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Abstract 

With the aim of extracting maximum information on nuclear charge structure 

.209 at large distances, we improve the theory of muonic X-rays in Bl by taking into 

account all known effects which could change the binding energy by as much as 0.1%. 

We give improved estimates of vacuum polarization and Lamb shift effects and 

incorporate Cole’s recent estimate of nuclear polarization effects. Using these 

corrections to analyze recent experiments on muonicX-rays, we obtain parameters 

for the charge distribution in Bi 209 which when compared with parameters from 

electron scattering indicate a small discrepancy. We suggest that this can be explained 

by a proton “halo” by which we mean a small fraction of the charge (- 1%) spread 

over large distances (-8 F. ); we show that such a “halo!’ is not inconsistent with electron- 

proton scattering and brings the theory of the Lamb shift in atomic I3 and D into good 

agreement with experiments. We find no experiment with which such a model is 

inconsistent. 



I 

I. INTRODUCTION 

Muonic X-rays and electron scattering provide alternative methods of investigating 

the electromagnetic structure of nuclei. Recently, measurements (1;2,3) have been made 

to high accuracy on heavy nuclei using both methods. This affords the possibility that 

careful analysis of muonic X-rays may reveal structure at small momentum transfer 

not apparent from electron-scattering results. To do this we must make sure that all 

corrections to muonic X-rays not resulting from nuclear structure are properly taken 

into account. We shall, in particular, try to understand corrections of order 0.1% 

(a few keV) to the muonic X-ray spectrum of a spherical nucleus, Bi20g. 

In Section II, we give improved estimates of vacuum polarization and Lamb shift 

corrections to muonic energy levels. For the vacuum pblarization contribution, we 

extend the asymptotic formula and give a careful estimate of its validity. For the Lamb 

shift, we find that many previous estimates are not valid, and we obtain results, to 

about 40% accuracy, which are larger than Hilland Ford’s order of magnitude estimate 

of 1 keV or less.(4) 

Of the other effects we discuss in Section II, the most important is nuclear 

polarization, which has recently been treated carefully by Pi&per ;md Greiner @) and 

by Cole. (6) Other energy shifts due to nuclear multipole moments, electron screening, 

nuclear motion and “granularity” are discussed and estimated to be small. 
.209 In Section III we give parameters for the charge distribution of Bl which we 

have calculated from recent experiments on muonic X-rays, and compare these with 

similar parameters obtained by electron scattering. We find a discrepancy larger than 

one standard deviation. 

In Section IV we suggest a tantalizing explanation for this discrepancy in terms 

of a proton tail or “halo, ” by which we mean a small fraction of the charge spread out 
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over an anomalously large distance (7) of the order of 10F. We point out that 

such a halo could also explain the present small discrepancy between theory and 

experiment for the Lamb shifts in atomic hydrogen and deuterium. We also show 

that such a halo is not in disagreement with other experiments which might be ex- 

pected to detect it. In fact, the eiectron-proton scattering data at low momentum 

transfer apparently indicate the presence of such a charge distribution; the usual 

assumption that the proton charge form factor is essentially a linear function of 

momentum transfer squared q2 t ) for q2 < rni has not been demonstrated ex- 

perimentally. A similar halo model for the neutron can also account for the known 

features of the neutron charge form factor. 
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II. THEORY AND CORRECTIONS TO MUONIC X-RAYS 

.209 The basic theory of muonic energy levels for Bl consists of the Dirac 

equation for a muon (with reduced mass) in the static spherical charge distribution 

of the nucleus. Corrections to this theory are discussed below. The charge 

distribution parametrization is discussed in Section III. The Dirac Hamiltonian 

includes the vacuum polarization potential due to free electron-positron pairs as 

given in Eq. (2.2). The results of this paper are obtained by finding a best fit of 

the nuclear parameters to the observed X-ray spectrum. (1) The Dirac equation 

was solved numerically. (8) 

Before we can confidently compare the obtained Bismuth charge distribution 

with that given by the analysis of electron scattering we must make sure all corrections 

to muonic X-rays not resulting from nuclear structure are correctly taken into account. 

Our discussion of neglected contributions is meant to complement and bring up to date 

previous treatments of Fustovalov (9) and Hill and Ford. (4) We will attempt to include 

all corrections which affect the energy levels to 0.1%. 

The differences between the above theory and an exact treatment of Bismuth 

muonic X-rays as given by quantum electrodynamics and nuclear physics are the 

following: 

(a) The finite nuclear mass: The nuclear motion is nearly entirely taken 

into account by using the reduced mass in the Dirac equation. The residual contribution 

not accounted for by this prescription is expected to be of the order of 

d g m, 

8n4 
(2.1) 
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the cant ribution (10) for a point nucleus. The nuclear motion must also be taken 

account in the definition of the nuclear charge form factor. These corrections 

less than 10 -4 of the binding energy and are neglected. 

into 

are 

-209 (b) Non-spherical components of the charge distribution: The Bl nucleus 

is very nearly spherical (consisting of one proton added to a doubly-magic core). We 

assume that the effects of nuclear deforma.tion and the discrete charge distribution of 

protons in the nucleus (granularity) contribute similar,ly to the charge distribution 

obtained from the unpolarized electron elastic scattering differential cross section 

and to the charge distribution obtained by fitting the muon X-ray fine structure. 

