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ABSTRACT
Adult large-bodied theropods are often found with numerous pathologies. A large,
almost complete, probably adult Allosaurus specimen from the Howe Stephens
Quarry, Morrison Formation (Late Kimmeridgian–Early Tithonian), Wyoming,
exhibits multiple pathologies. Pathologic bones include the left dentary, two cervical
vertebrae, one cervical and several dorsal ribs, the left scapula, the left humerus,
the right ischium, and two left pedal phalanges. These pathologies can be classified
as follows: the fifth cervical vertebra, the scapula, several ribs and the ischium
are probably traumatic, and a callus on the shaft of the left pedal phalanx II-2 is
probably traumatic-infectious. Traumatically fractured elements exposed to frequent
movement (e.g., the scapula and the ribs) show a tendency to develop pseudarthroses
instead of a callus. The pathologies in the lower jaw and a reduced extensor tubercle
of the left pedal phalanx II-2 are most likely traumatic or developmental in origin.
The pathologies on the fourth cervical are most likely developmental in origin or
idiopathic, that on the left humerus could be traumatic, developmental, infectious
or idiopathic, whereas the left pedal phalanx IV-1 is classified as idiopathic. With
exception of the ischium, all as traumatic/traumatic-infectious classified pathologic
elements show unambiguous evidences of healing, indicating that the respective
pathologies did not cause the death of this individual. Alignment of the scapula and
rib pathologies from the left side suggests that all may have been caused by a single
traumatic event. The ischial fracture may have been fatal. The occurrence of multiple
lesions interpreted as traumatic pathologies again underlines that large-bodied
theropods experienced frequent injuries during life, indicating an active predatory
lifestyle, and their survival perhaps supports a gregarious behavior for Allosaurus.
Alternatively, the frequent survival of traumatic events could be also related to the
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presence of non-endothermic metabolic rates that allow survival based on sporadic
food consumption or scavenging behavior. Signs of pathologies consistent with
infections are scarce and locally restricted, indicating a successful prevention of the
spread of pathogens, as it is the case in extant reptiles (including birds).

Subjects Animal Behavior, Paleontology, Veterinary Medicine, Zoology, Pathology
Keywords Paleopathology, Gregarious behavior, Pseudarthrosis, Jurassic, Osteomyelitis,
Archosauria, Theropoda

INTRODUCTION
Palaeopathology is the study of diseases and traumatic injuries in extinct animals

and reveals great potential to provide insights into behavior (e.g., Rothschild & Storrs,

2003), physiology (e.g., Rothschild et al., 2003), life history (e.g., Hanna, 2002) as

well as interspecific (e.g., predator–prey relationships) and intraspecific interactions

(e.g., intraspecific combats or cannibalism) (e.g., Carpenter, 2000; Tanke & Currie, 2000;

Currie, 2000; Rogers, Krause & Rogers, 2003; Avilla, Fernandes & Ramos, 2004; Carpenter et

al., 2005; Farke, Wolff & Tanke, 2009; Butler et al., 2013; Hone & Tanke, 2015). In recent

years, the study of osteological pathologies among non-avian dinosaurs has become

of great interest, documenting a wide range of different kinds of injuries and diseases,

e.g., fractures and stress fractures (Rothschild, 1988; Rothschild, Tanke & Ford, 2001;

Hanna, 2002; Anné et al., 2014), amputations (Farke & O’Connor, 2007; Butler et al.,

2013), bite marks and scratches (Carpenter, 2000; Tanke & Currie, 2000; Peterson et al.,

2009; Bell, 2010), cancer and tumor growth (Rothschild et al., 2003; Arbour & Currie, 2011),

developmental disorders (Witzmann et al., 2008) as well as different kinds of microbial

infections (Hanna, 2002; Wolff et al., 2009; Witzmann et al., 2011). Of special interest in

this respect are non-lethal pathologies, as they can potentially tell us something about the

lifestyle of the animal. Especially, large-bodied non-avian theropods are frequently found

with numerous fractures, bite marks and infections (Gilmore, 1920; Molnar & Farlow, 1990;

Molnar, 2001; Hanna, 2002; Brochu, 2003; Farke & O’Connor, 2007; Rothschild & Molnar,

2008; Bell, 2010; Bell & Coria, 2013), indicating an active predatory life style predisposed

to injuries (Hanna, 2002). The basal tetanuran Allosaurus is one of the best-documented

dinosaurs in this field of research (e.g., Marsh, 1884; Gilmore, 1920; Moodie, 1923; Petersen,

Isakson & Madsen, 1972; Madsen, 1976; Rothschild, 1988; Rothschild & Martin, 1993;

Hanna, 2002; Anné et al., 2014). However, only one study, which is based on the almost

complete Allosaurus specimen MOR 693 (‘Big Al’) as well as isolated material from the

Cleveland-Lloyd Dinosaur Quarry, has studied its pathologies in greater detail and in a

comparative approach (Hanna, 2002). Here, we report a second almost complete, probably

adult Allosaurus specimen from the Upper Jurassic of Wyoming, U.S.A, which possesses

several pathologic bones, including the left dentary, two mid-cervical vertebrae, a right

cervical rib, several dorsal ribs, the left scapula, the left humerus, the right ischium, and the

left pedal phalanges II-2 and IV-1 (Fig. 1). After documentation and diagnosis, the single
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Figure 1 Overview of pathologies in SMA 0005. Skeletal reconstruction of SMA 0005, showing all
pathologic bones. Pathologic elements from the left side are shown in red, while respective elements from
the right side are marked in blue. Unpaired pathologic bones are colored in cyan. Green ribs represent
ribs from the left, for which a pathologic condition is uncertain. Abbreviations: c, cervical; cr, cervical rib;
de, dentary; dr, dorsal rib; hu, humerus; is, ischium; p, pedal phalanx; sc, scapula. Skeletal reconstruction
of SMA 0005 with courtesy from the Sauriermuseum Aathal.

pathologies of the specimen will be compared with the data from Hanna (2002) and that

of other large-bodied theropods, so that the current study provides new insights into the

disease patterns and lifestyles of these remarkable predators.

MATERIAL AND METHODS
The Allosaurus specimen SMA 0005 (‘Big Al 2’) was collected from the Upper Jurassic

outcrops of the Morrison Formation (Late Kimmeridgian—Early Tithonian) of the

Howe Ranch (Howe Stephens Quarry), Big Horn County, Wyoming, by a team of

the Sauriermuseum Aathal (Switzerland) in 1996, close to the famous Howe Quarry

discovered by Barnum Brown in 1934 (Brown, 1935; Breithaupt, 1997). The almost

complete skeleton was found partially articulated and probably represents an adult

individual (total body length = 7.6 m), which is about 12% larger than MOR 693 (‘Big

Al’), which was found only a few hundred meters away.

For classification of different pathologies present in SMA 0005 we follow the nomencla-

ture of Hanna (2002), who classifies osteological abnormalities as (1) traumatic (resulting

from traumatic injury), (2) infectious (resulting from viral, bacterial and protozoan

infection), (3) traumatic-infectious (resulting from secondary infection of an injured

element), (4) developmental (caused by growth disturbance during development), and

(5) idiopathic (pertaining to a condition without clear pathogenesis).

Traumatic injuries of bone include fractures and amputations. If these injuries do

not cause the immediate death of an animal they are characterized by healing responses,

usually in form of callus formation (Cleas, Wolf & Augat, 2000), which is proliferating

growth of originally non-mineralized connective tissue to close the gap and stabilize

the respective injury (Park et al., 1998; Cleas, Wolf & Augat, 2000; Schell et al., 2005).

Generally, the callus surrounds the perimeter of the injured bone locally and forms a

different superficial structure compared to healthy bone. If the healing process of the injury

is not disturbed by secondary infections or interfragmentary movements, the callus is
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remodelled by zonal lamellar bone after some time (McKibbin, 1978; Park et al., 1998).

In case of bone fractures, however, intense mechanical loadings and interfragmentary

movements can rupture the bridging callus tissue, including its vessels, resulting in the

formation of a pseudarthrosis or ‘false joint’ (Cleas, Wolf & Augat, 2000; Loboa, Beaupré &

Carter, 2001; Klein et al., 2003; Strube et al., 2008), which is usually accompanied by chronic

pain, and often so by disability (Loboa, Beaupré & Carter, 2001). However, pseudarthrosis

can also result from syn-traumatic malunions (Klein et al., 2003).

