

Overview on Dietary Reference Values for the EU population as derived by

the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

The term Dietary Reference Value (DRV) is an umbrella term for the complete set of nutrient reference values which include concepts like the Population Reference Intakes, the Average Requirement, Adequate Intakes and Reference Intake ranges for macronutrients (EFSA NDA Panel, 2011). The latter indicate the amount of an individual nutrient that people need for good health depending on their age and gender.

In its opinions, EFSA used four types of DRVs:

- The **Population Reference Intake** (**PRI**), which is the level of (nutrient) intake that is adequate for virtually all people in a population group. On the assumption that the individual requirements for a nutrient are normally distributed within a population and the interindividual variation is known, the PRI is calculated on the basis of the AR plus twice its standard deviation (SD). This will meet the requirements of 97.5% of the individuals in the population.
- The Average Requirement (AR), which is the level of (nutrient) intake estimated to satisfy the physiological requirement or metabolic demand, as defined by the specified criterion for adequacy for that nutrient, in half of the people in a population group, given a normal distribution of requirement.
- The Adequate Intake (AI), which is the value estimated when a PRI cannot be established because an AR cannot be determined. An Adequate Intake is the average observed or experimentally determined approximations or estimates of nutrient intake by a population group (or groups) of apparently healthy people that is assumed to be adequate. The practical implication of an AI is similar to that of a PRI, i.e. describe the level of intake that is considered adequate for health reasons. The terminological distinction relates to the different way in which these values are derived and to the resultant difference in the "firmness" of the value.
- The **Reference Intake range (RI)**, which is the intake range for macronutrients, expressed as % of the energy intake. These apply to ranges of intakes that are adequate for maintaining health and associated with a low risk of selected chronic diseases.

The work done by EFSA in this area was based on a request from the European Commission, which asked EFSA to update previous European advice (SCF, 1993), taking into account new scientific evidence and recent recommendations issued at national and international level.

This document provides an overview about the outcome of EFSA's scientific deliberations. The detailed reasoning for establishing individual values can be found in the related opinions of the NDA Panel. Links to the respective documents are included in Table 7 of this document.

					Ene	rgv					Pro	tein
Age	A (MJ/	R (day)	PAL	^(a) at z=1.4 /day)	AR PAL (MJ/	^(a) at =1.6	PAL	^(a) at 2=1.8 /day)	PAL	^(a) at 2=2.0 /day)	P	RI lay)
	Μ	F	Μ	F	M F M F M F						М	F
0.5 y											10	9
7 mo	2.7	2.4										
8 mo	2.8	2.5										
9 mo	2.9	2.6										
10 mo	3.0	2.7										
11 mo	3.1	2.8										
1 y			3.3	3.0		12	11					
1.5 y						12	11					
2 y			4.3	4.0							12	12
3 y			4.9	4.6							13	13
4 y			5.3	4.9	6.0	5.6	6.8	6.3			15	14
5 y			5.6	5.2	6.4	5.9	7.2	6.7			16	16
б у			5.9	5.5	6.7	6.3	7.6	7.1			19	19
7 y			6.3	5.8	7.2	6.7	8.1	7.5			22	22
8 y			6.7	6.2	7.6	7.1	8.6	7.9			25	25
9 y			7.0								28	28
10 y					8.1	7.6	9.1	8.6	10.1	9.5	31	31
11 y					8.5	8.0	9.6	9.0	10.7	10.0	34	34
12 y					9.1	8.4	10.2	9.4	11.4	10.5	37	38
13 y					9.8	8.8	11.0	9.9	12.2	11.0	42	42
14 y					10.5	9.1	11.8	10.2	13.1	11.4	47	45
15 y					11.3	9.3	12.7	10.5	14.1	11.7	52	46
16 y					11.9	9.5	13.4	10.6	14.9	11.8	56	47
17 y					12.3	9.5	13.8	10.7	15.4	11.9	58	48
18-29 y			9.8	7.9	11.2	9.0	12.6	10.1	14.0	11.2	62	52
30-39 y			9.5	7.6	10.8	8.7	12.2	9.8	13.5	10.8	62	52
40-49 y			9.3	7.5	10.7	8.6	12.0	9.7	13.4	10.7	62	52
50-59 y			9.2	7.5	10.5	8.5	11.9	9.6	13.2	10.7	62	52
60-69 y			8.4 6.8 9.6 7.8 10.9 8.8 12.1 9.7								61 61	55
70-79 y			8.3 6.8 9.5 7.7 10.7 8.7 11.9 9.6									55
at			Pregnancy									(0)
1 st trimeste	er		$\begin{array}{c c} + 0.29^{(a)} & +1^{(a)} \\ + 1.1^{(a)} & +9^{(a)} \end{array}$									
2 nd trimest	er		$+1.1^{(a)}$									
3 rd trimest	er		$+2.1^{(a)}$									8 ^(a)
		1			L	actatio	n					- (9)
0-6 mo <i>pos</i>	st				+	$2.1^{(a)}$					+1	9 ^(a)
partum												a (a)
>6 mo <i>pos</i>	t-	not given +13 ^(a)									5``'	
<i>partum</i> F, female; N			1 5	AT 1		, .	1					

