
Many cellular and organismal processes depend on the 
establishment of complex patterns of gene expression at 
precise times and spatial locations, and inaccuracies in 
carrying out such transcriptional programmes are often 
deleterious and lead to disease. The information for 
directing these complex expression patterns is encoded 
in regulatory DNA sequences; for example, reporter 
genes attached directly to regulatory sequences adopt the 
expression pattern of the endogenous gene1–3, and when 
an entire human chromosome is transferred into mice, 
its DNA-binding and gene expression patterns remain 
almost unchanged4.

Given the central role of transcriptional programmes 
in many biological processes, a predictive and quanti-
tative understanding of the transcriptional behaviours 
encoded by DNA sequences is desirable. Such an under-
standing would allow us to go beyond merely identifying 
the transcription factors and regulatory DNA elements 
that are involved in a biological process, and would 
replace the existing qualitative and phenomenological 
descriptions with a mechanistic view of the process that 
integrates the components that are involved into realistic 
mechanistic models. Indeed, our ability to quantitatively 
predict the behaviour of a regulatory system is a useful 
objective measure of the extent to which we understand 
how the system works. At a more practical level, the abil-
ity to accurately predict transcriptional behaviours from 
DNA sequences should allow us to predict the effect that 
sequence variation among individuals in the population 

has on gene expression and thus on more complex  
phenotypes and disease. It would also allow the improved 
rational design of transgenes for biotechnology and 
gene therapy.

Recent work has substantially advanced our under-
standing of how genomic sequences are translated into 
transcriptional outputs. Progress has been made pos-
sible by the availability of large amounts of data on gene 
regulation, and through the development of quantitative 
models that explain how molecules such as transcrip-
tion factors5–7 and nucleosomes8,9 bind DNA sequences 
and how these binding events produce expression pat-
terns10,11. In this Review, we unify these studies into a 
conceptual framework, based on existing methods, 
that quantitatively models the process of transcrip-
tional regulation. The framework is founded on the 
idea that transcriptional regulation can be explained 
by an ‘equilibrium competition’ between nucleosomes 
and other DNA-binding proteins. The details of this 
competition are specified by every regulatory DNA 
sequence through the unique binding affinity ‘land-
scape’ that every sequence defines for each molecule. 
Each transcription factor or nucleosome ‘views’ every 
regulatory sequence in a unique way, depending on its 
recognition specificity; at any given set of concentra-
tions of DNA-binding molecules, the range of affinities 
that the molecules have for any sequence (the binding 
affinity landscape) dictates the cooperative and com-
petitive binding interactions between the DNA-binding 
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Nucleosome
The basic unit of chromatin, 
which contains 147 bp of DNA 
wrapped around a histone 
protein octamer.

From DNA sequence to transcriptional 
behaviour: a quantitative approach
Eran Segal* and Jonathan Widom‡

Abstract | Complex transcriptional behaviours are encoded in the DNA sequences of 
gene regulatory regions. Advances in our understanding of these behaviours have been 
recently gained through quantitative models that describe how molecules such as 
transcription factors and nucleosomes interact with genomic sequences. An emerging 
view is that every regulatory sequence is associated with a unique binding affinity 
landscape for each molecule and, consequently, with a unique set of molecule-binding 
configurations and transcriptional outputs. We present a quantitative framework based 
on existing methods that unifies these ideas. This framework explains many experimental 
observations regarding the binding patterns of factors and nucleosomes and the 
dynamics of transcriptional activation. It can also be used to model more complex 
phenomena such as transcriptional noise and the evolution of transcriptional regulation.
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Figure 1 | Overview of quantitative models for computing expression from DnA sequences. Flow diagram of the 
computational approach for a simplified regulatory sequence with nucleosomes and one transcription factor as  
the input binding molecules. Each of the input molecules has intrinsic binding affinities for every possible sequence of 
length k (top panels, left and right), in which k is the number of base pairs recognized by the binding molecule. These 
intrinsic molecule affinities dictate how every DNA sequence is ‘translated’ into a unique binding affinity landscape 
for each molecule along the sequence (top panel, centre). For each factor concentration (c; bottom panel, left), the 
model uses these binding affinity landscapes to compute a probability (P) distribution over configurations of bound 
molecules (see BOX 1 for details); a small subset of these configurations is illustrated (bottom panel, centre). 
Configurations in which two bound molecules overlap are not allowed owing to steric hindrance constraints, thereby 
modelling binding competition between molecules (see the bottom configuration, which has a probability of zero). 
Finally, each configuration results in a particular transcriptional output (bottom panel, right); the final expression is 
then the sum of the expression contribution of each configuration, weighted by their probability.

Binding configuration
A particular arrangement of 
molecules along a DNA 
sequence, which includes 
specification of the precise 
position and orientation (or 
DNA strand) at which each 
molecule is bound.

molecules and the DNA sequences. This unique binding  
affinity landscape  leads to a distinct distribution of 
molecule binding configurations for a particular sequence 
and, consequently, to a distinct transcriptional behav-
iour for any given combination of a DNA sequence and 
binding molecule concentrations (FIG. 1).

As transcriptional regulation across different organ-
isms uses the same types of molecules, which interact 
according to the universal laws of physical chemistry, the 
basic rules of this framework apply broadly. Indeed, dif-
ferent aspects of the approach presented here were shown 
in bacteria11–14, yeast7,8,15–17, flies10 and mammals18,19.

we start by reviewing the substantial progress that 
has been made in understanding the intrinsic affinities 
of various molecules for DNA. This progress has been 

achieved using experiments that directly measure the 
binding affinity landscapes of different types of molecule 
and computational models that identify the sequence 
rules that underlie and predict these affinity landscapes 
across several organisms. we then present different 
models that aim to connect these affinity landscapes to 
molecule-binding configurations and transcriptional 
outputs. less is known about the mapping of binding 
affinity landscapes to transcriptional outputs, and we 
therefore highlight the areas in which crucial informa-
tion is needed. we show that the framework presented 
here explains a broad range of experimental observa-
tions related to transcriptional regulation, including the 
binding patterns of transcription factors and nucleo-
somes and the dynamics of transcriptional activation. 
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Transcriptional noise
The variability in the 
transcription rate (or in steady 
state mRNA levels) of genes 
across different cells from an 
isogenic cell population grown 
in the same conditions.

Chromatin remodeller
A protein or protein complex 
that has the capacity to alter 
the structure of chromatin. 
Some remodellers require ATP 
hydrolysis for their activity.

Footprinting
A method for detecting 
protein–DNA interactions by 
using an enzyme to cut DNA, 
followed by analysis of the 
resulting cleavage pattern. The 
method is based on the fact 
that a protein bound to DNA 
protects that DNA from 
enzymatic cleavage.

