

1
CSER 2007, Stevens Institute of Technology, ISBN - 0-9787122-1-8
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

 Paper #40

Universal Systems Language
for Preventative Systems Engineering

Margaret H. Hamilton and William R. Hackler
Hamilton Technologies, Inc.

17 Inman Street Cambridge, MA 02139
mhh@htius.com, ron@htius.com

Abstract

This paper is about a universal systems
language based on a general systems theory,
in large part, derived and evolved from
lessons learned based on an empirical study of
the Apollo on-board flight software effort. The
language, 001AXES, was created for
designing systems and building software to
address problems considered next to
impossible to solve, if not impossible, with
traditional approaches, at least in the
foreseeable future. It helps to suspend any
and all preconceived notions when first
introduced to it and the mathematical theory
behind it, because it is a world unto itself—a
complete new way to think about systems and
software.

With this approach, instead of object
oriented and model driven systems the
designer thinks in terms of system oriented
objects and system driven models. Much of
what seems counter intuitive with traditional
approaches, that tend to be software centric,
becomes intuitive with this system centric
approach. How to minimize errors and
maximize integration of systems to software,
reuse, open architectures, evolvable systems,
and productivity in a system's development
becomes better understood; this understanding
can be used as a means to an end—designing
better systems; building better software.

001AXES, its preventative paradigm, and
how it is used to address today's pressing

system engineering issues will be discussed.
Examples are taken from research being done
for military systems; not heretofore addressed
by traditional approaches.

Introduction

The 001AXES universal systems language
was created for modeling systems designed
with significantly increased reliability, higher
productivity and lower risk, including the
following specific objectives: a) seamless
integration: systems to software; requirements
to specifications to design to code, and back
again (using the same semantics for all
systems, including software); b) reduce defect
rates by a factor of 10; c) improve correctness
by built-in language properties; d)
unambiguous requirements, specifications,
and design; e) guarantee of system integrity
after implementation; f) enhance traceability
and evolvability (application to application,
architecture to architecture, technology to
technology); g) increase in inherent reuse
(within and between layers); h) full life cycle
automation (e.g., automatic generation of
production ready code for complete software
systems of any kind or size of application
from system specifications); i) automation of
much of design—reduce need of designers to
understand details of programming languages
and operating systems; j) eliminate need for
high percentage of testing; k) integration of
design and development tools.

001AXES and its automation (Hamilton
April, June 1994) are intended to address
these objectives. In addition to lessons
learned from Apollo, its technology takes
roots from concepts older (e.g., mathematics)
and newer than Apollo including other real
world systems, systems theory, formal
methods, formal linguistics and object
technologies; keeping in mind the relevance of
a technology is independent of its age.

 The Apollo empirical study began with
the question "what can we do better for future
systems and what should stay the same
because we are doing it right (Hamilton 1986,
2004)?" The search was for a means to build
ultra-reliable systems. Early ideas for the
technology surfaced as errors found during
final testing were analyzed. Interface errors
(data flow, priority and timing errors from the
highest to the lowest levels of a system to the
finest grain) accounted for ~75% of all errors
found—finding ways to improve the integrity
of integration and communication was of the
highest priority. ~50% of the billions of
dollars (by today's standard) spent on the life
cycle was devoted to simulation, but 44% of
the errors were found by manual means
(eyeballing)—more automation was needed,
especially static as opposed to dynamic. 60%
of the errors had unwittingly existed in flights
already flown—showing how subtle (and
alarming) they were. Fortunately, no software
errors surfaced during actual flights.

When the interface errors were analyzed in
more detail, each error was placed into a
category according to the means that could be
taken to prevent it by the way a system is
defined. During this process a mathematical
theory was derived for defining systems such
that the entire class of interface errors would
be eliminated. Since these earlier beginnings
we have continued to find ways to address
other system issues just by the way a system is
defined. Results of the analysis took on
multiple dimensions, not just for space
missions but for systems in general. Lessons

learned from this effort continue today; e.g.,
systems are asynchronous in nature and this
should be reflected inherently in the language
used to define systems. This implies that a
system's definition would characterize natural
behavior in terms of real time execution
semantics. Designers would no longer need to
explicitly define schedules of when events
were to occur. Events would instead occur
when objects interact with other objects. By
describing the interactions between objects the
schedule of events is inherently defined.
Combined with further research it became
clear that the root problem with traditional
approaches is that they support users in
"fixing wrong things up" rather than in "doing
things in the right way in the first place". A
solution evolved—once understood, it became
clear that the characteristics of good design
can be reused by incorporating them into a
language for defining systems.

001AXES Universal Systems
Language

001AXES captures the theory based on the
Apollo empirical studies. What had been
created was a universal semantics for defining
systems. What sets it apart from other
languages is the systems paradigm upon
which it is based, Development Before the
Fact (DBTF) (Hamilton April 1994). Whereas
the traditional approach is "after the fact", or
curative, DBTF is preventative. Whereas a
curative means to obtain quality is to continue
testing until the errors are eliminated; a
preventative means is not to allow the errors
in, in the first place. Correctness is
accomplished by how a system is defined, by
"built-in" language properties (i.e., into the
grammar). Whereas a curative means to
accelerate design and development would be
to add resources, a preventative approach
would capitalize more on reuse or eliminate
unnecessary parts of the process altogether.