An osteological abnormality caused by viral, bacterial or protozoan infections is

called osteitis. If such infection becomes chronic and affects the bone marrow it is called

osteomyelitis (Pschyrembel, 1990), which is usually characterized by comb-like lesions

on the bone surface. In extant mammals, tissue-invasive microbial infections are often

characterized by locally restricted, subperiostal suppurative abscesses. In later stages, these

abscesses can cause necroses of original bone due to an infiltration of pus into the blood

vessel system, impairing the blood supply of the local bone area. Such infiltrations can

further lead to a spread of microbial pathogens via the blood stream, affecting other

skeletal elements (so called haematogenous osteomyelitis) (Ortner & Putschar, 1981;

Pschyrembel, 1990; Gross, Rich & Vickers-Rich, 1993). In contrast, extant reptiles (including

birds) do not respond to tissue-invasive microbial infections by producing liquid pus

(Montali, 1988; Rega, 2012), but instead by exuding fibrin into the infected areas, which

forms local fibriscesses (as a type of granuloma), and preventing the spread of the infection

via the blood stream (Gomis et al., 1997; Huchzermeyer & Cooper, 2000; Cooper, 2005).

Thus, reptiles usually manifest only contiguous osteomyelitis. Besides osteomyelitis,

osteitis can also lead to the formation of exostoses, superficial bony outgrowths.

Developmental disorders are pathologies related to ontogenetic abnormalities resulting

from inherent genetic defects or growth disturbances, whereas in idiopathic abnormalities

the cause of the osteological pathology is unknown (Hanna, 2002).

To study potential internal structures several pathologic bones of SMA 0005 were

CT scanned. The left dentary and the left scapula were investigated using a Siemens

SOMATOM Sensation Open (CT) system at Vetsuisse Faculty (University of Zurich)

with source: 120 kV, 176 mA, rotation time: 1 s, pitch: 0.55 mm and slice thickness:

0.6 mm. The fifth cervical was scanned with a 450 kV X-ray system MG450 (YXLON)

and a CITA 101B+ industrial CT scanner with a collimated line detector (CITA Systems

Inc., Pueblo, Colorado, USA) at the Center for X-ray Analytics (EMPA, Swiss Federal

Laboratories for Materials Science and Technology) with source: 450 kV, 3.3 mA, focal

spot size: 1.0 mm, target: wolfram, 750 projections of 0.04 s over 360◦, slice thickness:

0.25 mm. The generated CT data were preceded with help of the 3D reconstruction

software package Amira 5.3.3 (Visage Imaging, Inc., San Diego, California, USA) and

Mimics 16.0 (Materialise HQ, Leuven, Belgium). Unfortunately, the foot was firmly

installed in the mounted skeleton, so that the pathologic phalanges could not be scanned.

To allow readers their own assessments of the pathologic structures described, we

created a supplementary information file, showing all figures with interpretive lines in a

clear version (see Supplemental Information 1).
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RESULTS
Dentary
Description. The anterior end of the left dentary in SMA 0005 is strongly modified.

In lateral view, it has the shape of an anterior rosette, similar to the morphology seen

in spinosaurid megalosaurs (Stromer, 1915; Charig & Milner, 1997; Sereno et al., 1998),

measuring c. 110 mm in anteroposterior length. The anterior part is both dorsally and

ventrally expanded, reaching a maximal height at the level of the fifth teeth mounted (in

both dentary most teeth are not original). Anteriorly, the alveolar border curves ventrally,

forming a convex arch (Figs. 2A and 2B, see also S1 in the Supplemental Information

1). This morphology clearly differs from the normal condition in Allosaurus, where the

anterior portion of the dental margin is slightly convex (Fig. 2C). As a consequence of the

morphology in the anterior end of the left dentary, the symphysial region of the mandible

is dorsoventrally shortened, and when both mandibles are aligned with the ventral border

of the symphysis, at least the anterior part of the left alveolar margin would project dorsally

well beyond the right alveolar margin. Ventral to the first two teeth mounted, a V-shaped

depression is present on the medial side of the bone, which is c. 10 mm deep, 45 mm

long and 30 mm high. At the level of the first tooth the depression curves anterodorsally,

reaching the dental margin of the dentary (Fig. 2B). The opening at the margin measures

c. 15 mm in dorsoventral length. Based on the location, this structure might represent a

further tooth position. However, CT data show that the anterior part of the left dentary is

formed by compact bone, while more posterior parts on the same dentary shows repetitive

indentations representing deep alveoli (Fig. 3). Consequently, the presence of the first two

teeth mounted in the left dentary cannot be verified by the CT data. On the other hand, it

is also not possible to identify the nature of the medial depression with help of the CT data.

No clear indication of a fracture, bite marks, callus or other lesion is visible.

Diagnosis. The absence of any traces of trauma, infection or healing indicates that the

supposed pathology has happened long time before the death of the animal, possibly

even during its early ontogeny. The compact bone in the anterior portion of left dentary

further indicates that the first alveoli may be reduced during the healing response to merely

externally visible, shallow pits, i.e., that the anterior part of the left dentary was edentulous.

However, one has to keep in mind that the cause of the anterior medial depression is not

clear and an alveolus nature cannot be ruled out entirely.

Cervicals
Fourth cervical
Description. The fourth cervical shows a conspicuous, irregularly shaped proliferation of

bone originating from the posteromedial side of the left prezygapophysis (Figs. 4A and 4B,

see also Fig. S2 in the Supplemental Information 1). The proliferation is anteroventrally

and medially directed and measures c. 9 mm anteroposteriorly, c. 18 mm dorsoventrally

and 25 mm lateromedially in its maximum extent. Anteriorly, the proliferation flattens

and expands laterally, contacting the ventromedial side of the left prezygapophysis, so that

it looks inverted L-shaped from dorsal view. From anterior view it is kidney-shaped with
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Figure 2 The dentaries of SMA 0005. (A) Left dentary with pathologic anterior end in lateral view.
(B) Medial side of the left dentary with pathologic anterior end in mirrored view. (C) Right dentary in
mirrored view, showing the normal condition for Allosaurus. The differences in the shape of the alveolar
margin in both dentaries (A, C) are shown with a dashed line. Note that most teeth in both dentaries
are not original, but glued to the internal margin of the dentaries. Abbreviations: dep, depression; idp,
interdental plates; mg, Meckelian groove. Scale bar = 5 cm.
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Figure 3 Surface model of the left dentary of SMA 0005 with anterior and posterior CT sections. (A)
Posterior end of the left dentary in lateral view, showing signs of alveoli of dentary teeth. (B) Anterior
end of the left dentary in mirrored medial view, showing dense bone matrix with no sign of alveoli.
Abbreviations: adt, artificial dentary tooth with an internal wire; alv, alveoli; db, dense bone. Scale
bar = 5 cm.

the concave edge facing ventrally. The surface of the structure is overall rugose. A further

small anomaly is present medial to the left lateral margin of the spinopostzygapophyseal

fossa above the neural canal (Figs. 4C–4E). The structure is posteroventrally directed and

tapers distally. It measures c. 6 mm anteroposteriorly, c. 9 mm dorsoventrally and c. 11 mm

lateromedially. Both structures show no signs of traumatic or infectious lesions.

Diagnosis. A clear diagnosis of both exostoses is difficult. As no external indicator of is

observable, and as the structures belong to none of the regular parts and processes of

the vertebra, the most plausible explanation could be an enthesopathy (= inflammatory

ossification of ligamentous or muscular attachments), or an osteochondroma (= benign

bone tumor). Here, the irregular shape of the large anterior exostosis may correspond with

the cauliflower-like morphology of an osteochondroma (Murphey et al., 2000). However,

the most conservative classification of this pathology would be idiopathic, as no cause can

be ascertained.
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Figure 4 Fourth cervical of SMA 0005. (A) Fourth cervical in dorsal view, showing a pathologic exostosis
(possible osteochondroma) between the prezygapophyses. (B) Possible osteochondroma from anterior
view marked by a dotted line. (C) Fourth cervical in posterior view, showing another exostosis (possible
inflammatory ossification) above the neural canel. (D) Possible inflammatory ossification (dotted line) in
close-view. (E) Possible inflammatory ossification (dotted line) in posterolateral view. Abbreviations: ep,
epipophysis; ex, exostosis; nc, neural canal; ns, neural spine; poz, postzygapophysis; prz, prezygapophysis;
tp, transverse process. Scale bar = 5 cm.

