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Abstract 

Over the course of the last decade, decision support 

systems have been used to assist clinicians and 

researchers in expanding the body of knowledge of 

particular (bio)-medical areas, as well as in diverse 

decision-making processes (e.g., diagnosis, treatment). 

Creating a decision support model (e.g., a rule base) 

requires a set of well-established medical guidelines built 

on mature domain knowledge. The absence of such 

mature domain knowledge has hindered the development 

of appropriate decision support methods in the skeletal 

dysplasia domain. In this paper, we make the first step 

towards providing a solution to this issue by proposing an 

ontology and associated extraction algorithm that can 

infer generalized evidences from existing bone dysplasia 

patient cases. This establishes the foundation for a 

decision support model based on evidential reasoning, 

which enables semi-automated diagnosis or key disease 

feature extraction. 

Keywords:  Evidence Ontology, Decision support 

methods, Evidential Reasoning 

1 Introduction 
Skeletal dysplasias are a heterogeneous group of 

genetic disorders affecting skeletal development. 

Currently, there are over 450 recognized bone dysplasias, 

structured in 40 groups. Patients with skeletal dysplasias 

have complex medical issues including short stature, 

bowed legs, a larger than average head and neurological 

complications. However, since most skeletal dysplasias 

are very rare (<1:10,000 births), data on clinical 

presentation, natural history and best management 

practices is sparse. Another reason for data sparseness is 

the small number of phenotypic characteristics typically 

exhibited by patients from the large range of possible 

phenotypic and radiographic characteristics usually 

associated with these diseases. Due to the rarity of these 

conditions and the lack of mature domain knowledge, 

correct diagnosis is often very difficult. In addition, only 

a few centres worldwide have expertise in the diagnosis 

and management of these disorders. 

 

As there are no defined guidelines, the diagnosis of new 

cases relies strictly on parallels to past case studies. 
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Molecular genetics research on skeletal dysplasias has 

advanced considerably over the years – enabling the 

genetic defects responsible for more than 200 skeletal 

dysplasias to be identified.  However, a lack of decision 

support methods and interoperable knowledge bases 

available to the skeletal dysplasia community – hinders 

collaborative diagnosis and research in this area. A rich 

knowledge base, together with associated decision 

support methods would enable researchers to verify 

known trends and to discover new, previously unknown 

trends among clinical attributes associated with this class 

of diseases, that can be used to assist and inform the 

decision making process associated with disease 

diagnosis and characterisation. 

The general sparseness and disperse nature of skeletal 

dysplasia data has limited the development and 

availability of authoritative databases by the leading 

clinical and research centres. To make diagnoses, 

improve understanding and identify best treatments, 

clinicians need to analyse historical dysplasia patient 

data, verify known facts and relationships and discover 

new and previously unknown facts and relationships 

among the phenotypic, radiographic and genetic attributes 

associated with existing and new cases. For example, it is 

currently extremely difficult to recognise skeletal 

dysplasias that are etiologically related or to identify 

clinical or radiological characteristics that are indicative 

of defects resulting from a specific molecular pathway. 

In order to do this, researchers and clinicians currently 

need to query many heterogeneous data sources and to 

effectively aggregate diverse types of data relating to 

phenotypic, radiographic and genetic observations. Given 

the appropriate data integration and reasoning tools, 

clinicians should be able to deduce, for example, that 

“mutations of the COL3A1 gene cause Platyspondylic 

lethal skeletal dysplasia which is characterised by short 

fingers in 90% of patients”. However, this data 

integration step represents a significant challenge due to 

the extreme heterogeneity of the data models, metadata 

schemas and vocabularies, data formats and 

inconsistencies in naming and identification conventions. 

Semantic Web standards (Berners-Lee, Hendler et al. 

2001; Shadbolt, Hall et al. 2006; Allemang and Hendler 

2008) encode and formalize data and background 

knowledge associated with a specific domain by means of 

standardized metadata schemas, controlled vocabularies 

and ontologies. These standards are critical to facilitating 

information sharing and integration.  Hence, a key aim is 

to apply Semantic Web technologies to the data 

integration challenge described above by formalizing and 

modelling dysplasia data using ontologies and controlled 

vocabularies. 



The above-mentioned issues also limit the potential of 

successfully applying existing or traditional knowledge 

representation, reasoning and decision support methods in 

the bone dysplasia domain, such as Rule Based Systems 

(Hudson 2006), Neural networks(Chan, Ling et al. 2011), 

Fuzzy cognitive maps (FCMs) (Hudson 2006; Gadaras 

and Mikhailov 2009; Papageorgiou, Papandrianos et al. 