2
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

A 001AXES definition not only "models"
its application (e.g., as an avionics system) but
also properties of control into its own life
cycle that "come along for the ride"
(ensuring, e.g., the inherent elimination of
interface errors). Every object is a system
oriented object (SOO), itself defined in terms
of other SOOs. A SOO inherently integrates
all aspects (e.g., function, object and timing
oriented) of a system; every system is an
object, every object is a system.

Unlike formal languages that are not
friendly or practical, and friendly or practical
languages that are not formal; 001AXES is
considered by its users to be formal; yet
practical and friendly (Krut 1993) (Ouwang
1995). Unlike a formal language that is
mathematically based but limited in scope
from a practical standpoint (e.g., with respect
to size or kind of systems it can be used to
define), 001AXES extends traditional
mathematics with a unique concept of control,
incorporating aspects such as time and space
into its formalism; enabling it to support the
definition of any kind or size of system.

A formalism for representing the
mathematics of systems, 001AXES is based
on a set of control axioms and formal rules for
their application. All representations of a
system are defined in terms of a functional
map (FMap) and a type map (TMap). FMaps
and TMaps defined for a given system are
inherently integrated. Three primitive
structures (and non-primitive structures
derived ultimately in terms of the primitive
structures) are used to define each map.
Primitive functions, corresponding to
primitive operations on types defined in a
TMap, reside at the bottom nodes of an FMap.
Primitive types, each defined by its own set of
axioms, reside at the bottom nodes of a TMap.
Each primitive function (or type) can be
realized as a top node of a map on a lower
(more concrete) layer of the system.

001AXES has been used to define systems
ranging from guidance, navigation and control

(Hamilton and Hackler 1988, 1990, 1991,
2004) (Hamilton 2004)) to commercial
applications (HTI 1997) (HOS 1980) (Keyes
2000a, 2000b) to system and software tools
(HTI 1986-2007). It can be used to provide a
formal semantics foundation for other
languages such as UML2 and SysML
(Friedenthal, S. et al. 2006) (OMG 2006).
Diverse mappings (several automated) exist
that go from a given syntax and semantics to
001AXES or from 001AXES to one of a
possible set of syntactical forms (and
semantics), e.g., (Krut 1993) (Hamilton and
Hackler 2000) (Cushing 1978).

Integrated Modeling Environment

The 001AXES language—actually a meta-
language—has mechanisms to define
mechanisms for defining systems. Although
the core language is generic, the user
"language", a by-product of the definition of
newer systems (and thus newer mechanisms),
can be application specific, since the language
that is semantics dependent is syntax
independent. Yet, every syntax shares the
same semantics. Also implementation and
architecture independent, 001AXES adheres
to the principle that everything is relative (one
person's design is another's implementation).
It can be used seamlessly throughout a
system's life cycle to define and integrate all
aspects and viewpoints (of and about the
system and its evolution).

Providing a mathematical framework
within which objects and their interactions and
relationships with other objects may be
captured, 001AXES's philosophy is: all
objects are recursively reusable and reliable;
reliable systems are defined in terms of
reliable systems; only reliable systems are
used as building blocks; and only reliable
systems are used as mechanisms to integrate
these building blocks. The new system along
with more primitive ones can then be used to
define (and build) more complex reliable

3
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

systems. If a system is reliable, all the objects
in all its levels and layers are reliable.

Six Axioms of Control

At the base of the theory behind 001AXES
that embodies every system is a set of six
axioms—universally recognized truths—and
the assumption of a universal set of objects
(Hamilton and Zeldin 1976, 1979). Each
axiom defines a relation of immediate
domination of a parent object over its children
objects. The union of these relations is
control. The axioms establish the relationships
of an object for invocation, input (domain)
and output (codomain), input access rights,
output access rights, error detection and
recovery, and ordering during its
developmental and operational states.

Overarching is that all aspects within a
001AXES universe are related to the real
world and the language inherently captures
this. In so doing it meets the challenge
linguists describe of assuring consistency in
meaning, of “fitting together the partially
fixed semantic entities that we carry in our
heads—to approximate the way reality is
fitted together as it comes to us from moment
to moment. The entities are the world reduced
to its parts and secured in our minds; they are
a purse of coins in our pocket with values to
match whatever bargain or bill is likely to
come our way." (Bolinger 1981)

It is important to be able to visualize a
system definition both with respect to what it
does (level by level) and how it does it (layer
by layer). A hierarchical definition can run
the risk of not being reliable, however, unless
there are explicit rules that ensure that each
decomposition is valid. The axioms of control
provide the formal foundation for a 001AXES
"hierarchy" (referred to as a map which is
both a hierarchy of control and a network of
interacting objects); explicit rules have been
derived from these axioms for defining a map;
where among other things structure, behavior
and their integration are captured. An object

is decomposed until the primitive objects it
has ultimately been defined in terms of have
been reached. Resident at every node on an
FMap is a function; resident on every node of
a TMap is a type. The object at each node
plays multiple roles, e.g., it can serve as a
parent (in control of its children) or a child
(being controlled by its parent). What follows
is a discussion of the six axioms of control and
some derived theorems.