Gel-shift analysis
A technique that uses native 
gel electrophoresis to 
determine whether, and how 
tightly, a protein of interest can 
bind a given DNA sequence.

Southwestern blotting
A method that involves 
identifying DNA-binding 
proteins after SDS–PAGE and 
transfer to a membrane using 
their ability to bind to specific 
oligonucleotide probes.

SELEX
(Systematic evolution of 
ligands by exponential 
enrichment). A combinatorial 
technique for producing DNAs 
that bind specifically and with 
high affinity to a DNA-binding 
protein of interest.

ChIP–chip 
A technique (also known as 
ChIP-on-chip) that combines 
chromatin immunoprecipitation 
(ChIP) with microarray 
technology (chip). It is a 
high-throughput method for 
identifying, on a genome-wide 
scale, DNA regions that are 
bound in vivo by a target 
protein of interest.

ChIP–seq
A similar technique to 
ChIP–chip, but  the resulting 
interactions are read out by 
high-throughput parallel 
sequencing and not by 
microarrays as in ChIP–chip.

we end by discussing how these models can be used to 
understand more complex features of transcriptional 
regulation such as transcriptional noise and expression 
divergence across evolution. The models presented here 
thus provide a concrete framework for understanding 
transcriptional behaviour from DNA sequence.

Binding affinity landscapes
Nucleosomes. Measurements carried out over the past 
two decades show that the sequence-dependent affinities 
of nucleosomes20 for different DNA sequences can vary 
enormously, with the greatest affinities being at least 
5,000-fold stronger than the weakest21,22. These differ-
ing affinities are thought to reflect the energetic cost of 
sharply bending different DNA sequences around the 
histone octamer to make them conform to the nucleo-
some structure20. As it is not feasible to directly measure 
the nucleosome affinities of all of the possible 147 bp 
sequences, approaches for comprehensively character-
izing nucleosome affinities are based on computational 
models that generalize from a manageable number of 
nucleosome affinity measurements. Early characteriza-
tions of nucleosome sequence preferences showed that 
there were ~10 bp periodicities of specific dinucleotides 
along the length of the nucleosome. These periodici-
ties were first observed in alignments of ~200 in vivo 
nucleosome sequences from chickens23 and confirmed 
in similarly sized collections of sequences from yeast8,24, 
worms25, flies26 and humans26. These dinucleotide perio-
dicities formed the basis of earlier models for predicting 
the binding affinity landscape of nucleosomes8,9. More 
recently, the availability of genome-wide measure-
ments of nucleosome occupancy has allowed research-
ers to identify longer sequence motifs that are generally 
favoured or disfavoured by nucleosomes, regardless of 
their position in the nucleosome. Incorporating these 
motifs into models that describe nucleosome sequence 
preferences has substantially improved predictions of 
nucleosome-binding affinity landscapes26–29.

All of these models were based on measurements of 
in vivo nucleosomes, the positions of which are deter-
mined by multiple factors, including transcription 
factors30, chromatin remodellers31, transcription32, DNA 
replication33,34 and the sequence preferences of the 
nucleosomes8,9,15,23,27,28. A general question has therefore 
been the extent to which these models truly represent 
nucleosome sequence preferences alone, as opposed to 
capturing the sequence preferences of nucleosomes as 
well as other factors. A recent study addressed this issue 
by measuring the genome-wide occupancy of nucleo-
somes assembled on purified yeast genomic DNA15. The 
resulting map, in which the positions of the nucleosomes 
are governed only by their intrinsic sequence prefer-
ences, provides a direct experimental measurement of 
the binding affinity landscape of nucleosomes. A com-
putational model constructed from these data predicted 
the experimentally measured affinity landscape with a 
high per-bp correlation of 0.89 and thus allows us to 
predict binding affinity landscapes of nucleosomes from 
DNA sequence alone. Moreover, the nucleosome organi-
zation predicted by this model matches many aspects 

of the in vivo nucleosome organization in both yeast 
and worms, showing that nucleosome sequence prefer-
ences are a dominant determinant of in vivo nucleosome 
organization15.

Transcription factors. compared with nucleosomes, 
transcription factors recognize and bind much shorter 
stretches of DNA (typically 5–15 bp). It should therefore 
be theoretically feasible to directly measure the bind-
ing affinity of a given factor for most, if not all, possible 
recognition sequences. Earlier methods based on foot-
printing, gel-shift analysis, southwestern blotting, SELEX (sys-
tematic evolution of ligands by exponential enrichment) 
and reporter constructs could only measure the affinity 
of factors for a small number of sequences. Substantial 
progress was recently achieved with the use of high-
throughput technologies such as ChIP–chip1 and ChIP–
seq35, which measure all of the in vivo bound targets of a 
given factor. However, the genomic regions identified by 
these methods are typically hundreds of base pairs, and 
so identifying the much shorter sequence motifs that are 
common to the bound regions still requires postprocessing  
computation36.

Another limitation of using in vivo data is that, as in 
the case of nucleosomes, the derived binding specificities 
might also reflect the specificities of other factors. Here 
too, high-throughput in vitro methods such as protein- 
binding microarrays37,38 and microfluidic platforms39, in 
which binding is measured across all possible ~8–10 bp 
sequences and is governed only by the intrinsic sequence 
preferences of a factor, are being used to measure the  
sequence specificities of DNA-binding factors. Protein-
binding microarrays were recently applied to derive 
the binding specificities for 168 homeodomain tran-
scription factors from mouse40 and for 112 transcrip-
tion factors from yeast41,42. Although transforming the 
resulting microarray intensities into binding affinities is 
not a trivial problem, the binding affinity of many fac-
tors for any location on any DNA sequence can now be  
accurately characterized.

Comparing affinity landscapes: nucleosomes versus 
transcription factors. The intrinsic nucleosome affinity 
landscape explains many aspects of the binding patterns 
of nucleosomes in vivo15. by contrast, the sequence spe-
cificity of many transcription factors is low compared 
with the size of the genome on which they act, such that 
canonical binding sites for such factors will occur mul-
tiple times across the genome by chance. For example, 
a factor that has a total binding specificity of 5 bp prob-
ably has over one million canonical binding sites in the 
human genome; however, the number of molecules of 
that factor present in the cell might typically be only one-
tenth to one-thousandth of the number of binding sites. 
Thus, although a minimal level of binding affinity is a 
prerequisite for factor binding, most binding sites that 
meet such criteria occur by chance and are not bound 
in vivo. consequently, the binding affinity landscape of 
most factors is a poor predictor of their in vivo bound 
locations. Nevertheless, as we discuss below, knowing 
the binding specificities of transcription factors, together 
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Protein-binding microarray
A method that allows  
the high-throughput 
characterization of the in vitro 
DNA-binding site sequence 
specificities of transcription 
factors. In this approach, a 
DNA-binding protein of interest 
is expressed, purified and then 
bound directly to a dsDNA 
microarray that contains a 
large number of different 
potential DNA-binding sites.