2009; Begum, Ahmed et al. 2010; Chan, Ling et al. 

2011)) or Fuzzy Rule based classifications (Gadaras and 

Mikhailov 2009). Creating a decision support model (e.g., 

a rule base) requires a set of well-established medical 

guidelines and mature domain knowledge. However in 

the skeletal dysplasia domain, clinicians frequently have 

to diagnose patients with little or no similarity to past 

cases – this requires the generation of new evidence by 

combining existing evidence.  

Our hypothesis is that by representing the knowledge and 

data using Semantic Web formalisms, and applying 

inductive reasoning on the resulting knowledge base – we 

can induce generalized evidences and store them in an 

Evidence Ontology. The result is an interoperable 

generalized evidence store for the skeletal dysplasia 

domain. Storing generalized evidences in an ontology 

enables sharing among and aggregation from multiple 

autonomous systems, thus leading to a distributed 

decision support approach. 

The remainder of the paper is structured as follows: 

Section 2 provides a comprehensive overview of 

generically related efforts in the decision support area, 

while Section 3 introduces the fuzzy terminology used by 

our approach described in Section 4. Before concluding 

in Section 6, we briefly describe our evaluation plans in 

Section 5. 

2 Related Work 
Most prior work in representing generalized 

knowledge for medical decision support methods 

(Hudson 2006; Gadaras and Mikhailov 2009; 

Papageorgiou, Papandrianos et al. 2009; Begum, Ahmed 

et al. 2010; Chan, Ling et al. 2011) use some non-

standard formalisms or proprietary formats which hinder 

integration, interoperability and efficient knowledge 

reasoning. They also lead to unjustified results by fusing 

all generalized knowledge into a black box system or 

assume the existence of mature domain knowledge. 

Moreover, some of these previous methods cannot evolve 

over time, due to their shallow knowledge representation 

formalisms. Case-based reasoning (Begum, Ahmed et al. 

2010), on the other hand, cannot combine past evidences 

to form a new evidence for a given problem where no 

past similar evidence exists. This scenario is typical for 

rare diseases like skeletal dysplasias. It also uses non-

generalized evidences, which does not guarantee 

correctness. 

Rule based systems (Hudson 2006) and fuzzy rule-based 

classification (Gadaras and Mikhailov 2009) use exact 

matching on rules built on mature and established domain 

knowledge – which is inapplicable in a domain that 

suffers from data sparseness. The neural network 

approach (Chan, Ling et al. 2011) cannot provide 

justification for the resulting knowledge because it fuses 

all the evidence into the internal weights, whereas in the 

skeletal dysplasia domain, justification is very important 

to both clinicians and researchers in order to understand 

the underlying causal elements.  

Today’s decision support systems require the 

automatic integration of knowledge from multiple 

sources. However, the lack of interoperability and 

standard formalisms impede these systems to take 

advantage of the connectivity provided by the Web.   

Decision support systems (Goossen, IJntema et al. 2011; 

Lee and Wang 2011)  using Semantic Web standards are 

being developed to overcome the above challenges. 

Semantic Web rule-based reasoning has been used for 

domain specific decision support methods, for example, 

in the Ambient Intelligence domain (Patkos, Chrysakis et 

al. 2010). However, such approaches cannot make use of 

underlying trends in instance data that have not been 

encoded as ontological background knowledge and 

cannot handle probabilistic uncertainties within the 

knowledge. Moreover, they cannot form new evidence by 

combining existing evidence via reasoning, where there 

exist no prior examples. 

A recent related effort (Lee and Wang 2011) presents 

a novel fuzzy expert system for a diabetes decision 

support application using a 5-layer fuzzy ontology and a 

semantic decision support agent. However, as with its 

predecessors, this system also depends on mature and 

established domain knowledge, and uses fuzzy rule-based 

reasoning (Straccia 2008), which follows an exact 

matching approach. 

Medical decision support systems have emerged from 

the co-evolution of research in decision support systems 

and medical informatics. In (Hussain, Abidi et al. 2007), 

a Semantic Web based Clinical Decision Support System 

is presented to provide evidence guided recommendations 

for follow-up after treatment for Breast Cancer. 

ControlSem (Andreasik, Ciebiera et al. 2010), a medical 

decision support system using Semantic Web 

technologies, was developed with the goal of controlling 

medical procedures. Similarly, in (Prcela, Gamberger et 

al. 2008), the authors present a medical expert system for 

heart failure. These expert systems use general purpose 

rule base reasoning (deductive reasoning) (Straccia 2008) 

because the underlying domain has well-defined rules and 

mature background knowledge. 