Axiom 1 states that a given parent controls
the invocation of the set of children on its
immediate, and only its immediate lower
level. Take for example an FMap; the parent
controls its children to perform its own
mapping; that is, the parent's mapping is
completely replaced by its children’s
mappings; no more, no less; yet the parent (as
a controller) remains in control of its children.
Note that a 001AXES function is a hybrid
consisting of a traditional mathematical
construct, i.e., an operation (mapping) and a
linguistic construct, i.e., an assignment of
particular variables to inputs and outputs.
Some implications are that a parent can only
invoke its immediate offspring; it cannot
invoke itself, its parent, any of its descendants
other than its immediate offspring, any other
offspring of its own parent, another parent's
offspring, or an offspring that invokes its
parent; the children of each parent must
collectively perform no more and no less than
the parent's requirements; e.g., if a lower level
function is removed and its ancestor still
maintains its same mapping, the function is
extraneous (extraneous functions proliferate
test cases and complicate interfaces).

Axiom 2 states that a given parent controls
the responsibility for elements of only its own
output space (codomain). For an FMap this
simply states that the role of the parent is to
perform its own mapping. For any given
element in the domain of the parent's function,
the parent is responsible for producing the
correct corresponding element in the range
(codomain). While the parent can get "help"

4
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

from its offspring in the performance of this
function, it cannot delegate this responsibility.
For a given input, only the parent can ensure
the "delivery" of the corresponding output.
Some implications are a parent loses control
(cannot ensure correct outputs) when any of
its offspring stop before completion, go into
an endless loop or do not return required
information back to the parent; the
decomposition stopping point can be
determined and the bottom is reached when
each function has been defined in terms of
other functions on a defined type; the
functions' behavior one level from the bottom
can be defined by understanding the behavior
of each function at the bottom level and how it
relates to other functions on that level; one can
define each next highest level function in the
same manner until the top node is reached; the
behavior of the top node is ultimately
determined by the behavior of the collective
set of bottom nodes; there may be more than
one formulation for a particular function, it is
only necessary that the mapping be identical.

Axiom 3 states that a given parent controls
the output access rights (access rights is the
ability to obtain or alter the values of
variables) to each set of variables whose
values define the elements of the output space
for each immediate, and only each immediate,
lower level child. Axiom 3 is concerned with
where the required range element (as
produced by an offspring) is delivered as
dictated by its parent. The parent can assign
to its offspring the right to alter the values of
the output variables of the function that the
offspring replaces. Implications are: each
range variable of the parent that an offspring
replaces, must appear as a range variable of
the function of at least one of its offspring;
tracing of outputs can be traced for each and
every performance pass (i.e., instance by
instance); the parent’s output variables are a
subset of the output variables of the collective
children.

Axiom 4 states that a given parent controls
the input access rights to each set of variables
whose values define the elements of the input
space for each immediate, and only each
immediate lower level child. It is concerned
with the way the parent controls access to its
domain elements; specifically the parent can
grant its children the right to access its domain
elements for reference only. Implications are:
the parent does not have the ability to alter its
domain elements; each domain variable of the
parent must appear as a domain variable in at
least one of its children; inputs can be traced
for each and every performance pass.

Implications of both axioms 3 and 4 are:
the variables of the output set of a function
cannot be the variables of the input set of that
same function. If f(y, x) = y could exist,
access to y would not be controlled by the
parent at the next immediate higher level; the
variables of the output set of one function can
be the variables of the input set of another
function only if they belong to functions on
the same level. If f1(x) = y and f2(y) = g, both
functions exist at the same level.

Axiom 5 states that a given parent controls
the rejection of invalid elements of its own,
and only its own, input set (domain). It
requires that the parent must ensure the
rejection of inputs received that are not in the
domain of the parent. A parent, in performing
its corresponding function, is responsible for
determining if such an element has been
received; if so, it must ensure its rejection.

Axiom 6 states that a given parent controls
the ordering of each tree for the immediate,
and only the immediate, lower level. Axiom 6
requires the parent to control the order
(including priority) based on e.g., time, events,
importance, computational needs of the
invocation of its children and their
descendants. Implications are: total order
relationships; if two processes are scheduled
to execute concurrently, the priority of each
process determines precedence at the time of
execution; the priority of a process is higher

5
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

than the priority of any process on its most
immediate lower level; if two processes have
the same parent, all processes in the control
tree of the process with the highest priority are
of a higher priority than all the processes in
the control tree with the lower priority; a
process cannot interrupt itself, or its parent.

Other implications (derived theorems) of
the axioms are: every object has a unique
parent, is under control and has a unique
priority; communication of children is
controlled by the parent, and dependent
functions exist at the same level; the priority
of an object is always higher than its
dependents and totally ordered with respect to
other objects at its own level. Relative timing
between objects (including functions) is
therefore preserved; maximum completion or
delay time for a process is related to a given
interrupt structure. Absolute timing can
therefore be established (i.e., it can be
determined if there is enough time to do the
job); the relationships of each variable are
predetermined, instance by instance thus
eliminating conflicts; each system has the
property of single reference/single assignment.
SOOs can therefore be defined independent of
execution order; the nodal family (a parent
and its children) does not know about (is
independent of) its invokers or users;
concurrent patterns can be automatically
detected; every system is event driven (every
input and every output is an event; every
function is event driven), and can be used to
define discrete or continuous phenomenon;
each object, and changes to it, is traceable;
each object can be safely reconfigured; every
system can ultimately be defined in terms of
three primitive control structures, each of
which is derived from the six axioms—a
universal semantics, therefore, exists for
defining systems.