(c) Nuclear polarization: There have been two recent attempts to estimate the 

contributiw of nuclear polarization to muonic levels using specific models. Cole @ 

has calculated the effect of the giant dipole resonance and finds the binding of the 

ls, 2P1i2 t 2P3j2, and 3D states to be increased by 4.6, 1.6, 1.4, and 0.1 keV, 

respectively, in Bismuth. Cole considers this to be a lower bound; the actual 

nuclear polarization will probably be within a factor of 2 of these values when other 

intermediate states are included. Pieper ;tild Greiner (5) have performed a similar 

calculation, but which includes all multipole excitations, and obtain somewhat smaller 

results for Bi 209 . 

To a certain extent, nuclear polarization is also contained in the electron scattering 

form factors; detailed calculations have not been made to our knowledge. 

(d) Electron Screen&: The effect of the atomic electrons on the muon energy 

levels in Bi 209 has been calculated. The electron density was taken to be that 

obtained in a relativistic self-consistent calculation (11) for Kg, modified by a 

factor (Z/8O)3. The potential due to the electrons is of the form a - br 20 where 

2 21/2 Q=(l- 01 2) (a, b > 0). Thus the screening reduces the transition energies. 

-4- 



We ignore the constant term, a, which has the effect of raising all the levels by 

a constant amount (several keV in magnitude). The effect of the second term is 

very nearly proportional to (3n2 - I 2-p )ZU except for the lowest muon levels, 

and varies from 4.6 eV for the 1S state to 190 eV for the 5G states, Thus the 

screening effect can be ignored for the transitions in which we are interested. 

(e) Vacuum polarization: - For a spherically symmetric charge distribution 

p (r), the vacuum polarization potential due to virtual free electron-positron pairs 

is P2) 
m 

I- 
dr’ $ [H( 1 r-r’l) - H(r+r’) J p (r’) (2.2) 

0 

with CQ 

Xe H(r) = 2 
s 

9e -2yr/%, (I.+ 1 
Y2 2Y2 

) (1 -+)1’2 
Y 

1 

(2.3) 

where A, = l/m, N 386 F is the reduced Compton wavelength of the electron. 

The asymptotic expansion of H(r) for r c< Ae is 

* H (r) - H (0) = r - 5 - F $- + i 

e 

(2.4) 

where log Y = 0.557+ is Euler’s constant. We have carried out calculations 

using both the exact form Eq. (2.3) and the asymptotic expansion. The first two 

(12,13) 
terms in Eq. (2.4) ,which were used in previous calculations, give H(r) to 

an accuracy of 2% for r 5 50 F; the terms through order (r/k e)3 are needed to 
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yield the same accuracy up to r 5 180 F and have been included in our analysis 

of the muon spectra. Higher order iterations of this second order vacuum 

polarization potential have been taken into account by including V in the Dirac 
VP 

Hamiltoni‘an. The effect of the vacuum polarization potential due. to muon pairs 

has been included with the Lamb shift as the - l/5 in Eq. (2.5), where we find 

the contribution to be small. Vacaum polarization ctile to hadron pairs is implicitly 

included in the nuclear form factor. 

We have not included the fourth order vacuum polarization potential, (14) a 

correction of relative order g -2 l/500. We have also ignored the influence of the 

nuclear charge .distribution on the virtual electron pairs. Wichmann and Kroll (15) 

have shown that this correction is negligible (-2 x 10 -4 times the muon binding energy) 

even for uranium with a point charge distribution. 

(f) Other radiative corrections of order CY : Previous estimates of the Lamb 

shift in muonic atoms have used the invalid argument that this contribution is a priori 

of order rni/rnz smaller than that of electron pair vacuum polarization. Actually 

the vacuum polarization potential has the assumed l/m: dependence only for r >I ?X e; 

the important r.egion for muonic atoms is instead r << A, = 386 F in which case the 

me dependence in Eq. (2.4) is logarithmic. In fact, the Lamb shift would be comparable (16) 

to the electron pair vacuum polarization contribution in heavy muonic atoms if the 

nucleus were a point charge, and turns out to be smaller only because the potential 

is not singular at small distances. 

The usual Za expansion of the Lamb shift expression might be expected to fail 

for muonic Bismuth, with Za = 0.6, but we find in Appendix A that the field strength 

expansion(l’) is adequate (to 30% accuracy) for the low-lying states because the muon 
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does not see a singular Coulomb potential. We may thus use the usual lowest 

order formula’l’) 

AE~= --K- 
37rm2 

+11+3 1 *Lc!- 
24 8-5 1 87rm2 

< 2 dv-,- rdrGL> 

(2.5) 

where AC is the average excitation energy defined by the Bethe sum. As shown in 

Appendix A, it is sufficient to our accuracy to approximate A E, by the binding 

energy of the state. The (- l/5) term corresponds to the vacuum polarization of 

muon pairs. The 3/8 and the spin-orbit term correspond to the muon anomalous 

magnetic moment. 