Reasoning plays a vital role on the Semantic Web and 

is based on the background knowledge provided by the 

data model, logic and rules layers. Deductive reasoning is 

able to derive new knowledge, however, is relies 

completely on rules and existing ontological background 

knowledge and, hence, cannot make use of regularities in 

the instance data that have not been. In contrast, induction 

can exploit regularities in the instance data to discover 

new generalised rules or evidences. 

Data mining is also applied to discover new 

information, hidden in patterns emerging from existing 

information. One of widely used techniques in data 

mining is finding association rules. The first pioneering 

work to mine conventional positive association rules 

using a level wise search algorithm was explained in 

(Agrawal, Imieli ski et al. 1993). Following this work, 

many other, improved, algorithms have been proposed, in 

particular for finding rules that represent decision 

occurring frequently based on a set of facts (Doddi, 



Marathe et al. 2001; Pan, Li et al. 2005; Sheela and 

Shanthi 2009; Weng and Chen 2010). 

Finally, Semantic Web Mining (Lisi 2006; Lisi 2006; 

Stumme, Hotho et al. 2006) is a new research area that 

aims to discover hidden knowledge from Semantic Web 

instance data by combining Semantic Web techniques 

and data mining. The newly discovered knowledge can 

then be used for enriching the domain model and, hence, 

possibly improve the future decision making process. 

Most of the existing work in Semantic Web mining 

applies existing data mining algorithms in the Semantic 

Web context. For example, (Lisi 2006) describes a 

middleware, SWing, to enable inductive reasoning on the 

Semantic Web. Similarly, (Maedche and Staab 2000) use 

association mining to extract relations from text.  

3 Uncertainty, Fuzzy Set Theory and Ontology 

Uncertainty comes in various forms: probabilistic 

uncertainty (e.g., “There is a 65% chance I will get my 

promotion”), vagueness (fuzziness – e.g., “Mike is old to 

some degree”), ambiguity, subjectivity, incompleteness, 

etc. It is widely accepted that uncertainty is an 

indispensable part of medical data, and that the first two 

types of uncertainty play an important role, e. g., a 

symptom may or may not occur with a disease, it has an 

uncertain relation with the disease, etc (De, Biswas et al. 

2001; Straszecka 2006). 

In the Semantic Web world, OWL ontologies and 

SWRL rules can be used to capture the domain 

knowledge in a highly expressive manner. However, 

these cannot model vague and uncertain knowledge, and 

implicitly concepts, such as “short” Limb, “happy” 

person or “narrow” chest, because are unable to capture 

the degree of happiness or the measure of shortness. 

Fuzzy set theory and fuzzy logic (Ross 2010) are 

suitable formalisms to handle imprecise and vague 

knowledge of a particular domain. In traditional set 

theory, any element belongs or not to a set, in type-1 

fuzzy set theory, any element can belong partially to a set. 

For example, Tim has “short limb ≥ 0.5” states that Tim 

has a short limb with a degree of at least 0.5. The 

traditional set theoretic operations are extended to the 

Fuzzy set and Fuzzy complement, union, intersection and 

the logical operation of implication are performed by 

special mathematical functions over the unit interval, and 

they are defined as fuzzy complement (c), tconorm (u),  t-

norm (t or ∗) and fuzzy implication (⇒) (Ross 2010) 

There are other uncertainties that type-1fuzzy set cannot 

handle, e.g., the confidence or certainty that Tim has 

“short limb ≥ 0.5”. Type-2 fuzzy sets (Castillo, Melin et 

al. 2007) can handle these types of uncertainties by 

associating uncertainty with the membership function of a 

type-1 fuzzy set. 

A fuzzy linguistic variable defines the terminology 

required to use a fuzzy concept like age in expressing 

rules and facts.  A Fuzzy value is an instance of a fuzzy 

concept for a fuzzy linguistic variable, e.g., age is young 

>= 0.8. A Fuzzy linguistic Term is a word or expression 

used to facilitate the expression of Fuzzy value for a 

fuzzy linguistic variable. For example, age may have the 

Fuzzy terms {young, adult, old}. In our method, we 

employ type-2 fuzzy sets, fuzzy Linguistic variables, 

Fuzzy Value and Fuzzy Linguistic Term. Let’s suppose 

we have to represent short limb with a degree of at least 

0.8 and a certainty of 0.5. In this case we define a Fuzzy 

linguistic variable “limb”, featured by three Fuzzy 

linguistic terms: {short, medium, long}. Our 

representation string will then be: 0.5 / (short, 0.8). 