Universal Primitive Structures

A structure relates members of a nodal
family according to a set of rules derived from

the axioms of control. A primitive structure
provides a relationship of the most primitive
form of control between objects on a map. All
maps are defined ultimately in terms of three
primitive control structures, and therefore
abide by the formal rules associated with each
structure: a parent controls its children to have
a dependent relationship (Join), independent
relationship (Include), or a decision making
relationship (Or). Figure 1 contains a
description of the three primitive structures;
used generically in both TMap or FMap
definitions; Figure 2 contains a description of
the rules as applied to an FMap. Figure 3
shows two independent syntactical forms that
can be used to represent the semantics of the
three primitive control structures.

Figure 1: Primitive Control Structures

Figure 2: Rules for Primitive Structures

The structures ensure that all interface
errors (75% to 90% normally found, if found
at all, during testing in a traditional

6
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

development) are eliminated "before the fact"
at the definition phase. Although a system
defined in these structures has properties for
systems in general, the properties have special
significance for real time, distributed aspects
of a system (that every system ultimately has):
each system is event interrupt driven; each
object is traceable, reconfigurable, and has a
unique priority; independencies and
dependencies can readily be detected
(manually or automatically) and used to
determine where parallel and distributed
processing is most beneficial.

Figure 3: Syntax Independence

Definition and Execution Space

SOOs are defined in terms of FMaps and
TMaps—FMaps to represent the dynamic
(doing) world of action by capturing
functional and time (including priority)
characteristics and TMaps to represent the
static (being) world of objects by capturing
spatial characteristics (e.g., containment of
one object by another). Maps guide a designer
in thinking through concepts at all levels and
layers of system design and the 001 Tool Suite
(001), the automation of 001AXES, in
automatically generating resource allocation
designs and the system’s software.

With a map, everything you need to know
(no more, no less) is available. Inherent are
features such as polymorphism, encapsulation
and inheritance; the functional side is defined
in terms of the type side and vice versa,
providing the ability to automatically trace

within and between levels and layers of a
system (e.g., in an FMap, an output variable of
a function is fully traceable to all other
functions using that variable’s object state).

FMaps are used for defining functions and
their relationships to other functions using the
types of objects in the TMap(s). Each
function on an FMap has one or more objects
as its input and one or more objects as its
output. Each object resides in an object map
(OMap) and is a member of a type from a
TMap. TMaps are used for defining types and
their relationships to other types. Every type
on a TMap owns a set of inherited primitive
operations for their allowed FMap functional
relationships. FMaps are inherently integrated
with TMaps, in fact recursively so, by using
objects (members of the types in the TMap)
and their primitive operations (e.g., if a type is
changed on a TMap, all FMap areas impacted
are traceable). FMaps are defined in terms of
TMaps and TMaps are defined in terms of
FMaps. FMaps are used to define, integrate,
and control the transformations of objects
from one state to another state.

A SOO is realized (has all its values
instantiated for a particular performance pass)
in terms of execution maps (EMaps), each an
instantiation of an FMap, and OMaps, each an
instantiation of a TMap. When an object state
beginning event occurs, each function that
depends on that object state is instantiated.
This instantiation process always results in a
totally ordered (in terms of priority) map of
function instances; when a function instance
becomes ready to execute it is always
inherently correctly scheduled and allocated to
the appropriate resource(s). Figure 4 shows
an example of scheduling with a performance
pass of a function, F.

Past, present and future related indicators
are used to identify when a line of control or
action (i.e., a function instance) occurs; or
when an object state exists. Subfunctions, A
and B, are concurrently executing in interval
1, with object states, a and b, respectively. In

7
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

interval 2, A(a) is still active and F's control
jumps ahead to include activating E(b1)
concurrently. B is past, having produced b1,
and C(a1) and D(c) will be future actions. In
interval 3, E(b1) has completed, producing e,
an output event in partial completion of F,
while F continues with C(a1).

Figure 4: Real Time Event Scheduling
Using an integrated set of OMaps and

EMaps a system is able to be understood in
terms of its behavior (e.g., cost, risk, and real
time characteristics) and structure. OMaps and
EMaps are always under the control (thereby
following the control axioms) of the FMaps
and TMaps from which they were instantiated.

Typically, a team of designers begins by
sketching a TMap(s); where they decide on
the types of objects (and the relationships
between them) in their system. Often a Road
Map (RMap), that organizes all system objects
including FMaps and TMaps, is sketched in
parallel with the TMap. Once a TMap has
been agreed upon, the FMaps begin almost to
fall into place because of the natural
functionality (or groups of functionality)
resident in the TMap system. The TMap
provides the structural criteria from which to
evaluate the functional partitioning of the
system (e.g., the shape of the structural
organization of the FMaps is balanced against
the structural organization of the shape of the
potential objects as defined by the TMap).
With FMaps and TMaps a system (and its
viewpoints) is divided into components and
groups of components which naturally work
together.

User Defined Structures

Any system can be defined completely
using only the primitive structures, but less
primitive structures accelerate the process of
defining and understanding a system. Since
non-primitive structures are ultimately derived
from the three primitives, they are governed
by the control axioms. Defined structures for
both FMaps and TMaps can be created for any
kind of system. A powerful template form of
reuse, the defined structure provides a
mechanism to define a map without some of
its elements being explicitly defined. An
FMap structure has unknown functions; a
TMap structure has unknown types. Async is
an example of a real time, distributed,
communicating FMap defined structure with
both asynchronous and synchronous behavior.
TreeOf is an example of a TMap defined
structure (a collection of the same type of
objects ordered using a tree indexing system).
Each type structure assumes its own set of
possible control relations for its parent and
children types. Abstract types decomposed
with the same type structure on a TMap
inherit (or reuse) the same primitive
operations and therefore the same behavior
(each of which is available to FMaps that have
access to members of each of its types). With
the use of FMaps, TMaps and user defined
structures as well as other forms of 001AXES
reuse, a system is defined from the very
beginning to inherently maximize the potential
for its own reuse.

