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1 INTRODUCTION

Concurrent programming in shared memory multiprocessor (SMP)

systems is challenging. One of the difficulties is that program-

mers are accustomed to reasoning about single-threaded execution.

Locking primitives help to make concurrent execution easier to rea-

son about by providing mutual exclusion of critical sections, but

often suffer from poor scalability [3]. This forces programmers to

explicitly reason about finer grain locking strategies, which is often

error-prone.

A different approach is to use transactional memory (TM), which

combines the same ease-of-use as coarse grain locking with the per-

formance benefits of finer grain locking. There has been a lot of

work in the academic literature about both hardware and software

based TM systems [8][5][6], but only recently has a mainstream im-

plementation been proposed by Intel. Transactional Synchroniza-

tion Extensions (TSX) is a new specification recently introduced

by Intel for the upcoming Haswell multicore processor [1].

The specification introduces a new software interface for exe-

cuting instructions transactionally. This includes three new main

instructions: XBEGIN, XEND, and XABORT. XBEGIN informs the

processor to start executing in transactional mode. All subse-

quent changes to the architectural state (including memory) will

not be exposed to other processors until commit, and will be ex-

posed atomically. XEND signals the processor to atomically commit

writes which have accumulated since the corresponding XBEGIN.

XABORT singals the processor to revert the current processor’s ar-

chitectural state to before the corresponding XBEGIN was issued.

Because this is a new hardware specification, currently no hard-

ware implementation is available to researchers outside of Intel.

Since this is a promising specification, we wanted to start experi-

menting with it. Specifically, we want to understand how useful the

new primitives are to both OS kernel developers and userspace ap-

plication developers. This served as the primary motivation for this

paper: to implement a fully compliant emulation of TSX in QEMU

[2], the popular open source x86 emulator.

2 DESIGN AND IMPLEMENTATION

To achieve a working implementation of TSX, there are two main

sets of design decisions to be made. The first set of design decisions

deals with trying to faithfully emulate the semantics of TSX, so that

code running on top of our emulation would run similarly to code

running on real processors. The second set deals with providing a

reasonably efficient implementation in QEMU, so that developing

code using our emulation is practical. It is important to note that

both sets of decisions are necessary for our work to be useful.

2.1 Conceptual design

We settled on a design very similar to how database systems imple-

ment transactions. Our system divides target physical memory into

cache-line size units (a cache-line on x86 processors is typically 64

bytes wide), and assigns a read/write lock per cache-line.

Processors in transactional mode. We first focus on how pro-

cessors running in transactional mode interact with the shared mem-

ory. When a processor in transactional mode wants to access a

cache-line, it must first acquire the lock in the appropriate mode.

Our system allows multiple processors to own read locks on a

cache-line, but only a single processor can own a write lock. We

use strict two-phase-locking (2PL), so a processor does not release

its accumulated read/write locks until the end of a transaction (abort

or commit).

Each processor maintains a per-CPU store buffer (this is not to be

confused with the store-buffer optimization used by modern multi-

processors). When we do a transactional store, we do not write

the changes directly to shared memory. Instead, we buffer the

changes in the store buffer (in cache-line sized units). Transactional

reads work by first checking the store buffer for the cache-line, and

then falling back to shared memory. A transaction commit iterates

through its per-CPU store buffer and writes each cache-line back

into shared memory. A transaction abort simply discards its store

buffer. We checkpoint all CPU registers on a XBEGIN, so that an

abort can restore CPU register state.

If a processor cannot successfully acquire the necessary lock,

it aborts its current transaction. While we could explore alternate

aborting strategies which abort based on priorities, for instance, or

try to wait to see if the lock becomes available (as is the case in

database systems), we stick with this simple design since we have

no reason to believe the Intel processors will behave differently.

This is because any more complicated scheme will require more

book-keeping, and is thus less feasible for a hardware implementa-

tion.

Other actions, besides read/write conflicts, that cause a processor

to abort its current transaction include any instruction which gener-

ates an interrupt. This means that, for instance, a processor running

a transaction cannot make a syscall or trigger a page fault without

aborting. The specification suggests that this will be standard be-

havior in at least some, if not all, implementations.