There are many concepts in medical domain that are 

vague and have no clear boundaries, such as “young”, 

“tall” or “small”. It is widely known that the crisp 

formalisms such as the one provided by OWL cannot 

handle vague and uncertain information on the Semantic 

Web. There are nevertheless, other ways to deal with 

such data. Firstly, it is possible to extend current 

Semantic Web languages to cope with fuzzy and 

uncertain information. Secondly, one can develop a 

specific, fuzzy, ontology. The World Wide Web 

Consortium (W3C) has set up a working group to work 

on representing and reasoning under uncertainty using 

ontologies. Results of this group can be seen in the 

existing fuzzy DL reasoners, like fuzzyDL (Simou and 

Kollias 2007; Bobillo and Straccia 2008) and FiRE 

(Simou and Kollias 2007). Straccia (Straccia 2010) and 

Pan (Pan, Stamou et al. 2007) have also described 

mechanisms the for persistent storage and querying of 

fuzzy and uncertain information in databases. 

From the fuzzy ontology perspective, there have been 

several solutions proposed to date. Gu et al (Gu, Wang et 

al. 2007) describe a Fuzzy Ontology of edutainment 

based on reification of relations in OWL, a technique 

similar to representing n-array relations (Noy, Rector et 

al. 2006) in OWL. (Bobillo and Straccia 2009) propose 

an OWL ontology to represent important features of 

fuzzy OWL 2 statements, via temporary concepts (nodes) 

like ConjunctionConcept and ConceptAssertion. At a 

later stage, the same authors also propose a concrete 

methodology to represent a fuzzy ontology using OWL 2 

annotation properties (Bobillo and Straccia 2010). 

Finally, (Stoilos, Stamou et al. 2005) extend OWL with 

fuzzy set theory in order to capture, represent and reason 

with fuzzy and uncertain information, while (da Costa, 

Laskey et al. 2008) propose the PR-OWL formalism by 

extending OWL to provide the ability to express 

probabilistic knowledge. 

4 Research Methodology   

Figure 1 presents the high level building blocks of our 

research methodology, represented by the SKELETOME 

ontology set, the Evidence Extraction Process and the 

Evidence ontology. In the following sections we detail 

each of the three building blocks. 

 

 

Fig. 1. Inducing generalised evidences from the 

Skeletome Ontology set and storing them into the 

Evidence Ontology 
SKELETOME Ontology set. The main role of the 

SKELETOME Ontology set is to improve the highly 

static and rigid format of the ISDS Nosology (Warman, 



Cormier Daire et al.) by enabling a more flexible 

classification of the disorders and the integration with 

existing Web resources, such as the Human Phenotype 

Ontology (Robinson, Köhler et al. 2008) or the NCI 

Thesaurus (Sioutos, Coronado et al. 2007). The set is 

composed of three ontologies: the Bone Dysplasia 

ontology that captures the complex relations between the 

phenotypic, radiographic and genetic elements 

characterizing all skeletal dysplasias; the Patient ontology 

that models patient information and the Context ontology 

maintaining provenance information.  

Evidence Ontology. The Evidence Ontology models 

uncertainty (both fuzzy / vagueness and probabilistic 

uncertainty) by re-using concepts from probabilistic 

uncertainty and from Fuzzy Theory, such as fuzzy value, 

fuzzy variable, fuzzy set, membership value and fuzzy 

term. It enables the representation of uncertain 

generalized evidences and helps to simplify uncertain 

knowledge representation in OWL. The crisp syntax of 

OWL DL is used within the Evidence ontology to enable 

the encoding of Fuzzy and probabilistic uncertainty 

semantics. 

Evidence extraction process. The generalized evidence 

extraction from past patient cases stored via the 

SKELETOME ontology set is a crucial prerequisite for 

the implementation of any decision support method, like 

automated diagnosis or key disease feature inference. 

Without the extracted evidence, uncertainty reasoning 

cannot be performed. The actual extraction process uses 

Machine Learning techniques, and more specifically, a 

level wise search algorithm (Paul and Hoque 2010), to be 

able to infer evidences from the instances of the 

SKELETOME ontology concepts, made available by 

domain experts. 

4.1 The SKELETOME Ontology Set 

As already described, the SKELETOME Ontology Set 

consists of three ontologies that model together the 

skeletal dysplasia domain knowledge, patient information 

and context information. 

The actual requirements of the ontology set emerged 

from the needs of the skeletal dysplasia community, and 

include the following: 

Common terminology: The diagnosis and management of 

skeletal dysplasias depends on highly specialised domain 

knowledge across a number of disciplines (radiography, 

genetics, orthopaedics, physiotherapy), which is not 

easily comprehensible to individual communities or 

hospitals. In order to enable the exchange of knowledge 

between experts (across languages and disciplines), 

patients, their families and medical staff, a common 

terminology is required, hence leading to a shared 

conceptualisation of the domain. 