Microfluidic platform
A high-throughput platform  
for measuring protein–DNA 
affinities on the basis of 
mechanically induced trapping 
of molecular interactions.

DNA looping
A conformation of a dsDNA 
sequence in which two regions 
of the DNA that are separated 
along the DNA in one 
dimension are brought close 
together in three-dimensional 
space.

generating expression patterns10. These predictions were 
later supported by large-scale measurements of tran-
scription factor binding in the fly embryo, which showed 
prevalent transcription factor binding to weak sites46. 
Despite these successes, several aspects of the modelling 
framework are not well understood, such as the effects 
of higher-order chromatin structure, the way in which 
factors compete with each other and with nucleosomes, 
and the mechanism and quantitative magnitude of the 
resulting cooperative interactions.

The assumption of binding equilibrium. The models 
above assume that molecules bind at thermodynamic 
equilibrium, such that the probability of any DNA-
binding configuration is simply its equilibrium prob-
ability, which is equal to the statistical weight of the 
configuration divided by the partition function. The 
success of quantitative modelling and prediction of 
gene regulation in prokaryotes13,14 has rested largely on 
this equilibrium hypothesis11,47. However, it remains 
unclear how, and even whether, regulatory systems 
equilibrate. The equilibrium question is an especially 
daunting problem in eukaryotes, owing to added com-
plexities such as nucleosomes. However, models based 
on an assumption of equilibrium competition also have 
high predictive value in eukaryotes10,16, in which ATP-
dependent nucleosome remodelling mechanisms might 
facilitate or subvert the binding equilibrium (BOX 2).

From binding configurations to transcription
The final step in modelling transcriptional behaviour 
from DNA sequences is to understand the transcriptional 
output that results from each configuration of bound 
molecules. This should be simple: configurations with 
bound activators should recruit the transcription initia-
tion machinery and result in high transcription rates,  
whereas configurations with bound repressors should 
result in low transcription rates. Indeed, current 
approaches for translating binding configuration to 
transcriptional output are based on this rationale: 
they model transcriptional output as proportional to 
the binding probability of the transcription initiation 
machinery11,16 or proportional to the weighted sum of 
the bound molecules, in which activators have posi-
tive weights and repressors have negative weights10. 
However, these oversimplified approaches do not 
model the effects of architectural features of the con-
figuration, such as DNA looping, the location and ori-
entation of bound transcription factors relative to a 
nucleosome and the distance of factors from the tran-
scription start site48,49. current models also assume that 
once regulatory regions are in transcriptionally active 
configurations their rates of transcription will be the 
same. This assumption ignores the additional layers 
of regulation that are allowed by trans-acting factors, 
which include any regulation that the transcriptional 
initiation complex undergoes after it is bound50,51, regu-
lation of transcriptional elongation and the effects that 
nucleosomes positioned in the transcript might have 
on the elongation process. The quantitative details of 
these additional effects are poorly understood and, 

with other information, especially the clustering of tran-
scription factor-binding sites and the relation of these 
binding sites to the nucleosome landscape, allows us to 
integrate factor specificities together with nucleosomes 
into models that accurately predict transcriptional 
regulation.

From affinity landscapes to configurations
binding affinity landscapes describe how each molecule 
translates an input DNA sequence into a binding poten-
tial that is specific to that molecule. The next step in 
decoding the transcriptional behaviour of a regulatory 
sequence is to understand the configurations of mol-
ecules that are bound to the sequence. Several quantita-
tive frameworks5,10,43 have addressed this problem. These 
models consider all possible configurations of molecules 
on the input sequence. They then associate a statistical 
weight with each configuration, which is computed from 
the concentration of the participating molecules and the 
strength (affinities) of the binding sites that they occupy 
in the configuration. The probability of each configu-
ration can then be computed exactly by dividing the 
statistical weight of the configuration by the partition 
function, which is equal to the sum of the statistical 
weight of all possible configurations (BOX 1).

Such frameworks model several important aspects of 
the binding process. First, by allowing molecules to bind 
anywhere along the input sequence, the entire range of 
affinities is considered, thereby allowing contributions 
from both strong and weak binding sites16,44. Second, the 
binding sites of any two molecules are not allowed to 
overlap in the same configuration, and thus the binding 
competition between molecules that results from steric 
hindrance constraints is explicitly modelled. Third, con-
ventional cooperative binding interactions can be explic-
itly modelled by assigning higher statistical weights to 
configurations in which two molecules are bound in 
close proximity10. Fourth, the cooperativity that arises 
between factors when both nucleosomes and factors are 
integrated10,45 is captured automatically.

A noteworthy consequence of these frameworks is 
that, in a system comprised of both factors and nucleo-
somes, the locations at which nucleosomes intrinsically 
‘want’ to bind influences the locations at which factors will  
be bound; conversely, the combination of factors trying 
to bind influences where the nucleosomes will be bound 
and nucleosome occupancy. The DNA sequence defines 
the outcome of this competition, which will change in 
response to the changing combinations of active tran-
scription factors that are induced, for example, by cel-
lular signalling during development or in response to a 
change in the environment.

Applications and limitations. The models above were 
used to identify regulatory sequences in flies5 and tran-
scription factor–target interactions in humans19, and for 
predicting expression patterns in the fly embryo10 and in 
yeast16 from regulatory sequences. For example, in the 
segmentation gene network of the fly embryo, a model 
predicted that cooperative interactions and contribu-
tions from both strong and weak sites are important for 
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Nucleosome (nuc)
Transcription factor 1 (TF1)
Transcription factor 2 (TF2)

τ(TF2)F(TF2,S500,S508)τ(TF 1)F(TF 1,S20,S26)

τ(nuc)F(nuc,S200,S346)

W(c) = F(0)τ(TF 1)F(TF 1,S20,S26)τ(nuc)F(nuc,S30,S 176)τ(nuc)F(nuc,S200,S346)τ(TF2)F(TF2,S500,S508)τ(nuc)F(nuc,S530,S676)

τ(nuc)F(nuc,S30,S 176) τ(nuc)F(nuc,S530,S676)

Legal configuration
An arrangement of molecules 
along a DNA sequence in 
which there is no steric overlap 
between any two molecules on 
the DNA.