Fifth cervical
Description. The neural arch of the fifth cervical shows a severe pathology at the base of

the left postzygapophysis (Fig. 5, see also Figs. S3 and S4 in the Supplemental Information

1). In external view, a fracture runs around the whole process, indicating the complete

rupture of the postzygapophysis. This fracture is surrounded by a large callus on the

dorsolateral side, which gives the left postzygapophyseal pedicle a swollen appearance,
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Figure 5 Fifth cervical of SMA 0005. (A) Fifth cervical in left lateral view, showing the callus and
the fracture (dotted line) at the base of the left postzygapophysis. (B) Fifth cervical in lateral view in
posterolateral view. (C) Callus (dashed line) and fracture (dotted line) in laterodorsal view. (D) Callus
(dashed line) and fracture (dotted line) in lateroventral view. (E) Callus (dashed line) and fracture
(dotted line) in oblique posterolateral view. Structures of minor interest in the neural arch are colored
transparently for cover. Abbreviations: ca, callus; ep, epipophysis; ns, neural spine; poz, postzygapophysis;
pp, parapophysis; prz, prezygapophysis; tp, transverse process. Scale bar = 5 cm.

and follows roughly the course of the epipoprezygapophyseal lamina. While the broken

postzygapophyseal fragment seems secondarily well connected to the neural arch medially,

the fracture line appears as a gap laterally, separating the callus in an anterior and posterior

part, which are not connected to each other. The anterior part of the callus measures c.

38 mm. Anteriorly, it ends at the level of the posterior edge of the transverse process. The

callus shows a stronger lateral (c. 14 mm) than dorsal expansion (c. 8 mm). The posterior
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Figure 6 CT section through the callus of the fifth cervical of SMA 0005. (A) Fifth cervical in left
lateral view, showing the progression of the CT section through the callus. (B1) Surface model of the
fifth cervical in posterior view, showing the section through the neural arch at the anterior level of the
callus. (B2) Tomogram of the anterior section. (C1) Surface model of the fifth cervical in posterior view,
showing the section through the neural arch at the posterior level of the callus. (C2) Tomogram of the
posterior section. The CT data show that the callus at the left postzygapophysis is made of dense bone,
while the right postzygapophysis is pneumatised by a large internal cavity. Abbreviations: ca, callus; L, left
side; ns, neural spine; poz, postzygapophysis; pn, pneumatization; prz, prezygapophysis. Scale bar = 5 cm.

part of the callus is smaller and measures c. 19 mm in its anteroposterior dimension. The

external surface of both parts of the callus is smooth, without any rugosity. However, CT

data reveal that the pathologic postzygapophysis consists mostly of dense, homogenous

bone tissue, while the right postzygapophysis shows signs of large, internal cavities (Fig. 6)

probably related with the pneumatization of the neural arch (see O’Connor, 2006).

Diagnosis. Based on the morphology, it seems that the pathology in the left postzygapoph-

ysis represents a traumatic fracture, which shows typical callus healing. This healing

response seems to affect the pneumatization pattern of the postzygapophysis due to

reactive bone growth.

Presacral ribs
Description. Several ribs of SMA 0005 show evidence for lesions. In the cervical region,

one pathologic rib is found on the right side of the fourth cervical vertebrae (Fig. 7A, see

also Fig. S5 in the Supplemental Information 1). In the dorsal region, the fifth rib from the
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Figure 7 Pathologic ribs and cortical traces in SMA 0005. (A) Fourth cervical rib from the right side
with fracture (dotted line). (B) Seventh dorsal rib from the left side with fracture (dotted line). (C)
Cortical traces in the right ischium. (D) Cortical traces in the left scapula. Abbreviations: ca, callus. Scale
bar = 2 cm.

right body side shows a fracture in its distal third. On the left body side, the third, seventh

and ninth dorsal ribs show clear evidences of fractures, appearing all in the distal half of

the rib, almost on the same level (Fig. 7B, see also Fig. S5 in the Supplemental Information

1). Other ribs from the left side also show deformations on this level. However, as clear

fractures cannot be observed, a distinction between a pathologic or taphonomic origin

is not possible for the deformed elements. All fractured bones identified show a distinct

overlapping connection of both broken elements, sometimes with a slight displacement of

the distal end. In some ribs minor callus formation is present.

Diagnosis. The observations of the fracture morphology in the ribs are consistent with

the morphology of pseudarthroses (Cleas, Wolf & Augat, 2000; Loboa, Beaupré & Carter,

2001; Klein et al., 2003), which result from traumatic events. In some dorsal ribs the

pseudarthroses are associated with small calluses, which are remains of the initial healing

response of the fracture.

Scapula
Description. A complete, transverse fracture occurs in the proximal part of the left scapula

(Fig. 8, see also Fig. S6 in the Supplemental Information 1). This fracture does not show

a regular callus, but some osseous connection of the fractured end to the respective other

fragment is apparent. Thus, the proximal fragment, which articulates with the coracoid

and the humerus, is laterally displaced so that it sits on the distal fragment. The periphery

around the distal end of the proximal fragment shows a rough striation in line with the

longitudinal axis of the scapula. Furthermore, the proximal fragment is also displaced

in that it is rotated ventrally, resulting in an artificial tilt between both fragments. The

maximal overlap between the proximal and distal element is c. 81 mm. CT data of the

specimen show that most of the overlapping parts only lie on top of each other, and that

only the fracture ends constitute a fused bridge between the fracture elements (Fig. 8D).
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Figure 8 Pathologic scapula of SMA 0005. (A) Left scapula in anterolateral view, showing the fractured
area of the scapula blade (dashed line). (B) Fracture (dotted line) in dorsal view. (C) Fracture (dotted
line) in ventral view. (D) Tomogram of the scapula, showing that only the fracture ends constitute a fused
bridge between the fracture elements (arrows), which is consistent with a pseudarthrosis. Abbreviations:
co, coracoid; cf, coracoid foramen; fr, fracture; gl, glenoid facet; sc, scapula blade. Scale bar = 5 cm.

Diagnosis. The overall morphology and the CT data of the fracture are consistent with

the morphology of a pseudarthrosis (Cleas, Wolf & Augat, 2000; Loboa, Beaupré & Carter,

2001; Klein et al., 2003), in which the lateral displacement of the proximal fragment may be

explained by a number of reasons, including mechanical instability due to the morphology

of the scapula as a blade-like element or the nature of the traumatic event that caused the

fracture. One possible explanation might be found in the separation of muscle groups

on the lateral scapula in a distal part (M. deltoideus scapularis) and a more proximal part

(Mm. scapulohumeralis, M. deltoideus clavicularis), with the boundary between these two

regions apparently coinciding with the area of the break in SMA 0005 (see Remes, 2008;

Burch, 2014). Thus, the pull of the M. deltoideus scapularis would have rotated the distal

end of the scapula outwards in respect to the proximal end, possibly accounting for the

overlap. In contrast, the ventral rotation of the proximal fragment is probably caused by

the mechanical load of the arm, pulling the fragment it is articulated with down. The

malunion of the fracture fragment, once achieved, can hardly be reversed, and the weight

of the attached arm together with movements induced by arm use and torso movements

related to locomotion of the animal account for a lack of stabilization of the fracture.

In a preliminary report (Evers et al., 2013), we described a second potential fracture

of the scapula in the distal part of the bone. However, a re-examination of the specimen

suggests rather a post-mortem plastic deformation of this structure.
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Figure 9 Left and right humerus of SMA 0005. (A) Distal portion of the left humerus in anteromedial
view, showing idiopathic pathologies. The pathologies contain an irregular cortical texture with numer-
ous depressions (arrows), a deep oblique groove toward the anterior aspect of the medial side (dotted
lines), and two sharp, trough-like marks on the ventral surface of the ulnar condyle (dashed lines). (B)
Distal portion of the right humerus in anterior view. Abbreviations: epc, epicondyle; hu, humerus; ul,
ulna; uc, ulnar condyle. Scale bar = 5 cm.

Humerus
Description. The left humerus of SMA 0005 shows an abnormal ulnar condyle (Fig. 9A,

see also Fig. S7 in the Supplemental Information 1). It is elongate and thin, contrasting

the more rounded morphology usually seen in theropods and also in the right element

(Fig. 9B). Furthermore, no remains of prominent, tapered epicondyle can be found on

the anterior side. The condyle has an irregular surface texture of numerous depressions of

varying depth, as well as a deep oblique groove toward the anterior aspect of the medial

side, which measure c. 50 mm in maximum length. Additionally, the ventral surface of the

ulnar condyle bears some sharp, trough-like marks, measuring c. 20 mm in transversal

length.

Diagnosis. The abnormal form and texture of the left ulnar condyle is interpreted as an

idiopathic pathology, although the depressions might indicate a potential infection, an

avulsion of ligaments or tendons (traumatic), a developmental disorder in ossification, or

even a post-mortem modification.