Data integration: Large datasets containing rich 

information on molecules (genes, proteins) already exist 

and the information relevant to skeletal dysplasias needs 

to be extracted and cross-referenced with the clinical data 

and knowledge produced by SKELETOME. This requires 

integration both at conceptual level, as well as, at actual 

data / instance level. 

Capturing provenance and expertise: The contributed 

content may take several forms, ranging from personal 

observations to scientific publications. Independently of 

the form, SKELETOME requires a mechanism to keep 

track of the provenance of the data and knowledge (to 

ensure proper privacy and access control), to provide a 

measure of certainty of derived data and to leverage 

expertise from the content and to streamline the delivery 

of the most relevant information / queries to the most 

appropriate person. 

 

Fig. 2. Core concepts of the SKELETOME Ontology Set 

Figure 2 depicts the core concepts of the 

SKELETOME Ontology Set. Bone Dysplasia, 

Phenotypic Characteristic and Gene Mutation are 

concepts defined by the Bone Dysplasia Ontology. The 

Bone Dysplasia ontology aims to complement the 

spectrum of existing ontologies and address the specific 

knowledge representation shortcomings of the ISDS 

Nosology (Warman, Cormier Daire et al.). None of the 

existing phenotype ontologies (e.g., the Human 

Phenotype Ontology) or well-known terminologies (e.g., 

SNOMED-CT) describe in detail skeletal dysplasias. As a 

result, our ontology provides a comprehensive, accurate 

and formal representation of the genotypes and 

phenotypes involved in skeletal dysplasias, together with 

their specific and disease-oriented constraints. As 

opposed to the current ISDS Nosology, this ontology 

enables a shared conceptual model, formalised in a 

machine-understandable language. In addition, it is 

continuously evolving and provides a foundational 

building block for facilitating further knowledge 

extraction and reasoning. 

On the other hand, Patient, Diagnosis and 

Investigation are concepts present in the Patient 

Ontology. This ontology has the role to maintain patient 

data as instances of the domain knowledge, and in 

particular of associations of particular genotypic or 

phenotypic characteristics to different bone dysplasias. 

The graph created by the relationships between the 

above-mentioned concepts represents the input for the 

following steps of our research methodology. 

4.2 Evidence Extraction from the SKELETOME 

Ontology set – the Level-wise algorithm 

Figure 3 depicts the steps performed to create the 

decision support model. Firstly, data rows are extracted 

from the SKELETOME knowledge base. These are then 

transformed in the quantization process to make them 

suitable for comparison in the level-wise algorithm. 

Finally, the level-wise search algorithm is applied to 



discover generalised evidences, which are the stored as 

instances in the evidence ontology. 

As a remark, the evidence extraction process assumes 

the strict use of positive statements in the data, due to the 

way in which patient cases (and clinical summaries) are 

described in this domain. More concretely, the 

SKELETOME ontology will only contain statements in 

the form of P implies Q, where P is a set of phenotypes 

and Q a skeletal dysplasia, without considering negation, 

e.g., P does not imply Q. 

Another, different, remark needs to be made with respect 

to the evolution of the domain knowledge. The structure 

of the SKELETOME ontology will naturally evolve in 

accordance with the advances in the field. This evolution 

will be reflected both in the instance data (i.e., new 

patient cases), but also in the evidence extraction. From a 

technical perspective, we have currently plan to deal with 

this evolution by re-generating the evidences as part of a 

periodical batch process. However, for the future, we will 

consider incorporating such changes in the generalized 

evidences in an incremental manner. 

Data Row Extraction. This step transforms the instance 

data present in the SKELETOME knowledge base, which 

is structured as interconnected graphs, into rows, as 

required by the level-wise search algorithm. 

Subsequently, it finds the most appropriate method to 

perform   candidate and item set generation and to find 

rules within the given dataset, by also taking into account 

the physical resources associated with such a data-

intensive method. 

  

 

 

Fig. 4. Trend discovery algorithm in instance data  

 

Fig. 3. Decision support model creation steps 



Fig. 5. Generalized evidence discovery algorithm from the desired item set 

Quantization. A second prerequisite to perform evidence 

extraction using the level-wise search algorithm is to 

transform the row data into a suitable format. Skeletal 

dysplasia data types can take multiple forms, ranging 

from categorical, or Boolean to continuous numerical 

data, interval, percentage or fraction. Continuous 

numerical data cannot be compared by direct difference 

as it may fail in recognizing some of the intrinsic data 

characteristics. For example, age intervals of equal width 

(e.g., 0 < age ≤ 10, 10 < age ≤ 20) may ignore certain data 

characteristics due to the ambiguous conventions 

associated with the patient’s age interpretation, i.e., 

young, adult, or elder. A set of rules is created for each 

continuous numerical attribute using the knowledge of 

clinicians and researchers. A rule engine maps continuous 

numerical data to items using these developed rules. A 

domain dictionary is used to transform the data for 

discrete attributes.  