Processors in non transactional mode. We now focus on how

non transactional processors interact with the shared memory. Un-

fortunately, the Intel specification is vague on this point. One pos-

sible implementation would be to do nothing special and treat this

behavior as undefined. In other words, we could make transactions

atomic only with respect to other transactions. However, we de-

cided to implement a stronger consistency model, where we make

transactions atomic with respect to all other processors, regardless

of mode. Therefore, a non transactional processor interacts with the

shared memory by first checking to see if the cache-line it wants to

write to is currently locked in an incompatible manner. If it is not,

it proceeds with the load or store. If it is, then it first aborts all

the transactions holding locks on the cache-line, and then proceeds

with the load or store. Conceptually, this is equivalent to wrap-

ping each load/store within a single transaction, except we guaran-

tee that it never aborts. We provide this guarantee since non trans-

actional code has no notion of aborting. An alternative implemen-

tation could not abort other transactions, but keep trying each non

transactional load/store until it is able to succeed. This is equivalent

to supplying an abort handler equal to the instruction itself.

Correctness. Because we use strict 2PL, our implementation

guarantees serializablity of transactions. Furthermore, our scheme

cannot deadlock, because our locks do not wait for acquisition, they
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simply abort themselves. For example, suppose processors P1 and

P2 are executing transactionally. Now suppose there are two vari-

ables x and y on separate cache-lines, and P1 holds a read-lock on

x while P2 holds a read-lock on y. Now say P2 tries to acquire a

write-lock on x at the same time P1 tries to acquire a write-lock on

y. In our design, the first processor which tries to acquire the write-

lock will abort itself, allowing the other processor to successfully

acquire the other write-lock and proceed.

2.2 QEMU implementation

The design outlined above is conceptually simple. However, re-

alizing such a design in QEMU turned out to be suprisingly non-

trivial. We originally started our implementation using QEMU’s

user-space mode, which allows for emulation of a single user pro-

cess instead of full system emulation. However, because QEMU’s

SMP support in user-space mode is broken, we found our imple-

mentation to be not of very much practical use, since we could not

test it with any concurrency. We therefore re-implemented TSX

support in full system emulation mode. For the remainder of the

paper, we will only discuss the full system emulation implementa-

tion. In this section, we outline a few of the challenges we faced.

Trapping all load/stores. Probably the biggest challenge faced

was trapping all loads and stores in QEMU. QEMU implements a

software-based MMU, which in turn emulates a software TLB. To

implement a load/store, QEMU generates native code to lookup a

virtual address in the TLB during guest binary translation. In the

case of a TLB hit, the generated code directly does the load/store

without calling into a helper function, for performance reasons.

Only in the case of a TLB miss does the generated code trap into a

helper function. We explored a variety of different solutions here,

but ultimately decided it was simplier to disable the TLB hit case

and have all loads/stores trap into a shared helper. Once we did

this, it was reasonably straightforward to place a few hooks after

virtual to physical address translation but before actually perform-

ing the load/store, which allowed us to control whether or not to

perform the load from shared memory or a per-CPU store buffer,

and whether or not to perform the store to shared memory or a per-

CPU store buffer.

Handling hardware interrupts. Software interrupts (such as

those triggered by an INT instruction) are straightforward to handle

in transactions, since we just need to hook into the routines which

raise CPU level interrupts. However, asynchronous interrupts, such

as those delivered by the hardware timer, are tricky because they

occur while a CPU is current executing a transaction. Because we

found that most of the hardware interrupts being delivered during a

CPU transaction were hardware timer interrupts, we worked around

the problem by having XBEGIN mask interrupts, and then having

XEND restore the previous interrupt mask. While this is not the most

ideal solution, it does allow transactions to make more progress

(otherwise, for instance, a timer tick could abort a transaction).

Aborting transactions on other processors. It is reasonably

straightforward in QEMU to abort a transaction running on the cur-

rent processor, but what about aborting transactions running con-

currently on other processors? The key insight is that an abort does

not need to happen until the very end of the transaction (it is ok to

allow transactions which we know will need to abort to keep run-

ning as long as we eventually abort it). We give each processor an

aborted flag. This flag is set by other processors to signal an

abort. XEND simply checks this flag to see if the processor should

be allowed to commit. As an optimization, we also have loads and

stores check this flag, so we do not need to wait until the end of the

transaction to abort.