Box 1 | Computing gene expression from dnA sequence

Several models have been proposed10,11,16 for translating DNA sequences into transcriptional behaviour. These models are 
all based on an assumption of thermodynamic equilibrium (BOX 2). They use the intrinsic equilibrium affinities and 
concentrations of the various DNA-binding molecules (for example, activators and repressors) to compute the probability 
of RNA polymerase occupancy and then assume that the gene expression level is proportional to polymerase occupancy.
The computation is divided into two steps: one that computes the occupancy distribution of the molecules on the target 
DNA sequence and another that translates this occupancy distribution into a level of gene expression. Denoting each 
possible configuration of molecules on the DNA by c and the probability of RNA polymerase binding by P(E), the overall 
probability of polymerase binding is the sum, over all legal configurations, of the probability of polymerase binding given a 
particular configuration c, P(E | c) weighted by the probability of the configuration itself, P(c):

| Σ
∈

step 1: occupancy distribution of molecules on target DnA
Under the equilibrium assumption, the probability of a configuration is: 

′ ∈
Σ ′

   
in which W(c) represents the statistical weight of c. The simplest model assumes that molecules bind independently,  
and so the statistical weight of a configuration is the product of the contribution of each molecule bound in  
the configuration. In turn, the contribution of a molecule is determined by its concentration and by its affinity to the 
sequence at the bound position. Thus, for a configuration with k molecules m

1
,.,m

k
 bound at positions p

1
,.,p

k
,  

the statistical weight W(c) of the configuration is:  

τ∏
=   

in which τ(m
i
) is the concentration of the molecule bound at position p

i
, F

0
 is the statistical weight of the empty 

configuration, and the energetic contribution from the binding of molecule m
i
 from position p

i
 to position p

i+Li
, with L

i
 

being the binding site length of molecule m
i
, is given by:  

 

 
The normalizing term, also known as the partition function, sums over all possible legal configurations of molecules and 
is given by:

 
′ ∈
Σ ′

 
The figure illustrates the computation of W(c) for one example configuration. S

i
 indicates sequence position.

step 2: from occupancy distribution to expression level
The second model component, P(E | c), which translates configurations into expression levels, is less well understood. 
One simple model10 assumes that each factor bound in the configuration contributes independently to the expression 
outcome, with activators contributing positively and repressors contributing negatively. This model uses the logistic 
function to translate these contributions into expression. From a mechanistic perspective, this expression component 
represents the total attractive force that recruits the RNA polymerase to the sequence. Thus, for a configuration with k 
molecules m

1
,.,m

k
 bound at positions p

1
,.,p

k
, the probability of expression is:  

 
 Σ Σ| 

  
in which w

0
 represents the basal expression level and w

i
 represents the expression contribution of transcription factor i.

The models above compute the expression of one sequence at the concentration of a particular binding molecule. To 
compute the expression pattern of a sequence across a spatial or temporal axis along which molecule concentrations 
change, these models are applied separately to every point along the axis and the expression at each point is then 
combined to produce the entire expression pattern along the axis.
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therefore, the simplicity with which existing models 
translate binding configurations to transcriptional 
output mainly reflects gaps in our knowledge of  
this process.

To summarize, the intrinsic binding specificities of 
each molecule determine the particular binding affinity 
landscape that the molecule experiences on an input 
DNA sequence. At a given concentration of binding 
molecules, these landscapes and the competitive and 
cooperative interactions between the molecules dictate 
the probabilities of all possible configurations of bound 
molecules. Finally, the transcriptional output of a regu-
latory sequence is simply the sum of the transcriptional 
output of all binding configurations, and each binding 
configuration is weighted by its probability. Having pre-
sented the general modelling framework, we now review 
the experimental observations that it explains, starting 
with observations regarding nucleosome organization.

determinants of nucleosome organization in vivo
As mentioned in an earlier section, it is difficult to esti-
mate the relative contributions of multiple factors to 
nucleosome organization in vivo using in vivo measure-
ments. Advances in this direction were made possible 
by comparing the organization of nucleosomes in vivo 
with the genome-wide organization of nucleosomes  
assembled in vitro on purified yeast genomic DNA15.

Direct consequences of the nucleosome landscape: dis-
tinct nucleosome positioning. comparison of in vitro and 
in vivo nucleosome organization in yeast showed that the 
large regions of nucleosome depletion around the ends 
of genes26,52–54 and around transcription factor-binding 
sites24,28,55 that are observed in vivo are largely encoded by 
nucleosome sequence preferences. The nucleosome affin-
ity landscape might therefore assist in directing transcrip-
tion factors to their appropriate sites in the genome8,56,57 
(FIG. 2a). For Abf1 and Reb1, which are two abundant 
transcription factors known to influence chromatin 
structure, the nucleosome affinity landscape encodes 
only a small part of the nucleosome depletion; the large 
depletion observed around the binding sites of these fac-
tors in vivo is therefore probably due to the ability of these 
factors to outcompete nucleosomes15. The nucleosome 
depletion around the starts of genes  was also found to be 
encoded by the intrinsic nucleosome affinity landscape 
but, in this case, the action of chromatin remodellers 
and the binding of transcription factors and the tran-
scription initiation machinery also make considerable  
contributions to nucleosome depletion15 (FIG. 2a).

Another notable feature of the nucleosome organiza-
tion in vivo is that some regions of the genome have a 
small number of well-positioned nucleosomes, whereas 
others have ‘fuzzy’ nucleosomes, in which many nucleo-
some positions are observed55,58. The existence of many 
regions with fuzzy nucleosomes in the worm could 
indicate that much of the nucleosome organization is 
not dictated by DNA sequence58. However, in principle, 
regions with well-positioned nucleosomes and regions 
with fuzzy nucleosomes can both be encoded by the 
genomic sequence, if we assume that well-positioned 
regions have a peaked nucleosome affinity landscape 
and that fuzzy regions have a relatively flat land-
scape. Indeed, both types of regions exist in the map 
of nucleosomes that was assembled on purified yeast 
DNA, and a model of nucleosome sequence preferences 
constructed from these yeast data is significantly cor-
related with the in vivo nucleosome organization in the  
worm15 (FIG. 2b,c).