Table 1: Summary of Average Requirements (AR) for energy and Population Reference Intakes (PRIs) for protein

F, female; M, male; mo, months; PAL, physical activity level; y, years

 $^{(a)}$ in addition to the AR (energy)/PRI (protein) for non-pregnant women

Age group (years)	Total fat (E%) ^(a)	SFA	LA (E%) ^(b)	ALA (E%) ^(b)	EPA+DHA (mg/d) ^(b)	DHA (mg/d) ^(b)	TFA	Age group (years)	Total carbohydrates (E%) ^(a)	Dietary fibre (g/d) ^(b)	Age group (years)	Water (l/d) ^{(b), (c)} M F
7-11 mo ^(d)	40 ^(b)	ALAP	4	0.5		100	ALAP				6-12 mo	0.8-1.0
1	35-40	ALAP	4	0.5		100	ALAP	1-3	45-60	10	1	1.1-1.2
2-3	35-40	ALAP	4	0.5	250		ALAP				2-3	1.3
4-17	20-35	ALAP	4	0.5	250			4-6	45-60	14	4-8	1.6
								7-10	45-60	16	9-13	2.1 1.9
								11-14	45-60	19	14-17	2.5 2.0
								15-17	45-60	21		
≥ 18	20-35	ALAP	4	0.5	250		ALAP	≥ 18	45-60	25	≥ 18	2.5 2.0
	-		-	-		Pre	gnancy	-	-	-	•	
	20-35	ALAP	4	0.5	250	$+100-200^{(e)}$	ALAP					2.3
						La	ctation					
	20-35	ALAP	4	0.5	250	$+100-200^{(e)}$	ALAP					2.7

Summary of Reference Intake Ranges (RI) for total fat and carbohydrates and Adequate Intakes (AIs) for fatty acids, dietary fibre and water Table 2:

ALA; α-linolenic acid; ALAP, as low as possible; d, day; DHA, docosahexaenoic acid; E% percentage of energy intake; EPA, eicosapentaenoic acid; F, female; LA, linoleic acid; M, male; mo, months, SFA, saturated fatty acids; TFA, trans-fatty acids

(a) RI

^(b)AI

(c) includes water from beverages of all kind, including drinking and mineral water, and from food moisture
 (^{d)} i.e. the second half of the first year of life (from the beginning of the 7th month to the 1st birthday)
 (e) in addition to combined intakes of EPA and DHA of 250 mg/day

ge group (years)	Calcium (mg/d)	ge group (years)	Fluoride (mg/d)	lodine (μg/d)	Manganese (mg/d)	Molybdenu m (μg/d)	Phosphorus (mg/d)	Potassium (mg/d)	Selenium (μg/d)	Age group (years)	n (mg/d)	ge group (years)	Copper (mg/d)	Magnesium (mg/d)	ge group (years)		(mg/d)
Age (ye	C) 8V	E)	Mo m	Pho)	Po)	Se Se) J	Iron	Age (ye	0))	Age (ye	LPI (mg/d)	
7–11 mo ^(a)	280	7–11 mo ^(a)	0.4	70	0.02– 0.5 ^(b)	10	160	750	15	7–11 mo ^(a)	11	7–11 mo ^(a)	0.4	80	7–11 mo ^(a)	(c)	2.9
1–3	450	1–3	0.6	90	0.5	15	250	800	15	1–6	7	1–2	0.7	170	1–3	(c)	4.3
4–10	800	4–6	1.0	90	1.0	20	440	1,100	20			3–9	1.0	230	4–6	(c)	5.5
		7–10	1.5	90	1.5	30	440	1,800	35	7–11	11	10-17	1.3	300	7–10	(c)	7.4
11-17	1150	11-14	2.2	120	2.0	45	640	2,700	55						11–14	(c)	10.7
		15-17	3.2	130	3.0	65	640	3,500	70	12–17	11				15–17	(c)	14.2
18–24	1000	≥18	3.4	150	3.0	65	550	3,500	70	≥18	11	≥ 18	1.6	350	≥18	300	9.4
≥ 25	950															600	11.7
																900	14.0
																1,200	16.3