Ischium
Description. The right ischium exhibits an oblique fracture located at a midshaft position

(Fig. 10, see also Fig. S8 in the Supplemental Information 1). The distal fracture fragment

sits on the medial side of the proximal fragment, and is slightly medially rotated. Due to

this orientation, there is a distally widening interfragmentary gap between the distal end
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Figure 10 Ischium of SMA 0005. (A) Both Ischia in anterolateral view, showing the oblique fracture at
the shaft of the right ischium. (B) Interfragmentary gap (arrow) of the right ischium in anterior view. (C)
Fracture (dotted line) of the right ischium in anterolateral view. (D) Fracture (dotted line) of the right
ischium in lateral view. (E) Fracture (dotted line) of the right ischium in posterior view. Abbreviations: fr,
fracture; ib, ischial boot; ip, ischial peduncle; op, obturator process; pp, pubic peduncle. Scale bar = 5 cm.

of the proximal fracture fragment and the proximal part of the distal fracture fragment,

which can be best seen in anterior view (Fig. 10B). Consequentially, the end of the proximal

fragment forms a laterally projecting tip. The gap is partially filled with matrix, which

shows that is was internally not closed by connective tissue when the animal died. The

fracture line can be traced almost around the entire shaft of the ischium (Figs. 10B–10E).

However, toward the proximal end of the fracture, the fragments are well connected on the

anteromedial side.

No sign of callus is visible around the pathologic structure. However, on the anterior

side of the fractured area, the cortical surface is disturbed by a large trace of small,

interconnected depressions with irregular size, shape, and depth. The traces continue

well beyond the fracture almost to the ischial boot.

Diagnosis. Because no clear callus structure is visible, and the present fracture line is at

no point bridged by cortical bone, it is possible that either a trauma caused an incomplete

fracturing, but no healing took place (which would indicate a trauma-related death of
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the animal), or that breakage of the bone occurred post-mortem. Another possibility is

that the fracture was complete, and that the anteromedially located connection of the

fragments was secondarily achieved. In this case, the structure would fulfill the criteria of a

developing pseudarthrosis (see Cleas, Wolf & Augat, 2000; Loboa, Beaupré & Carter, 2001;

Klein et al., 2003). However, the nature of the bone around the anteromedially located

connection described above is obscured by traces penetrating the surface (see discussion).

These traces are found on the anterior side of the ischium and could be related to bone

infection. However, as similar traces appear also on the surface of other bones, we would

rather interpret this structure as most probably taphonomic in origin (see discussion,

Figs. 7C and 7D).

Additional note. The left ischium shows a slight swelling and associated possible fracture

line at the same level as the right element (Fig. 10A). However, parts of the possible

pathology are obscured by a reconstruction of the lateral bone surface in this part. Thus, no

detailed comments on the morphology of the potential abnormality and potential healing

responses can be made. Due to the present uncertainty regarding this structure, we avoid

further interpretation.

Foot
Left pedal phalanx II-2
Description. The pedal phalanx II-2 of the left foot has a bulbous callus covering about

two-thirds of the element (Figs. 11A–11D, see also Fig. S9 in the Supplemental Information

1). The callus is located at the proximal part of the phalangeal shaft, and does not reach

both the proximal and distal articulation facets. In the mid-shaft area, the callus surrounds

the phalanx body almost entirely. Toward the proximal articulation, the callus forms a

groove-like channel with a sharp and step-like edge, which circumferences the medial,

dorsal, and lateral parts of the callus. Towards the distal articulation, the callus is laterally

complanate and hence approaching the regular morphology again, while the medial aspect

is strongly swollen. The ventral side of the proximal end is also strongly inflated, exhibiting

a c. 5 mm thick bulge. The surface of the callus is generally irregular, while the degree of

irregularity is reducing towards the distal part of the element, and weaker developed than

in comparative specimens (Hanna, 2002; see discussion).

Compared to the non-pathological pedal phalanx II-2 of the right foot (Fig. 11E), the

extensor tubercle is almost completely reduced in the left pedal phalanx II-2 with the

most proximal point ending approximately 40 mm anteriorly in relation to the ventral

flexor heel (see Figs. 11A–11D). However, the surface structure in the respective area of the

phalanx is not indicative of taphonomic deformation or erosion. Therefore, this anomaly

likely represents a pathologic structure, too.

Several depressions could be observed in this bone, penetrating the callus (Figs. 11B and

11C). The largest depressions appear posteromedially and are several millimetres deep.

Here, the outer margin of the more posterior depression measures c. 6 mm by 10 mm

and faces posteromedially. The second depression lies anteroventrally in respect to the

former, and faces medially. Its outline is circular and measures c. 7 mm by 7 mm. Both
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Figure 11 Pathologic phalanges in SMA 0005. (A) Left pedal phalanx II-2 from lateral view, showing
the callus and the reduced extensor tubercle. (B) Left pedal phalanx II-2 from ventral view, showing the
callus and multiple small depressions (arrows). (C) Left pedal phalanx II-2 from medial view, showing
the callus and two large depressions (arrows), possibly indicating a secondary infection of the bone. (D)
Left pedal phalanx II-2 from dorsal view, showing the callus and one of the two large depressions on
the medial side. (E) Right pedal phalanx II-2 from mediodorsal view, showing the normal condition and
size of the extensor tubercle. (F) Left pedal phalanx IV-1 in lateral view, showing two idiopathic bulbous
swellings (dotted lines). Abbreviations: ca, callus; et, extensor tubercle. Scale bar = 5 cm.

depressions possess a distinct rim. The ventral aspect of the callus also shows several small

round to oval-shaped depressions, which look very similar to the structures found in the

left humerus (see Fig. 9A).

Diagnosis. The presence of a callus indicates response to a traumatic pathology, which may

have been caused in various ways, including a traumatic accident or constant overloading

of the element during locomotion (see discussion). The absence of the extensor tubercle

is conspicuous, and possibly but not necessarily related to the pathology that caused the

callus. It is possible that the extensor tubercle was never fully developed, which would

point to a developmental pathology. Alternatively, the extensor tubercle could be lost

during remodeling of bone in relation to advanced callus healing (see discussion). Finally,

the depressions found in the medial and ventral surface of the phalanx may underlie a

pathologic origin. If this is the case, their morphology is most consistent with lesions

caused by osteomyelitis (Ortner & Putschar, 1981; Pschyrembel, 1990; Rothschild & Martin,

2006). However, because the simple morphology of the small depressions on the ventral
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side not unequivocally linkable to an infectious cause, a possible taphonomic origin should

not be ruled out.

Left pedal phalanx IV-1
Description. In the left pedal phalanx IV-1, there are two bulbous swellings on the lateral

side (Fig. 11F see also Fig. S9 in the Supplemental Information 1). One is positioned

underneath and posteroventral to the lateral ligament pit, and another one is situated

at the posterolateral side near the proximal articulation. The anterior swelling follows

the slightly sinuous curvature of the ventral side of the bone in lateral view, which is

the result of the constricted phalangeal shaft between the proximal and distal joints,

which are both dorsoventrally expanded in relation to the shaft. The posterior swelling

parallels the posterolateral and lateral margin of the proximal articulation, and is therefore

vertically oriented. The swellings are separated by a small oblique gap, under which the

bone seems to have retained its usual form. Both swellings have a smooth surface structure

not different from other parts of the bone, but are not found on the same element of the

right foot and are therefore abnormal. The swellings are different from the callus on the left

pedal phalanx II-2, as they have a clearly delimited and abrupt border to either side.

Diagnosis As no lesions or external fracture lines are present, we classify the pathology on

the left pedal phalanx IV-1 as idiopathic.

DISCUSSION
Identification and cause of pathologies
According to the scheme of Hanna (2002), the pathologic elements of SMA 0005 can be

classified as follows: the fifth cervical vertebra, the scapula, several ribs and right ischium

are probably traumatic, and the callus structure of the left pedal phalanx II-2 is probably

traumatic-infectious. In contrast, the supposed pathologies in the lower jaw and in the

reduced extensor tubercle of the left pedal phalanx II-2 cannot be assigned to a certain

type of this scheme, as they show evidence of advanced healing. They are most likely

traumatic or developmental in origin. The same is true for the abnormal outgrowths in

the neural arch of the fourth cervical, which are most likely developmental in origin or

idiopathic. The pathology on the left humerus is interpreted as traumatic, developmental,

infectious or idiopathic, whereas the left pedal phalanx IV-1 is classified as idiopathic.

With exception of the ischium, all lesions interpreted as traumatic/traumatic-infectious

pathologic elements show unambiguous evidences of healing, indicating that the

respective pathologies did not cause the death of SMA 0005. The role of the ischial fracture

as a possible cause of death will be discussed below.