Indirect consequences of the nucleosome landscape: 
long-range ordering of nucleosomes. The examples 
above are cases in which the nucleosome landscape 
directly accounts for the experimental observations. 
Other observations might be explained by using the 
part of the framework that converts binding landscapes 
to binding configurations. For example, several stud-
ies observed a long-range ordering of nucleosomes 
downstream of the starts of genes, which decays with 
the distance from the start of the gene. There are strong 

 Box 2 | The equilibrium assumption and the role of nucleosome remodellers

The models we review assume that molecules bind at thermodynamic equilibrium. 
Although models based on this assumption predict gene regulation in both 
prokaryotes13,14 and eukaryotes10,16, the validity of this assumption has not been shown. 
This assumption is particularly challenging to justify (or imagine) in eukaryotes, owing 
to the presence of nucleosomes and many ATP-dependent nucleosome-remodelling 
factors. In vitro, these nucleosome-remodelling factors can control the spacing 
between nucleosomes on long stretches of DNA88 and drive nucleosomes to 
unfavourable locations on shorter DNA fragments; for example, from favoured 
positioning sequences to DNA ends89. In vivo, inactivation of the ATP-dependent 
chromatin remodelling complex Isw2 leads to an average shift of ~15 bp in the 
location of nucleosomes relative to wild-type cells at some loci, suggesting that Isw2 
might determine the positions of nucleosomes at these loci90. In principle, such 
remodelling activities could invalidate the equilibrium assumption on which the 
models discussed here are based, and could instead require detailed and unique 
kinetic models for every sequence.

However, other evidence suggests that the equilibrium hypothesis might be a good 
approximation in vivo. The high similarity of in vivo nucleosome organizations to those 
obtained in a purified in vitro reconstitution system15, which is believed to achieve and 
then freeze in a true thermodynamic equilibrium22, directly shows that many aspects 
of the in vivo nucleosome organization are similar to an equilibrium distribution. 
Moreover, even when chromatin remodellers drive nucleosomes to different locations 
on short DNA fragments in vitro, the positions adopted by the nucleosomes remain the 
same as those that are favoured intrinsically by the nucleosomes, and only the degree 
to which the nucleosomes occupy the different favoured positions changes91.

One way of understanding these facts collectively is if the remodelling factors 
themselves do not determine the destinations of the nucleosomes that they mobilize 
but instead catalyse nucleosome mobility, allowing nucleosomes to rapidly sample 
alternative positions. In this view, ATP hydrolysis does not force nucleosomes to 
unfavourable locations; rather, ATP hydrolysis is required to provide sufficient energy 
for a nucleosome to cross the transition state free energy barriers that separate 
occupancy at thermodynamically favoured locations. The same logic is presently used 
to explain the requirement of ATP for kinesin movement along a microtubule and of 
helicases along DNA92; indeed, the ATP-dependent motor domains of all of the known 
nucleosome-remodelling factors are members of helicase protein superfamilies.

Thus, in this view, the result of remodeller action is a thermodynamic equilibrium 
between the nucleosomes and the transcription factors that compete with 
nucleosomes for occupancy along the genome. When the combination of 
transcription factors changes, for example, during development or following an 
environmental fluctuation, the action of remodellers allows the system to rapidly 
re-equilibrate to a new distribution of bound molecule configurations. In this view, 
the changed nucleosome positions that result from Isw2 inactivation90 would be 
interpreted as a failure to establish an equilibrium distribution in the absence of 
remodeller activity recruited specifically to the affected regions.
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Figure 2 | Main determinants of in vivo nucleosome organization. a | The nucleosome occupancy in vivo in yeast 
(blue) and the nucleosome affinity landscape measured in vitro by assembling purified histones on purified yeast genomic 
DNA15 (green), averaged across all genes. The occupancy around gene transcription start sites is shown on the left and 
around gene translation end sites on the right. A schematic illustration of the key components that contribute to the 
in vivo nucleosome occupancy is also shown below each graph. Nucleosome depletion around the ends of genes is largely 
encoded by the nucleosome affinity landscape, and nucleosome depletion around the starts of genes results both from 
the encoded nucleosome affinity landscape and from the binding action of transcription factors. b | The average 
nucleosome occupancy for a genomic region from the worm with well-positioned nucleosomes in vivo58 (blue) and the 
average nucleosome affinity landscape for that region as predicted by a model constructed from in vitro data in yeast15 
(green) are shown. c | As in part b, the average nucleosome occupancy in vivo and the average nucleosome affinity 
landscape across a genomic region from the worm with less well-defined nucleosome locations (‘fuzzy nucleosomes’) are 
shown. The agreement between the predictions of a model based on nucleosome sequence preferences and the 
experimental measurements in parts b and c suggests that both types of regions might be encoded by the genomic 
sequence, through peaked nucleosome affinity landscapes (in the case of well-positioned nucleosomes, b) or relatively flat 
landscapes (in the case of fuzzy nucleosomes, c). d | Nucleosome-disfavouring sequences can have a long-range effect on 
the nucleosome organization. This example sequence contains a strong nucleosome-disfavouring sequence (yellow 
diamond) — these sequences are abundant in eukaryotic genomes93. When such a nucleosome-affinity landscape is 
combined with a high nucleosome concentration, as in vivo, the bound nucleosomes automatically organize into ordered 
arrays, the order of which decays with the distance from the original disfavouring sequence (bottom graph and schematic 
bottom sequence). This phenomenon is termed ‘statistical positioning’59. e | A single sequence might potentially encode 
different nucleosome organizations in different cell types or biological conditions by encoding different outcomes  
for nucleosome–factor competition at different factor concentrations. This sequence has a uniform landscape for 
nucleosomes and a landscape for one factor that includes a single strong binding site. In condition 1, in which the 
hypothetical factor is expressed at low levels, the most likely configurations have nucleosomes covering the 
factor-binding site, whereas in condition 2, in which the factor is expressed at high levels, the most likely configurations 
have the factor binding to its site, causing a displacement of nucleosomes from their cognate sites.
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nucleosome-disfavouring sequences upstream of gene 
start sites and nucleosome-positioning sequences over 
the starts of genes26. These sequences lead to a high 
probability that a nucleosome-depleted region occurs 
upstream of the start of the gene together with a well-
positioned nucleosome over the gene start. Introducing 
boundary constraints such as nucleosome-disfavouring 
and nucleosome-positioning sequences into the frame-
work presented here automatically results in a long-
range periodic ordering of nearby nucleosomes. This 
ordering is simply a consequence of the high concen-
trations of nucleosomes along the DNA and the steric 
hindrance between them59 (FIG. 2d). This ordering or 
‘statistical positioning’ is greatest immediately adja-
cent to the boundary constraint and decays with the 
distance away from it. Thus, the intrinsic nucleosome 
landscape is likely to contribute to the long-range order-
ing of nucleosomes near the starts of genes through the 
indirect long-range effects that the sequences surround-
ing the starts of genes exert on nucleosome configura-
tions at the high nucleosome concentrations that exist  
in vivo. An additional substantial contribution to the 
long-range ordering in vivo is likely to come from 
transcription factors and the transcription initiation 
machinery, the binding of which further increases the 
boundary constraint60.