Here 

<v2v>= 4~Zzczq3> (2.6) 

is proportional to the probability of overlap of the muon wave function with the nuclear 

charge distribution. We note that we now have a non-negligible Lamb shift for the 2P 

states since the overlap is - 10% in contrast to the vanishing overlap with point nuclei. 

The expectation values in Eq. (2.5) have been evaluated numerically (and are tabulated 

in the Appendix A) and we find 

AELS = 

3.021.0 keV IS 

0.42 0.3 2pl/2 

0.7 + 0.3 2p3/2 

-0.045 0.02 3D3/2 

(2* 7) 

The error limits here are due primarily to the uncertainty in the value of the Bethe 

log in Eq. (2.5). 
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LT.I. NUCLEAR CHARGE DISTRIBUTION 

The most frequently used parametrization of the radial distribution of nuclear 

charge is the Fermi shape 

P(r) Cc l/ [ 1 + e(r-c)/a J , (3.1) 

where c is the half-density radius and t 3 (2Pn9)a is the 90% - 10% fall-off 

distance. We follow this somewhat arbitrary choice for -convenience, although there are 

a wide variety of two parameter distributions which can be adjusted to fit experimental 

measurements. In the case of muonic atoms the K and L X-ray transitions enable 

us to determine only the lowest moments-- 
f 

d3r p (r)r2 and 
f 

d3r p (r)r4 --and little 

else. In principle higher moments of the charge distribution would be given by higher 

transitions but these are very close to the point charge values and the volume shift is 

no more than one order of magnitude larger than the experimental errors. This 

restriction to lower moments can also be seen in the expansion of the Fourier 

transform of the charge distribution, 

f (q2)= 
/ 

d3r ei’.’ p(r) 

2 <r2> 4 <r4> 2n 

= 1-q --irsq -- 1.20 * * * + f-1) 
n2n<r > + 

q (2n+l)! l ‘* ’ 

in which the expansion coefficients are the moments divided by increasingly large 

numbers. Since the finite nucleus, with <r 2n > 5 R211, restricts bound state momenta 

to q < l/R, it is apparent that the higher terms are seen only in scattering 

experiments with q > l/R or in precise bound state experiments. 
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We have carried out calculations of muonic X-ray transition energies in order . 

to compare our results with those from low energy electron scattering experiments. 

The results of a recent measurement (1) of the muonic spectrum of Bi 209 are shown 

in Table I. If none of the corrections discussed in Section II are included, the Fermi 

shape parameters which correspond to this spectrum are c = 6,66 2 0.04 F, 

t = 2.32 4 0.10 F. If we take .into account the Lamb shifts of Eq. (2.7) and Cole’s 

lower bound (6) of the polarization of the nucleus by the muon, we obtain c = 6.. 63 f. 0.03 F, 

t =2.40f0.08 F. 03) The t parameter is increased even further if the nuclear 

polarization is increased further. 

The analysis (19) of a recent 50-MeV electron scattering experiment (2) on Bi 209 

gives the results c = 6.742 O.O8F, t =2.002 0.16F. 

We have also analyzed the charge distribution for Pb 208 using recent accurate 

muon X-ray measurements (3) and have compared the shape with that obtained from 

electron scattering on natural lead. (2) The muon results again indicate a larger tail 

for the nucleus. (20) 

The discrepancy between the muonic X-ray and electron scattering results may 

be due to the arbitrary choice of the Fermi shape for the charge distribution. The 

electron scattering results are insensitive to variations in the tail of the charge 

distribution, while muonic levels are very sensitive to such changes. The tail of 

the Fermi shape, e -r/a , falls off more slowly than the results of nuclear matter 

calculations or single-particle shell-model calculations. (21, 22) However, if we 

use a shape with a shorter tail, we find a larger discrepancy. A possible interpretation 

of this difficulty is suggested in Section IV. 

It should be noted that the analysis of the electron experiments, which are based on 

a partial wave e.xpansion, have not yet taken nuclear polarization (dispersion corrections) 

into account. At 300 MeV, @=5’, positron scattering on Bi 209 shows a 2.2 standard 

deviation discrep‘ancy with the no polarization partial wave predictions. (23) 
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TABLE I 

Muonic X-ray energies in Bl e20g (in keV) 

Transition 

2Pl,2-1s 

2P3,2-1s 

3D3/2-2p1/2 

3D5/2-2p3/2 

4F5/2-3D3/2 

4F -3D5/2 

5G -4F 

Experiment 

5841.5f3.0 

6032.423.0 

2699.521.0 

2552.8+0 

996.6$1.0 

961.8+1.0 

444.521.0 

Theory (uncorrected) Theory (corrected) 

5842.0. 