Evidence extraction using Level-wise Search. A level 

wise search algorithm is developed to extract evidences 

from the SKELETOME knowledge base. The algorithm 

is based on the following statements: 

 A statement (A->B) is treated as evidence based 

on the symmetric relationship strength between 

the antecedent and the consequent. 

 Most generalised evidences involve a coherent 

subset of attributes, instead of implicitly 

including all possible attributes. 

 Symptoms and observations lead to a particular 

decision and a decision can be a diagnosis or a 

procedure. All symptoms or observations are 

part of an antecedent and all diagnoses are part 

of a consequent.   

Once the data has been transformed into a row-based 

format, the horizontal axis will represent patient 

instances. Fields composing the horizontal axis will be 

tagged as Action (representing the diagnosis) and 

Observation (representing symptoms, lab tests, genetic 

tests or radiographic features). 

In the above-mentioned interval-based crisp 

quantization, elements near the boundaries of an interval 

will either be ignored or overemphasized(Kaya and 

Alhajj 2008). This may lead to loosing some of the 

underlying meaning of the data. For instance, an interval 

representing young persons might have a range between 

18 and 40 years. In this instance, a person aged 17 would 

be a 0% representative and an 18 year old person would 

be 100%. However, the actual difference between these 

two ages is not that significant. This problem is caused by 

the sharp boundary between intervals(Kaya and Alhajj 

2008). Implementing fuzziness can overcome this 

problem. 

To address this issue, we use fuzzy quantization as an 

intermediate phase within the overall quantization step. 

For instance, we partition the values of the Age attribute 

into three fuzzy sets: low, medium and high. The 

intervals of low, medium and high could be {0−33}, 

{27−55} and {48−∞} respectively. In this instance, a 

person aged 30 years would be a representative of low 

with a certain degree and a representative of medium with 

a different degree. The domain experts define the 

corresponding fuzzy sets and their membership functions. 

To have a clear understanding of the final data 

representation, below we present an example of a fuzzy 

encoding for a patient who exhibits three symptoms and 

has been diagnosed with a particular bone dysplasia: 

Patient 1: {0.8/(s1, 0.9), 0.8/(s2, 0.9), 0.8/(s3, 0.9), 0.8/(D, 

0.9)}  

s1 = “Symptom X is Low”  

s2 = “Symptom Y is High”  

s3 = “Symptom Z is Low”  

D = “Dysplasia BD is Medium”  

 

Generalized evidence represents information inferred 

from generalized facts. The process of extracting 

generalized evidences from past patient cases consists of 

two steps: 

1. Discovering the trend of the instance data by 

finding a desire item set using the level wise 

search algorithm. 

2. Finding generalized evidences from the desired 

item set. 

Step1: This step considers only the fuzzy terms of the 

fuzzy values, leaving out the membership value of these 

fuzzy terms. Even so, we consider only the fuzzy values 

that have membership value greater than a given 



threshold (minimum membership value – mmv). At the 

same time, a fuzzy value with more than one fuzzy term 

will be converted into multiple transactions. For example: 

{Symptom X{Low, High}, Dysplasia X{High}} will be 

converted into: {Symptom X{Low}, Dysplasia X{High}} 

and {Symptom X{ High }, Dysplasia X{High}}. 

Figure  4 details the trend discovery algorithm, where 

K is the size of the item set, S is set of the desired item set 

and {S1, S2, …, Sy} are the desired item sets of length 

{1,2, …, Y}. Also, {C1, C2, ..., Cq} are the candidate item 

sets of length {1, 2, ..., Q} and {I1, I2, …, It} are frequent 

item sets of length {1, 2, …, t}. 

Calculating Support and Average Certainty of an item 

set. If an item set has the items I = {i1, i2, i3, …, in}, there 

are m transactions in the knowledge base, we calculate 

the support and average certainty of the item set using the 

formulae below: 

                           

   
      

                            
 

 

                        

 
               

 
   

 
   

                                       
 

 

Step 2: Figure  5 lists the algorithm for finding 

generalized evidences from the desired item set. Firstly, 

we reduce the desired item sets {S2, S3, …, Sy} only to 

those that have a skeletal dysplasia associated. 