Nucleosomes might also have different organizations 
in different conditions54,60 or cell types. The framework 
presented here can in principle explain such observa-
tions because the concentrations of either the nucleo-
somes or the transcription factors (or both) change in 
different conditions or cell types, resulting in a different 
distribution of binding configurations (FIG. 2e). Thus, a 
single binding affinity landscape can encode many dif-
ferent distributions of binding configurations, depending  
on the different concentrations of molecules.

nucleosome landscapes and transcription factors
Explaining the repressive function of nucleosomes. 
Aside from explaining the DNA-binding patterns of 
molecules such as nucleosomes, we need to understand 
the dynamic transcriptional behaviour that genes show 
in response to changes in the concentration of the regu-
lating factors. The quantitative framework presented 
here can be used to directly read DNA sequences and 
predict these responses; this is achieved by computing 
the probability of a factor binding at increasing factor 
concentrations from the encoded affinity landscape. For 
example, consider a hypothetical DNA sequence that 
has a landscape for only one transcription factor, which 
in turn recognizes a single binding site. The activation 
dynamics of such a target gene are determined only by 
the affinity of the single site. when nucleosomes are 
added to the equation with a uniform energy landscape 
such that there are no intrinsic favoured locations, they 
compete with the factor for binding. This results in a 
lower probability of factor binding, and a given level of 
gene activation then requires a higher factor concen-
tration61 (FIG. 3a,b). This model thus provides a simple 
explanation for why nucleosomes are considered to be 
general repressors62–64.

Competition between nucleosome and transcription 
factor binding. In the more realistic setting in which a 
non-uniform nucleosome landscape dictates a non- 
uniform nucleosome occupancy distribution, the acti-
vation dynamics depend on the nucleosome occupancy 
around the factor site, and activation occurs at a lower fac-
tor concentration for sequences in which the binding site 
for the factor is located in a region of low intrinsic nucleo-
some occupancy61. Indeed, a recent study showed that 
lower nucleosome occupancy at sites for the yeast tran-
scription factor Pho4 in conditions in which Pho4 con-
centration is low is predictive of an earlier onset (in terms 
of both the Pho4 concentration and the period of time) of 
activation65,66. The importance of nucleosome occupancy 
for activation65 combined with the reliability with which 
nucleosome occupancy can be predicted from sequence15 
means that the dependence of activation on factor con-
centrations can be predicted directly from sequence, 
although the accuracy of such predictions remains 
to be shown. For example, nucleosome-disfavouring  
sequences generate low nucleosome occupancy in 
their immediate vicinity and, for nearly all yeast tran-
scription factors, the subset of their sites that is near 
nucleosome-disfavouring sequences has lower nucleo-
some occupancy26. This context-dependent accessibil-
ity of factor sites thus provides a mechanism predicted 
directly from the DNA sequence by which the same 
factor might regulate its different targets with different 
activation dynamics by positioning some of its sites near  
nucleosome-disfavouring sequences26,61 (FIG. 3c–e).

Many regulatory sequences contain multiple sites for 
multiple transcription factors. In sequences in which mul-
tiple sites are close to each other, each of the corresponding 
binding factors separately competes with nucleosomes, 
resulting in indirect binding cooperativity between fac-
tors67 and, again, gene activation at a lower factor concen-
tration. Indeed, such cooperativity was shown in yeast 
between an endogenous yeast transcription factor and two 
foreign transcription factors from Escherichia coli45. Note 
that this obligate cooperativity is predicted by the frame-
work directly from the affinity landscape of the sequence 
and without invoking specific cooperative mechanisms 
such as protein–protein interactions61 (FIG. 3f–h). This com-
petition between transcription factors and nucleosomes 
might be part of the mechanism of cooperative binding 
that was shown in regulatory sequences from yeast16,68,69 
and flies10,70 that contain clusters of factor-binding sites. 
Intriguingly, as this obligate cooperativity occurs between 
any two factors, it might also explain why some transcrip-
tion factors have both activatory and inhibitory roles71,72; 
for example, a transcriptional repressor can apparently 
act as an activator if its competition with nucleosomes  
promotes the binding of a nearby activator (FIG. 3f–h).

encoding distinct modes of regulation
chromatin remodellers are important in transcriptional 
regulation73 and target specific sets of genes74. Although 
the mechanism by which chromatin remodellers are 
recruited to specific loci is not well understood, a recent 
study26 suggested that the differential requirements for 
remodellers at different loci might be partly explained 
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Figure 3 | Reading gene expression dynamics from DnA sequence. a | Nucleosomes act as general repressors. The two 
example sequences have a transcription factor landscape containing a single binding site and have either a uniform and 
moderate-affinity landscape for nucleosomes (sequence 1) or a uniform and low-affinity landscape for nucleosomes 
(sequence 2). b | For the two sequences from part a, the probability of transcription factor binding at different factor 
concentrations is computed by applying the framework presented here to the binding landscapes of those two 
sequences. c | Nucleosome-disfavouring sequences determine the threshold of activation. The three example sequences 
have differing nucleosome and factor landscapes: sequence 1 has a uniform nucleosome landscape; sequence 2 has a 
landscape with a sequence that strongly disfavours nucleosome formation, which is located 10 bp from the single 
transcription factor site; and sequence 3 is the same as sequence 2, but the disfavouring sequence is located 135 bp from 
the transcription factor site. d | For each of the three sequences from part c, the most likely molecule-binding 
configurations at three different factor concentrations (abbreviated as ‘c’) are shown. e | The probability of transcription 
factor binding at each of the three sequences from part c. f | Proximal factor sites show cooperative or destructive 
binding. The three example sequences have a uniform nucleosome affinity landscape and differing factor landscapes: 
sequence 1 has a single factor site; sequence 2 has two factor sites separated by 10 bp; and sequence 3 has two factor 
sites separated by 135 bp. g | The probability of transcription factor binding to the left (red) site at each of the three 
sequences from part f. h | The cooperative and destructive binding effects in sequences 2 and 3, respectively, displayed 
as the ratio between the factor-binding probability at sequence 2 or 3 compared with sequence 1. a.u., arbitrary units.

by DNA sequence. This study defined two categories 
of yeast genes based only on sequence information. 
The differences in the affinity landscapes of these two 
categories of genes suggest that they undergo different 
modes of regulation according to whether transcription 
factors compete with nucleosomes for access to the DNA. 
Indeed, genes in the category in which competition is 
predicted to occur have higher rates of histone turnover75 

and transcriptional noise76, consistent with an ongoing 
dynamic competition between nucleosome assembly and 
factor binding. correspondingly, these genes contain more  
targets of chromatin-remodelling complexes74 (FIG. 4).