6032.2 

2698.8 

2553.5 

996.6 

961.1 

434.9 

5841.8 

6032.3 

2699.0 

2553.3 

996.7 

961.2 

445.0 

Muonic X-ray energies in Bi 2og (in keV). The experimental energies are 

from Bardin, et al. , (Ref. 1). The columns show the theoretical fit to the 

energies for c and t as given in Section III. The corrected theory takes into ac- 

count the muonic Lamb shift and a nuclear polarization estimate. 
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IV. THE PROTON HALO 

The disagreement between the nuclear charge distributions obtained from 

muonic X-rays and electron scattering seems to be a significant discrepancy and 

should warrant a careful investigation of possible corrections such as the effect of 

nuclear polarization and higher order radiative corrections in the electron scattering 

analysis. On the other hand, the bound muon interacts at small q2 and may well 

be observing a long charge tail on the nucleus; the results given in this section show 

that satisfactory fits to the muon X-rays are obtained by combining a charge tail 

with the Fermi charge distribution obtained from electron scattering. 

It is interesting to speculate, however, that this charge tail may be due to an 

anomalous charge distribution on the proton which we call the proton halo and shall 

now describe. (7) 

To motivate our introduction of this “halo” we turn our attention to quite a 

different realm of atomic structure: the Lamb shift, not in heavy muonic atoms, 

but in ordinary atomic hydrogen and deuterium. The most recent theoretical and 

experimental numbers are given in Table II. These include the “e/h” value of ~1 

in the theory, and Robiscoe’s corrected version (24) of his and Cosensk measurements, 

which are now in essential agreement with the results of Lamb et al. (25) As shown 

in the third column there remains a discrepancy larger than the sum of the estimated 

limits of error of both theory and experiment (more than three standard deviations); 

this discrepancy is about the same for both H and D !26) :. theory is about l/4 MHz 

below experiment. 

Now, the effect of the finite nuclear size on the Lamb shift is given by (37) 

dELS = 4Z4Ry <r2> 

3n3 a2 
(4.1) 

0 
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TABLE II 

Lamb Shift Comparisons (MHz) 
(The letters “R” and “L” refer to references 24 and 25 respectively.) 

THEORY (27) EXPERIMENT (24’ 25) DISCREPANCY Increase of 
Errors are m 3 Theory for 

Standard Deviations Tripled 
<r2> proton 

H 1057.5620.08 R 1057.86&10 _ 0.301fiO. 18 .25 

L 1057.77&. 10 0.2QO.18 .25 

D 1058.8220.14 R 1059.192.10 0.37LO.24 .25 

L 1059.00~. 10 O.lS+O. 24 .25 

He+ 14,040.0~4.0 14,040.2+4.5 0.228.5 4.1 

He’(n=3) 4182.7Ll.2 4182.5214 -0.2215 1.2 

He+ (n=4) 1768.420.5 1766.027.5 -2.4+8.0 0.5 - 

Li++ 62,743+43 63,0312327 2882370 21 
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where r is the charge radius of the proton. Lf we assume, as usual, that the 

proton has a root-mean-square (rms) charge radius of 0. SF 5R0 we find this term 

contributes 0.12 MHz tp the Lamb shift in H. We could explain the discrepancy if, 

instead of taking the usual value we assumed that<r2> were much larger. This would 

be the case if the proton had a “halo:’ by which we mean that a small fraction, E , 

of its chargewould be distributed over a distance much larger than Ro. For a proton 

having a halo with rms radius RH >> R. and a reduced body with rms radius 

53 Z R. the mean square radius is 

<r2> 
new 

= (l-E)R; + ER; . 

The Lamb shift contribution of Eq. (4.1) would be tripled (yielding the -desired 

increase of l/4 MHz in H and D) if <r2>new = 3Rt or 

ER; = 3R2 o -(l-~)R$2Ri . 

(4.2) 

(4.3) 

This can be achieved with any value of E and an appropriate choice of RH. 

On the other hand, the effect of the finite nuclear size on the hyperfine splitting 

of the 1S state is approximately given by (28) 

6E - 2 <r, 
hfs= a Ehfs * 

0 
(4.4) 

For the usual proton charge distribution this is - 30 parts per million (ppm) of the 

total splitting (EMS) in hydrogen. If the proton halo has the same shape as (but larger 
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size than) the usual distribution, then the HFS contribution is changed by 

the factor 

<’ ‘new 
<r> 

0 
(4.5) 

assuming the reduced body also has the same shape as the usual distribution. Since 

there is room only for about 10 ppm error in the HFS theory, (29) then we must 

have 

(4.6) 
f 

By combinin g this with Eq. (4.3), and assuming for simplicity RH > I$ and E <Cl, 

we find the approximate restrictions 

EC& 6% and RHZ6Roz 5F, (4.7) 

if we are to have the desired Lamb shift increase without disturbing the HFS 

agreement. Taking Rb =C R. and treating Eqs. (4.3) and (4.6) exactly would 

somewhat weaken the restrictions, but would overcomplicate the analysis at this 

point; these refinements are included in Fig. 2, Where it will be seen that the HFS 

is not an important limitation. 