The deformed anterior end of the left dentary of SMA 0005 is most likely pathologic,

but no obvious lesions are developed. This indicates that the supposed pathology was

probably completely healed and happened long before the animal died. A pathology

in the anterior part of the dentary is also found in the Allosaurus specimen USNM

2315 (Gilmore, 1920; Tanke & Currie, 2000; Molnar, 2001). The symphysial region is

strongly deformed, leading to a concavity in the anterior part of the dentary, which is
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bordered anteriorly by a dorsally pointing, hook-like projection. The anterior alveoli seem

completely resorbed so that the symphysial region is edentulous. According to Gilmore

(1920) and Tanke & Currie (2000), the anterior end of the dentary in USNM 2315 was

probably bitten off and then heavily remodelled during the healing process. As no sign of

other pathologic deformations are visible in the anterior end of the dentary, the supposed

trauma happened probably long before the death of the animal. Based on the CT data,

a similar condition might be also present in SMA 0005, as no traces of alveoli could be

detected in the anterior most region of the left dentary. At the current stage it is not

clear, if the medial depression found at the anterior end of the dentary might represent

a strongly modified alveolus. Assuming this possibility, however, it is still questionable if

the structure could actually produce teeth, because its morphology indicates a potential

damage of the tooth anlagen on the medial side. Assuming a similar scenario for the origin

of the pathology in SMA 0005 and USNM 2315, both specimens may indicate face-biting

behavior in Allosaurus, which was previously also hypothesized for other large-bodied

theropods (e.g., Sinraptor, Albertosaurus, Daspletosaurus, Gorgosaurus and Tyrannosaurus),

including juvenile specimens in some of these taxa (Tanke & Currie, 2000; Peterson et al.,

2009; Bell, 2010; Hone & Tanke, 2015). Another example of a remodeled alveolus with

possible traumatic origin was recently described for a single maxilla of the basal tetanuran

Sinosaurus (= “Dilophosaurus sinensis”) (Xing et al., 2013). However, it is also possible that

the abnormal shape of the dentary in SMA 0005 results from developmental malformation

or a fracture that happened in earlier ontogeny, which left no remaining traces.

The deformation of the anterior end of the dentary has implications for the structure

and function of the mandibular symphysis in Allosaurus. As pointed out by Holliday &

Nesbitt (2013), most basal theropod dinosaurs have a very simple mandibular symphysis

that consists of a simple flattened medial area of the anterior end of the dentary. However,

even in such an osteologically simple structure the actual union of the left and right

mandible by connective tissue can be quite variable (see Holliday et al., 2010). The

deformation of the left, but not the right mandible in SMA 0005 indicates that there was no

very tight junction between the two mandibular rami, and the symphysis and the jaws as a

whole functioned despite the different morphologies and resulting differences in the level

of the alveolar margins in the left and right mandible. This is supported by the deformation

seen in USNM 2315, which also affected the mandibular symphysis.

Another interesting aspect of the pathologic dentary of SMA 0005 is its similarity with

dentaries of spinosaurid megalosaurs. As there are no direct indications of pathology in

the bone itself, and the pathologic nature can only be inferred by comparison with the

other dentary, which shows a more typical morphology for Allosaurus. This element, if

found isolated, would probably not have been classified as Allosaurus. This has previously

happened with the dentary USNM 2315, which was originally described as a new

species, Labrosaurus ferox, by Marsh (1884). Thus, caution is needed when evaluating

the systematic position of isolated elements to rule out possible pathologies.

The most common pathology in the axial skeleton of dinosaurs is the fusion of single

vertebrae, which often appears in the caudal series. Possible causes of vertebral fusion are
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e.g., congenital abnormality (e.g., Witzmann et al., 2008), infections (Rothschild, 1997;

Rothschild & Martin, 2006), malformations during the healing process of a trauma (Roth-

schild, 1997; Butler et al., 2013), diffuse idiopathic skeletal hyperostosis (DISH) (Rothschild,

1987; Rothschild & Berman, 1991) or spondyloarthropathy (Rothschild & Martin, 2006;

Witzmann et al., 2014). No evidence of vertebral fusion is found in SMA 0005.

Like in the Allosaurus specimen MOR 693, the dorsal neural spines of SMA 0005

show irregular-shaped exostoses, which were diagnosed by Hanna (2002) as idiopathic

pathological ossification of interspinous ligaments. However, little research has been

done on the classification of ossified ligaments and other soft tissues in dinosaurs.

In ornithopods and dromeosaurid theropod dinosaurs, ossified tendons are found to

stiffen parts of the axial skeleton, and these structures are commonly not interpreted as

pathologic (e.g., Ostrom, 1969; Norell & Makovicky, 1999; Organ, 2006). However, in many

theropod dinosaurs, rugose outgrowths are found on the anterior and posterior sides

of the neural spine, which are thought to be part of ossified prespinal and postspinal

ligaments, respectively. These structures occur more frequently on larger specimens

(e.g., Allosaurus BYU 725/12901, BYU 725/12902, BYU 725/13051, UMNH VP 8365,

UMNH VP 13813; Acrocanthosaurus SMU 74646, Harris, 1998; cf. Spinosaurus BSPG 2006

I 57; Majungasaurus UA 8678, O’Connor, 2007), although there are also smaller specimens

with such ossification (e.g., Allosaurus UMNH VP 7341, DINO 11541; Dahalokely

UA 9855, Farke & Sertich, 2013). However, in individuals preserving an articulated or

associated vertebral series, no clear pattern of intervertebral tendon ossifications can be

observed in contrast to e.g., ornithopods (Organ, 2006). In Neovenator, the posterior

cervical vertebrae show ossifications at the apexes of the neural spines, and most dorsal

vertebrae show such structures (Brusatte, Benson & Hutt, 2008), while in Baryonyx, a

mid-cervical vertebra (BMNH R9951) shows relatively large ossifications, whereas more

posterior positioned vertebrae lack such structures and only show rugose attachment sites

for the respective ligaments on the neural arch (Charig & Milner, 1997). In some cases, the

interspinal ossifications have been suggested to be of diagnostic and thus taxonomic value

(Chure, 2000). The above cases show that ligament ossifications in dinosaurs are frequently

not interpreted as pathologic, and because many theropods show ossifications of at least

the attachment areas of interspinal ligaments, we advocate that they should be regarded as

non-pathologic, pending more detailed research on the topic.

However, the exostoses found in the fourth cervical of SMA 0005 differ in their position

and morphology from the examples mentioned above. Here, the strongly irregular shape of

the anterior exostosis resembles the morphology of an osteochondroma, which represents

the most common type of bone tumors in humans (Murphey et al., 2000; Sekharappa et

al., 2014). In captive wild extant mammals and reptiles (including birds), however, the

development of tumors is rather rare (Ratcliffe, 1933; Effron, Griner & Benirschke, 1977;

Huchzermeyer, 2003). Thus, it is not surprising that the unambiguous diagnosis of tumors

in dinosaurs is limited to only a few cases (e.g., Rothschild et al., 1998; Rothschild, Witzke

& Hershkovitz, 1999; Rothschild et al., 2003; Arbour & Currie, 2011; Rega, 2012). Due to

the restricted knowledge of tumor formation in dinosaurs in general, this diagnosis has
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to be seen with caution. However, if the diagnosis is correct, the anterior exostosis found

in the fourth cervical of SMA 0005 represents the third case of an osteochondroma in

dinosaurs (Rega, 2012). The smaller, more regular-shaped exostosis on the posterior side

of the neural arch does not fulfil the criteria for a bone tumor. One possible explanation

for these structures could be an inflammatory ossification of the ligamentum elasticum

interlaminare, which attaches right above the neural canal of cervical vertebrae (Tsuihiji,

2004), probably affecting the neck mobility. However, if none of the presented diagnosis is

correct, both exostoses have to be classified as idiopathic.

Evidence for traumatic pathologies in the vertebral column is also rare in dinosaurs.

Carpenter et al. (2005) describes an anterior caudal of Allosaurus with a possible

puncture in the left transversal process, which was most likely injured by a Stegosaurus

tail spike, indicating a predator–prey relationship between both dinosaurs. Traumatic

caudals found in the basal sauropodomorph Massospondylus (Butler et al., 2013) and the

hadrosaur Edmontosaurus (Carpenter, 2000) probably result from unsuccessful attacks of

large-bodied theropods, indicating active hunting behavior in the latter. Tail injuries were

also described in the theropod dinosaur Majungasaurus as well as in many ceratopsian and

hadrosaurian dinosaurs, but their origins remain speculative (Farke & O’Connor, 2007) or

are interpreted as result of intraspecific interactions, such as accidently tail trampling due

to herding behavior (Tanke & Rothschild, 2010; Tanke & Rothschild, 2014). In contrast, the

supposed traumatic fracture found in the fifth cervical of SMA 0005 probably results from

a serious accident. Although the whole left postzygapophysis was basically broken, the

lesion shows evidence of healing in form of a callus, indicating the survival of the accident.