Thus, by partitioning genes on the basis of affinity 
landscapes, two modes of transcriptional regulation 
can be identified that provide a partial explanation for 
the differential requirement for chromatin remodellers 
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Figure 4 | Distinct modes of transcriptional regulation encoded by DnA sequence. a | Two sets of yeast genes 
were defined based on their DNA sequence26: one set was defined by the absence of strong nucleosome-disfavouring 
sequences and the presence of TATA sequences (left); and one set was defined by the presence of strong nucleosome-
disfavouring sequences and the absence of TATA sequences (right). The nucleosome occupancy in vivo (blue) and the 
nucleosome affinity landscape measured in vitro by assembling purified histones on purified yeast genomic DNA15 
(green), averaged across all genes of each gene set, are shown. Also shown is the approximate affinity landscape for 
all transcription factors across all genes of each of the two gene sets, using the spatial distribution of factor-binding 
site occurrences as a proxy for the spatial distribution of affinity (red). b | The most likely configurations of each gene 
set. In the gene set on the left, the nucleosome landscape shows high nucleosome occupancy and the transcription 
factor landscape has a large number of binding sites spread across the regulatory region, suggesting that 
nucleosomes and factors compete for access to the DNA. In support of this suggestion are the high transcriptional 
noise, high rate of histone turnover and enrichment for chromatin remodeller activity that were found for this gene 
set26. By contrast, in the gene set on the right, the nucleosome landscape shows strong nucleosome depletion 
around the transcription start site and the factor landscape has fewer binding sites, but with a preference for these 
sites to be located at the nucleosome-depleted region. These landscapes suggest that there is little competition 
between factors and nucleosomes, and supporting this are the low noise, low histone turnover and absence of 
enrichment for chromatin remodeller targets that were found for this gene set26.

at different genomic loci. A corollary of this model is 
that genomes can encode different dynamic responses 
— even to the same transcription factor — at two dif-
ferent regulatory sequences by embedding the cognate 
binding sites of the transcription factor in two different 
nucleosome affinity landscapes.

evolution of binding affinity landscapes
A genetic mechanism for achieving phenotypic diversity. 
The examples above show that many diverse aspects of 
transcriptional regulation can be understood directly 
from the affinity landscapes encoded in DNA sequences. 
As changes in transcriptional regulation are important 
for generating phenotypic diversity among species, an 
intriguing possibility is that the genetic mechanisms 
that underlie these regulatory changes involve changes 
in affinity landscapes.

Overall, changes in factor-binding site content 
alone account for only a small fraction of the observed 
expression divergence in both yeast77,78 and mammals78. 
However, in the case of the yeast mating system, which 
is regulated by a single transcription factor, variations 
in the predicted binding sites explain much of the  
expression divergence across yeast species78.

A recent study found that a major change in the tran-
scriptional programme of yeast species, which is con-
nected with the capacity for rapid anaerobic growth, is 
accompanied by corresponding changes in the nucleo-
some affinity landscape encoded in the DNA of the 
orthologous regulatory sequences79. In aerobic yeast spe-
cies, in which cellular respiration genes are active under 
typical growth conditions, the regulatory sequences 
encode a landscape that contains a nucleosome-depleted 
region, whereas in anaerobic yeast species, in which 
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TATA sequence
A DNA sequence with a core 
sequence of 5′–TATA–3′ found 
in the promoter region of many 
genes. It is typically bound by a 
corresponding TATA-binding 
protein during the process of 
recruiting RNA polymerase to 
a promoter.

cellular respiration genes are inactive under typical 
growth conditions, the orthologous regulatory sequences 
encode a landscape with relatively high nucleosome 
occupancy. This suggests that DNA sequence changes 
that directly alter the encoded nucleosome affinity 
landscape of regulatory sequences might be a general 
genetic mechanism for achieving phenotypic diversity 
across evolution.

explaining transcriptional noise
Noise in gene expression levels. levels of cell-to-cell 
expression variability vary across genes76,80,81, and it is 
therefore interesting to address whether these noise 
levels can be predicted directly from the regulatory 
sequences of a gene. TATA sequences predict high lev-
els of noise, presumably by amplifying fluctuations in 
gene activation through reinitiation of transcription81–84, 
whereas nucleosome-disfavouring sequences predict low 
levels of noise26. This latter observation can be under-
stood using the framework presented here. As discussed 
above, regulatory target sites that are located close to 
nucleosome-disfavouring elements will be occupied at 
lower factor concentrations than target sites that are far 
from such elements. Thus, a noisy regime in which the 
probability of a factor binding is ~0.5 is reached at lower 
factor concentrations in target sequences in which the 
factor-binding site is near nucleosome-disfavouring 
elements61 (FIG. 5a–c). If we assume that the physiologi-
cal concentration of the regulating factor is such that it 
is likely to bind both types of target sequence then, at 
this concentration, targets with nucleosome-disfavour-
ing sequences have already ‘escaped’ the noisy regime, 
providing a plausible explanation for the low noise 
that has been observed for these targets26. In addition, 
kinetic models show that regulatory sequences with a 
higher frequency of transition from the transcription-
ally inactive state to the transcriptionally active state 
are less noisy81. As nucleosome-disfavouring elements 
create nucleosome-depleted regions, sequences that 
contain such elements have a lower requirement for 
and are less targeted by chromatin remodellers26, which 
might result in more rapid transitions between the 
active and inactive states, providing another plausible 
explanation for the lower noise levels of sequences with  
nucleosome-disfavouring elements.

Noise in replication initiation. The ideas above are 
based on modelling the binding of molecules to DNA 
and, as such, they might have applications beyond the 
context of transcriptional regulation. For example, DNA 
replication origins also exhibit cell-to-cell variability: 
some origins initiate replication in most cell divisions 
and others initiate only occasionally. Thus, analogous 
to transcriptional noise, the framework predicts that 
origins that are close to nucleosome-disfavouring ele-
ments have lower nucleosome occupancy, and would 
therefore be more accessible to the replication initiation 
complex and initiate replication with higher efficiency. 
Indeed, when replication efficiency was measured in fis-
sion yeast85, the origins that were close to nucleosome-
disfavouring sequences initiated with higher efficiency26 

(and so higher probability), and a systematic sequence 
deletion study around one replication origin found that 
the deletion of a strong nucleosome-disfavouring ele-
ment resulted in the largest reduction in replication 
efficiency86.

In summary, by examining the activation dynam-
ics that the framework predicts directly from DNA 
sequence, measurements of cell-to-cell expression and 
replication variability can be partly explained from 
sequence alone. More generally, the same approach can 
be used to predict the noise of sequences with more 
complex affinity landscapes, thereby generating testable 
hypotheses. For example, the framework predicts lower 
noise in sequences in which multiple sites are clustered 
in close proximity because, as discussed above, site clus-
tering leads to cooperative factor binding and a sharper 
activation curve, and a noisy regime therefore spans a 
smaller range of factor concentrations61 (FIG. 5d,e).