For different restrictions on a proton halo, let us ne,xt consider the elastic 

scattering of electrons from protons, which more or less directly measures the 

electric form factor of the proton, G Ep (q2), the Fourier transform of the proton 

- 14 - 



charge distribution. The derivative at the origin, G’(O) = <r2> /6, is proportional 

to the mean square radius of the charge distribution, so the measurements at small q2 

may be expected to limit severely the size of the proton halo. A glance at a plot of 

Gvs. q2, with the points all approaching G(0) = 1 in <an apparently straight line near 

q2 = 0, would seem to rule out the existence of a halo. However, the approach to 

G(0) = 1 only verifies the charge of the proton,and the slope of the straight line only 

gives the approximate radius of the body. If the halo has RH large enough that it.s 

form factor is negligible at the observed values of 4”: then we could obtain a bound 

on E by fitting a smooth form factor to the data and extrapolating back to Gb(0) = 1 -E . 

For a smaller RH, however, the halo and the body both contribute, and the curvature 

of the form factor must be taken into account. 

To see more clearly the behavior of the form factors at small q2, let us plot 

(l-G),‘q2 vs. q2, ‘as in Fig. 1, using the data given by Wilson and Levinger and others. (30) 

The usual analysis fits a straight line 

<r2> 4 
l-G= 

<r > 
0 0 

s2 
6 - q2 120 (4.8) 

to these data at small q2. A halo raises the q2 = 0 end of the curve, and the value 

at q2 = 0 gives the total mean square radius, ( r 2> /6. For very large RH (and 

small E ), the curve drops sharply from < r2 > /6 and the halo contribution is 

negligible at the smallest observed values of q2; the linear fit to the data then gives 

the size of the corresponding reduced body of the proton. For smaller RH, the 

halo will start raising the curve at observed values of q2; such a trend is actually 

present in the data if we ignore data at q2 = 0.3 F-2. The curves show (l-G)/q2 for 

halos of various sizes which give a l/4 MHz Lamb shift increase; the (approximately) 

straight line is for no halo. 
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In Appendix B we discuss the quantitative limits of the halo due to electron- 

proton scattering. The findings are summarized in Fig. 2. It is found that 

for RH 2 SF, halos are allowed which are consistent with the HFS agreement 

and an increase in the Lamb shift of 2 ,15 MHz. At the least, one can conclude 

that the usual assumption that the proton form factor is a linear function of q2 

for q2 < rnz has not been experimentally demonstrated. 

Since the e-p scattering does not restrict the Lamb shift contribution of a 

halo with RH > 10 F, we now seek a halo effect that will provide a stronger limit at 

large RH than a bound on CR:. Here we return to muonic X-rays, which have 

some dependence on the fourth moment of the nuclear charge distribution and thus 

will eventually provide a bound on E Rt for large enough RH. As seen in Fig. 2, 

the muonic X-rays in Bi indeed provide such a bound (and provide a stronger 

restriction than e-p scattering for halos with RH 2 8 F), and moreover are found 

to give results consistent with e-Bi scattering if we include a halo with E between 

the two Bi curves in Fig. 2. 

In Section III we have given the Fermi shape parameters c and t resulting 
.209 

from a least-squares adjustment to the experimental muon X-ray spectrum of Bl . 

We now consider the effect of introducing a proton halo as described above. Folding 

protons with .mean square radius 

<r2>p = (l-e) <‘>b +’ <r2>H 

into a nucleus with proton centers distributed with mean square radius <r2> c yields 

a nuclear charge distribution with mean square radius 

<r2>N = <r2>C + <r2>p 

= (l- E) <r2> c + <“>b 1 [ +’ cr2>H + <r2>N - 1 (4.9) 
- 16 - 



We obtain the total nuclear charge density by adding a Fermi shape of reduced 

charge (l-e)Ze to a tail of charge E Ze with a shape obtained by folding a uniform 

proton halo of radius 
J 

$ RH into a uniform sphere of radius c. The fits to the 

X-ray data were obtained for fixed values of RI1 and t by varying E and c. The 

values of t were taken to be the upper and lower limits given by .209 e-B1 scattering. (2) 

The results for both limits are shown in Fig. 2. Table III lists the average of these 

two limits, with an error interval given by the rms sum of half this dsference and the 

additional difference that would double the value of chi-squared. The results take 

into account the corrections for the Lamb shift and Cole’s estimate of the nuclear 

polarization. It might be noted that the values of chi-squared increase as RH 

increases, indicating that larger halos should be restricted more than the indicated 

trend of the Bi curves in Fig. 2, probably more like a bound on E Ri . 

The above modification of nuclear charge distribution may be expected to have 

effects only of relative order E -1% in e-Bi scattering. A more precise analysis 

would determine the various scattering corrections to this 3,ccuracy and simultaneously 

fit p-Bi X-rays and e-Bi. scattering, but we expect the final result to agree with the 

present analysis. 