3 EVALUATION

In order to evaluate our implementation we have two main consid-

erations: testing the TSX implementation and implementing inter-

esting code samples. The first consideration provides evidence that

our implementation exhibits the desired behavior of the Intel exten-

sions. The second consideration provides evidence that the exten-

sions simplify concurrent programs as compared with lock-based

synchronization. Specifically, we implemented a concurrent hash

table using transactional memory and course-grained locking.

We decided to evaluate our implementation by running user pro-

cesses in the xv6 operating system [4]. We exposed the hardware

extensions to user-level programs in xv6 as a C library with the

following API:

unsigned int _xbegin(void);

void _xend(void);

void _xabort(int);

Every transaction begins by calling _xbegin() and ends by

calling _xend(). A transaction can abort by calling _xabort().

_xbegin() returns 0 if a transaction was successfully started.

When a transaction aborts, _xbegin() returns 1 (this is similar in

spirit to the setjmp/longjmp API). The intended usage pattern

is:

if (_xbegin() == 0) {

/** critical section */

_xend();

} else {

/** abort handler */

}

We currently use the simple usage pattern:

retry:

if (_xbegin() == 0) {

/** critical section */

_xend();

} else {

goto retry;

}

We have not investigated more complex abort handlers- we leave

this to future work.

Testing the implementation. In order to test our implementa-

tion, we came up with seven test cases that cover the basic behavior

of transactions. Four of those test cases only involve a single CPU.

These cases include testing that transactional writes get committed

on a successful transaction, that aborting a transaction restores the

system memory, that aborting a nested transaction aborts the top

level transaction, and that using a syscall in a transaction aborts the

transaction.

The other three tests check the expected behavior of concurrent

transactions. We implemented a shared memory fork syscall in

xv6 in order to have shared pages between processes, since fork

provides for separate address spaces. We test for two concurrent

transactions that both successfully complete if they are writing to

different shared variables (on different cache-lines), that both suc-

cessfully complete if both are only performing reads to the same

shared variables, and that one aborts if they are both using the same

shared variable and one of the performs a write.

Code simplification. To demonstrate the code simplification,

we implemented a concurrent hash table and a locking mechanism.
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The hash table resembles the standard implementation with coarse-

grained locking, but instead using transactional memory. We pro-

tect the hash table from data races using our programming pattern

for transactions. Fig 1 shows what a simplified set call of a concur-

rent hash table looks like using transactional memory as compared

to coarse-grained locking. While the two implementations have

comparable code complexity, the transactional memory implemen-

tation is more concurrent; transactions will not abort from writing

concurrently to different variables. Therefore, if we make many

concurrent writes to distinct entries in the table, the transactional

memory implementation will allow them to proceed concurrently,

whereas the coarse-grained locking implementation will serialize

these writes. In order to achieve similar concurrency, we would re-

quire fine-grained locking and its additional complexities. While

fine-grained locking for a hash tables is straightforward, we use

this example to demonstrate how transactional memory achieves the

concurrency of fine-grained locking with the complexity of coarse-

grained locking.

TM

retry:

if (_xbegin() == 0) {

unsafe_set(&table, key, val);

_xend();

} else {

goto retry;

}

Coarse Grained Lock

pthread_mutex_lock(&mutex);

unsafe_set(&table, key, val);

pthread_mutex_unlock(&mutex);

Figure 1: HTM vs Coarse grained lock protecting hash table set call.

4 CONCLUSION

This paper introduces our implementation of Intel’s upcoming sup-

port for hardware transactional memory in the QEMU x86 emula-

tor. We tried to be faithful to the specification, but hardware spec-

ifications are notoriously vague [7]. Where the specification was

vague, we tried to make reasonable behavioral choices based on

what a programmer would want and what we believe is feasible to

implement in hardware.

This paper also demonstrates a simple exploration of concurrent

programming using transactional memory. Unfortunately, there is

one issue that our emulation of TSX cannot answer; we will have

to wait for real hardware before we can start thinking about perfor-

mance.
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