We then partition the symptoms and dysplasia of each 

item set into two sets: an action item set containing the 

dysplasias and a non-action item set containing the 

symptoms, with the symptom set of each of the initial 

item sets related to the dysplasia associated with the 

respective item set. Each of these relationships will 

represent generalized evidence. AC is the function that 

determines the type of an item, i.e., action or non-action. 

         AC(x) =  2 if it is non-action item/symtom 

         AC(x) =  1 if it is action item/dysplasia 

 

Subsequently, we calculate the correlation coefficient 

between the action item set and the non-action item set of 

the evidence, and the probabilistic uncertainty by 

multiplying the resulting correlation coefficient and the 

average certainty. The generalized evidences having the 

probabilistic uncertainty value greater than a certain 

threshold will be considered as final result. 

Ranking the generalized evidences could have been 

performed also by using confidence, which is another 

widely adopted interestingness metric. However, 

confidence does not account for the consequent frequency 

with the antecedent. In order to rank generalised medical 

evidences, we need a metric that takes into account 

frequency in both directions, i.e., the consequent 

frequency with the antecedent and the antecedent 

frequency with the consequent. 

Correlation coefficient calculation. In a given medical 

relationship     , s is a group of medical items where 

each item is constrained to appear in antecedent and t is a 

group of medical attributes where each item appears in 

consequent. Moreover s ∩ t = Ø. For this relationship, the 

support is defined as support =        and the confidence 

is defined as =            , where P is the probability.  

The correlation coefficient (also known as the Φ-

coefficient) measures the degree of relationship between 

two random variables by looking at the degree of linear 

interdependency. It is defined by the covariance between 

the two variables divided by their standard deviations: 

       
        

      

  

Here          represents the covariance of the two 

variables and             stand for standard deviation. 

The covariance measures how two variables change 

together: 

                          

 

Standard deviation is the square root of its variance and 

variance is a special case of covariance when the two 

variables are identical. 

 

                                        

             

               

       
               

                       
 

 

       represents the support of an item set that consists 

of both   and  . Let the support of the item set be    . 

     and      will represent the support of antecedent s 

   ) and antecedent t    ), respectively. The value of    , 

   and    are computed during the desired item set 

generation. Using these values, we can calculate the 

correlation of every medical relationship among diverse 

groups of medical items. The correlation value will 

indicate the medical researcher how strong a medical 

relationship is from the perspective of historical data.   

                  
         

       
         

 

 

Hence, creating an association rule from the values of    , 

   and    provides us with a single metric, correlation 

coefficient, to represent the degree of relatedness between 

the antecedent and the consequent. For each medical 

relationship or rule, this metric is used to indicate the 

degree of relatedness between different groups of items. 

     takes values between -1 and +1. If two variables are 

independent then      is 0. When      is +1 the variables 

are considered perfectly positively correlated. A positive 

correlation represents an evidence of a general tendency 

of relatedness between a group of attribute values s and a 

group of attribute values y of a particular patient. The 

more positive the value is, the stronger the relationship is. 

When      is -1 the variables are considered perfectly 

negatively correlated. 

Storing the Evidences. The fuzzy evidences discovered 

in the previous stage are stored in the Evidence Ontology 



together with their corresponding probabilistic 

uncertainty. 

4.3 Evidence Ontology 

The Evidence Ontology (see Figure 6) is an OWL 

ontology we have built to represent uncertain generalised 

evidences. The ontology captures both fuzziness / 

vagueness and probabilistic uncertainty by re-using 

concepts from Fuzzy Theory, such as fuzzy value, fuzzy 

variable, fuzzy set, membership value, fuzzy term and 

probabilistic uncertainty. It enables the expression of 

uncertain information / evidence via ontological concepts 

and helps in simplifying knowledge representation in 

OWL. 

The structure of the ontology comprises two 

conceptual layers: 

 A fuzzy theory layer describing the features of 

fuzzy theory, such as, fuzzy term and 

membership value characteristics, and 

 A conditional statements/conditional expressions 

layer modelling past skeletal dysplasia evidences 

with probabilistic uncertainty.  

The SKELETOME ontology set is hence extended, via 

the Evidence Ontology, to enable analytical uncertainty 

reasoning on skeletal dysplasia cases. The resulting 

representation allows a powerful set of uncertainty 

operations while not introducing any inconsistency in the 

host ontology. 