Our conclusions on the presence of a halo on the Bismuth nucleus would be 

changed if nuclear polarization or other corrections turn out to be important in the 

analysis of electron-Bismuth scattering. 

Let us note in passing that the measured neutron form factor could also be easily 

interpreted in tern-is of a halo of the same size and shape as the proton halo. For 

zero charge we write 

GEn (q2) = - cnGb(q2) + EnGHtq2) - (4.10) 
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TABLEIII 

Parameters of charge distribution with halo 

E C <I: 2>1’2 <r4) l/4 x2 

F % F F F 

5 7.022.8 6.68) 0.03 5.524 5.891 0.90 

7 2.921.2 6.67 + 0.02 5.525 5.903 0.92 

10 1.12 0.5 6.684 0.01 5.528 5.926 0.94 

14 0.520.2 6.692 0.01 5.531 5.964 1.00 

20 0.22 0.1 6.705 0.01 5.539 6.058 1.21 
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The slope at q2 = 0, (31) , 

- i <r2>, = Gkn(O) = 0.021 F2 2? 3 
R2 
-F , 

measured in the scattering of thermal neutrons by electrons, then gives a mean 

square neutron radius 

which may be obtained by adjusting en. For Rb =L R. and RH = 8 F, we find 

En 
= - i% of the proton’s charge, and 

(4.11) 

G z 1 
En 500 GEp 

(4.12) 

(4.13) 

for q2 > 0.3F -2 , which is consistent wi,th the GEn Y 0 values obtained from 

electron-dcuteron scattering. (31) 

In any event, we note that the neutron, with <r2>, 2-i RE is smaller than 

the usual proton and is negligible compared with the proton halos we have been 

considering. Hence even a large neutron excess in heavy nuclei will not have a 

significant effect. 

Wiiat are other consequences of a proton halo. 3 We have calculated the contribution 

of the halo to other accurately measured level shift.s. Since the mean square radius is 

additive, as in Eq.- (4.9)) we see that (except for a negligible contribution from the 

neutron) the Lamb shift in deuterium is increased by the same amount as in hydrogen. 

For other cases, we scale by Z4(2/nJ3 and obtain the results listed in Table II. We 

note that in all cases escept hydrogen and deuterium, the effect is smaller than the error 

limits and thus does not conflict with experiment. 
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We have also checked that the presence of a halo in the phosphorous nucleus 

does not disturb the precise determination of the muon mass from the 3D-2P 

muon X-ray transitions. (32) 

The presence of nucleon halos also has negligible effect on the Coulomb 

contribution to the nucleon-nucleon scattering length and effective range. (33) 
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V. CONCLUSION 

Although there are many theoretical objections to a proton charge distribution 

with a long tail, (34) the relevant experimental data do not rule out this possibility. 

On the contrary, the low momentum transfer electron-proton scattering data do 

seem to hint at such an effect. Our analysis of the muonic X-rays of Bi 209 gives 

a nuclear ch‘arge distribution with Fermi parameters at variance with that obtained 

from electron scattering; a nuclear halo resolves this, discrepancy. A halo charge 

distribution on the neutron can fit the observed features of the neutron charge form 

factx. Finally we note that a proton halo numerically cotisistent with the above data im- 

plies a doubling of the proton mean square radius and brings the theory of the Lamb shift 

in H and D into good agreement with experiment. Thus in a number of different 

physical situations, discrepancies between theory and esperiment of more than one 

standard deviation cxan each be interpreted in terms of a proton halo of radius 

RH N 8F, and p&tive charge cv .Ol e . 

It should be noted that the above evidence (except for the electroq-neutron inter- 

actions) could be interpreted alternatively in terms of a long charge tail on electrons 

and muons. (35) 

We feel that the basic theory and analysis of the muon X-rays given here is 

especially accurate due to our treatment of nucleal; polarization, vacuum polarization, 

and the muon& Lamb shift, which we find to be as important as the dispersion 

contribution. The theory of electron-Bismuth scattering, however, may need further 

refinement, especially in the treatment of the dispersion corrections. (36) Accurate 

low energy scatterin, 0’ experiments on isotopically pure lead would be desirable. 

In the last analysis, however, the most direct determination of the existence of a 

nucleon halo would be given by the accurate measurement of the proton and neutron 

form factors at lower values of momentum transfer and better accuracy than heretofore 

obtained. 
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APPENDIX A 

Lamb Shift in Heavy Muonic Atoms 

For the second order Lamb shift in light hydrogenic (i.e. , one lepton) atoms, the 

usual expansions (17) in powers of the field str.ength c= Za/r’ work well because Za 

is very small. The expansion parameter is effectively nZcz for point nuclei for which 

integrals of singular operators such as 62 = (ZCX) 2 4 /r are convergent only below the 

lepton Compton wavelength h = l/m. Such an expansion is thus questionable for 

determining the energy shift of the K-shell in atomic Mercury (16) or Bismuth where 

7rza * 2. In heavy muonic atoms, however, the Compton wavelength of the muon, 

h/J %2F, is smaller than the nuclear radius R 2: 7F, so the field strength becomes 

finite (owing to the finite extent of the nuclear charge distribution) somewhat before the 

relativistic region r -jt P is reached. The relevant expansion parameter is thus not 

nZct but, say, 

_P,1/R=s, 
“P mP R 30% . 