A possible explanation for such a rather unusual break might be found in the importance

of the neck in hunting behavior in large theropods (e.g., Snively & Russel, 2007a; Snively

& Russell, 2007b; Snively et al., 2013). Thus, the injury might have resulted from a failed

hunting attack or from struggling prey, in which case this represents further evidence

for active hunting in Allosaurus (see also Carpenter et al., 2005). However that may be,

the severity of the injury most probably had a serious effect on the neck mobility of the

specimen (see Snively et al., 2013).

Fractured or infected presacral ribs are one of the most common pathologies found

within theropods (Molnar, 2001), in which, however, cervical ribs are less affected than

dorsal elements. Pathologic cervical ribs are reported for Megalosaurus (Tanke & Roth-

schild, 2002), Allosaurus (Petersen, Isakson & Madsen, 1972) and Tyrannosaurus (Brochu,

2003), whereas corresponding dorsal rib pathologies are found in various large-bodied

theropods like the abelisaurid Majungasaurus (Farke & O’Connor, 2007), the allosauroids

Acrocanthosaurus (Harris, 1998), Allosaurus (Molnar, 2001; Hanna, 2002; Rothschild &

Tanke, 2005; USNM 4734, T Holtz, pers. comm., 2014), Mapusaurus (Bell & Coria, 2013)

and Sinraptor (Currie & Zhao, 1993) and the tyrannosaurids Albertosaurus (Bell, 2010),

Gorgosaurus (Lambe, 1917) and Tyrannosaurus (Brochu, 2003; Rothschild & Molnar, 2008).

The examples mentioned above show different kinds of pathologies, i.e., trauma-related

callus formations (Harris, 1998; Hanna, 2002; Brochu, 2003), pseudarthroses (Harris, 1998;

Brochu, 2003; Rothschild & Molnar, 2008; Bell, 2010) or lesions by microbial infections
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(Harris, 1998; Hanna, 2002; Brochu, 2003; Bell & Coria, 2013), in which the latter could

be the result of secondary infections of the injury. Hanna (2002) further describes the

formation of idiopathic spiculae on two fractured dorsal ribs in the Allosaurus specimen

MOR 693. In SMA 0005, all pathologic ribs show evidence of lesions, which are probably

traumatic-related pseudarthroses. Here, the pseudarthrosis as a healing response (rather

than callus healing) in the cervical rib results most likely from regular neck movements

(Snively & Russel, 2007a; Snively et al., 2013), whereas the pseudarthroses found in the

dorsal ribs were probably caused by constant movement of the ribcage during breathing

(Claessens, 2009a; Claessens, 2009b) or due to thorax movements during locomotion

(see Mallison, 2010).

The fractured scapula shows a clear case of a pseudarthrosis as healing response, which

resulted from the apparent malunion of the fractured elements. Mechanical loading is

additionally likely, as the proximal fragment, which is articulated with the rest of the arm,

is tilted ventrally. The extent of the malunion may be indicative of syn-traumatic displace-

ment, which potentially indicates great destructive force acting upon the element. Accord-

ingly, the left arm in SMA 0005 was likely dysfunctional after the trauma. Other examples

of pathologic scapulae in theropods can be found in the Allosaurus specimen USNM

4734 (Gilmore, 1920; Rothschild, 1997; Molnar, 2001) and in Yangchuanosaurus (Xing

et al., 2009). The scapula of USNM 4734 shows a strong, arched dislocation between

both fragments, in which the proximal element developed a spine-like exostosis on

the ventral margin of the projecting portion of the proximal fragment (Gilmore, 1920;

Rothschild, 1997). In contrast, the injury of the scapula in Yangchuanosaurus shows callus

formation as healing response (Xing et al., 2009), indicating an incipient fracture. Other

examples of pathologic scapulae seem not to be related to traumatic events, but with the

development of exostoses (e.g., Acrocanthosaurus (NCSM 14345, C Foth, S Evers & O

Rauhut, pers. obs., 2012) and Neovantor (Brusatte, Benson & Hutt, 2008)), idiopathic

lesions (e.g., Allosaurus (MOR 693; Hanna, 2002)) and infectious lesions in relation to

osteomyelitis (e.g., Allosaurus (UUVP 1528, UUVP 5599, Molnar, 2001; Hanna, 2002)).

Because the injuries of the left scapula and the dorsal ribs from the left side are present at

almost the same level of the thorax, it is possible that these traumas happened in one single

event, e.g., a serious fall, or a defensive blow from a sauropod tail. This scenario would be

even more probable if the deformations found in the other dorsal ribs from the left side

have a traumatic origin, too. However, as stated above, this cannot currently be confirmed,

as they cannot be distinguished from taphonomic deformations. Multiple rib fractures

from one thorax side are also documented in Acrocanthosaurus (Harris, 1998), Allosaurus

(Hanna, 2002; USNM 4734, T Holtz, pers. comm., 2014) and Tyrannosaurus (Brochu,

2003), possibly also resulting from one single traumatic event.

The most complex pathology appears in the left pedal phalanx II-2, including a reduced

extensor tubercle, a callus formation of the phalangeal shaft, and several depressions

penetrating the callus. The small size of the callus and the absence of any external fracture

lines in the left pedal phalanx II-2 maybe indicate that the bone was not injured in an

actual accident, but affected by chronic traumatic stress, resulting in a stress fracture as
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it is described for various dinosaurs. The origin of the reduced extensor tubercle remains

speculative, possibly being developmental in origin or resulting from a trauma that healed

long before the animal’s death, in which the tubercle was lost during resorption of bone

during advanced healing stages. As the extensor tubercle in its normal condition should

prevent the hyperextension of pedal phalanges, the absence of this process may have led to

a frequent overloading of pedal muscles and ligaments in SMA 0005. Thus, it is possible

that this pathology is physically linked to the callus formation in the proximal portion of

the phalangeal shaft, as frequent hyperextension may have caused chronic traumatic stress

to the phalanx. In a different scenario, the callus is a response to a fracture or stress fracture

unrelated to a developmental disorder of the extensor tubercle. At any rate, stress fractures

in pedal phalanges are a type of pathology that commonly occurs in theropods (Madsen,

1976; Rothschild, 1988; Rothschild, Tanke & Ford, 2001; Rothschild & Tanke, 2005; Farke &

O’Connor, 2007; Bell, 2010; Zanno et al., 2011; Anné et al., 2014), and are thought to be

related to strenuous activities (Rothschild, Tanke & Ford, 2001; Rothschild & Tanke, 2005).

The additional penetration of the callus by several depressions indicate a potential

secondary infection of the pedal phalanx, perhaps caused by a syn-traumatic injury of

adjacent soft tissue, through which microbial pathogens got access to the bone and cause

contiguous osteomyelitis. Thus, the callus pathology is most likely traumatic-infectious.

Secondary infections of callus structures as well as infections not clearly linkable to

fractures seem to be common in pedal phalanges of Allosaurus (MOR 693, UUVP 1657,

UMNH VP 6295, UMNH VP 6284, UMNH VP 10755, UMNH VP 6287, UMNH VP

6299). In two specimens (MOR 693; UUVP 1657), the supposed secondary infections led

to colossal exostoses, causing chronic pain and restriction in the locomotion. However, the

medial and ventral depressions of the left pedal phalanx II-2 of SMA 0005 differ distinctly

in their morphology. Thus, their origin does not have to be necessarily linked to each other.

Especially, due to the inconspicuous morphology of the small depressions on the ventral

side of the phalanx a taphonomic origin cannot be ruled out with complete certainty.

The cause for the abnormalities of the left humerus and left pedal phalanx IV-1 are

unknown, and could be potentially infectious, traumatic or developmental. The small

depressions on the anterior side of the ulnar condyle of the humerus could be potentially

related to post-mortem modification.