The syntax of the Fuzzy theory layer is based on OWL 

2.0, while the semantics is based on the theory of fuzzy 

sets.  Evidence are of the form antecedent   consequent 

with an associated probabilistic uncertainty, where 

antecedent consists of a set of Fuzzy Values of skeletal 

dysplasia symptoms, while the consequent is a set of 

Fuzzy Values of bone dysplasias. Range, domain, 

cardinality and functionality axioms are employed in the 

Evidence Ontology to keep the integrity of the Fuzzy 

theory, conditional statements and probabilistic 

uncertainty semantics. The object properties are exposed 

to establish association/relations between concepts, and 

data type properties are exposed to describe the attributes 

of concepts. 

The Evidence Ontology has 8 main classes 

representing different concepts of fuzzy theory and 

conditional statements, listed below: 

 
 

Fig. 6. Evidence Ontology concepts

Evidence Assertion represents evidences extracted from 

existing patient cases. An Evidence Assertion instance    

comprises an Antecedent Assertion, a Consequent 

Assertion and a Probabilistic Uncertainty. 

Antecedent Assertion represents the antecedent part of 

an evidence. Its instances are composed of a set of fuzzy 

values. 



Consequent Assertion represents the consequent part of 

an evidence. Its instances are composed of a set of fuzzy 

values.  

Fuzzy Variable represents a fuzzy variable from the 

fuzzy theory. Fuzzy variables usually consist of a name 

(e.g., age), terms (e.g., child, young or blue), an unit (e.g., 

years) and the universe of discourse (e.g., 0-200). 

Fuzzy Term represents a fuzzy term from the Fuzzy 

Theory, which is used as part of Fuzzy Set and Fuzzy 

Variable. For example, a fuzzy variable SymtomA may 

have fuzzy terms like Low, High or Medium. A Fuzzy 

Set may have the fuzzy term Medium with membership 

value 0.8. Each Fuzzy Term has a membership function. 

Fuzzy Value represents the corresponding fuzzy value 

from the Fuzzy Theory and is value of a feature in a fuzzy 

sense instead of the crisp sense. After fuzzification, a 

numeric value converted in to Fuzzy Value and has two 

parts: a Fuzzy Set (i.e., the numeric value in the Fuzzy 

Terminology) and a Fuzzy Variable (Metadata about the 

Fuzzy terminology) 

Fuzzy Set. Every member of a Fuzzy Set has 

membership degrees. A Fuzzy set instance is composed 

of a set of FuzzySetComponents. 

FuzzySetComponent / FuzzySetMember represents a 

fuzzy element of the Fuzzy set theory. A 

FuzzySetComponent instance is composed of a fuzzy 

term and a corresponding membership value. 

Currently, the Evidence Ontology has 8 classes, 10 object 

properties, 5 data type properties and no instances.  

5 Evaluation Plans 

To date, we have developed the Evidence ontology and 

identified a mechanism for inducing evidences. The next 

phase of the project involves evaluating these two aspects 

and refining/optimizing them based on the results. 

Task-based evaluations (Porzel and Malaka 2004) will be 

used to assess the capability of the Evidence ontology to 

represent  the generalized uncertain evidence. A set of 

use-cases, formulated as parameterized test questions and 

answer keys will be leveraged to characterize the 

ontology in terms of accuracy, insertion errors, deletion 

errors and substitution errors. 

Similarly, to quantitatively assess the quality of the 

evidence extraction process, we will measure the 

evidence retrievability (recall) (Gupta, Fang et al. 2008) 

and the evidence spuriousness (precision) (Gupta, Fang et 

al. 2008). Evidence retrievability measures how well the 

underlying trends in past data have been discovered. 

Although retrievability provides a good estimate of the 

fraction of detected patterns in the data, it does not 

provide an estimate of the quality of the found patterns. 

The quality of a pattern is measured using spuriousness, 

which quantifies the number of items in the pattern that 

are not associated with the matching base pattern. 

6 Conclusion  

No prior research has investigated the induction of 

generalised evidences from immature domain knowledge, 

specifically in the skeletal dysplasia domain. This domain 

raises two important challenges with respect to 

developing decision support methods: (1) the absence of a 

wealth of background knowledge that would enable 

deductive reasoning, and (2) the sparseness of skeletal 

dysplasias data. 

In this paper we have proposed a method for inducing 

generalized evidences from the existing patient cases, via 

a level-wise algorithm. The resulting knowledge is stored 

in the Evidence Ontology, which not only provides the 

foundational model for the development of appropriate 

decision support methods, but also a means for sharing 

generalised evidences in an interoperable manner. 

Future work will focus on firstly evaluating the 

Evidence ontology and the level-wise algorithm. 

Following the evaluation and refinement of these 

components, the next step involves using instances of the 

Evidence ontology in conjunction with evidential 

reasoning, for automated diagnosis and key disease 

features extraction. 
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