Figure 5 shows an interrupt structure that
performs the functions, I? and/or F?, that are
to be defined when interrupt is used in another
FMap. The key to understanding interrupt is
the primitive operation, is:present(i).
is:present is evaluated asynchronously when
the value of s0 is available. If the value of i is
available, then I? is performed; otherwise, F?
is performed and this process is repeated.
Figure 6 shows a set of execution snapshots

8
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

(EMaps) depicting the performance of
interrupt.

Figure 5: Interrupt Structure

In the first snapshot, since s0 is available
and i is not, is:present returns False and
continue invokes F?(s0). After the first F
completes, the interrupt leaf function checks
the state of i again (still not available), selects
continue, invokes another F, F?(s1) with a
revised state of s0. This process continues
until i becomes available. Interrupt
granularity is based on the time it takes to
complete F.

Figure 6: Interrupt Execution Snapshots

Figure 7 shows a real time structure
designed for the repeated scheduling of a
function within a period of time. The result of
the repeated application of F is returned when
run:timer(et)=end completes, setting
is:present,any(end) to True. The parent of db0
is returned by into(db0)=P. Since the
invocation of functions are asynchronous and
event driven, the function, run:timer, does not
block continued processing of RUN.
is:present is asynchronously evaluated only
when the object states for db0 and/or st are
available. F?(db0) and run:timer(st) are able
to execute simultaneously. When both

complete, when:all,present synchronizes st1
and db1 as st2 and db2 respectively; only then
will the RUN EMap leaf node be invoked. In
the use of this structure, F? should perform
within the schedule time interval so that other
lower priority functions (i.e., those having
lower priority than the parent user of this
structure) have an opportunity to execute. The
period time of a schedulePeriod TMap
structure is assumed to be larger than the
schedule time (and could be defined explicitly
with constraints).

Figure 7: Periodic Structure

Figure 8 shows a guidance, navigation and
control application of the periodic structure
that could be used within a larger (e.g.,
vehicle) system. The nesting of the functions,
NGC, GC and C, inherit the real time schedule
characteristics defined by the periodic
structure. The priority of a function is
determined by its location within its FMap.
The ci structure derived from the Include
structure defines C as a higher priority than
guidance and GC as a higher priority than
navigation. Therefore, control may interrupt
guidance which in turn may interrupt
navigation. If only one processor is available,
then control always executes first. Any
leftover processing time is then given to
guidance and then to navigation. Any number
of processors can be added without rewriting
the application because scheduling is built-in.

The completion of a nested period of time
(e.g., C within GC) corresponds to when finer
grained information of a faster cyclic period is

9
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

available to a slower cyclic period of time.
The support structure, getPut, provides access
and security between databases (e.g., control,
guidance and navigation databases). In an
OMap, get:c removes a child from its parent,
p0, and put:c puts the child back, under, its
parent, p1. Once put:c has been applied by the
getPut structure, guidance has access to (and
may change) control's period and schedule
times; but, control can not change the
schedule or period times of guidance or
navigation, providing a form of security.

Figure 8: GN&C Application

A user defined structure that can be used
generically in both TMaps and FMaps is
called a universal structure. This universality
derives from the fact that each map node has a
mapping and each universal primitive
mapping may be used at a leaf node with an
interpretation that is dependent on whether it
is used in a TMap or an FMap. When
interpreted within a TMap a primitive
mapping makes a static correspondence
between its domain and codomain. Because
of the static nature of a TMap mapping, either
its left or right set of relations may become the
domain of an FMap function; the other set
then becomes the corresponding codomain of
the FMap function. In an FMap, a primitive
mapping makes a dynamic correspondence
from its domain to its codomain.

Jset is a user defined universal structure
(see Figure 9). Jset is recursive (because of its
reuse leaf node, Jset). Object instances of this
structure result in co-dependent patterns of
some type, T?, with zero, one or two other T
elements. This structure can easily define cars
on a road, people standing in a line or a
repeated set of dependent functions.
Dependencies between T elements are
identified by the relations, r and r1. r and r1
are inverse relations. When a T is r1 related to
a second T, the second T is r related to the
first T. In a TMap r and r1 are interpreted as
relations between different object states of T;
in an FMap, r and r1 are interpreted as
different object states.

Figure 9: The Jset Structure

Within Jset interface elements, identified
by the Syntax statement, are unknowns that
need to be satisfied by a particular use. An
interface element resolved in some context
may again be unknown due to its participation
in its context map's interface. Ultimately,
unknown elements are statically or
dynamically resolved, completing their related
definitions so that they can be instantiated (or
executed). In addition, if a structure has
primitive operations, their unknown elements
will be resolved by its use in a TMap (e.g., the
parent, cars, using Jset will inherit Jset's
primitive operations with appropriate
resolutions such as cars replacing Jset, see
Figure 9 and Figure 10).