Evaluation of the leading higher order term 

1 

261 
-iiiGil < CJ ’ 

dz 
3 

0 zm2 + (l-z)p2 
(Al) 

where p=l/R, 

yields results 25% of the lowest order contribution for the 1s state. These may be 

good estimates of the higher order contributions, but we shall not include them 

because our estimates of the lowest order contributions are only good to 30%. 
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To evaluate the lowest order contribution Eq. (2.5) we need to evaluate or 

approximate the average excitation energy AE n in the sum-over-states definition 

of the Bethe logarithm, (37) 

c cnFln’> ’ d 1 [ v,;] 1 n > log qE:En,l 
n’ . W 

For a point Coulomb potential, the sum contains smany continuum states I n’> with 

momenta of the order of Zc1m, and for the 1s state one finds a value of A en N 8(zo1)2m 

which is large compared with E n. However, for a finite charge distribution of extent 

R>>l/Zatm, the electric field in the matrix element 

<n’ [ [v,:] 1 n > M/d3r ei”’ ,$(r)$+.$r) (A3) 

will limit the contributing continuum states to those with momenta 

and energies 

E = n’ 
. 

For muonic Bismuth, En,& 4 MeV, EIS = - 10 MeV, and the smallest excitation 

energy for the ground state is EZP - EIS = 6 MeV, so the mean value theorem gives 

the range 

IE2 - ‘JsA El S lEll + Ent max 

or 

6 MeVSA cl S 14 MeV 
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so 
106 MeV 

2(10 24) MeV 2: lo7 Itr ‘a4 ’ Wa) 

Assuming that the average excitation energy level might also be at E-0 for the 

other states, we will take A cn r En to within a factor of 2. Since we are taking 

a logarithm this sort of uncertainty does not introduce large errors. Thus 

m 
In 2A E2P cu ln 4 - 53 + In2 -2.520.7 - 

and 

-- 
In 2A:3D 2 Ins 2 3.5 . . 

The error limits in Eq. (2.7) include these uncertainties plus roughly 20% for 

higher order terms. 

In Table IV, we have tabulated the average values 

Wb) 

C44c) 

J dr(f2 + g2)x 
0 

<x> G (45) 
co 

J dr(f2 + g2) 

0 

of various quantities X, where ‘, and f are the large and small components of 

the numerical Dirac wave functions for the muon in the charge distribution Eq. (3. l), 

with c = 6.68F and t =2.25Ffor Bi 209 . 
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Table IX . Expectation values of the functions X (energies in ke'?, lengths in F). 

X 

l/r2 

l/r 

-V 

- Vr 

- Vr2 

- VI-3 

V2 

AC!!! 
I dr 

($y 

P*(r) 

qm 

Muon State 

92 

4.434x1o-2 

1.65~10~' 

8.157 

8.304X101 

1.013x103 

9.933xro2 

3.152x103 

1.606xm4 

1.099x1d 

9.442x105 

9.820~10~ 

2.876x108 

3.282x102 

6.253~10~ 

2s1/2 

1.037x10-2 

6.lux10-~ 

2.40'7~10' 

6.758X102 

2.1@%104 

2.170x102 

7.192x102 

6.476x103 

1.177x105 

2.875~10~ 

8.087~10~ 

6.559~10~ 

5.242x101 

7.620~10~ 

7.086~10~~ 

2pl/2 

9.46~~10-~ 

8.262x10-~ 

1.519x101 

2.772xI.o* 

5.906x103 

1.4gmo2 

9.964~10' 

9.567x103 

1.187x105 

1.815~10~ 

3.318x107 

l.l17x108 

1.152x102 

2.177x106 

7.621~10~~ 

2'3/2 

7.647x1O-3 

7.708x10-2 

1.594XlOl 

3.025XlO2 

6.673~10~ 

l.075X102 

8.642~10' 

9.057x103 

1.19lx105 

1.907x106 

3.622~10~ 

9.95lxlO7 

9.966~10' 

l.860X106 

3n3/2 

1.798x10-~ 

3.833xlo-2 

3.078~10' 

1.09I.x103 

4.369x104 

1.285~10' 

2.143X102 

4.585~10~ 

1.197xlG5 

3.684~10~ 

1.305xm8 

2.558x107 

l.305X101 

1.400x1o5 

3D5/2 

1.632~10‘~ 

3.684x10-' 