The most severe and potentially fatal pathology occurs in the ischium, which most likely

represents a traumatic fracture. Pathologies in the pelvic region are not often documented

in theropods and usually restricted to the ilium (Molnar, 2001; Hanna, 2002; Bell & Coria,

2013). In the Allosaurus specimen UUVP 5985, the ilium is fused with the ischium (Hanna,

2002). However, an ischial fracture is to our knowledge not documented within theropods

so far. The fracture of the right ischium exhibits a large interfragmentary gap with a

projecting fragment on the lateral side. Because unambiguous healing responses are absent

around the fracture, the possibility that the ischium was broken post-mortem has to be

considered. However, scenarios in which a skeletal element with a designated long axis

fractures in the oblique way described above are hard to come by, and we think the most

parsimonious explanation for the observed fracture is a traumatic event during life. This is
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perhaps supported by the presence of sandy sediment matrix in the interfragmentary gap,

as a void would be expected to be filled by different material if the fracture was the result of

stress related to tectonic activity. Although no callus structure is found around the fracture,

its absence per se cannot be seen as a clear indicator for the lack of a healing response, as

the integration of the ischium in a complex network of locomotor musculature (Carrano &

Hutchinson, 2002; Hutchinson et al., 2005) would predict intense motion along the fracture,

favoring the formation of a pseudarthrosis (Cleas, Wolf & Augat, 2000; Loboa, Beaupré &

Carter, 2001). As seen in the scapula, large parts of the fracture line can remain unfused

in a pseudarthrosis, and the fragments can be adhered at the end points of overlapping

fracture fragments. In SMA 0005, the periphery of the connective bone in the scapula

is structurally marked by fine striations and modifications from the smooth surface of

healthy bone. Unfortunately, the irregular texture of the ischium, which we interpret as

taphonomic (see below), prevents an assessment of the bone structure around the area

where the ischium fragments meet, as the pattern would have overprinted the original

bone surface structure. Therefore, it cannot be clarified if the connection of the fragments

is the result of incomplete fracturing, or a secondary bridging due to a healing response. As

experimental studies on animal fractures have shown that overhanging fracture ends tend

to be resorbed during the healing process (Loboa, Beaupré & Carter, 2001), the presence of

a laterally projecting fragment indicates that the healing process, if already started, was still

in an early phase, supporting the hypothesis that the supposed trauma happened shortly

before the animal died, and is accordingly a possible cause of death. It is likely that the

locomotion ability of SMA 0005 was significantly limited or even inhibited by the injury,

consequentially affecting life traits like its hunting success. The reason for the traumatic

event remains speculative, although it must have been a forceful incident.

The irregular cortical texture found around the ischial fracture is probably not

pathologic. The right pubis shows also large traces of similar structure. Smaller traces

can be found in the right coracoid, both scapulae, the left humerus, the left ischium, the left

pubis and the left fibula (Figs. 5C and 5D). The structures differ in their morphology from

the supposed lesions found on the medial side of the in right pedal phalanx II-2, as they

possess a very irregular outline with a weak margin and a complex inner topography, which

is composed of interconnected round pits with irregular size and depth (c. 1 to 3 mm). This

morphology is similar to the superficial pits found on various sauropod bones from the

Morrison Formation, which are most likely taphonomic in origin (Fiorillo, 1998; Hasiotis,

Fiorillo & Hanna, 1999). Possible causes for these traces are bone corrosion due to soil

acidity (Fiorillo, 1998) or scavenging by insect larvae (Hasiotis, Fiorillo & Hanna, 1999).

Implications for paleobiology and lifestyle
The number of pathologic specimens in general and the number of pathologies within

fairly complete Allosaurus individuals suggest that members of this taxon had an active

lifestyle predisposed to injury. Most pathologies found seem to be traumatic in origin,

but only few show evidence of secondary infection (Molnar, 2001). This either suggests

that inflamed wounds quickly caused death, leaving no osteological traces, or that the
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immune defense of these animals was successful in prohibiting infections and the spread

of such. Oftentimes injuries were indeed survived, as evidence for healing responses are

abundant in the theropod fossil record. In previous studies (e.g., Hanna, 2002; Butler et

al., 2013; Vittore & Henderson, 2013) mammalian immune response has often been used

as a model for explaining pathologic structures thought to be related to tissue-invasive

microbial infections in non-avian dinosaur taxa. This is because bone dynamics between

both groups have been shown to be similar (Rega, 2012). However, similarities in bone

dynamics do not necessitate similarities in immune response. While the mammalian

immune response to infections usually is the formation of suppurative abscesses, extant

reptiles (including birds) form small cysts of fibrin (fibriscesses) at the sources of infection,

which tend to calcify in advance stages (Montali, 1988; Gomis et al., 1997; Huchzermeyer

& Cooper, 2000; Cooper, 2005; Rega, 2012). In spite of evidence for severe infections in

Allosaurus (e.g., pedal phalanges in Hanna, 2002), infections seem to be localized on single

bones, and generally relatively rare in spite of the number and severity of pathologies

found in this and other studies. This suggests that the spread of infection and therefore

haematogenous osteomyelitis occurred rarely in Allosaurus, which is consistent with the

reptilian immune response and the localization of pathogens by means of fibrin clotting.

Therefore, applying the extant phylogenetic bracket, a reptile-like immune response

should be suspected for tissue-invasive microbial infections in non-avian dinosaurs, too.

Consequently, application of a mammalian model for infectious pathologies in non-avian

dinosaurs should be avoided (see Arbour & Currie, 2011; Rega, 2012). As the localization

of pathogens in fibriscesses successfully prevents haematogenous osteomyelitis in reptiles,

the risk of lethal infections due to the spread to other body regions is minimized (Rega,

2012). This is supported by the fact that theropods show only very localized indications for

infections (Molnar, 2001).

The severity of pathologies in SMA 0005 and other Allosaurus specimens (Gilmore,

1920; Molnar, 2001; Hanna, 2002) points to a frequent exposure to hazardous situations.

This might be seen as evidence for an active predatory life style. If this is accepted,

many of the traumatic pathologies found could be the result of hunting accidents (see

e.g., Carpenter et al., 2005). Some of the pathologies seen in Allosaurus, like the broken

cervical postzygapophysis and scapula of SMA 0005, the hypertrophied pedal phalanx

of MOR 693 (Hanna, 2002) and UMNH 1657 (Madsen, 1976; Hanna, 2002), or the

fibula of USNM 4734 (Gilmore, 1920) can be expected to severely limit the movement,

manoeuvrability, and speed of the animals. This in turn should affect the hunting success,

but also intra- and interspecific competition for various other resources (water, territories,

captured prey and carrion) of such an individual, which would be expected to mean

certain death within a relatively short period of time. Indeed, the broken ischium qualifies

as a strongly limiting and severe injury, and is potentially related to the death of SMA

0005. However, the number of cases of advanced healing for severe injuries within

various Allosaurus specimens (including SMA 0005) might corroborate the presence of

an intermediate metabolic rates compared to that of ectothermic non-avian reptiles and

endothermic birds and therian mammals (Grady et al., 2014; Werner & Griebeler, 2014),
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so that a potential lower nutrient demand (compared to endothermic animals) allowed

the survival of the animal despite its injuries because of the reduced necessity to feed

frequently. Moreover, the common survival of the injured individual could be further

related to scavenging or gregarious behavior, in which nutrition supply does not rely

on the hunting success of a single individual. Although stratigraphic and taphonomic

information is not provided in detail for all Allosaurus remains, this taxon represents the

most abundant theropod within the Morrison Formation, and is frequently found with

several specimens within near proximity to one another (see Gilmore, 1920; Madsen,

1976; Foster, 2003; Loewen, 2009), supporting a possible gregarious behavior. Within

theropod dinosaurs, similar behavior has been further hypothesized for the coelophysoids

Coelophysis (Colbert, 1989) and Syntarsus (Raath, 1990), the carcharodontosaurid

Mapusaurus (Coria & Currie, 2006), the ornithomimosaur Sinornithomimus (Kobayashi

& Lü, 2003; Varricchio et al., 2008), and the tyrannosaurids Albertosaurus (Currie, 2000;

Currie & Eberth, 2010), Daspletosaurus (Currie et al., 2005) and Tyrannosaurus (Larson,

2008), which were often found in (nearly) monodominant assemblages with various

ontogenetic stages. Although monodominant assemblages are scarce in the Morrison

Formation (Foster, 2003; Gates, 2005), at least the Cleveland-Lloyd Dinosaur Quarry is

by far dominated by Allosaurus. In spite of repeated taphonomic and sedimentological

investigations of the quarry (Bilbey, 1998; Bilbey, 1999; Gates, 2005), the abundance of

Allosaurus has not been satisfactorily explained, so that a gregarious scenario should

not be ruled out a priori at this point. However, frequent findings of several associated

specimens of Allosaurus and other theropods in single localities could alternatively reflect

aggregations around a large food resource (predator trap hypothesis; see Dodson et al.,

1980; Bilbey, 1999) or a drought-induced mass accumulation (Gates, 2005; see also Wings et

al., 2012). Nevertheless, future discoveries related to the metabolic performance and social

behavior of Allosaurus and other non-avian theropod dinosaurs could potentially falsify or

support these hypotheses, leading to a reinterpretation of the paleobiology and life history

of this and other pathological individuals.

CONCLUSIONS
The Allosaurus SMA 0005 represents a further specimen of this taxon with multiple

pathologies, which were mostly interpreted as traumatic in origin, pertaining to all body

regions (i.e., skull, axial skeleton, pectoral and pelvic girdle, and extremities). Traces of

healing responses in all pathologic bones but the ischium suggest the survival of possible

accidents and infections, but also an active predatory lifestyle predisposed to injury. The

scarcity and local restriction of infectious pathologies is in agreement with a reptile-like

immune response preventing the spread of infections via the blood stream. The survival

of injuries affecting the physical fitness in Allosaurus may indicate gregarious behavior.

