} \frac{\zeta \rho \cos \phi^{\prime}-a \zeta \cos ^{2} \phi^{\prime}}{\alpha(\zeta)\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)} d \phi^{\prime}\right]_{\zeta_{-}}^{\zeta_{+}}
$$

Combined with

$$
\frac{1}{\rho} A_{\phi}=\frac{\mu_{0}}{2 \pi} \frac{I a}{L}\left[\int_{0}^{\pi} \frac{a \zeta \sin ^{2} \phi^{\prime}}{\alpha(\zeta)\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)} d \phi^{\prime}\right]_{\zeta_{-}}^{\zeta_{+}}
$$

Then the magnetic field is

$$
B_{z}=\frac{\mu_{0}}{2 \pi} \frac{I a}{L}\left[\int_{0}^{\pi} \frac{\zeta\left(a-\rho \cos \phi^{\prime}\right)}{\alpha(\zeta)\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right)} d \phi^{\prime}\right]_{\zeta_{-}}^{\zeta_{+}}
$$

With change the interval

$$
\begin{gathered}
\int_{0}^{\pi} \frac{\zeta\left(a-\rho \cos \phi^{\prime}\right)}{\left(\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}\right) \sqrt{\zeta^{2}+\rho^{2}+a^{2}-2 \rho a \cos \phi^{\prime}}} d \phi^{\prime} \\
=\int_{0}^{\frac{\pi}{2}} \frac{a \zeta+\rho \zeta \cos (2 \theta)}{\left((a+\rho)^{2}-4 \rho a \sin ^{2} \theta\right) \sqrt{\zeta^{2}+(a+\rho)^{2}-4 \rho a \sin ^{2} \theta}} d \theta \\
=\frac{k h^{2}}{8(\sqrt{a \rho})^{3}} \int_{0}^{\frac{\pi}{2}} \frac{(a+\rho) \zeta-2 \rho \zeta \sin ^{2} \theta}{\left(1-h^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} d \theta \\
=\frac{k h^{2}}{8(\sqrt{a \rho})^{3}}\left((a+\rho) \zeta \Pi\left(h^{2}, k^{2}\right)-\frac{2 \rho \zeta}{h^{2}}\left(\Pi\left(h^{2}, k^{2}\right)-K\left(k^{2}\right)\right)\right) \\
=\frac{k \zeta}{8(\sqrt{a \rho})^{3}}\left(\left(h^{2}(a+\rho)-2 \rho\right) \Pi\left(h^{2}, k^{2}\right)+2 \rho K\left(k^{2}\right)\right) \\
=-\frac{k \zeta}{8(\sqrt{a \rho})^{3}}\left(2 \rho K\left(k^{2}\right)+\frac{2 \rho(a-\rho)}{a+\rho} \Pi\left(h^{2}, k^{2}\right)\right) \\
\quad=-\frac{k \zeta}{4 a \sqrt{a \rho}}\left(K\left(k^{2}\right)+\frac{(a-\rho)}{a+\rho} \Pi\left(h^{2}, k^{2}\right)\right)
\end{gathered}
$$

Thus we get the same result.

$$
B_{z}=-\frac{\mu_{0}}{4 \pi} \frac{I}{L 2 \sqrt{a \rho}}\left[\zeta k\left(K\left(k^{2}\right)+\frac{a-\rho}{a+\rho} \Pi\left(h^{2}, k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}}
$$

In conclusion, the field is defined by:

$$
\begin{gathered}
A_{\phi}=\frac{\mu_{0} I}{4 \pi} \frac{1}{L} \sqrt{\frac{a}{\rho}}\left[\zeta k\left(\frac{k^{2}+h^{2}-h^{2} k^{2}}{h^{2} k^{2}} K\left(k^{2}\right)-\frac{1}{k^{2}} E\left(k^{2}\right)+\frac{h^{2}-1}{h^{2}} \Pi\left(h^{2}, k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}} \\
B_{\rho}=\frac{\mu_{0} I}{4 \pi} \frac{1}{L} \sqrt{\frac{a}{\rho}}\left[\left(\frac{k^{2}-2}{k} K\left(k^{2}\right)+\frac{2}{k} E\left(k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}} \\
B_{z}=-\frac{\mu_{0} I}{4 \pi} \frac{1}{2 L \sqrt{a \rho}}\left[\zeta k\left(K\left(k^{2}\right)+\frac{a-\rho}{a+\rho} \Pi\left(h^{2}, k^{2}\right)\right)\right]_{\zeta_{-}}^{\zeta_{+}}
\end{gathered}
$$

With

$$
h^{2}=\frac{4 a \rho}{(a+\rho)^{2}}, \quad k^{2}=\frac{4 a \rho}{(a+\rho)^{2}+\zeta^{2}}
$$

Here is some plot

Works Cited

Edmund E. Callaghan, S. H. (1960). The Magnetic Field of a Finite Solenoid (Techical note D-465). Washington, USA: Nation Aeronautics and Space Administration.

Jackson, J. D. (1998). Classical Electrodynamics. John Wiley \& Sons, Inc.
Milton Abramowitz, I. A. (1965). Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover.
NIST Digital Library of Mathematical Functions. (n.d.). Retrieved from http://dlmf.nist.gov/