Population Reference Intakes (PRIs) and Adequate Intakes (AIs) for minerals^{1,2} - MALES Table 3:

d, day; LPI, level of phytate intake; mo, months

PRIs are presented in **bold type** and AIs in ordinary type

 ^(a) i.e. the second half of the first year of life (from the beginning of the 7th month to the 1st birthday)
 ^(b) In view of the wide range of manganese intakes that appear to be adequate, a range is set for the AI of this age group
 ^(c) The fractional absorption of zinc considered in setting PRIs for children was based on data from mixed diets expected to contain variable quantities of phytate; therefore, no adjustment for phytate intake has been made

¹ For chromium, setting an AI or a PRI was considered not appropriate ² The evaluation for sodium and chloride is ongoing (status: November 2016)

Age group (years)	Calcium (mg/d)	Age group (years)	Fluoride (mg/d)	lodine (μg/d)	Manganese (mg/d)	Molybdenum (μg/d)	Phosphorus (mg/d)	Potassium (mg/d)	Selenium (μg/d)	Age group (years)	Iron (mg/d)	ge group (years)	Copper (mg/d)	Magnesium (mg/d)	Age group (years)	Zinc	(mg/d)
Age (ye	Cal (m	Age (ye	Flu (m	Iodine	Man ₃ (m	Molyt (µ	Phos] (m	Pota (m	Sele (µ)	Age (ye	Iron	Age (ye	Coppe	Magr (m	Age (ye	LPI (mg/ day)	
7–11 mo ^(a)	280	7–11 mo ^(a)	0.4	70	0.02– 0.5 ^(b)	10	160	750	15	7–11 mo ^(a)	11	7–11 mo ^(a)	0.4	80	7–11 mo ^(a)	(c)	2.9
1–3	450	1–3	0.6	90	0.5	15	250	800	15	1–6	7	1–2	0.7	170	1–3	(c)	4.3
4–10	800	4–6	0.9	90	1.0	20	440	1,100	20			3–9	1.0	230	4–6	(c)	5.5
		7–10	1.4	90	1.5	30	440	1,800	35	7–11	11	10–17	1.1	250	7–10	(c)	7.4
11-17	1150	11–14	2.3	120	2.0	45	640	2,700	55						11-14	(c)	10.7
		15-17	2.8	130	3.0	65	640	3,500	70	12–17	13				15-17	(c)	11.9
18–24	1000	≥18	2.9	150	3.0	65	550	3,500	70	≥18		≥18	1.3	300	≥ 18	300	7.5
≥ 25	950															600	9.3
										Premeno pausal	16 ^(d)					900	11.0
										Postmen	11					1,200	12.7
										opausal							
								Pre	gnancy	7							
18-24	1000		2.9	200	3.0	65	550	3,500	70		16 ^(d)		1.5	300			+ 1.6 ^(e)
≥ 25	950																
								La	ctation								
18-24	1000		2.9	200	3.0	65	550	4,000	85		16 ^(d)		1.5	300			+2.9 ^(e)
≥25	950																

Table 4:	Population Reference Intakes (PRIs) and Adequate Intakes (AIs) for minerals ^{3,4} - FEMALES	
----------	--	--

d, day; LPI, level of phytate intake; mo, months

PRIs are presented in **bold type** and AIs in ordinary type

^(a) i.e. the second half of the first year of life (from the beginning of the 7th month to the 1st birthday)
^(b) In view of the wide range of manganese intakes that appear to be adequate, a range is set for the AI of this age group

³ For chromium, setting an AI or a PRI was considered not appropriate ⁴ The evaluation for sodium and chloride is ongoing (status: November 2016)