However, verification of this hypothesis would require more direct evidence, like an

unambiguous find of a group or direct trackway evidence (e.g., McCrea et al., 2014).

Alternative explanations for the frequent survival of traumas could be furthermore

the presence of a metabolic rate below those of endothermic organisms or scavenging
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behavior. The probable fracture in the ischium was potentially fatal, as no advanced traces

of healing could be identified.
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DOI 10.1007/s001040051172.

Colbert EH. 1989. The Triassic dinosaur Coelophysis. Museum of Northern Arizona Bulletin
57:1–160.

Cooper RG. 2005. Bacterial, fungal and parasitic infections in the ostrich (Struthio camelus var.
domesticus). Animal Science Journal 76:97–106 DOI 10.1111/j.1740-0929.2005.00243.x.

Coria RA, Currie PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper
Cretaceous of Argentina. Geodiversitas 28:71–118.

Currie PJ. 2000. Possible evidence of gregarious behavior in tyrannosaurids. Gaia 15:271–277.

Currie PJ, Eberth DA. 2010. On gregarious behavior in Albertosaurus. Canadian Journal of Earth
Sciences 47:1277–1289 DOI 10.1139/E10-072.

Currie PJ, Trexler D, Koppelhus EB, Wicks K, Murphy N. 2005. An unusual multi-individual
tyrannosaurid bonebed in the Two Medicine Formation (Late Cretaceous, Campanian)
of Montana (USA). In: Carpenter K, ed. The carnivorous dinosaurs. Bloomington: Indiana
University Press, 313–324.

Currie PJ, Zhao X. 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of
Xinjiang, People’s Republic of China. Canadian Journal of Earth Sciences 30:2037–2081
DOI 10.1139/e93-179.

Foth et al. (2015), PeerJ, DOI 10.7717/peerj.940 28/33

https://peerj.com
http://dx.doi.org/10.2307/3889334
http://dx.doi.org/10.1111/joa.12216
http://dx.doi.org/10.1080/02724634.2012.710691
http://dx.doi.org/10.1002/jmor.10018
http://dx.doi.org/10.1002/jez.530
http://dx.doi.org/10.1002/jez.501
http://dx.doi.org/10.1007/s001040051172
http://dx.doi.org/10.1111/j.1740-0929.2005.00243.x
http://dx.doi.org/10.1139/E10-072
http://dx.doi.org/10.1139/e93-179
http://dx.doi.org/10.7717/peerj.940


Dodson P, Behrensmeyer AK, Bakker RT, McIntosh JS. 1980. Taphonomy and paleoecology of
the dinosaur beds of the Jurassic Morrison Formation. Paleobiology 6:208–232.

Effron M, Griner L, Benirschke K. 1977. Nature and rate of neoplasia found in captive wild
mammals, birds, and reptiles at necropsy. Journal of the National Cancer Institute 59:185–198.

Evers S, Foth C, Rauhut OWM, Pabst B, Mateus O. 2013. Traumatic pathologies in the
postcranium of an adult Allosaurus specimen from the Morrison Formation of the Howe
Quarry, Wyoming, USA [Abstract 124]. Journal of Vertebrate Paleontology, Program and
Abstracts 33.

Farke AA, O’Connor PM. 2007. Pathology in Majungasaurus crenatissimus (Theropoda:
Albelisauridae) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology
27:180–184 DOI 10.1671/0272-4634(2007)27[180:PIMCTA]2.0.CO;2.

Farke AA, Sertich JJW. 2013. An abelisauroid theropod dinosaur from the Turonian of
Madagascar. PLoS ONE 8:e62047 DOI 10.1371/journal.pone.0062047.

Farke AA, Wolff EDS, Tanke DH. 2009. Evidence of combat in Triceratops. PLoS ONE 4:e4252
DOI 10.1371/journal.pone.0004252.

Fiorillo AR. 1998. Bone modification features on sauropod remains (Dinosauria) from the
Freezeout Hills Quarry N (Morrison Formation) of southeastern Wyoming and their
contribution to fine-scale paleoenvironmental interpretation. Modern Geology 23:111–126.

Foster JR. 2003. Paleoecological analysis of the vertebrate fauna of the Morrison Formation (Upper
Jurassic), Rocky Mountain Region, USA. New Mexico Museum of Natural History and Science,
Bulletin 23:1–95.

Gates TA. 2005. The Late Jurassic Cleveland-Lloyd Dinosaur Quarry as a drought-induced
assemblage. Palaios 20:363–375 DOI 10.2110/palo.2003.p03-22.

Gilmore GW. 1920. Osteology of the carnivorous dinosauria in the United States National
Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus.
Bulletin of the United States National Museum 110:1–159.

Gomis SM, Goodhpe R, Kumor L, Caddy N, Riddell C, Potter AA, Allan BJ. 1997. Isolation of
Escherichia coli from cellulitis and other lesions of the same bird in broilers at slaughter. The
Canadian Veterinary Journal 38:159–162.

Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA. 2014. Evidence for
mesothermy in dinosaurs. Science 344:1268–1272 DOI 10.1126/science.1253143.

Gross JD, Rich TH, Vickers-Rich P. 1993. Dinosaur bone infection. National Geographic Research
& Exploration 9:286–293.

Hanna RR. 2002. Multiple injury and infection in a sub adult theropod dinosaur Allosaurus fragilis
with comparisons to allosaur pathology in the Cleveland-Lloyd Dinosaur Quarry Collection.
Journal of Vertebrate Paleontology 22:76–90
DOI 10.1671/0272-4634(2002)022[0076:MIAIIA]2.0.CO;2.

Harris JD. 1998. A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and
paleobiological implications, based on a new specimen from Texas. New Mexico Museum of
Natural History and Science, Bulletin 13:1–75.

Hasiotis ST, Fiorillo AR, Hanna RR. 1999. Preliminary report on borings in Jurassic dinosaur
bones: evidence for invertebrate-vertebrate interactions. In: Gillette DD, ed. Vertebrate
paleontology in Utah. Salt Lake City: Miscellaneous Publication, 193–200.

Holliday CM, Gardner NM, Paesani SM, Douthitt M, Ratliff JL. 2010. Microanatomy of the
mandibular symphysis in lizards: patterns in fiber orientation and Meckel’s cartilage and their
significance in cranial evolution. The Anatomical Record 293:1350–1359 DOI 10.1002/ar.21180.

Foth et al. (2015), PeerJ, DOI 10.7717/peerj.940 29/33

https://peerj.com
http://dx.doi.org/10.1671/0272-4634(2007)27[180:PIMCTA]2.0.CO;2
http://dx.doi.org/10.1371/journal.pone.0062047
http://dx.doi.org/10.1371/journal.pone.0004252
http://dx.doi.org/10.2110/palo.2003.p03-22
http://dx.doi.org/10.1126/science.1253143
http://dx.doi.org/10.1671/0272-4634(2002)022[0076:MIAIIA]2.0.CO;2
http://dx.doi.org/10.1002/ar.21180
http://dx.doi.org/10.7717/peerj.940


Holliday CM, Nesbitt SJ. 2013. Morphology and diversity of the mandibular symphysis of ar-
chosauriforms. Geological Society, London, Special Publications 379:1–18 DOI 10.1144/SP379.2.

Hone DWE, Tanke DH. 2015. Pre- and postmortem tyrannosaurid bite marks on the remains of
Daspletosaurus (Tyrannosaurinae: Theropoda) from Dinosaur Provincial Park, Alberta, Canada.
PeerJ 3:e885 DOI 10.7717/peerj.885.

Huchzermeyer FW. 2003. Crocodiles. Wallingford: CABI Publishing.

Huchzermeyer FW, Cooper JA. 2000. Fibricess, not abcess, resulting from a localised
inflammatory response to infection in reptiles and birds. Veterinary Record 147:515–517
DOI 10.1136/vr.147.18.515.

Hutchinson JR, Anderson FC, Blemker SS, Delp SL. 2005. Analysis of hindlimb muscle moment
arms in Tyrannosaurus rex using a three-demensional musculoskeletal computer model:
implications for stance, gait, and speed. Paleobiology 31:676–701 DOI 10.1666/04044.1.

Klein P, Schell H, Streitparth F, Heller M, Kassi J-P, Kandziora F, Bragulla H, Haas NP,
Duda GN. 2003. The initial phase of fracture healing is specifically sensitive to mechanical
conditions. Journal of Orthopaedic Research 21:662–669 DOI 10.1016/S0736-0266(02)00259-0.
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