Summary and future directions
This Review presents a unifying quantitative and con-
ceptual framework for translating DNA sequences into 
transcriptional behaviours. The key idea behind this 
translation process is that DNA-binding molecules have 
specific intrinsic affinities for DNA sequences, and thus 
every sequence defines a unique affinity landscape with 
respect to each molecule. The molecules that interact 
with and bind to DNA result in a unique distribution of 
molecule-binding configurations at each sequence and 
lead to a transcriptional output.

Recent studies have determined the intrinsic affini-
ties of nucleosomes and of many transcription factors for 
DNA, allowing us to accurately translate DNA sequences 
into affinity landscapes. These landscapes, either directly 
or through the application of the framework, partly 
explain many experimental observations regarding the 
binding patterns of nucleosomes, the dynamics of tran-
scriptional activation and transcriptional noise, indicat-
ing that diverse sets of transcriptional behaviours can be 
read directly from the DNA sequence.

Many challenges remain. A large number of predic-
tions generated by current models still need to be vali-
dated experimentally. Several aspects of the framework 
regarding the translation of binding landscapes into 
binding configurations, and especially the translation 
of binding configurations into transcriptional output, 
are still poorly understood and require targeted experi-
ments for determining them at a quantitative level. In 
particular, the treatment of DNA sequences as being 
one-dimensional should ultimately be replaced by mod-
elling binding in three dimensions, taking into account 
both the long-range DNA looping that allows distant 
enhancers to interact with promoters and the short-
range looping that allows factors in the same regula-
tory module to interact with each other87. Regulatory 
modules might have as yet unrecognized highly specific 
three-dimensional architectures, which could depend 
on the detailed locations of nucleosomes and other fac-
tors that bend or twist DNA. Any such specific architec-
tures will influence the interactions that are mediated by 
short- and long-range DNA looping. The measurement 
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of the sequence-dependent energetic costs of DNA 
looping can be used to assign statistical weights to the 
expanded set of configurations that include short DNA 
loops. Molecular mechanics studies of longer chromatin 
regions in vitro or in vivo can supply the data that are 
needed to model the free energy costs of longer loops. 
Detailed studies of the high-resolution architectures of 
regulatory sequences will also be required.

current models assume that the system is in thermo-
dynamic equilibrium and make other simplifying 
assumptions regarding steric hindrance and the inte-
gration of effects of multiple factors, all of which need 
to be validated experimentally or modified appropri-
ately. current models also assume that different histone 
variants, different histone post-translational modifi-
cations and the absence or presence of histone H1 do 

Nature Reviews | Genetics

Fa
ct

or
-b

in
di

ng
 

pr
ob

ab
ili

ty

1

0

Noisy regime: probability 
of binding is ~0.5c

10–6 10–5 10–4 10–3 10–2

Fa
ct

or
-b

in
di

ng
 

pr
ob

ab
ili

ty

1

0

Noisy regime: probability 
of binding is ~0.5

Sequence 2 is noisy Sequence 1 is noisy

1 2

10 bp

c = 10–2.2

c = 10–4.4

c = 10–3.8

c = 10–5.8

a

b

1 2

10 bp

Neither sequence is noisy

Neither sequence is noisy

Sequence 2 is noisy

Sequence 1 is noisy

Transcription factor

ed

1
2

1
2

Strong nucleosome-disfavouring sequence Nucleosome

Medium-affinity factor-binding site High-affinity 
factor-binding site

Transcription factor concentration (a.u.)

Transcription factor concentration (a.u.)

Figure 5 | explaining transcriptional noise from DnA sequence. a | Nucleosome-disfavouring sequences 
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other determinants also exist. c | The most likely molecule-binding configurations at each of the two sequences from 
part a for four different factor concentrations (c) are shown. Note that at each of the two intermediate 
concentrations, one of the two sequences is noisy; that is, the configurations in which the factor is bound and the 
configurations in which the factor is not bound have almost equal probabilities. d | Cooperative binding reduces  
the range of factor concentrations at which there is high transcriptional noise. Two example sequences with a 
uniform nucleosome landscape are shown, in which one sequence has a single factor site (sequence 1) and the other 
sequence has two factor sites separated by 10 bp (sequence 2). e | The probability of transcription factor binding to 
the left (red) site at each of the two sequences from part d. The regime of high levels of noise is highlighted. The 
range of factor concentrations at which each sequence shows high levels of noise is depicted. The range of factor 
concentrations in which sequence 2 (the sequence with cooperative binding) is noisy is smaller than the 
corresponding range for sequence 1. a.u., arbitrary units.
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	Binding affinity landscapes
	From affinity landscapes to configurations
	From binding configurations to transcription
	Box 1 | Computing gene expression from DNA sequence
	Box 2 | The equilibrium assumption and the role of nucleosome remodellers
	Determinants of nucleosome organization in vivo
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	Figure 5 | Explaining transcriptional noise from DNA sequence. a | Nucleosome-disfavouring sequences determine the range of factor concentrations at which high transcriptional noise occurs. Two example sequences are shown, one with a uniform nucleosome landscape (sequence 1) and one with a nucleosome landscape containing a sequence that strongly disfavours nucleosome formation, which is located 10 bp from the single transcription factor site (sequence 2). b | For the two sequences from part a, the probability of transcription factor binding at different factor concentrations is computed by applying the framework presented here to the binding landscapes of those two sequences61. Under this equilibrium framework, the regime of high transcriptional noise is where the probability of transcription factor binding is ~0.5 as, at this regime, the variance of factor binding is maximal. Note, however, that although the variance of factor binding is one of the determinants of noise levels, other determinants also exist. c | The most likely molecule-binding configurations at each of the two sequences from part a for four different factor concentrations (c) are shown. Note that at each of the two intermediate concentrations, one of the two sequences is noisy; that is, the configurations in which the factor is bound and the configurations in which the factor is not bound have almost equal probabilities. d | Cooperative binding reduces the range of factor concentrations at which there is high transcriptional noise. Two example sequences with a uniform nucleosome landscape are shown, in which one sequence has a single factor site (sequence 1) and the other sequence has two factor sites separated by 10 bp (sequence 2). e | The probability of transcription factor binding to the left (red) site at each of the two sequences from part d. The regime of high levels of noise is highlighted. The range of factor concentrations at which each sequence shows high levels of noise is depicted. The range of factor concentrations in which sequence 2 (the sequence with cooperative binding) is noisy is smaller than the corresponding range for sequence 1. a.u., arbitrary units.