Jset is used, in Figure 10, to decompose
both a TMap type, cars, and an FMap
function, largestCar. Unknowns resolved in
the TMap context are types: cars, car and Any;
and the value Null. Unknowns resolved in the
FMap context are functions: largestCar,
check_car, is:Null and Id:2. Since Jset is used

10
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

to structure the set of cars, each car may have
a before and next relation to two other cars. A
car object depends on other car objects with
these relations. The use of these relations in
an FMap are supported by the primitive
operations, before(car)=car and next(car)=car,
respectively. When a cars OMap is created
(instantiated), manipulated or examined a set
of universal map operators may be used.
These are inherited by any map type of object
(e.g., a concrete object like car or a more
generic object like an OMap, a TMap, an
EMap or an FMap); and resolved just as with
Jset (e.g., k:cars(Any)=cars inherited from
type TMap).

Figure 10: An Application of Jset

The largestCar function uses Jset to
recursively process all cars and return the
largest car (a Rational number, Rat).
check_car evaluates a car with larger_or_not
and advances from the current car, c0, to the
car, c1, at the other end of the next relation
using the next(c0)=c1. The decision function,
larger_or_not, determines if car, c0, is greater
than the currently known largest car, lc0,
using partition function, gt(c0,lc0), where gt is
an infix operator meaning greater than. Its
implicit output (a Boolean) is used to select c0
(when True) as the newest largest car, lc1; or
select (when False) the currently known one,
lc0, to remain being the largest one as lc1. All
cars are evaluated when is:Null which
replaces P in Jset's Syntax being used as a
partition function implicitly returns True,
selecting the Id:2 function as the final step in
largestCars’s recursive processing. The
function Id:2 (that replaces E in Jset's Syntax)

is used to select the second element of the
ordered set (i.e., c0,lc0) that replaced r in this
use of Jset. The final outcome will be lc, the
latest value of lc1. This is because r1 in the
recursive Jset leaf corresponds to r (by
position) in its ancestor; and when r1 is
replaced by “c1,lc1” in largetCar, r becomes
“c1,lc1”. Id:2 then selects lc1 to be lc (which
replaced s in Jset).

Universal Primitive Operations

The TMap provides universal primitive
operations, for controlling objects and object
states, inherited by all types. They create,
destroy, copy, reference, move, access a value,
detect and recover from errors, access the type
of an object and access instances of a type;
providing an easy way to manipulate and think
about different types of objects. With the
universal primitive operations, building
systems can be accomplished in a more
uniform manner. TMap and OMap are
available as types to facilitate the ability of a
system to understand itself better and
manipulate all objects the same way. TMap
properties ensure the proper use of objects in
an FMap. A TMap has a corresponding set of
control properties for controlling spatial
relationships between objects (e.g., two
objects can not exist in the same place at the
same time. Thus one cannot put a leg on a
table where a leg already exists; conversely,
one cannot remove a leg from the table where
there is no leg; a reference to the state of an
object cannot be modified if there are other
references to that state in the future). Reject
values exist in all types, allowing the FMap
user to recover from failures if encountered.

As experience is gained with different
types of applications, new reusables emerge.
For example, a set of mechanisms was derived
for defining interruptable, asynchronous,
communicating, distributed controllers. This is
essentially a second order control system
(with rules that parallel the primary control
system of the primitive structures) defined

11
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

with the formal logic of user defined
structures. In such a system, each distributed
region is cooperatively working with other
distributed regions and each parent controller
may interrupt the children under its control.
These reusables can also be used to manage
other types of processes (e.g., those used to
manage a development environment).

Constraints

When designing a system, it is important
to understand the performance constraints of a
functional architecture and to have the ability
to rapidly change configurations. A system is
flexible to changing resource requirements if
the functional architecture definition is
separated from its resource definitions. To
have the necessary built-in controls, the same
language, 001AXES, is used to define
functional, resource and allocation
architectures.

The meta-language properties of the
language can be used to define global and
local constraints for both FMaps and TMaps;
constraints themselves defined in maps. If we
place a constraint on the definition of a
function (e.g., where sendBy:vehicle takes 2
hours), it influences all other functions that
use this definition. Such a constraint is global
with respect to the uses of the original
function.

Global constraints may be further
constrained or overridden by local constraints
placed in the context of the definition that uses
the original function definition (e.g., where
sendBy:car takes 4 hours, overriding the
default). The validity of constraints and their
interaction with other constraints can be
analyzed by static or dynamic means with
001. The property of being able to trace an
object throughout a definition supports this
type of analysis; it provides the ability to
collect information on an object as it
transitions from function to function. As a
result, one can determine direct and indirect
causal effects of constraints.

Automation

Because of a SOO’s inherent support of
automation; more automation is possible (e.g.,
much of a system’s design can be
automatically generated from SOOs). Given a
set of FMaps and TMaps, 001 has the means
to perform requirements analysis and to
simulate and observe the behavior of a system
as it evolves and executes in terms of OMaps
and EMaps; if it is software the same FMaps
and TMaps can be used to automatically
generate a complete software system of any
kind or size resulting in production ready code
and documentation; in fact, 001 is defined
with itself and automatically generates itself.
That used to build other systems builds itself.

One might ask "how can one build a more
reliable system and at the same time increase
the productivity in building it"? Take for
example, testing. Unlike a traditional
approach with a "test to death" philosophy
where the more reliable the system the less the
productivity, with 001 the more reliable the
system the higher the productivity—less
testing is needed with each new before the fact
capability. Before the fact "testing" is
inherently part of every design and
development step. Errors are prevented
because of that which is inherent or
automated. Correct use of 001AXES
eliminates interface errors; the 001Analyzer
statically hunts down errors in case the
language was not used correctly. Testing for
integration errors is minimized, since SOOs
are inherently integrated. Automation
removes the need for most other testing (e.g.,
since the 001 Resource Allocation Tool
(RAT) automatically generates all the code, no
manual coding errors will be made). And,
since the RAT can be configured to generate
to an architecture of choice, no manual errors
result from conversion to a new architecture.
Other test cases are not necessary to develop
because they are automatically generated as
part of the RAT generation process.