^(c) The fractional absorption of zinc considered in setting PRIs for children was based on data from mixed diets expected to contain variable quantities of phytate; therefore, no adjustment for ^(d) The PRI covers the requirement of approximately 95 % of premenopausal women ^(e) In addition to the PRIs for non-pregnant, non-lactating women

Age group (years)	a-Tocopherol (mg/d)	Age group (years)	Biotin (μg/d)	Choline (mg/d)	Folate (µg DFE/d)	Niacin (mg NE/MJ) ^(b)	Pantothenic acid (mg/d)	Thiamin (mg/MJ)	Vitamin A (µg RE/d) ^(c)	Vitamin B6 (mg/d)	Vitamin B_{12} ($\mu g/d$)	Vitamin C (mg/d)	Vitamin D (µg/d)
7–11 mo ^(d)	5	7–11 mo ^(d)	6	160	80	1.6	3	0.1	250	0.3	1.5	20	10
1-2	6	1–3	20	140	120	1.6	4	0.1	250	0.6	1.5	20	15 ^(e)
3–9	9	4–6	25	170	140	1.6	4	0.1	300	0.7	1.5	30	15 ^(e)
		7–10	25	250	200	1.6	4	0.1	400	1.0	2.5	45	15 ^(e)
10-17	13	11–14	35	340	270	1.6	5	0.1	600	1.4	3.5	70	15 ^(e)
		15–17	35	400	330	1.6	5	0.1	750	1.7	4.0	100	15 ^(e)
≥ 18	13	≥18	40	400	330	1.6	5	0.1	750	1.7	4.0	110	15 ^(e)

Population Reference Intakes (PRIs) and Adequate Intakes (AIs) for vitamins⁵ - MALES Table 5:

d, day; mo, months

PRIs are presented in **bold type** and AIs in ordinary type

^(a) DFE: dietary folate equivalents. For combined intakes of food folate and folic acid, DFEs can be computed as follows: μg DFE = μg food folate + (1.7 x μg folic acid)

^(b) NE: niacin equivalent (1 mg niacin = 1 niacin equivalent = 60 mg dietary tryptophan) ^(c) RE: retinol equivalent, 1 μ g RE equals 1 μ g of retinol, 6 μ g of β -carotene and 12 μ g of other provitamin A carotenoids

 $^{(d)}$ i.e. the second half of the first year of life (from the beginning of the 7th month to the 1st birthday)

(e) Under conditions of assumed minimal cutaneous vitamin D synthesis. In the presence of endogenous cutaneous vitamin D synthesis, the requirement for dietary vitamin D is lower or may be even zero

⁵ The evaluation for riboflavin and vitamin K is ongoing (status: November 2016)

Age group (years)	a-Tocopherol (mg/d)	Age group (years)	Biotin (μg/d)	Choline (mg/d)	Folate (µg DFE/d)	Niacin (mg NE/MJ) ^(b)	Pantothenic acid (mg/d)	Thiamin (mg/MJ)	Vitamin A (µg RE/d) ^(c)	Vitamin B6 (mg/d)	Vitamin B ₁₂ (μg/d)	Vitamin C (mg/d)	Vitamin D (µg/d)
7–11 mo ^(d)	5	7–11	6	160	80	1.6	3	0.1	250	0.3	1.5	20	10
		mo ^(d)											
1–2	6	1–3	20	140	120	1.6	4	0.1	250	0.6	1.5	20	15 ^(e)
3–9	9	4–6	25	170	140	1.6	4	0.1	300	0.7	1.5	30	15 ^(e)
		7–10	25	250	200	1.6	4	0.1	400	1.0	2.5	45	15 ^(e)
10-17	11	11–14	35	340	270	1.6	5	0.1	600	1.4	3.5	70	15 ^(e)
		15-17	35	400	330	1.6	5	0.1	650	1.6	4.0	90	15 ^(e)
≥ 18	11	≥18	40	400	330	1.6	5	0.1	650	1.6	4.0	95	15 ^(e)
						Preg	gnancy						
	11		40	480	600	1.6	5	0.1	700	1.8	4.5	105	15 ^(e)
						Lac	tation						
	11		45	520	500	1.6	7	0.1	1300	1.7	5.0	155	15 ^(e)