3.174XlOl 

1.154x103 

4.725xlo4 

1.074x101 

l.95W102 

4.409x103 

1.197xld 

3.799x106 

l.380X108 

2.333x107 

1.098~10~ 

1.053x105 

1.073x10-3 

4F5/2 

5.02ucio -4 

2.089x10-~ 

5.409xlOl 

3.26~~10~ 

2.167x105 

1.704 

6.003~10~ 

2.49gX103 

~196x10~ 

6.469~10~ 

3.899x10* 

7.189~10~ 

1.704 

7.219x103 

g.z8%lo -6 

4F7/2 

4.841~10 -4 

2.056~10~~ 

5.479xlOl 

3.339x103 

2.24Od 

I.595 

5.792xlOl 

2.460x103 

1.196x105 

6.553~10~ 

3.993k08 

6.93~~~ 

1.593 

6.380x103 

4.258~10 -6 

5G7/2 

1.939x10 -4 

1.319x10-2 

8.353~10~ 

7.62m103 

7.544x105 

3.8glx10-1 

2.319XlOl 

1.578~10~ 

1.196xX5 

9.986~10~ 

9. 1m108 

2.774x106 

3.846x10-' 

8.774~10' 

1.7OlxlO -8 

5G9/2 

1.907x10 -4 

1.31ox10‘2 

8.406~10' 

7.713x103 

7.67~~1~ 

3.742x10-l 

2.281x101 

1.566~10~ 

1.196x1$ 

1.005x107 

9.*2u(108 

2.728~10~ 

3.737x10-l 

8.381~10~ 

6.566x10-9 



APPENDIX B 

Restrictions from Electron-Proton Scattering 

In order to provide a rough quantitative limitation on the halo from electron- 

proton scattering, let us restrict the value of the total form factor 

G(q2) = - (1 - E ) Gb(q2) + E GHh2) 

to lie within 3 standard deviations of Drickey and Hand’s (38) value 0.9731+0.0054 

at q2 = 0. 300F-2, since this is the data point farthest from a smooth curve which 
1-G 

passes through the other data and rises to a large value of - 
s2 

at q2 = 0. The 

10F halo shown in Fig. 1 is at the limit of this restriction. 

For very large RH, we have GH N O., and the restriction reduces to E < l.l%, 

taking Rb cy Ro. This is the same bound as would be obtained in a G vs. q2 plot 

by lowering the usual straight line parallel to itself until it was 3 standard deviations 

from the Drickey and Hand datum at q2 = 0.3 F-2 and passed through 1 - crnax 

at q2 = 0. We might note here that present e-p scattering will not yield a smaller 

bound on E than about 1% since this is the best accuracy (to date) of the form factor 

measurements. 

For smaller RH, we will (as we did in the HFS discussion) take the halo to be the 

same shape as the usual proton fit, 

Go (s2, = (1 -I- ~~Rz/l2)-~ 

but larger in spatial extent: 

(B2) 

GH (q2) = (1 f ~?R;/12)-~ ; CW 
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this corresponds to a charge density proportional to e 
-26rmH . The maximum 

value of E allowed by the restriction is given as a function of RH in Fig. 2. This 

upper bound is found to be decreased for halo shapes with more charge at large 

distances (such as a charge shell at r = RH) and increased for halo shapes with 

more charge at small distances (such as a charge density proportional to 

r-2 ,-A r/RI1 ). We will take the upper curve as the weakest bound since it lies 

above the curves for all the other halo shapes considered. 

As we have noted before, taking the reduced body smaller than the usual proton 

will weaken the halo restrictions,raising the curves in Fig. 2. In order to limit the 

body size, let us consider the form factor Eq. (331) at large q2, where E GH will 

be negligible. The form factor Eq. p2) is within 15% of the data t3’) and 

E <50/o, so Gb should agree with Go within 20%. For very large q2, G scales 

roughly as l/q4R4, so we want Rb % R. to within 5%. Therefore, we can safely 

state that the reduced body will raise the curves in Fig. 2 by less than half the amount 

shown for R b = 0.9 Ro. 
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Figure Captions 

1. The slope function of the proton charge form factor (1 - G Ep) /q2’ 

The three upper curves show the effect of a proton halo of charge E 1 e 1 

and rms radius RH. The total proton rms radius is taken to be tripled 

in order to fit the Lamb shift in H. The usual fit to G Ep for small q2 

corresponds to c = 0 . The data are taken from Ref. 30 . 

2. Restrictions on the proton halo: allowed percentage vs. rms radius. 

Upper limits are given by the hyperfine structiire (HFS) in the ground 

state of H and elastic electron-proton (EP) scattering using Eqs.(Bl-B3). 

The curves labeled LS show the halo required to fit the 0.25 MHz Lamb 

shift discrepancy in hydrogen. In each case the lower curve corresponds 

to Rb = R02J 0.8F and the upper curve to Rb = 0.9 Roz 0.7 F. The Bi 
.209 

curves give the range of halo parameters needed to reconcile the Bl 

charge distributions obtained in electron Bismuth scattering with our 

results from muonic x-rays. 
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