12
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

The 001DXecutor component of 001 is a
distributed runtime execution engine.
001DXecutors form a hierarchy, each
managing its own resources (e.g., different
CPUs) and communicating (e.g., using
TCPIP) to other 001DXecutors. They form a
substrate upon which a 001AXES system can
be executed with asynchronous event driven
behavior. This takes advantage of the inherent
asynchronous and priority properties built into
the grammar of 001AXES to automatically
coordinate and schedule, providing enhanced
reliability and eliminating unnecessary design
tasks (e.g., it is estimated that ~80% of the
UML2 specification standard could be
eliminated with a 001AXES 001DXecutor
active object substrate).

Take also reuse. The more the inherent
reuse; the higher the reliability and
productivity. Not only does a SOO have
properties to support the designer in finding,
creating and using commonalty from the very
beginning of a life cycle; commonalty is
ensured simply by having used 001AXES to
define it; providing the opportunity for many
parts of the life cycle to become no longer
needed. Every object is a candidate reusable—
and integratable—within the same system,
other systems and their evolution.

Conclusion

Unlike having first created a language
with a syntax first, syntax dependent approach
with informal semantics; with 001AXES a
formal systems theory was derived from an
empirical study of real world systems; a
universal systems language was then derived
for defining (and developing) system oriented
objects based on the generic system semantics
of the systems theory (a semantics first, syntax
independent approach). Unlike additional
languages, language mechanisms, rules and
tools being added, ad hoc and "after the fact",
as more is learned about a class of systems;
with 001AXES, additional language
mechanisms and tools are derived ultimately

in terms of the core set of the universal
language's primitive mechanisms.

With 001AXES semantics, system
designers have the potential to eliminate well
known problems; because of the properties
that in essence "come with the territory": more
reliable systems, integration of systems to
software, reduction of testing without
compromising a system's integrity and having
the ability to maximize reuse are all well
within reach. It is not magic. No more than
many things we now take for granted, that
were themselves once thought of as magic.
What at first appears to be magic, because it is
not yet familiar, transitions to common sense
once understood—a duality of control and
flexibility in the process of organizing one’s
thoughts and recording them—so automation
can take over and finish the job. Collective
experience strongly confirms that quality and
productivity both increase with the increased
use of properties of preventative systems.
Compared to traditional techniques, the
productivity of 001AXES systems has been
shown to be significantly greater (DoD 1992)
(Krut 1993) (Ouyang 1995) (Keyes 2000a)
(Schindler 1990) (SPC 1998) (htius.com)
(icb.nasa.gov/001). It was also discovered
that the productivity was greater the larger and
more complex the system—the opposite of
what one finds with traditional approaches.
This is, in part, because of the high degree of
001AXES’s formal and inherent support of
reuse. The larger a 001AXES system, the
more it has the opportunity to capitalize on
reuse. As more reuse is employed,
productivity increases. Measuring it becomes
a process of relativity—relative to the latest
system developed.

By inheriting the preventative philosophy
of 001AXES, users have the potential to solve
a given problem as early as possible, which
means finding a problem statically is better
than finding it dynamically. Preventing it by
the way a system is defined is even better.
Better yet, is not having to define (and build)

13
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

it at all. The ultimate reusable is in the
application of the technology to both systems
and software unifying their understanding by a
formal means with a commonly held set of
system semantics.

001AXES's formal systems theory began
with Apollo, the ideal environment for jump
starting a "never in the box" technology.
There was no school to attend or field to learn
what today is known as software engineering
(or computer based "systems engineering" as
it has become known today). One had to
“learn” a field(s) that did not yet exist. When
there were no answers, problems had to be
solved that no one had ever solved before.
Things had to work, and work the first time.

001AXES's creation together with its
automation and experiences in its application
is research and development in progress. Its
technology was created to address problems
considered difficult, at best, to solve (not the
least of which was that of responding to the
actions resulting from lessons learned).
Analysis of lessons learned using 001AXES
and its automation continues in a manner not
unlike the empirical studies of Apollo's
systems. Again and again we learn from
experience (that of 001AXES users, including
our own experience as 001AXES users) and
evolve accordingly; maximizing the degree of
preventiveness, i.e., that which is inherent and
that which becomes no longer necessary.

References

Bolinger, Dwight and Sears, Donald A.,
Aspects of Language. New York: Harcourt
Brace Jovanovich, Inc., 1981, p. 109.

Cushing, S., A Note on Arrows and Control
Structures: Category Theory and HOS,
Candidate BMD Data and Axioms,
Contract #DASG60-77-C-0155, HOS,
Prepared for Ballistic Missile Defense,
Advanced Technology Center, June 1978.

Department of Defense. 1992. Software
engineering tools experiment-Final report,

Vol. 1, Experiment Summary, Table 1, p.
9. Strategic Defense Initiative, Wash., DC.

Friedenthal, S., Moore, A., Steiner, A., OMG
Systems Modeling Language (OMG
SysML) Tutorial, INCOSE 2006, Orlando,
Florida, July 11 2006

Hamilton, M. 1986. Zero-defect software: The
elusive goal. IEEE Spectrum 23(3):48-53,
March.