Population Reference Intakes (PRIs) and Adequate Intakes (AIs) for vitamins⁶ – FEMALES Table 6:

d, day; mo, months

PRIs are presented **in bold type** and AIs in ordinary type

^(a) DFE: dietary folate equivalents. For combined intakes of food folate and folic acid, DFEs can be computed as follows: $\mu g DFE = \mu g$ food folate + (1.7 x μg folic acid)

^(b) NE: niacin equivalent (1 mg niacin = 1 niacin equivalent = 60 mg dietary tryptophan) ^(c) RE: retinol equivalent, 1 μ g RE equals 1 μ g of retinol, 6 μ g of β -carotene and 12 μ g of other provitamin A carotenoids

^(d) i.e. the second half of the first year of life (from the beginning of the 7^{th} month to the 1^{st} birthday)

(e) Under conditions of assumed minimal cutaneous vitamin D synthesis. In the presence of endogenous cutaneous vitamin D synthesis, the requirement for dietary vitamin D is lower or may be even zero

⁶ The evaluation for riboflavin and vitamin K is ongoing (status: November 2016)

Table 7:	Links to Scientific	Opinions on	dietary reference values
----------	---------------------	-------------	--------------------------

General principles	Energy, macronutrients and water
http://www.efsa.europa.eu/en/efsajournal/pub/1458	Energy: http://www.efsa.europa.eu/en/efsajournal/pub/3005
	Fats: http://www.efsa.europa.eu/en/efsajournal/pub/1461
	Carbohydrates and dietary fibre: http://www.efsa.europa.eu/en/efsajournal/pub/1462
	Protein: http://www.efsa.europa.eu/en/efsajournal/pub/2557
	Water: http://www.efsa.europa.eu/en/efsajournal/pub/1458
Vitamins	Minerals
Alpha-tocopherol: http://www.efsa.europa.eu/en/efsajournal/pub/4149.htm	Calcium: http://www.efsa.europa.eu/en/efsajournal/pub/4101.htm
Choline: https://www.efsa.europa.eu/en/efsajournal/pub/4484.htm	Chromium: http://www.efsa.europa.eu/en/efsajournal/pub/3845.htm
Biotin: http://www.efsa.europa.eu/en/efsajournal/pub/3580.htm	Copper: http://www.efsa.europa.eu/en/efsajournal/pub/4253
Folate: http://www.efsa.europa.eu/en/efsajournal/pub/3893.htm	Fluoride: http://www.efsa.europa.eu/en/efsajournal/pub/3332.htm
Niacin: http://www.efsa.europa.eu/en/efsajournal/pub/3759.htm	Iodine: http://www.efsa.europa.eu/en/efsajournal/pub/3660.htm
Pantothenic acid: http://www.efsa.europa.eu/en/efsajournal/pub/3581.htm	Iron: http://www.efsa.europa.eu/it/efsajournal/pub/4254
Thiamin: https://www.efsa.europa.eu/en/efsajournal/pub/4653.htm	Magnesium: http://www.efsa.europa.eu/it/efsajournal/pub/4186.htm
Vitamin A: http://www.efsa.europa.eu/en/efsajournal/pub/4028.htm	Manganese: http://www.efsa.europa.eu/en/efsajournal/pub/3419.htm
Vitamin B6: https://www.efsa.europa.eu/en/efsajournal/pub/4485.htm	Molybdenum: http://www.efsa.europa.eu/en/efsajournal/pub/3333.htm
Vitamin B ₁₂ : <u>http://www.efsa.europa.eu/en/efsajournal/pub/4150.htm</u>	Phosphorus: http://www.efsa.europa.eu/en/efsajournal/pub/4185.htm
Vitamin C: http://www.efsa.europa.eu/en/efsajournal/pub/3418.htm	Potassium: https://www.efsa.europa.eu/en/efsajournal/pub/4592.htm
Vitamin D: http://www.efsa.europa.eu/en/efsajournal/pub/4547.htm	Selenium: http://www.efsa.europa.eu/en/efsajournal/pub/3846.htm
	Zinc: http://www.efsa.europa.eu/en/efsajournal/pub/3844.htm

References

EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA), 2010. Scientific Opinion on principles for deriving and applying Dietary Reference Values. EFSA Journal 2010; 8(3):1458, 30 pp. doi:10.2903/j.efsa.2010.1458

SCF (Scientific Committee for Food), 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific Committee for Food, 31st Series. Food - Science and Technique, European Commission, Luxembourg, 248 pp.