Hamilton, M., “Inside Development Before
the Fact”, Electronic Design, April, 1994,
ES

Hamilton, M., “Development Before the Fact
in Action”, Electronic Design, June, 1994,
ES.

Hamilton, M., The Heart and Soul of Apollo:
Doing it Right the First Time, 7th
International MAPLD Conference, Wash.
D.C., Sept. 2004

Hamilton, M, Hackler, R: "Prototyping: An
Inherent Part of the Realization of Ultra-
Reliable Systems", Final Report to
University of California Los Alamos
National Laboratory Contract No. 4-X28-
8698F-1, DETEC Conceptual Model,
1988.

Hamilton, M, Hackler, R. 1990, 001: A rapid
development approach for rapid
prototyping based on a system that
supports its own life cycle. IEEE
Proceedings, First International Workshop
on Rapid System Prototyping (Research
Triangle Park, NC) pp. 46-62, June 4.

Hamilton, M., Hackler, W.R., Final Report:
AIOS Xecutor Demonstration, Los
Alamos National Laboratory, Los Alamos,
NM, No. 9-XG1-K9937-1, Nov. 1991

Hamilton, M., Hackler, W. R., Towards Cost
Effective and Timely End-to-End Testing,
HTI, prepared for Army Research
Laboratory, Contract No. DAKF11-99-P-
1236, July 17, 2000.

Hamilton, M, Hackler, W.R.., Deeply
Integrated Guidance Navigation Unit (DI-
GNU) Common Software Architecture
Principles (revised dec-29-04),

14
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

DAAAE30-02-D-1020 and DAAB07-98-
D-H502/0180, Picatinny Arsenal, NJ .

Hamilton, M., Zeldin, S, "Higher Order
Software—A Methodology for Defining
Software," IEEE Transactions on Software
Engineering, vol. SE-2, no. 1, Mar. 1976.

Hamilton, M., Zeldin, S., The Relationship
Between Design and Verification”, The
Journal of Systems and Software, vol. 1,
no. 1, pp. 20-56, Elsevier North Holland,
Inc. 1979.

HOS, Application of a Formal Systems
Methodology to Civil Defense, Prepared
for Defense Civil Preparedness Agency,
Wash., D.C. 20301, Mar. 1980.

HOS, USE.IT Reference Manual, Cambridge,
MA, 1980-1985

HTI, Accident Record System Interim
Solution (ARS-IS) Requirements Design
Specification, Prepared for Massachusetts
Highway Department Traffic Operations,
Feb. 1997

HTI, 001 Tool Suite Reference Manual,
Cambridge, MA, 1986-2007

http://icb.nasa.gov/001
http://www.htius.com, What Others Say
Keyes, J., Internet Management,. chapters 30-

33, on 001-developed systems for the
Internet, Auerbach, 2000a.

Keyes, J. Financial Services Information
Systems, chapter 18, Systems that Build
Themselves, Auerbach, 2000b.

Krut, Jr., B., "Integrating 001 Tool Support in
the Feature-Oriented Domain Analysis
Methodology" (CMU/SEI-93-TR-11,
ESC-TR-93-188), Pittsburgh, SEI,
Carnegie Mellon University, 1993.

Object Management Group (OMG), 2006,
Systems Modeling Language version 1.0,
Available from http://www.omgsysml.org.

Ouyang, M., Golay, M.W. 1995, An
Integrated Formal Approach for
Prototyping High Quality Software of
Safety-Critical Systems, Massachusetts
Institute of Technology, Cambridge, MA,
Report No. MIT-ANP-TR-035

Schindler, Max, Computer Aided Software
Design, John Wiley & Sons, 1990.

Software Productivity Consortium, (SPC),
Object-Oriented Methods and Tools
Survey, Herndon, VA.SPC-98022-MC,
Version 02.00.02, December 1998.

Biography

Margaret H. Hamilton is the founder and
CEO of HTI. She is responsible for the DBTF
paradigm (along with its formal universal
systems language, 001AXES. and its
automation. 001. Hamilton was the founder
and CEO of Higher Order Software, Inc.
(HOS), where she was responsible for the first
CASE product line, USE.IT (HOS 1980-
1985), in the industry and the theory behind it
(HOS). She was responsible for the Apollo
(and Skylab) on board flight software effort
while Director of the Software Engineering
Division at Charles Stark Draper Laboratory.
She created the mathematical theory based on
Apollo that formed the earlier beginnings of
DBTF.

William R. Hackler is the lead engineer
for 001's development. He has been
responsible for many 001AXES advanced
language concepts and applications including
a simulator, missile tracking simulation
(which led to HTI's being nominated for SBA
Subcontractor of the Year), asynchronous real
time distributed applications for SDI, factory
models and Internet related applications
including an accident record system and a
financial trading system. Hackler was
Director of Advanced Concepts at HOS where
he developed technologies based on the HOS
theory. He was responsible for many
applications including battle management and
aerospace manufacturing, applying HOS and
USE.IT.

15
PROCEEDINGS CSER 2007, March 14-16, Hoboken, NJ , USA

	Abstract
	Introduction
	001AXES Universal Systems Language
	Integrated Modeling Environment
	Six Axioms of Control
	Universal Primitive Structures
	Definition and Execution Space
	User Defined Structures
	Universal Primitive Operations
	Constraints
	Automation
	Conclusion
	References
	Biography

